
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

RADIUS/UDP Considered Harmful
Sharon Goldberg, Cloudflare;Miro Haller and Nadia Heninger, UC San Diego;
Mike Milano, BastionZero; Dan Shumow, Microsoft Research;Marc Stevens,

Centrum Wiskunde & Informatica; Adam Suhl, UC San Diego
https://www.usenix.org/conference/usenixsecurity24/presentation/goldberg



RADIUS/UDP Considered Harmful

Sharon Goldberg
Cloudflare

Miro Haller
UC San Diego

Nadia Heninger
UC San Diego

Mike Milano
BastionZero

Dan Shumow
Microsoft Research

Marc Stevens
Centrum Wiskunde & Informatica

Adam Suhl
UC San Diego

Abstract
The RADIUS protocol is the de facto standard lightweight pro-
tocol for authentication, authorization, and accounting (AAA)
for networked devices. It is used to support remote access for
diverse use cases including network routers, industrial control
systems, VPNs, enterprise Wi-Fi including the Eduroam net-
work, Linux Pluggable Authentication Modules, and mobile
roaming and Wi-Fi offload.
We have discovered a protocol vulnerability in RADIUS

that has been present for decades. Our attack allows a man-
in-the-middle attacker to authenticate itself to a device using
RADIUS for user authentication, or to assign itself arbitrary
network privileges. Our attack exploits an MD5 chosen-prefix
collision on the ad hoc RADIUS packet authentication con-
struction to produce Access-Accept and Access-Reject pack-
ets with identical Response Authenticators, allowing our at-
tacker to transform a reject into an accept without knowledge
of the shared secret between RADIUS client and server.
We optimize the MD5 chosen-prefix attack to produce

collisions online in less than five minutes, and show how to
fit the collision blocks within RADIUS attributes that will be
echoed back from the server. We demonstrate our attack in a
variety of settings against popular RADIUS implementations.

It is our hope that this attack will provide the impetus for
vendors and the IETF to deprecate RADIUS over UDP, and
to require RADIUS to run over secure channels with modern
cryptographic privacy and integrity guarantees.

1 Introduction

The RADIUS (Remote Authentication Dial-In User Service)
protocol is at the core of today’s network infrastructure.
Although the protocol was first designed in 1991—during
the era of dial-up internet—it remains the de facto stan-
dard lightweight authentication protocol used for remote ac-
cess for users and administrators to networked devices. RA-
DIUS is supported by “essentially every switch, router, access
point, and VPN concentrator product sold in the last twenty
years” [19].

RADIUS is a critical part of modern telecommunications
and enterprise networks. In large enterprises, RADIUS may
control access to tens of thousands of switches. Essentially all
ISPs offering DSL or FTTH (Fiber to the Home) use RADIUS,
as do 802.1X and Wi-Fi authentication [16, 51]. RADIUS is
used for 2G and 3G cellular roaming [4,9] and 5G DNN (Data
Network Name) authentication [51]. (3G+ networks may use
its successor Diameter.) Mobile Wi-Fi offload with SIM card-
based authentication uses RADIUS [16,51], as does private
APN (Access Point Name) authentication, which is used by
IoT devices, companies, fire and rescue services, or law en-
forcement to gain access to non-public networks [37, 45].
SITA uses RADIUS to authenticate passenger aircraft world-
wide for telemetry data [44]. Siemens and GE smart grid
products use RADIUS [1,25]. Eduroam shares Wi-Fi to roam-
ing users at educational institutions in 100 countries through
a global hierarchy of networked RADIUS servers that saw 7.5
billion authentications in 2023 [32]. The Wireless Broadband
Alliance OpenRoaming federation also uses RADIUS.

Much of this RADIUS traffic is sent over UDP. The first hop
between a NAS (Network Access Server) and RADIUS server
is “almost always” over UDP [16]. While it is possible to send
RADIUS traffic over TLS or IPsec, this is typically only done
for packets traveling over the open internet; currently only
rare security-oriented organizations use RADIUS/TLS inter-
nally [16,51]. Although sending RADIUS/UDP traffic over
the internet is discouraged, it still happens. “A majority” of
country eduroam networks still send RADIUS/UDP traffic on
the internet [38] as do some “cloud” providers [18]. At least
one major RADIUS vendor has no TLS support at all [16].

1.1 Our Attack

The core of the RADIUS protocol predates modern secure
cryptographic design. Surprisingly, in the two decades since
Wang et al. [52] demonstrated an MD5 hash collision in 2004,
RADIUS has not been updated to remove MD5. In fact, RA-
DIUS appears to have received notably little security analysis
given its ubiquity in modern networks.
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In a RADEXT working group Internet-Draft from 2023
entitled “Deprecating Insecure Practices in RADIUS” [18]
Alan DeKok, the lead maintainer of FreeRADIUS—the most
widely used RADIUS implementation—wrote

As of the writing of this specification, RA-
DIUS/UDP is still widely used, even though it de-
pends on MD5 and "ad hoc" constructions for secu-
rity. While MD5 has been broken, it is a testament
to the design of RADIUS that there have been (as
yet) no attacks on RADIUS Authenticator signa-
tures which are stronger than brute-force.

In this paper, we give an attack against the ad hoc RADIUS
Response Authenticator “signature” (actually a MAC) con-
struction. This protocol flaw has been present in RADIUS
since the earliest versions [43].1

In RADIUS, a NAS acts as a client that verifies an end
user’s credentials via RADIUS requests to a central server.
The server responds with an accept or reject message (or
a further challenge). Our attack allows a man in the mid-
dle between the RADIUS client and server to forge a valid
Access-Accept response to a failed authentication request.
This forgery will cause the NAS to grant the adversary ac-
cess to network devices and services without the adversary
guessing or brute forcing passwords or shared secrets.

Our attack combines an MD5 chosen-prefix collision [48]
with a protocol exploit that allows us to hide the collision
gibberish in an attribute that is guaranteed to be echoed in the
server response. The Response Authenticator used to integrity
protect server responses is an MD5 hash of several values
including a random client nonce, protocol attributes, and a
fixed secret shared between client and server. Our man-in-the-
middle attacker injects a maliciously constructed attribute into
the request that is designed to produce an MD5 collision be-
tween the Response Authenticator authenticating the server’s
legitimate response and the attacker’s forged response.

To carry out this attack, the attacker must compute an MD5
chosen-prefix attack online, before the client times out, be-
cause the hash collision includes a random session nonce.
We are able to compute this MD5 chosen-prefix attack

in about five minutes by making several improvements to
Stevens’s [46] open-source hashclashchosen-prefix attack
implementation. We give a novel method to force bytes in col-
lision blocks that allows us to fit the resulting MD5 collisions
into the bounded length of a RADIUS protocol attribute.
Although we have stopped our engineering efforts at the

five minute mark, our reported running times are a generous
upper bound on the capabilities of a well-resourced attacker.
Every step of the collision algorithm parallelizes well. An

1Although the chosen-prefix MD5 collision attack we use dates from
2007, the first weakness in the MD5 hash function was publicly documented
in 1993, SHA-1 was published in 1995, and HMAC dates from 1996 [6].
RFC 5080 [34] noted in 2007 that Access-Request packets not containing a
Message-Authenticator attribute may be trivially forged.

attacker able to implement the attack on GPUs, FPGAs, or
hardware would be tens to hundreds of times faster.

We carried out proof of concept attacks against illustrative
use cases of RADIUS. These include the default FreeRA-
DIUS client and server implementation, the Okta service’s
RADIUS integration, a Cisco ASA firewall, and Linux PAM
authentication via RADIUS. These targets were chosen due to
availability; essentially all implementations are vulnerable by
default because the underlying vulnerability is in the protocol.

1.2 RADIUS/UDP should be deprecated
The hashclashsoftware that we build on was also used in
2009 and 2016 to demonstrate attacks against TLS certifi-
cates [48] and protocol transcript hash authentication for TLS
and SSH [7]. The MD5 hash function has been known not
to be collision resistant for two decades, and has had known
weaknesses for three. Today, a lack of explicit attacks against
the use of MD5 in a protocol is more likely to be a sign of lack
of cryptanalytic attention than any robust notion of security.

DeKok’s Internet Draft continues

We recognize that RADIUS/UDP will still be in use
for many years, and that new standards may require
some modicum of privacy. As a result, it is a diffi-
cult choice to forbid the use of these constructs. If
an attack is discovered which breaks RADIUS/UDP
(e.g. by allowing attackers to forge Request Authen-
ticators or Response Authenticators, or by allowing
attackers to de-obfuscate User-Password), the solu-
tion would be to simply deprecate the use of RA-
DIUS/UDP entirely. It would not be acceptable to
design new cryptographic primitives in an attempt
to "secure" RADIUS/UDP.

We give such an attack in this paper. It is time to deprecate
RADIUS over UDP and replace it with a transport mechanism
that provides modern cryptographic security.

1.3 Contributions
• We develop a novel protocol attack against RADIUS
that allows arbitrary forgery of Response Authenticators.
While MD5 has been known to not be collision resistant
for two decades, it was not known how to exploit this
property in the context of the RADIUS protocol.

• We optimize the MD5 chosen-prefix attack computation
in order to carry out chosen-prefix attacks in minutes.

• We develop a novel technique for forcing bytes in MD5
collision blocks, which allows us to optimize our col-
lision attack and fit the resulting collisions within the
length restriction of RADIUS protocol attributes.

• We have tested our attack against common RADIUS
client and server implementations and use cases.
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1.4 Summary and Impact
Nearly all RADIUS/UDP implementations are vulnerable
to our protocol attack when using non-EAP authentication
methods; see Section 7.1. RADIUS Accounting and EAP
authentication appear less practically exploitable, although a
theoretical protocol vulnerability may exist. Our attack also
requires man-in-the-middle network access. Not all of the
example RADIUS deployments above in Section 1 are practi-
cally exploitable; organizations should independently verify.

1.5 Disclosure
We reported the vulnerability to the IETF and CERT on Febru-
ary 2, 2024. CERT is coordinating the disclosure process
among affected vendors; as of this writing 86 potentially af-
fected vendors have been identified and notified. We spoke to
Alan DeKok of FreeRADIUS and the IETF RADEXT work-
ing group on February 5; he confirmed the vulnerability and
we have been in dialog about impact and mitigations. DeKok
has authored a white paper detailing practical mitigation con-
siderations for implementers, vendors, and admins [19].
Patches implementing the Message-Authenticator mitiga-

tion described in Section 7.1 will be available from ma-
jor RADIUS implementations in coordinated release with
this work; we expect future versions of [18] to update
mandated client and server behavior. The IETF RADEXT
working group has existing drafts in progress outlining RA-
DIUS/(D)TLS [38]. Ultimately, we hope our work will hasten
the formal deprecation of RADIUS/UDP and the standardiza-
tion of RADIUS/(D)TLS.

1.6 Ethical Considerations
The attack demonstrations we describe in this paper exploit
clients that we set up ourselves to test. The server queries we
make to remote servers we do not control (e.g., our demon-
stration against Okta) send only normal protocol messages for
registered user accounts and receive legitimate responses; our
forgery attack targets the clients processing these responses.
The hashclashchosen prefix collision implementation

has been public since 2009. Our improvements to the chosen
prefix MD5 collision are available at [46]; we do not plan to
publish full end-to-end exploit scripts for RADIUS itself.

2 Background

This section provides background on the RADIUS protocol
and reviews related work as context for our attack.

2.1 The RADIUS Protocol
The RADIUS protocol provides authentication, authorization,
and accounting (AAA) services for end users and administra-

tors on network access servers via a central RADIUS server.
We begin by summarizing the relevant parts of the

RADIUS protocol described in RFC 2865 [42], which speci-
fies the Password Authentication Protocol (PAP).

In a typical setting, an end user wishes to authenticate to a
networked device by entering a username and password at a
login prompt. The networked device is a trusted party in the
RADIUS protocol, and is running RADIUS client software.
It shares a fixed shared secret with the RADIUS server.

PAP Authentication. The RADIUS client constructs an
Access-Request packet that includes a one-byte ID, a 16-byte
random nonce called a Request Authenticator, and additional
fields (called attributes) that may include the username, user-
entered password (encoded with an ad hoc MD5-based obfus-
cation function), and connection request information such as
Network Access Server (NAS) IP address, NAS port, or other
request information for the server to process.

The client then sends the request in the clear over UDP to
the server. As originally written in RFC 2865 [42], this packet
has no encryption outside of the password obfuscation and
no integrity check. The server will check whether the source
IP address matches a known client; otherwise the request is
entirely unauthenticated.
The RADIUS server then processes the Access-Request.

This may include looking up the user’s password in a database,
or querying an authentication server. If the server rejects the
request, the server responds with an Access-Reject message.
If the server accepts the request, it responds with an Access-
Accept message that may contain attributes specifying meta-
data or configuration options for the connection.

Response Authenticator. Both Access-Reject and
Access-Accept packets include a value called a Response
Authenticator which is designed to prevent the forgery of
responses. The Response Authenticator is computed as
MD5(Code‖ID‖Len‖ReqAuth‖Attributes‖Secret)
where the Code, ID, Length, and Attributes are copied
directly from the Access-Accept or Access-Reject packet, the
Request Authenticator ReqAuth is a 16-byte random nonce
included in the corresponding Access-Request packet, and
the Shared Secret Secret is the fixed shared secret known to
client and server.

Message-Authenticator. RFC 2869, “RADIUS Exten-
sions” [54] defines a Message-Authenticator attribute that
contains an HMAC-MD5 tag computed over the entire packet
using the shared secret as the key. However, this attribute is
optional for RADIUS access requests and responses not using
EAP and many implementations do not require it by default.

Proxy-State Attribute. Access-Request packets may also
contain one or more Proxy-State attributes. RFC 2865 [42]
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specifies in numerous locations that any Proxy-State attributes
present in an Access-Request “MUST be copied unmodified
and in order into the response packet.” Each Proxy-State at-
tribute consists of a one-byte code followed by a one-byte
length field and a string of at most 253 arbitrary bytes.

EAP Authentication. Extensible Authentication Protocol
(EAP) support in RADIUS is defined in RFC 2869 [54]
(RADIUS Extensions) and RFC 3579 [8] (EAP & RADIUS)
updated in RFC 5080 [34]. A number of EAP authentication
methods exist and are commonly used, including EAP-TLS
and PEAP. The details of different EAP authentication meth-
ods are complex, and are largely orthogonal to our attack.

When EAP is used for authentication, the Access-Request
message contains an EAP-Message. For RADIUS/UDP this
is sent in the clear via UDP. Some EAP authentication meth-
ods may use encryption to protect authentication credentials
or user information, but the final EAP Success or Failure
message is not encrypted or integrity checked. Once the
EAP authentication has terminated, the RADIUS server sends
an Access-Accept or Access-Reject packet via UDP which
contains an EAP-Message containing EAP-Success or EAP-
Failure. RFC 2869 [54] specifies that all packets containing
an EAP-Message must also contain a Message-Authenticator
attribute, or else they must be silently discarded.

Interestingly, RFC 3579 [8] contains a section on conflict-
ing messages between RADIUS and EAP: “The NAS MUST
make its access control decision based solely on the RADIUS
Packet Type (Access-Accept/Access-Reject).” Examples in-
clude “If the NAS receives an Access-Accept with an encap-
sulated EAP Failure, it will grant access to the peer.”
In a common setup, the EAP Success will be sent by the

NAS to the end-user device, while the Access-Accept is in-
terpreted by the NAS. Thus an Access-Accept with EAP
Failure could result in the two devices having differing views
on whether authentication succeeded or failed. However, in
802.1X, the EAP session also derives a master key that is
shared from the RADIUS server to the NAS, and future com-
munication is encrypted with that key. An attacker who by-
passes EAP authentication to forge an Access-Accept with
an EAP Success would lack this negotiated key and thus be
unable to access the network.

RADIUS Accounting RADIUS Accounting, specified in
RFC 2866 [39], allows a NAS to use a central server to log
network service usage and traffic statistics. This accounting
information can be used for billing or auditing.
A RADIUS Accounting client sends an Accounting-

Request packet at the start and end of a user’s session.
Accounting-Request packets are structured similarly to
Access-Request packets, except the Request Authenticator
is MD5(Code‖ID‖Len‖0128 ‖Attributes‖Secret) in-
stead of a random nonce. This field is intended to prevent
an attacker from forging an Accounting-Request packet with

false accounting information: if the Request Authenticator is
incorrect, the accounting server ignores the packet.

Response Authenticators from Accounting-Response pack-
ets are computed as in Section 2.1. Other types of accounting
packets (e.g. CoA and Disconnect) are computed similarly to
Accounting-Requests.

2.2 Security analysis of RADIUS
The RADIUS protocol has received surprisingly little aca-
demic attention given its widespread use.
Hill analyzed RADIUS in 2001 [26]. He surveyed numer-

ous protocol issues including brute force attacks against the
shared secret or password from an attacker who observes
the MD5-obfuscated password [36], a precomputation-based
brute force attack on Request Authenticators, that repeated
Request Authenticators can compromise user passwords, and
that short shared secrets are likely to be insecure.
DeKok enumerates these and other vulnerabilities [18].

These include information sent in cleartext, that MD5 is bro-
ken, that shared secrets can be brute forced, that Message-
Authenticators can be inconsistently used and that Access-
Request packets missing Message-Authenticators can be
forged or replayed, and that proxies expose MD5-obfuscated
user passwords as they de-encode and re-encode them.
We will describe the offline brute-force attack against the

shared secret by an adversary who observes a request and
corresponding response packet containing a Response Au-
thenticator. Since all of the information used to compute the
MD5 hash for the Response Authenticator is present in the
request and response except for the shared secret, the attacker
can simply brute force shared secret values. The cost to guess
an n-character shared secret consisting of printable ASCII
characters is 95n ≈ 26.6n. For a 7-character secret, this is 246;
for a 10-character secret this is 266.
Most of the cryptographic security analysis of RADIUS

has focused on the MD5-based password obfuscation method.
It uses a custom construction using MD5 as a block cipher.
Interestingly, we have not seen it observed elsewhere that this
obfuscation method is unauthenticated, and thus implementa-
tions may be vulnerable to decryption oracle-type attacks.2

Implementation vulnerabilities have also been found in
RADIUS implementations. For example, a TLS session re-
sumption vulnerability discovered in 2017 could result in an
authentication bypass in FreeRADIUS [27].

2.3 The MD5 Hash Function
The MD5 hash function was designed in 1991 by Rivest and
described in RFC 1321 [40]. Although it was known to be
weak by the mid-1990s, it continued to be widely used for
decades, even after full collisions were demonstrated.

2In order to protect against password-based timing attacks, FreeRADIUS
delays Access-Reject messages by one second by default. [16]
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The structure of MD5. The MD5 hash function uses the
Merkle-Damgård transform [15,31] to iteratively apply a com-
pression function to blocks of the input message. Messages
are processed in blocks of 512 bits, and the final hash output is
the output of the final application of the compression function
to the final block of message padding.

For the purposes of the attack we describe in this paper, the
outcome of this design means that if we have two input mes-
sagesM1 andM2 that result in an MD5 collision MD5(M1) =
MD5(M2), we can append any identical suffix S to these mes-
sages and the resulting stringsM1 ‖S andM2 ‖S will still have
colliding MD5 hashes MD5(M1 ‖S) =MD5(M2 ‖S).

2.4 MD5 Collisions

The first pseudo-collisions for the MD5 compression function
were found by den Boer and Bosselaers [20] in 1993. Dob-
bertin exhibited a “free-start” collision in 1996 [21]. Wang,
Feng, Lai, and Yu published a full MD5 collision in 2004 [52].
This collision consisted of two fixed strings. Exhibiting such
a collision suffices to demonstrate that the MD5 hash function
is no longer cryptographically collision-resistant, but attacks
on MD5 in real-world contexts generally require collisions
on attacker-chosen prefixes.
The structure of this collision was adapted in a straight-

forward way to an arbitrary common prefix, resulting in
a so-called identical-prefix collision: given a prefix P, the
algorithm computes gibberish blocks G1 and G2 such that
MD5(P‖G1) =MD5(P‖G2). This can be used to, for exam-
ple, produce different PDF documents with identical hashes
or to produce so-called “hashquines” [2, 28, 49].
The MD5 collision attack that we exploit in this paper

is called a chosen-prefix collision and was introduced in
2007 [47]. That is, given distinct prefixes P1 and P2, we
wish to efficiently compute gibberish blocks G1 and G2
such that MD5(P1 ‖G1) = MD5(P2 ‖G2). Having done so,
as noted in Section 2.3, we can then append any fixed suffix
S and the resulting messages still have colliding MD5 hashes:
MD5(P1 ‖G1 ‖S) =MD5(P2 ‖G2 ‖S).

Our attack is based on the improved chosen-prefix collision
attack by Stevens et al. [48] that reduced the original cost
from [47] for a chosen-prefix collision from 2800 core-days
to 39 core-hours. Additionally, this improved attack allows
the attacker to reduce the length of collision block gibberish
but at a larger computational cost.
Stevens et al. [48] computed a chosen-prefix collision in

2009 that was only 204 bytes long in 28 hours on an array of
200 Sony PlayStation 3s, and used it to create a rogue TLS
CA certificate. In the same paper the authors also computed a
chosen-prefix collision suffix of only 11+64 bytes long at a
cost of about 253.2. The hashclashcode implementing both
attacks was made publicly available [46].
The authors appeared to have made their point about the

importance of deprecating MD5, and it seems that little further

public MD5 cryptanalysis has happened in the intervening
15 years. Nevertheless, despite these MD5 attacks, in 2016
TLS still supported MD5, which Bhargavan and Leurent [7]
showed to be vulnerable to transcript collision attacks. They
demonstrated an “online” attack in about 1 hour on a 48-core
machine using a slightly modified version of hashclash.

2.5 Hashclash chosen-prefix attack

At a high level, the chosen-prefix collision attack as im-
plemented in hashclashhas two stages, called “birthday”
and “near-collision”. We follow the naming convention of
hashclash, where the (4×32)-bit intermediate hash value
(IHV) of some number of message blocks is the internal state
of MD5 after processing those message blocks. The differ-
ence in the IHVs (called dIHV) between a pair of (partially-
constructed) messages will be zero when we have a collision.

Birthday. In the first stage, the algorithm finds bits to ap-
pend to both prefixes so that the first 32-bit word of dIHV is
zero, and the last two 32-bit words of dIHV are equal.
These birthday bits are found using the van Oorschot and

Wiener [50] parallel collision search with distinguished end-
points. A large number of trails are computed from random
starting points. When there are colliding endpoints, birthday
bits can be computed from the trail starting points. One stops
when a found dIHV only needs B near-collision blocks, where
the cost of the birthday stage depends on B, and ranges from
237 for 9 blocks up to 253 for 3 blocks. There are GPU and
CPU implementations of this stage in hashclash.

Near-collision. The second stage iteratively reduces the
number of bit differences in dIHV to zero by appending a se-
quence of near-collision blocks. For each near-collision block,
one first constructs differential paths: a set of conditions on
the bits of the message blocks and of the internal state that
will result in the desired change to dIHV. These differential
paths are constructed via a forward stage that works forward
from the previous IHV values, a backward stage that works
backward from the desired dIHV-change, and a connect stage
that finds a path connecting a forward path to a backward path.
Once a differential path and the corresponding conditions on
message bits are known, a find-collision algorithm searches
for a message block pair satisfying the bit conditions and
checks whether they result in the desired changes to dIHV.
This find-collision stage is embarrassingly parallel, but the
forward, backward, and connect stages are not. These four
near-collision stages are only implemented for CPUs.
After enough near-collision blocks, dIHV is reduced to

zero, resulting an MD5 collision. Each near-collision cost is
comparable to about 235 MD5 compressions.
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Figure 1: Our attack flow. Our adversary triggers an Access-Request with incorrect credentials from a legitimate RADIUS client
(1), and then carries out a man-in-the-middle attack (2) and computes an MD5 hash collision (3) to inject a malicious Proxy-State
attribute in the request (4). The hash collision allows the attacker to transfer the server-generated Response Authenticator from
the legitimate Access-Reject response (5) to the attacker’s desired Access-Accept response (6) to get authenticated or authorized
by the RADIUS client (7).

3 Forging RADIUS Response Authenticators

In this section, we describe our protocol attack against
RADIUS Response Authenticators.

3.1 Attack Model
The adversary in our attack wishes to trick a victim device
into accepting a forged response from a RADIUS server.

A successful attack allows various forms of privilege esca-
lation, depending on the access protected by RADIUS. For
example, for a network router that uses RADIUS to authenti-
cate administrative access to the device, such an attack would
allow an attacker with network privileges to log in as an ad-
ministrator without a password. For a victim NAS that uses
RADIUS to authenticate network users to a protected VLAN
or VPN, our attack would allow the adversary to access arbi-
trary privileged portions of the network without credentials.
We assume that the adversary does not know the shared

secret between the RADIUS client and server.

Gaining Man-in-the-Middle Access. Our attack requires
the adversary to have network access to act as a man-in-the-
middle attacker on the connection between the victim device’s
RADIUS client and RADIUS server. Our attacker will need
to be able to act as a full network man-in-the-middle who
can read, intercept, block, and modify inbound and outbound
network packets between the RADIUS client and server.
Such access to RADIUS traffic may happen through dif-

ferent mechanisms. Although sending RADIUS/UDP over
the open internet is discouraged, this is still known to happen
in practice [18, 38]. For internal network traffic, the attacker
might initially compromise part of an enterprise network;
such compromises appear frequently in news reports and se-
curity advisories [10,12]. Even if RADIUS traffic is confined
to a protected part of an internal network, configuration or
routing mistakes might unintentionally expose this traffic. An
attacker with partial network access may be able to exploit

DHCP or other mechanisms to cause victim devices to send
traffic outside of a dedicated VPN [33].

3.2 Attack Flow
We describe the steps of our attack as shown in Figure 1.

Step 1 (Login Attempt). We consider the simplest case of
PAP authentication. The adversary causes the RADIUS client
of a victim’s network device to generate an Access-Request
by, for example, entering the username and an arbitrary incor-
rect password at a login prompt for a privileged user.

Step 2 (Access-Request). The RADIUS client generates an
Access-Request containing a one-byte ID, a 16-byte randomly
generated Request Authenticator, and a collection of attributes
including User-Name and User-Password containing the ob-
fuscated incorrect password entered by the adversary. The
client sends this Access-Request to the RADIUS server.

Step 3 (Collision). Since the adversary has network access,
it is able to observe all of these values in the UDP packet. It
will need the ID and Request Authenticator (ReqAuth).

If the adversary were to forward this Access-Request
packet unmodified to the RADIUS server, it could
then observe the format of the Access-Reject re-
sponse generated by the server. This packet will con-
tain a Response Authenticator that is calculated as
MD5(Code‖ID‖Len‖ReqAuth‖Attributes‖Secret)
as described in Section 2.1.

Once the adversary is ready to carry out the attack, it uses
its man-in-the-middle network position to block or mangle the
legitimate Access-Request packet so that the server does not
receive it or discards it, and begins to generate a maliciously
modified request to send to the server instead.3

3If the server receives both modified and unmodified requests, its behav-
ior is implementation dependent. The modified packet may be treated as a
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Figure 2: Constructing Response Authenticator Preimages. The attacker computes prefixes corresponding to the Response
Authenticators from the Access-Reject packet it expects and Access-Accept it desires to forge, and carries out an MD5 collision
to ensure the Response Authenticators will collide, without needing to know the shared secret. It hides the collision block
gibberish in Proxy-State attributes that are guaranteed to be returned by the server.

Our adversary wishes to modify the Access-Request packet
so that the Response Authenticator for the resulting Access-
Reject packet is identical to the Response Authenticator for an
Access-Accept packet. To do this, our adversary will compute
a chosen-prefix MD5 collision. Our adversary does not know
the value of the shared secret in the Response Authenticator
computation, but this does not matter: it knows or can guess
all of the other values that precede the Shared Secret, and as
observed in Section 2.3, any identical suffix appended to an
MD5 collision will still produce a collision. Our attacker will
compute a collision for the Response Authenticator preimage
up to the shared secret, and can then transfer the observed
Response Authenticator sent from the legitimate server to the
maliciously constructed colliding packet.

However, computing an MD5 collision generally involves
appending hundreds of bits of unformatted collision block
gibberish to the chosen prefixes. Fortunately for the attacker,
the Proxy-State attribute of a RADIUS packet is an ideal place
to hide this gibberish: any Proxy-State attributes included in
an Access-Request must be returned unmodified by the server.
Our network attacker will calculate two prefixes for an

MD5 collision with the structure shown in Figure 2. The first
prefix is the start of the preimage of the Response Authenti-
cator in the Access-Reject packet that it expects to receive,
and ends with the header for a Proxy-State attribute (a code
33 and length PSLen): in the simplest case this would be

RejectPrefix= 03‖ID‖Len‖ReqAuth‖33‖PSLen.
Any attributes expected in the reject packet can be included
in this prefix. The second prefix is the start of the preimage
of the Response Authenticator in the Access-Accept packet
that it wishes to forge, and ends with a Proxy-State header:

AcceptPrefix= 02‖ID‖Len‖ReqAuth‖33‖PSLen.
Computing a chosen-prefix collision on these two pre-
fixes results in binary gibberish strings RejectGib and

retransmission, and receive a cached response. In FreeRADIUS, duplicate de-
tection uses the packet length. If a server receives the original “good” packet,
followed by the attacker’s “bad” packet, the server may stop processing the
“good” packet and process the “bad” packet instead. [16]

AcceptGib such that MD5(RejectPrefix‖RejectGib)
equals MD5(AcceptPrefix‖AcceptGib). We have struc-
tured the prefixes so that AcceptGib and RejectGib will be
interpreted as Proxy-State attributes.

Step 4 (Modify Access-Request). After computing the col-
lision, the man-in-the-middle attacker modifies the Access-
Request packet to include a Proxy-State attribute containing
RejectGib. (If necessary, the attacker also strips the request
of any Message-Authenticator attributes.) There is no other
authentication, so the modification will be unnoticed. The
adversary sends the modified Access-Request to the server.

Step 5 (Access-Reject). The server responds with an
Access-Reject (or Access-Challenge or Access-Accept) that
includes a Response Authenticator computed over the preim-
age shown in Figure 2 including the Shared Secret. The
RADIUS protocol mandates the Proxy-State attributes con-
taining RejectGib be included in the server’s response, and
thus in the Response Authenticator MD5 hash.

Step 6 (Forge Access-Accept). The adversary then veri-
fies that the attributes present in the Access-Reject packet
match its anticipated format for the collision. If so, it con-
structs the desired Access-Accept packet. Conveniently, the
Access-Accept packet whose Response Authenticator corre-
sponds to AcceptPrefix‖AcceptGib is exactly the string
AcceptPrefix‖AcceptGib (see Step 3 above) with the Re-
quest Authenticator from the original request replaced with
the Response Authenticator from the Access-Reject packet.

Step 7 (Login Success). The adversary then forwards the
Access-Accept packet to the victim RADIUS client, who
will validate the Response Authenticator against the received
packet and shared secret and permit the adversary to log in.

USENIX Association 33rd USENIX Security Symposium    7435



3.3 Adding Additional Attributes
An Access-Accept response may contain attributes specifying
network configuration or access to particular resources like
a VLAN. An attacker could forge arbitrary attributes in its
Access-Accept by including them in the MD5 collision pre-
fix; additional length in the corresponding Access-Reject (or
Access-Accept) prefix can be covered by more Proxy-States.

3.4 Practical Challenges
There are several logistical challenges that we need to over-
come in order to carry out this attack in practice. First, because
the prefixes the attacker is using for the MD5 collision con-
tain the single-byte request ID and random 16-byte Request
Authenticator nonce, the attacker must compute the MD5
collision online after observing the victim’s Access-Request
and before the victim client’s programmed session timeout.
Realistic timeout lengths are generally in the range of 30 to
60 seconds. RFC 5080 suggests a default timeout length of
30 seconds [34]; 60 seconds is a common recommendation
when using multi-factor authentication.

Second, the length of the collision must fit within the Proxy-
State attribute. The MD5 hash function has a 64-byte block
size; to fit within the 253-byte maximum length of a single
Proxy-State attribute the collision can be at most three blocks
long, plus additional padding and birthday bits. We develop
a new technique that allows us to split a longer collision
across multiple Proxy-State attributes by placing the two-
byte header for additional Proxy-State attributes at desired
locations during the collision computation.

3.5 Accounting Request Authenticators
In theory, a similar collision attack affects the construc-
tion of RADIUS Accounting Request Authenticators. This
construction is also used for CoA-Request and Disconnect-
Request [22]. However, the details of exploitation are differ-
ent, and a practical attack may be more difficult. We did not
attempt to implement this attack, but we detail the underlying
cryptographic vulnerability.

As described in Section 2.1, RADIUS Accounting-Request
packets include a Request Authenticator that is computed
similarly to the Response Authenticator we exploit above,
except with 16 null bytes in place of the random Request
Authenticator from an Access-Request.

An attacker trying to log false accounting information
might compute a chosen-prefix MD5 collision to find a collid-
ing pair of Accounting-Request packets: one with the desired
false accounting information, and one with true accounting
information that the attacker can cause or expect the RADIUS
Accounting client to send. As before, the attacker does not
know the shared secret, but the packets will still collide when
the shared secret is appended, so the correct request authenti-
cator will be the same for both packets.

When the client tries to send the packet with true account-
ing information, the man-in-the-middle attacker copies the
packet’s Request Authenticator onto the forged accounting
request and sends that instead. If the attacker has correctly
predicted the true request, the collision will result in a valid
Request Authenticator for the forged request.
Exploiting this would require an attacker to predict the

exact content of the Accounting-Request packet. This may
be complicated, as attributes include a variable-length Acct-
Session-Id attribute that is chosen in an implementation-
dependent way, as well as timestamps.

Furthermore, the attacker has much more limited control of
the values appearing in the request. In this attack model, the
attacker cannot, for example, cause the client to send arbitrary
Proxy-State attributes: it needs to cause the client to include
its desired collision block gibberish in a legitimate request by
including it in an attribute that it can control.
One example of an attacker-controlled attribute might be

User-Name. The attribute has a maximum length of 253 bytes;
this is room for a three-block MD5 collision plus additional
padding. As we note in Section 2.4, it is feasible to compute
MD5 chosen-prefix collisions as short as birthday bits plus
only a single block: 11+64 bytes in length. A User-Name at-
tribute embedding a null character between a valid username
and some collision gibberish could be parsed by a vulnerable
implementation using standard C string functions as a nor-
mal username, as in the null prefix attacks against SSL/TLS
certificates by Marlinspike and Kaminsky [29].4

An additional practical complication to this attack is that a
chosen-prefix collision would only allow falsifying attributes
that appear before the collision garbage: all bytes after the
collision gibberish would need to be identical.
Since this theoretical attack against RADIUS accounting

is likely more difficult to practically exploit than the attack
against RADIUS authentication, we leave a practical evalua-
tion to future work.

4 Optimizing MD5 Chosen Prefix Attacks

Our attack requires the adversary to forge the Access-Accept
before the victim client times out. This means that our man-in-
the-middle adversary must compute an MD5 collision within
the timeout window, after seeing the Request Authenticator
and ID sent by the victim RADIUS client.

As discussed in Section 6, clients have configurable timeout
settings ranging from as little as five seconds to five minutes,
with common defaults of 30 and 60 seconds.

When we began this research, running hashclashwith
the default parameters on a machine with an AMD 5950X

4A March 1, 1999 email to the IETF RADIUS mailing list documented
such a vulnerability affecting Proxy-State: “I had to implement a configurable
option to avoid NULs in my Proxy-State attributes in order to interoperate
with older Livingston/Merit code (not sure about the latest stuff) since they
NUL-terminated all string attributes internally.” [3]
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CPU and an NVIDIA RTX3080 GPU on two 22-byte prefixes
produced a 512-byte collision with 25% probability within 85
minutes. This does not yield a practical attack: 490 bytes of
collision gibberish does not fit the 253-byte maximum length
of a Proxy-State attribute, and the running time was far longer
than a reasonable client timeout range.
In order to mount our attack in practice, we needed to

compute MD5 collisions much faster while also remaining
compatible with the RADIUS message format. After our op-
timizations, we could compute a collision formatted as two
Proxy-State attributes in under 5 minutes parallelized across
our heterogeneous cluster. On the single machine above, our
new attack finishes with 25% probability within 30 minutes.
This required large and small changes: we added new ca-

pabilities to hashclashto fix certain bytes in the collision,
shifted some of the computation to precomputation, and opti-
mized the code for speed, scaling, and parallelization latency.
We discuss the most important changes below, and detail all
of them in Appendix B. The code is available at [46].

4.1 Collisions with Infix Bytes
There is a tradeoff between the length of the collision gibber-
ish and the cost of the birthday search phase: shorter collisions
cost more. We wanted to be able to hide longer collision gib-
berish across multiple consecutive Proxy-State attributes. This
requires periodically encoding the two-byte header starting a
new attribute in certain near-collision blocks.

One solution achieving this is to choose a 32-bit wordm0 in
MD5Compresscontaining the two-byte infix, which fixes the
differential path for step t = 0, and let the forward stage start at
t = 1. This unnecessarily reduces the freedom in differential
paths and may increase the near-collision search cost.

Instead, our optimal solution is to find all valid differential
paths over step t = 0 with minimum number of bit conditions
that guarantee the two-byte infix. We iterate over all possi-
ble m0 containing the two-byte infix to obtain many valid
differential paths for step t = 0. Then we simplify each path
by attempting to remove each bit condition on the output Q1
of step t = 0 and checking if the result still guarantees the
two-byte infix sequence. If so, the bit condition can be safely
removed. This approach may generate minimal differential
paths multiple times, so we remove any double occurrences.

4.2 Precomputation
Since we are optimizing for the online running time once
the prefixes are known, we benefit from shifting some of the
computation into a precomputation phase.

For the “backward” phase, we precompute the set of upper
paths for all possible message differences m11 =±2i for i=
0, . . . ,31. As the last four steps depend on the actual dIHV
in the online attack, the upper paths are only computed over
steps t = 16, . . . ,34 that are the same for all possible dIHV.

Due to the partial precomputation of upper paths, Connect
will only output differential paths over steps t = 0, . . . ,34.
We extended the differential path helper tool to glue any
found connected paths to the target upper path over steps
t = 35, . . . ,63 to obtain the required full differential paths.

Moreover, we extended the differential path helper tool to
negate a set of differential paths. This allows us to convert the
precomputed set for m11 = +2i to the desired precomputed
set for m11 =−2i for free.

4.3 Cluster Parallelization
We have access to a cluster of 47 CPU machines, with one
machine with four GPUs. (We give specifications in Sec-
tion 4.4.) We developed a number of techniques to parallelize
hashclashacross our existing computing resources. Our ma-
chines are clustered together with a shared filesystem using
GlusterFS and ZFS, and use Slurm for job management.

File I/O. For communication between processes,
hashclashuses the file system, which creates a bottleneck
when distributing on a cluster. We reduced latency in the
code and used in-memory tmpfs filesystems shared via NFS,
creating a primitive form of remote direct memory access.

Thread Orchestration and Parallelization. We modified
several stages of the algorithm to partition input and output
spaces. For example, we extended the “forward” phase to
partition the output into N sets and save them concurrently
instead of storing all output in one file single-threaded. This
might sacrifice some quality for speed: some very good paths
might not be found using this approach.

Birthday. The birthday phase has a mode that partitions the
trail space over multiple machines. This works best with pow-
erful GPUs. Since we only have one machine with four Tesla
T4 GPUs, we instead used our CPU machines as controllers.
We introduced a generator mode that uses the four GPUs to
generate trails that are processed by the controllers. We use
Slurm to start and orchestrate the CPU and GPU nodes.

4.4 Experimental results
We ran our experiments on a heterogeneous cluster with 31
Intel Xeon CPU E5-2699 v4, 14 Intel Xeon CPU E5-2680
v3, one Intel Xeon CPU E7-4860 v2, and one GPU machine
with an Intel Xeon CPU E5-2673 processor and four Tesla
T4 GPUs. Most machines have 512 GB of memory but none
of our operations used significant amounts of RAM. We note
that most of these machines date from 2014–2017.

Figure 3 shows the runtime distribution of ourMD5 chosen-
prefix collision attack. We ran 110 full attacks and aborted
42.7% before they found a collision because they were not
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on a good trajectory. Since timings for birthday search and
near-collisions are independent, we take their measured times
separately and compute the direct sum of all possible combi-
nations. According to Figure 3 we expect 2% of the successful
runs to finish before 240s and 16% before 300s.
Our adversary can cope with the failure rate and random-

ized running time of the attack by triggering multiple requests
until one succeeds.
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Figure 3: Histogram of the runtime of our attack as direct sum
between birthday runtimes and near-collisions runtimes.

4.5 Prospects for further improvement
While we have been able to reduce the online running time
for our MD5 chosen-prefix attack from hours down to min-
utes, this should be interpreted as a generous upper bound for
the true cost of such collisions, because of the limits on our
computational resources. Newer CPUs than the seven to ten
year old machines we have access to would likely provide
minutes of improvement, as would optimizing cache locality.

Access to more and faster GPUs would reduce the time for
the birthday stage and/or reduce the number of near-collision
blocks, reducing time for the near-collision stage.
Reimplementing hashclashin hardware, for example

on FPGAs (Field Programmable Gate Arrays) or ASICs
(Application-Specific Integrated Circuits) would likely im-
prove the running time by a factor of ten to a hundred.
It would be eminently feasible to run this attack on cloud

resources. Amazon EC2 lists the on-demand price of a
c7a.48xlargeinstance with 192 vCPUs at $9.85/hour, and
the price of a g6.48xlargeinstance with 192 vCPUs and
8 NVIDIA L4 GPUs at $13.35/hour. It would cost around
$50/hour to exceed our computing capacity, and in principle
one could scale to many more machines.

We did not pursue this avenue further for two reasons. First,
based on previous experience the cost of simply implement-
ing and debugging an attack in the cloud that requires launch-
ing hundreds of dollars an hour of computing instances can
quickly reach tens of thousands of dollars. Second, achiev-
ing further gains would require us to more substantially re-
architect hashclash. We hope that the reader is already con-
vinced that MD5 is exploitable.

4.6 Comparison to offline brute force
For the six-block collision we chose, the computational cost of
our online collision attack is dominated by the birthday phase,
with a complexity of around 243.2, and is mostly done using
GPUs. Comparing this cost to the cost of the offline brute
force attack to recover shared secrets discussed in Section 2.2,
this is somewhat less than the cost to brute force a 7-character
shared secret. Current recommendations prescribe a minimum
shared secret length of at least 24 octets in order to protect
against offline brute force attacks [18]. Unfortunately, while
it is straightforward to mitigate brute force attacks against the
shared secret by generating longer shared secrets uniformly at
random, this has no effect on the cost of our collision attack.

5 Attack Evaluation

We carried out our attack against several settings of client and
server software.

5.1 MITM Implementation
We implemented a man-in-the-middle script in Python using
the pyrad library to parse and format RADIUS packets, and
our modified version of the hashclash software.

Our script implements the attack described in Section 3. It
receives an Access-Request from the client, guesses the for-
mat of the Access-Reject packet that will be received from the
server, then runs our modified version of hashclashon the
corresponding Response Authenticator prefixes for Access-
Reject and Access-Accept packets to compute a six-block
MD5 collision formatted into two Proxy-State attributes. Our
script appends the two Access-Reject Proxy-State attributes
to the Access-Request, strips any Message-Authenticators,
and forwards it to the server. After intercepting the Access-
Reject response, we construct the Access-Accept packet, copy
the Response Authenticator from the Access-Reject received
from the server, and forward it to the client.

5.2 FreeRADIUS client and server
The FreeRADIUS website states that “FreeRADIUS is the
most widely used RADIUS server in the world. It powers
most major Internet Service Providers and Telecommuni-
cations companies world-wide and is one of the key tech-
nologies behind eduroam, the international Wi-Fi education
roaming service. It is the RADIUS server used by all Cloud
Identity providers and is embedded in products from network
equipment vendors and token card manufacturers.” [35]
We installed FreeRADIUS 3.2.3 on a Linux machine run-

ning Ubuntu 23.10. We left the default configuration as is,
which uses UDP as standard transport protocol. There is an op-
tion to require a Message-Authenticator attribute in an access
request; this defaults to “no” with a comment that “Old-style
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clients do not send a Message-Authenticator in an Access-
Request. RFC 5080 suggests that all clients SHOULD include
it in an Access-Request.”
We then sent a PAP authentication request with the

FreeRADIUS client radclientfor a valid user with an in-
correct password via our MITM to the RADIUS server. We
set the client timeout to 10 minutes.
Neither radclientnor FreeRADIUS include a Message-

Authenticator attribute by default. FreeRADIUS will include
a Message-Authenticator in proxied Access-Request packets.

FreeRADIUS returned the Proxy-State attributes we in-
cluded in the request packet. Finally, radclientaccepted
our forged Access-Request without complaining about the
Proxy-State attributes.5

The radtestclient does include a Message-Authenticator
attribute in its requests, but stripping it has no conse-
quences for the MITM attack with the default settings of
FreeRADIUS.

5.3 Okta RADIUS Integration
The Okta authentication service supports RADIUS authen-
tication via a custom agent, allowing customers to offload
authentication and MFA support to their service.

We configured a test environment on Ubuntu 22.04 emulat-
ing the recommended default setup for such a deployment. In
our setup, we ran a TinyRadius server that communicates with
the Okta RADIUS Server agent. Within a customer organiza-
tion’s network, the Okta RADIUS Server agent communicates
over UDP port 1812. The Okta RADIUS agent then makes
requests over TLS to Okta’s remote servers, and proxies the
responses back to the TinyRadius server, which then commu-
nicates the responses to the RADIUS client. In this setup, the
TinyRadius server is taking the place of a local authentication
server that communicates with Okta.
Okta supports several multi-factor authentication mecha-

nisms. Customers can choose different RADIUS authenti-
cation mechanisms depending on their chosen MFA meth-
ods: PAP, EAP-TTLS, and EAP-GTC. We used PAP au-
thentication, configured so that the User-Password plaintext
contained both the user’s static password and MFA pass-
code (comma-delimited); MFA can also be configured as
an Access-Challenge.

We used radclientto make a PAP authentication request
over UDP to Okta via our man-in-the-middle script using
the same radclientcall as above. Since the User-Password
field includes the MFA token value, we entered an arbitrary
incorrect password.
The only difference to the setup described above in Sec-

tion 5.2 is that the Okta servers returned a Reply-Message

5Alan DeKok notes that radclientis not intended to complain about
anything other than shared secret mismatch, but that he is not aware of any
RADIUS client that will take any action when it receives an unexpected
Proxy-State attribute. [16]

attribute with a welcome or error message, which we needed
to include in our MD5 collision prefixes. No Message-
Authenticator attributes were returned with the responses. Our
injected Proxy-State attributes were successfully returned by
the server as the last attributes in our request. Our MITM
attack successfully forged an Response Authenticator for an
Access-Accept in under 10 minutes that radclientaccepted.

5.4 Cisco ASA Firewall
We configured a Cisco ASA 5505 firewall device to use
RADIUS as an Authentication-Authorization-Accounting
(AAA) server and pointed it to our FreeRADIUS server for au-
thentication. The firewall supports using RADIUS to authenti-
cate users for logging into the device by serial console, giving
access to VPN tunnels, and using various services such as
Telnet, FTP, and HTTPS. The Cisco ASA has a configurable
timeout with a maximum of 300 seconds. We successfully
carried out our attack against the Cisco device and forged
an Access-Accept message that it accepted within the 300
second timeout.6 The ASA RADIUS client did not object to
our Proxy-State attributes.

5.5 PAM Radius
The pluggable authentication module (PAM) named
pam_radius7 “allows any Linux, OSX or Solaris machine
to become a RADIUS client for authentication”. For exam-
ple, it can be used to allow programs like sshd, su, sudo,
and loginto query a RADIUS server instead of the local
/etc/passwdand /etc/shadowwhen authenticating users.
It speaks RADIUS over UDP and does not use EAP.
One barrier to demonstrating a practical attack against

pam_radiusis that the maximum configurable timeout is
60 seconds. While it may be possible to exploit retries to
lengthen the attack window, for the purpose of expediency
we modified the source code to change the maximum timeout
from 60 seconds to 600 seconds and rebuilt from source.
We installed our custom build of pam_radiuson a Linux

machine running Ubuntu 22.04, and configured the PAM sub-
system to make su use RADIUS for authentication.

We pointed the module at the FreeRADIUS server we con-
figured above, via our MITM script. The pam_radiusmodule
accepted our forged Access-Accept packet (without warnings
about the extraneous Proxy-State attributes), allowing us to
successfully run su with an incorrect password.

5.6 EAP-TLS
The TLS in EAP-TLS protects the EAP traffic but not the
RADIUS packets that carry the EAP traffic, which are still

6The most challenging part of the attack was configuring the ASA and
configuring our own network to forward UDP packets over TCP to our cluster.

7https://github.com/FreeRADIUS/pam_radius
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transmitted over UDP in the clear. In theory, depending
on implementation decisions made by the RADIUS client
and server, our attack could work against RADIUS even
when clients use EAP-TLS for authentication. We found that
hostapdas an EAP / RADIUS client was not vulnerable, but
this does not rule out other clients. Similar issues may affect
other EAP methods.
Specifically, per RFC 3579 [8], all RADIUS packets with

an EAP-Message need a valid Message-Authenticator, and
ordinarily an Access-Accept after successful EAP authentica-
tion would contain an EAP-Message indicating EAP success.
The Message-Authenticator is an HMAC-MD5 of the packet,
which we are not able to forge. But the RFC is less clear on
how a client should handle an Access-Accept packet at the
end of an EAP conversation that has neither an EAP-Message
nor a Message-Authenticator; this situation should not hap-
pen with a well-behaved server. The RFC states: “If no EAP
Message attribute is included within an Access-Accept or
Access-Reject, then the peer may not be informed as to the
outcome of the authentication, while the NAS will take action
to allow or deny access” [8].

In particular, the RFC does not specify whether a client us-
ing EAP for authentication should check for a valid Message-
Authenticator in an Access-Accept without an EAP-Message.
Even when EAP (including EAP-TLS) is expected to be used,
a client that does not perform this check would be vulnera-
ble to our attack. Our colliding packets would contain nei-
ther EAP-Message nor Message-Authenticator attributes; the
Access-Accept should make the client allow access, even with-
out the EAP-Message. This assumes the attacker can cause
the server to produce an Access-Reject without a Message-
Authenticator, perhaps by trying non-EAP authentication.

While we found that hostapddoes check for a Message-
Authenticator even when no EAP-Message is present, other
RFC-conforming clients might not.

A full exploit of such an attack would depend on the broader
protocol context. If, as in WiFi discussed in Section 2.1, fur-
ther communication requires session keys that would have
been negotiated via EAP, a forged Access-Success would not
be enough for a full attack.

6 Impact

Although alternative transports were proposed a decade ago,
RADIUS/UDP remains common in real-world deployments.
Unfortunately, we are not able to use network scanning

to provide a representative picture of RADIUS deployments.
Many RADIUS servers will be on internal networks. Even
for external-facing servers, RADIUS hosts are identified by
IP address and servers only accept packets from allowed ad-
dresses. The RADIUS RFC specifies that servers should drop
requests for hosts that they have not been pre-configured to
have a shared secret with. Our scanning host would not be
whitelisted by properly configured servers, so an internet-wide

scan would thus only turn up misconfigured servers. Addi-
tionally, since it is a UDP-based protocol with no handshake
before a login request, we cannot do TCP SYN scanning and
would need to scan using a well-formed UDP Access-Request,
which would appear as an attack to network administrators.

This does not affect the adversary in our attack model, who
intercepts traffic between a legitimate client and server.

We examine case studies of real-world deployments instead.
There is little documentation about RADIUS deployments
in the literature. These case studies are intended to provide
concrete instantiations for the factors impacting a practical
attack, as well as to illustrate the complex impacts.

6.1 Case Study: A RADIUS Deployment
We give details about RADIUS usage in a large organization
whose network administrators were willing to share details
of their configuration with us. This organization has around
80,000 affiliated individuals, and uses RADIUS for authen-
tication to the VPN and Wi-Fi network. Their system sees
around 90,000 active RADIUS connections at a time, and
300,000 clients over a typical five-day period.
When users connect to the VPN, the end user VPN client

connects to the VPN controller, which offloads AAA (Authen-
tication, Authorization, and Accounting) to a Cisco Identity
Services Engine (ISE). The Cisco ISE makes RADIUS/UDP
requests to a set of load balanced RADIUS servers using PAP
mode for authentication. When using multi-factor authenti-
cation, the RADIUS requests are proxied to the Duo service.
Within the organization, the RADIUS/UDP traffic passes over
a VLAN with restricted access. The timeout for the ISE proxy
is set to 60 seconds.
Wi-Fi authentication is also done over RADIUS/UDP, us-

ing EAP-TLS authentication. The timeout is set to 5s, with 3
retries. Password authentication is done via Active Directory,
with passwords sent via NTLMv2.

This organization uses TACACS+ to authenticate network
administrators to the routing infrastructure.

Evaluation. In this setting, the VPN authentication setup
would be vulnerable to our attack. However, the fact that
RADIUS traffic passes over a restricted-access VLAN means
that exploitation would likely be an involved process.

6.2 Case Study: Network Infrastructure
RADIUS is essentially universally supported as an access
control method for routers, switches and other network infras-
tructure; RADIUS and TACACS+ are the most commonly
used protocols for admin access.
Public security advisories and leaked documents make it

clear that compromising routers and switches is a priority
for state-sponsored attackers. A 2022 US CISA announce-
ment details a collection of state-sponsored attacks targeting
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Cisco and Juniper equipment used by telecommunications
and network service providers via credentials obtained from a
RADIUS server [11]. Documents leaked by Edward Snowden
also highlight the compromise of routers and switches as a
priority for the NSA [56].

Evaluation. In this setting, an attacker who is able to ac-
cess portions of the network that carry RADIUS traffic could
exploit our attack to gain privileged access to all of the routers
in an organization.

6.3 Case Study: eduroam
The eduroam network is a coalition of educational institutions
who share Wi-Fi access via a linked hierarchy of RADIUS
servers. In order to participate in eduroam, an institution sets
up a RADIUS server. Internet access requests from users who
are roaming at participating institutions are proxied via this
network of RADIUS servers back to the home institution.
The Internet Draft for RADIUS over (D)TLS [38] docu-

ments the RADIUS deployment in eduroam as an example
of RADIUS/TLS in “more than a dozen” national branches.
The document states as of October 2023, “RADIUS/UDP
continued to be used by a majority of country deployments
despite its significant security issues.” This implies that al-
though RADIUS/TLS “does work, and scales,” most eduroam
RADIUS traffic is transmitted over the open internet via UDP.
Because eduroam uses 802.1X, it uses EAP within

RADIUS for authentication, most commonly EAP-TLS, EAP-
TTLS, or PEAP. We spoke to network administrators at an
institution participating in eduroam; they told us that the
eduroam RADIUS clients are configured with a 15s timeout
with three retries.

Evaluation. An attacker may be able to forge an Access-
Accept without an EAP-Message as described in Section 5.6.
However, as described in Section 2, in the context of 802.1X,
further communication relies on a master key that would nor-
mally be negotiated during the EAP session, and an attacker
who bypasses EAP authentication would not have such a key.

7 Mitigations

Our recommended mitigations were developed in conversa-
tion with vendors. Our suggested temporary mitigations com-
ply with the standard and preserve backward compatibility
with unpatchable legacy hardware. For hypothetical mitiga-
tions that break backward compatibility, it would be better to
redesign the entire protocol.

7.1 Short-Term Fix: Message-Authenticator
The optional Message-Authenticator attribute specified in
RFC 2869 [54] computes an HMAC-MD5 over the entire

packet. Packets that fail this integrity check are specified to
be silently discarded. Although the MD5 hash function is no
longer collision resistant, this is not known to imply an attack
against HMAC-MD5, and HMAC-MD5 has been proven to
be secure under the assumption that the compression function
is a PRF, removing any reliance on collision resistance [5].
Our attack would be impossible if valid Message-

Authenticator attributes were required on all packets, since
the HMAC-MD5 would be unforgeable without the shared se-
cret. As specified in RFC 2869 [54], Message-Authenticators
are only required for packets containing EAP-Message at-
tributes; RFC 5080 [34] states that clients SHOULD include
Message-Authenticators on requests, but does not mandate it.
We learned from vendors that nearly all RADIUS servers

are based on one of five implementations: FreeRADIUS, Ra-
diator, Cisco, Microsoft, and Nokia. Before our disclosure,
none required Message-Authenticators on non-EAP requests
by default. The only RADIUS server we are aware of that did
require them by default was OpenBSD’s radiusd. Among
clients, hostapdwas the only implementation that required
Message-Authenticators on non-EAP responses. The client
implementations of FreeRADIUS and NPS could be config-
ured to require them but did not do so by default; we are not
aware of any other client with such an option.

Requiring Message-Authenticators. Our recommended
short-term mitigation for the attack is for clients and servers
to always send and require Message-Authenticator attributes
for all requests and responses. For Access-Accept or Access-
Reject responses, the Message-Authenticator should be in-
cluded as the first attribute. See [19] for specific implemen-
tation details. This mitigation has been implemented by all
RADIUS implementations that we are aware of.
This measure breaks compatibility with old implementa-

tions that may not include Message-Authenticators in requests
or responses. However, unlike other options, it is not a funda-
mental change to the protocol and can be adopted as a fairly
simple patch to clients and servers.

Attacks on Partial Enforcement. Unfortunately, it is
not enough for senders to always include a Message-
Authenticator if the receiving party does not require its pres-
ence. We give two example attacks allowing an attacker to
circumvent these incomplete mitigations.
For Access-Request packets, the attacker can simply strip

a Message-Authenticator sent by a client if it is not required
by the server. This is because there is no other authentication
of the packet contents. Once the attacker has removed the
Message-Authenticator, the request can be modified as desired
without being detected.

In the other direction for Access-Accept and Access-
Reject responses, a man-in-the-middle attacker cannot sim-
ply strip this attribute from the packet as for requests, be-
cause the Message-Authenticator attribute is included in
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the Response Authenticator. However, we observed that the
Message-Authenticator attribute was typically the last at-
tribute in the packet in implementations we examined. If the
Message-Authenticator is not the first attribute in the packet
then our man-in-the-middle attacker can hide it in a Proxy-
State or other attribute by crafting a malicious prefix to end
with a Proxy-State header, and simply copy the bytes of the
Message-Authenticator into the Proxy-State after the colli-
sion. The receiving client will interpret this packet as a valid
packet without a Message-Authenticator.
To mitigate this attack, we recommend servers always in-

clude a Message-Authenticator as the first attribute in any
response. This appears to prevent the above attack even if
a client does not validate the HMAC-MD5. This is because
the value of the Message-Authenticator will be unpredictable,
and thus the attacker will not be able to guess its value to
include in the collision prefix or abuse other attribute headers
to swallow the unpredictable value in the collision.

Practical considerations and interoperability issues for de-
ploying these mitigations are discussed further in [19]. Future
versions of [18] are expected to mandate this behavior for
clients and servers.

7.2 Long-term fix: RADIUS over (D)TLS
The long-term solution to the vulnerabilities we describe
in this paper is to use RADIUS inside of an encrypted and
authenticated channel that offers modern cryptographic se-
curity guarantees. We expect future work in the IETF to for-
mally deprecate RADIUS/UDP and standardize RADIUS
over (D)TLS.
Transport security for RADIUS has been defined in the

experimental RFC 6614 [53], specifying RADIUS over TLS,
and RFC 7360 [17], specifying RADIUS over DTLS.

The IETF RADIUS EXTensions working group has a cur-
rent Internet Draft to update and modernize the security rec-
ommendations for (D)TLS Encryption for RADIUS [38]. It
is not yet on the standards track.
Unfortunately, although the proposals for RADIUS over

TLS have existed for a decade, many systems continue to use
RADIUS/UDP. Deploying TLS and maintaining a public-key
infrastructure continues to be a much more involved process
for system administrators than simply using UDP; many of the
challenges are documented in the (D)TLS Internet Draft [38].

7.3 Partial Mitigation: Management VLAN
A current best practice for RADIUS/UDP traffic is to expose
it only to a restricted-access management VLAN within an
organization. While this reduces the attack surface and is
certainly preferable to exposing UDP traffic to a broader
network or the open internet, there may still be vulnerabilities
in case of a network misconfiguration or attacker compromise
of this portion of the network.

This approach is also at odds with the US Executive Branch
Office of Management and Budget’s 2022 memo, which envi-
sions moving to systems that do not rely on network separa-
tion for security: “A key tenet of a zero trust architecture is
that no network is implicitly considered trusted” [55].

7.4 Non-Mitigation: Decreasing timeouts

It is tempting to hope that simply setting a client timeout
below our reported MD5 collision running times would de-
fend against our attack. We believe this should not be done: it
decreases usability and does not protect against our attack.
Our MD5 collisions were computed after applying some

optimizations to a 15-year-old proof-of-concept codebase,
which we are running on CPUs mostly dating from seven
to ten years ago, because these are the resources we have
access to. An adversary with a budget for professional engi-
neering would be able to decrease the computational cost of
the collision by a factor of tens to hundreds (cf. Section 4.5).
The most common timeout in practice is 30 seconds [16],

and 60 seconds is commonly recommended when multifac-
tor authentication is involved (for example, [23]) as shorter
timeouts could be problematic for real users.

7.5 Non-Mitigation: TACACS+ or Diameter

RADIUS is not the only protocol to suffer from the types of
security issues that we outline. TACACS+ is a popular (TCP-
based) administrator login protocol for switches that also
does not meet modern cryptographic security standards. RFC
8907 [14] was published in September 2020, and explicitly
mandates that TACACS+ be used with a secure transport:

With respect to the observations about the secu-
rity issues described above, a network administra-
tor MUST NOT rely on the obfuscation of the
TACACS+ protocol. TACACS+ MUST be used
within a secure deployment; TACACS+ MUST be
deployed over networks that ensure privacy and
integrity of the communication and MUST be de-
ployed over a network that is separated from other
traffic.

There is a current draft for TACACS+ over TLS 1.3 [13].
Much like RADIUS, however, TACACS+ is still most com-
monly used over insecure transports [16].

A suitable countermeasure would be to mandate transport
security for RADIUS in an analogous fashion.

Diameter [24] was initially designed as a successor to RA-
DIUS, although it never replaced RADIUS for many common
use cases. It is used in 3G+ networks, and is generally only
supported in large NAS equipment used by bigger ISPs and
telecommunications providers; consumer or enterprise-grade
equipment typically only supports RADIUS [16].
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Although Diameter was intended to replace RADIUS, the
protocol itself offers no security when used over TCP. As a
result, RFC 6733 suggests that Diameter messages should
be secured using TLS or DTLS; 5G has replaced Diameter
with signaling over HTTP/2 [30]. The US government has de-
scribed exploits against Diameter targeting mobile users [10].

7.6 Non-Mitigation: Random shared secrets

Organizations can protect against dictionary attacks on the
shared secret by picking random shared secrets of sufficient
length, as the runtime of such an attack grows exponentially
with the entropy of the secret. For example, [18] recommends
shared secrets with at least 96 bits of entropy, so an offline
dictionary attack would involve on the order of 296 MD5
compressions. However, as our attack does not try to brute-
force the shared secret, choosing a strong shared secret does
not affect the runtime of our attack.

7.7 Non-Mitigation: MFA

Multi-factor authentication (MFA) is not a mitigation either.
Our attack largely bypasses the user authentication mecha-
nism, and forges the accept response from the server’s reject.
MFA may be supported through multiple mechanisms within
the RADIUS protocol, including authentication protocols like
PAP that are vulnerable by default to our attack.

For example, when using Okta, a user’s password and pass-
code can be entered together (as a single comma-delimited
string) as the User-Password attribute in an Access-Request
using the RADIUS PAP protocol. We carried out a successful
proof of concept attack against Okta with MFA enabled in
this setting, detailed in Section 5.3.

7.8 Non-Mitigation: Rejecting Proxy-States

Our forged Access-Accept packets contain Proxy-State at-
tributes that the client is not expecting. However, having the
client discard packets with unexpected Proxy-States does not
mitigate the vulnerability. First, such a mitigation would only
apply to a NAS; the Proxy-State attribute is actually used by
RADIUS server proxies and thus difficult to remove without
breaking functionality [16].
Even if NAS clients rejected unexpected Proxy-State at-

tributes, it would be possible to craft colliding packets where
the Access-Accept has the collision gibberish in a different
attribute such as Vendor-Specific or Reply-Message that is
likely to be accepted; the client does not need to support or
attempt to interpret the garbage attribute to be vulnerable.

The colliding Access-Reject packet would still use Proxy-
State attributes, as the server is guaranteed to include Proxy-
State attributes unchanged in an Access-Reject. For simplicity
our implementation uses Proxy-States in both colliding pack-

ets, as no RADIUS client we tested complained about the
unexpected Proxy-State.

7.9 Non-Mitigation: Replacing MD5
It is tempting to think that simply replacing MD5 in the Re-
sponse Authenticator with a secure hash function like SHA-2
or SHA-3 might be a short-term mitigation against our attacks.
However, since the RADIUS protocol does not provide for
any cryptographic agility, such a change would be incompati-
ble with all existing implementations, and thus be equivalent
to requiring a new protocol. Given the other security and pri-
vacy concerns with the rest of RADIUS, it would be better at
that point to redesign the entire protocol or transport.

8 Conclusion

Beyond the RADIUS protocol itself, our work raises some
broader issues in cryptographic security.
Over the past couple of decades, there has been a con-

certed effort in both academia and industry to deploy secure
encrypted protocols on the internet.

However, the world of standardization bodies, and the rela-
tionship between standards and real-world deployment can be
extremely complex and require large investments of time and
money. This process relies on the economic interest of compa-
nies to fund employees to participate; long-term maintenance
of protocols, working groups, and open-source software is
subject to the shifting tides of employment and interests. This
contributes to the current situation where vital portions of our
network infrastructure are essentially maintained as a labor of
love by a small number of dedicated individuals. Academic
researchers may in some cases even have negative incentives
from their university employers to do practical work that does
not immediately result in academic publications.
That said, joint efforts in recent years between cryptog-

raphy researchers and industry to develop and standardize
provably secure versions of protocols like TLS and secure
messaging have been successful. Given the enormous amount
of effort put into securing these protocols it is surprising that a
protocol as ubiquitous as RADIUS has received so little crypt-
analytic attention over the years. TLS may be the charismatic
megafauna of cryptographic protocol research, but in order
to actually secure our infrastructure we need to analyze and
secure the entire universe of enterprise security that academic
cryptographers have little to no visibility into or insight in.
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A On the origin of Proxy-State

The Proxy-State attribute was proposed for addition in an
email to the IETF RADIUS working group on May 24,
1995 [3]. The justification provided in the email is to allow
stateless proxying between clients and a pool of authentica-
tion servers. This attribute was included in the May 1995
protocol draft [41]. The only way that this attribute appears
to be used in modern implementations is for catching proxy
loops [16]. RFC 2865 mentions in at least seven different
places that Proxy-State attributes must be returned in order
and unmodified in responses. The presence of this attribute
makes the protocol vulnerability much simpler to exploit than
it would have been otherwise.

B Changes to hashclash

The code is available at [46]. We do not plan to publish
our cluster scripts; they are uninformatively tailored to our
setup. The following is an exhaustive summary of changes to
hashclash that we made, categorized by program and goal.

md5_birthdaysearch:
• (Scaling) Add parameter to control how frequently trails
are distributed/saved to and loaded by controllers.

• (Scaling) Add generatormode that only generates trails
and distributes them to controllers.

• (Latency) Immediately save birthday collision when
found, instead of waiting until all threads finish.

• (Fix) AVX256 allocation: Older GCC might not properly
do large alignment as required for AVX256.

md5_diffpathhelper:
• (Section 4.1) Fix a few bytes at the start of a near-
collision block.

• (Section 4.2) Add support to combine diffpaths, in or-
der to use precomputed set of upper differential paths
and overwrite the full differential paths with the correct
ending differences for the near-collision block at hand.

• (Section 4.2) Add support to negate a set of diffpaths,
in order to negate each ‘positive delta m11’-based pre-
computed set of upper differential paths instead also
computing the ‘negate delta m11’-based set.

• (Fix) Add support to join files consisting of just a differ-
ential path (not a set of one).

md5_diffpathforward:
• Speed up differential path fast solvability checking: only
check change, assume input paths were solvable.

• (Speed) Progressively increase output set size for the
first few steps (t=1,2,3) of forward.

• (Speed) When full decrease maxcond to stop processing
paths that will be pruned later on.

• (Speed) Use C++ move instead of copy.
• (Scaling) Use threadlocal buffers to global container to
reduce contention.

• (Scaling, Latency) Add splitsave parameter to save out-
put over multiple files in parallel.

md5_diffpathconnect:
• (Speed) New mintunnel parameter to prune search from
start to avoid bad full paths with too few tunnels.

• (Latency) Parallel read of both inputfiles, new option to
wait for file to exist before trying to load it.

All:
• (Scaling) Improve input distribution over threads.
• (Latency) Diffpath archives: gzip with best_speed.
• (Fix) Clean up comparison operators.
• (Fix) Make dostep_indexvolatile, read at start, write
after critical section.
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