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Abstract: Sparse-angle X-ray Computed Tomography (CT) plays a vital role in industrial quality
control but leads to an inherent trade-off between scan time and reconstruction quality. Adaptive
angle selection strategies try to improve upon this based on the idea that the geometry of the
object under investigation leads to an uneven distribution of the information content over the
projection angles. Deep Reinforcement Learning (DRL) has emerged as an effective approach for
adaptive angle selection in X-ray CT. While previous studies focused on optimizing generic image
quality measures using a xed number of angles, our work extends them by considering a specic
downstream task, namely image-based defect detection, and introducing exibility in the number of
angles used. By leveraging prior knowledge about typical defect characteristics, our task-adaptive
angle selection method, adaptable in terms of angle count, enables easy detection of defects in the
reconstructed images.

Keywords: computed tomography; adaptive angle selection; defect detection; deep learning;
reinforcement learning

1. Introduction

X-ray Computed Tomography (CT) plays a pivotal role in non-destructive quality
control, yet it remains predominantly an ofine tool due to the trade-off between scan
speed and scan quality. Standard CT protocols use evenly spaced angles around the object,
typically requiring a large number of angles to ensure quality. However, in particular in
sparse angle CT, the geometry of the object under analysis heavily inuences which angular
projections carry more or less useful information for the specic task to be performed,
e.g., for defect detection [1,2]. Optimal Experimental Design (OED) aims to identify the
optimal scanning angles to achieve a given task. We discern two primary categories: static
OED and sequential OED. Static OED determines all experimental parameters in advance,
without incorporating feedback from subsequent observations. In contrast, sequential OED
relies on continuous feedback from each stage of the experiment, allowing for adjustments
and adaptations based on emerging data. In the context of enhancing the speed of in-line
CT inspections, the development of sequential OED for adaptive angle selection strategies
is essential. Such a strategy would allow for a more focused scanning process, dynamically
adjusting the angles and reducing the number of necessary angles, tailored to meet the
specic needs of the inspection task. This approach promises to streamline the scanning
process, making it quicker and more responsive to the unique characteristics of each
inspection scenario.

Several researchers have employed prior information in the form of generic statistical
models to determine the most informative angles using approaches based on OED [3–6].
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However, computational challenges have limited the application of such methods to offline
settings. In industrial applications, prior information in the form of computer-aided design
(CAD) models is often available. Therefore, many researchers utilized them for offline training
to determine the informative angles. The resulting predefined trajectories can then be rapidly
applied in real settings. Fischer et al. [2] proposed a CAD-based method to optimize task-
specific trajectories using a detectability index [7]. The index is computed by evaluating
trajectory fitness against a user-defined frequency template, utilizing a modulation transfer
function and the noise power spectrum. There are some extended works based on this:
Herl et al. [8] considered a Tuy-based metric to guarantee the completeness of the data
acquisition. Schneider et al. [9] used the regressive ResNet-34 to predict this index for each
angle. Then, they used an integer optimization method to generate the trajectory based on
these predictions. Matz et al. [10] proposed geometry-based metrics using a discrete wavelet
transform to find which angle can capture more information about edges. Bussy et al. [11]
employed the Q-Discrete Empirical Interpolation Method to obtain a subset from full angles.
Furthermore, they introduced additional constraints considering the ray’s attenuation [12].

The need for adaptability in in-line use, particularly regarding angle selection, is
underscored by the fact that these ofine-optimized methods, while efcient in practical
applications, often require precise alignment with actual scans [13]. To address this, we
explored the potential of a Deep Reinforcement Learning (DRL) approach in the develop-
ment of the sequential OED for adaptive angle selection in [14]. So far, we only considered
approaches that choose a xed number of angles to optimize generic image reconstruction
quality measures.

This paper extends our previous work [14] and addresses the challenges of identifying
defects in products using in-line CT. The contributions of this study include the following:

1. Incorporating prior knowledge about potential defects into the DRL reward function
to guide task-specic angle selection for defect detection;

2. Acknowledging that defects in industrial products are infrequent, and that defective
and non-defective samples may require different numbers of angles, our method
introduces adaptability in angle count. This exibility allows for a more detailed in-
spection when defects are suspected, enhancing defect detection while simultaneously
optimizing the use of scanning resources;

3. Incorporating task-specic angle selection,such as image contrast or segmentation
quality in the training reward. This integration of DRL with defect detection strate-
gies signicantly enhances both the rapidity and precision of defect identication,
demonstrating the feasibility of an automated and efcient process for task-specic
angle selection in CT scans.

This paper is structured as follows: The following section introduces the basic concepts
and notation we use for the inverse problem in CT imaging and Reinforcement Learning
(RL) for sequential OED. Section 3 elaborates on DRL and defect detection methodologies
and outlines the integration of defect information into the RL reward function. Section 4
presents three experiments validating the algorithm. Section 5 discusses the advantages,
limitations, and prospects for future research. This paper concludes in the nal section
with a summary of our ndings.

2. Background
2.1. Inverse Problem of CT

In sparse-angle CT, we aim to reconstruct x̄ from a small number of angles
θ = θ1, . . . , θM, which presents an underdetermined and ill-posed inverse problem,
which we will denote as

y(θ) = A(θ)x̄+ ϵ(θ), (1)

Traditional approaches like Filtered Back-Projection (FBP) are inadequate here, as they
rely on a complete range of angles. We will use the Simultaneous Iterative Reconstruction
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Technique (SIRT) [15], which obtains a reconstruction by solving the constrained weighted
least-squares problem

x(θ) = argmin
x∈Λ

∥A(θ)x− y(θ)∥2R, (2)

using a pre-conditioned projected gradient-descent scheme

x(k+1) = ΠΛ


x(k) + CA(θ)TR


A(θ)x(k) − y(θ)


. (3)

In the above, ΠΛ denotes a projection onto the constraint set (e.g., bound constraints
a ≤ xi ≤ b), the diagonal matrix R contains the reciprocals of row sums of A(θ) and the
diagonal matrix C contains the column sums of A(θ).

2.2. Reinforcement Learning for Sequential OED

OED is a methodological framework developed to select experimental designs that
maximize the information gained about parameters of interest [16]. In the example of (1),
OED would aim to choose a set θ = θ1, . . . , θM such that y(θ) contains maximal infor-
mation about a feature of x̄. In sequential OED, as an extension, the experimental designs
can be adapted sequentially based on the outcomes of previous experiments, e.g., we can
choose each new angle θk based on the measurements y(θ1, . . . , θk−1).

While conventional OED formulations lead to complex optimization problems over
utility functions measuring the information gain, we are considering using Reinforcement
Learning (RL) to solve the sequential OED problem. RL is a machine learning paradigm
in which intelligent agents learn to take actions in a dynamical environment that will
maximize a reward they obtain [17]. RL is typically grounded in Markov Decision Pro-
cesses (MDPs), a framework comprising action and state spaces, transition, and reward
functions. RL algorithms aim to learn a policy—a strategy for selecting actions based on the
current state—that maximizes cumulative rewards over time. Partially observable MDPs
(POMDPs) extend this framework to scenarios, where the current state may not always
be fully observable, and the agent has to construct a belief state that its actions are then
based on.

We utilize RL within the POMDP framework to address the sequential OED problem
following [18]. The RL algorithm operates by mapping the belief state at step t, denoted as
st, to a probability distribution over the possible experimental designs or actions. The action
for the next experiment, at, is then chosen based on this probability distribution. The objec-
tive is to learn a policy π(atst) that optimizes the utility function of the sequential OED,
essentially guiding the experimental design process in a way that maximizes the overall
gain from the experiments conducted. Consequently, this methodology allows for the
optimization of policy parameters rather than the design parameters themselves.

In [14], we described a POMDP model of the sequential OED problem of adaptively
selecting a xed number of scan angles in X-ray CT in terms of states, actions, and re-
wards associated with state transitions. The DRL training in this setup was focused on
developing an optimal policy aimed at maximizing total rewards, primarily enhancing
the reconstruction quality by choosing the most suitable actions based on the current state.
The components of this model include:

• Observation space: it consists of a set of measurements y generated according to
Equation (1).

• State space: we consider the reconstruction x of the underlying ground truth x̄ as a
belief state, which can be obtained via SIRT (3).

• Action space: it consists of 360 integer angles θ= θ0, θ1, ..., θ359 from the range [0, 360).
• Transition function and observation function: the transition function is deterministic,

as the underlying ground truth remains unchanged. On the other hand, the data
model given by the forward model serve as the observation function, from which we
only consider measurement samples.
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• Reward function: the reward function primarily evaluated the reconstruction quality
using the Peak Signal-to-Noise Ratio (PSNR) value.

3. Methods
3.1. Task-Adaptive Angle Selection for Defect Detection

Building on the approach outlined above, we now introduce a more complex reward
function to facilitate adaptive, task-specic angle selection with a exible number of an-
gles. We propose an integrated pipeline where angle selection aids in improving defect
detectability. As shown in Figure 1, the pipeline involves training two key components:
the DRL network and the evaluation for defect detectability. The DRL network follows
the architecture described in our previous work [14]. It includes a deep neural encoder
network that extracts informative features from reconstructions at each step. Additionally,
it incorporates an Actor–Critic network to estimate the value function and output the
probability distribution over the action space. The bottleneck layer of the encoder network
serves as the input to the Actor–Critic network.

Figure 1. The DRL network selects the next angle θi+1, which is used, along with the previously
selected ones andmeasurements, to gather a new reconstruction. The SSIM is then calculated to assess
the similarity between this reconstruction and the ground truth image. Concurrently, the contrast
ratio value is derived from the ground truth of the defect (indicated by the dashed line); alternatively,
the Dice score value is determined by comparing the defect segmentation output with the defect’s
ground truth (depicted by the solid line). These metrics inform the DRL network’s decision-making
for further angle selection.

The pipeline operates as follows: To explain one step of this sequential pipeline, we
assume that a set of angles θ = θ0, θ1, ..., θi and their corresponding measurements are
acquired. The SIRT algorithm with constraints is then used for image reconstruction. This
reconstructed image serves as the input for the DRL network.

The reward function considers reconstruction quality, which is measured by comparing
the reconstruction to the ground truth, often using the Structural Similarity (SSIM) index.
It also evaluates defect detectability, described by metrics such as the contrast ratio (CR) or
Dice score (DS) for segmentation precision. A negative reward is assigned at each step to
encourage the use of fewer angles. More details about this reward function are provided in
the following section.
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The policy maps the input reconstructed image to a probability distribution over the
action space, from which the next angle is selected by sampling. The policy is trained to
maximize the total rewards and the computational costs spent on the training process.While
the training process is computationally intensive, the trained model can be applied quickly
in real-world applications.

3.2. Reward Function

The reward function considers two primary objectives: defect detectability and recon-
struction quality. The detectability of defects, given the current reconstruction xk+1 and
the ground truth of the defect z̄, will be assessed by a measure D(xk+1, z̄) ∈ [0, 1], where
higher values mean a better detectability. We will describe two examples of D(xk+1, z̄) in
more detail in the following section. To asses reconstruction quality, we will use the SSIM
index instead of the PSNR value, because the SSIM also takes values in the range [0,1].
With this, the reward function is dened as

R(xk+1, x̄, z̄) =


α(SSIM(xk+1, x̄) + D(xk+1, z̄)) if stop criteria is reached
−a otherwise

(4)

The stop criteria are reached if the number of angles k+ 1 is equal to a maximum M, or if the
reconstruction quality SSIM(xk+1, x̄) is above a threshold Q. The rationale behind setting
M is to prevent the process from selecting an excessively large number of angles, while the
thresholdQ ensures that angle selection stops in defect-free cases, where D(x, z̄) = 0 at each
step, and that the reconstruction quality is high enough for reliable defect determination.
The term α is a scale. The term −a acts as a penalty at each step, encouraging the RL agent
to select fewer angles to meet the stop criteria. Both the contrast ratio (CR) metric and Dice
score (DS) metric can serve as the component D(xk+1, z̄) of the reward function (4).

To effectively assess the detectability of defects, it is important to introduce specific
metrics that quantify how clearly a defect is visible. The CR measures the visibility of a defect
against the background material in terms of the average intensity difference, as follows:

CR =
µ(Idefect)− µ(Ibackground)

µ(Ibackground)
(5)

In this formula, µ(Idefect) represents the mean intensity value of the defect area, while
µ(Ibackground) denotes the mean intensity value of the surrounding background area.
A greater CR value between a defect and the surrounding material often correlates with
better detectability.

In practical terms, however, one must also take into account the actual segmentation
of the defect. To this end, we explore unsupervised defect segmentation using the K-means
clustering algorithm, a method celebrated for its uncomplicated yet effective approach to
categorizing complex data into distinct clusters.

K-means clustering begins by determining a predetermined number of clusters, known
as K, with each cluster represented by a central value or ’centroid’. The algorithm then
proceeds in an iterative fashion, assigning each data point to the closest centroid using a
distance metric, typically Euclidean distance. Centroids are recalculated in each iteration,
and this process repeats until the centroid positions no longer change signicantly.

Our paper leverages the K-means clustering algorithm to identify defects within
material samples. By initializing the algorithm to create two clusters, we effectively distin-
guish between normal and defective regions. The defective cluster is then used to guide
the manual segmentation of defects, illustrating the algorithm’s practical application in
materials analysis.

When this semantic segmentation method is applied to the reconstructed image,
one can also consider a metric that directly measures the accuracy of the segmented image.
The DS compares the predicted segmentation of defects against the actual (ground truth)
segmentation. It is expressed as
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DS =
2× Ppredicted ∩ Pground truth
Ppredicted+ Pground truth

(6)

Here, Ppredicted refers to the set of pixels identied as defects in the predicted segmentation
and Pground truth represents the set of pixels identied as defects in the actual ground truth
segmentation. Thus, Ppredicted ∩ Pground truth is the set of correctly identied defect pixels.
The cardinality operator  ·  measures the size of the sets, i.e., the number of active pixels.

These metrics offer insights into how effectively the chosen imaging angles can ac-
centuate defects in the scans. By incorporating CR or DS into the reward function, we can
systematically evaluate and optimize the angle selection process, ensuring that it maximizes
the visibility and detectability of defects.

4. Results

In the results section of our paper, we explore the efcacy of the pipeline in selecting
informative angles that enhance defect detectability. We compare our RL-based method to
non-adaptive angle selection criteria. These non-adaptive angle selection criteria use the
same number of angles, which is determined by the RL-based method. Our experimental
analysis spans various datasets, ranging from synthetic numerical simulations to those that
closely mimic real-world scenarios.

4.1. Baseline Angle Selection Methods

This subsection introduces the foundational angle selection methods used as baselines
in our X-ray CT studies:

• Equidistant policy: Thismethod is a conventional strategy for determining the acquisition
angles in X-ray CT imaging. It uniformly divides the full 360-degree rotation into equally
spaced angular intervals. With an increase in the number of angles, the interval between
consecutive angles becomes narrower, offering denser angular coverage.

• Golden standard policy [19,20]: In contrast to the equidistant approach, this method
adopts a non-uniform strategy for angle selection, leveraging the golden ratio for angle
distribution. This ensures that with the addition of angles, the previously established
angles remain xed, and new angles are allocated within the largest existing interval
between angles, according to the golden ratio. This dynamic adjustment can optimize
angular coverage.

4.2. Shepp–Logan Phantoms

Initially, our experiment employs a numerical dataset and incorporates the CR metric
into the reward function. The primary goal of this preliminary test is to demonstrate that
our approach can effectively enhance defect detectability.

4.2.1. Dataset

For the rst experiment, we generated images of objects consisting of ellipsoidal
parts inspired by the Shepp–Logan phantom. The dataset consists of 1800 images of
size 128× 128, evenly divided into 900 normal samples and 900 samples with elliptical
defects. The shapes and defects are characterized by random variations in scale and rotation.
The Shepp–Logan shapes have scales within the following ranges: minor axis length
between 57 and 67 pixels, and major axis length between 90 and 105 pixels. The defects
have scales within these ranges: major axis length between 9 and 25 pixels, and minor axis
length between 6 and 19 pixels. The rotations are distributed across 36 angles, each spaced
equally from 0◦ to 179◦. The diversity in the dataset is depicted in Figure 2.
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Figure 2. This gure displays samples of Shepp–Logan shapes, illustrating both normal (top row)
and defective variants (bottom row). Each sample is unique, demonstrating a range of scales, shifts,
and rotations, which reects the diversity of the dataset used in our analysis.

4.2.2. Implementation

When computing the CR value, we consider an elliptical background area slightly
larger than the elliptical defect, with both its major and minor axes extended by four
pixels. For the stop criteria, we set the maximum number of angles, M, to 20, the threshold
for reconstruction quality, Q, to 0.85, scale α to 15, and penalty −a to −1. The Astra-
toolbox [21,22] is employed for both forward projection and reconstruction tasks.

In the forward projection process, we utilize a fan-beam geometry. The distance from
the source to the detector is set at 400 units, while the distance from the source to the object
is 200 units. The detector is congured with a resolution of 256 pixels.

For the reconstruction phase, we employ SIRT with bound constraints, i.e., we run (3)
with Λ = x ∈ Rn0 ≤ xi ≤ 1 for 150 iterations.

4.2.3. Evaluation

During our training process, we conduct a series of 160,000 episodes to train the DRL
agent. Each episode involves using a Shepp–Logan shape from our dataset. In Figure 3,
the top demonstrates the progression of average total rewards accumulated by the DRL agent
during the training phase. This trend indicates that the policy effectively learned to balance
improving SSIM and contrast ratio values while reducing the number of angles over time.

The bottom of Figure 3 showcases how the number of angles chosen by the DRL
agent adjusts in response to Shepp–Logan shapes, both with and without defects. Initially,
the DRL agent tends to select a higher number of angles to meet the stop criteria. It is
observed that the shapes with defects consistently require more angles compared to the
normal shapes from the start of training. As training progresses, the number of angles
decreases for both scenarios due to the negative reward applied at each step. When
considered alongside Figure 3, this trend suggests that the DRL agent is optimizing its
angle selection strategy by choosing fewer yet more informative angles, thereby enhancing
the total rewards earned. We incorporate the contrast ratio into the reward function, which
inuences the agent’s behavior when defects are present. In these cases, more angles are
needed to enhance the visibility of aws against the background. Notably, the data reveal
that the defective Shepp–Logan shapes necessitate approximately 11 angles for effective
analysis, compared to around 7 for non-defective ones.

Figure 4 presents a set of reconstructed image samples obtained using the DRL,
equidistant, and golden standard policies. The number of angles used in each row is
determined by the DRL policy. The rst row, utilizing 8 angles, and the second row,
employing 10 angles, highlight the superior clarity of defects in images reconstructed by
the DRL policy.
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Figure 3. Evolution of average total rewards and the number of angles over training episodes.
The gure at the top presents the trend in average total rewards achieved by the DRL agent throughout
the training episodes. The gure at the bottom illustrates the variation in the average number of
angles selected by the DRL agent for Shepp–Logan shapes, differentiated by the presence or absence
of defects. Analyzed at intervals of every 1000 episodes, the graph shows mean values as a central
curve, signifying the average reward at each point, with variance depicted as shaded bands around
the curve, representing the standard deviation and the spread of reward values over time.

The observed decrease in the number of angles chosen signicantly inuences the
resulting CR values. Figure 5 contrasts the performance of three different policies—
equidistant, golden standard, and DRL—in terms of their influence on CR value. The equidis-
tant and golden standard policies utilize the number of angles determined by the DRL
policy with SSIM and CR rewards. It is noted that while the average CR values under
the equidistant and golden standard policies tend to diminish as the number of angles
decreases, the CR values achieved using the DRL policy show a notable increase at the
early stage and remain stable. Among these, the golden standard policy slightly outper-
forms the equidistant policy. Additionally, to evaluate the effectiveness of the CR reward,
a separate DRL agent is trained solely with SSIM rewards. As shown in Figure 3, this
approach initially leads to an increase in the CR values, which later decline. Upon reaching
convergence, this SSIM-based DRL policy surpasses the equidistant and golden standard
policies in performance but is still outperformed by the DRL policy, which incorporates a
CR reward. Notably, the SSIM-based DRL policy focuses on a single task, leading to the
selection of fewer angles than the DRL policy with dual tasks. Specically, during the last
2000 episodes, the SSIM-based DRL policy selects an average of 8.07 angles, compared to
8.32 angles for the DRL policy with the CR reward. The DRL policy can handle variations
in scale and rotation, ensuring reconstruction quality and effective defect detection with an
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appropriate number of angles. These ndings suggest that including a reward for CR in the
DRL framework aids in adaptively selecting angles that are not only optimal in quantity
but also more effective for defect detection.

Figure 4. Reconstruction quality comparison. This gure presents a side-by-side comparison of
reconstructed images obtained using the DRL policy versus those acquired through the equidistant
and golden standard policies. The comparison highlights the differences in defect visibility across
these methodologies. The numerical value accompanying each title denotes the CR value pertinent
to its respective image, serving as a quantitative measure of the defect contrast compared to its
surroundings. Red rectangles highlight the defect in each image, with a zoomed-in view displayed in
the upper right corner to facilitate a more detailed examination of the defect visibility.

To assess the efcacy of the trained policy, we examine the same phantom subjected
to previously unseen rotations. According to Table 1, the DRL policy with dual tasks
demonstrates superior performance compared to two traditional approaches, across all
policies considering the average number of angles, which is 8.46 as determined by the DRL
policy. Additionally, both the golden ratio and equidistant policies require the selection of
three additional angles to achieve performance comparable to that of the DRL policy with
dual tasks, as indicated in the last two rows of Table 1.

Figure 5. This gure presents a side-by-side comparison of CR values derived from different imaging
policies. It specically highlights the differences in CR values achieved by the DRL policy that
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utilizes both SSIM and CR as rewards, in contrast to the equidistant and golden standard policies.
The number of angles selected by the DRL policy, which integrates SSIM and CR rewards, forms the
basis for this comparison. The DRL policy informed by SSIM alone selects a smaller number of angles.
It takes into account 1000 episodes, with the mean values representing the average. Additionally,
calculations not depicted in this gure indicate that the DRL policy exhibits the smallest variance
among these policies once the mean values reach a point of convergence.

Table 1. Comparative performance of DRL policy with dual tasks and traditional angle selection
policies on Shepp–Logan phantom.

Policy Average Number of Angles CR SSIM

DRL 8.46 0.62 ± 0.10 0.86 ± 0.01
Golden ratio 8.46 0.48 ± 0.13 0.83 ± 0.01
Equidistant 8.46 0.49 ± 0.17 0.83 ± 0.01

Golden ratio 8.46 + 3 0.61 ± 0.11 0.85 ± 0.01
Equidistant 8.46 + 3 0.59 ± 0.13 0.86 ± 0.01

4.3. Simulated Industrial Dataset

After the proof of the rst experiment focusing on enhancing the contrast of the defect,
a second experiment is carried out to assess the pipeline against a more realistic scenario
and involve the defect segmentation.

The Fraunhofer EZRT XSimulation software [23] is used to acquire a set of 1800 sim-
ulated images of size 128× 128 in fan beam geometry. These simulated images serve as
the ground truth and are used to compare with the K-means clustering segmentation to
calculate the Dice score values. In this study, we focus on two prevalent defect types—pores
and cracks—to evaluate the efcacy of the DRL approach. Within the domain of industrial
CT scans, Regions of Interest (ROIs) are typically predetermined. Certain areas are more
prone to defects and, consequently, demand a higher reconstruction quality. To reect this
industry practice, we designate two distinct ROIs to separately introduce pore and crack
defects. Mirroring the setting of our initial experiment, we consider an equal distribution
of normal and defective samples, totaling 900 each. Figures 6 and 7 display examples of
these articially induced defects for reference. Variable position and tilt of the object are
chosen for data augmentation and bias reduction.

In this research, we introduce pore defects of varying sizes into ROI 1. These defects
encompass a pixel count between 11 and 35, with circumcircle diameters ranging from
3.2 to 7.0 pixels. This range presents diverse scenarios for the DRL method to tackle.
Similarly, cracks are inserted into ROI 2, with a pixel count ranging from 7 to 25 and
circumcircle diameters between 8.6 and 19.7 pixels. These experiments are designed to
rigorously assess the DRL method’s effectiveness in segmenting defects and enhancing the
quality of reconstructions within ROIs.

4.3.1. Implementation

In this investigation, we assess the utility of our approach in augmenting the defect
segmentation capabilities of the K-means clustering algorithm. Because the sample investi-
gated in Section 4.3 has homogeneous materials, the number of clusters is two. Additionally,
We identify the pixel with the maximum intensity value and use its position as the initial
center for one of the clusters. This approach helps distinguish between the defect and
non-defect areas. Finally, we compare the segmented results with ground truth annotations
to validate the clustering performance using the DS metric.

To establish clear termination parameters for our process, we dene two stopping
criteria: a maximum count of 20 angles (M) and a minimum threshold for reconstruction
quality within the ROIs, set at an SSIM of 0.45 (Q). To ensure uniformity throughout our
experiments, we adhere to the same conguration settings used in our initial experiment,
both in other parameters and within the Astra Toolbox. Additionally, we train two distinct
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DRL policies to address pore and crack defects, respectively, allowing for a targeted ap-
proach to each defect type and ROI.

Figure 6. The top row depicts the selected ROI from the initial dataset, devoid of any defects.
The bottom row presents three samples with artificially inserted pore defects within the ROI, each
sample exhibiting a unique combination of rotation and scale variations to simulate defect diversity.

Figure 7. The top row depicts the selected ROI from the initial dataset, devoid of any defects.
The bottom row presents three samples with articially inserted crack defects within the ROI, each
sample exhibiting a unique combination of rotation and scale variations to simulate defect diversity.

4.3.2. Evaluation

A. Pore defects

Our investigation centers on pore defects within ROI 1. Figure 8 captures the evolution
of the training phase, tracking both the average total rewards and the number of angles
utilized. The upper section of Figure 8 demonstrates that the DRL agent successfully
progressively increases its reward acquisition. The lower section reveals the strategy of
the agent to minimize the number of angles used. Notably, non-defective samples tend to
require a greater number of angles on average compared to defective ones, and they also
exhibit a broader variance.
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Figure 8. Evolution of average total rewards and the number of angles over training episodes.
The gure at the top presents the trend in average total rewards achieved by the DRL agent throughout
the training episodes. The gure at the bottom illustrates the variation in the average number of
angles selected by the DRL agent for samples with ROI 1, differentiated by the presence or absence
of defects. Analyzed at intervals of every 1000 episodes, the graph shows mean values as a central
curve, signifying the average reward at each point, with variance depicted as shaded bands around
the curve, representing the standard deviation and the spread of reward values over time.

Figure 9 presents two sets of reconstructed images using the DRL policy, alongside
those derived from the equidistant and golden standard policies. This comparison is
based on the number of angles determined by the DRL policy. The rst row, utilizing
10 angles, and the second row, employing 7 angles, are evident that the reconstructions
produced by the DRL policy are superior, demonstrating enhanced defect visualization.
This improvement is corroborated by the corresponding DS values, indicating a higher
accuracy of defect detection.

Subsequently, Figure 10 showcases the segmentation outcomes corresponding to
the top group of reconstructions from Figure 9. The reconstructed images are processed
via the K-means clustering algorithm, resulting in binary representations of the defects.
Segmentation accuracy is then ascertained by comparing these binary images against the
ground truth defect masks, demonstrating the practical effectiveness of our DRL policy in
identifying pore defects within the examined ROI.

Figure 11 presents the impact of reducing the number of selected angles on the DS value.
This figure provides a performance comparison of three distinct policies—equidistant, golden
standard, and DRL. The number of angles used by these policies is set according to the DRL
policy, which integrates both SSIM and DS rewards. It is observed that while the DS values
for the equidistant and golden standard policies generally decrease with a reduction in
the number of angles, the DRL policy either sustains or enhances its DS values. Notably,
the golden standard policy demonstrates a performance level that is similar to that of the



J. Imaging 2024, 10, 208 13 of 20

equidistant policy. The effectiveness of the DRL policy, integrating both SSIM and DS
rewards, is clearly demonstrated. In contrast, a DRL agent trained exclusively with the
SSIM as its reward displays inconsistent performance, initially showing an increase in
DS values but subsequently declining. When this training process reaches its endpoint,
the SSIM-based DRL policy is outperformed by both equidistant and golden policies.
As mentioned in the rst experiment, the SSIM-based DRL policy necessitates fewer angles,
averaging 5.65 over the nal 2000 episodes, in contrast to the DRL policy that integrates
both SSIM and DS rewards, which averages 10.84 angles. This difference in the number
of angles is a contributing factor to the lesser performance observed in the SSIM-based
policy. These ndings validate the importance of including a DS reward in the DRL
algorithm, signicantly enhancing the selection of angles for improved defect segmentation.
Without this reward, the DRL approach tends to focus solely on the reconstruction quality
within the ROI while overlooking the specics of the defect.

Figure 9. Reconstruction quality comparison. This gure presents a side-by-side comparison of
reconstructed images obtained using the DRL policy versus those acquired through the equidistant
and golden standard policies. The comparison highlights the differences in defect visibility across
these methodologies. The numerical value accompanying each title denotes the DS value pertinent to
its respective image, serving as a quantitative measure of the defect segmentation. Red rectangles
highlight the defect in each image, with a zoomed-in view displayed in the upper right corner to
facilitate a more detailed examination of the defect visibility.

In a manner analogous to the experiments conducted on the Shepp–Logan phantom,
we evaluate the trained DRL policy with dual tasks using rotations that are not included in
the training set. The DRL policy selects an average of 9.84 angles. Table 2 shows that this
policy outperforms two traditional policies in terms of performance. Furthermore, the last
two rows of Table 2 indicate that both the golden ratio policy and the equidistant policy
require the selection of two additional angles to achieve performance comparable to that of
the DRL policy with dual tasks.

Table 2. Comparative performance of DRL policy and traditional angle selection policies on the
simulated industrial dataset with pore defects.

Policy Average Number of Angles CR SSIM

DRL (9.84) 9.84 0.65 ± 0.24 0.46 ± 0.03
Golden ratio 9.84 0.57 ± 0.32 0.43 ± 0.09
Equidistant 9.84 0.56 ± 0.34 0.43 ± 0.07
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Table 2. Cont.

Policy Average Number of Angles CR SSIM

Golden ratio 9.84+ 2 0.67 ± 0.25 0.47 ± 0.07
Equidistant 9.84+ 2 0.67 ± 0.28 0.47 ± 0.06

Figure 10. Comparative analysis of the pore defect segmentation. The top row represents the original
image with ground truth defects. The middle row illustrates segmentation outputs using three
different policies: DRL policy, equidistant policy, and a golden standard policy. The bottom row
displays the corresponding defect masks generated by K-means clustering. The values of the DS
for each method are indicated, quantifying the accuracy of the defect segmentation relative to the
ground truth.

Figure 11. This gure presents a side-by-side comparison of DS values derived from different imaging
policies. It specically highlights the differences in DS values achieved by the DRL policy that utilizes
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both SSIM and DS as rewards, in contrast to the equidistant and golden standard policies. The number
of angles selected by the DRL policy, which integrates SSIM and DS rewards, forms the basis for this
comparison. The DRL policy informed by SSIM alone selects a smaller number of angles. It takes into
account 1000 episodes, with the mean values representing the average. Additionally, calculations
not depicted in this gure indicate that the DRL policy exhibits the smallest variance among these
policies once the mean values reach a point of convergence.

B. Crack defects

Crack defects, with their distinctively long and thin shapes, pose unique challenges
for automated detection and segmentation systems. In an experiment analogous to that
conducted for pore defects, we observe that the average total rewards for the crack defect
samples increase over time while the average number of angles used decreases, as shown
in Figure 12. Interestingly, the number of angles required for accurately detecting defective
samples is similar to that for non-defective samples in the case of crack defects.

In our analysis, Figure 13 displays the reconstructed images of crack defects using
three distinct policies: the DRL policy, and the equidistant and golden standard policies.
Additionally, the number of angles is determined by the DRL policy. The rst row utilizes
14 angles, while the second row employs 18 angles. Similar to pore defects, the DRL policy,
as indicated by the visibility of the defects and their corresponding DS values, appears to
signicantly enhance the segmentation process, making cracks more distinguishable for
subsequent analysis.

Figure 14 presents the outcomes of applying the K-means clustering algorithm for
segmenting these crack defects. The outcomes correspond to the rst row in Figure 13.
As evidenced by the DS values, the segmentation performance illustrates the DRL policy’s
superior ability to accurately dene and isolate the cracks within the material sample, un-
derscoring its potential in improving segmentation in CT imaging. Additionally, Figure 15
presents a similar impact of reducing the number of selected angles on the DS value to
Figure 11. When examining the last 2000 episodes, the average number of angles de-
termined by the DRL policy, which incorporates both SSIM and DS rewards, is 11.86.
In contrast, the average for the DRL policy that relies solely on SSIM is 9.39. However,
it is noteworthy that the performance of the SSIM-based DRL policy exhibits a degree
of instability.

In the context of a simulated industrial dataset featuring crack defects, the DRL policy
with dual tasks selects an average of 12.26 angles. As indicated by Table 3, this policy sur-
passes the performance of two traditional policies. Additionally, the last two rows of Table 3
reveal that to match the performance of the DRL policy with dual tasks, both the golden
ratio policy and the equidistant policy necessitate the selection of six additional angles.

Table 3. Comparative performance of DRL policy with dual tasks and traditional angle selection
policies on the simulated industrial dataset with crack defects.

Policy Average Number of Angles CR SSIM

DRL 12.26 0.85 ± 0.14 0.46 ± 0.03
Golden ratio 12.26 0.72 ± 0.28 0.39 ± 0.10
Equidistant 12.26 0.76 ± 0.25 0.40 ± 0.10

Golden ratio 12.26+ 6 0.83 ± 0.18 0.49 ± 0.07
Equidistant 12.26+ 6 0.86 ± 0.14 0.49 ± 0.07
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Figure 12. Evolution of average total rewards and the number of angles over training episodes.
The gure at the top presents the trend in average total rewards achieved by the DRL agent throughout
the training episodes. The gure at the bottom illustrates the variation in the average number of
angles selected by the DRL agent for samples with ROI 2, differentiated by the presence or absence
of defects. Analyzed at intervals of every 1000 episodes, the graph shows mean values as a central
curve, signifying the average reward at each point, with variance depicted as shaded bands around
the curve, representing the standard deviation and the spread of reward values over time.

Figure 13. Reconstruction quality comparison. This gure presents a side-by-side comparison of
reconstructed images obtained using the DRL policy versus those acquired through the equidistant
and golden policies. The comparison highlights the differences in defect visibility across these
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methodologies. The numerical value accompanying each title denotes the DS value pertinent to
its respective image, serving as a quantitative measure of the defect segmentation. Red rectangles
highlight the defect in each image, with a zoomed-in view displayed in the upper right corner to
facilitate a more detailed examination of the defect visibility.

Figure 14. Comparative analysis of the crack defect segmentation. The top row represents the original
image with ground truth defects. The middle row illustrates segmentation outputs using three
different policies: DRL policy, equidistant policy, and a golden standard policy. The bottom row
displays the corresponding defect masks generated by K-means clustering. The values of the Dice
score for each method are indicated, quantifying the accuracy of the defect segmentation relative to
the ground truth.

Figure 15. This gure presents a side-by-side comparison of DS values derived from different imaging
policies. It specically highlights the differences in DS values achieved by the DRL policy that utilizes
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both SSIM and DS as rewards, in contrast to the equidistant and golden standard policies. The number
of angles selected by the DRL policy, which integrates SSIM and DS rewards, forms the basis for this
comparison. The DRL policy informed by SSIM alone selects a smaller number of angles. It takes into
account 1000 episodes, with the mean values representing the average. Additionally, calculations
not depicted in this gure indicate that the DRL policy exhibits the smallest variance among these
policies once the mean values reach a point of convergence.

5. Discussion

Our study began with numerical experiments using the Shepp–Logan phantom, fea-
turing ellipse-shaped defects, and employed a CR-based reward to initially evaluate how
defect information inuences the DRL policy. Advancing towards more complex scenarios,
we tackled the challenge of detecting smaller defects, which are inherently more difcult
to identify. Our investigation encompasses two predominant defect types—pores and
cracks—and incorporates K-means clustering for the segmentation of these defects. Follow-
ing this, we integrate the DS metric into the reward function, showcasing its effectiveness
in boosting the K-means clustering algorithm’s ability to segment defects. The ndings
reveal that DRL can successfully learn task-specic sequential OED policies that surpass
traditional equidistant and golden standard approaches. This achievement underscores the
potential to include additional tasks in our methodology, allowing for more tailored angle
selection adaptations. In such cases, carefully optimizing the assigned weights for these
tasks is crucial for achieving balanced and effective results.

Another notable aspect of our approach is the introduction of a negative reward at
each step, encouraging the DRL agent to select an optimal number of angles. This strategy
balances experimental cost and quality, proving advantageous for practical applications.
The experimental results consistently surpass the outcomes of traditional equidistant and
golden standard methods, underscoring the DRL approach’s ability to effectively select a
exible number of angles for improved defect detection.

To apply our method to real-world settings, the DRL approach has to be extended to
incorporate one more component: to focus on task adaptation, a simple stopping criterion
was used in this work, which depended on the ground truth images. In real-world settings,
the DRL policy also needs to decide when to stop. One of the approaches for this that we
will investigate in the future is to use the value function of the DRL framework, which is
an estimate of future total rewards, as a stopping criterion, e.g., by setting a tolerance level
for the output of the value function [24].

Several challenges and future works need to be addressed to advance this method.
CAD models would be valuable for ofine training of the DRL agent. However, it is
essential to build a reliable simulation environment using CAD models that closely mimics
real-world conditions. Apart from the metrics involved in the reward function, such as
those assessing reconstruction quality and defect detectability, other metrics for industrial
quality control can also be considered. Then, we aim to extend our method to encompass
3D geometries, in particular the cone-beam geometry, which is most commonly used in
industrial applications. We also plan to investigate more dynamic scanning trajectories,
including out-of-plane angles and variable focus, to align with the advanced capabilities of
robotic CT scanners in industrial inspections. These developments promise to increase the
versatility and applicability of our approach across diverse industrial inspection scenarios.
Another aspect worth considering is the impact of the reconstruction algorithm on the
efciency of inline CT scans. Exploring deep-learning-based reconstruction methods [25]
instead of traditional iterative methods like SIRT could potentially speed up the process,
leading to more efcient industrial CT applications. Additionally, more efcient training
methods, particularly reducing the computational complexity for handling large-scale data,
need to be considered. Finally, adopting more advanced defect segmentation methods
could improve our ability to manage the complexities associated with diverse defect types
and imaging conditions.
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6. Conclusions

This paper aims to expand the complexity of the reward function used in DRL for
sequential OED and validate its effectiveness through various experiments. The inclusion
of a reward for defect information enables the DRL agent to effectively learn task-specic
angle selection. Moreover, our method offers exibility in the number of angles utilized,
achieving comparable reconstruction quality and defect detectability with fewer angles
than those required by the golden ratio and equidistant policies. This methodology shows
promise for online application in practice following the training phase.

In conclusion, our research sets the stage for future advancements in applying DRL to
various industrial CT scanning scenarios, with the potential to improve the accuracy and
efciency of automated inspection technologies.
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