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Abstract

Information projections have found important applications in probability theory, statistics, and related areas. In the field of
hypothesis testing in particular, the reverse information projection (RIPr) has recently been shown to lead to growth-rate optimal
(GRO) e-statistics for testing simple alternatives against composite null hypotheses. However, the RIPr as well as the GRO criterion
are undefined whenever the infimum information divergence between the null and alternative is infinite. We show that in such
scenarios, under some assumptions, there still exists a measure in the null that is closest to the alternative in a specific sense.
Whenever the information divergence is finite, this measure coincides with the usual RIPr. It therefore gives a natural extension
of the RIPr to certain cases where the latter was previously not defined. This extended notion of the RIPr is shown to lead to
optimal e-statistics in a sense that is a novel, but natural, extension of the GRO criterion. We also give conditions under which
the (extension of the) RIPr is a strict sub-probability measure, as well as conditions under which an approximation of the RIPr
leads to approximate e-statistics. For this case we provide tight relations between the corresponding approximation rates.

Index Terms

Reverse Information Projections, Description Gain, Hypothesis Testing, E-variables.

I. INTRODUCTION

W
E write D(ν‖λ) for the information divergence (Kullback-Leibler divergence, [1]–[3]) between two finite measures ν
and λ given by

D(ν‖λ) =







∫

Ω

ln

(

dν

dλ

)

dν − (ν(Ω)− λ(Ω)), if ν ≪ λ;

∞, else.

For probability measures the interpretation of D(ν‖λ) is that it measures how much we gain by coding according to ν rather
than coding according to λ if data are distributed according to ν. Many problems in probability theory and statistics, such as
conditioning and maximum likelihood estimation, can be cast as minimization in either or both arguments of the information
divergence. In particular, this is the case within the recently established and now flourishing theory of hypothesis testing based
on e-statistics that allows for optional continuation of experiments (see Section II-C) [4]–[8]. That is, a duality has been
established between optimal e-statistics for testing a simple alternative P against a composite null hypothesis C and reverse
information projections [4]. Here, the reverse information projection (RIPr) of P on C is — if it exists — a unique measure
Q̂ such that every sequence (Qn)n∈N in C with D(P‖Qn) → infQ∈C D(P‖Q) converges to Q̂ in a particular norm [9],
[10]. Li [9] showed that whenever C is convex and D(P‖C) := infQ∈C D(P‖Q) < ∞, the RIPr Q̂ exists and the likelihood
ratio between P and Q̂ is an e-statistic (this result is restated as Theorem 1 below). Grünwald et al. [4] showed (restated
as Theorem 2 below) that it is even the optimal e-statistic for testing P against C. However, it is clear that the RIPr cannot
be defined in this way if the information divergence between P and C is infinite, i.e. D(P‖C) = ∞. This leaves a void in
the theory of optimality of e-statistics. In this work we remedy this by realizing that even if all measures in C are infinitely
worse than P at describing data distributed according to P itself, there can still be a measure that performs best relative to
the elements of C. To find such a measure, we consider the description gain [11] given by

D(P‖Q Q′) =

∫

Ω

ln

(

dQ′

dQ

)

dP − (Q′(Ω)−Q(Ω)) (1)

whenever this integral is well-defined. If the quantities involved are finite then the description gain reduces to

D(P‖Q Q′) = D(P‖Q)−D(P‖Q′). (2)

In analogy to the interpretation of information divergence for coding, the description gain measures how much we gain by
coding according to Q′ rather than Q if data are distributed according to P . Furthermore denote

D(P‖Q C) := sup
Q′∈C

D(P‖Q Q′),
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where undefined values are counted as −∞ when taking the supremum. If there exists at least one Q∗ ∈ C such that P ≪ Q∗,
then D(P‖Q C) is a well-defined number in [0,∞] for any Q ∈ C. This quantity should be seen as the maximum description
gain one can get by switching from Q to any other measure in C. Intuitively, if there is a best descriptor in C, nothing can be
gained by switching away from it. Indeed, in Proposition 2 we show that infQ∈C D(P‖Q  C) is finite if and only if it is
equal to zero.

A. Contents and Overview

Below, in Section II, we start by giving an overview of existing results on both the reverse information projection and
e-statistics, which we define and briefly motivate, and the growth-rate optimality (GRO) criterion, a natural replacement of
statistical power within the context of e-value based hypothesis testing. Section III states Theorem 3, our first central result.
It shows that — under very mild conditions — there exists a unique measure Q̂ such that every sequence (Qn)n∈N in C with

D(P‖Qn  C) → 0

converges to Q̂ in a specific metric which we define. Thus, Theorem 3 may be viewed as a generalization of Li’s result stated
below as Theorem 1. We refer to Q̂ as the RIPr, as it coincides with the original notion of the RIPr whenever the information
divergence is finite. The remainder of Section III provides further discussion of this result, as well as an example showing
that our extended notion of the RIPr can be well-defined whereas the RIPr was previously undefined. In the specific case that
all initial measures are probability measures, both Li’s original result and ours leave open the possibility that Q̂ may be a
strict sub-probability measure, integrating to less than 1. In Sub-Section III-A we give a further example showing that this can
indeed be the case, and we provide, via Theorem 4, a condition under which Q̂ is guaranteed to be a standard (integrating to
1) probability measure. Sub-Section III-B then extends the greedy algorithm of [12] and [13] for approximating the RIPr in
settings where D(P‖C) < ∞ to settings where the information divergence might be infinite.

In Section IV we turn to e-statistics. It contains our second central result, Theorem 5, which shows that whenever our
extended notion of the RIPr Q̂ exists, the likelihood ratio of P and Q̂ is an optimal e-statistic according to the criterion of
Definition 2, which can be seen as a strict generalization of GRO, the standard optimality criterion for e-statistics. As such,
this result may be viewed as a generalization of a result of Grünwald et al. [4] stated below as Theorem 2. After illustrating the
result by an example, Sub-Section IV-B provides another technical result, Theorem 6, which relates approximations in terms
of information gain, to approximations in terms of e-statisticity: conditions are given under which a sequence Q1, Q2, . . .
converging to Q̂ in terms of information gain at a certain rate also satisfies that the likelihood ratio between P and Q1, Q2, . . .
converges to an e-statistic, and tight bounds on the corresponding rates are given. After a discussion of related work, the paper
ends with a summary and ideas for future work in Section V. All proofs are delegated to Appendix A. Appendix B provides a
general method for constructing RIPrs that are strict sub-probability measures. Finally, Appendix C provides a discussion on
the assumption of convexity that we will make throughout.

II. BACKGROUND

A. Preliminaries

We work with a measurable space (Ω,F) and, unless specified otherwise, all measures will be defined on this space.
Throughout, P will denote a finite measure and C a set of finite measures, such that P and all Q ∈ C have densities w.r.t.
a common σ-finite measure µ. These densities will be denoted with lowercase, i.e. p and q respectively. We will assume
throughout that C is convex, i.e. closed under finite mixtures. In Section IV-A and in more detail in Appendix C we discuss
how our results would be affected if we were to adopt stronger notions of convexity like σ-convexity (closed under countable
mixtures), or Choquet-convexity (closed under arbitrary mixtures). Furthermore, we assume that there exists at least one Q∗ ∈ C
such that P ≪ Q∗. This assumption is needed to ensure that D(P‖Q C) is a well-defined number in [0,∞] for any Q ∈ C.

B. The Reverse Information Projection

As mentioned briefly above, the reverse information projection is the result of minimizing the information divergence between
P and C. If C is an exponential family, this problem is well understood [10], but we focus here on the case that C is a general
convex set. In this setting, the following theorem establishes existence and uniqueness of a limiting object for any sequence
(Qn)n∈N in C such that D(P‖Qn) → D(P‖C) whenever the latter is finite. This limit (i.e. Q̂ in the following) is called the
reverse information projection of P on C.

Theorem 1 (Li [9], Definition 4.2 and Theorem 4.3). If P and all Q ∈ C are probability measures such that D(P‖C) < ∞,

then there exists a unique (potentially sub-) probability measure Q̂ such that:

1) We have that ln qn → ln q̂ in L1(P ) for all sequences (Qn)n∈N in C such that lim
n→∞

D(P‖Qn) = D(P‖C).

2)
∫

Ω ln dP
dQ̂

dP = D(P‖C),

3)
∫

Ω
dP
dQ̂

dQ ≤ 1 for all Q ∈ C.
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C. E-statistics and Growth Rate Optimality

The e-value has recently emerged as a popular alternative to the p-value for hypothesis testing [5], [8], [14]. Unlike the
p-value, it is eminently suited for testing under optional continuation — and more generally, when the rule for stopping or
continuing to analyze an additional batch of data is not under control of the data analyst, and may even be unknown or
unknowable. It can be thought of as a measure of statistical evidence that is intimately linked with numerous ideas, such as
likelihood ratios, test martingales [15] and tests of randomness [16]. Formally, an e-value is defined as the value taken by an
e-statistic, which is defined as a random variable E : Ω → [0,∞] that satisfies

∫

Ω
E dQ ≤ 1 for all Q ∈ C [6]. The set of all

e-statistics is denoted as EC . Large e-values constitute evidence against C as null hypothesis, so that the null can be rejected
when the computed e-value exceeds a certain threshold. For example, the test that rejects the null hypothesis when E ≥ 1/α
has a type-I error guarantee of α by a simple application of Markov’s inequality: Q(E ≥ 1/α) ≤ α

∫

Ω
E dQ ≤ α. For all

further details, as well as an extensive introduction to the concept, and how it relates to optional stopping and continuation,
we refer to [4] and the overview paper [5].

In general, the set EC of e-statistics is quite large, and the above does not tell us which e-statistic to pick. This question
was studied in [4] and a log-optimality criterion coined GRO (Growth-Rate Optimality) was introduced for the case that the
interest is in gaining as much evidence as possible relative to an alternative hypothesis given by a single probability measure
P . GRO is a natural replacement of statistical power, which cannot meaningfully be used in an optional stopping/continuation
context. This criterion can be traced back to the information-theoretic Kelly betting criterion in [17] and is further discussed
at length by [4], [5], [7], to which we refer for more discussion.

Definition 1. If it exists, an e-statistic Ê ∈ EC is Growth-Rate Optimal (GRO) if it achieves
∫

Ω

ln Ê dP = sup
E∈EC

∫

Ω

lnE dP.

The following theorem establishes a duality between GRO e-statistics and reverse information projections. For a limited set
of testing problems, it states that GRO e-statistics exist and are uniquely given by likelihood ratios.

Theorem 2 (Grünwald et al. [4], Theorem 1). If P and all Q ∈ C are probability measures such that D(P‖C) < ∞, p(ω) > 0
for all ω ∈ Ω, and Q̂ is the RIPr of P on C, then Ê = dP

dQ̂
is GRO with rate equal to D(P‖C), i.e.

sup
E∈EC

∫

Ω

lnE dP =

∫

Ω

ln Ê dP = D(P‖C).

Furthermore, for any GRO e-statistic Ẽ, we have that Ẽ = Ê holds P -almost surely.

III. THE REVERSE INFORMATION PROJECTION

In this section, we state a result analogous to Theorem 1 in a more general setting. Rather than convergence of the logarithm
of densities in L1(P ), we consider convergence with respect to a different metric on the set of measurable positive functions,
i.e. M(Ω,R>0) = {f : Ω → R>0 : f measurable}. For f, f ′ ∈ M(Ω,R>0) we define

m2
P (f, f

′) :=
1

2

∫

Ω

ln

(

f

f

)

+ ln

(

f

f ′

)

dP, (3)

where f := (f+f ′)/2. This is a divergence that can be thought of as the averaged Bregman divergence associated with the
convex function γ(x) = x − 1− ln(x). In particular, this means that for Q,Q′ ∈ C such that P ≪ Q and P ≪ Q′, we have
that

m2
P (q, q

′) =
1

2
D(P‖Q Q̄) +

1

2
D(P‖Q′

 Q̄). (4)

In [18], averaged Bregman divergences are studied in detail for general γ, and they show that the function

m2
γ(x, y) =

1

2
γ(x) +

1

2
γ(y)− γ

(

x+ y

2

)

is the square of a metric if and only if ln(γ′′(x))′′ ≥ 0. In our case, ln(γ′′(x))′′ = 2x−2, so this result holds. This can be
used together with an application of the Minkowski inequality to show that the triangle inequality holds for the square root
of the divergence (3), i.e. mP , on M(Ω,R>0). It should also be clear that for f, g ∈ M(Ω,R>0) if f = g everywhere,
then mP (f, g) = 0. Conversely mP (f, g) = 0 only implies that P (f 6= g) = 0. This prevents us from calling mP a metric
on M(Ω,R>0), and we therefore define, analogous to Lp and Lp spaces, M(Ω,R>0) as the set of equivalence classes of
M(Ω,R>0) under the relation ‘∼’ given by f ∼ g ⇔ P (f 6= g) = 0. By the discussion above, mP properly defines a metric
on M(Ω,R>0). In the following we will often ignore this technicality and simply act as if mP defines a metric on M(Ω,R>0),
since we are not interested in what happens on null sets of P .
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Considering convergence with respect to mP will be useful for our analyses in the following. In particular, we will exploit
on numerous occasions that mP can be interpreted as a symmetrized version of the description gain, as described in Equation
(4). However, other than mathematical convenience, there is no fundamental difference between considering convergence with
respect to mP and convergence of the logarithms in L1(P ), as considered in Theorem 1. Indeed, Lemma 2 in Appendix A
shows that the two types of convergence are equivalent. It is also this result from which the following proposition follows.

Proposition 1. The metric space (M(Ω,R>0),mP ) is complete.

Everything is now in place to state the main result.

Theorem 3. If infQ∈C D(P‖Q  C) < ∞, then there exists a measure Q̂ that satisfies the following for every sequence

(Qn)n∈N in C s.t. D(P‖Qn  C) → infQ∈C D(P‖Q C) as n → ∞:

1) qn → q̂ in mP .

2) If P ′ is a measure such that |infQ∈C D(P‖Q P ′)| < ∞, then
∫

Ω

ln
dP ′

dQ̂
dP = lim

n→∞

∫

Ω

ln
dP ′

dQn
dP.

3) For any Q ∈ C,
∫

Ω

dP

dQ̂
dQ ≤ P (Ω) +Q(Ω)− lim inf

n→∞
Qn(Ω).

Theorem 1 is a special case of Theorem 3 when P and all Q ∈ C are probability measures such that D(P‖C) < ∞. This
follows because Equation (2) implies that minimizing D(P‖Q Q′) over Q is equivalent to minimizing D(P‖Q) and because
convergence of the densities in mP is equivalent to convergence of the logarithms in L1(P ) by Lemma 2 in Appendix A-A.
We therefore refer to Q̂ as the reverse information projection of P on C, thereby extending the definition of the latter (we
refrain from the term ‘generalized RIPr’, because it has already been used for the RIPr whenever it is not attained by an
element of C [10] or when the log score is replaced by another loss function [19]). However, the density of the measure Q̂ is
only unique as an element of M(Ω,R>0), since convergence of the densities holds in mP . In the current work this causes no
ambiguity, so that we simply refer to it as ‘the’ RIPr.

Note that Theorem 3 implies that if there exists a Q ∈ C with D(P‖Q  C) = 0, then Q is the RIPr of P on C. This
matches with the intuition that the maximum gain we can get from switching away from the ‘best’ code in C should be equal
to zero. The following result establishes this more formally.

Proposition 2. The following conditions are equivalent:

1) There exists a measure P ′ such that D(P‖P ′
 C) is finite.

2) There exists a measure Q in C such that D(P‖Q C) is finite.

3) There exists a sequence of measures Qn ∈ C such that D(P‖Qn  C) → 0 for n → ∞.

Consequently, whenever infQ∈C D(P‖Q C) < ∞, it must actually be equal to zero.

To show that the reverse information projection exists, it is therefore enough to prove that one of these equivalent conditions
holds. Which condition is easiest to check will depend on the specific setting, as exemplified by the following propositions.

Proposition 3. If C is the convex hull of finitely many distributions, i.e. C = conv({Q1, . . . , Qn}), then for any probability

measure P with P ≪ Qi for at least one i, it holds that D(P‖ 1
n

∑

Qi  C) < ∞.

Example 1. Let C be a singleton whose single element Q is given by the standard Gaussian and let P be the standard Cauchy
distribution. Since the Cauchy distribution is exponentially heavier-tailed than the Gaussian, we have that D(P‖C) = ∞.
However, since both distributions have full support, it follows that

D(P‖Q C) = D(P‖Q Q) = 0.

By Theorem 3 (1), Q is therefore the reverse information projection of P on C.
This example can be extended to composite C by considering all mixtures of the Gaussian distributions N (−1, 1) and

N (1, 1) with mean ±1 and variance 1. Proposition 3 guarantees the existence of a reverse information projection although the
information divergence is still infinite because a Cauchy distribution is more heavy tailed than any finite mixture of Gaussian
distributions. Symmetry implies that the reverse information projection must be equal to the uniform mixture of N (−1, 1) and
N (1, 1), which coincides with the result one would intuitively expect.

Proposition 4. Assume that C is a convex set of probability measures that has finite minimax regret and with normalized

maximum likelihood distribution Q∗ ∈ C. Then for any probability measure P that is absolutely continuous with respect to

Q∗, it holds that D(P‖Q∗
 C) < ∞.

For an extensive discussion on minimax regret in the present coding context, as well as the normalized maximum like-
lihood distribution (also known as Shtarkov distribution), see e.g. [20] or [21]. In short, the minimax regret is defined as
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infQ∈C supQ′∈C,ω∈Ω ln q′(ω)/q(ω). This quantity is known to be finite if and only if the normalized maximum likelihood
distribution Q∗, defined as q∗(ω) = supQ∈C q(ω)/(

∫
Ω
supQ∈C q dµ), is well-defined. One-dimensional exponential families with

finite minimax regret have been classified in [20].

A. Strict sub-probability measure

We return now to the familiar setting where P is a probability measure and C a convex set of probability measures. It is
easy to verify that the RIPr Q̂ of P on C is then a sub-probability measure. This follows because we know that there exists a
sequence (Qn)n∈N in C such that qn converges point-wise P -a.s. to q̂ and Fatou’s Lemma tells us

∫

Ω

q̂ dµ =

∫

Ω

lim inf
n→∞

qn dµ ≤ lim inf
n→∞

∫

Ω

qn dµ = 1. (5)

It is not clear a priori whether this can ever be a strict inequality. For example, if the sample space is finite, the set of probability
measures is compact, so the limit of any sequence of probability measures (i.e. the reverse information projection) will also
be a probability measure. The following example illustrates that this is not always the case for infinite sample spaces, and it
can in fact already go wrong for a countable sample space with D(P‖C) < ∞.

Example 2. Let Ω = N and F = 2N. Furthermore, let P denote the probability measure δ1 concentrated in the point i = 1
and C the set of distributions Q satisfying

∞
∑

i=1

1

i
q(i) =

1

2
.

This set is defined by a linear constraint, so that C is convex, and for any Q ∈ C, we have

q(1) +
∞
∑

i=2

1

i
q(i) =

∞
∑

i=1

1

i
q(i) =

1

2
,

implying that q(1) ≤ 1/2. It follows that D(P‖Q) = − ln(q(1)) ≥ ln(2). The sequence Qn = n−2
2n−2δ1 + n

2n−2δn satisfies
Qn ∈ C and

D(P‖Qn) = ln
2n− 2

n− 2
→ ln(2).

Consequently, it must hold that D(P‖C) = ln(2). The sequence Qn converges to the strict sub-probability measure (1/2)δ1,
which must therefore be the RIPr of P on C.

A more general example, which can be seen as a template to create such situations, is given in Appendix B. The common
theme is that C is defined using only constraints of the form

∑

i f1(i)q(i) = c, where f1 is some positive function such
that limn→∞ f1(n) = 0. Since C only contains probability measures, there is the additional constraint that

∑

i f0(i)q(i) =
1, where f0 denotes the constant function f0 ≡ 1. This function f0 dominates all other constraints f1 in the sense that
limi→∞ f1(i)/f0(i) = 0, but is itself not dominated by any of the constraints in the same manner. It turns out that this is the
precise condition that dictates whether or not a constraint has to be respected when taking point-wise limits of elements in C.
Indeed, as shown in the theorem below, any constraint on C that is dominated by another constraint in the sense described above
cannot be violated by taking point-wise limits. Therefore, if we add a restriction to C that dominates the constant function 1,
i.e. that is defined by some function f1 with limn→∞ f1(n) = ∞, then the RIPr cannot be a strict sub-probability measure.

Theorem 4. Take Ω = N,F = 2N, and let C be a convex set of probability measures. Suppose that for f0, f1 : N → R>0, we

have that
∑

i f0(i)q(i) ≤ λ0 and
∑

i f1(i)q(i) = λ1 for all Q ∈ C. If Qn denotes a sequence of measures in C that converges

point-wise to some distribution Q∗, and f0 dominates f1 in the sense that

lim
i→∞

f1(i)

f0(i)
= 0, (6)

then
∑

i

f1(i) · q
∗(i) = λ1. (7)

B. Greedy Approximation

So far, we have discussed the existence and properties of the RIPr of P on C. However, there will be many situations where it is
infeasible to compute this exact projection, as it requires solving a complex minimization problem. For example, if C is given by
the convex hull of some parameterized family of distributions, the reverse information projection might be an arbitrary mixture
of elements of this family, and the minimization problem need not be convex in the parameters of the family. To this end, Li
and Barron [12] propose an iterative greedy algorithm for the case that C is given by the σ-convex hull (all countable mixtures,
see Appendix C) of a parameterized family of distributions, i.e. C = σ-conv({Qθ : θ ∈ Θ}), and D(P‖C) < ∞. The algorithm
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starts by setting Q1 := Qθ1 , where θ1 minimizes D(P‖Qθ1), and then iteratively defining Qk := (1 − αk)Qk−1 + αkQθk ,
where αk = 2/(k+1)* and θk is chosen to minimize D(P‖Qk). It is shown that, if supx,θ1,θ2 log

qθ1 (x)/qθ2(x) is bounded, then
D(P‖Qk) converges to D(P‖C) at rate 1/k. Later, Brinda [13] showed that the condition that the likelihood ratio has to be
uniformly bounded in x can be relaxed to the condition that (8) below is finite. In both of these previous works, it is simply
assumed that a minimizer in each step exists, though it need not necessarily be unique. We will do likewise in the following,
where we give an adaptation of the algorithm that works when the KL divergence is infinite.

Algorithm 1 Greedy Approximation of the RIPr

1: Fix Q∗ ∈ C s.t. | infθ∈Θ

∫

Ω
log q∗/qθ dP | < ∞

2: Let Q1 = Qθ1 , where θ1 = argmin
θ′∈Θ

D(P‖Qθ′  Q∗)

3: for k = 2, 3, . . . do

4: Choose αk = 2
k+1 and θk = argminθ′∈ΘD(P‖(1− αk)Qk−1 + αkQθ′  Q∗)

5: Let Qk = (1− αk)Qθk−1
+ αkQθk

Proposition 5. Suppose that infQ∈C D(P‖Q C) < ∞, let (Qk)k∈N be the output of Algorithm 1, and let Q be any measure

in C, so that q =
∑

θ∈Θ′ qθ · wQ(θ) for some probability mass function wQ on a countable Θ′ ⊂ Θ. If D(P‖Q′
 Q′′) is

finite for all Q′, Q′′ ∈ C, then it holds that

D(P‖Qk  Q) ≤
b
(k)
Q (P )

k
,

where b
(k)
Q (P ) is given by

∫

Ω

(

1 + sup
θ∗∈{θi}k

i=1

log
supθ∈Θ qθ

qθ∗

)

∑

θ∈Θ′ q2θ · wQ(θ)

q2
dP ≤

sup
Q∈C

∫

Ω

(

1 + sup
θ∗,θ∈Θ

log
qθ
qθ∗

)

∑

θ∈Θ′ q2θ · wQ(θ)

q2
dP. (8)

It follows that if b
(k)
Q is uniformly bounded over all Q ∈ C, in particular if (8) is finite, then D(P‖Qk  C) converges to

zero, i.e. Qk converges to the RIPr of P on C, at rate 1/k. The former holds under the strong, but often imposed assumption
that the likelihood ratios in C are uniformly bounded; for example when C is given by the σ-convex hull of Gaussian densities
restricted to a cube [9, Example 1]. However, (8) might also be finite under weaker assumptions. For example, consider the
set of Gaussian mixtures as in Example 1, that is, C = {w · N (−1, 1) + (1 − w) · N (1, 1) : w ∈ [0, 1]}. It can be seen that
bQ(P ) < ∞ for all Q ∈ C whenever P has a finite first moment. Moreover, if the latter holds, then bQ(P ) is uniformly
bounded over all Q ∈ C′ where C′ = {w · N (−1, 1) + (1− w) · N (1, 1) : w ∈ [c, 1− c]} for some c ∈ (0, 1/2).

While Proposition 5 is a satisfying theoretical result, we must concede that Algorithm 1 might not be the fastest to implement
in practice. This arises from the fact that the objective D(P‖(1 − αk)Qk−1 + αkQθ′  Q∗) need not be convex in θ′. One
might therefore have to resort to an exhaustive search over a discretization of the parameter space. On top of that, there is no
guarantee that the information gain is easily computable. As an alternative for the case that Θ is finite and D(P‖C) < ∞,
one might use the iterative algorithm proposed by Csiszár and Tusnády [22, Theorem 5]. A big advantage of the latter is that
their recursive update step has an explicit formula, which makes each iteration considerably faster. The downside is that, while
convergence in terms of KL is guaranteed, it is unclear at what rate this happens in general. Furthermore, proving convergence
of their algorithm in the setting where D(P‖C) = ∞ seems far from a straightforward exercise.

C. Discussion

The results in this section might be regarded as a generalization of large parts of Chapters 3 and 4 in Li’s Ph.D. thesis [9]
and in fact the tools in this section were initially developed to clear up some ambiguity around the proof of Theorem 1, Part
1 as provided by Li. That is, in [9] it is stated that for all sequences (Qn)n∈N in C such that limn→∞ D(P‖Qn) = D(P‖C)
it holds that ln qn → ln q̂ in L1(P ). However, the proof thereof refers to [9, Lemma 4.3], which only shows existence of one
such a sequence. Then [9, Lemma 4.4] also shows that if Q̂ is such that log qn → log q̂ in L1(P ) for some sequence (Qn)n∈N

that achieves limn→∞ D(P‖Qn) = D(P‖C), then it must hold that D(P‖Q̂) = D(P‖C). However, it is a priori not clear
whether every sequence (Qn)n∈N that achieves limn→∞ D(P‖Qn) = D(P‖C) has such a limit. Moreover, it is never shown
that, if it exists, this limit must be the same for every such sequence. Note that it is not at all our intention here to criticize
Li’s fundamental and ground-breaking work. Li’s is one of those rare theses that have had a major impact outside of their own

*Li actually proposes to either minimize over αk or use α2 = 2/3 and αk = 2/k for k > 2; the formulation given here is a slight simplification by
Brinda [13].
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research area: being a thesis on information-theory, it served as the central tool and inspiration for papers on fast convergence
rates in machine learning theory [19], [23], and also for [4], which led to a breakthrough in (e-based) hypothesis testing. Our
aim is merely to indicate that Theorem 3 ties up some loose ends in Li’s original, pioneering results.

IV. OPTIMAL E-STATISTICS

In this section, we assume that P and all Q ∈ C are probability measures, and we are interested in the hypothesis test with
P as alternative and C as null. To this end, Theorem 3 shows that — whenever it exists — the likelihood ratio of P and its
RIPr is an e-statistic. A natural question is whether the optimality of the RIPr in terms of describing data distributed according
to P carries over to some sort of optimality of the e-statistic, as is true for the GRO criterion in the case that D(P‖C) < ∞. It
turns out that this is true in terms of an intuitive extension of the GRO criterion. Completely analogously to the coding story,
we simply have to change from absolute to pairwise comparisons.

Definition 2. For e-statistics E,E′ ∈ EC , we say that E is stronger than E′ if the following integral is well-defined and
non-negative, possibly infinite:

∫

Ω

ln

(

E

E′

)

dP, (9)

where we adhere to the conventions ln(0/c) = −∞ and ln(c/0) = ∞ for all c ∈ R>0. Furthermore, an e-statistic E∗ ∈ EC is a
strongest e-statistic if it is stronger than any other e-statistic E ∈ EC .

The notion of optimality in Definition 2 comes down to the simple idea that if one e-statistic E is stronger than another
e-statistic E′, then repeatedly testing based on E eventually becomes more powerful than repeatedly testing based on E′ in
the sense that there is a higher probability of rejecting a false null-hypothesis. Let us explain in more detail what we mean by
this. Suppose that we conduct the same experiment N times independently to test the veracity of the hypothesis C, resulting
in outcomes ω1, . . . , ωN . For any given e-statistic E ∈ EC , we have that

∏N
i=1 E(ωi) is still an e-statistic, not just for fixed

N but even if N is a random (i.e. data-dependent) stopping time. So, as indicated before, it can be used to test C with Type-I
error guarantees. Yet, for two e-statistics E,E′ ∈ EC, the law of large numbers states that if P is true, it will almost surely
hold that

∏n
i=1 E(ωi)

∏n
i=1 E

′(ωi)
= exp

(

n

∫

Ω

ln

(

E

E′

)

dP + o(n)

)

.

It follows that if the integral
∫

Ω
ln
(

E
E′

)

dP is positive then with high probability E will, for large enough n, give more evidence
against C than E′ if the alternative is true, i.e. a test based on E will asymptotically have more power than a test based on E′.

Since we assume throughout that there exists a Q∗ ∈ C such that P ≪ Q∗, it follows that for any e-statistic E we must
have P (E = ∞) = 0, which simplifies any subsequent analyses greatly.

Proposition 6. Assume that C is a set of probability measures and that P is a probability measure. If there is an E′ ∈ EC
such that supE∈EC

∫

Ω
ln(E/E′) dP < ∞, then a strongest e-statistics exists. Furthermore, if E1 and E2 are both strongest

e-statistics then E1 = E2 holds P -a.s.

The strongest e-statistic in Definition 2 can be seen as a generalization of the GRO e-statistic, because if
∫

Ω
lnE dP

and
∫

Ω
lnE′ dP are both finite, (9) can be written as the difference between the two logarithms, i.e.

∫

Ω
ln(E/E′) dP =

∫

Ω lnE dP −
∫

Ω lnE′ dP . In this case, finding the strongest e-statistic therefore corresponds to maximizing
∫

Ω lnE dP over
all e-statistics, thus recovering the original GRO criterion. As an extension of that case, we prove that whenever the RIPr
exists, it always leads to the strongest e-statistic.

Theorem 5. Suppose that both P and all Q ∈ C are probability measures and that infQ∈C D(P‖Q C) < ∞. If Q̂ denotes

the RIPr of P on C, then Ê = dP/dQ̂ is the strongest e-statistic.

The likelihood ratio between P and its RIPr is in fact the only e-statistic in the form of a likelihood ratio with P in the
numerator, as the following proposition shows. Though the statement is more general, the proof is completely analogous to
part of the proof of Lemma 4.1 in [9].

Proposition 7. Suppose that C is a set of probability measures and that P is a probability measure. If there exists a measure

Q∗ ∈ C such that dP/dQ∗ ∈ EC , then D(P‖Q∗
 C) = 0, i.e. Q∗ is the RIPr of P on C.

We now return to Example 1, where the GRO criterion is not able to distinguish between e-variables, but we are able to do
so with Definition 2 and Theorem 5.

Example 1 (continued). In the case that P is the standard Cauchy and C = {Q}, where Q is the standard Gaussian, it is
straightforward to see that the likelihood ratio between P and Q is an e-statistic, i.e.

∫

Ω

dP

dQ
dQ =

∫

Ω

dP = 1.
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However, for the growth rate it holds that
∫

Ω

ln

(

dP

dQ

)

dP = D(P‖Q) = ∞.

The same argument can be used to show that for any 0 < c ≤ 1, we have an e-statistic given by c dP/dQ, which still has
infinite growth rate. The GRO criterion in Definition 1 is not able to tell which of these e-statistics is preferable. However,
since Q is the RIPr of P on C, it follows from Theorem 5 that dP/dQ is the strongest e-statistic, and in particular it is stronger
than c dP/dQ for all 0 < c < 1.

A. Convexity

In the discussion above, the null hypothesis C is assumed to be convex, which does not hold for many of the null hypotheses
commonly employed in statistics, such as the set of all Gaussian distributions with varying mean and/or variance. However,
it follows from the Fubini-Tonelli theorem that the set of e-statistics on C equals the set of e-statistics on the convex hull
of C. The same is true if the convex hull is replaced by the σ-convex hull where countable mixtures are allowed or by the
Choquet-convex hull where arbitrary mixtures are allowed (see Appendix C for precise definitions). Therefore, if there exists a
strongest e-statistic for testing the alternative P against any of these notions of the convex hull, then that is also the strongest
e-statistic for testing P against the original null hypothesis, regardless of whether that was convex. It follows from Theorem 5
that, to find the strongest e-statistic, it suffices to find the RIPr of P on any of the notions of the convex hull. In particular,
if RIPrs exists on more than one of these, they must coincide; on the other hand, none of the three RIPrs may exist, and our
results also do not rule out the possibility that the RIPr exists on just one or two of the three convex hulls. To witness, in
Appendix C we give an example (Example 4) in which the RIPr of P on the σ-convex hull exists, while the RIPr of P on
the convex hull does not. At the same time, there are constraints here: Theorem 7 in Appendix C implies that if the RIPr on
the convex hull of C exists, then the RIPr on the σ-convex hull of C also exists (and then they must be equal).

Things become much more clear-cut if the RIPr Q̂ of P on a certain notion of the convex hull exists and is an element of

that set. In that case, Q̂ is also the RIPr of P on any stronger notion of the convex hull. Indeed, the different levels of convex
hulls are nested, and their corresponding sets of e-statistics coincide, so this follows directly from Proposition 7:

Corollary 1. Let C denote a set of probability measures (not necessarily convex) and let P denote a probability measure. If

the RIPr of P on the convex hull of C exists and is given by Q̂ ∈ conv(C), then Q̂ is also, (a) the RIPr of P on the σ-convex

and, (b), on the Choquet-convex hull of C. Similarly, if Q̂ ∈ σ-conv(C) is the RIPr of P on σ-conv(C), then (c) Q̂ is also the

RIPr of P on the Choquet-convex hull of C.

Further details regarding convexity are presented in Appendix C. In particular, Theorem 7 in the latter gives an analogous
result to Corollary 1, Part (a), for the case that P and C are not restricted to be probability measures, and the RIPr is not
assumed to be attained in the set.

B. Approximation

In Section III-B, we discussed an algorithm that provides an approximation of the RIPr for scenarios where it is not possible
to explicitly compute the latter. However, the convergence guarantee given by Proposition 5 is in terms of the information
gain. That is, if Qk is the approximation of the projection after k iterations, then under suitable conditions it holds that
D(P‖Qk  C) → 0. This is not enough if we want to use such an approximation for hypothesis testing: we need that p/qk
gets closer and closer to being an e-statistic. The following theorem gives a condition under which this is true. For p ∈ (0,∞]

we use ‖f‖p to denote the Lp(Ω, P ) norm of a function f ∈ M(Ω,R>0), i.e.
(∫

Ω(f)
p dP

)1/p
.

Theorem 6. Assume that infQ∈C D(P‖Q  C) < ∞, fix Q,Q′ ∈ C, set δ := D(P‖Q  C) and suppose that there exists

β ∈ (0,∞] such that ‖q′/q‖1+β < ∞. If β ≤ 1 or D(P‖Q′
 C) ≤ Kδ, then it holds that

∫

Ω

p

q
dQ′ =

∫

Ω

q′

q
dP = 1 +O

(

Cβ · δ
β

1+β

)

as δ → 0, (10)

where Cβ = ‖q′/q‖1+β if β ≤ 1 and Cβ = K
β−1

2(1+β) ‖q′/q‖1+β otherwise.

Explicit values for the constants in (10) can be found in the proof in the appendix. In particular, Theorem 6 implies the
following: if there are C, δ0 > 0 such that ‖q′/q‖2 ≤ C for all Q′ ∈ C and all Q ∈ C with D(P‖Q  C) ≤ δ0, then any
sequence Q1, Q2, . . . with D(P‖Qk  C) → 0 will have supq′∈C

∫

Ω
q′/qk dP = 1+O(δ

1/2
k ), where δk = D(P‖Qk  C). This

gives an easy to check condition for the convergence of p/qk to an e-statistic. This square-root rate of convergence cannot be
improved in general without an extra assumption, even if all likelihood ratios are bounded, i.e. ‖q′/q‖∞ < ∞. This can be seen
by taking P and Q to be Bernoulli distributions with parameter 1/2 and 1/2+ ǫ respectively, C the set of Bernoulli distributions
with parameters in [1/4, 3/4] and Q′ Bernoulli 1/4. Then δ = D(P‖Q C) = 2ǫ2(1+ o(1)) yet

∫

Ω
q′/q dP = 1+4ǫ(1+ o(1)).
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But if likelihood ratios are bounded and we additionally consider Q′ in a ‘neighborhood’ of Q (i.e. D(P‖Q′
 C) ≤ Kδ),

then a linear rate is possible as shown in Theorem 6 by letting β tend to infinity; the rate then interpolates between δ1/2 and δ
depending on the largest β for which the (1 + β)-th moment exists. Furthermore the following example shows that in general
bounds on the integrated likelihood ratios are necessary for the convergence to hold at all.

Example 3. Let Q represent the family of geometric distributions on Ω = N0 and let C = conv(Q). The elements of Q are
denoted by Qθ with density qθ(n) = θn(1 − θ), where θ ∈ [0, 1) denotes the probability of failure. For simplicity, assume
that P ∈ Q so that the reverse information projection of P on C is equal to P . Take for example P = Q1/2, then for any
θ, θ′ ∈ [0, 1)

∫

Ω

qθ′

qθ
dP =

∞
∑

n=0

(

1

2

θ′

θ

)n
1

2

1− θ′

1− θ
=

{

1

1− θ′

2θ

· 1
2
1−θ′

1−θ , if θ′ < 2θ;

∞, otherwise;
(11)

whereas

D(P‖Qθ) =

∞
∑

n=0

(

1

2

)n+1

(−n log(2θ)− log 2(1− θ)) = log
1/2

θ
·

∞
∑

n=1

n

(

1

2

)n+1

+ log
1/2

1− θ
·

∞
∑

n=0

(

1

2

)n+1

= log
1/2

1− θ
+ log

1/2

θ
,

Now consider a sequence 1/3 < θ1 < θ2 < θ3 . . . that converges to 1/2. Then by the above,

D(P‖Qθi) → 0 = D(P‖C).

We also see that for all i and all θ′ ∈ [2θi, 1), we have
∫

Ω

qθ′

qθi
dP = ∞,

i.e. for all i we have supθ′∈[0,1)

∫

Ω
qθ′/qθidP = ∞.

C. Related Work

The results on the existence of optimal e-statistics displayed in this section bear similarities with work concurrently done
by Zhang et al. [24]. In particular, they show that if C is a convex polytope, then there exists an e-statistic in the form of a
likelihood ratio between two unspecified measures. Since a convex polytope contains the uniform mixture of its vertices, which
can be shown to have finite information gain, this also follows from our Proposition 3. However, the techniques used to prove
their results appear to be of a completely different nature than the ones used in this paper, as they rely mostly on classical
results in convex geometry together with results on optimal transport (and with these techniques, they provide various other
results incomparable to ours).

In the case of compact alternative they furthermore discuss a property which they refer to as nontrivial e-power. That is,
if the alternative is a convex polytope A, then at least one of their e-statistics in the form of a likelihood ratio satisfies
infP∈A

∫

Ω
lnE dP > 0. We now show that the existence of such an e-statistic also follows from our results. In fact, if A

is any convex set (not just a polytope) such that infP∈A D(P‖C) < ∞, then (as [24] point out) a similar result is already
implied by Grünwald et al. [4] as long as the infimum is achieved on the left. Indeed, they show that the likelihood ratio of
the distribution that achieves the infimum and its RIPr is an e-statistic that has nontrivial e-power. This leaves the case that
infP∈A D(P‖C) = ∞. Indeed, the current work implies that also in this case, an e-statistic with nontrivial (in fact, infinite)
e-power exists, as long as A is a convex polytope. That is, if we use P ∗ to denote the uniform mixture of the vertices of A,
then for any vertex P ∈ C, we have that

∫

Ω

ln
dP ∗

dQ̂∗
dP ≥

∫

Ω

ln
1
ndP

dQ̂∗
dP ≥ D(P‖C)− ln(n),

where Q̂∗ denotes the RIPr of P ∗. It follows that infP∈A

∫

Ω ln dP∗

dQ̂∗
dP = ∞, so that the e-statistic given by the likelihood

ratio of P ∗ to its RIPr has “nontrivial e-power”. However, more work is needed to determine whether such constructions are
in any way optimal and whether the restriction that A is a convex polytope can be relaxed.

Second, after the first version of this paper was made available online, a follow-up paper appeared by Larsson et al. [25].
They show that, under no conditions on P and C whatsoever, there exists an e-statistic E∗ that is the strongest e-statistic in
the sense of Definition 2. This e-statistic, which they call ‘the numeraire’, gives rise to a measure Q∗ such that dQ∗

/dP = 1/E∗.
Whenever the conditions of Theorem 3 hold, Q∗ coincides with the reverse information projection of P on C, so that it provides
(in their words) “[...] a natural definition of the RIPr in the absence of any assumptions on C or P .” We refer to their work [25]
for all further details.
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V. SUMMARY AND FUTURE WORK

We have shown that, under very mild conditions, there exists a measure that achieves the minimax description gain over
a convex set of measures C relative to a measure P . Whenever the information divergence between P and C is finite, this
measure coincides with the reverse information projection of P on C. As such, it provides a natural extension of the reverse
information projection to cases where the the minimax description gain is finite, while the information divergence is infinite.
In the context of hypothesis testing, this extended notion of the RIPr can be used to define an e-statistic for testing the simple
alternative P against the composite null C. This e-statistic is optimal in a sense that is a natural, but novel extension of the
previously known GRO optimality criterion for e-statistics. We have shown an example where GRO is unable to differentiate
between e-statistics, while our novel criterion can, so that it is a strict extension. Additionally, we discussed an algorithm that
can be used to approximate the reverse information projection in scenarios where it is not explicitly computable and show
under what circumstances this also leads to an approximation of the optimal e-statistic.

The results presented thus far suggest various avenues for further research of which we discuss two. First, Theorem 3 is
formulated for general measures so one may ask for an interpretation of the RIPr in the case that P and C are not probability
measures. If Ω is finite and λ is a measure on Ω, then we may define a probability measure Po(λ) as the product measure
Po(λ) =

⊗

ω∈Ω Po(λ(ω)), where Po(λ(ω)) denotes the Poisson distribution with mean λ(ω). With this definition we get

D(P‖Q Q′) = D(Po(P )‖Po(Q) Po(Q′)).

Furthermore, it can be shown that if the RIPr Q̂ of P on C exists and is an element of C, then Po(Q̂) is also the RIPr of
Po(P ) on the convex hull of C′ := {Po(Q)|Q ∈ C}. Consequently, Po(P )/Po(Q̂) can be thought of as an e-statistic for C′.
More work is needed to determine whether this interpretation has any applications and if it can be generalized to arbitrary Ω.

Second, even if D(P‖C) = ∞, the Rényi divergence Dα(P‖Q) (see e.g. [21]) may be a well-defined non-negative real
number for α ∈ (0, 1) and Q ∈ C. These Rényi divergences are jointly convex in P and Q [21] and for each 0 < α < 1 one
may define a reverse Rényi projection Q̂α of P on C [26]. If it exists, it can be shown that this distribution will satisfy

∫

Ω

(

dP

dQ̂α

)α

dQ ≤ 1

for all Q ∈ C, i.e. (dP/dQ̂α)
α is an e-statistic. We conjecture that the projections Q̂α will converge to the RIPr for α tending

to 1, which might lead to further applications.
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APPENDIX A
PROOFS

A. Proofs for Section III

Before giving the intended results, we note that we introduced mP as the averaged Bregman divergence associated with
γ(x) = x−1−ln(x). For the proof, it will be useful to also define the Bregman divergence associated with γ(x) = x−1−ln(x)
itself, which is the so-called Itakura-Saito divergence. For f, g ∈ M(Ω,R>0), it is given by

ISP (f, g) =

∫

Ω

(

f

g
− 1− ln

f

g

)

dP.

By definition, it holds that

m2
P (f, g) =

1

2
IS

(

f,
f + g

2

)

+
1

2
IS

(

g,
f + g

2

)

.

Furthermore, for Q ∈ C, we have ISP (q, p) = D(P‖Q). We now state some auxiliary results before giving the proofs for
Section III.

Lemma 1. For x, y ∈ R>0, we have

|ln(x)− ln(y)| = g(m2
γ(x, y)),

where g denotes the function

g(t) = 2t+ 2 ln
(

1 + (1− exp(−2t))
1/2
)

.

The function g is concave and satisfies g(t) ≥ 2t.

Proof. Let m = x+y
2 . Our goal is to determine the function g function such that

|ln(x)− ln(y)| = g(m2
γ(x, y)).

We first rewrite the right-hand side

g(m2
γ(x, y)) = g

(

ln(m)−
1

2
ln(x)−

1

2
ln(y)

)

= g

(

1

2
ln

(

m2

x · y

))

= g







1

2
ln







(

m
y

)2

x
y













= g







1

2
ln







(

1+ x
y

2

)2

x
y












.

Plugging this back in and replacing x
y by w leads to

|ln(w)| = g

(

1

2
ln

(

(

1+w
2

)2

w

))

Then we solve the equation
1

2
ln

(

(

1+w
2

)2

w

)

= t,

which gives
w = 2 exp(2t)− 1 + 2 · (exp(4t)− exp(2t))

1/2

g(t) = ln
(

2 exp(2t)− 1 + 2 · (exp(4t)− exp(2t))
1/2
)

= 2t+ ln
(

2− exp(−2t) + 2 · (1− exp(−2t))
1/2
)

= 2t+ 2 ln
(

1 + (1− exp(−2t))
1/2
)

.
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The derivatives of g are

g′(t) = 2 + 2
(1− exp(−2t))

−1/2
exp(−2t)

1 + (1− exp(−2t))
1/2

=
2

(1− exp(−2t))1/2

g′′(t) =
− exp(−t/2)

21/2(sinh t)
3/2

.

We see that g′′(t) < 0 and conclude that g is concave. Finally, we have

g(t) = 2t+ 2 ln
(

1 + (1− exp(−2t))
1/2
)

≥ 2t,

because 1− exp(−2t) ≥ 0.

Lemma 2. Let (fn)n∈N be a sequence of elements of M(Ω,R>0), then

lim sup
m,n→∞

mP (fm, fn) = 0 ⇔ lim sup
m,n→∞

∫

Ω

∣

∣

∣

∣

ln

(

fm
fn

)∣

∣

∣

∣

dP = 0.

Proof. By Lemma 1, we have for m,n ∈ N,

m2
P (fn, fm) =

∫

Ω

m2
γ(fn, fm) dP

≤
1

2

∫

Ω

∣

∣

∣

∣

ln

(

fm
fn

)∣

∣

∣

∣

dP,

as well as
∫

Ω

∣

∣

∣

∣

ln

(

fn
fm

)∣

∣

∣

∣

dP =

∫

Ω

g(m2
γ(fn, fm)) dP

≤ g

(∫

Ω

m2
γ(fn, fm) dP

)

= g
(

m2
P (fn, fm)

)

.

The result then follows by continuity of g.

Lemma 3. For Q1, Q2 ∈ C such that P ≪ Qi for i ∈ {1, 2}, we have

m2
P (q1, q2) ≤

D(P‖Q1  C) +D(P‖Q2  C)

2
.

Proof. Let Q̄ denote the midpoint between Q1 and Q2. Then we have

D(P‖Q1  C) +D(P‖Q2  C)

2
=

supQ∈C D(P‖Q1  Q) + supQ∈C D(P‖Q2  Q)

2

≥
D(P‖Q1  Q̄) +D(P‖Q2  Q̄)

2
= m2

P (q1, q2).

Proof of Proposition 1. This follows as a direct corollary of Lemma 2.

We now deviate slightly from the order of the results in Section III and first state the proof of Proposition 2, so that we can
use its results in the proof of Theorem 3.

Proof of Proposition 2. The implications (3) → (2) → (1) are obvious, so we show here only the implication (1) → (3).
Assume that P ′ is a measure such that −∞ < D(P‖P ′

 C) < ∞. Then there exists a sequence of measures Qn ∈ C such
that

D(P‖P ′
 Qn) → D(P‖P ′

 C)

for n → ∞. Without loss of generality we may assume that −∞ < D(P‖P ′
 Qn) < ∞ for all n. The result follows

because
D(P‖P ′

 C) = D(P‖P ′
 Qn) +D(P‖Qn  C)

and all involved quantities are finite.

Proof of Theorem 3 (1). Let (Qn)n∈C denote a sequence in C such that

lim
n→∞

D(P‖Qn  C) = inf
Q∈C

D(P‖Q C) = 0,
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where the last equality follows from Proposition 2. Without loss of generality, we may assume that D(P‖Qn  C) < ∞ for
all n, so that P ≪ Qn for all n. It then follows from Lemma 3 that for m,n ∈ N we have

m2
P (qm, qn) ≤

D(P‖Qm  C) +D(P‖Qn  C)

2
.

It follows that (qn)n∈N is a Cauchy sequence with respect to mP , so that (qn)n∈N converges to some function q̂ in mP . The
latter follows from the completeness of (M(Ω, (0,∞)),mP ), i.e. Proposition 1.

Furthermore, suppose that (Q′
n)n∈C is another sequence in C such that

lim
n→∞

D(P‖Q′
n  C) = 0.

Then, by the same reasoning as before, Q1, Q
′
1, Q2, Q

′
2, Q3, Q

′
3, . . . is also a Cauchy sequence that converges and since a

Cauchy sequence can only converge to a single element this implies the desired uniqueness.

Proof of Theorem 3 (2). The equality
∫

Ω

ln
p′

q̂
dP = lim

n→∞

∫

Ω

ln
p′

qn
dP

follows from Theorem 3 (1) together with the fact that convergence of qn in mP implies convergence of the logarithms in
L1(P ).

Proof of Theorem 3 (3). Let (Qn)n∈C denote a sequence in C such that

lim
n→∞

D(P‖Qn  C) = 0.

Without loss of generality, we may assume that D(P‖Qn  C) < ∞ for all n and that qn converges to q̂ P -almost surely.
The latter is valid, because convergence in mP implies convergence of the logarithms in L1(P ) by Lemma 2, which gives the
existence of an almost surely converging sub-sequence.

Let Q̃ = (1 − t)Q1 + tQ for fixed Q ∈ C and fixed 0 < t < 1. Let Qn,s denote the convex combination Qn,s =
(1 − sn)Qn + snQ̃ and sn ∈ [0, 1]. By Theorem 3 (1), we know that there exists some Q̂ such that qn → q̂ in mP .

Since Qn,s ∈ C by convexity, we have that D(P‖Qn  Qn,s) ≤ D(P‖Qn  C). We also have

D(P‖Qn  Qn,s) = snD(P‖Qn  Q̃) + snISP (q̃, qn,s) + (1− sn)ISP (qn, qn,s)

≥ snD(P‖Qn  Q̃) + snISP (q̃, qn,s).

Hence
snD(P‖Qn  Q̃) + snISP (q̃, qn,s) ≤ D(P‖Qn  C).

Division by sn gives

D(P‖Qn  Q̃) + ISP (q̃, qn,s) ≤
D(P‖Qn  C)

sn
.

Choosing sn = D(P‖Qn  C)1/2, this gives

D(P‖Qn  Q̃) + ISP (q̃, qn,s) ≤ s
1/2
n .

Then we get

ISP (q̃, qn,s) ≤ D(P‖Q̃ Qn) + s
1/2
n .

∫

Ω

(

q̃

qn,s
+ ln

qn,s
qn

)

dP ≤ P (Ω) + Q̃(Ω)−Qn(Ω) + s
1/2
n .

Writing qn as qn,s−snq̃
1−sn

, we see

ln
qn,s
qn

= ln
qn,s

qn,s−snq̃
1−sn

= ln(1− sn)− ln
qn,s − snq̃

qn,s

= ln(1− sn)− ln

(

1− sn
q̃

qn,s

)

≥ ln(1− sn) + sn
q̃

qn,s
.
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Hence
ln(1− sn) + (1 + sn)

∫

Ω

q̃

qn,s
dP ≤ P (Ω) + Q̃(Ω)−Qn(Ω) + s

1/2
n .

As limn→∞ sn = 0, taking the limit inferior as n → ∞ on both sides gives

lim inf
n→∞

∫

Ω

q̃

qn,s
dP ≤ P (Ω) + Q̃(Ω)− lim inf

n→∞
Qn(Ω).

An application of Fatou’s lemma gives
∫

Ω

dP

dQ̂
dQ̃ ≤ P (Ω) + Q̃(Ω)− lim inf

n→∞
Qn(Ω).

Since Q̃ = (1− t)Q1 + tQ we get the inequality
∫

Ω

dP

dQ̂
d((1− t)Q1 + tQ) ≤ P (Ω) + (1− t)Q1(Ω) + tQ(Ω)− lim inf

n→∞
Qn(Ω),

(1− t)

∫

Ω

dP

dQ̂
dQ1 + t

∫

Ω

dP

dQ̂
dQ ≤ P (Ω) + (1− t)Q1(Ω) + tQ(Ω)− lim inf

n→∞
Qn(Ω).

Finally we let t tend to one and obtain the desired result.

Proof of Proposition 3. Let Q ∈ C arbitrarily. Then there exists a sequence (wi)
n
i=1 in [0, 1] with

∑

iwi = 1 such that
Q =

∑n
i=1 wiQi. It follows that

D

(

P‖
1

n

∑

i

Qi  Q

)

=

∫

Ω

ln

∑

i wiQi

1
n

∑

i Qi

dP

≤

∫

Ω

ln
maxiwi

∑

iQi

1
n

∑

iQi

dP

= ln(n) + ln(max
i

wi) ≤ ln(n).

The proposition follows by taking the supremum over Q on both sides.

Proof of Proposition 4. Since Q∗ is the normalized maximum likelihood distribution we have supQ supω ln dQ
dQ∗ < ∞. In

particular

sup
Q∈C

D(P‖Q∗
 Q) = sup

Q∈C

∫

Ω

ln
dQ

dQ∗
dP

≤ sup
Q∈C

sup
ω

ln
dQ

dQ∗
(ω) < ∞.

Proof of Proposition 5. We can write

D(P‖Qθ  Q∗) = D(P‖Qθ  Q) +D(P‖Q Q∗).

By assumption all terms are finite so that minimising D(P‖Qθ  Q∗) over θ must be equivalent to minimising D(P‖Qθ  Q)
over θ. The same argument holds for step 5 in Algorithm 1. The result then follows from [13, Theorem 3.0.13]. While the
algorithm described there works by choosing θk to minimise

∫

Ω log((1−αk)qθk−1
+αkqθ) dP , the proof relies on [9, Lemma

5.9], which indeed uses minimisation of D(P‖(1− αk)Qθk−1
+ αkQθ  Q) as described here.

Proof of Theorem 4. For any a ∈ R we have

f0(i) + a · f1(i) = f0(i) ·

(

1 + a ·
f1(i)

f0(i)

)

. (12)
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Since f1(i)
f0(i)

→ 0 for i → ∞ we have that f0(i) + a · f1(i) ≥ 0 for i sufficiently large. Therefore, we can apply Fatou’s lemma
to the function and obtain

∑

f0(i) · q
∗(i) + a ·

∑

f1(i) · q
∗(i) =

∑

(f0(i) + a · f1(i)) · q
∗(i)

=
∑

lim inf
n→∞

(f0(i) + a · f1(i)) · qn(i)

≤ lim inf
n→∞

∑

i

(f0(i) + a · f1(i)) · qn(i)

= lim inf
n→∞

(

∑

i

f0(i) · qn(i) + a ·
∑

i

f1(i) · qn(i)

)

= lim inf
n→∞

(λ0 + a · λ1) = λ0 + a · λ1.

Hence
a ·
(

∑

f1(i) · q
∗(i)− λ1

)

≤ λ0 −
∑

f0(i) · q
∗(i). (13)

This inequality should hold for all a ∈ R, which is only possible if
∑

f1(i) · q
∗(i)− λ1 = 0.

∑

f1(i) · q
∗(i) = λ1.

B. Proofs for Section IV

Proof of Proposition 6. Assume that E1, E2, E3, . . . is a sequence of e-variables such that
∫

Ω

ln

(

En

E′

)

dP → sup
E

∫

Ω

ln

(

E

E′

)

dP

for n → ∞. Then En,m = (Em + En)/2 are also e-variables and by convexity
∫

Ω

ln

(

Em,n

E′

)

dP → sup
E

∫

Ω

ln

(

E

E′

)

dP ,

which implies that m2
γ(Em, En) → 0 for m,n → ∞. By completeness En converges to some e-variable E∞. Using Lemma

2 we see that mγ(En, E∞) → 0 implies that
∫

Ω

ln

(

Em

E′

)

dP →

∫

Ω

ln

(

E∞

E′

)

dP

so that

sup
E

∫

Ω

ln

(

E

E′

)

dP =

∫

Ω

ln

(

E∞

E′

)

dP .

Hence

sup
E

∫

Ω

ln

(

E

E∞

)

dP = 0

Therefore E∞ is a strongest e-statistic.
Assume that both E1 and E2 are strongest e-variables. Then they are both stronger than the average Ē = (E1 + E2)/2.

Hence

0 ≤ m2
γ(E1, E2) =

1

2

∫ (

ln

(

Ē

E1

)

+ ln

(

Ē

E2

))

dP ≤ 0.

Therefore E1 = E2 P -almost surely.

Proof of Theorem 5. Firstly, since Ê > 0 holds P -almost surely, we have that Ê is stronger than any E′ ∈ EC with P (E′ =
0) > 0.
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Secondly, let E ∈ EC be an e-statistic for which E > 0 holds P -almost surely. Furthermore, let Qn be a sequence of measures
in C such that D(P‖Qn  C) → 0. We can define a sequence of sub-probability measures Rn by Rn(F ) =

∫

F
E dQn, which

satisfies dRn/dQn = E. We see
∫

Ω

ln

(

Ê

E

)

dP =

∫

Ω

ln

(

dQn

dQ̂

)

dP +D(P‖Rn) + (P (Ω)−Rn(Ω))

≥

∫

Ω

ln

(

dQn

dQ̂

)

dP.

The last expression goes to zero as n → ∞, so we see that Ê is stronger than E.

Proof of Proposition 7. Using the fact that ln(x) ≤ x− 1 for x > 0, we see

D(P‖Q∗
 Q) =

∫

Ω

ln
dQ

dQ∗
dP ≤

∫

Ω

(

dQ

dQ∗
− 1

)

dP =

∫

Ω

dP

dQ∗
dQ− 1 ≤ 0,

where the last inequality follows from the fact that dP/dQ∗ is an e-statistic.

Proof of Theorem 6. Without loss of generality, assume that
∫

Ω
q′/q dP = 1 + ǫ for some ǫ > 0. For the sake of brevity, we

write cβ := ‖q′/q‖1+β
1+β . We now define a function g : [0, 1] → R≥0 as

g(α) := D(P‖(1− α)Q + αQ′
 C).

Notice that g(0) = δ and g(α) ≥ 0, since (1 − α)Q + αQ′ ∈ C. This function and its derivatives will guide the rest of the
proofs, and we now list some properties that we will need:

g′(α) :=
d

dα
g(α) =

∫

Ω

q − q′

(1− α)q + αq′
dP, (14)

so that

g′(0) =

∫

Ω

(

1−
q′

q

)

dP = −ǫ, (15)

g′′(α) :=
d2

dα2
g(α) =

∫

Ω

(

q′ − q

(1− α)q + αq′

)2

dP, (16)

so that

g′′(0) =

∫

Ω

(

1−
q′

q

)2

dP = 1− 2(1 + ǫ) + c1

and

0 ≤ g′′(α) ≤
1

(1− α)2
g′′(0). (17)

We now prove (10). We start with the case β = 1 and will use the result for β = 1 to prove the case for β < 1. The proof
for the case β > 1 comes later; it requires a completely different proof.

Case β = 1. The general idea is simple: at α = 0 the function g(α) is equal to δ and has derivative −ǫ. Its second derivative
is positive and bounded by constant times g′′(0) ≤ c1 for all α ≤ 1/2. Thus, if ǫ is larger then a certain threshold, g(α) will
become negative at some α ≤ 1/2, but this is not possible since g is a description gain and we would arrive at a contradiction.
The details to follow simply amount to calculating the threshold as a function of δ.

By Taylor’s theorem, we have for any α ∈ [0, 1/2] that

g(α) = g(0) + g′(0)α+ max
0≤α◦≤α

g′′(α◦)

2
α2

≤ g(0) + g′(0)α+ 2g′′(0)α2

≤ δ − ǫα+ 2α2c1,

where we use the properties derived above. This final expression has a minimum in α∗ = min{ǫ/4c1, 1/2}. By non-negativity of
g, we know that δ− ǫα∗ +2α∗2c1 ≥ 0. This gives ǫ ≤ (8c1δ)

1/2 in the case that α∗ = ǫ/4c1 < 1/2, and ǫ ≤ 2δ+ c1 otherwise.
In the latter case, it holds that c1 < ǫ/2, so the bound can be loosened slightly to find the simplification ǫ ≤ 4δ. This concludes
the proof for β = 1, which we now use to prove Case β < 1.
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Case β < 1. For any a > 0, it holds that
∫

Ω

q′

q
dP =

∫

Ω

q′

q
1{q′/q≤a} dP +

∫

Ω

q′

q
1{q′/q>a} dP. (18)

We write q′′ := q′1{q′/q≤a} and we will bound the first term on the right-hand side of (18) using the proof above with Q′

replaced by Q′′. Since Q′′ is not necessarily an element of C, we need to verify non-negativity, which follows because for
each α ∈ (0, 1), we have that D(P‖(1− α)Q + αQ′′

 C) ≥ D(P‖(1− α)Q + αQ′
 C) ≥ 0. Furthermore, it holds that

∥

∥

∥

∥

q′′

q

∥

∥

∥

∥

2

2

=

∫

Ω

(

q′′

q

)2

dP

=

∫

Ω

(

q′′

q

)1+β(
q′′

q

)1−β

dP

≤ a1−βcβ

The results above therefore give
∫

Ω

q′′

q
dP ≤ 1 + max{(8a1−βcβδ)

1/2, 2δ}.

For the second term on the right-hand side of (18), we use a Markov-type bound, i.e.
∫

Ω

q′

q
1{q′/q>a} dP ≤

∫

Ω

q′

q

(

q′/q

a

)β

1{q′/q>a} dP

≤ a−βcβ .

Putting this together gives
∫

Ω

q′

q
dP ≤ 1 + max{(8a1−βcβδ)

1/2, 4δ}+ a−βcβ .

Since this holds for any a, we now pick it to minimize this bound. To this end, consider

d

da
(8a1−βcβδ)

1/2 + a−βcβ =
(1− β)(8cβδ)

1/2

2
a−

(1+β)/2 − βa−(1+β)cβ .

Setting this to zero, we find

a∗ =

(

βc
1/2
β

(1− β)(2δ)1/2

)

2
1+β

.

The proof is concluded by noting that

(8a∗1−βcβδ)
1/2 =






8

(

βc
1/2
β

(1− β)(2δ)1/2

)2 1−β
1+β

cβδ







1/2

= 2c
1/(β+1)

β (2δ)
β/(β+1)

(

β

1− β

)
1−β
1+β

and

a∗−βcβ =

(

βc
1/2
β

(1 − β)(2δ)1/2

)

−2β
1+β

cβ

= c
1/(β+1)

β

(

β

1− β

)
−2β
1+β

(2δ)
β/(1+β).

Case β > 1. We now prove the result for β ∈ (1,∞); the proof for β = ∞ follows by a minor modification of (20). If
ǫ ≤ 0 there is nothing to prove, so without loss of generality we can write ǫ = γδ for some γ > 0; we will bound γ. Whereas
the previous proof exploited the fact that the second derivative g′′(α) was bounded above in terms of δ and hence ‘not too
large’, the proof below uses the condition that cβ is finite to show first, (a), that g′′(α) can also be bounded below in terms of
(γ, δ). Therefore, if ǫ exceeds a certain threshold, as α moves away from the α∗ at which g(α) achieves its minimum in the
direction of the furthest boundary point (i.e. if α∗ < 1/2, we consider α ↑ 1, if α∗ ≥ 1/2 we consider α ↓ 0), g(α) will become
larger than Kδ or δ respectively, and we arrive at a contradiction. (b) below gives the detailed calculation of this threshold.
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Proof of (a). Fix some 0 ≤ α̃ < 1 (we will derive a bound for any such α̃ and later optimize for α̃; for a sub-optimal yet
easier derivation take α̃ = 1/2). By Taylor’s theorem, we have 0 ≤ g(α̃) = δ − α̃ǫ + (1/2)α̃2g′′(α◦) for some 0 ≤ α◦ ≤ α̃.
Plugging in ǫ = γδ we find that

g′′(α◦) ≥
2

α̃2
(α̃γ − 1)δ.

This gives a lower bound on g′′(α◦) for some α◦ in terms of (γ, δ). We now turn this into a weaker lower bound on all α.
First, using (17) and then α◦ ≤ α̃ and then the above lower bound, we find

g′′(0) ≥ max
α∈[0,α̃]

(1− α)2g′′(α) ≥ (1− α◦)2g′′(α◦)

≥ (1− α̃)2g′′(α◦) ≥ 2fα̃(γ, δ), (19)

where fα̃(γ, δ) := ((1− α̃)/α̃)2(α̃γ − 1)δ is a function that is linear in γ and δ. We have now lower bounded g′′(0) in terms
of γ, δ. We next show that, under our condition that cβ < ∞, this implies a (weaker) lower bound on g′′(α) for all α. For
this, fix any C > 1. We have for all 0 < α ≤ 1:

g′′(α) ≥

∫

Ω

1q′≤Cq ·

(

q′ − q

(1 − α)q + αq′

)2

dP

≥

∫

Ω

1q′≤Cq ·

(

q′ − q

(1 − α)q + αCq

)2

dP

=

∫

Ω

1q′≤Cq ·

(

q′ − q

q

)2

dP ·
1

(1 + α(C − 1))2

≥
1

(1 + (C − 1))2

(

g′′(0)−

∫

Ω

1q′>Cq ·

(

q′

q
− 1

)2

dP

)

≥
1

C2

(

2fα̃(γ, δ)− C1−βcβ
)

, (20)

where in the fourth line we used the definition of g′′(0), and in the fifth line we used (19) and a Markov-type bound on the
integral, i.e. we used that

∫

Ω
1q′>Cq · (q′/q − 1)2 dP is bounded by
∫

Ω

1q′>Cq ·

(

q′

q

)2

dP ≤

∫

Ω

(

q′/q

C

)β−1

·

(

q′

q

)2

dP = C1−βcβ .

By differentiation we can determine the C that maximizes the bound (20). This gives C1−β = fα̃(γ, δ)(4/cβ(1+β)). and with
this choice of C, (20) becomes

g′′(α) ≥ fα̃(γ, δ)
(β+1)/(β−1)c

2/(1−β)
β h(β) (21)

where h(β) = (4/(1 + β))2/(β−1) · 2(β − 1)/(1 + β). We are now ready to continue to:
Proof of (b). Let α∗ ∈ [0, 1] be the point at which g(α) achieves its minimum. If α∗ ≤ 1/2, a second-order Taylor

approximation of g(1) around α∗ gives that

Kδ ≥ g(1) ≥
1

2
(1− α∗)2 min

α∈[α∗,1]
g′′(α)

≥
1

8
fα̃(γ, δ)

(β+1)/(β−1)c
2/(1−β)
β h(β),

so that after some manipulations
fα̃(γ, δ)

(1+β)/(β−1) ≤ 8K ′c
2/(β−1)
β · h(β)−1δ, (22)

with K ′ = K . If α∗ > 1/2, we perform a completely analogous second-order Taylor approximation of g(0) around α∗, which
will then give (22) again but with K ′ replaced by 1. We thus always have (22) with K ′ = max{K, 1}. Unpacking fα̃ in (22)
and rearranging gives:

γ ≤
α̃

(1− α̃)2
· V +

1

α̃

with

V = c
2/(1+β)
β ·

(

8K ′

h(β)

)
β−1
1+β

δ
−2
1+β .

We now pick the α̃ that makes both terms on the right equal, so that the right-hand side becomes equal to 2/α̃. This is
the solution to the equation (α̃/(1−α̃))2V = 1 which must clearly be obtained for some 0 < α̃ < 1, so this α̃ satisfies our
assumptions. Basic calculation gives

γ ≤
2

α̃
= 2 ·

(

V
1/2 + 1

)
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and unpacking V we obtain
ǫ = γδ ≤ c∗ · δ

β
1+β + 2δ.

where

c∗ = c
1/(1+β)
β ·

(

8K ′

h(β)

)
β−1

2(1+β)

.

Unpacking h(β) gives the desired result.

APPENDIX B
RIPR STRICT SUB-PROBABILITY MEASURE

In this appendix, we discuss a general way to construct a measure P and convex set of distributions C such that the reverse
information projection of P on C is a strict sub-probability measure. For simplicity, we take Ω = N and F = 2N, though the
idea should easily translate to more general settings.

Proposition 8. Let g : N → R>0 be a function, and let C denote the set of measures {Q :
∑

i g(i)q(i) ≤ ν} for some ν > 0.

Then for any P that is not in C we have that E(i) = g(i)/ν is the optimal e-statistic.

Proof. The extreme points in C are the measure with total mass 0 and measures of the form ν
g(i) δi, i.e. measures concentrated

in single points. An e-statistic E must satisfy
∑

j

E(j)
ν

g(i)
δi(j) ≤ 1

or, equivalently, E(i) ν
g(i) ≤ 1. Hence E ≤ g/ν so the optimal e-statistic is g/ν.

Let g : N → R>0 be any function that satisfies
lim
n→∞

g(n) = 0.

Furthermore, let P denote a probability measure on the natural numbers such that
∑

i

p(i)

g(i)
= c

for some c ∈ R>0. For ν ∈ (0, 1/c) and let Cν denote the set of measures {Q :
∑

i g(i)q(i) ≤ ν}. Note that we do not yet
require all measures in Cν to be probability measures so that the set Cν is compact. It follows that there exists a unique element
of C that minimizes

∑

i p(i) ln(p(i)/q(i)).
The optimal e-statistic is Eν = g/ν, and we may define the measure Q̂ν by

q̂ν(i) =
p(i)

Eν(i)
= νp(i)/g(i),

and we can check that Q̂ν ∈ C. Hence Q̂ν minimizes
∑

i p(i) ln(p(i)/q(i)).
This is a strict sub-probability measure:

∑

i

q̂ν(i) = ν
∑

i

p(i)

g(i)

= νc

< 1,

where we use that ν < 1/c.
The next step is to prove that the information projection does not change if we restrict to the set of probability measures in

Cν∗ , which we denote by C̃ν∗ . To this end, note first that for ν < ν∗, we have that
∑

g(i)qν(i) < ν∗, so that for all ν < ν∗

there exists nν ∈ N such that the probability measure defined by

qν(i) +



1−
∑

j

qν(j)



δnν
(i)
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is an element of C̃ν∗ . Hence

D(P‖C̃) ≤ D



P

∥

∥

∥

∥

∥

∥

Qλ +



1−
∑

j

qν(i)



δnν





=
∑

i∈N

p(i) ln





p(i)

Qν(i) +
(

1−
∑

j∈N
qν(j)

)

δnν
(i)





= −p(nν) ln

(

p(nν)

qν(nν)

)

+ p(nν) ln

(

p(nν)

qν(nν) + 1−
∑

j∈N
qν(j)

)

+

∞
∑

i=1

p(i) ln

(

p(i)

qν(i)

)

.

The first term can be written as

p(nν) ln

(

p(nν)

qν(nν)

)

= qν(nν)
p(nν)

qν(nν)
ln

(

p(nν)

qν(nν)

)

= qν(nν)
g(nν)

ν
ln

(

g(nν)

ν

)

Then notice that for ν → ν∗, we must have that nν → ∞. Using that c ln(c) → 0 for c → 0 we see the first term tends to 0
for ν → ν∗. Similarly, the second term can be written as

p(nν) ln

(

p(nν)

qν(nν) + 1−
∑

j∈N
qν(j)

)

=



qν(nν) + 1−
∑

j∈N

qν(j)





p(nν)

qν(nν) + 1−
∑

j∈N
qν(j)

× ln

(

p(nν)

qν(nν) + 1−
∑

j∈N
qν(j)

)

.

We also have
p(nν)

qν(nν) + 1−
∑

qν(i)
→ 0

for ν → ν∗ and using that c ln(c) → 0 for c → 0 we get the second term tends to 0 for ν → ν∗. Therefore we see

D(P‖C̃) ≤ lim
ν→ν∗

D

(

P

∥

∥

∥

∥

∥

Qν +

(

1−
∑

i

qν(i)

)

δnν

)

≤
∑

i

p(i) ln

(

p(i)

qν∗(i)

)

= inf
Q∈C

∑

i

p(i) ln

(

p(i)

q(i)

)

.

The inequality trivially also holds the other way around, so we find that

D(P‖C̃) = inf
Q∈C

∑

i

p(i) ln

(

p(i)

q(i)

)

.

It follows that Qν∗ is a strict sub-probability measure, and at the same time it is the reverse information projection of P onto
C̃ν∗ .

APPENDIX C
CONVEXITY

One of the main assumptions made throughout the main text is that the set of measures C is convex, i.e. closed under finite
mixtures. However, one can also consider stronger notions of convexity, such as σ-convexity and Choquet-convexity. In this
appendix, we investigate whether considering different levels of convexity can change the reverse information projection.

Definition 3. A set C′ of measures is said to be σ-convex if Q1 , Q2 , Q3 · · · ∈ C′ implies that
∑∞

i=1 wiQi ∈ C′ when wi ≥ 0
and

∑∞
i=1 wi = 1. The σ-convex hull of a set of measures C, denoted by σ-conv(C), is the smallest σ-convex set containing

C.

In order to avoid topological complications we will restrict the discussion of Choquet-convexity to Polish spaces, i.e. spaces
for which there exists a complete metric that generates the topology. That is, assume that Ω is a Polish space equipped with
the Borel σ-algebra. Let Θ be another Polish space and let {Qθ : θ ∈ Θ} denote a parameterized set of probability measures
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on Ω such that θ →
∫

Ω f dQθ is Borel measurable for any measurable function f : Ω → R. Then for any probability measure
ν on Θ the Choquet-convex mixture µν can be defined by

∫

Ω

f dµν =

∫

Θ

(∫

Ω

f dµθ

)

dν,

for any measurable function f : Ω → R.

Definition 4. A set C′ of measures is said to be Choquet-convex if it is closed under Choquet convex mixtures. The Choquet-
convex hull of a set of measures C is the smallest Choquet-convex set that contains C.

So far, we have assumed that all of the measures in C are finite. However, a countable or Choquet convex mixture of finite
measures may not be finite. It follows that our results on the existence of the RIPr might not be applicable to the σ-convex and
Choquet-convex hull of C. We therefore assume for the remainder of this section that all involved measures are sub-probability
measures, in which case this issue does not arise. With all of this in place, it is relatively straightforward to construct examples
where the RIPr of P on a convex set does not exist, while the RIPr of P on its σ-convex hull does exist.

Example 4. Let P denote a geometric distribution on N0 and let C denote the set of probability measures on N0 with finite
support. Then D(P‖Q  C) = −∞ for any Q ∈ C. Therefore the reverse information projection of P on C is not defined
according to the definitions given in this paper. However, the σ-convex hull of C consists of all probability measures on N0,
which implies that the reverse information projection on the σ-convex hull is well-defined and equals P .

However, as the following results show, if the RIPr of P on C does exist, then it must coincide with the RIPr of P on
σ-conv(C).

Lemma 4. Let P and Q be sub-probability measures and let Q1, Q2, . . . be a sequence of sub-probability measures such that

D(P‖Q Q1) > −∞, and let w1, w2, w3, . . . be a sequence of positive numbers with sum 1. Then

D

(

P

∥

∥

∥

∥

Q 

∑n
i=1 wi ·Qi
∑n

i=1 wi

)

→ D

(

P

∥

∥

∥

∥

∥

Q 

∞
∑

i=1

wi ·Qi

)

for n → ∞.

Proof. Firstly, note that

ln
d
∑n+1

i=1 wiQi

dQ
≥ ln

d
∑n

i=1 wiQi

dQ

and
∫

Ω

ln
d
∑n

i=1 wiQi

dQ
dP ≥

∫

Ω

ln
dw1Q1

dQ
dP = D(P‖Q Q1) + lnw1 + (Q1(Ω)−Q(Ω)) > −∞.

Since
∑n

i=1 wiqi →
∑∞

i=1 wiqi pointwise, applying the monotone convergence theorem to the sequence
(

ln
d
∑n

i=1 wiQi

dQ
− ln

dw1Q1

dQ

)

n∈N

gives that
∫

Ω

ln
d
∑n

i=1 wiQi

dQ
− ln

dw1Q1

dQ
dP →

∫

Ω

ln
d
∑∞

i=1 wiQi

dQ
− ln

dw1Q1

dQ
dP.

We get
∫

Ω

ln
d
∑n

i=1 wiQi

dQ
dP →

∫

Ω

ln
d
∑∞

i=1 wiQi

dQ
dP

for n → ∞. Finally, we see that

D

(

P

∥

∥

∥

∥

Q 

∑n
i=1 wi ·Qi
∑n

i=1 wi

)

=

∫

Ω

ln
d
∑n

i=1 wiQi

dQ
dP − (Qn(Ω)−Q(Ω))− ln

n
∑

i=1

wi

→

∫

Ω

ln
d
∑∞

i=1 wiQi

dQ
dP − (Q∞(Ω)−Q(Ω))

= D(P‖Q Q∞),

where Q∞ :=
∑∞

i=1 wiQi and we use that ln
∑n

i=1 wi → 0 and Qn(Ω) → Q∞(Ω). To see the latter, note that

Qn(Ω) =

∫

Ω

∑n
i=1 qi(ω)wi
∑n

i=1 wi
dµ(ω),
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and 0 ≤
∑

n
i=1 qi(ω)wi/

∑
n
i=1 wi ≤ q∞(ω)/w1, where the RHS integrates, so that the desired convergence follows from the dominated

convergence theorem.

Theorem 7. Let P be a finite measure and C a convex set of sub-probability measures such that D(P‖Q  C) = 0. If

Q1, Q2, . . . is a sequence of measures in C such that D(P‖Qn  C) → 0, then D(P‖Qn  σ-conv(C)) → 0.

Proof. Fix Q∗ ∈ C such that D(P‖Q∗
 C) ≤ ε and let Q̄ =

∑∞
i=1 wiQi ∈ σ-conv(C) arbitrarily. Let s ∈ (0, 1) and consider

Q̃ := s · Q∗ + (1 − s) · Q̄ =
∑∞

i=0 w̃iQi, where Q0 := Q∗, w̃0 = s and w̃i = (1 − s) · wi for i = 1, 2, . . . . Note that
D(P‖Q∗

 Q0) = 0, so it follows from Lemma 4 that

lim
n→∞

D

(

P

∥

∥

∥

∥

Q∗
 

∑n
i=0 w̃iQi
∑n

i=0 w̃i

)

= D(P‖Q∗
 Q̃).

The left hand side is, by definition of Q∗, bounded by ε since
∑n

i=0 w̃iQi/
∑n

i=0 w̃i ∈ C, so that we find D(P‖Q∗
 Q̃) ≤ ε.

Furthermore, by concavity of the log,

ε ≥ D(P‖Q∗
 Q̃) ≥ s ·D(P‖Q∗

 Q0) + (1− s) ·D(P‖Q∗
 Q̄) = (1− s) ·D(P‖Q∗

 Q̄).

Taking the limit of s → 0, we see D(P‖Q∗
 Q̄) ≤ ε. Finally, the result follows by taking the supremum over Q̄.

We conjecture that if C is a σ-convex set of sub-probability measures and C′ is the Choquet-convex hull of C then D(P‖Q 
C) = D(P‖Q C′) for any sub-probability measures P and Q such that P,Q, and the sub-probability measures in C all have
densities with respect to a common σ-finite measure.
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