
PROACTIVE DP: A MULTIPLE TARGET OPTIMIZATION
FRAMEWORK FOR DP-SGD

Marten van Dijk1,2,3∗, Nhuong V. Nguyen4∗, Toan N. Nguyen4,5,6,
Lam M. Nguyen, Phuong Ha Nguyen8

1 CWI Amsterdam, The Netherlands
2 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

3 Department of Electrical and Computer Engineering, University of Connecticut, CT, USA
4 Department of Computer Science and Engineering, University of Connecticut, CT, USA

5 Faculty of Information Technology, University of Science, Ho Chi Minh, Vietnam
6 Vietnam National University, Ho Chi Minh city, Vietnam

7 IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
8 eBay, CA, USA

marten.van.dijk@cwi.nl, nhuong.nguyen@uconn.edu, nntoan@fit.hcmus.edu.vn,
LamNguyen.MLTD@ibm.com, phuongha.ntu@gmail.com

ABSTRACT

We introduce a multiple target optimization framework for DP-SGD referred to as pro-active DP. In
contrast to traditional DP accountants, which are used to track the expenditure of privacy budgets, the
pro-active DP scheme allows one to a-priori select parameters of DP-SGD based on a xed privacy
budget (in terms of ϵ and δ) in such a way to optimize the anticipated utility (test accuracy) the most.
To achieve this objective, we rst propose signicant improvements to the moment account method,
presenting a closed-form (ϵ, δ)-DP guarantee that connects all parameters in the DP-SGD setup. We
show that DP-SGD is (ϵ < 05, δ = 1N)-DP if σ =


2(ϵ+ ln(1δ))ϵ with T at least ≈ 2k2ϵ

and (2e)2k2 − 12 ≥ ln(N), where T is the total number of rounds, and K = kN is the total
number of gradient computations where k measures K in number of epochs of size N of the local
data set. We prove that our expression is close to tight in that if T is more than a constant factor
≈ 4 smaller than the lower bound ≈ 2k2ϵ, then the (ϵ, δ)-DP guarantee is violated. The above
DP guarantee can be enhanced in that DP-SGD is (ϵ, δ)-DP if σ =


2(ϵ+ ln(1δ))ϵ with T at

least ≈ 2k2ϵ together with two additional, less intuitive, conditions that allow larger ϵ ≥ 05. Our
DP theory allows us to create a utility graph and DP calculator. These tools link privacy and utility
objectives and search for optimal experiment setups, efciently taking into account both accuracy
and privacy objectives, as well as implementation goals. We furnish a comprehensive implementation
ow of our proactive DP, with rigorous experiments to showcase the proof-of-concept.*

1 Introduction

DP-SGD [1] was introduced for private machine learning training as it adapts distributed Stochastic Gradient Descent
(SGD) [35] with Differential Privacy (DP) [12]. Many different DP notions have been developed for better tracking

∗ These authors contributed equally.

In memory of our dear friend and author of this paper Nhuong Nguyen.
*We remember Nhuong, our dear friend, whose presence and kindness we so much miss. His careful and creative thinking

together with his uncanny implementation skills leaves this paper as his footprint. His promising future cut short, he will live on in
our heart and his spark forever visible in this paper and his scientic work.

ar
X

iv
:2

10
2.

09
03

0v
10

 [
cs

.L
G

]
 4

 J
un

 2
02

4

the expenditure of privacy budgets during the training process such as (ϵ, δ)-DP [12], Concentrated Differential
Privacy (CDP) [13], Renyi-DP [3], zero-CDP (zCDP) [4], f-DP [9]. Generally, DP comes from adding Gaussian noise
N (0, C2σ2I) to local (client-computed) mini-batch SGD updates after performing a clipping operation x → [x]C =
xmax1, ∥x∥C.
Existing DP notions are inadequate for optimizing the parameters for DP-SGD to achieve a given privacy budget, utility
(test accuracy) goal, and implementation goal (communication efciency). Consequently, we initiated the study of a
fresh DP notion called proactive DP. Our DP framework consists of three signicant components. First, a tight closed
DP formula encompassing all experimental setup parameters (the number of data points N , the mini-batch or sample
size s during local SGD iterations, the step size scheme, etc.) and privacy budget (in the form of an (ϵ,δ)-DP target),
utility goal (i.e., test accuracy), and implementation goal (in particular, the number of communication rounds T between
server and client). We demonstrate a specic relationship among privacy parameters ϵ, δ, and σ given by the closed
form formula, σ =


2(ϵ+ ln(1δ))ϵ. This formula is vital as it helps to establish a relationship between privacy

budget and utility goal. Notably, noise variance σ directly correlates with the test accuracy of the model. However,
we aim to avert performing any blind private training because we can only determine the impact of σ on test accuracy
after the private training process concludes. As our second component, we introduce the utility graph method, which
allows us to learn the impact of σ on the test accuracy without performing any private training. This graph assists us
in determining good privacy parameters (i.e., ϵ and δ) and the corresponding values of noise σ that meet privacy and
utility goals. Finally, we employ a tool called DP calculator to efciently calculate the remaining parameters of the
optimal experiment setup, such as the stepsize scheme, sampling scheme, and the number of communication rounds.
Our DP framework primarily contains a tight closed DP formula, utility graph, and DP calculator. It’s worth mentioning
that a tight and closed DP formula leads to better optimal experiment settings and a more efcient DP calculator.

We devised our tight closed DP formula by non-trivially improving the moment accountant technique [1]. This approach
has lacked a tight bound [9] due to the high analysis complexity which the authors of [1] did not pursue, but did lead to
a straightforward closed non-tight DP formula for the experimental framework. To demonstrate the tightness of our new
DP formula, we leverage the ndings from f -DP [9]. The f -DP framework supersedes all other existing frameworks
because it has all the relevant information to derive known DP metrics. However, as stated in [9], the "disadvantage is
that the expressions it yields are more unwieldy: they are computer evaluable, so usable in implementations, but do not
admit simple closed form" for the f -DP model.

Basically, together with a detailed implementation ow of proactive DP:

• We non-trivially improve the analysis of the moment accountant method in [1] and show for the rst time that
(ϵ, δ)-differential privacy can be achieved for

σ =


2(ϵ+ ln(1δ))ϵ (1)

in parameter settings with (a) a reasonable DP guarantee by choosing δ ≤ 1N and ϵ smaller than 05, where
(b) for the total number K of gradient computations over all local rounds performed on the local data set we
have (2e)2 · k2 ≥ 12+ ln(1δ) with k = KN measuringK in number of epochs of sizeN (this condition
is generally met in practice), and (c) T is at least another constant (≈ 2) times k2ϵ.
A precise formulation of our main result is given in Theorem 3.1. We notice that this theorem is extracted
as a special case of the more general (but less readable and less intuitive) Theorem B.4 which applies to any
choice of ϵ and δ. In particular, the more general theorem can be used for ϵ ≥ 05 and can also be used in our
proactive DP framework.

• Conrmed by simulations, we show that by setting T equal to the lower bound T ≈ 2k2ϵ, we optimize
accuracy (as this minimizes the number of times/rounds when noise is aggregated into the global model at the
server) and minimize round complexity. By using the f -DP framework, we prove that T ’s condition of being
at least ≈ 2k2ϵ cannot be made weaker in that 2k2ϵ cannot be divided by more than a constant factor ≈ 4
(otherwise, this conicts with an asymptotical result proved by the f -DP framework). We conclude that setting

T ≈ 2k2ϵ (2)

leads to a close to tight (ϵ, δ)-DP guarantee which also optimizes accuracy and minimizes round complexity
(we are the rst to show such a kind of tightness result for the moment accountant method).

• We discuss the concept of a utility graph and DP calculator in order to efciently determine suitable parameter
settings based on our theory. Simulations based on (1) and (2) show a signicantly smaller ϵ. For example, our
theory applies to ϵ = 015 for the non-convex problem of the simple neural network LeNet [23] with cross
entropy loss function for image classication of MNIST [22] at a test accuracy of 93%, compared to 98%
without differential privacy. A detailed comparison to the current state-of-the art is presented in Section 5.

2

Outline: We provide background in Section 2, where we dene (ϵ, δ)-differential privacy, explain DP-SGD as
introduced by [1], and shortly introduce the f -DP framework. In Section 3 we explain our main theory, where we
start by discussing the theoretical result of the moment accountant method of [1] and its limitation, which we improve
leading to our main contribution as given in (1) with a tightness result for (2) based on the f -DP framework. We
discuss the concept of a utility graph and show how our theory can be used to determine parameter settings for DP-SGD.
Experiments are in Section 4. A more general asynchronous SGD framework, the detailed differential privacy proofs
and analysis, additional experiments with extra details and a proposal for an algorithm that regularly updates parameters
in DP-SGD are in the appendices.

2 Differential Private SGD (DP-SGD)

2.1 (ϵ, δ)- Differential Privacy

Differential privacy [15, 11, 16, 14] denes privacy guarantees for algorithms on databases, in our case a client’s
sequence of mini-batch gradient computations on his/her training data set. The guarantee quanties into what extent
the output of a client (the collection of updates communicated to the server) can be used to differentiate among two
adjacent training data sets d and d′ (i.e., where one set has one extra element compared to the other set).
Denition 2.1. A randomized mechanism M : D → R is (ϵ, δ)-DP (Differentially Private) if for any adjacent d and d′
in D and for any subset S ⊆ R of outputs,

Pr[M(d)  S] ≤ eϵPr[M(d′)  S] + δ,

where the probabilities are taken over the coin ips of mechanism M.

The privacy loss incurred by observing o is given by

Lo
M(d)∥M(d′) = ln


Pr[M(d) = o]

Pr[M(d′) = o]




As explained in [16] (ϵ, δ)-DP ensures that for all adjacent d and d′ the absolute value of privacy loss will be bounded
by ϵ with probability at least 1− δ. The larger ϵ the more certain we are about which of d or d′ caused observation o. In
order to have a reasonable security guarantee we assume ϵ < 05 such that eϵ < 165 is somewhat small. When using
differential privacy in machine learning we typically use δ = 1N (or 1(10N)) inversely proportional with the data
set size N .

In order to prevent data leakage from inference attacks in machine learning [24] such as the deep leakage from
gradients attack [44, 43, 17] or the membership inference attack [37, 27, 38] a range of privacy-preserving methods
have been proposed. Privacy-preserving solutions for federated learning are Local Differential Privacy (LDP) solutions
[1, 2, 26, 39, 19, 10] and Central Differential Privacy (CDP) solutions [26, 18, 25, 33, 41]. In LDP, the noise for
achieving differential privacy is computed locally at each client and is added to the updates before sending to the
server – in this paper we also consider LDP. In CDP, a trusted server (aka trusted third party) aggregates received client
updates into a global model; in order to achieve differential privacy the server adds noise to the global model before
communicating it to the clients.

2.2 DP-SGD

We analyse the Gaussian based differential privacy method, called DP-SGD, of [1], depicted in Algorithm 1 in a
distributed setting as described above. Rather than using the gradient f(ŵ, ξ) itself, DP-SGD uses its clipped version
[f(ŵ, ξ)]C where [x]C = xmax1, ∥x∥C. Clipping is needed because in general we cannot assume a bound C
on the gradients (for example, the bounded gradient assumption is in conict with strong convexity [28]), yet the added
gradients need to be bounded by some constant C in order for the DP analysis to go through.

DP-SGD uses a mini-batch approach where before the start of the i-th local round a random min-batch of sample size si
is selected out of a local data set d of size d = N . Here, we slighty generalize DP-SGD’s original formulation which
uses a constant si = s sample size sequence, while our analysis will hold for a larger class of sample size sequences.
The inner loop maintains the sum U of gradient updates where each of the gradients correspond to the same local model
ŵ until it is replaced by a newer global model at the start of the outer loop. At the end of each local round the sum of
updates U is obfuscated with Gaussian noiseN (0, C2σ2) added to each vector entry, and the result is transmitted to the
server. The noised U is transmitted to the server who adds U times the round step size η̄i to its global model ŵ (we
discount averaging the sum represented by U by scaling the step size inversely with si). As soon as all clients have
submitted their updates, the resulting new global model ŵ is broadcast to all clients, who in turn replace their local
models with the newly received global model (at the start of the outer loop).

3

Algorithm 1 DP-SGD: Local Model Updates with Differential Privacy

1: procedure LOCALSGDWITHDP(d)
2: for i  0,    , T − 1 do
3: Receive the current global model ŵ from Server.
4: Uniformly sample a random set ξhsih=1 ⊆ d
5: h = 0, U = 0
6: while h < si do
7: g = [f(ŵ, ξh)]C
8: U = U + g
9: h++

10: end while
11: n ← N (0, C2σ2I)
12: U = U + n
13: Send (i, U) to the Server.
14: end for
15: end procedure

2.3 Tight f -DP Framework

Appendix C summarizes the recent work by [9] that introduces the f -DP framework based on hypothesis testing.
f -DP has (ϵ, δ)-DP as a special case in that a mechanism is (ϵ, δ)-DP if and only if it is fϵ,δ-DP with fϵ,δ(α) =
max0, 1 − δ − eϵα, (1 − δ − α)e−ϵ. They prove that DP-SGD is Cs/N (Gσ−1)⊗T -DP where Cs/N is an operator
representing the effect of subsampling, Gσ−1 is a Gaussian function characterizing the differential privacy (called
Gaussian DP) due to adding Gaussian noise, and operator ⊗T describes composition over T rounds. Cs/N (Gσ−1)⊗T -
DP can be translated into a tight (ϵ, δ)-DP formulation.

Towards understanding how to a-priori set parameters for best utility and minimal privacy leakage, the tight f -DP
formulation for DP-SGD can be translated into sharp privacy guarantees. However, as stated in the introduction by a
citation from [9], the expressions it yields are more unwieldy. Precisely, as said in [9], “the disadvantage is that the
expressions it yields are more unwieldy: they are computer evaluable, so usable in implementations, but do not admit
simple closed form." At best the expressions result in an algorithm that implements a method for keeping track (account
for) spent privacy budget, called a differential privacy accountant. This leads in [45] to a differential privacy accountant
(using a complex characteristic function based on taking the Fourier transform) for a client to understand when to stop
helping the server to learn a global model.

3 Improved Moment Accountant Method

[1] proves the following main result (rephrased using our notation by substituting q = sN in their work): There
exist constants c1 and c2 so that given a constant sample size sequence si = s and number of rounds T , for any
ϵ < c1T (sN)2, Algorithm 1 is (ϵ, δ)-DP for any δ > 0 if we choose

σ ≥ c2
(sN) ·


T ln(1δ)

ϵ


The interpretation of this result is subtle: The condition on ϵ is equivalent to

1
√
c1 < z where z = (sN) ·


Tϵ (3)

Substituting this into the bound for σ yields

σ ≥ (c2 · z) ·


ln(1δ)

ϵ
 (4)

This formulation only depends on T through the denition of z. Notice that z may be as small as 1
√
c1. Therefore, σ

can potentially be as small as

σ ≥ c2√
c1

·


ln(1δ)

ϵ
 (5)

This leads to the following questions: [Q1] Can we rene the theory of [1] and compute an explicit constant c2
√
c1 and

show that (5) yields (ϵ, δ)-DP for ϵ satisfying some constraint based on T , s, and N (but without unknown constants)?

4

[Q2] Can we show that the renement is close to tight, implying that the rened analysis of the moment accountant
method cannot be much improved? [Q3] And once we have found such a renement, how can we use this in practice?

The next subsections provide afrmative answers to these questions. We stress that our characterization of a universal
constant c2

√
c1 which is close to tight is non-trivial as we need to develop new rened expressions which allow us to

redene the unknown constants c1 and c2 in the theory of [1] as functions of T and other parameters in order for us to
determine a universal constant that tightly bounds c2

√
c1.

3.1 Main Contribution: Rened Analysis

The next theorem answers question [Q1] in the afrmative (for explicit constant ≈
√
2). Rather than applying the main

result of [1], we can directly use the moment accountant method of their proof to analyse specic parameter settings. In
Appendix B we non-trivially improve the analysis of the moment accountant method and show that ‘constants’ c1 and
c2 can be chosen as functions of T and other parameters and as a result we show that σ can remain small up to a lower
bound that only depends on the privacy budget, see (1), (6). The proof of the next theorem is detailed in Appendix B
where our improved analysis leads to a rst generally applicable Theorem B.2. As a consequence we derive a simplied
characterization in the form of Theorem B.4. Finally, we introduce more coarse bounds in order to extract the more
readable and more interpretable Theorem 3.1 below. We notice that the simulations in Section 4 are based on parameters
that satisfy constraints (32, 33, 34, 62) of Theorem B.4 as this leads to slightly better results (and also allows any δ > 0
and ϵ > 0, in particular, ϵ ≥ 05).
Theorem 3.1. Let σ and (ϵ, δ) satisfy the relation

σ =


2(ϵ+ ln(1δ))ϵ with δ ≤ 1N and ϵ < 05 (6)

For sample size sequence siT−1
i=0 the total number of local SGD iterations is equal to K =

T−1
i=0 si. We dene

k = KN as the total number of local SGD iterations measured in epochs (of size N). Related to the sample size
sequence we dene the mean s̄ and maximum smax and their quotient θ = smaxs̄, where

s̄ =
1

T

T−1

i=0

si =
K

T
, smax = maxs0,    , sT−1

Let γ be the smallest solution satisfying

γ ≥ 2

1− ᾱ
+

24 · ᾱ
1− ᾱ


σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ


e3/σ

2

with ᾱ =
ϵ

γk


Parameter γ = 2 + O(ᾱ), which is close to 2 for small ᾱ. We assume data sets of size N ≥ 10000 and sample size
sequences with θ ≤ 685. If

(2e)2 · k2 ≥ 12 + ln(1δ) and (7)

T ≥ γθ2

ϵ
· k2, (8)

then Algorithm 1 is (ϵ, δ)-differentially private.†

As presented in Section 1, current DP concepts are limited to privacy accounting, wherein the calculation of privacy
depletion is contingent on the number of rounds T . In contrast, our DP theorem establishes relationships between
experimental setup parameters such as N, si, k,K, θ, γ, privacy budget dened by δ and ϵ, utility goal, i.e., the test
accuracy which directly depends on σ and C , and implementation goal given by T . Notably, Theorem 3.1 serves as the
fundamental basis for developing proactive DP.

For completeness we mention that the more general Theorem B.4 states that Algorithm 1 is (ϵ, δ)-differentially
private if σ and (ϵ, δ) satisfy σ =


2(ϵ+ ln(1δ))ϵ together with condition (8) (which is ≡ (34)), and the less

intuitive constraints T ≥ maxeθσ, θh(σ) · k (which is‡ ≡ (32)) and ϵ ≤ γh(σ) · k (which is ≡ (33)), where
h(x) = (


1 + (ex)2 − ex)2. This allows larger ϵ ≥ 05.

†Our theory holds in the more general asynchronous SGD framework discussed in Appendix A.
‡After substituting (32) with (1) and s̄ = kNT , multiplying both sides by θTN , and dividing both sides by the min expression

in (32).

5

3.2 Main Contribution: Tightness

If all local data sets are iid coming from the same source distribution§, then simulations in Section 4 show that for xed
K = kN the best accuracy of the nal global model is achieved by choosing the largest possible mini-batch size s or,
equivalently, since K = sT , choosing the smallest possible number of rounds T = γθ2k2ϵ according to condition
(8). Optimizing accuracy by choosing the smallest T can be understood by observing that this implies that the least
number of times noise is added and aggregated into the global model at the server (also larger mini-batches imply less
noise relative to the size of the mini-batches). As a secondary objective, a smaller number of rounds means less round
communication.

For the above reasons we want to make T as small as possible, and we are interested in T meeting (8) with equality.
Rephrasing [Q2], can Theorem 3.1 be strengthened in that the same DP guarantee can hold for a smaller T that violates
(8)? Appendix C uses the f -DP framework¶ to prove into what extent Theorem 3.1 is tight:
Theorem 3.2. For T = (γθ2k2ϵ)a with constant a > 2γ, there exists a parameter setting that ts all conditions of
Theorem 3.1 except for condition (8) such that (ϵ, δ)-DP is violated.

The theorem shows that (8) in Theorem 3.1 cannot be relaxed by dividing the right hand side of the inequality by a
factor more than 2γ ≈ 4. This is the rst such type of tightness result for the moment accountant as introduced by [1].

3.3 Main Contribution: A brief implementation ow based on Utility Graph and DP-calculator

We outline a concise implementation process for proactive DP. The procedure for computing experimental setup
parameters is referred to as DP calculator, and is exhaustively elaborated in Appendix D.4 and Appendix E.1.

The most important mission in machine learning is achieving a good accuracy, therefore, the added Gaussian noise
cannot be too large and is constrained. For this reason each client wants to choose (i) the smallest possible clipping
constant C for the clipping operation used in DP-SGD such that SGD still bootstraps convergence, and given C , set (ii)
the standard deviation σ of the added Gaussian noise for differential privacy to a maximum value beyond which we
cannot expect to achieve sufciently good (test) accuracy for the learning task at hand, and given C and σ (leading to
Gaussian noise N (0, C2σ2I)), estimate (iii) the total number of gradient computations K = kN needed to achieve
(converge to at least) the target test accuracy.

Assuming that we are able to efciently determine a suitable triple (C,σ, k) (we explain how this can be done at the
end of this section), we are able to apply Theorem 3.1 for a constant sample size sequence with si = s as follows||:

• We set δ = 1N (the typical value used in literature). Given δ and the previously determined σ we use the
equation in (6) to solve for ϵ. If ϵ ≥ 05, then Theorem 3.1 is not applicable** and σ must be chosen larger
which violates the target accuracy – one may decide to lower the target accuracy and recompute a triple
(C,σ, k). If ϵ < 05, then condition (6) is satised.††

Since Theorem 3.1 is tight up to a "constant", see Theorem 3.2, the equation in (6) solves for a close to tight ϵ
that cannot be further decreased. This elucidates the importance of a Theorem 3.1 that provides a close to tight
bound.

• Given k, σ and ϵ, we compute γ (which is generally close to 2). Notice that for a constant sample size sequence
we have θ = 1 and we can verify condition (7). Since k generally represents 50 or 100s of epochs and we only
take the natural logarithm of 1δ = N , condition (7) generally veries in practice.

• This leaves us with the nal condition (8) which needs to be satised in order to apply Theorem 3.1 and
conclude (ϵ, δ)-DP. As discussed in Section 3.2, we want to meet condition (8) with equality as this yields

§This is the case in big data analysis where each local data set represents a too small sample of the source distribution for learning
an accurate local model on its own. Hence, collaboration among multiple clients through a central server is needed to generate an
accurate joint global model.

¶Algorithm 1 uses C rather than 2C in line 11. This still ts the f -DP framework because our analysis based on [1] assumes a
probabilistic (rather than a deterministic) sampling strategy as implemented in the Opacus library [32]. For a constant sample size
sequence with sample sizes s, we can reinterpret the si as the actual chosen probabilistic sample sizes with E[si] = s and apply our
theory that holds for varying sample size sequences (we need to formulate an upper bound on smax which holds with probability
’close to 1’ and this will determine θ in Theorem 3.1 and Theorem B.4).

||A more advanced algorithm is proposed in Appendix E in which parameters are regularly updated. It is left as an open problem
to implement this algorithm for learning tasks based on more complex data sets – our current experiments do not need such adaptivity.

**If we use the more advanced algorithm of Appendix E, which is based on the more general Theorem B.4, then the constraint
ϵ < 05 can be discarded and larger target ϵ are possible.

††The client may have a DP guarantee for some target epsilon ϵtar in mind. If the computed ϵ > ϵtar , then the client should not
participate in the collaborative training of the global model and should abort.

6

the best test accuracy and minimal round complexity (among the T that satisfy (8) for the previously xed
parameters γ, θ and k). As soon as T is computed, we set s = KT .

We now return to the problem of how to efciently learn how to select parameters C, σ and K (without having to
conduct a full training, based on DP-SGD, for various candidate parameter settings for empirical evidence). We
introduce the concept of a utility graph where a “best-case” accuracy is depicted as a function of noise σ and clipping
constant C in DP-SGD (see Section 4). In DP-SGD the last round of local updates is aggregated into an update of the
global model, after which the global model is nalized. This means that the Gaussian noise added to a client local
update of its last round is directly added as a perturbation to the nal global model. We have a best-case scenario if
we neglect the added noise of all previous rounds. That is, the “best-case” accuracy for DP-SGD is the accuracy of a
global model which is trained using SGD with clipping corresponding to C and without adding Gaussian noise, after
which Gaussian noise is added to the nal model at the very end. The utility graph for a xed C depicts this “best-case”
trade-off between test accuracy and σ.

To generate the graph, we x a diminishing learning rate η̄t (step size) from round to round and we x the total number
K of local gradient computations that will be performed. Based on local training data and a-priori knowledge (possibly
from transferring a public model of another similar learning task), a local client can run SGD locally without any added
noise but with clipping corresponding to C . This learns a local model w∗ (which depends on C) and we compare how
much accuracy is sacriced by adding Gaussian noise n ∼ N (0, C2σ2I); that is, we compute and depict the ratio
“F (w∗ + n)F (w∗)" as a function of σ and we do this for various clipping constants C . This teaches us the range of σ
and C combinations that may lead to sufcient accuracy (say at most a 10% drop).‡‡

The rationale for employing the utility graph in the context of a single client is primarily derived from scenarios
characterized by strong convexity, where the optimal solution w∗, when perturbed by noise, is expected to remain in
close proximity to w∗. Therefore, in the strong convex case we expect ŵ (as a result of DP-SGD) to be close enough to
w∗ to lead to sufcient prediction accuracy as anticipated by the utility graph. In the realm of nonconvex optimization it
has been established that deep and expansive neural networks possess a multitude of robust global optima w∗, which
are interconnected, as evidenced by research such as [30]. Furthermore, research by [31] suggests that deep learning
models exhibit linear convergence when subjected to SGD. This phenomenon underpins the practical observation that
running SGD on a given training dataset consistently yields global optima that perform with high accuracy on testing
datasets. Such ndings reinforce the expectation that the distribution of ŵ (as a result of DP-SGD) will be sufciently
concentrated around the true optimum w∗ and lead to sufcient prediction accuracy as anticipated by the utility graph.

The main purpose of the utility graph is to efciently identify ineffective pairs (σ, C) without conducting a true private
training. It is not guaranteed that the chosen pairs (σ, C) will offer good test accuracy when running the true private
training DP-SGD, i.e., whether the test accuracy ts our requirement. Only after running DP-SGD the true test accuracy
is found out.

We summarize the execution ow for proactive DP. We begin by setting δ = 1
N and using the utility graph to search for

a suitable σ by starting with a large value of σ and gradually decreasing it. The goal is to nd a value of σ that yields an
expected prediction accuracy greater than our desired accuracy or utility goal. After that, we make use of the equation
in (6) to compute ϵ and check if it is smaller than 05. To work with the utility graph, we must determine the anticipated
decrease in prediction accuracy compared to training without privacy preservation. If ϵ is greater than 05, we must
select another σ by decreasing σ until we are unable to obtain an appropriate value because our result is tight. Due to
the tightness and simplicity of the equation in (6), the computational cost of this process is small. If ϵ is less than 05,
we move forward in the process. Once we have obtained the optimal σ and ϵ, the implementation process progresses. In
practical terms, k is generally restricted to 50 or 100 epochs. After determining the desired values of k and ϵ, we use
the DP calculator to nd γ and the best T . Finally, we can set s = KT , where K = kN .

As an example of the above method, in Section 4 simulations for the LIBSVM data set show (ϵ = 005, δ = 1N)-DP
is possible while achieving good accuracy with σ ≈ 20.

4 Experiments

Our goal is to show that the more general asynchronous differential privacy framework (asynchronous DP-SGD which
includes DP-SGD of Algorithm 1) of Appendix A ensures a strong privacy guarantee, i.e, can work with very small ϵ

‡‡In some cases (not in the experiments in this paper), F (w∗) can be very small and as a result F (w∗ + n) is not stable. A
solution for this case can be to train model w∗ to reach a sufcient good accuracy (for example 80% or 90%) and then stop. Now
F (w∗) is not so small and F (w∗ + n)F (w∗) may still produce stable results. We hypothesize that the resulting utility graph
transfers to a full training of model w∗.

7

(a) (b) (c)

Figure 1: Strongly convex. (a) Utility graph, (b) Different s, (c) Different ϵ

(a) (b) (c)

Figure 2: Plain convex. (a) Utility graph, (b) Different s, (c) Different ϵ

(a) (b) (c)

Figure 3: Non-convex. (a) Utility graph, (b) Different s, (c) Different ϵ

(and δ = 1N), while having a good convergence rate to good accuracy. We refer to Appendix D for simulation details
and complete parameter settings.

Simulation environment. For simulating the asynchronous DP-SGD framework, we use multiple threads where each
thread represents one compute node joining the training process. The experiments are conducted on Linux-64bit OS,
with 16 cpu processors, and 32Gb RAM.

Objective function. We summarize experimental results of our asynchronous DP-SGD framework for strongly convex,
plain convex and non-convex objective functions with constant sample size sequences. As the plain convex objective
function we use logistic regression: The weight vector w and bias value b of the logistic function can be learned by
minimizing the log-likelihood function J :

J = −
N

i=1

[yi · log(σ̄i) + (1− yi) · log(1− σ̄i)],

where N is the number of training samples (xi, yi) with yi  0, 1, and σ̄i = 1(1 + e−(wTxi+b)) is the sigmoid
function. The goal is to learn a vector/model w∗ which represents a pair w̄ = (w, b) that minimizes J . Function J

8

changes into a strongly convex problem by adding ridge regularization with a regularization parameter λ > 0, i.e., we
minimize Ĵ = J + λ

2 ∥w̄∥2 instead of J . That is,

Ĵ = −
N

i=1

[yi log(σ̄i) + (1− yi) log(1− σ̄i)] +
λ

2
∥w̄∥2  (9)

For simulating non-convex problems, we choose a simple neural network (LeNet) [23] with cross entropy loss function
for image classication.

Parameter selection. The parameters used for our distributed algorithm with Gaussian based differential privacy for
strongly convex, plain convex and non-convex objective functions are described in Table 2. The clipping constant C is
set to 01 for strongly convex and plain convex problems and 0025 for non-convex problem (this turns out to provide
good utility).

Table 1: Common parameters of asynchronous DP-SGD framework with differential privacy

of clients n Diminishing step size η̄t Regular λ Clipping constant C

Strongly convex 5 η0
1+βt

‡ 1
N 0.1

Plain convex 5 η0
1+βt or η0

1+β
√

t
N/A 0.1

Non-convex 5 η0
1+β

√
t

N/A 0.025

‡ The i-th round step size η̄i is computed by substituting t =
i−1

j=0 sj into the diminishing step size formula.

For the plain convex case, we can use diminishing step size schemes η0

1+β·t or
η0

1+β·
√
t
. In this paper, we focus our

experiments for the plain convex case on η0

1+β·
√
t
. Here, η0 is the initial step size and we perform a systematic grid

search on parameter β = 0001 for strongly convex case and β = 001 for both plain convex and non-convex cases.
Moreover, most of the experiments are conducted with 5 compute nodes and 1 central server. When we talk about
accuracy (from Figure 7 and onward), we mean test accuracy dened as the fraction of samples from a test data set
that get accurately labeled by the classier (as a result of training on a training data set by minimizing a corresponding
objective function).

Asynchronous DP-SGD setting. The experiments are conducted with 5 compute nodes and 1 central server. For
simplicity, the compute nodes have iid data sets.

Data sets. All our experiments are conducted on LIBSVM [5]§§ and MNIST [22]¶¶ data sets.

4.1 Utility Graph

Since we do not have a closed form to describe the relation between the utility of the model (i.e., prediction accuracy)
and σ, we propose a heuristic approach to learn the range of σ from which we may select σ for nding the best (ϵ, δ)-DP.
The utility graphs – Figures 1(a), 2(a) and 3(a) – show the fraction of test accuracy between the model “F (w + n)"
over the original model “F (w)" (without noise), where n ∼ N (0, C2σ2I) (per round) for various values of the clipping
constant C and noise standard deviation σ. Intuitively, the closer F (w + n)F (w) to 1, the better accuracy w.r.t. to
F (w). Note that w can be any solution and in the utility graphs, we choose w = w∗ with w∗ being near to an optimal
solution.

The smaller C, the larger σ can be, hence, ϵ can be smaller which gives stronger privacy. However, the smaller C,
the more iterations (largerK) are needed for convergence. And if selected too small, no fast enough convergence is
possible. In next experiments we use clipping constant C = 01, which gives a drop of at most 10% in test accuracy for
σ ≤ 20 for both strongly convex and plain convex objective functions. To keep the test accuracy loss ≤ 10% in the
non-convex case, we choose C = 0025 and σ ≤ 12.

4.2 DP-SGD with Different Constant Sample Sizes

Figure 1(b) and Figure 2(b) illustrate the test accuracy of our asynchronous DP-SGD with various constant sample sizes
for the strongly convex and plain convex cases. Here, we use privacy budget ϵ = 004945 and noise σ = 192. When
we use a bigger constant sample size s, for example, s = 26, our algorithm can achieve the desired performance, when

§§https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
¶¶http://yann.lecun.com/exdb/mnist/

9

compared to other constant sample sizes.*** The experiment is extended to the non-convex case as shown in Figure 3(b),
where we can see a similar pattern. Experimental results for other data sets are in Appendix D. This conrms that our
DP-SGD framework can converge to a decent accuracy while achieving a very small privacy budget ϵ.

4.3 DP-SGD with Different Levels of Privacy Budget

Figure 1(c) and Figure 2(c) show that our DP-SGD framework converges to better accuracy if ϵ is slightly larger. E.g., in
the strongly convex case, privacy budget ϵ = 004945 achieves test accuracy 86% compared to 93% without differential
privacy (hence, no added noise); ϵ = 01, still signicantly smaller than what is reported in literature, achieves test
accuracy 91%. Figure 3(c) shows the test accuracy of our asynchronous DP-SGD for different privacy budgets ϵ in the
non-convex case. For ϵ = 015, our framework can achieve a test accuracy of about 93%, compared to 98% without
differential privacy. These gures again conrm the effectiveness of our DP-SGD framework, which can obtain a strong
differential privacy guarantee.

5 Related Work

Our main contribution in this paper is an improved and tight analysis of the moment accountant method by [1].
Since our theory goes beyond the theory developed by Abadi et al., we want to compare our work with [1]. Our
setup in terms of the model architecture, hyperparameters, etc., is different from Abadi et al.’s setup. However, with
ϵ = 2, we achieved ≈ 60% test accuracy after T = 350000 iterations (Figure 14) which equals k = 7 epochs (
k = KN = 35000050000 = 7). In Figure 6.1 of Abadi’s paper, they also achieved around 60% test accuracy after 7
epochs.

However, if we analyze a different perspective where we are interested in the test accuracy deduction from the non-DP
setting, then [1] states that they used the model architecture from the Tensorow tutorial which has 86% accuracy, and
this means they have 26% accuracy deduction at epoch 7. Meanwhile, we used AlexNet which only has a reported
7474% accuracy for the non-DP setting which gives rise to a smaller 1414% accuracy deduction at epoch 7.

For the above reason, we claim that we have a signicant improved analysis of the accountant method in [1]. Even
with the state-of-the-art method of [6] only achieves 659% for CIFAR10 without pre-training data. However, they use
WRN-40-4 (WideResnet) which has 98% test accuracy, and this means they have a 321% test accuracy deduction. In
this case, our method still appears to be better as it can achieve a similar differential privacy and utility trade-of but for
much more simpler neural network model. On the other hand, if we do not consider the model architecture, the test
accuracy can be achieved to 568%, 659%, 735% for ϵ = 1, 2, 4, respectively as shown [6]. Meanwhile, we achieve
≈ 60% test accuracy for ϵ  [05, 3], hence, with ϵ = 1 our method still yields better test accuracy and also allows us to
report ≈ 60% test accuracy for smaller ϵ, i.e., better differential privacy.

6 Conclusion

We propose a new concept in DP coined proactive DP, which serves as a multi-target optimization framework for
DP-SGD. The design of proactive DP is based on a signicant improvement of the analysis of the moment account
method together with two new computation tools - utility graph and DP calculator. These tools help to efciently identify
optimal experimental setups for DP-SGD. We have presented a detailed implementation process for our proactive DP,
accompanied by rigorous experiments aimed at showcasing its proof-of-concept.

Acknowledgements

This paper is supported by NSF grant CNS-1413996 “MACS: A Modular Approach to Cloud Security.

Impact Statement

This paper presents work whose goal is to advance the eld of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specically highlighted here.

***s = 26 meets the lower bound on T ; a larger s violates this lower bound. The reason for having a somewhat small maximum
possible s is because of the relatively small data set size.

10

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

[2] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated learning, 2019.

[3] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplications, extensions, and lower bounds.
arXiv, 2016.

[4] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplications, extensions, and lower bounds.
In Martin Hirt and Adam D. Smith, editors, TCC, volume 9985, pages 635–658, 2016.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[6] Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Unlocking high-accuracy
differentially private image classication through scale, 2022.

[7] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unied analysis of
hogwild-style algorithms. In NIPS, pages 2674–2682, 2015.

[8] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 202–210, 2003.

[9] Jinshuo Dong, Aaron Roth, and Weijie Su. Gaussian differential privacy. Journal of the Royal Statistical Society,
2021.

[10] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy, data processing inequalities, and
statistical minimax rates, 2014.

[11] Cynthia Dwork. A rm foundation for private data analysis. Communications of the ACM, 54(1):86–95, 2011.

[12] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[13] Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. arXiv preprint arXiv:1603.01887, 2016.

[14] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 486–503. Springer, 2006.

[15] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006.

[16] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends®
in Theoretical Computer Science, 9(3–4):211–407, 2014.

[17] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients – how easy is it
to break privacy in federated learning? In NIPS, 2020.

[18] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level perspective,
2018.

[19] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu. Efcient and privacy-enhanced
federated learning for industrial articial intelligence. IEEE Transactions on Industrial Informatics, 16(10):
6532–6542, 2020. doi: 10.1109/TII.2019.2945367.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classication with deep convolutional neural
networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[21] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel optimization
analysis for stochastic incremental methods. JMLR, 19(1):3140–3207, 2018.

[22] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey, 2020.

11

[25] Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent
language models. In International Conference on Learning Representations (ICLR), 2018. URL https://
openreview.net/pdf?id=BJ0hF1Z0b.

[26] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Toward robustness and privacy in federated
learning: Experimenting with local and central differential privacy, 2021.

[27] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 739–753, 2019. doi: 10.1109/SP.2019.00065.

[28] Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin Takác. Sgd
and hogwild! convergence without the bounded gradients assumption. In International Conference on Machine
Learning, pages 3750–3758. PMLR, 2018.

[29] Nhuong Nguyen, Toan Nguyen, Phuong Ha Nguyen, Quoc Tran-Dinh, Lam Nguyen, and Marten Dijk. Hogwild!
over distributed local data sets with linearly increasing mini-batch sizes. In International Conference on Articial
Intelligence and Statistics, pages 1207–1215. PMLR, 2021.

[30] Quynh Nguyen. On connected sublevel sets in deep learning. In International conference on machine learning,
pages 4790–4799. PMLR, 2019.

[31] Quynh N Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer followed by
pyramidal topology. Advances in Neural Information Processing Systems, 33:11961–11972, 2020.

[32] Opacus. Opacus PyTorch library. URL https://opacus.ai.

[33] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Erlingsson. Scalable
private learning with pate. In International conference on learning representations, 2018.

[34] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems, pages 693–701, 2011.

[35] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics.,
1951.

[36] Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence
rate for nite training sets. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

[38] L. Song, R. Shokri, and P. Mittal. Membership inference attacks against adversarially robust deep learning models.
In 2019 IEEE Security and Privacy Workshops (SPW), pages 50–56, 2019. doi: 10.1109/SPW.2019.00021.

[39] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Articial
Intelligence and Security, pages 1–11, 2019.

[40] Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Journal of the American
Statistical Association, 105(489):375–389, 2010.

[41] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private model publishing for
deep learning. 2019 IEEE Symposium on Security and Privacy (SP), May 2019. doi: 10.1109/sp.2019.00019.
URL http://dx.doi.org/10.1109/SP.2019.00019.

[42] Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A newmechanism for decentralized asynchronous
stochastic gradient descent. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 629–638.
IEEE, 2016.

[43] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients, 2020.
[44] Ligeng Zhu, Zhijian Liu, and Song Han. In Advances in Neural Information Processing Systems, volume 32,

2019.
[45] Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via characteristic

function. arXiv preprint arXiv:2106.08567, 2021.

12

A Asynchronous Mini-Batch DP-SGD

All our theory, including the theorems presented in the main body, holds in the asynchronous SGD framework as
introduced in this appendix, where we provide a more general asynchronous mini-batch SGD algorithm (which follows
Hogwild!’s philosophy [34, 7, 42, 28, 21, 29]) with DP. The asynchronous setting allows clients to adapt their sample
sizes to their processing speed and communication latency.

Algorithms††† 2, 3, and 4 explain in pseudo code our asynchronous LDP approach. It is based on the Hogwild! [34]
recursion

wt+1 = wt − ηtf(ŵt; ξt), (10)
where ŵt represents the vector used in computing the gradient f(ŵt; ξt) and whose vector entries have been read
(one by one) from an aggregate of a mix of previous updates that led to wj , j ≤ t. In a single-thread setting where
updates are done in a fully consistent way, i.e. ŵt = wt, yields SGD with diminishing step sizes ηt.
Recursion (10) models asynchronous SGD. The amount of asynchronous behavior that can be tolerated is given by
some function τ(t), see [28] where this is analysed for strongly convex objective functions: We say that the sequence
wt is consistent with delay function τ if, for all t, vector ŵt includes the aggregate of the updates up to and including
those made during the (t− τ(t))-th iteration, i.e.,

ŵt = w0 −


j∈U
ηjf(ŵj ; ξj)

for some U with 0, 1,    , t− τ(t)− 1 ⊆ U .
In Algorithm 4 the local SGD iterations all compute gradients based on the same local model ŵ, which gets substituted
by a newer global model v̂k as soon as it is received by the interrupt service routine ISRReceive. As explained in
ISRReceive v̂k includes all the updates from all the clients up to and including their local rounds ≤ k. This shows that
locally the delay τ can be estimated based on the current local round i together with k. Depending on how much delay
can be tolerated Setup denes Υ(k, i) to indicate whether the combination (k, i) is permissible (i.e., the corresponding
delay aka asynchronous behavior can be tolerated). It has been shown that for strongly convex objective functions
(without DP enhancement) the convergence rate remains optimal even if the delay τ(t) is as large as ≈


t ln t [28].

Similar behavior has been reported for plain convex and non-convex objective functions in [29].

In Algorithm 4 we assume that messages/packets never drop; they will be resent but can arrive out of order. This
guarantees that we get out of the "while Υ(k, i) is false loop" because at some moment the server receives all the
updates in order to broadcast a new global model v̂k+1 and once received by ISRReceive this will increment k and
make Υ(k, i) true which allows LocalSGDwithDP to exit the wait loop. As soon as the wait loop is exited we know
that all local gradient computations occur whenΥ(k, i) is true which reect that these gradient computations correspond
to delays that are permissible (in that we still expect convergence of the global model to good accuracy).

Algorithm 2 Client – Local model with Differential Privacy

1: procedure SETUP(n):
Initialize sample size sequence siTi=0, (diminishing) round step sizes η̄iTi=0, and a default global model v̂0 to
start with.
Dene a permissible delay function Υ(k, i)  True,False which takes the current local round number i and the
round number k of the last received global model into account to nd out whether local SGD should wait till a
more recent global model is received. Υ(·, ·) can also make use of knowledge of the sample size sequences used by
each of the clients.

2: end procedure

In this paper we analyse the Gaussian based differential privacy method of [1]. We use their clipping method; rather than
using the gradient f(ŵ, ξ) itself, we use its clipped version [f(ŵ, ξ)]C where [x]C = xmax1, ∥x∥C. Also,
we use the same mini-batch approach where before the start of the i-th local round a random min-batch of sample size
si is selected. During the inner loop the sum of gradient updates is maintained where each of the gradients correspond
to the same local model ŵ until it is replaced by a newer global model. In supplementary material B we show that this is
needed for proving DP guarantees and that generalizing the algorithm by locally implementing the Hogwild! recursion
itself (which updates the local model each iteration) does not work together with the DP analysis. So, our approach
only uses the Hogwild! concept at a global round by round interaction level.

†††Our pseudocode uses the format from [29].

13

Algorithm 3 Client – Local model with Differential Privacy

1: procedure ISRRECEIVE(v̂k):
This Interrupt Service Routine is called whenever a new broadcast global model v̂k is received from the server.
Once received, the client’s local model ŵ is replaced with v̂k (if no more recent global model v̂>k was received out
of order before receiving this v̂k)
The server broadcasts global model v̂k for global round number k once the updates corresponding to local round
numbers ≤ k − 1 from all clients have been received and have been aggregated into the global model. The server
aggregates updates from clients into the current global model as soon as they come in. This means that v̂k includes
all the updates from all the clients up to and including their local round numbers ≤ k − 1 and potentially includes
updates corresponding to later round numbers from subsets of clients. The server broadcasts the global round
number k together with v̂k.

2: end procedure

Algorithm 4 Client – Local model with Differential Privacy

1: procedure LOCALSGDWITHDP(d)
2: i = 0, ŵ = v̂0
3: while True do
4: while Υ(k, i) = False do nothing end ▷ k is the global round at the server.
5: Uniformly sample a random set ξhsih=1 ⊆ d
6: h = 0, U = 0
7: while h < si do
8: g = [f(ŵ, ξh)]C
9: U = U + g

10: h++
11: end while
12: n ← N (0, C2σ2

i I)
13: U = U + n
14: ŵ = ŵ + η̄i · U
15: Send (i, U) to the Server.
16: i++
17: end while
18: end procedure

At the end of each local round the sum of updates U is obfuscated with Gaussian noise; Gaussian noise N (0, C2σ2
i) is

added to each vector entry. In this general description σi is round dependent, but our DP analysis in Supplementary
Material B must from some point onward assume a constant σ = σi over all rounds. The noised U times the round step
size η̄i is added to the local model after which a new local round starts again.

The noised U is also transmitted to the server who adds U times the round step size η̄i to its global model v̂. As soon as
all clients have submitted their updates up to and including their local rounds ≤ k − 1, the global model v̂, denoted as
v̂k, is broadcast to all clients, who in turn replace their local models with the newly received global model. Notice that
v̂k may include updates from a subset of client that correspond to local rounds ≥ k.

The presented algorithm adapts to asynchronous behavior in the following two ways: We explained above that the
broadcast global models v̂k themselves include a mix of received updates that correspond to local rounds ≥ k – this is
due to asynchronous behavior. Second, the sample size sequence si does not necessarily need to be xed a-priori
during Setup (the round step size sequence η̄i does need to be xed a-priori). In fact, the client can adapt its sample
sizes si on the y to match its speed of computation and communication latency. This allows the client to adapt its local
mini-batch SGD to its asynchronous behavior due to the scheduling of its own resources. Our DP analysis holds for a
wide range of varying sample size sequences.

We notice that adapting sample size sequences on a per client basis still ts the same overall objective function as
long as all local data sets are iid: This is because iid implies that the execution of the presented algorithm can be cast
in a single Hogwild! recursion where the ξh are uniformly chosen from a common data source distribution D. This
corresponds to the stochastic optimization problem

min
w∈Rd

F (w) = Eξ∼D[f(w; ξ)] ,

14

which denes objective function F (independent of the locally used sample size sequences). Local data sets being iid in
the sense that they are all, for example, drawn from car, train, boat, etc images benet from DP in that car details (such
as an identifying number plate), boat details, etc. need to remain private.

B Differential privacy proofs

This appendix proves a key observation improving the DP moment accountant from [1]. As shown in [1], for any
given T ≥ 0 in one specic setting, there are many choices for (ϵ, δ,σ) depending on two constants (c1, c2) (see
Theorem B.1). We re-frame the problem as for a given (ϵ, δ,σ) there are many choices T depending on K and sample
size sequence s, where T ≥ k2(const · ϵ) (see Theorem 3.1).

This appendix provides the proof of Theorem 3.1. It follows a sequence of steps: In Section B.1 we discuss the
analysis of [1] and explain where we will improve. This leads in Section B.2 to an improved analysis yielding a rst
generally applicable Theorem B.2; DP denitions/tools with a key lemma (generalized from [1]) are discussed in
Section B.2.1 and the proof of Theorem B.2 is in Section B.2.2. As a consequence we derive in Section B.3 a simplied
characterization in the form of Theorem B.4. Finally, we introduce more coarse bounds in order to extract the more
readable Theorem 3.1 in Section B.4.

B.1 DP-SGD Analysis by Abadi et al.

[1] proves the following theorem (rephrased using our notation substituting q = sN):
Theorem B.1. There exist constants c1 and c2 so that given a sample size sequence si = s and number of steps T , for
any ϵ < c1T (sN)2, Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
(sN) ·


T ln(1δ)

ϵ


The interpretation of Theorem B.1, however, subtle: The condition on ϵ in Theorem B.1 is equivalent to

1
√
c1 < z where z = (sN) ·


Tϵ

Substituting this into the bound for σ yields

σ ≥ (c2 · z) ·


ln(1δ)

ϵ
 (11)

This formulation only depends on T through the denition of z. Notice that z may be as small as 1
√
c1. In fact, it

is unclear how z depends on T since T is equal to the total number K of gradient computations over all local rounds
performed on the local data set divided by the mini-batch size s, i.e., T = Ks, hence, z = (KN) ·


1(T ϵ). This

shows that for xed K and N , we can increase T as long as 1
√
c1 < z, or equivalently,

T < c1(KN)2ϵ (12)

(notice that the original constraint on ϵ in Theorem B.1 directly translates into this upper bound on T by using T = Ks).
Since σ cannot be chosen too large (otherwise the nal global model has too much noise), ϵ, see (11), cannot be very
small. Therefore, (12) puts an upper bound on T which is in general much less than K for practically sized large data
sets (K equals the maximum possible number of rounds for mini-batch size s = 1).

Rather than applying Theorem B.1, we can directly use the moment accountant method of its proof to analyse specic
parameter settings. It turns out that T can be much larger than upper bound (12). In this paper we formalize this
insight (by showing that ‘constants’ c1 and c2 can be chosen as functions of T and other parameters) and show a lower
bound on σ which does not depend on T at all – in fact z in (11) can be characterized as a constant independent of any
parameters. This will show that σ can remain small to at least a lower bound that only depends on the privacy budget.

B.2 A General Improved DP-SGD Analysis

We generalize Theorem B.1 [1]:
Theorem B.2. We assume that σ = σi with σ ≥ 216215 for all rounds i. Let

r = r0 · 23 ·


1

1− u0
+

1

1− u1

e3

σ3


e3/σ

2

with u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ
,

15

where r0 is such that it satises
r0 ≤ 1e, u0 < 1, and u1 < 1

Let the sample size sequence satisfy siN ≤ r0σ. For j = 1, 2, 3 we dene Ŝj (resembling an average over the sum of
j-th powers of siN) with related constants ρ and ρ̂:

Ŝj =
1

T

T−1

i=0

sji
N(N − si)j−1

,
Ŝ1Ŝ3

Ŝ2
2

≤ ρ and
Ŝ2
1

Ŝ2

≤ ρ̂

Let ϵ = c1T Ŝ
2
1 . Then, Algorithm 4 is (ϵ, δ)-differentially private if

σ ≥ 2√
c0


Ŝ2T (ϵ+ ln(1δ))

ϵ
where c0 = c(c1) with c(x) = min

√
2rρx+ 1− 1

rρx
,
2

ρ̂x




This generalizes Theorem B.1 where all si = s are constant. First, Theorem B.2 covers a much broader class of
sample size sequences that satisfy bounds on their ’moments’ Ŝj (this is more clear as a consequence of Theorem
B.2). Second, our detailed analysis provides a tighter bound in that it makes the relation between “constants” c0 and c1
explicit, contrary to [1]. Exactly due to this relation c0 = c(c1) we are able to prove in Appendix B.3 Theorem B.4 as a
consequence of Theorem B.2 by considering the case c(c1) = 2(ρ̂c1).

In order to prove Theorem B.2, we rst set up the differential privacy framework of [1] in Appendix B.2.1. Here we
enhance a core lemma by proving a concrete bound rather than an asymptotic bound on the so-called λ-th moment
which plays a crucial role in the differential privacy analysis. The concrete bound makes explicit the higher order error
term in [1].

In Appendix B.2.2 we generalize Theorem B.1 of [1] by proving Theorem B.4 using the core lemma of Appendix B.2.1.

B.2.1 Denitions and Main Lemma

We base our proofs on the framework and theory presented in [1]. In order to be on the same page we repeat and cite
word for word their denitions:

For neighboring databases d and d′, a mechanism M, auxiliary input aux, and an outcome o, dene the privacy loss at
o as

c(o;M, aux, d, d′) = ln
Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]


For a given mechanism M, we dene the λ-th moment αM(λ; aux, d, d′) as the log of the moment generating function
evaluated at the value λ:

αM(λ; aux, d, d′) = lnEo∼M(aux,d)[exp(λ · c(o;M, aux, d, d′))]

We dene
αM(λ) = max

aux,d,d′
αM(λ; aux, d, d′)

where the maximum is taken over all possible aux and all the neighboring databases d and d′.

We rst take Lemma 3 from [1] and make explicit their order term O(q3λ3σ3) with q = si,c and σ = σi in our
notation. The lemma considers as mechanismM the i-th round of gradient updates and we abbreviate αM(λ) by αi(λ).
The auxiliary input of the mechanism at round i includes all the output of the mechanisms of previous rounds (as in [1]).

For the local mini-batch SGD the mechanism M of the i-th round is given by

M(aux, d) =
si−1

h=0

[f(ŵ, ξh)]C +N (0, C2σ2
i I),

where ŵ is the local model at the start of round i which is replaced by a new global model v̂ as soon as a new v̂ is
received from the server (see ISRReceive), and where ξh are drawn from training data d, and []C denotes clipping (that
is [x]C = xmax1, ∥x∥2C). In order for M to be able to compute its output, it needs to know the global models
received in round i and it needs to know the starting local model ŵ. To make sure M has all this information, aux

16

represents the collection of all outputs generated by the mechanisms of previous rounds < i together with the global
models received in round i itself.

In the next subsection we will use the framework of [1] and apply its composition theory to derive bounds on the privacy
budget (ϵ, δ) for the whole computation consisting of T rounds that reveal the outputs of the mechanisms for these T
rounds as described above.

We remind the reader that siN is the probability of selecting a sample from a sample set (batch) of size si out of
a training data set d′ of size N = d′; σi corresponds to the N (0, C2σ2

i I) noise added to the mini-batch gradient
computation in round i (see the mechanism described above).
Lemma B.3. Assume a constant r0 < 1 and deviation σi ≥ 216215 such that siN ≤ r0σi. Suppose that λ is a
positive integer with

λ ≤ σ2
i ln

N

siσi

and dene

U0(λ) =
2


λr0σi

σi − r0
and U1(λ) =

2e


λr0σi

(σi − r0)σi


Suppose U0(λ) ≤ u0 < 1 and U1(λ) ≤ u1 < 1 for some constants u0 and u1. Dene

r = r0 · 23


1

1− u0
+

1

1− u1

e3

σ3
i


exp(3σ2

i)

Then,

αi(λ) ≤
s2iλ(λ+ 1)

N(N − si)σ2
i

+
r

r0
· s3iλ

2(λ+ 1)

N(N − si)2σ3
i



Proof. The start of the proof of Lemma 3 in [1] implicitly uses the proof of Theorem A.1 in [16], which up to formula
(A.2) shows how the 1-dimensional case translates into a privacy loss that corresponds to the 1-dimensional problem
dened by µ0 and µ1 in the proof of Lemma 3 in [1], and which shows at the end of the proof of Theorem A.1 (p. 268
[16]) how the multi-dimensional problem transforms into the 1-dimensional problem. In the notation of Theorem A.1,
f(D) +N (0,σ2I) represents the general (random) mechanism M(D), which for Lemma 3 in [1]’s notation should be
interpreted as the batch computation

M(d) =


h∈J

f(dh) +N (0,σ2I)

for a random sample/batch dhh∈J . Here, f(dh) (by abuse of notation – in this context f does not represent the
objective function) represent clipped gradient computations f(ŵ; dh) where ŵ is the last received global model with
which round i starts (Lemma 3 in [1] uses clipping constant C = 1, hence N (0, C2σ2I) = N (0,σ2I)).

Let us detail the argument of the proof of Lemma 3 in [1] in order to understand what exibility is possible: We consider
two data sets d = d1,    , dN−1 and d′ = d+ dN, where dN ̸ d represents a new data base element so that d and
d′ differ in exactly one element. The size of d′ is equal to N . We dene vector x as the sum

x =


J\{N}
f(di)

Let
z = f(dN)

If we consider data set d, then sample set J ⊆ 1, · · · , N − 1 and mechanism M(d) returns

M(d) =


h∈J

f(dh) +N (0,σ2I) =


h∈J\{N}
f(dh) +N (0,σ2I) = x+N (0,σ2I)

If we consider data set d′, then J ⊆ 1, · · · , N contains dN with probability q = J N (J  = si is the sample size
used in round i). In this case mechanism M(d′) returns‡‡‡

M(d′) =


h∈J

f(dh) +N (0,σ2I) = f(dN) +


h∈J\{N}
f(dh) +N (0,σ2I) = z + x+N (0,σ2I)

‡‡‡This is actually a subtle argument: We do not have xed constant sample sizes, instead we have probabilistic sample sizes with
a predetermined expectation. The idea is to add each data element to the sample with probability siN . This means that the sample
size is equal to si in expectation. This allows one to compare two samples that differ in exactly one element dN (as is done in this

17

with probability q. It returns

M(d′) =


h∈J

f(dh) +N (0,σ2I) =


h∈J\{N}
f(dh) +N (0,σ2I) = x+N (0,σ2I)

with probability 1− q. Combining both cases shows that M(d′) represents a mixture of two Gaussian distributions
(shifted over a vector x):

M(d′) = x+ (1− q) · N (0,σ2I) + q · N (z,σ2I)

This high dimensional problem is transformed into a single dimensional problem at the end of the proof of Theorem A.1
(p. 268 [16]) by considering the one dimensional line from point x into the direction of z, i.e., the line through points x
and x+ z; the one dimensional line maps x to the origin 0 and x+ z to ∥z∥2. M(d) as wells as M(d′) projected on
this line are distributed as

M(d) ∼ µ0 and M(d′) ∼ (1− q)µ0 + qµ1,

where
µ0 ∼ N (0,σ2) and µ1 ∼ N (∥z∥2,σ2)

In [1] as well as in this paper the gradients are clipped (their Lemma 3 uses clipping constant C = 1) and this implies

∥z∥2 = ∥f(dN)∥2 ≤ C = 1

Their analysis continues by assuming the worst-case in differential privacy, that is,

µ1 ∼ N (1,σ2)

Notice that the above argument analyses a local mini-batch SGD computation. Rather than using a local mini-batch
SGD computation, can we use clipped SGD iterations which continuously update the local model:

ŵh+1 = ŵh − ηh[f(ŵh, ξh)]C 

This should lead to faster convergence to good accuracy compared to a local minibatch computation. However, the above
arguments cannot proceed§§§ because (in the notation used above where the dh, h  J , are the ξh, h  0,    , si − 1 =
J  − 1) selecting sample dN in iteration h does not only inuence the update computed in iteration h but also
inuences all iterations after h till the end of the round (because f(dN) updates the local model in iteration h which
is used in the iterations that come after). Hence, the dependency on dN is directly felt by f(dN) in iteration h and
indirectly felt in the f(dj) that are computed after iteration h. This means that we cannot represent distribution M(d′)
as a clean mix of Gaussian distributions with a mean z, whose norm is bounded by the clipping constant.

The freedom which we do have is replacing the local model by a newly received global model. This is because the
updates f(dh), h  J , computed locally in round i have not yet been transmitted to the server and, hence, have not been
aggregated into the global model that was received. In a way the mechanism M(d) is composed of two (or multiple if
more newer and newer global models are received during the round) sums

M(d) =


h∈J0

f0(dh) +


h∈J1

f1(dh) +N (0,σ2I),

where J = J0 ∪ J1 and J0 represent local gradient computations, shown by f0(), based on the initial local model ŵ
and J1 represent the local gradient computations, shown by f1(), based on the newly received global model v̂ which
replaces ŵ. As one can verify, the above arguments are still valid for this slight adaptation. As in Lemma 3 in [1] we
can now translate our privacy loss to the 1-dimensional problem dened by µ0 ∼ N (0, C2σ2) and µ1 ∼ N (C,C2σ2)
for ∥f(, )∥2 ≤ C as in the proof of Lemma 3 (which after normalization with respect to C gives the formulation of
Lemma 3 in [1] for C = 1).

argument). If one uses xed constant sample sizes, then M(d′) = x + (1 − q) · N (0,σ2I) + q · N (f(dN) − f(dh),σ
2I) for

z = f(dN) and some h ∈ J . Now ∥f(dN) − f(dh)∥2 ≤ ∥f(dN)∥2 + ∥f(dh)∥2 ≤ 2C = 2 (for C = 1) and we pay a factor 2
penalty. In the f -DP framework we actually consider the latter and work with xed (non-probabilistic) constant sample sizes. In this
paper and, what should have been assumed in [1] and is actually implemented in the Opacus library [32], we assume a probabilistic
sample size and safe the factor 2. We notice that even if we aim at a constant sample size sequence with sample sizes s, we can
reinterpret the si as the actual chosen probabilistic sample size with E[si] = s and apply our theory that holds for varying sample
size sequences (we need to formulate an upper bound on smax which holds with probability ’close to 1’ and this will determine θ in
Theorem 3.1).

§§§Unless we assume a general upper bound on the norm of the Hessian of the objective function which should be large enough to
cover a wide class of objective functions and small enough in order to be able to derive practical differential privacy guarantees.

18

The remainder of the proof of Lemma 3 analyses µ0 and the mix µ = (1 − q)µ0 + qµ1 leading to bounds for the
expectations (3) and (4) in [1] which only depend on µ0 and µ1. Here, q is the probability of having a special data
sample ξ (written as dN in the arguments above) in the batch. In our algorithm q = siN . So, we may adopt the
statement of Lemma 3 and conclude for the i-th batch computation

αi(λ) ≤
s2iλ(λ+ 1)

N(N − si)σ2
i

+O


s3iλ

3

N3σ3
i




In order to nd an exact expression for the higher order term we look into the details of Lemma 3 of [1]. It computes an
upper bound for the binomial tail

λ+1

t=3


λ+ 1

t


Ez∼ν1

[((ν0(z)− ν1(z))ν1(z))
t], (13)

where

Ez∼ν1
[((ν0(z)− ν1(z))ν1(z))

t]

≤ (2q)t(t− 1)!!

2(1− q)t−1σt
+

qt

(1− q)tσ2t
+

(2q)t exp((t2 − t)(2σ2))(σt(t− 1)!! + tt)

2(1− q)t−1σ2t

=
(2q)t(t− 1)!!(1 + exp((t2 − t)(2σ2)))

2(1− q)t−1σt
+

qt(1 + (1− q)2t exp((t2 − t)(2σ2))tt)

2(1− q)tσ2t
(14)

Since t ≥ 3, we have the coarse upper bounds

1 ≤ exp((t2 − t)(2σ2))

exp((32 − 3)(2σ2))
and 1 ≤ (1− q)2t exp((t2 − t)(2σ2))tt

(1− q)23 exp((32 − 3)(2σ2))33


By dening c as 1 plus the maximum of these two bounds,

c = 1 +
max 1, 1((1− q) · 216)

exp(3σ2)
,

we have (14) at most

≤ (2q)t(t− 1)!!c exp((t2 − t)(2σ2))

2(1− q)t−1σt
+

qtc(1− q)2t exp((t2 − t)(2σ2))tt

2(1− q)tσ2t
 (15)

Generally (for practical parameter settings as we will nd out), q ≤ 1− 1216 which makes c ≤ 2. In the remainder of
this proof, we use c = 2 and assume q ≤ 215216. In fact, assume in the statement of the lemma that σ = σi ≥ 216215
which together with q = siN ≤ r0σi and r0 < 1 implies q ≤ 215216.

After multiplying (15) with the upper bound for

λ+ 1

t


≤ λ+ 1

λ

λt

t!

and noticing that (t− 1)!!t! ≤ 1 and ttt! ≤ et we get the addition of the following two terms

λ+ 1

λ

λt(2q)t exp((t2 − t)(2σ2))

(1− q)t−1σt
+

λ+ 1

λ

λtqt(1− q)2t exp((t2 − t)(2σ2))et

(1− q)tσ2t


This is equal to

(1− q)
λ+ 1

λ


λ2q exp((t− 1)(2σ2))

(1− q)σ

t

+(1− q)
λ+ 1

λ


λq2 exp(1 + (t− 1)(2σ2))

(1− q)σ2

t

 (16)

We notice that by using t ≤ λ+ 1, λσ2 ≤ ln(1(qσ)) (assumption), and q = si,cNc ≤ r0σ we obtain

λ2q exp((t− 1)(2σ2))

(1− q)σ
≤ λ2q exp(λ(2σ2))

(1− q)σ
≤ 2

√
λq

(1− q)σ
=

2


λr0σ

σ − r0
= U0(λ)

19

and

λq2 exp(1 + (t− 1)(2σ2))

(1− q)σ2
≤ λq2e exp(λ(2σ2))

(1− q)σ2
≤ 2e

√
λq

(1− q)σ2
=

2e


λr0σ

(σ − r0)σ
= U1(λ)

Together with our assumption on U0(λ) and U1(λ), this means that the binomial tail (13) is upper bounded by the two
terms in (16) after substituting t = 3, with the two terms multiplied by

∞

j=0

U0(λ)
j =

1

1− U0(λ)
≤ 1

1− u0
and

∞

j=0

U1(λ)
j =

1

1− U1(λ)
≤ 1

1− u1

respectively. For (13) this yields the upper bound

1

1− u0
(1− q)

λ+ 1

λ


λ2q exp(1σ2)

(1− q)σ

3

+
1

1− u1
(1− q)

λ+ 1

λ


λq2 exp(1 + 1σ2)

(1− q)σ2

3

≤


1

1− u0
23 exp(3σ2) +

1

1− u1

23 exp(3 + 3σ2)

σ3


· λ

2(λ+ 1)q3

(1− q)2σ3


By the denition of r, we obtain the bound

≤ r

r0
· λ

2(1 + λ)q3

(1− q)2σ3
,

which nalizes the proof.

B.2.2 Proof of Theorem B.2

The proof Theorem B.2 follows the line of thinking in the proof of Theorem 1 in [1]. Our theorem applies to varying
sample/batch sizes and for this reason introduces moments Ŝj . Our theorem explicitly denes the constant used in the
lower bound of σ – this is important for proving our second (main) theorem in the next subsection.

Theorem B.2 assumes σ = σi for all rounds i with σ ≥ 216215; constant r0 ≤ 1e such that siN ≤ r0σ; constant

r = r0 · 23


1

1− u0
+

1

1− u1

e3

σ3


exp(3σ2), (17)

where

u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ

are both assumed < 1.

For j = 1, 2, 3 we dene¶¶¶

Ŝj =
1

T

T−1

i=0

sji
N(N − si)j−1

with
Ŝ1Ŝ3

Ŝ2
2

≤ ρ,
Ŝ2
1

Ŝ2

≤ ρ̂

Based on these constants we dene

c(x) = min

√
2rρx+ 1− 1

rρx
,
2

ρ̂x




Let ϵ = c1T Ŝ
2
1 . We want to prove Algorithm 4 is (ϵ, δ)-differentially private if

σ ≥ 2√
c0


Ŝ2T (ϵ+ ln(1δ))

ϵ
where c0 = c(c1)

Proof. For j = 1, 2, 3, we dene

Sj =

T−1

i=0

sji
N(N − si)j−1σj

i

and S′
j =

1

T

T−1

i=0

sjiσ
j
i

N(N − si)j−1


¶¶¶sji denotes the j-th power (si)j .

20

(Notice that S′
1 ≤ r0.) Translating Lemma B.3 in this notation yields (we will verify the requirement/assumptions of

Lemma B.3 on the y below)
T−1

i=0

αi(λ) ≤ S2λ(λ+ 1) +
r

r0
S3λ

2(λ+ 1)

The composition Theorem 2 in [1] shows that our algorithm for client c is (ϵ, δ)-differentially private for

δ ≥ min
λ

exp


T−1

i=0

αi(λ)− λϵ


,

where T indicates the total number of batch computations and the minimum is over positive integers λ. Similar to their
proof we choose λ such that

S2λ(λ+ 1) +
r

r0
S3λ

2(λ+ 1)− λϵ ≤ −λϵ2 (18)

This implies that we can choose δ as small as exp(−λϵ2), i.e., if

δ ≥ exp(−λϵ2), (19)

then we have (ϵ, δ)-differential privacy. After dividing by the positive integer λ, inequality (18) is equivalent to the
inequality

S2(λ+ 1) +
r

r0
S3λ(1 + λ) ≤ ϵ2,

which is equivalent to

(λ+ 1)


1 +

r

r0

S3

S2
λ


≤ ϵ

2S2


This is in turn implied by
λ+ 1 ≤ c0

ϵ

2S2
(20)

together with

c0
ϵ

2S2


1 +

r

r0

S3

S2
c0

ϵ

2S2


≤ ϵ

2S2
,

or equivalently,

c0


1 +

r

2r0
· c0 ·

S3

S2
2

ϵ


≤ 1 (21)

We use
ϵ = c1 · T Ŝ2

1 = c1 · S1S
′
1 (22)

(for constant σi = σ). This translates our requirements (20) and (21) into

λ+ 1 ≤ c0c1
2

S1S
′
1

S2
and (23)

c0


1 +

r

2r0
· c0c1

S1S3

S2
2

S′
1


≤ 1 (24)

Since we assume
S1S3

S2
2

=
Ŝ1Ŝ3

Ŝ2
2

≤ ρ

and since we know that S′
1 ≤ r0, requirement (24) is implied by

c0(1 +
rρ

2
· c0c1) ≤ 1,

or equivalently

c1 ≤ 1− c0
rρ
2 c20

 (25)

Also notice that for constant σi = σ we have S′
1 = S1σ

2T . Together with

S2
1

S2
=

Ŝ2
1

Ŝ2

T ≤ ρ̂T

21

we obtain from (23)

λ+ 1 ≤ c0c1
2

S1S
′
1

S2
≤ c0c1

2
ρ̂σ2 (26)

Generally, if

c1 ≤ 2

ρ̂c0
, (27)

then (26) implies λ ≤ σ2: Hence, (a) for our choice of u0 and u1 in this theorem, U0(λ) ≤ u0 and U1(λ) ≤ u1 as
dened in Lemma B.3, and (b) the condition λ ≤ σ2

i ln
Nc

si,cσi
is satised (by assumption, Nc

si,cσi
≥ 1r0 ≥ e). This

implies that Lemma B.3 is indeed applicable.

For the above reasons we strengthen the requirement on ϵ (conditions (25) and (27) with (22)) to

ϵ ≤ min


1− c0
rρ
2 c20

,
2

ρ̂c0


· S1S

′
1

For constant σi = σ, we have
S1S

′
1 = T Ŝ2

1 ,

hence, we need

ϵ ≤ min


1− c0
rρ
2 c20

,
2

ρ̂c0


· T Ŝ2

1 (28)

Summarizing (28), (20), and (19) for some positive integer λ proves (ϵ, δ)-differential privacy.

Condition (19) (i.e., exp(−λϵ2) ≤ δ) is equivalent to

ln(1δ) ≤ λϵ

2
(29)

If
λ = ⌊c0

ϵ

2S2
⌋ − 1 (30)

is positive, then it satises (20) and we may use this λ in (29). This yields the condition

ln(1δ) ≤

⌊c0

ϵ

2S2
⌋ − 1


ϵ

2
,

which is implied by

ln(1δ) ≤

c0

ϵ

2S2
− 2


ϵ

2
=

c0
4S2

ϵ2 − ϵ

For constant σi = σ we have S2 = Ŝ2Tσ
2 and the latter inequality is equivalent to

σ ≥ 2√
c0


Ŝ2


T (ϵ+ ln(1δ))

ϵ
 (31)

Summarizing, if (28), (31), and the lambda value (30) is positive, then this shows (ϵ, δ)-differential privacy.

The condition (30) being positive follows from
4S2

c0
≤ ϵ

Substituting S2 = Ŝ2Tσ
2 yields the equivalent condition

4T Ŝ2

σ2c0
≤ ϵ

or

σ ≥ 2√
c0


Ŝ2

√
T ϵ

ϵ
,

which is implied by (31). Summarizing, if (28) and (31), then this shows (ϵ, δ)-differential privacy. Notice that (31)
corresponds to Theorem 1 in [1] where all si are constant implying


Ŝ2 = q

√
1− q in their notation.

22

We are interested in a slightly different formulation: Given

c1 = min


1− c0
rρ
2 c20

,
2

ρ̂c0



what is the maximum possible c0 (which minimizes σ implying more fast convergence to an accurate solution). We
need to satisfy c0 ≤ 2(ρ̂c1) and

rρ

2
c1c

2
0 + c0 − 1 ≤ 0,

that is,
(c0 + 1(rρc1))

2 ≤ 1
rρ
2
c1


+ 1(rρc1)

2,

or

c0 ≤


1
rρ
2
c1


+ 1 (rρc1)

2 − 1(rρc1) =

√
2rρc1 + 1− 1

rρc1


We have

c0 = min

√
2rρc1 + 1− 1

rρc1
, 2(ρ̂c1)


= c(c1)

This nishes the proof.

B.3 A Simplied Characterization

So far, we have generalized Theorem B.1 in Appendix B in a non-trivial way by analysing increasing sample size
sequences, by making explicit the higher order error term in [1], and by providing a precise functional relationship
among the constants c1 and c2 in Theorem B.1. The resulting Theorem B.2 is still hard to interpret. The next theorem is
a consequence of Theorem B.2 and brings us the interpretation we look for.

Theorem B.4. For sample size sequence siT−1
i=0 the total number of local SGD iterations is equal to K =

T−1
i=0 si.

We dene the mean s̄ and maximum smax and their quotient θ as

s̄ =
1

T

T−1

i=0

si =
K

T
, smax = maxs0,    , sT−1, and θ =

smax

s̄


We dene

h(x) =


1 + (ex)2 − ex
2

, g(x) = min


1

ex
, h(x)


,

and denote by γ the smallest solution satisfying

γ ≥ 2

1− ᾱ
+

24 · ᾱ
1− ᾱ


σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ


e3/σ

2

with ᾱ =
ϵN

γK


If the following requirements are satised:

s̄ ≤
g


2(ϵ+ ln(1δ))ϵ


θ
·N, (32)

ϵ ≤ γh(σ) · K
N

, (33)

ϵ ≥ γθ2 · K
N

· s̄

N
, and (34)

σ ≥


2(ϵ+ ln(1δ))ϵ, (35)

then Algorithm 4 is (ϵ, δ)-differentially private.

Its proof follows from analysing the requirements stated in Theorem B.2. We will focus on the case where c(x) = 2
ρ̂x ,

which turns out to lead to practical parameter settings as discussed in the main body of the paper.

Requirement on r – (38): In Theorem B.2 we use

r = r0 · 23 ·


1

1− u0
+

1

1− u1

e3

σ3


e3/σ

2

23

with

u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ
,

where r0 is such that it satises
r0 ≤ 1e, u0 < 1, and u1 < 1 (36)

In our application of Theorem B.2 we substitute r0 = ασ. This translates the requirements of (36) into

α ≤ 1

eσ
, α < 1, and σ >

2e
√
α

1− α
 (37)

As we will see in our derivation, we will require another lower bound (42) on σ. We will use (42) together with

α ≤ 1

e


2(ϵ+ ln(1δ))ϵ
,α < 1, and


2(ϵ+ ln(1δ))ϵ >

2e
√
α

1− α

to imply the needed requirement (37). These new bounds on α are in turn equivalent to

α ≤ g(ϵ, δ) where (38)

g(ϵ, δ) = min





√
ϵ

e


2(ϵ+ ln(1δ))
,


1 +

e2ϵ

2(ϵ+ ln(1δ))
− e

√
ϵ

2(ϵ+ ln(1δ))ϵ

2




(notice that this implies α < 1).

Substituting r0 = ασ in the formula for r yields the expression

r = 23 ·


σ

(1−√
α)2

+
1

σ(1− α)− 2e
√
α

e3

σ


· e3/σ2

(1− α)α (39)

Requirement on siN – (40): In Theorem B.2 we also require siN ≤ r0σ which translates into

siN ≤ α (40)

Requirement on σ – (42) and (43): In Theorem B.2 we restrict ourselves to the case where function c(x) attains the
minimum c(x) = 2(ρ̂x). This happens when

√
2rρx+ 1− 1

rρx
≥ 2

ρ̂x


This is equivalent to

x ≥ 2r
ρ

ρ̂2
+

2

ρ̂
 (41)

Notice that in the lower bound for σ in Theorem B.2 we use c0 = c(x) for x = c1, where c1 is implicitly dened by

ϵ = c1T Ŝ
2
1

or equivalently
c1 =

ϵ

T Ŝ2
1



To minimize ϵ, we want to minimize c1 = x. That is, we want c1 = x to match the lower bound (41). This lower bound
is smallest if we choose the smallest possible ρ (due to the linear dependency of the lower bound on ρ). Given the
constraint on ρ this means we choose

ρ =
Ŝ1Ŝ3

Ŝ2
2



For c1 = x satisfying (41) we have

c0 = c(c1) =
2

ρ̂x


Substituting this in the lower bound for σ attains

σ ≥ 2
c(c1)


Ŝ2T (ϵ+ ln(1δ))

ϵ
=


ρ̂Ŝ2

Ŝ2
1


2(ϵ+ ln(1δ))ϵ

24

In order to yield the best test accuracy we want to choose the smallest possible σ. Hence, we want to minimize the
lower bound for σ and therefore choose the smallest ρ̂ given its constraints, i.e.,

ρ̂ =
Ŝ2
1

Ŝ2



This gives
σ ≥


2(ϵ+ ln(1δ))ϵ (42)

Notice that this lower bound implies σ ≥ 216215 and for this reason we do not state this as an extra requirement.

Our expressions for ρ, ρ̂, and c1 with x = c1 shows that lower bound (41) holds if and only if

ϵ ≥

2r

Ŝ3

Ŝ1

+ 2Ŝ2


T  (43)

Requirement implying (43): The denition of moments Ŝj imply

Ŝ1 =
K

TN

and, since siN ≤ α < 1,
Ŝj ≤ αj(1− α)j−1

Lower bound (43) on ϵ is therefore implied by

ϵ ≥ 2r
α3

(1− α)2
T 2N

K
+ 2

α2

1− α
T  (44)

We substitute

T = β
K

N
(45)

in (44) which yields the requirement

ϵ
N

K
≥ 2r

α(1− α)2
(α2β)2 +

2

1− α
(α2β) (46)

This inequality is implied by the combination of the following two inequalities:

α2β ≤ ϵN

γK
(47)

and

1 ≥ 2r

α(1− α)2
ϵN

K

1

γ2
+

2

1− α

1

γ
 (48)

Inequality (48) is equivalent to

γ ≥ 2r

α(1− α)2
ϵN

γK
+

2

1− α
 (49)

This implies

γ ≥ 2

1− α
≥ 2

Also notice that
1

β
=

K

TN
= Ŝ1 ≤ α

from which we obtain
1 ≤ αβ

Let us dene

ᾱ =
ϵN

γK
 (50)

25

Inequalities γ ≥ 2 and 1 ≤ αβ together with (47) and the denition of ᾱ imply

α ≤ α2β ≤ ϵN

γK
= ᾱ ≤ ϵN

2K
 (51)

We will require
ᾱ < 1 (52)

and also σ(1− ᾱ)− 2e
√
ᾱ > 0 i.e,

σ >
2e
√
ᾱ

1− ᾱ
 (53)

Bounds (52) and (53) are equivalent to

ᾱ ≤ h(σ) where h(σ) =


1 + (eσ)2 − eσ
2

 (54)

With condition (54) in place we may derive the upper bound

2r

α(1− α)2

=
24

1− α


σ

(1−√
α)2

+
1

σ(1− α)− 2e
√
α

e3

σ


e3/σ

2

≤ 24

1− ᾱ


σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ


e3/σ

2

because all denominators are decreasing functions in α and remain positive for α ≤ ᾱ. Similarly,

2

1− α
≤ 2

1− ᾱ


These two upper bounds combined with (50) show that (49) is implied by choosing

γ = γ(σ, ϵNK),

where γ(σ, ϵNK) is dened as the smallest solution of γ satisfying

γ ≥ 2

1− ᾱ
+ (55)

24 · ᾱ
1− ᾱ


σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ


e3/σ

2

,

where ᾱ = (ϵNK)γ. The smallest solution γ will meet (55) with equality. For this reason the minimal solution
γ will be at most the right hand side of (55) where γ is replaced by its lower bound 2; this is allowed because this
increases ᾱ to the upper bound in (51) and we know that the right hand side of (55) increases in ᾱ up to the upper bound
in (51) if the upper bound satises

ϵN

2K
≤ h(σ)

This makes requirement (54) slightly stronger – but in practice this stronger requirement is already satised because K
is several epochs of N iterations making ϵN

2K ≪ 1 while σ ≫ 1 for small ϵ implying that h(σ) is close to 1.

Notice that γ = 2 +O(ᾱ), hence, for small ᾱ we have γ ≈ 2. A more precise asymptotic analysis reveals

γ = 2 + (2 + 24 ·

σ +

e3

σ2


e3/σ

2

)ᾱ+O(ᾱ3/2)

Relatively large ᾱ closer to 1 will yield γ ≫ 2.

Summarizing
(45), (47), (50), (54), (55) ⇒ (43)

Combining all requirements – resulting in (57), (58), and (42), or equivalently (60), (61), and (42): The combination
of requirements (45) and (47) is equivalent to

α ≤


ϵ

γT
(56)

26

(notice that T and β are not involved in any of the other requirements including those discussed earlier in this discussion,
hence, we can discard (45) and substitute this in (47)). The combination of (50), (54), and (55) is equivalent to

ϵN

γK
≤ h(σ) with γ = γ


σ,

ϵN

K


(57)

(for the denition of h() see (54) and for γ(, ) see (55)).

We may now combine (56), (38), and (40) into a single requirement

siN ≤ min


g(ϵ, δ),


ϵ

γT


(58)

(for the denition of g(, ) see (38)). This shows that (57), (58), and (42) (we remind the reader that the last condition
is the lower bound on σ ≥


2(ϵ+ ln(1δ))ϵ) implies (ϵ, δ)-DP by Theorem B.2.

Let us rewrite these conditions. We introduce the mean s̄ of all si dened by

s̄ =
1

T

T−1

i=0

si =
K

T

and we introduce the maximum smax of all si dened by

smax = maxs0,    , sT−1
We dene θ as the fraction

θ =
smax

s̄
 (59)

This notation allows us to rewrite

siN ≤


ϵ

γT

from (58) as

γ
K

N

s̄

N
θ2 ≤ ϵ

From this we obtain that the requirements (57) and (58) are equivalent to

γ


σ,

ϵN

K


· K
N

s̄

N
θ2 ≤ ϵ ≤ γ


σ,

ϵN

K


· h(σ)K

N
(60)

and
θs̄ ≤ g(ϵ, δ)N (61)

This alternative description shows that (60), (61), and (42) with denitions for h(), γ(, ), g(, ), and θ in (54), (55),
(38), and (59) implies (ϵ, δ)-DP. This proves Theorem B.4 (after a slight rewrite of the denitions of functions h() and
g(, )).

B.4 Proof of the Main Theorem

Theorem B.4 can already be used to a-priori set hyperparameters given DP and accuracy targets. Still, as discussed
below, by making slight approximations (leading to slightly stronger constraints) we obtain the easy to interpret Theorem
3.1 discussed in Section 3.

We set σ as large as possible with respect to the accuracy we wish to have. Given this σ we want to max out on our
privacy budget. That is, we satisfy (35) with equality,

σ =


2(ϵ+ ln(1δ))

ϵ
 (62)

We discuss (62) with constraints (32), (33), and (34) below:

Replacing (32) and (33): In practice, we need a sufciently strong DP guarantee, hence, δ ≤ 1N and ϵ is small enough,
typically ≤ 05. This means that we will stretch σ to at least

√
2 + 4 lnN . A local data set of size N = 10000 requires

σ ≥ 623; a local data set of size N = 100000 requires σ ≥ 693. For such σ ≥ 6 we have h(σ) ≥ h(6) = 042 (since
h(σ) is increasing in σ). (For reference, h(10) = 058, and for σ ≫ 1 we have h(σ) ≈ 1.) From (62) we infer that

27

g(


2(ϵ+ ln(1δ))ϵ) = g(σ) = min1(eσ), h(σ). One can verify that h(σ)− 1(eσ) is positive and increasing
for σ ≥ 25, hence, g(σ) = 1(eσ) for σ ≥ 6. This reduces requirement (32) to s̄ ≤ N(eσθ) and requirement (33) to
ϵ ≤ 042 · γKN . Notice that (34) in combination with ϵ ≤ γθ

eσKN implies condition s̄ ≤ N(eσθ). This implies
that (32) and (33) are satised for ϵ ≤ min042 · γ, γθ(eσ) · K

N or, equivalently, K ≥ ϵ ·max24γ, eσ(γθ)
epochs of size N . If θ ≤ 685, then σ ≥ 6 ≥ 088 · θ = 24 · θe, hence, max24γ, eσ(γθ) = eσ(γθ) and this
reduces the condition on K to

K ≥ ϵσ · e

γθ
=


2ϵ(ϵ+ ln(1δ)) · e(γθ) epochs of size N,

where the equality follows from (62). In practical settings, K consists of multiple (think 50 or 100s of) epochs
(of size N) computation and this is generally true. We conclude that (32) and (33) are automatically satised
by (34) for general practical settings with δ ≤ 1N , ϵ typically smaller than 05, N ≥ 10000, θ ≤ 685, and
K ≥


2ϵ(ϵ+ ln(1δ)) · e(γθ) epochs, i.e.,

k ≥


2ϵ(ϵ+ ln(1δ)) · e(γθ),
where k = KN as dened in Theorem 3.1. By using ϵ ≤ 05, we can further weaken this condition to k ≥

12 + ln(1δ)) · e(γθ), or equivalently,
(γθe)2k2 ≥ 12 + ln(1δ)

By using γθ ≥ 2, we obtain condition (7) in Theorem 3.1.

Remaining constraint (34): By using (62), (34) can be equivalently recast as an upper bound on σ,

σ ≤


2(ϵ+ ln(1δ))

γθ2 · (KN) · (s̄N)


Here, γ is a function of σ because γ depends on ϵ in ᾱ which is a function of σ through (62). However, the denition of
γ shows that for small ϵ, γ is close to 2 and this gives


ln(1δ)(θ2 · (KN) · (s̄N)) as a good approximation of the

upper bound. Substituting s̄ = KT yields

σ ≤ N
√
T

K


2(ϵ+ ln(1δ))

γθ2
 (63)

For γ ≈ 2 and θ = 1 (constant sample size), this upper bound compares to taking c2z ≈
√
2 in (11); we go beyond the

analysis presented in [1] in a non-trivial way.

If N
√
TK is large enough, larger than the relatively small σ


θ2(γ2)(ϵ+ ln(1δ)), then upper bound (63) is

satised. That is, for given K and N , we need T to be large enough, or equivalently the mean sample/mini-batch size
s̄ = KT small enough. Squaring both sides of (63) and moving terms yields the equivalent lower bound

T ≥ γ

2

σ2θ2

ϵ+ ln(1δ)
· (KN)2,

which after substituting (62) gives

T ≥ γθ2

ϵ
· (KN)2,

which is condition (8) in Theorem 3.1. In other words T is at least a factor γθ2ϵ larger than the square of the overall
amount of local SGD computations measured in epochs (of size N). Notice that we have a lower bound on T rather
than an upper bound as in (12) from the theorem presented in [1].

Remark Increasing Sample Size Sequence: We notice that polynomial increasing sample size sequences si ∼ qNip

have s̄ ≈ [qNT p+1(p + 1)]T and smax = qNT p, hence, θ = 1 + p. This shows that our theory covers e.g.
linear increasing sample size sequences as discussed in [29], where is explained how this implies reduced round
communication – another metric which one may trade-off against accuracy and total local number K of gradient
computations.

Remark Reusing the Local Data Set: We stress that T cannot be chosen arbitrarily large in Theorem 3.1 as it is
restricted by K = kN . Also k cannot grow arbitrarily large since kN = K ≥ T ≥ γθ2

ϵ · k2, hence, k ≤ ϵ
γθ2 · N .

28

This upper bound on k does impose a constraint after which (ϵ, δ)-DP cannot be guaranteed – so, K and, hence,
T cannot increase indenitely without violating the privacy budget.* Here we notice that repeated use of the same
data set over multiple learning problems (one after another) is allowed as long as the number of epochs of gradient
computing satises the upper bound k ≤ ϵ

γθ2 ·N . Hence, the larger N the more collaborative learning tasks the client
can participate in. For typical values ϵ = 02, γθ2 ≈ 2, and a data set of size N = 10000 we have k ≤ 1000, which
may accommodate about 10-20 learning tasks.

Remark Choosing ϵ: We notice that, since T ≤ K = kN (this corresponds to the smallest possible mini-batch size
s = 1), lower bound (8) implies kN ≥ k2ϵ, hence, ϵ ≥ kN and we must have ϵ = Ω(1N). Therefore, the smallest
possible ϵ is Θ(1N) and leads to σ = Θ(

√
N lnN) according to (6). We notice that the theory in [8] for a similar but

not exactly the same setting of DP-SGD strongly suggests for DP-SGD that unless the added Gaussian perturbation
is as large as

√
N almost the whole database can be recovered by a polynomial (in N) adversary; σ = Θ(

√
N lnN)

seems needed if one wants cryptographical strong security. However, in general, σ = Θ(
√
N lnN) is too large for

sufcient accuracy. In practice we choose ϵ = θ(1):

In order to attain an accuracy comparable to the non-DP setting where no noise is added, the papers cited in Section 2.1
generally require large ϵ (such that σ can be small enough) – which gives a weak privacy posture (a weak bound on the
privacy loss). For example, when considering LDP (see Section 2.1), 10% deduction in accuracy yields only ϵ = 50 in
[2] and ϵ = 107 in [26], while [39, 19] show solutions for a much lower ϵ = 05. Similarly, when considering CDP
(see Section 2.1), in order to remain close to the accuracy of the non-DP setting [26] requires ϵ = 81, [18] requires
ϵ = 8, and [25] requires ϵ = 2038.

The theory presented in this paper allows relatively small Gaussian noise for small ϵ: We only need to satisfy the main
equation (6). For example, in Section 4 simulations for the LIBSVM data set show (ϵ = 005, δ = 1N)-DP is possible
while achieving good accuracy with σ ≈ 20. Such small ϵ is a signicant improvement over existing literature.

C Tight Analysis using Gaussian DP

[9] explain an elegant alternative DP formulation based on hypothesis testing. From the attacker’s perspective, it is
natural to formulate the problem of distinguishing two neighboring data sets d and d′ based on the output of a DP
mechanism M as a hypothesis testing problem:

H0 : the underlying data set is d versus H1 : the underlying data set is d′

We dene the Type I and Type II errors by

αϕ = Eo∼M(d)[ϕ(o)] and βϕ = 1− Eo∼M(d′)[ϕ(o)],

where ϕ in [0, 1] denotes the rejection rule which takes the output of the DP mechanism as input. We ip a coin and
reject the null hypothesis with probability ϕ. The optimal trade-off between Type I and Type II errors is given by the
trade-off function

T (M(d),M(d′))(α) = inf
ϕ
βϕ : αϕ ≤ α,

for α  [0, 1], where the inmum is taken over all measurable rejection rules ϕ. If the two hypothesis are fully
indistinguishable, then this leads to the trade-off function 1− α. We say a function f  [0, 1] → [0, 1] is a trade-off
function if and only if it is convex, continuous, non-increasing, and f(x) ≤ 1−x for x  [0, 1]. We dene a mechanism
M to be f -DP if

T (M(d),M(d′)) ≥ f

for all neighboring d and d′. Proposition 2.5 in [9] is an adaptation of a result in [40] and states that a mechanism is
(ϵ, δ)-DP if and only if the mechanism is fϵ,δ-DP, where

fϵ,δ(α) = max0, 1− δ − eϵα, (1− δ − α)e−ϵ
We see that f -DP has the (ϵ, δ)-DP formulation as a special case. It turns out that the DP-SGD algorithm can be tightly
analysed by using f -DP.

Gaussian DP: In order to proceed [9] rst denes Gaussian DP as another special case of f -DP as follows: We dene
the trade-off function

Gµ(α) = T (N (0, 1),N (µ, 1))(α) = Φ(Φ−1(1− α)− µ),

*We just derived that K = kN ≤ ϵ
γθ2

· N2. And we notice that besides the upper bound T ≤ K ≤ ϵ
γθ2

· N2, we can also

directly transform condition T ≥ γθ2

ϵ
· k2 into T ≤ ϵ

γθ2
· (Ns̄)2 by substituting k = s̄TN and rearranging terms.

29

where Φ is the standard normal cumulative distribution of N (0, 1). We dene a mechanism to be µ-Gaussian DP if it is
Gµ-DP. Corollary 2.13 in [9] shows that a mechanism is µ-Gaussian DP if and only if it is (ϵ, δ(ϵ))-DP for all ϵ ≥ 0,
where

δ(ϵ) = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
) (64)

Subsampling: Besides implementing Gaussian noise, DP-SGD also uses sub-sampling: For a data set d of N samples,
Samples(d) selects a subset of size s from d uniformly at random. We dene convex combinations

fp(α) = pf(α) + (1− p)(1− α)

with corresponding p-sampling operator
Cp(f) = minfp, f−1

p ∗∗,
where the conjugate g∗ of a function g is dened as

g∗(y) = sup
x
yx− g(x)

Theorem 4.2 in [9] shows that if a mechanism M on data sets of size N is f -DP, then the subsampled mechanism
M ◦ Samples is Cs/N (f)-DP.

Composition: The tensor product f ⊗ g for trade-off functions f = T (P,Q) and g = T (P ′, Q′) is well-dened by

f ⊗ g = T (P × P ′, Q×Q′)

Let yi ← Mi(aux, d) with aux = (y1,    , yi−1). Theorem 3.2 in [9] shows that if Mi(aux, ) is f -DP for all aux,
then the composed mechanism M, which applies Mi in sequential order from i = 1 to i = T , is f⊗T -DP.

Tight Analysis DP-SGD: We are now able to formulate the differential privacy guarantee of DP-SGD since it is a
composition of subsampled Gaussian DP mechanisms. Theorem 5.1 in [9] states that DP-SGD in Algorithm 1 is†

Cs/N (Gσ−1)⊗T -DP

Since each of the theorems and results from [9] enumerated above are exact, we have a tight analysis.

Our Goal: We want to understand the behavior of the DP guarantee in terms of s, N , T , and σ. Our goal is to have
an easy interpretation of the DP guarantee so that we can select “good" parameters s, N , T , and σ a-priori; good in
terms of achieving at least our target accuracy without depleting our privacy budget. If we know how the differential
privacy budget is being depleted over DP-SGD iterations, then we can optimize parameter settings in order to attain best
performance, that is, best accuracy of the nal global model (the most important target when we work with machine
learning modelling). According to our best knowledge, all the current-state-of-the art privacy accountants do not allow
us to achieve this goal because they are only privacy loss accountants and do not offer ahead-planning. It is not sufcient
to only rely on a differential privacy accountant (see e.g., [45] as follow-up work of [9]) for a client to understand when
to stop helping the server to learn a global model.

When talking about accuracy, we mean how much loss in prediction/test accuracy is sacriced by xing a σ (and
clipping constant C). Our theory maps σ directly to an (ϵ, δ)-DP guarantee independent of the number of rounds T .
This allows use to characterize the trade-off between accuracy and privacy budget. All the current-state-of-the art
privacy loss frameworks do not offer this property.

We notice that [9] makes an effort to interpret the Cs/N (Gσ−1)⊗T -DP guarantee. Their Corollary 5.6 provides a precise
expression based on integrals, themselves again depending on p = sN and µ = σ−1 in our notation. This still does
not lead to the intuition we seek as we cannot extract how to select parameters σ, s and T given a data set of size N ,
given a privacy budget, and given a utility that we wish to achieve. We further explain this point in next paragraphs.

In what follows, we seek a relationship between σ, s, T , ϵ, δ, and N for Gaussian DP based on Corollary 5.4 in
[9]. Corollary 5.4 in [9] provides an asymptotic analysis which is a step forward to the kind of easy to understand

†Their DP-SGD algorithm uses noise N (0, (2C)2σ2I) compared to N (0, C2σ2I) in our version of the DP-SGD algorithm.
This is related to the earlier footnote on probabilistic versus constant sample sizes. The analysis in the f -DP framework normalizes
with respect to 2C , while we normalize with respect to C . The end result is that for xed σ the proven bounds in the f -DP framework
also hold for this paper. (Thus we do not need to compensate for a factor 2 and use σ2 in the f -DP framework in order to compare
with our DP-SGD parameter setting.)

30

interpretation we seek for: It states that if both T → ∞ and N → ∞ such that s
√
TN → c for some constant c > 0

(and where s is a function of N that may tend to ∞ as well), then the DP-SGD algorithm is µ-Gaussian DP for

µ = c · τ−1 with τ−1 =
√
2 ·


eσ−2Φ(3σ−12) + 3Φ(−σ−12)− 2 (65)

In Section C.1 we show that τ−1 = σ−1 +O(σ−2) and we show that for µ ≤ ϵ ≤ 1, µ-Gaussian DP translates to the
DP-SGD algorithm being (ϵ, δ)-DP for δ ≪ ϵ ≪ 1 if

τ ≈ (c2)


2(ln(1δ) + ln(ϵ)−O(ln ln(1δ)))

ϵ
with s

√
TN → c

We see a similar s
√
TN dependency in Theorem B.1 by [1]. The difference is that Theorem B.1 holds in a non-

asymptotic setting. That is, T and N do not need to tend to∞ whereas the expression above does require taking such a
limit. Of course, one can analyse the convergence rate of achieving the limit µ given T and N tending to innity. When
doing such an analysis one may nd expressions of Gaussian DP guarantees as a function of T and N that hold for
all concrete values of T and N . This may lead to results that strengthen our Theorem B.1 (we leave this as an open
problem). It is clear that the above asymptotic result is still insufcient for our purpose: How do we a-priori select
concrete parameters σ, s, and T given concrete parameters for N , a given privacy budget and utility that we wish to
achieve?

In this paper we decided to generalize the proof method of Theorem B.1 rather than working with the complex integrals
that provide the exact characterization of f -DP for the DP-SGD algorithm as stated above. This approach allows us to
obtain the non-asymptotic result of Theorem 3.1 which shows into large extent the independence of T , which is not
immediately understood from Theorem B.1 and the corollary discussed above. Section C.2 shows a rst result on the
tightness of our Theorem 3.1. The advantage of our result is that it is easy to interpret and we do not need to fully rely
on an accountant method to keep track of spent privacy budget while participating in learning a global model based on
local data.

C.1 Translation to (ϵ, δ)-DP

We rst observe that by using ex = 1 + x+O(x2) and Φ(x) = 1
2 + e−x2/2

√
2π

(x+O(x3)) = 1
2 + x√

2π
+O(x3), a rst

order approximation of τ−1 is equal to σ−1 +O(σ−2) (hence, τ−1 ≈ σ−1 for large σ).

For x ≥ 0, we have the approximation

Φ(−x) =
e−x2/2

√
2π


1

x
− 1

x3
+O(

1

x5
)




Let y ≤ x. Together with −(x− y)22 = 2xy − (x+ y)22 we derive

Φ(−x+ y)− e2xyΦ(−x− y) =
e−(x−y)2/2

√
2π

(
1

x− y
− 1

(x− y)3
+O(

1

(x− y)5
)

−e−(x−y)2/2

√
2π

(
1

x+ y
− 1

(x+ y)3
+O(

1

(x+ y)5
))

=
e−(x−y)2/2

√
2π

(
2y

x2 − y2
− 6yx2 + 2y3

(x2 − y2)3
+O(

1

x5
))

=
e−x2(1−y/x)2/2

√
2π

(
2y

x2(1− (yx)2)
+O(

y

x4
+

1

x5
))

If we assume
µ ≤ ϵ ≤ 1,

then (µ2)(ϵµ) = µ2(2ϵ) ≤ ϵ2 ≤ 1, ϵµ ≥ 1, and ϵ ≤ 1. We can use the above formulas and approximate (64) as
follows:

δ = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
)

=
e−(ϵ/µ)2(1−µ2/(2ϵ))2/2

√
2π


µ3

ϵ2(1− (µ2(2ϵ))2)
+O(

µ5

ϵ5
)




31

This gives

1µ =


2(ln(1δ) + ln(µ3√

2π(ϵ2−µ4/4)
+O((µϵ)

5)))

ϵ− µ22
,

hence,

τ =
(c2)


2(ln(1δ) + ln(µ3√

2π(ϵ2−µ4/4)
+O((µϵ)

5)))

ϵ− µ22
with s

√
TN → c and τ−1 = σ−1 +O(σ−2)

For small ϵ, we can approximate τ as

τ ≈
c ·


2(ln(1δ) + ln(ϵ√

2π
(µϵ)

3 +O((µϵ)
5)))

ϵ


Since cτ−1 = µ ≤ ϵ, we may write µ = ϵb for some b ≥ 1. Notice that cϵ = τb. This leads to the approximation

b ≈


2(ln(1δ) + ln(
ϵ√
2π

1

b3
+O(

1

b5
)))

For a concrete choice of N , we select in practice by default δ = 1N and N = Ω(1ϵ), that is, ϵ = Ω(1N) (also
notice that good accuracy can only be achieved for σ small enough, that is, ϵ is generally orders of magnitude larger
than 1N). For this reason, we assume ϵ ≫ δ (we x ϵ and δ, i.e., we do not choose δ as a function of N , after which
take the limitN → ∞; notice that this is only a theoretical analysis in an attempt to understand the relationship between
various parameters). Then substituting


2 ln(1δ) for b at the right hand side yields

b ≈


2(ln(1δ) + ln(ϵ)−O(ln ln(1δ)))

Substituting back in the expression for τ proves for δ ≪ ϵ ≪ 1,

τ ≈ c


2(ln(1δ) + ln(ϵ)−O(ln ln(1δ)))

ϵ
with s

√
TN → c and τ−1 = σ−1 +O(σ−2)

C.2 Asymptotic Tightness of Theorem 3.1

We consider the special case where T meets its lower bound: T = γθ2

ϵ ·k2 (notice that our experiments and understanding
show that this is a good setting for best accuracy). Let

c =


ϵ

γθ2
=

k√
T

=
K√
TN

=
s
√
T

N
,

where we consider a constant step size s (hence, θ = 1). Substituting this in the nal formula for τ of Section C.1
yields for ϵ ≫ δ

τ ≈


ln(1δ) + ln(ϵ)−O(ln ln(1δ))

γϵ


Here, τ ≈ σ for σ ≫ 1 and we see that compared to Theorem 3.1 this formula attains a factor
√
2γ ≈ 2 smaller σ for

the same (ϵ, δ). This shows that in this asymptotic setting for N → ∞, T → ∞, ϵ ≫ δ, and σ ≫ 1, Theorem 3.1 is up
to a factor

√
2γ tight. In other words, the formula in Theorem 3.1 pays a factor in tightness in order to hold for general

concrete parameter settings (not just the asymptotic setting).

The factor
√
2γ seems large. However, if the lower bound on T can be tightened to T ≥ θ2

2ϵ · k2, then the constant
c above can be increased to c =


2ϵθ2 leading to a formula for τ that matches the formula for σ in Theorem 3.1

implying that it is tight in the asymptotic setting. In other words, rather than expecting to be able to lower the constant
2 in σ =


2(ϵ+ ln(1δ))ϵ, we can focus on how much the lower bound of T can be reduced by a small factor

(notice that the derivations in Theorem B.4 that lead to this lower bound may be tightened up). We expect the bound
σ ≥


2(ϵ+ ln(1δ))ϵ to be quite tight, while the lower bound T ≥ Tmin = γθ2

ϵ · k2 can at most be reduced by a
factor 2γ to T ≥ Tmin_asym = θ2

2ϵ · k2. For smaller T < Tmin_asym, the asymptotic setting for N → ∞, T → ∞,
ϵ ≫ δ, and σ ≫ 1 contradicts the tightness of the asymptotic result (65) of the f -DP framework. This proves Theorem

32

3.2. We notice that this is also (unsurprisingly) conrmed by experiments in Appendix D.4 where we implement the
f -DP accountant in order to compute which ϵ is actually being achieved.

Remark on Choosing a Larger T : Theorem 3.2 shows that in Theorem 3.1 T ’s required lower bound γθ2k2ϵ cannot
be made smaller by more than a constant factor 2γ ≈ 4 (otherwise, this conicts with an asymptotical result proved
by the f -DP framework). This shows that choosing T equal to the lower bound γθ2k2ϵ is close to tight in order to
achieve (ϵ, δ)-DP.

Of course, larger T also satisfy lower bound (7) implying the same (ϵ, δ)-DP guarantee. We notice that a larger T can
meet γθ2 · k2ϵ′ for a smaller ϵ′ leading to a close to tight (ϵ′, δ)-DP guarantee if we choose a larger σ, which can be
done if this still leads to sufcient accuracy. Intuitively, a T larger than the lower bound γθ2k2ϵ invests in the potential
of improved differential privacy (i.e., ϵ′ ≤ ϵ) which we do not need if we only require the (ϵ, δ)-DP guarantee. Better is
to sacrice this potential and meet the lower bound so that accuracy of the nal global model is optimized. Since the
lower bound can at most be a constant factor 2γ ≈ 4 smaller, we cannot improve the accuracy much more by reducing
T further without violating the (ϵ, δ)-DP guarantee‡.

C.3 Interpreting Theorem 3.1 in the f -DP Framework

As a theoretical consequence (side result), for xed k, we formulate (ϵ, δ)-DP guarantees for varying ϵ which can be
used to show f -DP for a (non-trivial) trade-off function f that depends on a target ϵ and δ but does not depend on the
choice of T in the range γθ2k2ϵ ≤ T ≤ K = kN (where sT = K = kN):

In the f -DP framework, if a mechanism is f -DP, then it is (ϵ, δ)-DP for all (ϵ, δ) for which f ≥ fϵ,δ . When considering
DP-SGD for parameters σ and T and the other hyper parameters xed, there exists some function hσ,T such that
DP-SGD is f -DP if and only if hσ,T ≥ f . This function implies (ϵ, δ)-DP for all hσ,T ≥ fϵ,δ . Conversely, if we
want to realize (ϵ, δ)-DP for some target privacy budget dened by (ϵ, δ), then we need to choose σ and T such that
hσ,T ≥ fϵ,δ .

We notice that Theorem 3.1 can be cast in the f -DP framework as it allows us to formulate an appropriate (non-tight)
ĥσ,T for which DP-SGD is ĥσ,T -DP as follows: We rst notice that by the denition of hσ,T we have

hσ,T ≥ ĥσ,T 

By xing σ and T , we may freely choose (ϵ, δ) as long as the conditions of Theorem 3.1 are satised: (ϵ, δ)  H(σ, T)
with

H(σ, T) =




(ϵ, δ) :

σ ≥


2(ϵ+ ln(1δ))ϵ
δ ≤ 1N
ϵ < 05

k ≥


2ϵ ln(1δ) · e(γ(σ, ϵ, k) · θ)
T ≥ γ(σ, ϵ, k) · θ2k2ϵ





,

where γ is a function of σ, ϵ and k = KN . Hyper parameters K and N (and, therefore also k) are xed. For a given
T , we consider a constant sample size s = KT from round to round, hence, we use θ = 1 in the denition of H(σ, T).
By dening

ĥσ,T (α) = sup
(ϵ,δ)∈H(σ,T)

fϵ,δ(α),

we have that DP-SGD is ĥσ,T -DP.

Now consider a target epsilon ϵ = ϵtarget and dene a new set

G(σ, ϵtarget) =




(ϵ, δ) :

σ ≥


2(ϵ+ ln(1δ))ϵ
δ ≤ 1N
ϵ < 05

k ≥


2ϵ ln(1δ) · e(γ(σ, ϵ, k) · θ)
ϵ ≥ ϵtarget







Notice that G(σ, ϵtarget) is independent of T , but does satisfy the property

G(σ, ϵtarget) ⊆ H(σ, T) for T ≥ γθ2k2ϵtarget

‡Notice that, especially for non-convex problems, T should also not be too small since we want a large enough number of rounds
for updating the global model regulary for convergence.

33

Therefore,
gσ,ϵlow(α) = sup

(ϵ,δ)∈G(σ,ϵtarget)

fϵ,δ(α),

is also independent of T while it satises

ĥσ,T ≥ gσ,ϵtarget
for T ≥ γθ2k2ϵtarget

Together with hσ,T ≥ ĥσ,T we conclude

hσ,T ≥ gσ,ϵtarget
for T ≥ γθ2k2ϵtarget

This shows how Theorem 3.1 translates to the f -DP framework in that as long as the number of rounds is large enough,
that is, K ≥ T ≥ γθ2k2ϵtarget, we have that there always remains some f -DP privacy guarantee given by gσ,ϵtarget

.
Notice that gσ,ϵtarget

is independent of T . So, even in the limit for larger T , not all of the privacy budget is being
depleted. For larger T , fσ,T remains at least gσ,ϵtarget

. Since the f -DP framework and its resulting DP accountant
provide a tight analysis, this shows that an increasing number T of rounds revealing more and more local updates does
not linearly increase the privacy leakage! Instead, a larger T gives rise to more updates that each leak privacy and gives
rise to subsampling of smaller mini-batches which amplies the differential privacy guarantee more, hence, less leakage
per round. The total resulting leakage remains bounded in that we can always guarantee gσ,ϵtarget

-DP (even for larger
T). This implies that the tight f -DP based privacy accountant will have a limit (upper bound) on its reported privacy
leakage for increasing T (≤ K).

D Experiments

We provide experiments to support our theoretical ndings, i.e., convergence of our proposed asynchronous distributed
learning framework with differential privacy (DP) to a sufciently accurate solution. We cover strongly convex, plain
convex and non-convex objective functions over iid local data sets.

We introduce our experimental set up in Section D.1. Section D.2 provides utility graphs for different data sets and
objective functions. A utility graph helps choosing the maximum possible noise σ, in relation to the value of the clipping
constant C , for which decent accuracy can be achieved. Section D.3 provides detailed experiments for our asynchronous
differential privacy SGD framework (asynchronous DP-SGD) with different types of objective functions (i.e., strongly
convex, plain convex and non-convex objective functions), different types of constant sample size sequences and
different levels of privacy guarantees (i.e., different privacy budgets ϵ).

All our experiments are conducted on LIBSVM [5]* , MNIST [22] †, and CIFAR10 ‡ data sets.

D.1 Experiment settings

Simulation environment. For simulating the asynchronous DP-SGD framework, we use multiple threads where each
thread represents one compute node joining the training process. The experiments are conducted on Linux-64bit OS,
with 16 cpu processors, and 32Gb RAM.

Objective functions. Equation (66) denes the plain convex logistic regression problem. The weight vector w and the
bias value b of the logistic function can be learned by minimizing the log-likelihood function J :

J = −
N

i=1

[yi · log(σ̄i) + (1− yi) · log(1− σ̄i)], (plain convex) (66)

where N is the number of training samples (xi, yi) with yi  0, 1 and σ̄i is dened by

σ̄i =
1

1 + e−(wTxi+b)
,

which is the sigmoid function with parameters w and b. Our goal is to learn a vector w∗ which represents a pair
w̄ = (w, b) that minimizes J .

*https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
†http://yann.lecun.com/exdb/mnist/
‡https://www.cs.toronto.edu/ kriz/cifar.html

34

Function J can be changed into a strongly convex problem Ĵ by adding a regularization parameter λ > 0:

Ĵ = −
N

i=1

[yi · log(σi) + (1− yi) · log(1− σi)] +
λ

2
∥w∥2 , (strongly convex).

where w̄ = (w, b) is vector w concatenated with bias value b. In practice, the regularization parameter λ is set to 1N
[36].

For simulating non-convex problems, we choose a simple neural network (LeNet) [23] for MNIST data set and
AlexNet [20] for CIFAR10 data set with cross entropy loss function for image classication.

The loss functions for the strong, plain, and non-convex problems represent the objective function F ().

Parameter selection. The parameters used for our distributed algorithm with Gaussian based differential privacy for
strongly convex, plain convex and non-convex objective functions are described in Table 2. The clipping constant C is
set to 01 for strongly convex and plain convex problems and 0025 for non-convex problem (this turns out to provide
good utility).

Table 2: Common parameters of asynchronous DP-SGD framework with differential privacy

of clients n Diminishing step size η̄t Regular λ Clipping constant C

Strongly convex 5 η0
1+βt

‡ 1
N

0.1
Plain convex 5 η0

1+βt
or η0

1+β
√

t
NA 0.1

Non-convex 5 η0

1+β
√

t
NA 0.025

‡ The i-th round step size η̄i is computed by substituting t =
i−1

j=0 sj into the diminishing step size
formula.

For the plain convex case, we can use diminishing step size schemes η0

1+β·t or
η0

1+β·
√
t
. In this paper, we focus our

experiments for the plain convex case on η0

1+β·
√
t
. Here, η0 is the initial step size and we perform a systematic grid

search on parameter β = 0001 for strongly convex case and β = 001 for both plain convex and non-convex cases.
Moreover, most of the experiments are conducted with 5 compute nodes and 1 central server. When we talk about
accuracy (from Figure 7 and onward), we mean test accuracy dened as the fraction of samples from a test data set
that get accurately labeled by the classier (as a result of training on a training data set by minimizing a corresponding
objective function).

D.2 Utility graph

The purpose of a utility graph is to help us choose, given the value of the clipping constant C, the maximum possible
noise σ for which decent accuracy can be achieved. A utility graph depicts the test accuracy of model F (w∗ + n) over
F (w∗), denotes as accuracy fraction, where w∗ is a near optimal global model and n ∼ N (0, C2σ2I) is Gaussian noise.
This shows which maximum σ can be chosen with respect to allowed loss in expected test accuracy, clipping constant
C and standard deviation σ.

As can be seen from Figure 4 and Figure 5, for clipping constant C = 01, we can choose the maximum σ somewhere in
the range σ  [18, 22] if we want to guarantee there is at most about 10% accuracy loss compared to the (near)-optimal
solution without noise. Another option is C = 0075, where we can tolerate σ  [18, 30] yielding the same accuracy
loss guarantee. When the gradient bound C gets smaller, our DP-SGD can tolerate bigger noise, i.e, bigger values of
σ. However, we need to increase the number K of iterations during the training process when C is smaller in order
to converge and gain a specic test accuracy – this is the trade-off. For simplicity, we intentionally choose C = 01,
σ ≤ 20 and expected test accuracy loss about 10% for our experiments with strongly convex and plain convex objective
functions.

The utility graph is extended to the non-convex objective function in Figure 6. To keep the test accuracy loss less or
equal to 10% (of the nal test accuracy of the original model w∗), we choose C = 0025 and noise level σ ≤ 12 for
MNIST data set (as shown in Figure 6(a)) and C = 0025 and noise level σ ≤ 6572 for CIFAR10 data set (as shown in
Figure 6(b)). For simplicity, we use this parameter setting for our experiments with the non-convex problem.

D.3 Asynchronous distributed learning with differential privacy

We consider the asynchronous DP-SGD framework with strongly convex, plain convex and non-convex objective
functions for different settings, i.e., different levels of privacy budget ϵ and different constant sample size sequences.

35

(a) Strong convex.

(b) Plain convex.

Figure 4: Utility graph with various gradient norm C and noise level σ

D.3.1 Asynchronous DP-SGD with different constant sample size sequences

The purpose of this experiment is to investigate which is the best constant sample size sequence si = s. This experiment
allows us to choose a decent sample size sequence that will be used in our subsequent experiments. To make the analysis
simple, we consider our asynchronous DP-SGD framework with Υ(k, i) dened as false if and only if k < i− 1, i.e.,
compute nodes are allowed to run fast and/or have small communication latency such that broadcast global models are
at most 1 local round in time behind (so different clients can be asynchronous with respect to one another for 1 local
round). We also use iid data sets. The detailed parameters are in Table 3.

The results from Figure 7 to Figure 8 conrm that our asynchronous DP-SGD framework can converge under a very
small privacy budget. When the constant sample size s = 1, it is clear that the DP-SGD algorithm does not achieve good
accuracy compared to other constant sample sizes even though this setting has the maximum number of communication
rounds. When we choose constant sample size s = 26 (this meets the upper bound for constant sample sizes for our
small N = 10, 000 and small ϵ ≈ 005, see Theorem B.4), our DP-SGD framework converges to a decent test accuracy,
i.e, the test accuracy loss is expected less than or equal to 10% when compared to the original mini-batch SGD without
noise. In conclusion, this experiment demonstrates that our asynchronous DP-SGD with diminishing step size scheme
and constant sample size sequence works well under DP setting, i.e, our asynchronous DP-SGD framework can gain
differential privacy guarantees while maintaining an acceptable accuracy.

We also conduct the experiment for the non-convex objective function with MNIST and CIFAR10 data sets. The
detailed parameter settings can be found in Table 4 and Table 5. Here, we again consider our asynchronous setting

36

(a) Strong convex.

(b) Plain convex.

Figure 5: Utility graph with various gradient norm C and noise level σ

Table 3: Basic parameter setting for strongly and plain convex problems

Parameter Value Note
η̄0 01 initial stepsize
Nc 10, 000 # of data points
K 50, 000 # of iterations
ϵ 004945
σ 1929962
δ 00001
C 01 clipping constant
s 1, 5, 10, 15, 20, 26 constant sample size sequence

dataset LIBSVM iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round

where each compute node is allowed to run fast and/or has small communication latency such that broadcast global
models are at most 1 local round in time behind. As can be seen from Figure 9 (with MNIST data set), our proposed
asynchronous DP-SGD still converges under small privacy budget. Moreover, when we use the constant sample size

37

(a)

(b)

Figure 6: Utility graph with various gradient norm C and noise level σ for MNIST and CIFAR10 data sets.

Table 4: Basic parameter setting for non-convex problem with MNIST data set

Parameter Value Note
η̄0 01 initial stepsize
Nc 60, 000 # of data points
K 360, 000 # of iterations
ϵ 015007
σ 1210881
δ 1667 · 10−5

C 0025 clipping constant
s 10, 25, 50, 100, 200, 300, 370 constant sample size sequence

dataset MNIST iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round

s = 370 (this meets the upper bound for constant sample sizes for our small N = 60, 000 and small ϵ ≈ 015, see
Theorem B.4), we can signicantly reduce the communication cost compared to other constant sample sizes while
keeping the test accuracy loss within 10%. The constant sample size s = 10 (as well as s ≤ 10) shows a worse

38

(a) Strong convex.

(b) Plain convex.

Figure 7: Effect of different constant sample size sequences

Table 5: Basic parameter setting for non-convex problem for CIFAR10 data set

Parameter Value Note
η̄0 01 initial stepsize
Nc 50, 000 # of data points
K 350, 000 # of iterations
ϵ 050102
σ 6572
δ 2 · 10−5

C 0025 clipping constant
s 10, 25, 50, 100, 300, 500, 689 constant sample size sequence

dataset CIFAR10 iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round

performance while this setting requires more communication rounds, compared to other constant sample sizes. We can
observe the same pattern for CIFAR10 data set as shown in Figure 10, where we can choose the constant sample size
s ≤ 689 with N = 50, 000 data points and ϵ ≈ 05. While the constant sample size s satisfying 300 ≤ s ≤ 689, the

39

(a) Strong convex.

(b) Plain convex.

Figure 8: Effect of different constant sample size sequences

test accuracy gets the highest level while the constant sample size s ≤ 50 deteriorates the performance of accuracy
signicantly. This gure again conrms the effectiveness of our asynchronous DP-SGD framework towards a strong
privacy guarantee for all types of objective function.

D.3.2 Asynchronous DP-SGD with different levels of privacy budget

Table 6: Different privacy budget settings for strongly and plain convex problems

Privacy budget (ϵ, δ) σ Sample size s
(004945, 00001) 1929962 26

(01, 00001) 1306742 55
(025, 00001) 859143 103
(05, 00001) 605868 168
(10, 00001) 427273 265
(20, 00001) 303241 400

We conduct the following experiments to compare the effect of our DP-SGD framework for different levels of privacy
budget ϵ including the non-DP setting (i.e., no privacy at all, hence, no noise). The purpose of this experiment is to show

40

(a) Non-convex.

Figure 9: Effect of different constant sample size sequences

(a) Non-convex.

Figure 10: Effect of different constant sample size sequences.

that the test accuracy degradation is at most 10% even if we use very small ϵ. The detailed constant sample sequence s
and noise level σ based on Theorem B.4 are illustrated in Table 6. Other parameter settings, such as initial stepsize η0,
are kept the same as in Table 3.

As can be seen from Figures 11 and Figure 12, the test accuracy degradation is about 10% for ϵ = 004945 compared to
the other graphed privacy settings and non-DP setting. Privacy budget ϵ = 01, still signicant smaller than what is
reported in literature, comes very close to the maximum attainable test accuracy of the non-DP setting.

We ran the same experiment for the non-convex objective function. The detailed setting of different privacy budgets
is shown in Table 7. Note that we also set the asynchronous behavior to be 1 asynchronous round, and the total of
iterations on each compute node is K = 360, 000. Other parameter settings for the non-convex case, such as initial
stepsize η0, are kept the same as in Table 4. As can be seen from Figure 13 with MNIST data set, the test accuracy

41

(a) Strong convex.

(b) Plain convex.

Figure 11: Effect of different levels of privacy budgets ϵ and non-DP settings

loss with ϵ ≈ 015 is less than 10% (the expected test accuracy degradation from utility graph at Figure 6). Another
pattern can be found in Figure 14. By selecting ϵ ≈ 05 for CIFAR10 data set, the test accuracy reduces less than 10%,
compared to the non-DP setting. Note that we use AlexNet for CIFAR10, which shows ≈ 074 maximum test accuracy
in practice§.

Table 7: Different privacy budget settings for non-convex problem for MNIST data set

Privacy budget (ϵ, δ) σ Sample size s
(015007, 1667 · 10−5) 1210881 370

(02, 1667 · 10−5) 1048452 460
(025, 1667 · 10−5) 937379 543
(05, 1667 · 10−5) 663120 889
(075, 1667 · 10−5) 541887 1168
(10, 1667 · 10−5) 469244 1409
(20, 1667 · 10−5) 331648 2159

§https://github.com/icpm/pytorch-cifar10

42

(a) Strong convex.

(b) Plain convex.

Figure 12: Effect of different levels of privacy budgets ϵ and non-DP settings

Table 8: Different privacy budget settings for non-convex problem for CIFAR10 data set

Privacy budget (ϵ, δ) σ Sample size s
(025, 20 · 10−5) 929838 417
(05, 20 · 10−5) 657192 689
(075, 20 · 10−5) 536937 909
(10, 20 · 10−5) 465014 1099
(15, 20 · 10−5) 416111 1267
(20, 20 · 10−5) 328831 1690
(30, 20 · 10−5) 268273 1994

These gures again conrm the effective performance of our DP-SGD framework, which not only conserves strong
privacy, but also keeps a decent convergence rate to good accuracy, even for a very small privacy budget.

D.4 Comparison to the f -DP Accountant

We have implemented a simplied differential privacy calculator based on Theorem 3.1 for computing the optimal
privacy budget (ϵ, δ) given the training hyper-parameters (σ, θ, N, k, C). This calculator has the follow steps:

43

(a) Non-convex.

Figure 13: Effect of different levels of privacy budgets ϵ and non-DP settings

(a) Non-convex.

Figure 14: Effect of different levels of privacy budgets ϵ and non-DP settings

1. Set δ = 1N , ϵ = 2 ln 1/δ
σ2−2 .

2. Set γ = 2 (because γ = 2 +O(ᾱ)) as the initial value.

3. According to Theorem 3.1, we compute Tmin as a result of next steps (3, 4, and 5) as a lower bound on T as
follows:

• Compute ᾱ = ϵN
γK .

• Recompute the new γnew = 2
1−ᾱ + 24·ᾱ

1−ᾱ


σ

(1−
√
ᾱ)2

+ 1
σ(1−ᾱ)−2e

√
ᾱ

e3

σ


e3/σ

2

.

4. Repeat steps 3 until γnew − γ ≤ 00001γ or inequality (7) is violated. In the latter case the calculator cannot
nd a solution of a set of hyperparameters that satises the privacy constraint (ϵ, δ) and we lower σ and
increase ϵ accordingly (in step 1) and repeat steps 2, 3, and 4.

44

5. Based on inequality (8) we compute minimal value Tmin = γθ2

ϵ k2. From the asymptotic tightness analysis in
section C.2 we learn that Tmin can at most be lowered to Tmin_asym = θ2k2

2ϵ .

6. Corresponding to Tmin and Tmin_asym, we set smax = kN
Tmin

and smax_asym = kN
Tmin_asym

7. We obtain the resulting set of parameters (ϵ, δ,σ, γ, θ, k,N, s, T) for (s, T) equal to (smax, Tmin) and
(smax_asym, Tmin_asym) respectively.

This calculation helps us planning ahead the number of rounds T and the sampling rate s and we can choose ϵtarget by
dening an initial σ.

Given the hyper-parameters dened in Tables 3, 4 and 5, we use this calculator to compute ϵtarget and compared this
with the value ϵf−DP as a result from the exact/tight f -DP accountant from [9], see github.com/tensorow/privacy.
This leads to Tables 9, 10, and 11. Since ϵf−DP is tight, we conclude that ϵtarget for Tmin_asymp cannot be achieved,
hence, our provided formula for Tmin is indeed tight up to a factor 2γ as mentioned in the main body and studied in
Appendix C.2.

Tmin and Tmin_asym
γθ2k2

ϵ
θ2k2

2ϵ

smax = kN
Tmin

and smax_asym = kN
Tmin_asym

26 198
ϵtarget 0.0497 0.0497
ϵf−DP 0.0105 0.0533
Multiplication factor (ϵtargetϵf−DP) 4.7234 0.9328

Table 9: Comparison of ϵtarget with ϵf−DP from the f -DP accountant for Table 3 where θ = 1, δ = 110000 and
σ = 1929962 for LIBSVM dataset (N = 10000), k = 5.

Tmin and Tmin_asym
γθ2k2

ϵ
θ2k2

2ϵ

smax = kN
Tmin

and smax_asym = kN
Tmin_min

288 3042
ϵtarget 0.1521 0.1521
ϵf−DP 0.0389 0.2097
Multiplication factor (ϵtargetϵf−DP) 3.9147 0.7257

Table 10: Comparison of ϵtarget with ϵf−DP from the f -DP accountant for Table 3 where θ = 1, δ = 160000 and
σ = 1210881 for MNIST dataset (N = 60000), k = 6.

Tmin and Tmin_asym
γθ2k2

ϵ
θ2k2

2ϵ

smax = kN
Tmin

and smax_asym = kN
Tmin_asym

406 7504
ϵtarget 0.5253 0.5253
ϵf−DP 0.1133 0.8239
Multiplication factor (ϵtargetϵf−DP) 4.6372 0.6376

Table 11: Comparison of ϵtarget with ϵf−DP from the f -DP accountant for Table 3 where θ = 1, δ = 150000 and
σ = 6572 for CIFAR10 dataset (N = 50000), k = 7.

E Towards Dynamically Adapting DP-SGD Parameters

In order to apply our theory in practice, we introduce a ow chart of our asynchronous DP-SGD learning from a client’s
perspective in Figure 15. Each client wants to participate in the collective learning of a global model that achieves
a sufcient target accuracy acctarget with respect to their test data set. That is, when a client tests the nal global
model against its own private test set, then the client is satised if an accuracy acctarget is achieved. Such accuracy can
only be achieved for certain combinations of noise σ and clipping constant C. In particular, the nal round introduces
Gaussian noise with deviation σ and this leads to inherent inaccuracy of the nal global model. Experiments in Section
4 have shown that reducing the clipping constant C allows a larger σ for attaining a good target accuracy acctarget (if a
sufcient larger number K of gradient computations have been executed). Here, we note that C cannot be reduced
indenitely without hurting accuracy; this is because a reduced clipping constant into some extent plays the role of a

45

Figure 15: The ow chart of our proactive (asynchronous) DP-SGD framework.

reduced step size (or learning rate) and we know that convergence to an accurate global model must start with a large
enough step size. Therefore, before starting any learning, we need to understand how utility relates to σ and the clipping
constant C . This is reected in the functionality “Utility Graph” in the ow chart of Figure 15. Based on learning a local
model (and based on a-priori information from learning models on similar data sets), “Utility Graph” produces a set of
pairs (Ci, Ri) together with a total number K of gradient computations: For various clipping constants Ci, a range
Ri of possible σ is output. That is, if σ  Ri for clipping constant C = Ci, then there is a good indication that this will
lead to target accuracy acctarget of the nal model after the client has contributed K local gradient computations.

A second functionality in the ow chart is the “DP Calculator”. This calculator takes the pair (Ci, Ri) that allows the
maximum possible σ inRi. This σ denes the best possible (ϵ, δ)-DP curve given our formula σ =


2(ϵ+ ln(1δ))ϵ.

That is, it allows the “smallest" possible (ϵ, δ) pairs. The “DP Calculator” checks whether the maximum σ allows the
target differential privacy budget of the client dened by (ϵtarget, δtarget). If not, then the client cannot participate
in the collective learning. If the target differential privacy budget does t, then, given σ, ϵ = ϵtarget, δ = δtarget, K,
and the client’s data set size N , the “DP Calculator” computes the maximum possible sample size smax according to
the conditions in Theorem B.4. This in turn results in a number of rounds T = Ksmax. We propose to choose the
maximum possible sample size as this leads to the best accuracy/utility in our experiments. This is because smax leads
to the smallest number of rounds T , hence, the smallest number of times noise is added and aggregated into the global
model at the server. (Also, as a secondary objective, a smaller number of rounds means less round communication.)

As soon as the “DP Calculator” has calculated all parameters, the client executes T rounds of DP-SGD with sample
(mini-batch) size s = smax. This is represented by the “FLwithDP” functionality in the ow chart of Figure 15. Once
the T rounds are done, the client estimates the accuracy acc of the last received global model based on the client’s
(public) test data set. Next, the client checks whether it is at least the target accuracy acctarget. If so, then the client
stops participating. That is, with each new global model received by the server, the clients test whether the accuracy is
satisfactory; if not, then the client will want to participate again. If the test accuracy acc is not sufcient, then the “DP
Calculator” will work with a new (Ci, Ri). The next subsection details the computations by the “DP Calculator” and
explains the feedback loop in the ow chart of Figure 15.

We remark that the client can use a complimentary differential privacy accountant to keep track of the exact privacy
budget that has been spent.

E.1 DP Calculator

We propose each local client to take control over its own privacy budget while making sure the locally measured test
accuracy of the nal global model is acceptable. The main idea is to start with an initial σ = σ0 with appropriate
clipping constant C = C0 and an estimated number K = K0 of local gradient computations needed for convergence to
“sufcient” test accuracy (utility). For local data set size N , we want to compute proper parameter settings including
the batch size s = s0 for each round and the total number of rounds T = T0 (with K = sT). Once the T rounds are
nished, local test data is used to compute the test accuracy of the nal global model. If the accuracy is not satisfactory,
then σ must be reduced to a lower σ1 (and we may re-tune to a larger clipping constant C1). This leads to an additional
(estimated) number of local K1 gradient computations that need to be executed. The lower σ corresponds to worse
differential privacy since a lower σ is directly related to a higher ϵ for given δ = 1N . The local client is in control of
what ϵ is acceptable – and if needed, the local client simply stops participating helping the central server learn a global
model.

46

In order to apply our theory, we pretend as if the initial T rounds used the lower σ = σ1 – this means that our analysis
provides an advantage to the adversary as we assume less noise is used compared to what was initially actually used.
Hence, the resulting DP guarantee for σ1 will hold for all K = K0 + K1 local gradient computations. We use the
new σ = σ1 and K together with badge size s0 for the rst T0 rounds to compute a new parameter setting for the next
rounds; this includes the number T1 of additional rounds (making T = T0 + T1) and the new batch size s1. The new
batch size implies a new average s̄ = (s0T0 + s1T1)(T0 + T1) as well as a new variation θ1 > 1 of the sequence of
batch sizes.

Once all T = T0 + T1 rounds are nished (or equivalently all K = K0 +K1 local gradient computations are nished),
the local client again computes the test accuracy of the last global model. If not acceptable σ is reduced again and we
repeat the above process. If the test accuracy is acceptable, then the local client stops participating, that is, the local
client stops gradient computations but continues to receive global models from the central server. As soon as the local
client measures a new unacceptable local test accuracy, the client will continue the above process and starts a new series
of rounds based on σ.

Stopping participation and later continuing if needed best ts learning problems over large data: Here, each local client
samples its own local data set according to the ‘client’s behavior’. The local client wants to prevent as much leakage of
its privately selected local data set as possible. Notice that each local data set is too small for a local client to learn
a global model on its own – this is why local clients need to unite in a joint effort to learn a global model (by using
distributed SGD). Assuming all samples are iid (all local data sets are themselves sampled from a global distribution),
the nal global model is not affected by having more or less contribution from local clients (as a result of different
stopping and continuation patterns). Notice that if local data sets would be heterogeneous, then the nal global model
corresponds to a mix of all heterogeneous data sets and here it matters how much each local client participates (as this
inuences the mix).

The above procedure describes a proactive method for adjusting σ to lower values if the locally measured test accuracy
is not satisfactory. Of course, the local client sets an a-priori upper bound ϵtarget on the ϵ (with δ = δtarget = 1N), its
privacy budget. This privacy budget cannot be exceeded, even if the local test accuracy becomes unsatisfactory.

We notice that our theory is general in that it can be used to analyse varying sequences of batch sizes, which is needed
for our proactive method. We now describe in detail how to calculate parameter settings according to our theorems:

Suppose the local client has already computed for T0+T1+   +Tj−1 rounds with badge sizes s0, s1,    , sj−1, hence,
K0 = s0T0, K1 = s1T1,    ,Kj−1 = sj−1Tj−1. The local client sets/xes the total Kj of gradient computations
it wants to compute over the next Tj rounds. We want to compute a new sj and Tj . Notice that sj = KjTj and
s̄ =

j
i=0 siTiT , where T =

j
i=0 Ti. We want to nd a suitable sj .

We start our calculation with sj = 1 and we rerun our calculation for bigger batch sizes until we reach a maximum.
Given a choice sj = s, we execute the following steps (we base the calculator on the slightly more complex but more
accurate Theorem B.4 of Appendix B):

1. Set δ = 1N , compute Tj = Kjsj given the input values Kj and sj , compute the corresponding s̄ (see
above) together with corresponding θ = maxsis̄. Compute K =

j
i=0 Ki.

2. Set γ = 2 (because γ = 2 +O(ᾱ)) as the initial value.
3. According to Theorem B.4, we compute ϵ, σ, and ᾱ as follows:

• Based on inequality (34), set ϵ as small as possible, that is, ϵ = γθ2s̄ K
N2 .

• We distinguish two cases:
j = 0: In case we want to determine s0, we compute σ0 = σ where σ meets (35) with equality, that is,

σ =


2(ϵ+ ln 1δ)ϵ.
j > 0: During previous computations we already selected a σj−1. As described above, we only perform

these calculations if the corresponding test-accuracy is not satisfactory. For this reason we want a
lower σj < σj−1. The local client chooses a smaller σj with possibly a larger clipping constant Cj

for which better accuracy within Kj local gradient computing steps is expected. We compute ϵ as
a solution of σj =


2(ϵ+ ln 1δ)ϵ and set ϵ to the maximum of this solution and the minimal

possible ϵ = γθ2s̄ K
N2 computed above.

• Compute ᾱ = ϵN
γK .

4. Recompute the new γnew = 2
1−ᾱ + 24·ᾱ

1−ᾱ


σ

(1−
√
ᾱ)2

+ 1
σ(1−ᾱ)−2e

√
ᾱ

e3

σ


e3/σ

2

.

5. Repeat steps 3 and 4 with γ replaced by γnew until γnew − γ ≤ 00001γ, that is, γ has converged sufciently.

47

6. The resulting set of parameters (ϵ, δ,σ, γ, θ, K,N) can only be used if inequalities (32) and (33) are satised
and ϵ ≤ ϵtarget.

• If these conditions are satised, then we save the parameters (s, ϵ,σ) and rerun the above calculation
for bigger sample size s. Otherwise, we output (s, ϵ,σ) of the previous run (as this corresponds to the
maximum s and thus minimal number of communication rounds) and terminate: We set σj = σ, sj = s,
and Tj = Kjsj . Our theory proves that we satisfy (ϵ, δ = 1N)-differential privacy.

• It may be that even the minimal batch size sj = 1 does not result in valid parameters (s, ϵ,σ). This means
that the local client cannot participate any more otherwise its required differential privacy guarantee
cannot be met.

48

