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Abstract

A standard practice in statistical hypothesis testing is to mention the p-value alongside
the accept/reject decision. We show the advantages of mentioning an e-value instead.
With p-values, it is not clear how to use an extreme observation (e.g. p ≪ α) for getting
better frequentist decisions. With e-values it is straightforward, since they provide Type-I
risk control in a generalized Neyman-Pearson setting with the decision task (a general
loss function) determined post-hoc, after observation of the data — thereby providing
a handle on roving αs. When Type-II risks are taken into consideration, the only
admissible decision rules in the post-hoc setting turn out to be e-value-based. Similarly,
if the loss incurred when specifying a faulty condence interval is not xed in advance,
standard condence intervals and distributions may fail whereas e-condence sets and
e-posteriors still provide valid risk guarantees. Suciently powerful e-values have by now
been developed for a range of classical testing problems. We discuss the main challenges
for wider development and deployment.

We perform a null hypothesis test with signicance level α and we observe a p-value p ≪ α.
Why arent we allowed to say we have rejected the null at level p? While a continuous source
of bewilderment to the applied scientist, professional statisticians understand the reason: to
get a Type-I error probability guarantee of α — a cornerstone of the Neyman-Pearson (NP)
theory of testing — we must set α in advance. But this immediately raises another question:
why should the p-value be mentioned at all in scientic papers, next to the reject/accept
decision for the pre-specied α [4, 20]? The prevailing attitude is to accept this standard
practice, on the grounds that it provides more information — as explicitly stated by, for
example, Lehmann [25], one of NP theorys main contributors. But this is problematic: there
is nothing in NP theory to tell us what the decision-theoretic consequences of p ≪ α could
be, whereas at the same time, the fundamental motivation behind NP theory is decision-
theoretic: according to [32], [all of] mathematical statistics deals with problems relating to
performance characteristics of rules of inductive behavior [i.e. decision rules] based on random
experiments. There is no simple way though to translate observation of a p with p ≪ α into
better decisions: as is well-known and reviewed below ((4) and (28)), intuitive and common
decision-theoretic interpretations of p ≪ α are usually just wrong. We are therefore faced
with a standard practice in NP testing that, according to (strict, behaviorist) NP theory, is
not part of mathematical statistics!
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E as an alternative for P In our main result, Theorem 1, we show that this issue can
be resolved by mentioning e-values rather than p-values next to the accept/reject decision.
E-values [13, 52, 42, 56, 37] are a recently popularized alternative for p-values that are related
to, but far more general than, likelihood ratios. Importantly, as reviewed in Example 2 below,
for any NP test with the accept/reject-decision based on a p-value, the exact same test can
be implemented by basing the decision on an e-value. Thus there is no a priori reason why
one should accompany the decision of a NP test with a p-value rather than an e-value. But,
in contrast to the p-value, the e-value has a clear decision-theoretic justication that remains
valid if decision tasks are formulated post-hoc, i.e. after seeing, and in light of, the data.
Concretely, after the result of a study has been published, and when new circumstances
prevail, one conceivably might contemplate dierent actions, with dierent associated losses,
than originally planned. For example, a study about vaccine ecacy (ve) in a pandemic
may have been set up as a test between null hypothesis ve ≤ 30% and alternative ve ≥ 50%
[45]. The original plan was to vaccinate all people above 60 years of age if the null is
rejected. But suppose the null actually gets rejected with a very small p-value ≪ α, and at
the same time the virus reproduction rate may be much higher than anticipated. Based on
both the observed data (summarized by p) and the changed circumstances, one might now
contemplate a new action, vaccinate everyone over 40, with higher losses if the alternative
is false and higher pay-os if it is true. E-values can be used unproblematically for such a
post-hoc formulated decision task; p-values cannot. A second example is simply the fact that
scientic results are published and remain on record so as to be useful for future deployment:
a company contemplating to produce medication X may nd a publication about the ecacy
of X that is, say, 15 years old. Back then, in two independent studies the null (no ecacy)
was rejected at the given α = 005, but producing X would have been prohibitively expensive
so this nding was not acted upon. But recently the company managed a technological
breakthrough making production of X much cheaper. Had α been smaller than 001, they
would now decide to take X into production. But now suppose that in both original studies,
p < 001 yet α = 005. The upshot of Example 1, Proposition 1 and Theorem 1 below is that,
if one had observed S−1 < 001 for an e-variable S then acting anyway, despite the changed
circumstances is Type-I risk safe, in the precise sense of (1) below; but doing this based on
p < 001 is unsafe in the sense that no clear risk (performance) bounds can be given when
engaging in such behavior.

From Testing to Estimation with Condence: the e-posterior The medication X
example is too simplistic: it only deals with rejecting the null of no ecacy. In reality
one wants to take eect sizes into account as well when making decisions. Section 3 shows
that e-value methods extend to that setting as well. Upon observing data from a statistical
model with parameter of interest θ, the question now becomes how to properly interpret the
statement θ ∈ csα, where csα is a (1− α)-condence set, usually an interval. The correct,
basic interpretation only says that, when repeatedly performing studies, the true parameter
will lie in csα in a fraction of about 1− α studies. But practitioners want more, and indeed,
css are often given an evidential interpretation — one outputs not one but a system of
condence intervals, one for each of a series of coecients such as 80%, 90%, 95%, 99%, or
even a full condence distribution [6, 41] and this, it is said summarizes what the data tell
us about θ, given the model [8, page 227] or the information about the parameter [24]. As
our second contribution, we show there is benet in replacing standard css by e-css, and
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condence distributions by e-posteriors [15]: again, these stand on rmer decision-theoretic
ground.

BIND Assumption underlying p-values and standard CSs While so far we high-
lighted the problems with post-hoc determined loss functions, below we show that decisions
based on ps (Section 1) and css (Section 3) may already become unsafe, in the Type-I risk
sense of (1), as soon as the decision task involves a Type-I loss function that can take on
more than two values, even if this loss function is determined in advance. Essentially, we
can only be sure that decisions based on ps and css are reliable if both (1) the loss function
is binary-valued (B) and (2), it is determined in advance, or at least independently (IND)
of the observed data. Thus, they really operate under a BIND (binary + independence)
assumption. E-values and -posteriors lead to decisions that retain Type-I risk safety if BIND
is violated.

Technical Contribution and Contents To obtain frequentist guarantees without BIND
we rst need to reformulate NP testing in terms of losses and risks rather than errors and
error probabilities, an idea going back to Walds seminal 1939 paper introducing statistical
decision theory [54]. But while Wald lets go o the Type-I/II error distinction as soon
as he allows for more than two actions, we stick with Type-I and Type-II risks (replacing
Type-I and Type-II error probabilities, respectively) and show that the e-value is then the
natural statistic to base decisions upon, and remains so if the decision task is determined
post-hoc. Thus, our GNP (Generalized Neyman-Pearson) Theory follows a path opened up
by Wald but apparently not pursued further thereafter. In Section 1 we informally present
this reformulation, show how p-based procedures get in trouble if BIND is violated, introduce
e-values and explain how, when combined with a maximally compatible decision rule, they
guarantee Type-I risk safety even without BIND. Section 2 then formalizes the reasoning and
presents our main result, Theorem 1. Among all Type-I risk safe decision rules, we aim only
for those that have admissible Type-II risk behavior; we call a rule admissible if there exists
no other decision rule that is never worse and sometimes strictly better. Theorem 1, which
has the avour of a complete class theorem [3, 9] shows that, under mild regularity conditions,
the set of admissible decision rules are precisely those that are based on some e-variable S via
a maximally compatible decision rule. Section 3 extends our ndings to condence intervals
and distributions (cds). cds can be replaced by e-posteriors, a novel notion treated in much
more detail in my recent paper [15], which may be be viewed as a companion to this one,
more oriented towards a Bayesian-inclined readership.

An Important Caveat Systematic development of e-values has only started very recently
(in 2019). While a lot of progress has been made, and by now useful (≈ powerful) e-values are
available for a number of practically important parametric and nonparametric testing and
estimation problems, there is still an enormously wide range of problems for which p-values
— systematically developed since the 1930s — exist yet e-values have not yet been developed.
We briey review initial success stories and current challenges in Section 4, informing the
nal Section 5 which indicates the way forward and re-interprets our ndings as establishing
a quasi-conditional paradigm. All longer mathematical derivations and proofs are delegated
to the Supporting Information Appendix (SI).
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1 Generalized Neyman-Pearson Theory

1.1 Losses instead of Errors

In the basic NP setting, we observe data Y taking values in some set Y , with both the null
hypothesis H(0) and the alternative H(1) being represented as collections of distributions for
Y . NP [34] tell us to x some α and then adopt the decision rule that, among all decision
rules with Type-I error bounded by α, minimizes the Type-II error. Following Wald [54],
we re-interpret this procedure in terms of a nonnegative loss function L(·, ·), with L(κ, a)
denoting the loss made by action a if κ is the true state of nature. We have κ ∈ 0, 1
and A = 0, 1, κ = 0 representing that the null is correct, κ = 1 that the alternative is
correct, a = 0 standing for accept and a = 1 for reject the null. We invariably assume
L(0, 1) > L(0, 0) ≥ 0, L(1, 0) > L(1, 1) ≥ 0. Of course (as Wald writes) we may want to set
L(0, 0) = L(1, 1) = 0 and we will do this for now, but it is not required for the subsequent
developments. In this formulation, the usual α-Type-I error guarantee is replaced by an
ℓ-Type-I risk guarantee. Formally, we x an ℓ in advance of observing the data and we say
that decision rule δ (i.e. a test), dened as a function from Y to A, is Type-I risk safe if

sup
P0∈H(0)

EY∼P0 [L(0, δ(Y ))] ≤ ℓ, (1)

where, for j = 0, 1, Pj ∈ H(j), EY∼Pj [L(0, δ(Y ))] is called the risk of Pj , i.e. the expected
loss under Pj . Following NP again, with again error probability replaced by risk, we now
postulate that among all Type-I risk safe decision rules δ, we ideally want to pick one that
has small worst-case Type-II risk

sup
P1∈H(1)

EY∼P1 [L(1, δ(Y ))] (2)

(1) expresses that, whatever we decide, we want to make sure that our risk (expected loss)
under the null is no larger than ℓ. In a standard level-α test, one rejects the null if p(y), the
p-value corresponding to data y, satises p(y) ≤ α. A corresponding decision rule in terms
of loss functions is to reject the null whenever the observed p(y) satises

p(y) · L(0, 1) ≤ ℓ (3)

We get exactly the same behavior as for the standard level α-test if we set L(0, 1) = ℓα. For
example, for α = 005 we can set ℓ = 1 and then L(0, 1) := 20; then, just like in NP testing
(3) tells us to pick a δ◦ which rejects the null if p ≤ 005. If p is dened so that δ◦ is UMP
(uniformly most powerful), then combined with any loss function L(1, 0) > 0, δ◦ will also
minimize the worst-case Type-II risk (2) among all δ that satisfy Type-I error probability
≤ α: up until now we have merely reformulated standard NP theory.

Actions of Varying Intensity But now suppose we have more than two actions available.
For example, consider four alternative actions: accept the null (retain the status quo), take
mild action (e.g. vaccinate all people over 60), take more drastic action (vaccinate everyone
over 40) and extreme action (vaccinate the whole population). We consider this question,
too, in terms of Type-I and Type-II risk and condence — thereby taking a dierent direction
than standard decision theory. For example, our action space could now be Ab = 0, 1, 2, 3
with loss function Lb(0, 0) = 0, Lb(0, 1) = 20ℓ, Lb(0, 2) = 100ℓ, Lb(0, 3) = 500ℓ and Lb(1, 3) <

4



Lb(1, 2) < Lb(1, 1) < Lb(1, 0) = ℓ. More generally, as long as Type-I loss is increasing in a
and Type-II loss is decreasing, such an extension of the NP setting makes intuitive sense.

In terms of p-values, the straightforward extension of (3) to this multi-action case would
be to play action a where a is the largest value such that

p(y) · Lb(0, a) ≤ ℓ (4)

But, assuming our p-value is strict so that it has a uniform distribution under the null, this
gives a Type-I risk of

EY∼P0 [Lb(0, δ(Y ))] =


1

20
− 1

100


· 20ℓ +


1

100
− 1

500


· 100ℓ + 1

500
· 500ℓ = 26ℓ, (5)

violating the guarantee we aimed to impose and showing that a naive p-value based procedure
does not work. The problem gets exacerbated if we allow for more than four actions: in
the SI we show that the expected loss of the naive procedure (4) may go to ∞ as we add
additional actions with Lb(0, a) increasing and Lb(1, a) decreasing in a. There we also show
that an obvious x, namely modifying (4) to make sure that for each action a, Lb(0, a) gets
multiplied by exactly the probability that action a is taken, does not solve this issue.

Post-Hoc Loss Functions Allowing more than two actions is really just a warm-up to a
further extension which arguably better models what often happens in, for example, medical
practice: the post-hoc determination or modication of a decision task, after seeing the data
and dependent on the data, such as in the vaccine ecacy example in the introduction. That
is, there is really an underlying class (whose denition may be unknowable) of loss functions
Lb(·, ·) with associated action spaces Ab, and the decision-maker (DM) is posed a particular
decision task Lb(·, ·) where b, indexing the loss actually used, is really the outcome of a
random variable B = b, whose distribution may depend on the data in all kinds of ways.
The actual B = b that is presented is thus random and only xed after the study result has
become available; i.e. post-hoc. Crucially, the process determining the actual value of B
is typically murky; nobody knows exactly what loss function would have been considered in
what alternative circumstances; DM only knows the loss function nally arrived at.

Again, with p-values, we might be tempted to pick the largest action a such that (4)
holds, where now b is really the (observed, known) outcome of random variable B whose
denition is itself unknown. Now, even if for each b, Lb allows for only two actions, so that
the problem supercially resembles the standard NP setting, using (4) can have disastrous
consequences in the post-hoc setting, as the following example shows.

Example 1 Suppose there are three loss functions Lb, for b ∈ B = 1, 2, 3, with cor-
responding actions Ab = 0, b. We set L1(0, 1) = 20ℓ, L2(0, 2) = 100ℓ, L3(0, 3) = 500ℓ,
Lb(0, 0) = 0, Lb(1, 0) := ℓ for all b ∈ B, and Lb(1, b) strictly decreasing in b. This is like the
previous example, but rather than always being able to choose one among four actions, the
very set of choices that is presented to DM via setting B = b might depend on the data Y or
on external situations. One cannot rule out that this is done in an unfavourable manner — if
the data suggest strong evidence then the policy developers (e.g. a pandemic outbreak man-
agement team) might only suggest actions with drastic consequences. Suppose, for example,
that if p > 002, the DMs are presented loss L1; if 0001 < p ≤ 002 they are presented loss
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L2; and if p ≤ 0001 they are presented loss L3. Using (4), we then get (assuming again
uniform p) a Type-I risk of

EY∼P0 [L(0, δ(y))] = (005 − 002) · 20ℓ + (002 − 0001) · 100ℓ + 0001 · 500ℓ = 3 · ℓ

As in (5) the resulting decision rule (4) is not Type-I risk safe, and again, the Type-I risk
can even go to innity with the number of potential actions.

1.2 E-Values to the Rescue

Reporting evidence as e-values (as dened by (6)) rather than p-values solves both the mul-
tiple action and post-hoc-loss issue identied above. An e-value is the value of a special type
of statistic called an e-variable. An e-variable is any nonnegative random variable S = S(Y )
that can be written as a function of the observed Y and that satises the inequality:

for all P ∈ H(0): EP [S] ≤ 1 (6)

The e-variables simplest application is in dening tests: the S-based hypothesis test at level
α is dened to reject the null i S ≥ 1α. Since for any e-variable S, all P ∈ H(0), by
Markovs inequality, P (S ≥ 1α) ≤ α), with such a test we get a Type-I error guarantee
of α, with the advantage that (as shown by [13, 52]) unlike with p-values, the Type-I error
guarantee remains valid under optional continuation, i.e. deciding based on a study result
whether new studies should be undertaken and if so, multiplying the corresponding e-values.
The term e-variable was coined in 2019 [13, 52] but their history is older, as described by
[13, 37].

We may now simply pick any e-variable S we like and replace decision rule (4) by the
following maximally compatible alternative rule: upon observing data Y = y and loss function
indexed by B = b with accompanying maximum imposed risk bound ℓ, select the largest a
for which

S−1(y) · Lb(0, a) ≤ ℓ, i.e. Lb(0, a) ≤ S(y) · ℓ, (7)

where we adopt the (in our setting harmless) convention that, for u = 0 and v ≥ 0, u−1v := 0
if v = 0 and u−1v = ∞ if v > 0 (in Section 5 we discuss where ℓ comes from). Theorem 1
below gives conditions under which (7) has a unique solution. For the original NP setting of
two actions, (7) is simply the p-value based rule (4) with p replaced by 1S, illustrating that
large e-values correspond to evidence against the null. But in contrast to the p-value based
rule, with the e-based rule, no matter what e-variable S we take (as long as it is itself chosen
before data are observed), no matter how many actions A contains, no matter the process
determining the loss B, we have the Type-I risk guarantee (1) (Theorem 1 below): replacing
p by 1S resolves the BIND problem. Of course, this raises the question whether p-values
cannot be used safely for Type-I risk after all, in a manner dierent from (4). The only such
method we know of is to rst convert a p-value into an e-value and then use (7) after all. As
discussed in the SI, the e-values resulting from such a conversion are usually suboptimal, so
we prefer to design and use e-values directly.

Example 2 [The NP and LR E-Variables] As with p-values, many dierent e-variables can be
dened for the same H(0). As discussed by [42], an extreme choice is to start with a xed
level α and p-value p and to set Snp(α) := (1α) if p ≤ α and Snp(α) = 0 otherwise. Clearly
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EY∼P0 [S
np(α)] ≤ α(1α) = 1 so Snp(α) is an e-variable. In the case of a classical, 2-action NP

problem as dened underneath (3), the test (7) based on e-variable S = Snp(α) will lead to
a = 1 (reject the null) exactly i the classical NP test based on p does. This shows that any
p-based NP test can also be arrived at using (7) with a special e-value: nothing is lost by
replacing p-values with e-values. Still, in case there are more than 2 actions and/or post-hoc
decisions, while preserving the ℓ-Type-I risk guarantee, decisions based on Snp(α) may not
be very wise in the Type-II risk sense. For example, with the loss function used in (5) and
α = 005, we get that even for very small underlying p (i.e. extreme data), we will still choose
action 1 whereas it seems more reasonable to select more extreme actions, minimizing Type-II
loss, as the evidence against the null gets stronger. In case H(0) = P0 and H(1) = P1
are simple, this can be achieved by taking S to be a likelihood ratio: assuming Pj has density
pj ,

Slr :=
p1(Y )

p0(Y )
(8)

which is immediately seen to be an e-variable:

EP0 [S
lr] =


p0(y)

p1(y)

p0(y)
dµ =


p1(y)dµ = 1, (9)

i.e. to satisfy (6). We can compare Snp(α) and Slr if p underlying Snp(α) is itself a monotonic
function of the likelihood ratio Slr, as it will be for the standard optimal power NP test. In
the decision task above (4), when used in (7), Snp(α) can, for each α, select at most 2 actions
whereas Slr leads to selection of action 0, 1, 2 or 3 depending on the amount of evidence, at
the price of imposing a larger threshold before any particular action is selected compared to
the Sα that is optimal for that action (e.g. S005 is optimal for action 1 in this sense). We
will see more sophisticated e-variables in Example 4 and refer to numerous further examples
of useful e-variables in Section 4.

2 Mathematical Formalization and Results

2.1 Type-I Risk Safety and Compatibility

Let H(0), the null hypothesis, be a set of probability distributions for random Y taking values
in a outcome space Y .

Denition 1 A GNP (Generalized Neyman-Pearson) testing problem relative to H(0) is a
tuple (B, (Ab, Lb(0, ·) : Ab → R+

0 ) : b ∈ B) where for all b ∈ B, we call Lb(0, ·) the Type-I
loss indexed by b with action space Ab.

In Section 3 we extend the denition to uncertainty quantication beyond testing. Relative
to any given GNP testing problem, we further dene a decision rule to be any collection of
functions δb : b ∈ B, where δb(y) denotes the a ∈ Ab picked when loss function indexed
by B = b (i.e. Lb) is presented and Y = y is observed. Let δ be any decision rule and let
S = S(Y ) be any e-variable. We call δ compatible with S if

Lb(0, δb(y)) ≤ S(y) for all y ∈ Y , b ∈ B (10)

We now prepare the denition of Type-I risk safety for GNP decision problems. First, we note
that in general, the threshold ℓ a DM would like to impose on the risk via (7) when confronted
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with loss function Lb may be an arbitrary positive real. However, using this maximal rule (7),
for every observed Y = y and B = b, the exact same decision will be taken if we normalize
all losses, using L′

b with L′
b(0, a) = Lb(0, a)ℓ instead of Lb and ℓ′ = 1 instead of ℓ. Hence,

without loss of generality, from now on we simplify the treatment by taking ℓ = 1 (in the SI
we discuss in more detail why this is not harmful). With this in mind, consider a concrete
setting in which the actual loss function LB with index B presented to DM is determined in
a data-dependent manner (perhaps by some policy makers, perhaps completely implicitly).
Since we do not know the denition of B, i.e. how the choice is made, we want to ensure
that the analogue of Eq. 1 holds, in the worst case, over all possible choices. Thus, as a rst
attempt, we may extend Eq. 1, by dening δ to be Type-I risk safe if

sup
P0∈H(0)

EP0


sup
b∈B

Lb(0, δb(Y ))


≤ 1 (11)

As discussed in the SI, the expectation might be undened for pathological choices of the set
B and the functions Lb : b ∈ B — after all, we have not restricted the choice of B and Lb

at all. We can simply avoid this issue by slightly modifying the denition: we dene δ to be
Type-I risk safe if there exists a function U : Y → R+

0 such that for all P0 ∈ H(0), EP0 [U(Y )]
is well-dened, and for all y ∈ Y ,

sup
b∈B

Lb(0, δb(y)) ≤ U(y) ; sup
P0∈H(0)

EP0 [U(Y )] ≤ 1 (12)

E-Variable Compatibility ⇔ Type-I Risk Safety In NP Theory, Type-I error guaran-
tees come rst — we look for an optimal decision rule among all rules that have the desired
Type-I error guarantee. Analogously, here we rst restrict our search for good decision rules
to those that are Type-I risk safe for the given decision problem. How to nd these? Realiz-
ing that the second equation in (12) expresses that U is an e-variable, and the rst equation
says that δ is compatible with this e-variable, we see that the Type-I risk safe decision rules
are exactly those that are compatible with an e-variable, thereby explaining the importance
of e-variables to generalized NP testing. Formally, we have just proved the following trivial
consequence of our denitions:

Proposition 1 Fix an arbitrary GNP testing problem. For every δ dened relative to this
problem:

1. For every e-variable S for H(0): if δ is compatible with S, then δ is Type-I risk safe.

2. Suppose that δ is Type-I risk safe. Let S = U be as in (12) (in standard cases we can
simply take S(y) = supb∈B Lb(0, δb(y))). Then S is an e-variable for H(0), and δ is
compatible with S.

2.2 Admissibility

We now turn to Type-II losses. The reader may have wondered why the specication of
Type-II loss functions Lb(1, a) : Ab → R as in (2) was not made part of Denition 1. The
following crucial observation implies that this is superuous, thereby greatly satisfying the
treatment: suppose there were two actions a, a′ ∈ Ab such that Lb(0, a

′) > Lb(0, a) and
Lb(1, a

′) > Lb(1, a). Then any rational DM would always prefer a over a′, and hence never
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want to play a′. We can thus take a′ out of the set Ab without aecting the set of decisions
that a DM might ever want to consider. Assuming that Ab has been pre-processed like this,
we automatically obtain that the larger the Type-I loss of an action, the smaller the Type-II
loss, allowing us to refrain from specifying Lb(1, ·): we may thus call a decision rule δ◦ Type-II
strictly better than δ if for all b ∈ B, all P ∈ H(0), we have

P (Lb(0, δ
◦
b (Y )) < Lb(0, δb(Y ))) = 0 (13)

whereas there exist b ∈ B, P ∈ H(0) such that

P (Lb(0, δ
◦
b (Y )) > Lb(0, δb(Y ))) > 0 (14)

If Y is uncountable, Lb, δ
◦ and δ could again be picked in highly pathological ways, such that

the probabilities above are undened. This is fully resolved by the generalization of (13) and
(14) given in the SI.

Clearly, if both δ◦ and δ are Type-I risk safe and δ◦ is Type-II strictly better than δ, we
would always prefer playing δ◦ over δ. We may say that δ is inadmissible. Formally, for any
decision rule δ we say that it is admissible if it is Type-I risk safe and no other Type-I risk
safe decision rule is Type-II strictly better.

Main Result This admissibility notion is reminiscent of standard admissibility notions
in classical statistical decision theory, and the theorem below is in the spirit of a complete
class theorem [3, 9] expressing that in searching for reasonable (i.e., admissible) decision
rules in GNP problems we may restrict ourselves to those based on e-variables via maximally
compatible decision rules. Formally, we call a decision rule δ maximally compatible with e-
variable S relative to a given GNP testing problem, if it is compatible with S and there exists
no decision rule δ◦ such that δ◦ is also compatible with S yet δ◦ is Type-II strictly better
than δ. We will relate this to the earlier informal denition of maximum compatibility ((7))
further below.

To state the theorem, we need one more concept: we call a GNP testing problem rich
relative to e-variable S = S(Y ) if for every s in the co-domain of S, there exist b ∈ B and
a ∈ Ab such that Lb(0, a) = s. An example of a simple GNP testing problem that is rich
relative to any e-variable at all is obtained whenever B = sq ∪ B′, for arbitrary B′, where
Asq = R+

0 and Lsq(0, a) = a2 (the squared error loss — richness follows since it can take on
any value in R+

0 ). An example of a GNP testing problem that is rich relative to e-variable
Snp(α) of Example 2 is given by B = np ∪ B′, for arbitrary B′, where Anp = 0, 1 and
Lnp(0, 0) = 0, Lnp(0, 1) = 1α (if B′ = ∅, this is the classical NP setting of Section 1 again):
choose B = np, a = 0 if Snp(α) = 0, and choose B = np, a = 1 if Snp(α) = 1α.

Theorem 1 Consider a GNP testing problem. Then:

1. If δ is an admissible decision rule, then there exists an e-variable S such that δ is a
maximally compatible decision rule for S.

2. As a partial converse, suppose that δ is a maximally compatible decision rule for some
e-variable S. If (a) all P ∈ H(0) are mutually absolutely continuous (see below) and (b)
S is sharp relative to the given testing problem, i.e. EP0 [S] = 1 for some P0 ∈ H(0),
and (c) the GNP testing problem is rich relative to S, then δ is admissible.
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Part 1 shows that we can restrict our search for admissible decision rules to the ones that are
maximally compatible for some e-variable S. Part 2 is in essence a converse, showing that,
under some regularity conditions, maximally compatible decision rules must be admissible.
All three conditions required are weak: (a) Two distributions P, P ′ are mutually absolutely
continuous if they agree on what is practically impossible, i.e. for each event E , we have
P (E) = 0 i P ′(E) = 0. Most standard parametric families are absolutely continuous or
can be made such by excluding the boundary of the parameter space. (b) Sharpness of S
expresses that S cannot be uniformly improved — a mild requirement satised by all e-
variables considered in this paper (and also in most other papers on e-variables [37, 13]). (c)
Richness relative to the S considered holds in all examples encountered in this paper (see
Example 3 below for further illustration). More importantly perhaps, for any sharp e-variable
S which we might want to base our decisions on, we can trivially enlarge any given GNP
testing problem by adding one particular loss function so that the extended GNP decision
problem will automatically be rich relative to S, and Part 2 of Theorem 1 can then be applied.
In the SI we explain how this enlargement works and why it is a reasonable operation.

The theorem thus expressing that maximally compatible δ tend to coincide with admis-
sible δ, we would still like to be assured that such maximally compatible δ exist in wide
generality. To briey illustrate that this is the case, at the same time connecting the formal
notion to the earlier informal denition based on (7), let us consider what we will call simple
GNP testing problems. All GNP testing problems encountered in this and the previous sec-
tion are simple. They are dened as those GNP testing problems for which, (i) for all b ∈ B,
Ab is a nite union of closed intervals in R+

0 ∪ ∞ (in particular this includes the case that
Ab is nite); (ii) the Type-I loss Lb(0, a) is monotonically and, on each interval, continuously
increasing in a, and (iii) all P ∈ P are mutually absolutely continuous. The following is
easily checked: for arbitrary e-variable S, such simple GNP decision problems must have a
maximally compatible δ∗ relative to S that generalizes (7), with our simplication ℓ = 1: δ∗

is the rule which selects, when presented Y = y,B = b,

δ∗b (y) := largest a ∈ Ab with Lb(0, a) ≤ S(y) (15)

Moreover, this maximally compatible δ∗ is essentially unique, i.e. if δ∗, δ are both maximally
compatible, then for all P ∈ H(0), we have P (δ∗ ̸= δ′) = 0.

Example 3 Consider a simple vs. simple testing problem with H(0) = P0,H(1) = P1.
Let p(Y ) be a strict p-value, i.e. P0(p ≤ α) = α for α ∈ [0, 1], that is monotonically and
continuously decreasing in the likelihood ratio Slr(Y ); use of such a p-value is standard
in NP testing with continuous-valued outcome spaces. Consider the following variation of
Example 1: B ⊂ R+

0 with for b ∈ B, Ab = 0, 1 and Lb(0, 0) = 0, Lb(0, 1) = b. Take arbitrary
but xed 0 < α < 1. Then the maximally compatible decision rule δ∗ as in (15) relative to
e-variable Snp(α) is sharp. When presented with loss function Lb, this δ∗ always plays 0 if
b > 1α. If b ≤ 1α, it plays 1 if b ≤ Snp(α) (i.e. if Snp(α) = 1α, i.e. if p ≤ α) and 0
otherwise (i.e. if Snp(α) = 0, i.e. if p > α). By Part 2 of Theorem 1, this δ∗ is admissible if
B contains b = 1α, which ensures richness relative to Snp(α).

In contrast, consider the δ∗ as in (15) based on the likelihood ratio e-variable Slr, which
is also sharp. When presented Lb, this decision rule plays 1 if b ≤ Slr and 0 otherwise. If we
set B = R+

0 , we have richness relative to Slr so by Theorem 1, this δ∗ is admissible as well.
In this case though, admissibility of δ∗ may fail if we take B a strict subset of R+

0 .
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3 Robust Condence via the E-Posterior

Now let us consider a statistical model P partitioned according to a parameter of interest
θ ∈ Θ, with ϕ : P → Θ indicating the parameter corresponding to each P ; for example,
θ = ϕ(P ) might be the mean of P , or, if P = Pθ : θ ∈ Θ is a parametric model, ϕ
might simply denote the parameterization function, ϕ(Pθ) = θ. Any collection of p-values
pθ : θ ∈ Θ, with pθ a p-value for the null H(θ) := P ∈ P : ϕ(P ) = θ can be used to
build a valid (1 − α) condence set, by setting csα(Y ) = θ : pθ(Y ) > α to be the set
of θs that would not have been rejected at the given level α. For simplicity, we restrict
attention to scalar Θ ⊆ R; then the csα will usually be intervals, and indeed this p-value
based construction is a standard way to construct such intervals. Analogously [58, 37], any
e-collection, i.e. a collection of e-variables Sθ : θ ∈ Θ such that Sθ is an e-variable for the
nullH(θ) (by this we mean that Sθ must satisfy (6), i.e. EP [Sθ] ≤ 1, for all P ∈ H(θ)) can be
used to build an equally valid, usually larger, e-based (1−α)-condence set (again, for scalar
θ this usually becomes an interval), one for each α, by setting cs∗α(Y ) = θ : Sθ(Y ) < 1α as
the set of θs that would not have been rejected at level α with an e-value based test. Below
we rst give a simple example. We then, in Section 3.3.1 retrace the steps of Section 1 and
Section 2, re-interpreting condence sets in terms of actions with associated losses and risks.
Section 3.3.2 and 3.3.3 show that, once again, if losses are determined post-hoc (BIND is
violated), then standard condence intervals loose their validity whereas e-based condence
intervals remain Type-I risk safe. Relatedly, without BIND, decisions based on condence
distributions can be unsafe, but those based on the e-posterior — a means of summarizing
e-css for all αs at once — remain Type-I risk safe.

Example 4 Consider the normal location family: data are Y = Xn where, under Pθ, X
n =

(X1,    , Xn) are i.i.d. ∼ N(θ, 1). We consider e-based condence intervals based on various
e-collections. [15] gives various suitable collections, but for simplicity we here stick to a single,
simple choice, taken from Example 8 of [15], that, like the standard CI, is symmetric around
the MLE θ̂(Xn) = n−1


Xi. Fix anticipated sample size n∗ and condence level 0 < α∗ < 1.

For each θ we dene θ− < θ and θ+ > θ to satisfy

1

2
n∗(θ − θ+)2 =

1

2
n∗(θ − θ−)2 = log

2

α∗  (16)

Now dene e-variables S−
θ (y) = pθ−(y)pθ(y), S

+
θ (y) = pθ+(y)pθ(y) and Sθ(y) = (12)(S−

θ (y)+
S+
θ (y)). These choices can be motivated based on the fact that S−

θ and S+
θ are also uniformly

most powerful Bayes factors [23, 15] and hence reasonable e-variables for 1-sided css. We
continue with Sθ for two-sided css. As is proved analogously to (9), Sθ remains an e-variable
even if neither the actual sample size n nor the to-be-used signicance level 0 < α < 1 are
equal to the hoped-for n∗ and α∗; more on this below. In the SI we show that a sucient
condition for Sθ(Y ) ≥ α−1, i.e. for θ ̸∈ cs∗α(Y ) is that

θ − θ̂
 ≥


2

n
· log 2

α
· g(c), with

c =
n∗

n
· log(2α )

log(2α∗)
, g(c) =

1

2


c12 + c−12


 (17)
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As explained in the SI, for xed α, (17) is tight for all but the smallest n. Thus, the e-based
condence interval cs∗α(Y ) has width θ − θ̂ ≍ 1

√
n, of the same order as the region for

the standard Neyman-Pearson test, with a factor g(c) depending on how well aligned n, n∗,α
and α∗ are: g(c) and hence the width is minimized, if c = 1 (and then g(c) = 1) which is
the case if n = n∗ and α = α∗. At α = 05, we get in this optimal case that Sθ(Y ) ≥ α−1 if
θ − θ̂ ≥


(2 log 40)n ≈ 272

√
n, making the e-based CI wider than the standard CI by a

constant factor of ≈ 272196 ≈ 14 (see Figure 1).

E-Processes Why do we not simply set n∗ in the denition of Sθ actual to the actual
n? The reason is that we allow the actual n to be unknown in advance, and even to be
random (i.e. a stopping time with unknown denition): it is easily seen that, if Y = Xτ with
Xτ = (X1,    , Xτ ) for a stopping time τ (whose denition may be unknown to DM), then
Sθ(X

τ ) is still an e-variable. Formally, Sθ(X
1), Sθ(X

2),    constitutes an e-process in the
sense of [38, 37]. Thus, we can use Sθ without knowing the denition of τ , and in particular,
τ may be unequal to n∗ — such as an extension of e-variables to be used with arbitrary
stopping times is often, but not always possible [13]; whenever it is, it provides an additional
bonus over use of standard p-variables in testing, which require the stopping time to be set
in advance. As stated, assuming that we base the Sθ on the correct n and α, this e-based
condence interval is about 14 times as wide as the standard one; the inevitable (yet, I feel,
worthwhile!) price to pay for the added exibility and robustness: in contrast to the standard
one, we can use the e-based interval for unknown n (or τ) as well, and we can also use it to
get valid condence intervals for B if BIND is violated, as we proceed to show.

3.1 Reformulating Coverage in terms of Type-I Risk

We now generalize the denition of GNP testing problem so that (besides much else) it also
allows for estimation with condence intervals.

Denition 2 Fix a set of distributions P for Y , a set Θ and a function ϕ : P → Θ mapping
P ∈ P to property ϕ(P ) ∈ Θ as above. A GNP (Generalized Neyman-Pearson) decision
problem relative to P, Θ and ϕ is a tuple (B, (Ab, Lb : Θ×Ab → R+

0 ) : b ∈ B).
A GNP decision problem is really a set of GNP testing problems, one for each θ ∈ Θ:
we recover Denition 1 by taking a singleton Θ = 0,P = H(0) and ϕ(P ) = 0 for all
P ∈ H(0). For general θ ∈ Θ, the θ-testing problem corresponding to the GNP decision
problem is the testing problem (B, (Ab, Lb(θ, ·) : Ab → R+

0 ) : b ∈ B) with null hypothesis
H(θ) = P : ϕ(P ) = θ and with Lb(θ, ·) in the role of Lb(0, ·). All denitions for GNP testing
problems are now easily extended to GNP decision problems by requiring them to hold for
the corresponding θ-testing problem, for all θ ∈ Θ. In particular, we say that decision rule δ
is compatible with e-collection Sθ : θ ∈ Θ if we have for all y ∈ Y , b ∈ B that

∀θ ∈ Θ : Lb(θ, δb(y)) ≤ Sθ(y) (18)

The denition of Type-I risk safety is extended analogously from (12): δ is Type-I risk safe
i there exists an e-collection S = Sθ : θ ∈ Θ such that δ is compatible with S. If the
expectation below is well-dened (which it will be in the condence interval setting), Type-I
risk safety is then clearly equivalent to the corresponding generalization of (11):

sup
θ∈Θ

sup
P∈H(θ)

EP


sup
b∈B

Lb(θ, δb(Y ))


≤ 1 (19)
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Admissibility is extended analogously: we call a decision rule δ◦ Type-II strictly better than δ if
for all θ ∈ Θ, the corresponding θ-testing problem satises (13) with 0 replaced by θ, whereas
there exist θ ∈ Θ, b ∈ B, P ∈ H(0) such that the corresponding θ-testing problem satises
(14) with 0 replaced by θ. The denition of admissibility and maximum compatibility are
now based on this extended notion of Type-II strictly-betterness and otherwise unchanged;
we further extend the notions of sharpness and richness to this generalized setting and provide
a generalization of Theorem 1 to full GNP decision problems in the SI Appendix.

Condence Intervals as Actions We now instantiate the above to estimation of con-
dence intervals. Given a probability model P and parameter of interest θ ∈ Θ ⊂ R with
θ = ϕ(P ) as above, take the GNP decision problem with this Θ and ϕ, and with B = [1,∞),
Ab = [θL, θR] : θL, θR ∈ Θ, θL ≤ θR,

Lb(θ, [θL, θR]) = b · 1θ ̸∈[θL,θR] (20)

Thus, we incur a Type-I loss, if the sampling distribution θ is not in the interval [θL, θR] we
specied, and b determines how bad such a mistake is — this may again be data-dependent:
we assume once again that we are presented B = b via a random and potentially unknowable
process, and we want to obtain the Type-I risk guarantee (19), which instantiates to

sup
θ∈Θ

sup
P∈H(θ)

EP [sup
b∈B

b · 1θ ̸∈δb(Y )] ≤ 1, (21)

where δb(Y ) = [θL(Y, b), θR(Y, b)]. Among all decision rules (i.e. condence intervals) δ
satisfying (21), we want to nd the narrowest ones. Our denition of Type-II strictly better
above automatically accounts for this: the extended denition of Type-II betterness implies
that [θL, θR] is Type-II strictly better than [θ′L, θ

′
R] i [θL, θR] is a proper subset of [θ′L, θ

′
R].

If we may assume that BIND holds we can take the supremum over B in (21) out of
the expectation, i.e. bEP [1θ ̸∈δb(Y )] ≤ 1 must hold for all xed θ, P ∈ H(θ) and b. We
may then think of b as set in advance: if we set b = 1α for some 0 < α ≤ 1, then the
requirement says that δb(Y ) is a standard (1 − α)-condence interval. Thus, under BIND,
standard condence intervals δb coincide with Type-I risk safe condence intervals as dened
above: just as for p-value based tests in Section 1, under BIND the new setting is simply
an equivalent reformulation of the existing theory of condence sets. Yet, again, if BIND is
violated, then standard condence intervals are not Type-I safe any more, whereas e-based
condence intervals still are.

Example 5 [Ex. 4, Continued] Suppose you observe Y = y, B = b. Let us use the e-
condence intervals as dened relative to a particular anticipated n∗ and α∗. Using (17) and
substituting 1b for α (so that now c = (n∗n) · (log(2b)(log(2α∗))), gives that ∀θ ∈ Θ :
Lb(θ, δb(y)) ≤ Sθ with δb(y) = [θL, θR] (i.e. compatibility ((18)) holds and hence Type-I risk
safety (21) holds as well) as soon as θL ≤ θ̂ − A and θR ≥ θ̂ + A where

A =


2

n
·


log(2b) · g(c) (22)

We may choose δB(Y ) = [θ̂ − A, θ̂ + A] to satisfy this with equality to make the interval as
narrow as possible, making our interval admissible. We are then guaranteed Type-I safety,
(21), irrespective of the denition of B. In contrast, it is not clear how to construct Type-I
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safe CIs for data-dependent B without e-values. We might be tempted to do this based on
condence distributions (cds) [6, 41] that summarize condence intervals for each α into a
posterior-like quantity, or objective Bayes posteriors [3], but as we now show, this can have
bad results.

3.2 cd’s and O’Bayes Posteriors are not valid Post-Hoc

Consider the normal location family again. With the standard (uniform, improper) objective
Bayes prior for this family and data Y = xn, the posterior W ◦  Y = xn has a normal
density w◦(θ  xn) with mean and median equal to the MLE θ̂(xn) and variance 1n [3]. In
this case the objective Bayes posterior also coincides with the ducial [17] and the condence
distribution (cd) [41] based on xn, and has an exact coverage property: if we let [θL, θR]
represent the standard (1 − α)-Bayesian credible interval based on w◦(θ  xn), i.e. taken
symmetrically around the MLE θ̂(xn) then this coincides exactly with the standard (1− α)-
condence interval, e.g. for α = 005, we have θL = θ̂(xn)− 196

√
n, θR = θ̂(xn) + 196

√
n.

The question is now how to base inferences on the objective Bayes or cds within our
current GNP decision problem, i.e. if the goal is to come up with an interval as narrow as
possible that contains the true θ, where making a mistake is weighted by some B that is
determined post-hoc. Upon observing Y = xn and B = b, and based on the cd w◦(θ  Y ),
one would presumably pick the smallest interval symmetric around θ̂ for which the Bayes
posterior satises the required risk bound, i.e. δ′b(Y ) = [θ̂−A, θ̂+A] where A, depending on
b, is the smallest number such that

Eθ̄∼W ◦|Y=xn [Lb(θ̄, δ
′
b(x

n))] ≤ 1, (23)

i.e. Eθ̄∼W ◦|Y=xn [b · 1θ̄ ̸∈[θ̂−A,θ̂+A]] ≤ 1, (24)

with b the observed value taken by B; and for this smallest A, (24) holds with equality. Since
W ◦(θ̄ ̸∈ [θ̂−A, θ̂+A]  Y = xn) = 1b, this δ′b(Y ) is equal to the standard (1−α)-condence
interval for α = 1b. The intuitive appeal for choosing this δ is clear: (24) expresses that as
a DM one can expect the loss given the data to be bounded by 1; one simply wants to pick
the smallest, most informative interval for which this holds true. Yet the real expectation of
the loss may very well be dierent from (24) — assuming that B is a xed function of Y , it
is given by

EY∼Pθ∗


B(Y ) · 1θ∗ ̸∈δ′

B(Y )
(Y )


, (25)

with θ∗ indexing the true sampling distribution. This quantity may be much larger than 1 if
B is dependent on Y . We provide a simple yet extreme example (inspired by the less extreme
Example 8 of [14]) with n = 1, Y = X1 (equivalently, think of Y as the Z-score corresponding
to a larger sample): x any ϵ > 0. If, whenever Y ≥ ϵ, we set B := 1(2F0(−Y + ϵ2Y ))
where F0 is the CDF of a standard normal, then, as demonstrated in the SI, under θ∗ = 0,
(25) evaluates to ∞, irrespective of the denition of B(Y ) for Y < ϵ. In particular we may
set B = 1 for such Y , corresponding to the decision problem being called o, because the
required bound (24) is then achieved trivially by issuing the empty interval.

Repercussions for Neymans Inductive Behavior This discrepancy between what one
believes will happen according to a posterior (risk bounded by 1) and what actually will
happen (potentially innite risk) has repercussions for Neymans interpretation of statistics
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as long-run performance guarantees of inductive behavior. To illustrate, imagine a DM who
is confronted with such a decision problem many times (each time j the underlying θ(j) with
Y(j) ∼ Pθ(j) and the sample size n(j) and the importance function B(j) may be dierent).
Then, based on (24) she might think to have, by the law of large numbers, the guarantee
that, almost surely,

lim sup
m→∞

1

m

m

j=1

B(j) · 1θ ̸∈[θL(Y(j)),θR(Y(j))] ≤ 1 (26)

Unfortunately however, this statement is likely false if in reality there is a dependence between
B(j) and Y(j) In the SI we show that, based on the example above, the average in (26) may
in fact a.s. converge to innity, even though the individual B(j)s look pretty innocuous. A
rst reaction may be to require the DM to address this problem by modeling the dependency
between B(j) and Y(j). But the precise relation may be unknowable, and then it is not clear
how to do this. To avoid the issue one may output e-based CIs or, equivalently but perhaps
more illuminatingly, CIs based on the e-posterior that we now introduce.

3.3 The E-Posterior remains valid Post-Hoc

Let S = Sθ : θ ∈ Θ be an e-collection. Just like it is tempting to interpret a system of
condence intervals, one for each α, i.e. a cd, as a type of posterior, one can also view
the Sθ-reciprocal P̄ (θ  Y ) := S−1

θ (Y ) as a type of posterior representation of uncertainty
for parameter θ. This idea has been conceived of independently by [57] and [15], who called
P̄ (θ  Y ) the e-posterior. The crucial dierence between e-posteriors and cds is that the
former enable valid inferences under specic post-hoc, data-dependent assessments of Type-I
risk, whereas standard cds can only be validly used as in (23) if BIND holds. We thus
recommend e-posteriors, like Cox [6] did for cds, as a summary of estimation uncertainty —
but a summary that is signicantly more robust than that provided by cds.

Using the e-posterior we can re-express compatibility, (18), as

sup
θ∈Θ

P̄ (θ  y) · Lb(θ, δb(y)) ≤ ℓ, (27)

with conventions about 0 ·∞ as underneath (7) and ℓ = 1. We already know that δ satisfying
(27) are Type-I risk safe irrespective of how B is dened. The rewrite suggests an analogy to
the Bayes posterior risk assessment, (23): if we replace objective Bayes/cd-posterior expec-
tation by e-posterior maximum, we get Type-I risk safety without the BIND assumption.

[15] shows that, for general bounds ℓ and with Lb replaced by general loss functions,
without Type-I/II-dichotomies, assessment (27) is meaningful and provides a non-Bayesian
alternative for Bayes-posterior expected loss assessment. In that paper, I also list a variety of
e-posteriors, including an extension of the one of Example 4 to general exponential families,
and point out deeper relations between e-posteriors and Bayesian posteriors. In the present
paper, we merely present the e-posterior as a graphical tool which summarizes the e-based
condence intervals as given by (18) and helps to visualize how they relate to standard
condence intervals: see Figure 1.

4 State of the Art

The modern development of e-values and e-processes started only in 2019 when rst versions
of the four ground-breaking papers [13, 52, 42, 56] appeared on arxiv. Since then, development
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Figure 1: The solid line depicts the e-posterior corresponding to the e-collection of Example 4
capped at 1, i.e. min1, P̄ (θ  y), for data y = xn with n = 100 and MLE θ̂(y) = 100. The
dashed green line depicts twice the tail area of the objective Bayes posterior (cd)W ◦  Y = xn

of (24), given by f(θ) := 2W ◦(θ̄ ≥ θ  y) = 2
∞
θ w◦(θ̄  y)dθ. The standard two-sided (1−α)-

condence interval is given by [θL, θR] where θL < θ̂ = 100 is the leftmost θ at which the
dashed green curve takes value α, and θR is the rightmost such θ. The (1 − α)-e-condence
interval based on Sθ as dened above (17), and with boundaries approximately equal to, (17),
is given by the [θL, θR] at which the solid line takes value α. The right picture zooms in on the
right for α ≤ 005. As expected, the dashed line hits 005 for θR = θ̂(xn) + 196

√
n = 1196,

the solid (e-based) line at θR = θ̂(xn) + 272
√
n = 1272.
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has been remarkably fast, often centering around GRO (growth-rate optimal) e-variables and
-processes (see [13, 37] who also provide more historical context). Growth rate (also called
e-power [60]) is a natural analogue of power in the e-process setting, in which sample sizes
are not xed in advance, related to the minimum sample size needed to reject the null and ci
width. As a rst step, GRO e-methods were successfully developed for basic workhorses of
statistics such as the z-test (the one appearing in Example 4 has GRO status), the t-test [13],
the test of two proportions [49] and the logrank test [46], which has been successfully deployed
in a live meta-analysis of ongoing clinical trials [47]. The t-test setting has been extended
to general tests and CIs with group invariances and linear and nonparametric Gaussian
process regresssion [35, 26, 31]. The test of two proportions has been extended to k-sample
tests of general exponential families [18], CMH tests [50] and to conditional independence (of
X and Y given Z) testing under a model-X assumption (combineable with arbitrary models
for Y  X,Z) [16]. E-variables that are not GRO yet still have good power-like properties
have been quite successful in multiple testing applications [55, 22] as well as several other
nonparametric problems [36, 57, 19] — the recent overview [37] provides a comprehensive
list. In all applications mentioned, the qualitative behavior is similar to that of Example 4,
with ci widths of order O(f(n)

√
n) per parameter of interest, f(n) varying from constant

to O(
√
log n), depending on the specic application.

(Current) Limitations and Challenges These initial successes notwithstanding, the
development of e-values is, of course, still in its infancy, competing with almost a century
of p-value development. As such, many challenges remain. To appreciate these, we rst
note that the aforementioned GRO-type approaches can in principle be made competitive, in
terms of sample sizes needed to draw a conclusion, with classical ones that rely on BIND —
see below; sometimes they even signicantly beat such classical methods (e.g. [50, 57]). Also,
[13] shows that GRO e-values exist and can be calculated for very general testing problems.
Yet in general, this calculation is not ecient. In some cases (such as [35, 50, 16] mentioned
above), they admit an analytical and hence eciently calculable expression, but for others,
they do not. These hard cases include regression (i.e. Y = fθ(X,Z) + noise) that involves
a nonlinearity, such as GLMs and Cox proportional hazards, whenever the variable X to be
tested (e.g. treatment vs. control) does not satisfy the model-X assumption (conditional
distribution of X given Z known). While model-X is automatically satised in clinical trials,
there are of course many important cases in which it is not. Universal inference [56] provides
an alternative generic e-design method that does lead to eciently calculable e-values in
such cases, but in regression problems it is not competitive in terms of power with classical
methods for medium- to high-dimensional models [48] — its strength has rather been to
provide e-values for complex H(0) that have simply eluded classical testing [10].

Challenges – II With GRO-type methods one can obtain comparable performance in
terms of power as compared to classical approaches. In many (not all) settings though, one
needs to engage in optional stopping to achieve this. For a broad class of e-values, this
is no problem ([13] provides a detailed analysis): all coverage and Type-I risk guarantees
are retained under such optional stopping. Still, it points towards a second challenge for
e-methods, sociological/psychological rather than statistical: it requires researchers to think
dierently, and this is, of course, always dicult to accomplish. In this respect, the tech
industry is at the forefront: anytime-valid methods based on e-processes have been adopted
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by several major tech companies [26].

5 Discussion, Future Work, Conclusion

We provide a few concluding remarks. First we analyze in what sense we solved the roving
α issue that motivated this work. Second, we discuss related work. Third, we suggest a
road ahead for e-methods.

Roving α Revisited: the Quasi-Conditional Paradigm Assume we have a prior on
H(0) and H(1) and priors W0 and W1 on the distributions inside these hypotheses. We can
then use Bayes theorem to calculate the Bayes posterior P (H(0)  Y ) based on data Y .
Suppose we reject the null if P (H(0)  Y ) ≤ α. We may then dene, for all y for which this
holds, i.e. for which we reject the null, the conditional Type-I error probability α̂ to be simply
equal to this posterior probability, α̂ := α̂|y := P (H0  Y = y). This implies that, for any
xed α0 ≤ α, for any long sequence of studies, with probability tending to one,

among all studies with α̂ ≤ α0, we make a
Type-I error at most a fraction α0 of the time.

(28)

Such a fully conditional statement, with post-hoc determined α̂|Y , is only correct if the priors
can be fully trusted, i.e. if one accepts a fully subjective Bayesian stance. It would denitely
be incorrect if we set α̂|Y either to a p-value or the reciprocal of an e-value based on Y . Still, as
we have seen, if we instead use e-values to perform a data-dependent action, which is allowed
to get more extreme (higher Type-I loss) as our evidence against the null increases (higher
e-value) according to the maximally compatible rule (which in simple cases is given by (7)),
then we do get an unconditionally valid bound on Type-I risk. Thus, using e-values, setting
a roving α to be equal to α̂ := ℓS(y) for the observed y is still incorrect if we interpret it as
expressing (28); but it is correct if we interpret it as setting a roving bound of ℓα̂ on the
Type-I loss LB(0, a) we dare to make: if we make sure to pick a so that LB(0, a) ≤ ℓα̂, then
we have compatibility and hence Type-I risk safety, (11). Note that B is allowed to be any
function of, hence conditional on data; but its performance is evaluated unconditionally,
i.e. by means of (11) which is an unconditional expectation. This quasi-conditional stance,
explained further in [15], provides a middle ground between fully Bayesian and traditional
Neyman-Pearson-Wald type methods and analysis.

Where does the Type-I risk bound ℓ come from? Whereas B may arbitrarily depend
on data Y , the upper bound ℓ in (1) has to be set independently of Y after all. It may still
vary from decision problem to decision problem though (in the SI Appendix we explain what
this means in terms of Neymans inductive behavior paradigm and we explain that setting
ℓ = 1, as was done for mathematical convenience in Section 2, is unproblematic). In many
practical testing problems, we might expect that for all b ∈ B, Ab contains a special action
0, which stands for do nothing (keep status quo), which would then have the same Type-II
loss under all b ∈ B, i.e. there is an ℓ′ such that for all b ∈ Ab, Lb(1, 0) = ℓ′. We might
then simply set ℓ = ℓ′, making sure that we can expect our result (with all costs and benets
incorporated), whatever action we take, to be no worse than the cost of doing nothing when
we really should have done something.
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Related Work: Inferential Models Like we do in Example 4, Martin, Liu and collabo-
rators [28, 27] point out discrepancies between what one would expect to be a valid condence
set according to a ducial, cd or Bayesian posterior and what are actually valid condence
sets according to the unknown, true distribution. They provide inferential models (IMs) as
a safer alternative. Unlike e-posteriors, the specic IMs proposed by [28] still work under the
BIND assumption and thus will not provide reliable inferences if BIND does not hold. But
it may very well be that some other IMs (IMs constitute a family of methods, not a single
method) essentially behave like e-posteriors.

The Road Ahead Future work will include a further investigation of the quasi-conditional
idea launched above, as well as of the precise relation to Martins IMs and other related uses
of e-variables such as [1] who, like us, employ e-values with a Type-I/II-error distinction with
more than 2 actions.

Another unresolved fundamental issue is this: most practitioners still interpret p-values
in a Fisherian way, as a notion of evidence against H(0). Although this interpretation has
always been controversial, it is to some extent, and with caveats (such as single isolated
small p-value does not give substantial evidence [29] or only work with special, evidential
p-values [12]), adopted by highly accomplished statisticians, including the late Sir David Cox
[7, 30]. Even Neyman [33] has written my own preferred substitute for do not reject H  is
no evidence against H is found. In light of the present results, one may ask if, perhaps,
e-values are more suitable than p-values as such a measure. We preliminarily conjecture they
are, and motivate this in the SI — although a proper analysis of such a claim warrants a
separate paper, which we hope to provide in the future.

Perhaps more important for practice than all of this though, in light of Section 4 above, is
the further development of practically useful e-variables for standard settings (such as GLMs)
in which they are not yet available, as well as more accompanying software such as [51].

Conclusion: A dierent kind of Robustness Standard p and cs-based decision rely
on BIND, an assumption that will often be false or unveriable at the time study results
are published. In this paper we showed that e-values provide valid error and risk guarantees
without making such assumptions, and are therefore robust tools for inference. But whereas
robustness usually refers to robust inference in the presence of outliers, or model structure
or noise process misspecication, this is a dierent, much less studied form of robustness:
robustness in terms of the actual decision task that the study results will be used to solve.

Acknowledgements The author would like to thank an anonymous referee and Dr. W. Koolen,
who both independently alerted him to the fact that, without essential loss of generality, one
may assume Type-II loss to decrease whenever Type-I loss increases.
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Supporting Information Appendix

A Supporting Information for Section 1 and Section 2.2.1

Unbounded expected loss based on (4) and an improvement of (4) This issue is
best illustrated by (but certainly not limited to) a discrete-valued p-value p that can take
values 1, 12, 14, 18,    , 12k for some k > 0 and that is piece-wise strict, i.e. it satises
P0(p ≤ α) = α for α ∈ 1, 12,    , 12k. Consider a GNP decision task as in Section 2.1
with loss function satisfying Lb(0, a) = 2a, for a ∈ Ab = 0, 1ℓ, 2ℓ, 4ℓ,    , 2kℓ. Based on (4),
upon observing p = 2−c, one would take action 2c. The resulting expected loss, analogously
to (5), is given by

k
c=1 2 · 2−c2c = 2k which goes to ∞ as we make k larger — showing that

the expected loss can be unbounded if we base decisions on (4). Now, instead of using (4) it
may seem more reasonable to pick the largest a such that

q(y) · Lb(0, a) ≤ ℓ, (29)

where q(y) = p(y)2: with this modication, for each a ∈ Ab, we end up multiplying Lb(0, a)
in (29) with exactly the probability that a will be selected (rather than, as in (4), with a
larger probability). For example, a = 2c will be selected if q(y) = 2−c; this happens i
p(y) = 2−c+1, which happens with exactly probability 2−c, so with probability q(y)). Yet
still, using (29) leads to unbounded expected loss: in the above sample the expected loss is
now k rather than 2k, still growing linearly in k.

Standard conversions of p-values into e-values are sub-optimal [44, 43, 52] have
studied functions that convert arbitrary p-values to e-variables. These calibrators are strictly
decreasing functions f , such that S(Y ) := f(p(Y )) is an e-variable whenever p is a p-value.
Calibrators invariably have the property that as p ↓ 0, f(p) grows towards ∞ more slowly
than 1p(Y ) (note that, for any e-variable S, 1S is a (conservative) p-value but the converse
does not hold). For example, [43], f(p) = 1

√
p−1 is a calibrator. Given that such calibrators

exist, one might wonder if in this paper we are really merely advocating to change the scale
at which evidence against the null is expressed: isnt it sucient to take a p-value to express
evidence, convert it to an e-value, and then use the maximally compatible decision rule (7)? If
so, this would undercut our arguments for using e vs. p. The answer is that, while calibrating
p-values and then using (7) does give us Type-I risk safety, it is still not advisable because e-
variables arising from calibrated p-values are typically far from optimal. Intuitively, a good
e-variable, relative to a given alternative, is one that tends to be large (provide much evidence)
if the alternative is true. This can be formalized in terms of power or, as stated in the main
text, GRO. For example, suppose we aim to test null θ ≤ 0 against alternative θ ≥ δ. If
we take the 1-sided e-variables S+

θ for the normal location family as dened underneath (16)
with α∗ = α and n∗ = n specied correctly, then to get power 08 we need a factor of ≈ 175
more data points than if we use the standard UMP NP test (this follows from the derivation
in [13, Appendix B.6]; as explained there, the factor can be signicantly reduced by optional
stopping). If, instead, we use the p-value corresponding to this UMP test directly and turn
it into an e-value by the above calibrator, we need a factor of ≈ 30 more data [13, Section
7]. The reason for this discrepancy is that calibrators work for arbitrary p-values and are
thus blind to the underlying sampling model (in this case, normal location). In order to get
high power it is invariably (much) better to use e-values designed for the underlying model
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directly — so, importantly, the distinction between e and p is not just a matter of scale and
designing good e-values (with good GRO properties) is a nontrivial taks — we cannot just
take any given p-value with good power-properties and calibrate.

Why normalizing ℓ to 1 in (11) and (12) is not harmful This is further discussed, in
a wider context, in the Supporting Information for Section 5 further below.

B Supporting Information for Section 2.2.2 until and includ-

ing Section 3.3.1

In this section we state and prove Theorem 3, a general result which has Theorem 1 of
Section 2 as a special case, extending it to the case of general GNP decision problems (e.g.
condence intervals) as dened in Denition 2, Section 3. However, in the rst subsection
below, we rst state and prove a simpler form of the theorem which works for simple GNP
decision problems, as dened in Section 2, simplied even further by requiring countable Y .
This allows us to strip away all issues about almost surely, measurability etc. and focus on
the key idea, which lies in the fundamental Lemma 1. The proof of the general Theorem 3
is based on essentially the same key insight but requires substantial additional notations
and quantications. We prepare these in Section B.B.2 below, where we also explain why
the probabilities in (13), (14) (used to dene Type-II strictly-better-than and admissibility)
as well as the expectation (11) may be undened in pathological cases, and we extend the
denitions of Type-II-strictly better and admissibility to ensure that these are always well-
dened. We then state and prove Lemma 2, the general version of Lemma 1 in Section B.B.3,
and state and prove the general theorem in Section B.B.4. Before we do all this though, we
explain, as promised underneath Theorem 1 in the main text, how we can make any GNP
testing problem rich by adding a single additional loss function and why this makes the
condition of richness a reasonable one. This is illustrated by Example 6 which indicates why
a condition like richness is necessary and thereby gives a (very) high-level intuition to the
proof.

Enforcing Richness relative to S: why richness is a weak condition, and why it is
needed For any sharp e-variable S which we might want to base our decisions on, we can
trivially enlarge any given GNP testing problem (B′, (Ab, Lb(0, ·) : Ab → R+

0 ) : b ∈ B′) by
setting B := B′∪id(S), adding a loss function indexed by id(S) with action space Aid(S) set
equal to the co-domain of S and, for s ∈ Aid(S), we set Lid(S)(0, s) := s. Then the extended
GNP decision problem will automatically be rich relative S, and Part 2 of Theorem 1 can
be applied. In reality, DM usually is not aware of the full details of the problem anyway,
being only presented one particular loss function Lb, an element of a set Lb : b ∈ B′ that is
unknown: DM will only know the denition of the particular function Lb that she is presented
with. Thus, assuming the set already contains this additional, special loss Lid(S) does not
really impose any additional condition on the DM and only serves to make the analysis more
robust, it thus seems a reasonable assumption. It gives an imagined adversary who chooses
b = B(Y ) as function of Y more power, and as illustrated by the example below, without
something like this added power, the theorem simply cannot hold. As such is analogous to
(but not the same as) allowing an adversary to randomize between actions, as required for
the minimax theorem in game theory. To take the analogy to the minimax theorem even
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further, we note that, just like in that theorem, one side of the proof (Part 1) is in essence
trivial whereas the other side (Part 2) requires a sophisticated argument.

Example 6 Consider a GNP testing problem and e-variable S dened as follows:

1. Y = 0, 10, 20; H(0) = P0 with P0(Y = 10) = 120 and P0(Y = 20) = 140.

2. B = b1, Ab1 = 0, 9, 19, 21, and for all a ∈ Ab1 , we set Lb1(0, a) = a.

3. S(y) := y.

We note that S is a sharp e-variable, but the GNP testing problem is not rich relative to S.
And indeed, the conclusion of Part 2 of Theorem 1 is violated here:

δb1(0) = 0; δb1(10) = 9; δb1(20) = 19

is seen to be a decision rule that is maximally compatible with S, but it is not admissible:
the decision rule

δ′b1(0) = 0; δ′b1(10) = 9; δ′b1(20) = 21

is Type-II strictly better than δ yet still Type-I risk safe, since EP0 [Lb1(0, δ
′
b1
(Y ))] = 920 +

2140 = 3940 < 1. So we have a decision rule that is maximally compatible relative to a
sharp e-variable yet not admissible — this shows some additional condition such as richness is
necessary. To get an initial idea why richness does the trick, lets enlarge B as above to make
the resulting GNP testing problem rich relative to S. That is, we add loss function indexed
by b2 := id(S), so that Ab2 = 0, 10, 20, and for all a ∈ Ab2 , we have Lb2(0, a) = a. Decision
rule δ above was maximally compatible in the original problem, and the only way to extend
it to the enlarged problem while keeping it maximally compatible is to set δb2(y) = y for all
y ∈ Y . But now, in this enlarged problem, δ has become admissible! Rather than proving
this in full generality we will just show that the decision rule δ′ above that witnessed δs
inadmissibility in the original problem will not witness it any more in the enlarged problem.
To see why, note that to witness inadmissibility of δ, we must have that δ′ is Type-II strictly
better than δ and at the same time Type-I risk safe. The only way to extend δ′ to the
enlarged problem while keeping it strictly better than δ is to set it such that δ′b2(y) ≥ δb2(y)
for all y ∈ Y . But then it is not Type-I risk safe any more, so this extended δ′ does not show
δ to be inadmissible! To see why the extended δ′ is not Type-I risk safe any more, note that,
by adding loss Lb2 , we gave the imagined adversary more power: upon observing y = 10,
the adversary can now choose B = b2, and upon observing y = 20, she can choose B = b1.
Then EP0 [LB(0, δ

′
B(Y )) ≥ (120) · 10 + (140) · 21 = 2140 > 1, so δ′ is not Type-I risk safe.

Lemma 1 and its generalization Lemma 2 further below formalize this idea and are the key
to proving Part 2 of Theorem 1 in the main text and its generalization Theorem 3 below.

B.1 Theorem 1 for countable Y and H(0) with full support

Throughout this subsection we assume that we deal with a GNP testing problem that is
simple in the sense of Section 2, with countable Y and H(0) with full support. Full support
simply means that for all y ∈ Y , all P ∈ H(0), we have P (Y = y) > 0. Because the testing
problem is simple, we can dene maximum compatibility in terms of (15).

So, x any simple GNP testing problem of this type. For any given random variables
U = u(Y ), V = v(Y ), we write U ≤ V as an abbreviation of: for all y ∈ Y , u(y) ≤ v(y);
similarly for U < V and U = V .
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Key Concept and Lemma: Equalizing Maximal Compatibility For any function
B : Y → B, we say that decision rule δ◦ is equalizing-maximally compatible relative to e-
variable S when restricted to B if

for all y ∈ Y : LB(y)(0, δ
◦
B(y)(y)) = S(y), i.e. LB(0, δ

◦
B) = S (30)

The following lemma is the key insight needed to prove Theorem 2 below and hence the
special case of Theorem 1 in the main text with a simple GNP testing problem and countable
Y . It will later be generalized to Lemma 2 which plays the same key role for the general
result Theorem 3.

Lemma 1 Fix any simple GNP testing problem as above. Suppose that S is a sharp e-
variable and δ◦ is a Type-I risk safe decision rule such that there exists a function B : Y → B
so that δ◦ is equalizing-maximally compatible relative to S when restricted to B, as above.
Then δ◦ is fully compatible with S, i.e. for all b ∈ B, we have: Lb(0, δ

◦
b ) ≤ S.

To understand the lemma, suppose we are given some e-variable S and some Type-I risk safe
δ. Then δ need not be compatible with S (it must be compatible with some S′, but not
necessarily this S). The lemma says that if δ is in some specic sense partially compatible
with S though, namely for a specic B, and S is sharp, then it must be fully compatible with
S after all. Now, in the case where the GNP testing problem has been made rich relative to
S by adding the special loss function id(S) above, we would typically apply this lemma with
B = id(S), i.e. B is a constant, independent of Y ; but the lemma works even if B may vary
with Y . The surprising thing here is that compatibility relative to B (which may even be the
constant id(S)) has repercussions for the behavior of δ◦b′ for all b

′ ∈ B.
The lemma immediately leads to the following corollary:

Corollary 1 Fix any simple GNP testing problem as above. If a decision rule δ∗ is maxi-
mally compatible relative to a sharp e-variable S (i.e. (15) holds) and equalizing-maximally
compatible relative to the same S when restricted to some function B : Y → B then any δ◦

that is equalizing-maximally compatible relative to S when restricted to B and Type-I risk
safe must also be fully compatible with S and hence, since δ∗ is maximally compatible, satisfy
δ◦b ≤ δ∗b for all b ∈ B.

Proof: [of Lemma 2] By Proposition 1, there must be some e-variable S′ such that δ◦ is
compatible with S′, i.e.

for all b ∈ B: Lb(0, δ
◦
b ) ≤ S′ (31)

By equalizing-maximal compatibility relative to S when restricted to B, transitivity, and
weakening (31), we must therefore also have

S = LB(0, δ
◦
B) ≤ S′,

so that S ≤ S′. Suppose by means of contradiction that, even stronger, there is y ∈ Y such
that S(y) < S′(y). We know that for some P0 ∈ H(0), EP0 [S] = 1. But then EP0 [S

′] > 1, so
S′ is not an e-variable and we have arrived at a contradiction. Since we already established
S ≤ S′ it follows that S = S′. But then using the inequality in (31) shows that for all b ∈ B,
we have Lb(0, δ

◦
b ) ≤ S and the lemma is proved. 

Armed with this result, we can now state and prove a restricted version of Theorem 1.
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Theorem 2 Consider any simple GNP testing problem as above, with countable Y and all
P ∈ H(0) having full support on Y.

1. Suppose that decision rule δ is admissible. Then there exists an e-variable S such that
δ is maximally compatible with S.

2. Suppose that S is a sharp e-variable S and δ∗ is maximally compatible relative to S
(such a δ∗ exists because we assume the GNP testing is simple); and assume further
that the GNP testing problem is rich relative to S. Then δ∗ is admissible.

Proof: [of Theorem 2]
Part 1. Suppose that δ is admissible. Then δ is by denition Type-I risk safe. By

Proposition 1 there must be an e-variable S such that δ is compatible with S. Since δ is
admissible, every strictly better δ′ is not Type-I risk safe, hence cannot be compatible with
any e-variable; in particular, δ′ is not compatible with S. Hence there exists no δ′ that is
strictly better than δ and compatible with S. It follows that δ is maximally compatible with
S.

Part 2. Let δ∗ be maximally compatible and let δ◦ be another Type-I risk safe decision
rule. We will show that δ◦ cannot be Type-II strictly better than δ∗; this implies the result.

By our S-relative richness assumption and the construction of δ∗, we know that there
exists a function B : Y → B with:

LB(0, δ
∗
B) = S (32)

We may assume that δ◦ satises δ∗B ≤ δ◦B , otherwise we already know that δ◦ is not Type-
II strictly-better. Now suppose by means of contradiction that for some y ∈ Y , we have
δ∗B(y)(y) < δ◦B(y)(y). We then have for the P0 ∈ H(0) with EP0 [S] = 1 (which exists by

sharpness) that
1 = EP0 [S] = EP0 [LB(0, δ

∗
B)] < EP0 [LB(0, δ

◦
B)],

contradicting our assumption that δ◦ is Type-I risk safe. We may thus assume δ◦B = δ∗B .
The corollary of Lemma 1 above now implies that δ◦b ≤ δ∗b for all b ∈ B (i.e. not just for

B), hence δ◦ is not Type-II strictly better than δ∗; the theorem is proved. 

B.2 Preparing the General Proof of Theorem 1 and 3

Almost sure inequality Fix any GNP decision problem with parameter set Θ, as in the
general Denition 2. In particular in some applications we may have Θ = 0, then we really
deal with a GNP testing problem and the notation ≤θ that we will now dene can in such
cases be replaced by ≤0.

For all θ ∈ Θ, for functions U, V : Y → R+
0 we dene

U(Y ) ≤θ V (Y ) (33)

to mean that for all P ∈ H(θ), for all ϵ > 0 and every measurable set E ⊂ Y such that for all
y ∈ E , U(Y ) > V (Y ) + ϵ, we have P (E) = 0. Similarly,

U(Y ) <θ V (Y ) (34)
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is dened to mean that U(Y ) ≤θ V (Y ) and there exist P ∈ H(θ), ϵ > 0 and measurable set
E ⊂ Y such that for all y ∈ E , U(Y ) ≤ V (Y )−ϵ, and we have P (E) > 0. Note that statements
(33) and (34) are well-dened even if U or V are not measurable so that U(Y ) or V (Y ) are
not random variables. Nevertheless, we shall abuse notation by abbreviating U(Y ) to U and
V (Y ), just like we do for random variables. Note that, if the events inside the probabilities
below are measurable after all, then we have

U ≤θ V ⇔ ∀P ∈ H(θ) : P (U ≤ V ) = 1 (35)

We also write U >θ V if it is not the case that U ≤θ V ; we write U ≥θ V if it is not the case
that U <θ V ; and U =θ V if U ≤θ V and U ≥θ V ; if V and U are measurable then clearly
the corresponding analogues to (35) hold as well, e.g.

U <θ V ⇔ ∀P ∈ H(θ) : P (U ≤ V ) = 1 and ∃P ∈ H(θ) : P (U < V ) > 0 (36)

It is easily checked that =θ establishes an equivalence relation on functions of Y , and relative
to this relation, ≤θ is a partial order and <θ is the corresponding strict order, i.e U <θ V i
U ≤θ V and not U =θ V . We shall freely use standard properties of this partial order (such
as transitivity) below.

Moreover, we introduce the additional notation, for each function B : Y → B, where, in
line with the above, we abbreviate B(Y ) to B and δB(Y )(Y ) to δB :

δ◦B ≤L δB ⇔ ∀θ ∈ Θ : LB(θ, δ
◦
B) ≤θ LBθ, δB),

δ◦ ≤L δ ⇔ ∀θ ∈ Θ, b ∈ B : Lb(θ, δ
◦
b ) ≤θ Lb(θ, δb),

as such avoiding the cumbersome expression on the right whenever we can. Analogously,

δ◦B <L δB ⇔ δ◦B ≤L δB and ∃θ ∈ Θ : LB(θ, δ
◦
B) <θ LB(Y )(θ, δB),

δ◦ <L δ ⇔ δ◦ ≤L δ and ∃θ ∈ Θ, b ∈ B : Lb(θ, δ
◦
b ) <θ Lb(θ, δb),

and correspondingly with ≥L and >L. Finally, δ◦B =L δB is dened to be equivalent to
δ◦B ≥L δB and not δ◦B >L δB ; similarly for δ◦ =L δ.

Generalized Admissibility, Maximal Compatibility We can now generalize the de-
nitions of Type-II strictly-better-than and admissibility for general GNP decision problems in
the main text: formally, we say decision rule δ is Type-II strictly better than δ◦, simply if we
have

δ◦ <L δ

As before, a decision rule δ◦ is admissible if it is Type-I risk safe (according to the denition
underneath (18) in the main text), and there is no other Type-I risk safe decision rule that
is Type-II strictly better than δ.

We also extend the denition of maximally compatible decision rule in the same way:
formally, a maximally compatible decision rule relative to a given GNP decision problem and
e-variable S is any compatible decision rule δ◦ which further satises that there is no other
decision rule δ that is also compatible with S and that is Type-II strictly better than δ◦, with
the extended denition of Type-II strictly better given above.

We see that in the case of a GNP testing problem, whenever the events Lb(0, δ
◦
b ) >

Lb(0, δb) are measurable for all b ∈ B (in particular whenever Y is countable), the probabilities
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in (13) and (14) are well-dened and then the denition of strictly-better-than coincides with
the one given in the main text. But it continues to be valid in case we pick pathological
B, Lb : b ∈ B for which the events above are nonmeasurable — which cannot be ruled
out since we made no restrictions on the functions Lb, δ

◦ and δ. Similarly, by replacing the
denition (11) in the main text by (12) we also make sure that Type-I risk safety is well-
dened irrespective of whether supb∈B Lb(0, δb(Y )) is measurable or not (we could also have
avoided such measurability issues using inner- and outer-measure [5, Section 1.3] but this
does not simplify the treatment so we decided against it).

In the same way, for a general GNP decision problem, the denition of strictly-better-than
given here generalizes the one given in the main text below (19) to the case where the events
involved may be nonmeasurable; as a consequence, the denitions of admissibility for GNP
testing and decision problems, and the denition of maximum compatibility relative to S for
GNP testing problems given in the main text, are all generalized by the denitions given
here based on the generalized notion of strictly-better-than, and are valid irrespective of the
measurability of the functions and events involved.

Crucially for the proof of Lemma 2 below, the ordering relation ≤0 is strong enough to
imply inequality in expectation:

Proposition 2 Consider a GNP testing problem with null hypothesis H(0) such that all
P ∈ H(0) are absolutely mutually continuous. Let S = S(Y ) and S′ = S′(Y ) be nonnegative
random variables such that for all P ∈ H(0), EP [S] is nite. Suppose S ≤0 S′. Then (a)
for all P ∈ H(0) we have EP [S] ≤ EP [S

′]. Further, suppose S <0 S′. Then (b) for every
P ∈ H(0) we have EP [S] < EP [S

′].

Proof: (a) According to denition (33), for all P ∈ H(0), ϵ > 0 and every measurable set
E ⊂ Y with for all y ∈ E , S(y) > S′(y) + ϵ, we have

EP [S] = EP [1Y ∈E · S + 1Y ̸∈E · S] = EP [1Y ̸∈E · S] ≤ EP [1Y ̸∈E · (S′ + ϵ)] = EP [S
′ + ϵ]

and the result follows.
(b) Fix P ∈ H(0). According to denition (33), for each ϵ > 0 and measurable set E with

for all y ∈ E , S(y) > S′(y) + ϵ, we have P (Ē) = 1 (with ·̄ denoting complement), whereas
there exist δ > 0 and Q ∈ H(0) and measurable F such that S(y) < S′(y) − δ on F and
Q(F) > 0. By mutual absolute continuity, we have P (F) > 0 as well, and therefore:

EP [S] = EP [1Y ∈Ē · S] = EP [1Y ∈Ē∩F · S + 1Y ∈Ē∩F̄ · S]
≤ EP [1Y ∈Ē∩F · (S′ − δ) + 1Y ∈Ē∩F̄ · (S′ + ϵ) ≤ EP [S

′]− P (F)δ + ϵ

Since this holds for xed δ > 0 and for every ϵ > 0, the result follows. 

B.3 General Form of Equalizing Maximal Compatibility Lemma

Consider any GNP testing problem. Fix any function B : Y → B. Generalizing (30), we
say that decision rule δ◦ is a.s. equalizing-maximally compatible relative to e-variable S when
restricted to B if

LB(0, δ
◦
B) =0 S, (37)

where here and below, a.s. stands for almost surely. The following lemma, generalizing
Lemma 1, is the key insight needed to prove Theorem 3 below and hence its simplication
Theorem 1 in the main text.
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Lemma 2 Fix any GNP testing problem. Suppose that S is a sharp e-variable and δ◦ is a
Type-I risk safe decision rule such that there exists a function B : Y → B so that δ◦ is a.s.
equalizing-maximally compatible relative to S when restricted to B, as in (37). Then δ◦ is
a.s. fully compatible with S, i.e. for all b ∈ B, Lb(0, δ

◦
b ) ≤0 S.

Just like in the simplied case with countable Y , this immediately leads to a relevant corollary:

Corollary 2 Fix any GNP testing problem. If a decision rule δ∗ is maximally compatible
relative to a sharp e-variable S and a.s. equalizing-maximally compatible when restricted to
some function B : Y → B then any δ◦ that is a.s. equalizing-maximally compatible relative
to S when restricted to B and Type-I risk safe must also be a.s. fully compatible with S, i.e.
for all b ∈ B, Lb(0, δ

◦
b ) ≤0 Lb(0, δ

∗
b ).

Proof: [of Lemma 2] By Proposition 1, there must be some e-variable S′ such that δ◦ is
compatible with S′, i.e.

for all b ∈ B, y ∈ Y : Lb(0, δ
◦
b (y)) ≤ S′(y) (38)

By a.s. equalizing-maximal compatibility relative to S when restricted to B, transitivity, and
weakening (38), we must therefore also have

S =0 LB(0, δ
◦
B) ≤0 S

′, (39)

so that S ≤0 S′. Suppose by means of contradiction that, even stronger, S <0 S′. We know
that for some P0 ∈ H(0), EP0 [S] = 1. But then Proposition 2 gives that EP0 [S

′] > 1, so
S′ is not an e-variable and we have arrived at a contradiction. Since we already established
S ≤0 S′ it follows that S =0 S′. But then using the inequality in (38) gives for all b ∈ B,
Lb(0, δ

◦
b ) ≤0 S, and the lemma is proved. 

B.4 Extension of Theorem 1 to general GNP decision problems

First, we extend the denitions of richness and sharpness from GNP testing to decision
problems in the obvious manner, by inserting for all quantiers: we say that a GNP decision
problem is rich relative to e-collection Sθ : θ ∈ Θ if for all θ ∈ Θ, the corresponding θ-
testing problem (as dened in the main text underneath Denition 2) is rich relative to Sθ.
Relative to a given GNP decision problem, we say that e-collection Sθ : θ ∈ Θ is sharp if
for all θ ∈ Θ, Sθ is sharp relative to the corresponding θ-testing problem.

Theorem 3 Consider any GNP decision problem.

1. Suppose that decision rule δ is admissible. Then there exists an e-collection S = Sθ :
θ ∈ Θ such that δ is maximally compatible with S.

2. Suppose that δ∗ is a maximally compatible decision rule relative to some e-collection
S = Sθ : θ ∈ Θ. If (a) all P ∈ P are mutually absolutely continuous and (b) S is
sharp relative to the given GNP decision problem, and (c) the GNP decision problem is
rich relative to S, then δ∗ is admissible.
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Proof: [of Theorem 3]
Part 1. Suppose that δ is admissible. Then δ is by denition Type-I risk safe. But then by

the denition in the main text underneath (18) there must be an e-collection S = Sθ : θ ∈ Θ
such that δ is compatible with S. Since δ is admissible, for every δ′ with δ′ >L δ (i.e. δ′

is strictly better than δ) we have that δ′ is not Type-I risk safe. But then δ′ cannot be
compatible with any e-collection, in particular it cannot be compatible with S. Hence, there
exist no δ′ that is strictly better than δ and also compatible with S; hence δ is maximally
compatible.

Part 2.
Let δ∗ be maximally compatible relative to S and let δ◦ be another Type-I risk safe

decision rule. We will show that δ◦ cannot be Type-II strictly better than δ∗; this implies
the result.

By our relative richness assumption and the construction of δ∗, we know that for all θ ∈ Θ,
there exists a function B : Y → B with:

for all y ∈ Y : LB(y)(θ, δ
∗
B(y)(y)) = Sθ(y) (40)

We may assume that δ◦ satises δ◦B ≥L δ∗B , otherwise we already know that its not Type-II
strictly-better. So, in particular, LB(θ, δ

◦
B) ≥θ LB(θ, δ

∗
B) Now suppose by means of contra-

diction that LB(θ, δ
◦
B) >θ LB(θ, δ

∗
B) for some θ ∈ Θ. Since δ◦ is Type-I risk safe, it must

by denition also be compatible with an e-collection S′ = S′
θ : θ ∈ Θ so then we also have

S′
θ >θ LB(θ, δ

∗
B). By Proposition 2, using the assumption of mutual absolute continuity, we

then have for the P ∈ H(θ) with EP [Sθ] = 1 (which must exist by sharpness) that

1 = EP [Sθ] = EP [LB(θ, δ
∗
B)] < EP [S

′
θ]

so S′
θ is not an e-variable and hence S′ is not an e-collection, contradicting our assumptions

(we note that all quantities inside the equation must be measurable, because Sθ an S′
θ are both

e-variables, and hence measurable by denition). We may thus assume L(θ, δ◦B) =θ L(θ, δ
∗
B).

The corollary of Lemma 2 above, applied with the corresponding θ-GNP testing problem,
now implies that for all b ∈ B (hence not just for B!) we have Lb(θ, δ

◦
b ) ≤θ Lb(θ, δ

∗
b ). Since

we can make this argument for all θ ∈ Θ, it follows that for all b ∈ B, δ◦b ≤L δ∗b . Therefore δ◦

is not Type-II strictly better than δ∗; the theorem is proved. 

C Supporting Information for Section 3.3.2

Proof for Claim underneath (25) Fix some ϵ > 0. For simplicity we x θ∗ = 0 and
n = 1 (so that Y = X1 = θ̂(X1);) extension of the following argument to general sampling
distributions θ∗ and n > 1 is straightforward (for θ∗ ̸= 0, use Y ′ = Y − θ∗; for n > 1, simply
adjust the variance).

We will construct B(y) such that if y = ϵ, the CI corresponding to B(y) will be a single
point at ϵ; if y gets larger, the CI widens but no matter how large y, it will never cover
the true θ∗ = 0. To this end, x any strictly positive, strictly decreasing function g0 with
g0(ϵ) = ϵ. We will take B(y) such that δB(Y )(Y ) has as its left-end θL = g0(y) = y − h(y)
where h(y) := y − g0(y). The CI being by denition symmetric around y, we must then
have θR = y + h(y) = 2y − g0(y). Since for any 0 ≤ α ≤ 1, the (1 − α)-CI coincides with
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the (1 − α) credible interval taken symmetrically around the MLE θ̂ = y, both its left- and
right-tail must have posterior weight α2. Since the posterior has a Gaussian density with

mean y and variance 1, we must thus have α2 =
 g0(y)
−∞ fy(u)du, where we by denote fµ the

density of a normal with variance 1 and mean µ, so α = 2Fy(g0(y)) = 2F0(−y+g0(y)), where
Fµ is the CDF of a normal with mean µ and variance 1. It follows that B(y) must be equal
to 1α = 1(2F0(−y + g0(y)))

If data are actually sampled from θ∗ = 0, then the expected loss we actually make can be
calculated in steps as follows:

EY∼Pθ∗ [LB(Y )(θ
∗, δB(Y )(Y ))] = EY∼P0 [B(Y ) · 10̸∈δ(B)(Y )] ≥ EY∼P0 [B(Y ) · 1Y≥ϵ]

=

 ∞

ϵ
f0(y) ·

1

2 · F0(g0(y)− y))
dy

≥ 1

2
·
 ∞

ϵ
exp


−y2

2


· exp


(y − g0(y))

2

2


(y − g0(y))dy

≥


π

2
·
 ∞

ϵ
exp (−yg0(y)) · (y − g0(y))dy,

where we used the standard result that, with P0 denoting a standard normal distribution,
P0(Y ≥ c) ≤ exp(−c22)(c ·

√
2π). Clearly the integral diverges for many choices of g0

satisfying our requirements; for example, we can take g0(y) = ϵ2y (which works for all
ϵ > 0) or (if we want to make the probability of large B smaller) we can set g0(y) =
ϵ · (log(y + exp(ϵ) − ϵ))y if ϵ is set to 2; then exp(−yg0(y)) = (y + exp(2) − 2)−2. In the
table in the main text we took the former choice to see how a typical sample of the Bs, and
corresponding αs and CIs might look like.

Proof that the average in (26) may converge to innity with probability 1 Assume
a sequence of independent studies Y(1), Y(2),   , all of which are of the form Y(j) = (X(j),1)
and thus have sample size 1 (we can treat larger sample sizes, and simple sizes varying from
study to study, by thinking of the Y(j) as z-scores summarizing studies of varying sample
size). Instantiate ϵ = 001 and set B(j) := 1(2F0(−Y(j) + ϵ2Y(j))) as above if Y(j) ≥ ϵ
and B(j) = 1 otherwise. Suppose that the Y(j) are all independently sampled from the same
θ∗ = 0. Here is a sample (generated i.i.d. by R) of 20 corresponding B(j) (recall that for each
j, the corresponding produced interval δB(j)

(Y(j)) is equal to the standard (1−α(j))-condence
interval, with α(j) = 1B(j)):

115, 1, 344, 109, 191, 417, 1040, 111, 1, 1, 1

147, 131, 1, 1, 1, 228, 176, 1, 1, 1 (41)

While the sequence looks rather innocuous, using (25), with A in θ̂±A chosen by (24), we see
the limit in (26) will go a.s. to ∞ rather than to 1. The example was deliberately designed
to give an extreme discrepancy — in more realistic examples, the dierence will presumably
not be innite but without knowing the dependency between Y and B there is no way to
assess it.
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Proof for Example 4

We rst treat e-variables corresponding to one-sided tests, for which we can give exact results.
To this end, let θ− < θ < θ+ be

1

2
n∗(θ − θ+)2 =

1

2
n∗(θ − θ−)2 = log

1

α∗  (42)

(note that log(2α∗) in (42) in the main text has been replaced by log(1α∗) here).
The uniformly most powerful Bayes factor [23] for a 1-sided test at sample size n∗ and

level α∗ of H(0) = Pθ vs. H(1) = Pθ′ : θ
′ > θ (or, H(1) = Pθ′ : θ

′ < θ respectively) is

given by S+
θ :=

pθ+ (y)

pθ(y)
(respectively, S−

θ :=
pθ− (y)

pθ(y)
). Straightforward rewriting now gives:

S+
θ (y) =

pθ+(y)

pθ(y)
=

e
−n log

p
θ̂
(y)

p+
θ

(y)

e
−n log

p
θ̂
(y)

pθ(y)

=
e−(n2)(θ̂−θ−U)2

e−(n2)(θ̂−θ)2
=

en·(θ̂−θ)U

enU22
= e−nU22+n(θ̂−θ)U (43)

where

U =


2(log(1α∗)

n∗ =


2 · c · log(1α)

n
with c =

n∗

n
· log(1α)

log(1α∗)


We see that S+
θ is strictly increasing in θ̂, so it is ≥ 1α i θ̂ ≥ θR, where θR is the solution

to

e−nU22+n(θR−θ)U =
1

α


Straightforward calculation shows that this is the case i θR − θ is equal to


2

n
· log(1α) · g(c) with g(c) =

c+ 1

2
√
c

=
1

2


c12 + c−12


 (44)

An analogous calculation gives that S−
θ is decreasing in θ̂ and ≥ 1α i θ̂ ≤ θL, with θ − θL

equal to (44).
For the two-sided e-variable Sθ = (12)S+

θ + (12)S−
θ , a sucient condition for Sθ ≥ 1α

is then that

S+
θ ≥ 2

α
or S−

θ ≥ 2

α


Therefore, if we apply the above with α∗′ set to α∗2 and α′ set to α2, we get that θ+, θ−,
S+
θ , S

−
θ , Sθ and c are now dened as in the main text, and a sucient condition for Sθ ≥ 1α

is that

θ̂ − θ ≥


2

n
· log 2

α
· g(c), (45)

which was our claim in the main text. Since for xed α, for all but the smallest n, whenever
S+
θ ≥ 2

α , we have that S−
θ must be very close to 0, since it decreases exponentially in n (and

the same with S+
θ and S−

θ interchanged), we nd that (45) is quite tight in practice.
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D Supporting Information for Section 5

On the Type-I Risk Upper Bound ℓ Here we discuss why normalizing ℓ to 1 in (11) and
(12) is not harmful, and what we mean when we say (as we did in the discussion Section 5) that
ℓ can be chosen dierently from problem to problem, but it needs to be chosen independently
of the data observed in that problem.

Suppose you are a statistician, performing hypotheses tests within a variety of domains.
Let Y(1), Y(2),    be the sequence of samples, taking values in potentially dierent sets Y(1),Y(2),    ,
and associated with dierent null hypotheses H(0)(0),H(1)(0),    and associated GNP testing
problems, that you are confronted with in your professional career. We will assume the Y(j)

are all independent. Each time j that you perform a hypothesis test, policy makers provide
you with an upper bound ℓ(j) (e.g. set equal to L(1, 0), the cost of maintaining the status
quo and doing nothing, see Section 5), that may depend on previous outcomes but, given
Y(1),    , Y(j−1), must be independent of Y(j). You also are given the loss function LB(j)

with
associated action space AB(j)

. You change this into loss function L′
B(j)

:= LB(j)
ℓ(j), and you

advise an action by applying a maximally compatible decision rule δ(j) relative to L′
B(j)

. By

multiplying both sides in the denition of Type-I risk safety ((11) or (12)) with ℓ(j) again,
we see that Theorem 1 implies that at each time j, your Type-I risk is bounded by ℓ(j), i.e.
supP∈H(j)(0)

EP [LB(j)
(0, δB(j)

(Y(j))] ≤ ℓ(j).
Now, suppose that an outside evaluating agency is interested in your performance when-

ever the imposed bound is close to some specic ℓ∗. Thus, after you have engaged in m
hypothesis testing problems, they look at the subset Im,δ := j ∈ [m] : ℓ(j) − ℓ∗ ≤ δ for
some small δ > 0. Now, let us assume that the process determining the ℓ(j)s is such that
limm→∞ Im,δ = ∞, almost surely, i.e. a risk bound close to ℓ∗ will eventually be chosen
innitely often. Then, by the strong law of large numbers, we also have that

lim sup
m→∞

1

Im,δ


j∈Im
LB(j)

(0, δB(j)
(Y(j))] ≤ ℓ∗ + δ

Thus, your e-value based statistical hypothesis tests have a Neymanian inductive behavior
interpretation: as long as the bounds ℓ(j) themselves do not depend on data Y(j), then in the
long run, among all tests in which the imposed bound was within δ of ℓ∗, you will achieve
average loss that is also within δ of ℓ∗. In particular the normalization to ℓ(j) = 1 in the
denitions in Section 2 does not aect this guarantee.

D.1 Evidential Interpretation of E-Values

Most practitioners still interpret p-values in a Fisherian way, as a notion of evidence against
the null. Although this interpretation has always been highly controversial, it is to some
extent, and with caveats (such as single isolated small p-value does not give substantial
evidence [29] or only work with special, evidential p-values [12]), adopted by highly accom-
plished statisticians, including the late Sir David Cox [7, 30]. Even Neyman [33] has written
my own preferred substitute for do not reject H  is no evidence against H is found. In
light of the results of this paper, one may ask if, perhaps, e-values are more suitable than
p-values as such a measure. Although a proper analysis of such a claim warrants (at the very
least) a separate paper, we briey make the case here. At rst sight this question may seem
orthogonal to the Neymanian inductive behavior stance adopted in this paper— as has often
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been noted [2, 21, 4, 20], Fishers and Neymans interpretations of testing seem incompatible.
Nevertheless (echoing a point made by error statisticians [29] and likelihoodists [39] alike),
for any notion of evidence the data provide about a hypothesis H(0) to be meaningful at
all, there have to be circumstances, perhaps idealized, in which additional knowledge k is
available, and together with k, the evidence can be operationalized into reliable decisions (for,
if there were no such circumstances, obtaining high evidence for or against a claim could
never have any empirical meaning whatsoever...). For the likelihoodistss notion of evidence
[39, 11], i.e. a likelihood ratio between simple H(0) and H(1), this additional knowledge k
would be a trustworthy prior probability on H(0),H(1) — once this is supplied, a DM can
use Bayes theorem to come up with a posterior which can then lead to optimal decisions
against arbitrary loss functions. For the notion of evidence against H(0) as a p-value, this k
would comprise a guarantee that a specic, a priori xed and known sampling plan, would
have been followed (otherwise the p-value would be undened), and an a priori specied α,
and knowledge that the decision would be of the simple form accept/reject. This k, how-
ever, is additional knowledge of a very specic kind (essentially, what we called the BIND
assumption). In other situations, it is not clear at all how to operationalize evidence-by-
p-value into decisions. Now, if we accept e-values as evidence against the null, the set of
circumstances under which we can operationalize the evidence is much wider, as shown in
this paper. Having thus direct empirical content in a wider variety of situations, e would
seem preferable over p (a).

Note that I am not saying that evidence should invariably be a stepping-stone towards
a decision1; evidence seems a more general notion than that. I am only saying that if there
are broad sets of circumstances in which it is a stepping stone, this may be a good rather
than a bad thing.

Add to this: (b) if H(0) and H(1) are simple, the e-value coincides with the likelihood
ratio, i.e. the main competing notion of evidence; (c) ifH(0) is simple yetH(1) is not, a special
type of e-value coincides with a recently proposed Bayesian notion of evidence (the support
interval [40, 53]); (d) unlike Bayesian methods, e-values can be constructed even if no clear
alternative can be formulated and if the setting is highly nonparametric; and (e) in contrast
to p-values, e-values remain meaningful if some details of the sampling plan are unknown
or unknowable and if information from several interdependent studies is combined [13, 37].
In fact, this may be the most important observation: if a scientic study is performed, and,
because the scientic study seemed promising, a second study was performed, then we would
lie to report the evidence against the null provided by both studies taken together. Yet, while
for e-values this is no problem (we can multiply the e-values of the individual studies), it is
next to impossible to calculate a valid p-value for the two studies taken together — this is
the main point of [13]. The fact that they cannot be calculated in such a standard scenario
would seem to make them unsuitable as a notion of evidence. If we tae (a)—(d) together
though, the case for e-values as evidence seems strong.

A similar comment pertains to Mayos error statistics philosophy with its concept of
severe testing [30, 29, 59]: currently, Mayos notion of severity is, at least in simple cases,
indirectly based on p-values [29, page 144]. In light of the above, it might be preferable to
use e-values instead.

1Thanks to a referee for prompting this important clarication.
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