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ABSTRACT
Bayesian networks model relationships between random variables
under uncertainty and can be used to predict the likelihood of events
and outcomes while incorporating observed evidence. From an eX-
plainable AI (XAI) perspective, such models are interesting as they
tend to be compact. Moreover, captured relations can be directly
inspected by domain experts. In practice, data is often real-valued.
Unless assumptions of normality can be made, discretization is
often required. The optimal discretization, however, depends on the
relations modelled between the variables. This complicates learn-
ing Bayesian networks from data. For this reason, most literature
focuses on learning conditional dependencies between sets of vari-
ables, called structure learning. In this work, we extend an existing
state-of-the-art structure learning approach based on the Gene-pool
Optimal Mixing Evolutionary Algorithm (GOMEA) to jointly learn
variable discretizations. The proposed Discretized Bayesian Net-
work GOMEA (DBN-GOMEA) obtains similar or better results than
the current state-of-the-art when tasked to retrieve randomly gen-
erated ground-truth networks. Moreover, leveraging a key strength
of evolutionary algorithms, we can straightforwardly perform DBN
learning multi-objectively. We show how this enables incorporating
expert knowledge in a uniquely insightful fashion, nding multiple
DBNs that trade-o complexity, accuracy, and the dierence with a
pre-determined expert network.

CCS CONCEPTS
•Mathematics of computing → Bayesian networks; • Com-
puting methodologies → Genetic algorithms.

KEYWORDS
Bayesian networks, evolutionary algorithms, discretization, explain-
able AI

1 INTRODUCTION
Bayesian Networks (BNs) [13, 18] are probabilistic graphical models
that model relationships between random variables under uncer-
tainty. The relationships between variables can be depicted using a
Directed Acyclic Graph (DAG). The process of optimizing the DAG
for given (tabular) data, which is often called structure learning,
has been extensively researched in the literature (e.g., [13, 17]) and
applied to many real world applications such as in the medical
domain: [7, 19, 27], geology and environmental modeling domain:
[2, 14, 20], and (risk and safety) management: [10, 21, 28].

In the aforementioned domains, it is not uncommon to have
a mix of discrete and continuous random variables. How to best
incorporate continuous variables is however not straightforward.
In the literature, there are various methods to extend discrete BNs
with continuous variables. For example, a common method is to call

upon a domain expert, who is tasked to pre-discretize continuous
variables before structure learning or to model the continuous vari-
ables with a parametric distribution. It might however be dicult
to consult a domain expert or they might not always be able to
correctly model the variables. Non-parametric modelling of vari-
ables [5, 11] on the other hand, does not require expert knowledge.
However, in non-parametric models, normality is usually assumed.
Discretization techniques [6, 8, 9, 14, 25] oer an alternative as nei-
ther expert knowledge is required a priori, nor must the assumption
of normality hold. The optimal discretization however, depends on
the relations modelled between the variables, necessitating simul-
taneous optimization.

In this work, for the rst time, a state-of-the-art structure learn-
ing approach based on the Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) family of algorithms [17] is extended to jointly
learn variable discretizations. The proposed Discretized Bayesian
Network GOMEA (DBN-GOMEA) is compared to the state-of-the-
art on randomly generated problems. When the algorithms are
tasked to retrieve randomly generated ground-truth networks, it is
shown that DBN-GOMEA obtains, similar or better performance
than the state-of-the-art. Moreover, leveraging key strengths of EAs
in multi-objective optimization, it is possible to straightforwardly
perform DBN learning multi-objectively. The proposed approach is
fundamentally dierent from e.g., [26], where a bi-objective search
is performed on (proxies of) the accuracy and complexity and e.g.,
[1], where prior knowledge is included in the search by altering
prior model probabilities according to expert knowledge. Our multi-
objective approach leverages a tri-objective search to incorporate
expert knowledge in a uniquely insightful fashion that enables nd-
ing multiple discretized BNs that trade-o (proxies of) the model
accuracy, complexity, and dierence to a pre-determined expert
network.

The code is available at: https://github.com/damyha/dbn_gomea.

2 DISCRETE BAYESIAN NETWORKS
BNs [13, 18] are a class of probabilistic graphical models. A BN  is
dened by a DAG  , which represents X = {1, · · · } random
variables. Each node  in  is associated with a random variable 

and has a (conditional) probability distribution  ( |pa( )), where
the probability of is conditionally dependent on the parent nodes
of  , i.e., pa( ). In  , this relationship is modeled via a directed
edge from each of the parent nodes to node  . An example of  is
shown in Figure 1, where pa(3) = {1,2}, and 3 is a parent of
4. Node 3, together with spouse 6 are also parents of 5. Given
 and all conditional probabilities Θ, the probability of X can be
written as a product of the individual conditional node probabilities,
as is shown in Equation 1.
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P(1, · · · , ) =

=1

P( |pa( )) (1)

Figure 1: Example of a DAG used to represent a BN (in black)
and all possible edges (in grey).

2.1 Bayesian Network GOMEA
In recent work, a state-of-the-art score-based BN structure learning
algorithm was developed, called BN-GOMEA [17]. BN-GOMEA
employs an Evolutionary Algorithm (EA) from the Gene-pool Opti-
mal Mixing Evolutionary Algorithm (GOMEA) family. BN-GOMEA
learns network structures from discrete data. It showed superior
performance to other EAs, greedy hill-climbing, and tabu-list based
algorithms such as Ordering-Based Search, Sparse Candidate, and
Max-Min Hill-Climbing.

In BN-GOMEA, the BN structure learning problem is formulated
as follows: solutions are represented as a string of discrete variables.
Each variable in the string represents an edge between an arbitrary
random variable  and random variable  (where  ≠  ). The value
of each variable can be 0, meaning no edge between  and  , 1,
meaning a directed edge from  to  or 2, meaning a directed edge
from  to  . The problem formulation results in total =


2 ( − 1)

number of variables to represent all edges in the graph, where
 is the total number of random variables. An example of a BN
with a genotype representation is given in Figure 1. This problem
formulation however, allows cyclic networks to exist. Therefore,
a repair operator is used to remove cycles. To check if solutions
contains a cycles, a depth-rst search is executed. If a cycle is found,
the last edge that completes the cycle in the depth-rst search is
removed.

BN-GOMEA, makes use of a linkage model that captures inter-
dependencies between problem variables. A linkage model is made
up of Family of Subset (FOS) elements, where each FOS element
is a set of indices that indicate dependencies between the problem
variables represented by those indices. The FOS elements are used
during variation to eectively mix groups of variables to create
tter solutions. In [17], BN-GOMEA makes exclusively use of the
linkage tree. The linkage tree is hierarchical tree structure which is
learnt from the population. The Gene-pool Optimal Mixing (GOM)
variation operator leverages this linkage tree. Each solution in the
population undergoes GOM. First, the solution is cloned. Then the
linkage tree is randomly traversed for this solution. For each FOS
element in the linkage tree, a random donor solution is selected
from the population. The variables, as indicated by the FOS element,

are then copied to the ospring solution. If the change results in a
worse tness, the change is reverted in the ospring, otherwise the
change is kept.

Other than the GOM operator, the excellent performance of
BN-GOMEA can also be attributed to two other reasons. First, BN-
GOMEA exploits the use of partial evaluations in combination with
the linkage tree.When an ospring solution is created from a parent
solution, each GOM step only changes part of the solution. It is more
ecient to only recalculate the tness contribution of variables that
have changed, if the tness function is decomposable. For typical
tness functions used with BNs, this is the case. In BN-GOMEA the
decomposable BDeu score was used.

The second reason for BN-GOMEA’s excellent performance is
because a local search operator is additionally used. Upon initializa-
tion and after applying GOM to every solution in the population,
the local search operator is applied on every solution in the popula-
tion. The local search operator randomly traverses all variables of
a solution and evaluates the tness when the selected edge takes
a dierent value, i.e., any value in {0, 1, 2} dierent from the cur-
rent value. During local search, only changes that result in a better
tness are accepted, otherwise the change is reverted.

At last, BN-GOMEA makes use of an Interleaved Multi-start
Scheme (IMS), which runs multiple populations of various sizes side
by side. The IMS avoids the user to excessively tune the population
size manually. For this, the IMS ensures that a population of size
pop, executes 4 generations before a population of 2 ·pop executes
a single generation, starting from a base population of size 2.

3 DISCRETIZATION OF CONTINUOUS
RANDOM VARIABLES IN BAYESIAN
NETWORKS

3.1 DBN-GOMEA
In this work, BN-GOMEA is extended such that it can handle con-
tinuous random variables without prior discretization, i.e., the vari-
ables are discretized during structure learning. This new algorithm
is dubbed Discretized Bayesian Network-GOMEA (DBN-GOMEA).

First, the BDeu score used in BN-GOMEA is replaced by a density
based function, as the variables are reinterpreted in terms of density.
The assumption that is made is that if data is discretized, it is
uniformly distributed within that discretization. To optimize the
uniform discretizations, the density of the discretizations should be
maximized. As such, the log likelihood over the densities is taken
as tness function, as is shown in equation 2, where xi ∈ R is
training sample  from a training data set and  the size of the
training data set. To make sure that the density is invariant to
the range of data, the data ranges are normalized to [0, 1] prior to
calculating the densities. This is similar to what has been done in
[25]. As a penalty term, the penalty of the BIC score [24] is used,
where the model complexity C() is dependent on the number of
parent discretizations: |pa( ) |, the number of discretizations of
 : | |, and  as shown in Equation 3. This results in the tness
function, displayed in Equation 4.

LL(X,) =

=1

log(density (xi)) (2)
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C() =
∑
=1

|pa( ) | · ( | | − 1) · log(2 ) (3)

tness(X,) = LL(X,) − C() (4)
To discretize continuous variables, two common discretization

methods are introduced, namely: Equal-Width (EW) and Equal-
Frequency (EF). In EW discretization, data is split into ’k’ equally
ranged discretization bins. In EF discretization, data is sorted and
split into ’k’ equally lled discretization bins. In DBN-GOMEA,
the number of discretizations ’k’ is optimized by appending the
discretization counts ’k’ of each continuous random variable to the
solution representation of BN-GOMEA, i.e., the representation is
enlarged with  variables where  is the number of continuous
variables.

As the solution representation is altered, the local search op-
erator of BN-GOMEA is extended. In DBN-GOMEA, the original
local search operator for the network topology is kept. However,
when a solution variable is selected that represents a discretization
count, the modied local search operator increases and decrease
the discretization count by one, i.e., { − 1, + 1}. If the resulting
number of discretizations falls outside the minimum or maximum
number of discretizations, which are 2 and 15 respectively, the local
search step is not executed. In this work, the minimum and maxi-
mum discretizations have been chosen to keep computation times
feasible.

3.2 Post-structure Learning Discretization
Although EW and EF discretization are commonly used in the litera-
ture, in practice it is unlikely for data to be EW or EF distributed. As
a consequence, an inaccurate discretization might be found. For this
reason, the eect of optimizing the discretization boundaries will
be investigated. This will however be done after structure learning
has nished, as structure learning and discretization can become
expensive when the sample size grows.

The algorithm selected for this task is the Real-Valued GOMEA
(RV-GOMEA) [3, 4], which is a state-of-the-art real-valued opti-
mization algorithm. With the network structure and number of dis-
cretizations for each continuous random variable xed, the bound-
aries can be optimized using the same density tness function. As
a result, the log likelihood over the densities is potentially further
optimized, without a change in complexity.

The boundary optimization in RV-GOMEA is encoded by con-
catenating all boundaries to be optimized into a single solution.
Instead of directly optimizing the boundaries of the data, the opti-
mization problem is reformulated by sorting the unique data values
u of each continuous random variable and to optimize the sample
indices that separate the data. By optimizing the sample indices, the
at-landscape between samples becomes equiprobable, compared
to directly optimizing the boundaries. The boundary at sample in-
dex  is then calculated by taking the midway point between sample
 and sample +1. As RV-GOMEA optimizes real-valued problems,
the solution parameters (which represent the sample indices) are
rounded down.

For RV-GOMEA, the linkage tree is once again used as a linkage
model.

3.3 Bayesian Method
In [6], a discretization method is proposed that nds a discretiza-
tion Λ that maximizes a likelihood score, given a BN structure. The
method uses Bayes rule to maximize:  (Λ) ·  ( |Λ), where  (Λ)
is the prior of a discretization policy and  ( |Λ) the probability
of the data given the discretization policy. The likelihood is formu-
lated by making assumptions, of which one assumption is that the
prior probability of a discretization boundary between two unique
consecutive sample values is proportional to their dierence.

Maximization of the likelihood is implemented via dynamic pro-
gramming. By doing pre-calculations, the discretization runtime is
reduced to O( · 2), where  is a constant and  the sample size.

In [6] furthermore, this Bayesian discretization method is com-
bined with a structure learning algorithm. The combination of both
algorithms is dubbed LDBN in this work. In LDBN, the structure is
learnt by rst applying EW discretization on all continuous random
variables, where the number of discretizations is selected to be
the largest number of instantiations amongst all discrete random
variables. After EW discretization, an arbitary random variable is
selected as a starting point. The remaining random variables are
randomly selected and sequentially added to the BN structure as
child nodes. An edge between the new child node and potential
parent node(s) materializes when the K2 score of the network im-
proves after adding the edge. If a new edge is added to the network,
the Bayesian discretization method is applied on all nodes that fall
within the Markov blanket of the new node. All nodes within the
Markov blanket are sequentially discretized in a random order.

As both the structure learning algorithm as well as the Bayesian
discretization contain randomness, LDBN runs the structure learn-
ing and discretization algorithm multiple times. We kindly refer to
[6] for more details.

4 MULTI-OBJECTIVE LEARNING
A major limitation of Single-Objective (SO) BN learning is that the
weight of the complexity term is not straightforward to set [26].
Furthermore, the obtained model might not be trusted by an expert
when the expert has their own beliefs. Taking a Multi-Objective
(MO) perspective can oer a solution to these problems. First, using
MO search does not require the user to know the penalty factor
a priori. Furthermore, the search returns many networks out of
which a domain expert can choose a network that matches (partly)
with their own prior belief or discover new knowledge this way.

A straightforwardway to doMO search is to optimize (a proxy of)
accuracy and model complexity as in e.g., [26], where an EA is used,
performing MO search relatively straightforward. For GOMEA,
multi-objective variants also exist that are direct extensions of
the SO versions, necessitating no further adaptions to e.g., DBN-
GOMEA’s genotype or operator. Using the density function as is,
an MO version of the problem can be created straightforwardly by
making Equation 2 and Equation 3 separate objectives. See Section
4.1 for more on this. A subset of the networks obtained from thisMO
search can then be shown to an expert, who decides which network
is most appropriate, observing the t to the data and matching with
their own beliefs. The inclusion of expert knowledge however, could
provide additional guidance to the search. In this work, not only
are the density and complexity optimized as separate objectives,
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the dierence with an a priori determined expert network is also
optimized. To this end, the Kullback-Leibler (KL) divergence is used
as a distance between a candidate network and an expert network.
The KL divergence is shown in Equation 5, where  (X) is the
probability distribution of the expert network, (X) the probability
distribution of a candidate network, and X the sample space. The
KL divergence is 0 when two probability distributions are identical,
and is larger than 0 otherwise. An example of the objective space
of a resulting MO run is shown in Figure 2.

 ( | |) =
∑
∈X

 (X) log

 (X)
 (X)


(5)

Figure 2: Impression (rotated visualizations) of the approxi-
mation front of a multi-objective run together with the ob-
jective values of the ground truth and expert solutions. The
x, y, and z axis are on a log-log-linear scale.

4.1 MO-DBN-GOMEA
For the MO optimization, Multi-Objective Gene-pool Optimal mix-
ing EvolutionaryAlgorithm (MO-GOMEA) [16] is used.MO-GOMEA
is a state-of-the-art multi-objective EA that is also part of the
GOMEA family. It can similarly exploit partial evaluations for en-
hanced eciency. MO-GOMEA uses domination-based optimiza-
tion, i.e., it uses the concept of Pareto dominance to nd better
solutions. A solution is said to Pareto dominate another solution if
it is not worse in any objective and better in at least one objective.

Given objectives that need to be optimized, a population in
MO-GOMEA is partitioned into  clusters of equal sizes. For each
cluster, a linkage model is learnt. In this work, the linkage tree is
used, which is similar to the linkage tree in Section 2.1. Each cluster
is evolved using the respective linkage model. A select number
of clusters (specically ) with the (respective) highest average
objective values are selected to optimize the individual objective
functions in a SO setting using the SO GOM operator. For the
remaining clusters theMOGOMoperator is used. Dierent from the
SO GOM operator, the MO GOM operator accepts a solution when
any of the following holds: 1) the GOM altered solution dominates
the unaltered solution, 2) the altered solution has the same objective
values, 3) the altered solution is not dominated by any solution in
the elitist archive. The elitist archive is an archive of non-dominated
solutions found during the optimization. In this work, an elitist
archive size of 10,000 is used to collect as many solutions as possible
during the search, while balancing computation time.

Similar to BN-GOMEA, MO-GOMEA uses the IMS to manage
its population size. However, the IMS in MO-GOMEA additionally
manages the number of clusters  in a population. The population
size starts at 8 and is multiplied by 2 for every new population size.
The number of clusters starts at + 1, and is incremented by 1 for
every new population. For more details, we kindly refer to [16].

In this work, MO-GOMEA is slightly extended by making MO-
GOMEA capable of solving discrete problems over binary problems
only. For this, the suggestions proposed in [16] are followed. The
most important change made, is replacing the binary linkage tree
in MO-GOMEA with the discrete linkage tree of [17]. Furthermore,
the Bayesian network structure learning, as proposed in Section 2 is
integrated into MO-GOMEA. The new structure learning algorithm
is dubbed MO-DBN-GOMEA.

5 EXPERIMENTS AND RESULTS
5.1 Network Generation
In this work, randomly generated BN structures and probability
distributions are used to assess the performance of the algorithms.
For this, the network generator algorithm of [12] is used to gen-
erate random BNs. Probability distributions are generated using a
method described below. Data sets are sampled from the ground
truth networks and given to the algorithms. In [12], random BN
structures are generated under constraints. The maximum number
of parent random variables are chosen to be 6 and the maximum
number of edges in a network are set to be at most 40% of all possi-
ble edges  . These constraints have been chosen, such that networks
can be evaluated within reasonable time.

The probability distributions are randomly generated by rst sep-
arating the random variables into discrete and continuous variables.
The number of discrete variables is set to 10% with a minimum
of at least one discrete variable per ground truth network. Each
random variable, whether discrete or continuous, is then randomly
assigned between 2 and 6 discretizations, e.g., if a random vari-
able is randomly assigned 5 discretizations, the possible values are:
{1, 2, 3, 4, 5}. A discrete probability table is then generated for each
random variable, that maps the possible parent values to a proba-
bility of a specic discretization value. In this work, the probability
tables are generated in three ways: EW, EF or random probability
distributions. For EF probability distributions, the probability of
sampling any value is equiprobable. For EW and random probability
distributions, random probability tables are generated.

Discrete samples can now be retrieved. For the continuous vari-
ables however, the discrete probability tables must be converted to
continuous probability distributions. For this, a mapping is gener-
ated that maps each discrete value to a specic range of continuous
values. Continuous samples can be obtained by uniformly sampling
from this range. For example, if a continuous random variable has
3 discretizations with ranges: [1.0, 2.0⟩, [2.0, 2.5⟩, [2.5, 3.5⟩, and a
discrete value of 2 is sampled, a continuous sample is produced
by uniformly sampling from [2.0, 2.5⟩. The sample ranges are de-
signed to be adjacent to each other and non-overlapping. For EW
probability distributions, the sample ranges are set to be equally
spaced. For EF and random probability distributions, the sample
ranges are determined randomly.
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5.2 Metrics
The performance of the algorithms is assessed using various met-
rics. In terms of network structure metrics, two metrics are used.
First, the accuracy is dened as the sum of the number of correctly
identied edges  and correctly identied absent edges  of a
candidate network structure as a percentage of the sum of the total
number of edges total of the ground truth network (see Equation
6). A correctly identied edge is dened as an edge in the ground
truth network which also appears in the candidate network without
regarding the directionality of the edge. Note that this denition
is dierent from other works such as e.g., [15]. A correct absent
edge is dened as an absent edge in both the ground truth network
and candidate network. The sensitivity is dened as the number of
correctly identied edges  as a percentage of the total number
of edges in the ground truth network: edges (see Equation 7).

Accuracy =
 +
total

(6)

Sensitivity =


edges
(7)

To assess the quality of the discretizations, the KL divergence
with respect to the ground truth network is used. The KL divergence
was already introduced in Section 4.

5.3 Single-Objective Scalability
5.3.1 Single-Objective Scalability in Terms of Sample Size.
The scalability in terms of sample size is shown for various al-
gorithms in Figure 3. For this, 30 ground truth networks, each
having 8 random variables, are generated with EW, EF and random
probability distributions. To asses the KL divergence, 50.000 test
samples are generated. DBN-GOMEA with EW, EF, and Bayesian
Discretization (BD), as well as the structure learning algorithm from
[6] (LDBN) are considered in these experiments. DBN-GOMEA-EF
and DBN-GOMEA-EW are run on an Intel E5-2690 where each run
uses a single core with 2GB of memory and 24 hours of compu-
tation time. The Bayesian discretization’s memory requirements
scale with O(2). Therefore, LDBN and DBN-GOMEA-BD are run
on a (newer) E5-4650 with 20GB of memory per run and 24 hours
of computation time. Due to computational constraints, it was not
possible to run all algorithms on the E5-4650.

Figure 3 shows that for EW, EF, and random probability distribu-
tions, in general, DBN-GOMEA with the appropriate discretization
techniques nds better network structures as well as better KL
divergence when the sample size grows. Only DBN-GOMEA-EW
obtains perfect network retrieval for EW problems, given at least
6400 samples. DBN-GOMEA-EF does not achieve perfect retrieval
for EF problems, for any tested sample size. Note however, that the
EF data is sampled from the ground truth network and thus not
perfectly EF distributed. Hence; when using EF discretization, the
boundaries are not optimal. Interestingly, LDBN in general, shows
worse performance than DBN-GOMEA in terms of network met-
rics, KL divergence or in some cases in both. LDBN also runs out
of memory when there are too many samples. DBN-GOMEA-BD
also runs out of memory. For small sample sizes however, except

Number
of

samples

DBN-
GOMEA-

EW

DBN-
GOMEA-

EF

DBN-
GOMEA-

BD
LDBN

200 1.57 ± 0.58 0.94 ± 0.21 1.62 ± 0.89 3.43 ± 1.27
400 1.45 ± 0.59 0.83 ± 0.19 1.16 ± 0.78 3.39 ± 1.17
800 1.38 ± 0.61 0.73 ± 0.18 0.94 ± 0.65 3.37 ± 1.24
1600 1.32 ± 0.64 0.64 ± 0.17 1.02 ± 0.73 2.66 ± 1.48
3200 1.26 ± 0.64 0.57 ± 0.18 1.82 ± 1.43 -
6400 1.21 ± 0.66 0.50 ± 0.17 - -
12800 1.16 ± 0.66 0.46 ± 0.17 - -
25600 1.09 ± 0.63 0.43 ± 0.18 - -
51200 1.07 ± 0.62 0.41 ± 0.18 - -

Table 1: The average KL divergence values and standard de-
viation to the ground truth networks of various algorithms
and for dierent sample sizes. In bold are the best KL values
and those statistically not dierent from it. The ground truth
networks have random probability distributions.

for the EW problems, it can nd better network structure and sim-
ilar or better KL divergence compared to DBN-GOMEA-EW and
DBN-GOMEA-EF.

To test for dierences in the KL divergence, a Mann–Whitney
U statistical test is performed. Results obtained from ground truth
networks with random probability distributions are investigated.
In table 1, the mean ± the standard deviation of the KL divergence
is shown. Numbers in bold have the best average KL divergence
or are statistically not dierent from the best. An alpha value of
0.05 is used, with a Bonferroni correction of 63 as 27 tests are
performed and 36 more tests will be performed later on. Table 1
shows that DBN-GOMEA-EF is the overall best, with DBN-GOMEA-
BD performing similar on problems with few samples.

5.3.2 Single-Objective Scalability in Terms of Random Variables.
The scalability in terms of number of random variables in a network
is shown in Figure 4. For this, 30 ground truth networks, with
random probability distributions, are generated per ground truth
network size. Each run was performed using 500 training samples,
on a single core of an AMD Genoa 9654, with 2GB of memory and
a computation budget of 24 hours.

Figure 4 shows that DBN-GOMEA-BD obtains more accurate
and more sensitive network structures when there are few nodes.
However, after more than 12 nodes, the networks become less
accurate compared to the ones obtained by the other algorithms. At
the same time, the time it takes to nd the best solution also nears
the computation budget of 24 hours. This begs the question if DBN-
GOMEA-BD needs more time to converge. The network accuracy
obtained by the other algorithms seems to be similar, especially
after 12 nodes.

Despite having similar network structures, the KL divergence
does seem to dier per algorithm. To test for statistical dierences in
the KL divergence, a Mann–Whitney U statistical test is performed.
In Table 2, the mean ± the standard deviation of the KL divergence
is provided. Numbers in bold have the best average KL divergence
or are statistically not dierent from the best. An alpha value of
0.05 is used, with a Bonferroni correction of 63 as 27 tests were
performed previously and 36 more tests are performed in Table 2.
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Figure 3: Scalability in terms of sample size for 30 random networks with 8 random variables having EW, EF and Random
probability distributions. The solid lines are medians, while the shaded areas encompass the rst and third interquartile ranges.
The arrows on the y-axis point in the direction of improvement per metric.

Random
Variables

DBN-
GOMEA-

EW

DBN-
GOMEA-

EF

DBN-
GOMEA-

BD
LBDN

4 0.58 ± 0.45 0.29 ± 0.14 0.45 ± 0.40 1.11 ± 0.81
6 0.98 ± 0.56 0.51 ± 0.16 0.57 ± 0.40 2.31 ± 0.86
8 1.26 ± 0.51 0.78 ± 0.18 1.09 ± 0.63 3.04 ± 1.05
10 2.11 ± 0.69 1.15 ± 0.22 1.89 ± 1.16 4.42 ± 1.35
12 2.57 ± 0.91 1.54 ± 0.25 3.02 ± 1.06 4.63 ± 1.07
14 3.29 ± 0.93 1.98 ± 0.28 4.49 ± 1.32 6.42 ± 1.46
16 3.47 ± 0.82 2.32 ± 0.29 5.69 ± 1.25 6.97 ± 1.73
18 4.32 ± 1.06 2.76 ± 0.30 6.95 ± 1.43 7.85 ± 1.74
20 4.66 ± 0.82 3.14 ± 0.33 8.33 ± 1.77 8.35 ± 1.52

Table 2: The average KL divergence ± the standard deviation
of various algorithms optimized on 30 ground truth networks
with 500 samples and random probability distributions for
various number of random variables. The best KL scores and
the statistically insignicant results are marked in bold.

Table 2 shows that, similar to Table 1, DBN-GOMEA-EF is amongst
the best in terms of KL divergence. Table 2 also shows that DBN-
GOMEA-BD is amongst the best in terms of KL divergence when the
number of random variables is small. LDBN and DBN-GOMEA-EW
perform relatively poorly.

5.4 Post-Structure Learning Discretization
Figure 3 and Figure 4 have shown that DBN-GOMEA-EW and
DBN-GOMEA-EF can retrieve accurate networks within relatively
short time compared to the other algorithms. DBN-GOMEA-EW
and DBN-GOMEA-EF, however, do not optimize the discretization
as granularly as e.g., BD. To investigate the eect of doing post-
structure learning discretization, all network structures of Figure 3,
obtained using DBN-GOMEA-EW and DBN-GOMEA-EF on ground
truth networkswith random probabilities, are oncemore discretized.
The discretizations are optimized with RV-GOMEA and the BD. RV-
GOMEA is tasked to optimize the density tness function (Equation
4) within a budget of 24 hours and is ran on a E5-2690 with 2GB
of memory. The BD algorithm is ran on a E5-4650 with 20GB of
memory.

The eect of optimizing the discretization after completing struc-
ture learning is shown in Figure 5. Figure 5 also shows the original
discretization obtained with DBN-GOMEA-EW and DBN-GOMEA-
EF as a reference. Note that the time until the best found solution
in Figure 5 does not include the original 24 hours of structure learn-
ing. Figure 5 shows that when RV-GOMEA is applied (purple and
orange), the median KL divergence improves compared to not do-
ing post-structure learning discretization (red and blue) regardless
whether the structure was obtained using EW or EF discretization.
The BD method however, seems to perform poorly when there
are not enough samples in combination with having inaccurate
structures (as seen from Figure 3). After 12800 samples, BD runs
out of memory.

6



Figure 4: The scalability in terms of number of random vari-
ables. For each number of random variables on the x-axis, 30
ground truth networks were generated with random prob-
ability distributions. The solid lines are medians, while the
shaded areas encompass the rst and third interquartile
ranges. The arrows on the y-axis point in the direction of
improvement per metric.

Figure 5: Optimizing the discretization after structure learn-
ing. The networks of Figure 3, obtained using DBN-GOMEA-
EW and DBN-GOMEA-EF, are further optimized. The lines
indicate the median, while the shaded regions encompass
the rst and third quartiles. The arrows on the y-axis point
in the direction of improvement per metric.

5.5 Multi-Objective Experiment
To test the robustness of the MO search, ground truth networks
are generated along with expert networks. The expert networks

are a simulated representation of what a domain expert believes
is the ground truth. The expert networks are randomly generated
based on the ground truth networks. In this experiment, the expert
networks are congured to know 50% of the edges of the ground
truth network, i.e., 50% of edges. This is similar to what has been
done in [1]. Additional to this, the experts networks are also con-
gured to believe in edges that do not appear in the ground truth
network. The number of incorrect edges is also set to 50% of edges.
The incorrect edges are randomly selected. In this process, networks
with cycles are rejected until an acyclic network is found. For the
continuous variables, the expert networks also need to determine
how the random variables are discretized. For each continuous ran-
dom variable, the expert network randomly makes between 2 and 4
discretizations. How the data is discretized, i.e., where boundaries
are put, is also random.

For the MO search, MO-DBN-GOMEA with EW and EF dis-
cretization are used. In an explainable AI setting, proposed net-
works that are too complex might be less likely to be accepted by
the expert. For this reason, proposed solutions with a complexity
(Equation 3) larger than 10 times the expert network are assigned
a constraint value proportionate to the dierence in complexity.
This threshold however, is problem and expert dependent. In this
experiment, it only serves as an example. The number of maximum
discretizations is also decreased from 15 to 9, as experts are unlikely
to accept complex discretizations. SO algorithms DBN-GOMEA-EW
and DBN-GOMEA-EF are also ran for comparison with the same
number of maximum discretizations.

The results of the MO search on 30 randomly generated ground
truth networks with 10 random variables and random probability
distributions is shown in Figure 6 for various sample sizes. Each run
was performed on a single core of an AMD Genoa 9654, with 2GB
of memory and a computation budget of 24 hours. In the top two
rows of Figure 6, the highest obtained network accuracy is shown
with respect to the ground truth and expert networks. For the MO
algorithms, the most accurate solutions in the elitist archive are
displayed per run. For the SO algorithms, the best found solution’s
network accuracy is shown. Interestingly, both MO algorithms are
able to obtain networks with better accuracy compared to the SO
algorithms for the tested sample sizes. In the case of the ground
truth network accuracy, the gap between theMO and SO algorithms,
does shrink when the sample size grows. In terms of accuracy to
the expert network, the MO algorithms perform better than the
SO algorithms, as the SO algorithms do not optimize towards the
expert network (which is explicitly done in the MO setting).

The best found KL divergence is also shown in Figure 6 on a
log scale. For the MO algorithms, the best KL divergence is shown
amongst all solutions with the highest network accuracy, not the
entire elitist archive. For the SO algorithms, the best found solu-
tion’s KL divergence is shown. Interestingly, both the MO and SO
algorithms using EF discretization obtain similar KL divergence to
the ground truth network. This is not the case for the KL diver-
gence to the expert network as once again, the SO algorithms do
not optimize towards the expert network.
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Figure 6: MO vs SO scalability in terms of sample size on
ground truth networks with 10 nodes, random probability
distributions, and random expert networks. The solid lines
are medians, while the shaded areas encompass the rst and
third quartiles. The arrows on the y-axis point in the direc-
tion of improvement per metric.

6 DISCUSSION
A state-of-the-art of the art structure learning algorithm based on
the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)
was extended with discretization-based methods to handle continu-
ous data. In this work, DBN-GOMEA made use of the linkage tree.
In the encoding of a solution, the network variables can take three
values, namely: {0, 1, 2} . When e.g., Equal Width (EW) or Equal Fre-
quency (EF) discretization is applied, the number of discretizations
is also encoded in the solution. The number of discretizations can
take a value between 2 and a maximum value for every continuous
variable. As the network variables and binning variables have an
unequal number of values they can assume, the linkage tree tends
to cluster discretization variables together, in the lower parts of
the linkage tree. Mixing the network variables and discretization
variables could make the optimization even faster, as graphically,
discretization variables and edges are structurally related. For this,
normalizing the mutual information could help.

In Section 5.3.1, the eect of the sample size on the network
accuracy was shown for randomly generated networks with 10
random variables. It was shown that even for large sample sizes,
DBN-GOMEA-EF was unable to fully re-obtain the EF ground truth
network. Conversely, DBN-GOMEA-BS obtained better KL diver-
gence than DBN-GOMEA-EF for smaller sample sizes. This suggests
that more sophisticated discretization techniques, compared to EW

and EF discretization, might be required to retrieve the full ground
truth network.

An interesting approach would be to employ a mixed-integer
algorithm, such as [22], which handles both integer and real-valued
variables. The mixed-integer approach could encode the network
structure using integers (as is done in DBN-GOMEA), while encod-
ing the discretization with real values.

In this work, a multi-objective Bayesian network learning algo-
rithmwas also introduced. Currently, only EW and EF discretization
have been ran, as Bayesian discretization is too expensive to run,
especially when evaluating complex networks. A multi-objective
mixed-integer approach, such as [23], could also be interesting for
this problem.

In some real-world domains, blindly trusting machine learning
models is not acceptable from a legal aspect. The multi-objective
approach proposed in this work however could be useful when
used as an advisory model, as it provides the possibility to inspect
multiple possible models and trade-o between complexity and
accuracy. Exploring the potential added value of our approach from
an explainable AI perspective, by having domain experts interact
with the found works, is therefore interesting future work.

7 CONCLUSION
In this work, for the rst time, a full Bayesian network learning
algorithm based GOMEA is presented, which jointly discretizes con-
tinuous variables during structure learning. In the single-objective
case, the proposed algorithm (DBN-GOMEA) obtains similar or
better results than the state-of-the-art when tasked to retrieve ran-
domly generated ground-truth networks. Moreover, leveraging a
key strength of EAs, the Bayesian network learning is brought to
the multi-objective domain. It was shown how this enables incor-
porating expert knowledge in a uniquely insightful fashion, nding
multiple discrete Bayesian networks that trade-o complexity, ac-
curacy, and the dierence with a pre-determined expert network.
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