
Cryptanalysis of EagleSign

Ludo N. Pulles1 and Mehdi Tibouchi2

1 CWI Amsterdam
ludo.pulles@cwi.nl

2 NTT Social Informatics Laboratories
mehdi.tibouchi@ntt.com

Abstract. EagleSign is one of the 40 Round 1 Additional Signatures
that is accepted for consideration in the supplementary round of the Post-
Quantum Cryptography standardization process, organized by NIST. Its
design is based on structured lattices, and it boasts greater simplicity and
performance compared to the two lattice signatures already selected for
standardization: Falcon and Dilithium.

In this paper, we show that those claimed advantages come at the cost
of security. More precisely, we show that the distribution of EagleSign
signatures leaks information about the private key, to the point that only
a few hundred signatures on arbitrary known messages suce for a full
key recovery, for all proposed parameters.

A related vulnerability also aects EagleSign-V2, a subsequent version
of the scheme specically designed to thwart the initial attack. Although
a larger number of signatures is required for key recovery, the idea of
the attack remains largely similar. Both schemes come with proofs of
security that we show are awed.

Keywords: EagleSign ´ Lattice-based signatures ´ Cryptanalysis ´ Fiat–
Shamir with aborts

1 Introduction

Since the vast majority of currently deployed cryptographic schemes nowadays
rely on the hardness of factoring or discrete logarithms, the entire foundation of
modern secure communications would be at risk if large-scale quantum comput-
ers capable of running Shor’s algorithm were to come about. As that perspective
appears less remote than it did in the past, the cryptographic community has put
great eorts into the transition to post-quantum schemes, based on assumptions
not known to be broken by quantum computers.

These eorts have been spurred in particular by NIST’s post-quantum cryp-
tography (PQC) standardization process [NIST17], as well as competitions launched
by other standardization bodies [CPQC, KPQC]. NIST’s process, in particular,
started in 2016, and reached an important milestone in 2022 when a rst batch
of 4 algorithms (three signatures schemes and one KEM) were selected for stan-
dardization. A handful of other KEM schemes remain under consideration for
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future standardization, and NIST also called for the submission of additional sig-
nature schemes to be examined in a similar process as the original one [NIST23].
This additional process began in 2023 and is currently ongoing.

One stated motivation for NIST’s call for additional signatures is that among
the three signature schemes already selected for standardization, two are based
on structured lattices (Dilithium [LDK+22] and Falcon [PFH+22]), and the last
scheme, SPHINCS+ [HBD+22], has somewhat limited applicability due to the
size and performance characteristics of hash-based signatures. NIST therefore
encouraged the submission of additional signatures relying on hardness assump-
tions not related to structured lattices. Nevertheless, several of the submissions
are indeed based on structured lattices.

Fiat–Shamir lattice-based signatures and the EagleSign signature scheme. One
of those lattice-based submissions to NIST’s call for additional signatures is
EagleSign [SHDS23a]. It can be informally described as a Fiat–Shamir type
signature scheme, like Dilithium, except that EagleSign does not involve rejection
sampling. Moreover, it is in contrast with Falcon, which is a hash-and-sign type
signature scheme.

Fiat–Shamir type signatures, which are ubiquitous in the discrete logarithm
setting (epitomized by Schnorr signatures and variants like DSA and ECDSA),
were extended to the lattice setting in large part thanks to Lyubashevsky’s
Fiat–Shamir with aborts framework [Lyu09]. Lyubashevsky’s technique ad-
dresses the issue that, contrary to what happens in a nite group, one cannot
sample a uniformly random element of a lattice or its ambient space, which
makes it dicult for a lattice-based sigma protocol to satisfy the (honest verier)
zero-knowledge property. This is xed in Lyubashevsky’s framework by throwing
away transcripts that would leak statistical information about the secret, which
translates in the corresponding signature scheme to a rejection sampling step in
the signature generation algorithm.

This rejection sampling step is sometimes regarded as a source of complexity,
reduced eciency and possible side-channel attack vulnerability for implementa-
tions of Fiat–Shamir lattice-based signatures [EFGT17, BBE+19, dPRS23]. Ac-
cordingly, there have been attempts to avoid it entirely. This can be achieved for
example using noise ooding, as done in the Raccoon signature scheme [dEK+23]
and similar constructions. This requires a superpolynomial modulus, however,
and hence somewhat larger parameters and qualitatively stronger hardness as-
sumptions.

The EagleSign signature scheme also proposes to eliminate aborts and rejec-
tion sampling, while at the same time oering more compact parameters com-
pared to Dilithium. Although this does not, to our knowledge, contradict any
known impossibility result, this is a priori surprising, and casts doubt on the
security of the scheme, even though it claims to come with a proof of security.

Our contributions. In this paper, we show that such doubts are warranted, and
that EagleSign is indeed insecure. Signatures tend to leak partial information
on the private key, leading to a full private key recovery attack from suciently
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many valid signatures. We implement the attack, and show that a few hundred
signatures on average are enough for key recovery for both proposed parameter
sets. Accordingly, we point out a aw in the security proof.

This attack was previously announced on the NIST PQC Forum [Tib23,
Pul23], and acknowledged by the submitters. In response, they revised their
specication with a new version of the EagleSign scheme, called EagleSign-V2,
this time featuring rejection sampling. Unfortunately, the newly introduced re-
jection sampling fails to achieve the honest verier zero knowledge property,
and the various changes do not succeed in preventing a similar attack strategy.
These ndings were again announced on the PQC Forum with an accompanying
implementation, and subsequently acknowledged by the authors [Hou23].

2 Preliminaries

2.1 Notation

Vectors and matrices. Vectors are boldfaced and, unless otherwise stated,
column vectors. Matrices are boldfaced and capitalized. The transpose of a vector
v is denoted by vT. The n× n identity matrix is denoted by In.

We dene a partial order relation ≺ on n × n real symmetric matrices by
writing Σ1 ≺ Σ2 when Σ2 −Σ1 is positive semidenite, i.e., ∀x ∈ Rn : xT(Σ2 −
Σ1)x ≥ 0. We have, in particular, Σ ≺ In if and only if all the eigenvalues of
Σ are at most .

Probabilities. A random variable X following a distribution D is denoted by
X ∼ D. The probability of some event E happening is denoted by Pr[E(X)],
the expectation value of f(X) is written as E[f(X)]. The variance of X is

E[(X − E[X ])
2
] = E[X2] − E[X]

2
, while the covariance matrix of random vari-

ables X = (X1,    , Xn)
T
is given by

ΣX = E

(X− E[X]) · (XT − E[XT])




The uniform distribution on a set X is denoted by U(X). The variance of
U([−, ] ∩ Z) is given by ( + 1)3 for  ∈ Z≥0.

Given a symmetric positive denite matrix Σ ∈ Rn×n, the (centered) Gaus-
sian (or multivariate normal distribution) with covariance matrix Σ is a distri-
bution with probability density function

1
(2π)

n · det(Σ)
· e− 1

2x
TΣ−1x,

at xT = (x1,    , xn) ∈ Rn, and is denoted by N (0,Σ).
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Cyclotomic rings. For n a power of two, R denotes Z[X](Xn + 1), the ring
of integers of the cyclotomic number eld of degree n. The coecient embedding
of R is the additive group homomorphism

coef : R → Zn

f = f0 + f1X +    fn−1X
n−1 → (f0, f1,    , fn−1)

T


Given an element f ∈ R, we write fi to mean coef(f)i, and frequently identify
f with coef(f) by abuse of notation. The standard inner product on Rn induces
an inner product and a lattice structure on R.

In addition, we denote for any f ∈ R the ℓp-norm and ℓ∞-norm as follows:

∥f∥p =


n−1

i=0

fp
i

1p

(for all p ≥ 1), ∥f∥∞ = max
0≤i<n

fi

The free R-module of rank k is denoted by Rk = RR  · · ·R  
k tims

. Elements

of Rk are column vectors f = (f1,    , fk)
T
, which can be thought of as a vector

in Znk using the coecient embedding. Given a vector f ∈ Rk, let us write
fi,j = coef(fi)j , for 1 ≤ i ≤ k and 0 ≤ j < n.

The number ring comes with a complex conjugation map f → f∗ given by

f∗ =

n−1

i=0

fiX
−i = f0 +

n−1

i=1

(−fn−i)X
i,

for f ∈ R. Extended to modules, we have f∗ = (f∗1 ,    f
∗
k ) as a row vector, given

a column vector f ∈ Rk. Observe that f · f∗ has constant term equal to ∥f∥22.
Reusing some notation from the EagleSign specication document [SHDS23a],

we dene

Sη = f ∈ R  ∥f∥∞ ≤  (for any  ∈ Z≥1),

Bτ = f ∈ R  ∥f∥∞ ≤ 1, and ∥f∥1 = τ (for any 0 ≤ τ ≤ n),

B0
τ = f ∈ Bτ  f0 = 0 (for any 0 ≤ τ < n)

Here, Sη is a set of polynomials with small coecients, and Bτ is a set of sparse
ternary polynomials of xed weight.

2.2 The EagleSign-V1 signature scheme

First, we will consider the original version of EagleSign, specically EagleSign
2, which can be found in Section 2.2 of the specication document [SHDS23a].
We will refer to this version as EagleSign-V1, to make the distinction clear
between this version and EagleSign-V2 [Hou23]. For this particular case, the
submitters supplied two implementations: one aiming at NIST’s security level 3,
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Table 1. Parameter sets for EagleSign-V1 as taken from [SHDS23a, Table 2].

Claimed security level 3 5

n 1024 1024

k (length of w) 1 1

ℓ (length of z) 1 2

ηG 1 1

ηD 1 1

ηy2 64 32

τ (weight of ci) 38 18

t (weight of y1,i) 140 86

δ (bound on ∥z∥∞) 178 208

δ′ (bound on ∥w∥∞) 242 240

and one aiming at security level 5. Here, we will only highlight some of the parts
that are relevant for the attack.

The signature scheme works with the number ring R = Z[X](Xn + 1) and
free R-modules, where n is a power of two. All the parameters for the two
supplied parameter sets can be found in Table 1. EagleSign-V1 uses the prime
modulus q = 12289. Note that [SHDS23a, Table 1] contains a typo: it reports
τ = 38 for security level 5, but the reference implementation and [SHDS23a,
Table 2] use τ = 18 instead, which gives the correct length bounds.

Private key. The private key consists of three matrices: A ∈ (RqR)
k×ℓ

, G ∈
Sℓ×ℓ
ηG

, and D ∈ Sk×ℓ
ηD

.

During key generation, the matrix A is sampled using a SHAKE-based pseu-
dorandom generator that takes a seed ρ as input. Thus, in fact the matrix A is
not stored, but instead ρ is stored, and A is computed when needed.

The matrices G and D are generated by a function that samples small uni-
form polynomials using a pseudorandom generator. Additionally, key generation
repeats sampling G until it is invertible modulo q.

Public key. The public key consists of two matrices: A, and E ∈ (RqR)
k×ℓ

,
which is given by

E ≡ (A+D)G−1 (mod qRk×ℓ) (1)

Signature generation. A high-level idea of the algorithm to sign a mes-
sage is found in Algorithm 1. Here, the functions G : (RqR)

k → 0, 1256
and H : 0, 1∗ × 0, 1256 → Bℓ

τ are collision-resistant hash functions based
on SHAKE. Algorithm 1 omits two technical details:
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Algorithm 1 EagleSign-V1-Sign(m, (A,G,D))

Require: a message m ∈ {0, 1}∗, and a private key (A,G,D).
Ensure: a valid signature σ = (r, z,w) for m.
1: y1 ← U


Bℓ

t



2: y2 ← U

Sk
ηy2



3: r ← G

A · y1 + y2 (mod qRk)


(∈ {0, 1}256)

4: c ← H(m, r) (∈ Bℓ
τ )

5: z ← G · (y1 + c) (mod qRℓ)
6: w ← y2 −D · (y1 + c) (mod qRk)
7: return (r, z,w)

– The message m is directly hashed with SHAKE256, before being fed to H,
as follows:

m ← SHAKE256(tr∥m)[0 : 384],

where tr ∈ 0, 1256 is in fact part of the public and private key, and ∥
denotes concatenation. One can interpret tr as a salt that is xed per key
pair.

– Line 12–16 of [SHDS23a, Alg. 2] contains an optional check whether the
signature is valid. This condition holds by construction, making the check
unnecessary.

Verication. A signature (r, z,w) is valid for public key (A,E) and message
m, whenever ∥z∥∞ ≤ , ∥w∥∞ ≤ ′, and H(m, r) = H(m, r′) all hold, where

r′ = G

Ez−A · H(m, r) +w (mod qRk)




In order to make sure that generated signatures are valid, the length bounds
, ′ (found in Table 1) are chosen as follows, according to [SHDS23a, p. 13]:

 = ℓ · G · (t+ τ), ′ = y2 + ℓ · D · (t+ τ)

One can see that the output of Algorithm 1 is always a valid signature, even
when performing no operations modulo q, by denition of  and ′.

Note that the verication could have been more strict by demanding r = r′

instead of H(m, r) = H(m, r′). The latter condition allows for a weak forgery:
when an attacker has a signature σ = (r, z,w) for a message m, and has a hash
collision H(m, r) = H(m, r′′), then (r′′, z,w) is a weakly forged signature for m.

2.3 The EagleSign-V2 signature scheme

EagleSign-V2 is based on the EagleSign-V1 scheme, and was announced in [Hou23].
Like EagleSign-V1, the scheme works with the number ring R = Z[X ](Xn+1),
where n is a power of two, and uses R-modules. The parameter sets can be found
in Table 2. Note that the claimed security level of 5++ is not one of the security
requirements dened by NIST’s call [NIST23].
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Table 2. Parameter sets for EagleSign-V2 as taken from [SHDS23b, Table 2].

Claimed security level 2 5 5++

n 1024 2048 1024

q 2021377 33292289 7340033

k 1 1 3

ℓ (length of z) 1 1 2

ηf (smallness of F) 1 1 1

γ1 (smallness of y) 214 216 216

γ2 (high bits) 217 220 220

tD (weight of Di,j) 7 13 3

tg (weight of g) 7 14 16

τ (weight of ci) 16 30 16

Algorithm 2 EagleSign-V2-Sign(m, (A, g,D,F))

Require: a message m ∈ {0, 1}∗, and a private key (A,G,D).
Ensure: a valid signature σ = (r, z) for m.
1: y ← U


Sℓ
γ1



2: p ← (AF−1 +D)y mod qRk

3: r ← G(HighBits(p, 2γ2)) (∈ {0, 1}256)
4: c ← H(m, r) (∈ Bℓ

τ )
5: z ← g · (y + Fc) (mod qRℓ)
6: if ∥z∥∞ > tg(γ1 − ℓτ) then
7: Restart.
8: v ← p+DFc ▷ Note: v = Ez−Ac
9: if ∥v∥∞ ≥ q−1

2
− ℓ2tDτ , or ∥LowBits(v, 2γ2)∥∞ ≥ γ2 − ℓ2tDτ then

10: Restart.
11: return (r, z)

Private key. The private key consists of four matrices: A ∈ (RqR)
k×ℓ

, F ∈
Sℓ×ℓ
ηF

, D ∈ Bk×ℓ
tD and g ∈ Btg . There are two dierences with EagleSign-V1,

namely that the matrix G is now a ring element g ∈ R, and also there is a new
matrix F.

Now, g is sampled using a pseudorandom generator until it is invertible, and
F is sampled until it is invertible modulo q.

Public key. The public key is still (A,E), where now E is given by,

E =

AF−1 +D


g−1 (mod qRk×ℓ)

Signature generation. Similarly to EagleSign-V1, the function G and H are
used within signing. However now G receives as input some high-order bits,
similar to Dilithium. For w ∈ Z, let HighBits(w, 22) be the smallest integer
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w1 ∈ Z such that w − 22w1 ≤ 2, and let us extend this to integer vectors
w coecientwise as well: HighBits(w, 22)i = HighBits(wi, 22). Moreover, let
LowBits(w, 22) = w − 22HighBits(w, 22).

A high-level overview of signing can be found in Algorithm 2. There are
now three possible reasons to restart during signing. While the rst is concerned
about the ℓ∞-norm of z, the other two are there to make sure that

HighBits(Ez−Ac, 22) = HighBits(p, 22),

holds, which will be needed for verifying the correctness of the signature.

Verication. A signature (r, z) is valid for public key (A,E) and message m,
whenever ∥z∥∞ ≤ tg(1 − ℓτ ), and H(m, r) = H(m, r′), where r′ is given by

r′ = G

HighBits


Ez−A · H(m, r) (mod qRk), 22




3 A Known-Message Attack on EagleSign-V1

In this section, we describe a key recovery attack on the signature scheme of
Section 2.2.

Attack strategy. The basic idea of the attack can be described as follows. A
valid EagleSign-V1 signature for a message reveals rather short vectors z ∈ Rℓ

and c ∈ Bℓ
τ such that:

z = G · (y1 + c), (2)

where the matrix G is part of the private key, and y1 is sampled uniformly from
Bℓ

t . The random oracle model ensures that c is sampled uniformly from Bℓ
τ , and

is independent of y1.
Although the original description of the scheme includes a reduction modulo

q in the computation of z, no reduction occurs since all variables in Eq. (2)
have small ℓ∞ norm. In fact, this is necessary to prove correctness of generated
signatures! As a result, Eq. (2) above does hold over the ring R.

Now, with signicant probability τ2n (which is ≈ 19% for the level 3 pa-
rameter set and ≈ 09% for the level 5 parameter set), we have c1,0 = 1, i.e. the
constant coecient of the rst entry of c is 1. Since the expectation values of
all other coecients of c are 0, and E[y1] = 0 holds, the conditional expectation
E[z  c1,0 = 1] is simply given by:

E[z  c1,0 = 1] = G ·

0 + (1, 0,    , 0)

T
(3)

which is exactly G1, the rst column of G. As a result, an attacker can simply
collect many signatures with c1,0 = 1 and average the corresponding values
of z together to recover a close approximation of G1. Other columns Gi can
be recovered similarly by considering signatures with ci,0 = 1 for other indices
1 ≤ i ≤ ℓ instead.
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Note that recovering G is sucient for a full private key recovery: using
Eq. (1) and the public key (A,E), one can compute D by D = E · G − A.
Alternatively, one could also use a similar strategy and analysis on the leakage
from

w = y2 −D · (y1 + c) , (4)

by also ltering on signatures with c1,0 = 1, to recover D. However, we will focus
the analysis on G solely, as this is sucient.

Analysis of the attack. Now, let us determine the expected number S of
signatures needed to recover G1 with the above strategy. Given s signatures

(z(j), c(j))1≤j≤s all having c
(j)
1,0 = 1, the attack guesses the value of G1 by round-

ing z̄ = 1
s

s
j=1 z

(j). It follows from Eq. (2) that:

z̄ =
1

s

s

j=1

G ·

y
(j)
1 + c(j)



= G1 +
1

s

s

j=1

G ·

y
(j)
1 + (c

(j)
1 − 1, c

(j)
2 ,    , c

(j)
ℓ )

T

= G1 +G ·

ȳ1 + (c̄′1, c̄2,    , c̄ℓ)

T
, (5)

where ȳ1 is the mean of the random vectors y
(j)
1 for each of the signature samples

(unknown to the attacker), c̄i is the mean of the i-th entries of the vectors c(j),
and c̄′1 = c̄1 − 1 is the recentered rst entry, taking into account the knowledge

that c
(j)
1,0 = 1 for all j.

Each of the entries of y
(j)
1 is sampled from the uniform distribution on Bt.

Similarly, c
(j)
2 ,    , c

(j)
ℓ are all i.i.d. sampled from the uniform distribution on

Bτ . Since c
(j)
1,0 = 1, we can also see that c

(j)
1 − 1 follows the uniform distribution

on B0
τ−1. Moreover, all of the above ring elements are mutually independent.

Since the previous distributions all have mean zero, the expectation values
of ȳ1, c̄2,    , c̄ℓ and even c̄′1 are all zero. Furthermore, for any w ≥ 1, let Σw

denote the covariance matrix of U(Bw), seen as a distribution over Zn, and let
Σ0

w denote the covariance matrix of U

B0

w


. The central limit theorem ensures

that, as s tends to innity, ȳ1 behaves like the normal distributionN (0, 1
sΣt⊗Iℓ);

c̄i for i ≥ 2 behaves like N (0, 1
sΣτ ); and c̄′1 behaves like N (0, 1

sΣ
0
τ−1).

Lemma 1. The covariance matrix Σw of U(Bw), seen as a distribution over
Zn, is w

n In, and the covariance matrix Σ0
w of U


B0

w


is diag


0, w

n−1 ,    ,
w

n−1


.

Proof. Consider the random vector Y = (Y0,    , Yn−1)
T ∈ Zn uniformly drawn

from Bw. Since Y has zero expectation, we have Σw = E[Y Y T]. Each Yi has
support −1, 0, 1, and since the signs of each Yi are sampled uniformly and
independently, we have Pr[YiYj = 1] = Pr[YiYj = −1] for all i ̸= j. Thus, the
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o-diagonal coecients of Σw, given by E[YiYj ] = Pr[YiYj = 1]−Pr[YiYj = −1],
all vanish.

Moreover, the i-th diagonal coecient of Σw is given by E[Y 2
i ], which is sim-

ply Pr[Yi = ±1], i.e. the probability that coecient Yi is nonzero, or equivalently,
the probability that index i is selected among the w elements of the support of
Y , which happens with probability exactly wn. Thus, Σw = w

n In as required.

The computation Σ0
w follows similarly. 

From Lemma 1, we deduce that ū = ȳ1 + (c̄′1, c̄2,    , c̄ℓ)
T

behaves like
N (0, 1

sΣu), where:

Σu = Σt ⊗ Iℓ + diag(Σ0
τ−1,Στ ,    ,Στ )

= diag
 t

n
,
t

n
+

τ − 1

n− 1
,    ,

t

n
+

τ − 1

n− 1  
n − 1 ntris

,
t+ τ

n
,    ,

t+ τ

n  
n(ℓ − 1) ntris




In particular, we have:

Σu ≺ t+ τ

n
Inℓ

As a result, the error term ē = z̄ −G1 = G · ū behaves like N (0, 1
sΣe), where

Σe is given by,

Σe = GΣuG
T ≺ t+ τ

n
GGT ≺ t+ τ

n
σ2
GInℓ,

where σG denotes the largest singular value of GT. Heuristically ignoring the
inversibility condition on G, it is sampled during key generation as a random
matrix in Znℓ×nℓ with i.i.d. entries having mean 0, variance G(G + 1)3 and
bounded fourth moment. Therefore, Bai–Yin’s law [BY93, Theorem 1] shows
that σ2

G =

4 + o(1)


nℓ · G(G + 1)3. Hence:

Σe ≾ 4ℓ

3
(t+ τ)G(G + 1)

Since, by classical concentration results,3 a spherical Gaussian vector with co-

variance σ2Id has an innity norm of σ


2 + o(1)

log d, we obtain:

∥ē∥∞ 


8ℓ

3s
(t+ τ)G(G + 1) log(nℓ)

Now, in order to successfully recover G1 by rounding z̄, it is required to have
∥ē∥∞ < 12, which is satised when

s  32ℓ

3
(t+ τ)G(G + 1) log(nℓ)

3For example, using [AS64, 7.1.24], it is readily proven for X ∼ N (0, Id) that the
probability of having ∥X∥∞ >

√
2C log d is at most 1dC−1√π log d for any C ≥ 1.
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Table 3. Number of recovered coecients of G1,1 using the basic attack of Section 3
(average over 10 repetitions of the attack).

Number of signatures S Security level 3 Security level 5

250,000 1018.8 965.1

500,000 1023.9 1009.0

750,000 1024.0 1018.3

1,000,000 1024.0 1022.6

1,250,000 1024.0 1023.1

1,500,000 1024.0 1024.0

Furthermore, since we have restricted our attention to signatures having

c
(j)
1,0 = 1, which is satised by a correctly generated signature with probabil-

ity τ2n, obtaining those s samples satisfying the condition requires collecting
a grand total of S (unconditional) signatures, where

S  64nℓ

3τ
(t+ τ)G(G + 1) log(nℓ) (6)

Concretely, the analysis predicts you need to see S ≈ 14 · 106 signatures to
correctly recover G1 for the level 3 parameter set, and S ≈ 38 · 106 signatures
for the level 5 parameter set.

Experimental results. This attack is implemented as code that directly calls
the EagleSign-V1 signature scheme to generate a certain number of signatures,
and uses them to recover the matrix G (or rather, the top left ring element
G1,1 in the case of the level 5 parameter set which has ℓ > 1; recovery of the
other coecients obviously proceeds in the same way). The code can be found
in the le eaglesign ref/test/test attack.c within the publicly accessible
repository

https://github.com/mti/attack_eaglesign.

Experimental results, collected in Table 3, show how many coecients of the
ring element G1,1, out of a total of n = 1024, were recovered on average over 10
runs of the attack. We can see that 500,000 to 750,000 signatures were enough
to consistently recover G1,1 correctly for level 3 parameters, and 1,250,000 to
1,500,000 for level 5 parameters.

This conrms that the analysis above gives the correct order of magnitude
for the number of signatures needed for recovery, but suggests that the precise
estimate is somewhat pessimistic in the attack. This is most likely due to the
fact that we coarsely bound GGT from above by its largest singular value, while
most of its other singular values are closer to the median one, which is smaller
by a factor of around 4. This make our bound on ∥ē∥∞ not tight in most cases.
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Regardless, this demonstrates that EagleSign-V1 is insecure, and can be prac-
tically broken even by a very unoptimized attack (that throws away > 98% of
signature samples to begin with when ltering for the cases when c1,0 = 1).

Flaw in the security proof. The fact that the scheme is vulnerable to the
known message attack described above directly falsies the claim of security
against adaptively chosen message attacks in Theorem 1 of the specication
document [SHDS23a]. Accordingly, the proof of that claim is awed. This can be
seen for example in part B of the proof, where the vector z is simulated as uniform
among vectors of innity norm ≤  (and c as sampled from Bℓ

τ independently
of z), even though it is clear, e.g., from Eq. (3) that its distribution is far from
uniform.

4 Private Key Recovery With Fewer Signatures

The attack in Section 3 only takes advantage of a small fraction of the private key
leakage present in signatures, while discarding over 95% of generated signatures.
In this section, we show that full key recovery is in fact possible with far fewer
signatures by properly taking advantage of the available leakage.

Description of the improved attack. The basic idea is as follows: by exploit-
ing the structure of the number ring R, we can nd more leakage from Eq. (2).
Once we have a valid signature for some message, we obtain some (z, c) such
that Eq. (2) holds for some unknown y1 ∼ U


Bℓ

t


. It is easy to see that for any

0 ≤ i < 2n also

Xiz = G ·

Xiy1 +Xic


,

holds where the unknown Xiy1 also follows the uniform distribution on Bℓ
t ,

because multiplication by Xi is bijective on R: its inverse is r → X2n−ir.
Since the attack from Section 3 merely requires pairs (z, c) with c1,0 = 1, if

we manage to nd some i ∈ 0, 1,    , 2n − 1 such that (Xic1)0 = 1 holds, we
can use (Xiz, Xic) as a sample for that attack. In fact any c ∈ Bℓ

τ gives exactly
τ many options for i such that this condition is satised. To see this, let us write
c1 =

τ
j=1 jX

ij with 0 ≤ i1 < i2 < · · · < iτ < n and j ∈ −1, 1 (note the
signs come from Xn = −1). Then for all j = 1,    , τ , the constant coecient
of jX

−ijc1 is indeed 1. Thus, we can indeed use the attack from Section 3 to
learn G1, by providing it the samples (jX

−ijz, jX
−ijc)1≤j≤τ when seeing a

signature (z, c), with c1 =
τ

j=1 jX
ij as above.

More explicitly, given a list of signatures (z(j), c(j))1≤j≤S , the attack provides
a guess for G1 that is given by rounding the following quantity:

1

τS

S

j=1

τ

k=1

jkX
−ijkz(j) =

1

τS

S

j=1

z(j) · (c(j)1 )
∗
,
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where jk, ijk satisfy (c
(j)
1 )

∗
=
τ

k=1 jkX
ijk . Indeed, using Eq. (2), it follows

that
E[z · c∗] = G · E[y1c

∗ + cc∗] = G · E[cc∗],
holds since E[y1c

∗] = E[y1]E[c∗] = 0.

Lemma 2. Given a random variable Y ∼ U(Bw), we have E[Y Y ∗] = w, as an

element of the ring R (or equivalently E[Y Y ∗] = (w, 0,    , 0)
T

regarded as a
vector in Zn).

Moreover, for c ∼ U

Bℓ

w


, we have E[cc∗] = wIℓ ∈ Rℓ×ℓ.

Proof. For Y ∼ U(Bw), we can write over the ring R:

E[Y Y ∗] =
n−1

i,j=0

E[YiYj ]X
i−j =

n−1

i,j=0

(Σw)i,jX
i−j ,

so it follows from Lemma 1 that E[Y Y ∗] =
n−1

i,j=0
w
n ijX

i−j = w, as required.

Focusing now on the matrix E[cc∗] ∈ Rℓ×ℓ, its o-diagonal entries are of
the form E[Y Z∗] for independent Y, Z ∼ U(Bw), and hence they vanish since
E[Y ] = 0. The diagonal entries, on the other hand, are precisely of the form
E[Y Y ∗] with Y ∼ U(Bw), which equals w by the above. 

Using Lemma 2, we get 1
τ E[z · c∗] = G. Therefore, when having enough

signatures (z(j), c(j))1≤j≤S , we can correctly guess G by rounding the following
coecientwise:

1

τ
z · c∗ =

1

τS

S

j=1

z(j) · (c(j))∗

Analysis of the improved attack. Intuitively, compared to Eq. (6) one could
expect the improved attack requires a factor 2n less signatures to work, as each
signature now provides τ samples of the form Eq. (5) compared to the τ2n (on
average) from Section 3. Namely, a naive estimate is that the improved attack
succesfully recovers G after seeing

S  32ℓ

3τ
(t+ τ)G(G + 1) log(nℓ),

signatures, which translates to S ≈ 700 and S ≈ 1900 signatures for the level 3
and level 5 parameter sets respectively.

This is not very rigorous, however, because the τ samples coming from a
single signature are not in fact independent, which violates the independence
hypothesis of standard forms of the central limit theorem. One can obtain a more
rigorous analysis by either relying on variants of the CLT that hold under weak
dependence (e.g., CLT variants with -mixing, with hypotheses that easily hold
in our case), or simply by considering each signature as a sample and analyzing
its behavior under standard CLT. This can be done for example based on the
following somewhat tedious result.



14

Lemma 3. (a) The covariance matrix Σw,w′ of uv∗ for independent u ∼ U(Bw)
and v ∼ U(Bw′) (with uv∗ seen as vector in Zn) is given by:

Σw,w′ =
ww′

n
In

(b) The covariance matrix Σw of vv∗ for v ∼ U(Bw) (with vv∗ seen as a vector
in Zn) is given by, for all 0 ≤ i, j ≤ n− 1:

(Σw)ij =





w(w−1)
n−1 if i = j and i ̸= 0, n

2 ;

−w(w−1)
n−1 if i+ j = n and i ̸= 0, n

2 ;

0 otherwise.

Moreover, the eigenvalues of the symmetric matrix Σ are 0 with multiplicity
n
2 +1, and 2w(w− 1)(n− 1) with multiplicity n

2 − 1. In particular, we have

Σw ≺ 2w(w − 1)

n− 1
In

Proof. See Appendix A. 

Dene for each signature the matrix U(j) =

y
(j)
1 + c(j)


· (c(j))∗ − τIℓ, and

let U = 1
S


j U

(j). The error term is given by

1

τ
zc∗ −G =

1

τ
GU (7)

Now, each U(j) has zero expected value, and in its expression, the diagonal
entries of c(j)(c(j))

∗ − τIℓ have covariance Στ by Lemma 3 above. The o-
diagonal entries, on the other hand, have the form uv∗ for independent u, v ∼
U(Bτ ), so their covariance is Στ,τ = τ2

n In. Similarly, all entries of y
(j)
1 · (c(j))∗

have covariance Σt,τ = tτ
n In.

It follows that the diagonal (resp., o-diagonal) entries of U behave like
Gaussian vectors ∼ N (0, 1

SΣia) (resp., N (0, 1
SΣo-ia)) with:

Σia = Σt,τ + Στ ≺
 tτ
n

+
2τ (τ − 1)

n− 1


In ≺ τ(t+ 2τ )

n
In

Σo-ia = Σt,τ + Στ,τ =
 tτ
n

+
τ2

n


In ≺ τ(t+ 2τ )

n
In

Therefore, the error term in Eq. (7) has entries behaving like Gaussian vectors
N (0, 1

τ2SGΣGT) with Σ = Σia on the diagonal of Ū and Σ = Σo-ia o
it. In all cases, we get a bound ≺ t+2τ

nτS σ2
GIn on the covariance, which allows to

conclude similarly as before. The condition on S for full recovery (taking into
account that G has nℓ2 coecients) now becomes:

S  32ℓ

3τ
(t+ 2τ )G(G + 1) log(nℓ2),

which is almost the same as the naive estimate, fortunately.
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Table 4. Probability that the attack of Section 4 recovers G and D successfully using
the leakage in respectively Eq. (2) and Eq. (4), based on 1000 independent repetitions.
Note: if G is successfully recovered, one can also successfully recover D by using Eq. (1)
instead of the leakage in Eq. (4).

Number of signatures S
Security level 3 Security level 5

G D G D

300 1000% 00% 02% 00%

500 1000% 00% 816% 00%

2000 1000% 693% 1000% 977%

Experimental results. Table 4 contains the number of signatures that was
required to perform a complete private key recovery attack. The key recovery
attack can be found in the le code/key recovery.c within the publicly acces-
sible repository

https://github.com/ludopulles/EagleHasFlown.

One private key recovery attack with 2000 signatures runs in 2 seconds on a
single core of an Intel i5-4590 CPU.

Note that Table 4 shows that it is more ecient to recover D using Eq. (1)
with the recovered G, rather than performing a similar attack on the leakage of
D in Eq. (4) directly.

Although Section 3 already shows that EagleSign-V1 is not secure, we have
shown that there is a very practical and ecient key recovery attack, requiring
only 500 messages and signatures, from which we can conclude that the scheme
needs to be altered signicantly to have hope of security.

5 A Known-Message Attack on EagleSign-V2

We now show how the same attack strategy from Section 4 basically extends to
EagleSign-V2 [SHDS23b], a scheme introduced as a xed variant of EagleSign-
V1 in response to the previous attack. EagleSign-V2 is claimed to satisfy the
zero-knowledge property that signatures are independent of the secret key, but
actually does not.

Attack strategy. A rst observation is that, like in EagleSign-V1, all the ring
elements in the expression for z = g · (y + Fc) are small, and therefore the
equality actually holds over the ring (there is no modular reduction).

The rejection sampling step (Line 6 of Algorithm 2) introduced by the sub-
mitters to make their scheme zero-knowledge rejects vectors z such that ∥z∥∞ >
tg(1 − ℓτ ), where tg is the ℓ1-norm of ternary ring element g, 1 bounds ∥y∥∞
and τ is the ℓ1-norm of ternary element c. But it is easy to see that this rejection
condition is essentially never triggered for the proposed parameters!
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This is because the coecients of gy (which are much larger than those
of gFc, and hence dominate in z) are each distributed as a sum of tg indepen-
dent integers sampled from U([−1, 1]), so they are sub-Gaussian with standard
deviation roughly 1


tg3. To trigger the bound, they need to reach > 45 stan-

dard deviations for level 2 parameters and > 64 standard deviations for level 5
parameters. These events are too rare to measurably aect the distribution of
elements z, and therefore, from a statistical standpoint, everything happens as
if the rejection sampling step was removed entirely.

There is another restart condition in the signing generation Algorithm 2:
namely Line 9, which is meant for correctness rather than security. This step
can be triggered with noticeable probability, but again should not aect the
distribution of z. This is due to the fact that v = Ez − Ac mod qRk behaves
essentially as the image of (z, c) under a hash function, and hence does not
meaningfully depend on z.

Thus, for statistical purposes, EagleSign-V2 signature elements z are dis-
tributed as samples of the form g · (y + Fc) for independent y ∼ U


Sℓ
γ1


and

c ∼ U

Bℓ

τ


.

Universal forgery attack. Therefore, we can apply the same strategy as in Sec-
tion 4. We collect many signatures, and recover by averaging the expectation of
z · c∗, which in this case is given by:

E[zc∗] = g · E[yc∗ + Fcc∗] = 0 + gF · E[cc∗] = τ · gF,

by Lemma 2.

Now, this recovered matrix gF is already sucient to forge signatures on
arbitrary messages. Indeed, one can for example sign with randomness y = 0,
which amounts to forge the signature (r, z) =


G(0) , gF · H(m, r)


for message

m. Because

Ez−A · H(m, r) = DF · H(m, r)

is short, its high bits are zero, which makes this signature valid.

More generally, suppose we are given a signature (r0, z0) on a message m0, so
that z0 = g ·(y0+Fc0) for c0 = H(m0, r0) and some unknown randomness vector
y0. Now with good probability, we can use the knowledge of gF to forge a valid
signature for any arbitrary message m ̸= m0 with the same implied randomness
y0 by setting:

r = r0,

c = H(m, r) = H(m, r0) ,

z = z0 + gF · (c− c0) = g · (y0 + Fc)

Then (r, z) will be a valid signature for m if it implicitly passes the correctness
check of Line 9 of Algorithm 2, which happens with good probability. Thus, we
already get a universal forgery attack.
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Full key recovery. It is possible to turn the previous attack into a full (equivalent)
key recovery attack by recovering the ring element g using algebraic techniques.
Clearly, once g is recovered, one also obtains F = g−1 ·(gF) and D = gE−AF−1.

We propose to recover g (up to some power of X) as follows. This approach,
while not asymptotically ecient, is practical at least for level 2 parameters, and
easily invalidates the security claims of all parameter sets.

One can rst observe that the ideal gR ⊂ R is easy to recover from a few
signature elements z(j) = g ·(y(j)+Fc(j)) = g ·u(j). Indeed, all the entries of each
z(j) are in the ideal, and they generate it as soon as the entries of all the u(j)

are setwise coprime in R. Let’s say we have s signatures, and hence ℓs entries in
total. Since these elements are suciently random (in the sense that they are not
expected to satisfy any congruence condition with unusually high or unusually
low probability), the setwise coprimality condition heuristically happens with
probability 1K(ℓs) where K is the Dedekind zeta function of the cyclotomic
eld K which is the fraction eld of R.4 Note that 1K(2) ≈ 34 and K(t) very
quickly converges to 1 as t increases, so just a handful of signatures are sucient
to exactly recover gR with high probability.

It is a classical fact about circular rotations of a sparse vector, that there
exists a root of unity ω = ±Xr ∈ R such that ωg has constant coecient 1, and
such that among the tg nonzero coecients of ωg, exactly tg2 occur in the
rst n2 coecients. Thus, by replacing g by ωg we can assume, without loss of
generality, that g is of the form 1+g1+g2 where g1, g2 ∈ R are ternary, of ℓ1-norm
t1 = tg2 − 1 and t2 = tg2 respectively, and with support 1,    , n2− 1
and n2,    , n− 1 respectively.

We can thus recover g by a meet-in-the-middle attack: form a sorted list of the
residues5 mod gR of the 2t1


n2−1

t1


candidates for g1, and then check by binary

search for each of the 2t2

n2
t2


candidates for g2 if −1 − g2 mod gR matches

on the candidates for g1. For matching pairs (g1, g2), we can easily check by a
norm computation if 1 + g1 + g2 generates the ideal gR. The overall algorithm

runs in time and space complexity O

2t2

n2
t2


, and by construction outputs a

generator g′ of gR, which is thus necessarily of the form g′ = νg for some unit
ν of R, and is also in Btg . Since νg for a unit which is not a root of unity is
overwhelmingly likely to not be ternary or have Hamming weight tg, the output
should be g up to multiplication by a root of unity. This is enough to obtain an
equivalent key to the actual signing key.

The complexity is around 2274 for the level 2 parameter set and 2647 for the
level 5 parameter set. The former is practical, and while the latter is probably
dicult to mount in practice, it is still far below the 256-bit security level claimed
by the authors.

4This follows easily from the Euler product expansion of ζK .
5Since we represent the ideal gR by its Hermite normal form, RgR is simply

described as a product Zd1Z × · · · × ZdrZ where


di is the algebraic norm of g.
Thus, the reduction mod gR of an element of R is concretely represented by the list of
residues modulo each of the di’s in that decomposition.
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Analysis of the forgery attack. The analysis of the statistical attack is
essentially the same as in Section 4. Given S signature samples (z(j), c(j)), we

dene U(j) = y
(j)
1 ·(c(j))∗+F


c(j)


c(j)

∗−τIℓ


, and let U = 1

S


j U

(j). Similar

to Eq. (7), we have:
1

τ
zc∗ − gF =

1

τ
gU (8)

Now, each U(j) has zero expected value, and the same reasoning as before shows
that its diagonal (resp., o-diagonal) entries of U behave like Gaussian vectors
∼ N (0, 1

SΣia) (resp., N (0, 1
SΣo-ia)) with:

Σia = Σ′
γ1,τ + FΣτF

T ≺ Σ′
γ1,τ +

2τ2

n
σ2
FIn

Σo-ia = Σ′
γ1,τ + FΣτ,τF

T ≺ Σ′
γ1,τ +

τ2

n
σ2
FIn,

where Σ and Σ are dened as before, σ2
F is the top singular value of F, and

Σ′
β,w is the covariance matrix of a product uv∗ with independent u ∼ U(Sβ)

and v ∼ U(Bw). The proof of Lemma 3(a) is readily adapted to show that:

Σ′
β,w =

w( + 1)

3
In

and Bai–Yin’s law shows again that σ2
F  4nℓ ·f (f +1)3. As before, the error

term in Eq. (8) has entries behaving like Gaussian vectors N (0, 1
τ2SMgΣMT

g )

with Mg the matrix corresponding to multiplication by g on vectors of Rℓ; and
Σ = Σia on the diagonal of Ū, resp. Σ = Σo-ia o it. In all cases, we get
a bound ≺ B

τSσ
2
Mg

In on the covariance, where σ2
Mg

is the top singular value of
Mg and:

B =
1(1 + 1)

3
+

2τ

n
σ2
F  1(1 + 1) + 8τℓ · f (f + 1)

3
≈ 2

1

3


On the other hand, Mg = diag(g,    , g) when regarded as a matrix in Rℓ×ℓ, so
its top singular value is the top singular value of multiplication by g, seen as
an operator on Zn, which is the maximum of the squared absolute values of its
Fourier coecients. Since g is ternary of Hamming weight tg, this is bounded
by t2g. Hence the bound on the covariance of the coecients in Eq. (8) becomes
B · t2g(τS). Therefore, we expect to fully recover gF with S signatures when:

S 
4t2g

2
1

3τ
log(nℓ2)

This suggests that S  8 · 109 (around 232) signatures are sucient to fully
recover gF for the level 2 parameters, and S  25 · 1011 (around 238) for the
level 5 parameters. However, this is an even more pessimistic analysis than the
one of Section 3, since most singular values of Mg are closer to tg than t2g (so
we may be overestimating S by a factor close to tg instead of ≈ 4 previously).
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Improvement if the algebraic attack is carried out rst. In case we manage to re-
cover the secret key element g rst using the algebraic techniques of the previous
paragraph Full key recovery, we can recover F using the same approach with
substantially fewer signatures. Indeed, we can then take 1τ times the mean of

the samples g−1 · z(j)

c(j)

∗
, and the error term becomes:

1

τ
g−1 · zc∗ − F =

1

τ
U

which is bounded in the same way as before, except that there is no multiplication
by Mg. Therefore, we expect to fully recover F with S signatures using this
approach when:

S  42
1

3τ
log(nℓ2)

This suggests that S  16 · 108 (around 227) signatures are sucient to fully
recover F for the level 2 parameters, and S  15 · 109 (around 230) for the level
5 parameters. This analysis does not involve coarse overestimates of singular
values, so it should be fairly tight.

Experimental results. We have implemented the attack, which can be found
in the le code/key recovery.c within the publicly accessible repository

https://github.com/mti/Eagle2HasFlown.

Since the signature scheme is relatively slow, the attack is parallelized using
OpenMP and ran on a relatively large workstation with a 48-core/96-thread
Xeon Platinum CPU.

For the level 2 parameters, we ran the attack on 10 sets of S = 3 · 109 signa-
tures, and achieved full recovery of gF in all cases. On our workstation, each set
takes just above 18 hours on the wall clock, dominated by the cost of generating
the required signatures. The behavior of the key recovery is displayed on the

05 1 15 2 25 3

·109

1,000

1,010

1,020

full recovery

Mean recovered coes

Theoretical estimate

Recovered coes range

Fig. 1. Attack on 10 instances of EagleSign-V2 level 2.
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graph of Fig. 1: the top and bottom boundaries of the gray region represent the
minimum and maximum number of coecients recovered among the 10 experi-
ments for the number of signatures given on the x-axis, with the mean shown in
the thick continuous line in the middle. The dashed line represents the expected
number of recovered coecients for the given number of signatures, assuming
that the error term is Gaussian with variance

Btg
τS (as we expect heuristically),

instead of the more pessimistic
Bt2g
τS . As can be seen on the graph, the heuristic

estimate models the actual behavior of the attack very closely.

Moreover, in the le code/key recoveryF.c within the same repository, we
have implemented a variant of the attack which assumes that g itself has already
been recovered using the algebraic techniques from the paragraph Full key
recovery, which in this case would be less expensive than simply generating the
signature batch for the statistical attack. It then applies the statistical attack
on the values

g−1 · zc∗ = (y + Fc) c∗,

in order to recover F. In the analysis, this improves the attack by a factor tg.

For the level 2 parameters, we ran the attack on 10 sets of S = 4 · 108
signatures, and achieved full recovery of F in all cases. On our workstation, each
set takes about 160 minutes on the wall clock, again dominated by the cost of
generating the required signatures. The behavior of the key recovery is displayed
on the graph of Fig. 2 in the same format as above. Again, our estimate models
the actual behavior of the attack very closely.

Flaw in the security proof. One aw in the security proof of EagleSign-
V2 occurs in [SHDS23b, §3.2], which incorrectly claims that for all choices of
(z, c) satisfying the rejection condition, the conditional probability Pr


gy =

z − gFc  c

is the same. However, this is clearly false, because the distribution

of gy over the interval [−tg1, tg1] is far from uniform. Namely, its coecients

05 1 15 2 25 3 35 4

·108

1,000

1,010

1,020

full recovery

Mean recovered coes

Theoretical estimate

Recovered coes range

Fig. 2. Attack on 10 instances of EagleSign-V2 level 2, after prior recovery of g.
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concentrate around 0, so that, e.g., vectors z with coecients close to the bound
occur with much lower probability than smaller ones.

6 Conclusion

In Section 3 and Section 4 we have demonstrated that the scheme EagleSign-V1
suers from key leakage, by practically providing an attack that performs a full
key recovery attack, requiring just a few hundred signatures. We also identied
a aw in the provided security proof.

Moreover, the subsequent EagleSign-V2 proposal, aimed at xing these is-
sues, fails to do so: indeed, we have shown in Section 5 that a largely similar vul-
nerability persists in the new scheme. Although exploiting it in practice requires
several orders of magnitude more signatures that in EagleSign-V1, the scheme
can be broken with far fewer than the 264 signatures required by NIST [NIST23,
4.B.2]. We again also show that the security proof is incorrect.

These ndings underscore the need for sound security analysis and reliance
on serious frameworks, such as Lyubashevsky’s Fiat–Shamir with aborts.
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Appendix

A Proof of Lemma 3

Part (a). Since uv∗ has zero expected value, the covariance matrix Σw,w′ has
simply the value E[(uv∗)i(uv∗)j ] at entry (i, j). Now with the convention that

uk+n := −uk for 0 ≤ k < n, one can show (uv∗)i =
n

k=0 uk+ivk Now by
independence of u and v, we have:

E

uv∗


i


uv∗


j


=

n−1

k,ℓ=0

E[uk+iuℓ+j ]·E[vkvℓ] =
n−1

k,ℓ=0

w

n
k+i,ℓ+j ·

w′

n
kℓ =

ww′

n2
·nij ,

which proves part (a).

Part (b). By Lemma 2, we have E[vv∗] = (w, 0,    , 0)
T
as an element of R.

By writing M = E[(vv∗)(vv∗)T], we have

Σw = E[(vv∗)(vv∗)T]− E[vv∗]E[vv∗]T = M− diag(w2, 0,    , 0),

so it suces to compute M.
First, let us compute M0j . For any v ∈ Bw, we have (vv∗)0 = ∥v∥22 = w so

M0j = w · E[(vv∗)j ] = w20,j by Lemma 2.

Note that for any v ∈ Bw, we have vv
∗ = (vv∗)∗ so (vv∗)n2 = 0 and (vv∗)i =

−(vv∗)n−i holds for 1 ≤ i < n, which implies Mi,n2 = 0 and Mn−i,j = −Mi,j

for 1 ≤ i < n. Because M is a symmetric matrix, to compute Σw it suces to
compute

Mij = E[(vv∗)i(vv
∗)j ] =

n−1

k,ℓ=0

E[vkvk+ivℓvℓ+j ],

for all 0 ≤ i ≤ j < n2.
For the other Mij with 1 ≤ i ≤ j < n2, note when one of k, k + i, ℓ, ℓ+ j

is dierent from the other three (modulo n), then E[vkvk+ivℓvℓ+j ] = 0. For
example, if k ̸∈ k + i, ℓ, ℓ+ j, then Pr[vkvk+ivℓvℓ+j = 1] = Pr[vkvk+ivℓvℓ+j =
−1] by the independence of the choices of the signs, similar to the proof of
Lemma 1.

Now let us suppose E[vkvk+ivℓvℓ+j ] ̸= 0 for some 1 ≤ i ≤ j < n2 and
0 ≤ k, ℓ < n. This necessarily means that either k = ℓ or k ≡ ℓ+j (mod n) holds.
In this second case k ≡ ℓ+ j, then we also need k+ i ∈ k, ℓ, ℓ+ j = k, k− j.
k + i = k cannot hold since i ̸= 0, and k + i ≡ k − j (mod n) cannot hold
because 0 < i + j < n. Therefore, we necessarily have k = ℓ. Additionally
k + i ∈ k, ℓ, ℓ + j = k, k + j is required, which must mean k + i = k + j,
or equivalently i = j. Hence, Mij vanishes for all 1 ≤ i < j < n2, while
Mii =


k E[v2k+iv

2
k] for 1 ≤ i < n2.
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Observe that E[v2kv2k+i] equals the probability that both vk and vk+i are
nonzero, which happens if and only if k, k + i is a subset of the support of v.
This happens with probability exactly:

E[v2kv2k+i] =


n−2
w−2



n
w

 =
(n− 2)!w!(n− w)!

(w − 2)!(n− w)!n!
=

w(w − 1)

n(n− 1)


By summing over k, we obtain Mii = w(w − 1)(n− 1) for 1 ≤ i < n2.

This all gives the required form for Σw, which can be written as Σw =
w(w−1)
n−1 ·N, where

N =




0 0 · · · 0
0 1 · · · −1

    


1 0 −1
 0 0 0

−1 0 1

0  
   

0 −1 · · · 1






To conclude, we simply need to compute the eigenvalues of Σ, which amounts
to nding the eigenvalues of N. Remark now that N is isometrically conjugate
(equal up to a permutation of the rows and columns) to diag(A,B,    ,B), where

A =


0 0
0 0


, B =


1 −1
−1 1




The eigenvalues of A and B are 0, 0 and 0, 2 respectively with multiplicities,
which completes the proof.


