
Balancing Between Time Budgets and Costs in
Surrogate-Assisted Evolutionary Algorithms

Cedric J. Rodriguez1 , Peter A.N. Bosman2 , and Tanja Alderliesten1

Leiden University Medical Center, 2300 RC Leiden, The Netherlands
{c.j.rodriguez,t.alderliesten}@lumc.nl

Centrum Wiskunde & Informatica, 1090 GB Amsterdam, The Netherlands
peter.bosman@cwi.nl

Abstract. For many real-world multi-objective optimisation problems,
function evaluations are computationally expensive, resulting in a lim-
ited budget of function evaluations that can be performed in practice. To
tackle such expensive problems, multi-objective surrogate-assisted evo-
lutionary algorithms (SAEAs) have been introduced. Often, the perfor-
mance of these EAs is measured after a fixed number of function eval-
uations (typically several hundreds) and complex surrogate models are
found to be the best to use. However, when selecting an SAEA for a real-
world problem, the surrogate building time, surrogate evaluation time,
function evaluation time, and available optimisation time budget should
be considered simultaneously. To gain insight into the performance of
various surrogate models under different conditions, we evaluate an EA
with and without four surrogate models (both complex and simple) for a
range of optimisation time budgets and function evaluation times while
considering the surrogate building and surrogate evaluation times. We
use 55 bbob-biobj benchmark problems as well as a real-world problem
where the fitness function involves a biomechanical simulation. Our re-
sults, on both types of problems, indicate that a larger hypervolume can
be obtained with SAEAs when a function evaluation takes longer than
0.384 seconds (on the hardware we used). While we confirm that state-
of-the-art complex surrogate models are mostly the best choice if up to
several hundred function evaluations can be performed, we also observe
that simple surrogate models can still outperform non-surrogate-assisted
EAs if several thousand function evaluations can be performed.

Keywords: Expensive optimisation · Surrogate-Assisted Evolutionary
Algorithms · Real-world problems · Biomechanical simulations.

1 Introduction

Function evaluations of real-world multi-objective (MO) optimisation problems
are often computationally expensive, costing multiple seconds to several hours.
While evolutionary algorithms (EAs) are known to be effective at optimizing MO
problems, they typically require well over a hundred thousand function evalu-
ations to get (near-)optimal solutions (for non-trivial problems). This is not

https://orcid.org/0000-0002-6136-1438
https://orcid.org/0000-0002-4186-6666
https://orcid.org/0000-0003-4261-7511


2 C.J. Rodriguez et al.

feasible for many expensive real-world problems. For this reason, MO surrogate-
assisted EAs (SAEAs) have been introduced [20] in which many of the expensive-
to-evaluate objective functions are replaced with quick-to-evaluate models (sur-
rogates). The surrogate is typically built on all expensive function evaluations
performed so far and is continuously updated during optimisation.

MO SAEAs, such as K-RVEA [10], AB-SAEA [35], CSEA [25], MOEA/D-
EGO [39], or ADSAPSO [24], are often evaluated on DTLZ [13] benchmark
problems with a fixed function evaluation budget (typically a few hundred). The
efficacy of these SAEAs in scenarios that permit a “medium” budget of thou-
sands of function evaluations has not been thoroughly investigated. Moreover,
the time required for building and evaluating surrogate models is often not con-
sidered. This places non-surrogate-assisted EAs increasingly at a disadvantage as
the expensiveness of function evaluations decreases, making it hard to assess the
value of a surrogate model. For real-world problems, where optimisation time is
frequently a limiting factor, it is crucial to assess surrogate models across various
total optimisation time budgets instead of solely based on function evaluations.

SAEAs have been used for various real-world problems [19], e.g., energy-
efficient design [6, 8, 14, 23, 33, 36, 38], motor manufacturing [29, 31], ship de-
sign [1, 17], automobile design [2, 30, 34], satellite design [28], antenna design
[21, 37, 41], and energy and power [16]. In these works, total optimisation time
is often disregarded as comparisons are performed at a fixed number of function
evaluations or generations, possibly overestimating the general practical usabil-
ity of SAEAs compared to non-surrogate-assisted EAs. Some works do provide
the total optimisation time of different algorithms [23,28,36] and others do con-
sider different optimisation time budgets [37]. No previous work has, however,
varied both the optimisation time budget and the function evaluation time to
systematically evaluate the performance of SAEAs for real-world problems.

We therefore emphasize comparing surrogate models under different total
optimisation time budgets, following the strategy in [42], where surrogates based
on Gaussian processes and polynomial regression were compared across varied
time budgets. This however concerned single-objective optimisation, whereas we
focus on MO optimisation which changes the balance between optimisation time
and (surrogate) evaluation time budgets. By varying both the total optimisation
time and the function evaluation time, we aim to cover the full spectrum of
scenarios encountered in real-world applications, offering a more comprehensive
evaluation of MO SAEAs so as to ultimately consider the following question:
Given a spectrum of function evaluation times and optimisation time budgets,
should an MO SAEA be considered and if yes, what type of surrogate model
should be used?

The remainder of this paper is organized as follows: the MO SAEA and the
surrogate models considered are described in Section 2. Our methodology and
experimental setup are described in sections 3 and 4, respectively. In Section 5,
the results on the benchmark problems are presented. In the sections 6 and 7,
we apply the methodology to a real-world application. Finally, we present our
conclusions in Section 8.



Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 3

2 Background

2.1 MO SAEA

The MO SAEA that we consider is outlined in Algorithm 1. This algorithm
is similar to [27] where each objective is modelled by a separate surrogate. In
the initialization phase, a set of solutions is sampled using Latin Hypercube
Sampling (LHS). These solutions are then evaluated using the expensive (true)
function, and are subsequently used to build an initial surrogate model. The gen-
erational process can be decomposed into an inner cycle and an outer cycle. In
the inner cycle, a population is initialized that contains all solutions previously
evaluated with the true function. Selection and variation operators are applied,
and offspring solutions are evaluated using the surrogate model instead of the
true function. When the maximum number of surrogate evaluations for an inner
cycle is reached, the inner cycle is terminated. All surrogate-evaluated solutions
are then considered in the outer cycle as potential candidate solutions for evalu-
ation with the true function. The most promising solutions are then selected as
described in Section 4.2 and evaluated using the true function. Subsequently, a
surrogate model is rebuilt based on all true-evaluated solutions so far, and the
next iteration of the inner cycle commences.

Algorithm 1 MO SAEA

Input: N = Number of initial solutions; FE true
max = maximum number of true

function evaluations; FE surrogate
max = maximum number of surrogate

evaluations in each inner cycle; µ = number of new selected solutions
in the outer cycle

Output: A = Archive of all true evaluated solutions

1: Initialize population P of size N using random sampling
2: Evaluate all solutions in P using the true function
3: Initialize archive A of all true evaluated solutions with all solutions in P
4: Set number of true function evaluations FE true to N
5: while FE true < FE true

max do ▷ Outer Cycle
6: Build surrogate model M based on A
7: Continue to optimize P using surrogate ▷ Inner Cycle

model M in EA with FE surrogate
max

8: Select µ solutions from all surrogate evaluated solutions
9: Evaluate µ selected solutions with true function
10: FE true = FE true + µ
11: Add true evaluated solutions to archive A
12: end while
13: Return A

2.2 Surrogates

We consider two commonly adopted surrogates of varying complexity as well as
two surrogates that are not considered often, but are of very low complexity.



4 C.J. Rodriguez et al.

Gaussian processes The most popular surrogate, and often considered to be
state-of-the-art for expensive optimisation, is Gaussian process regression (e.g.,
Kriging, also much used in Bayesian optimisation) [35]. It is defined as follows:

ŷkriging(x) = � + rT (x)R�1(y � F (�; x)�) (1)

where � are the coefficients, R is the correlation matrix between all the training
samples, rT (x) represents the correlation vector between the solution x and the
training samples, y represents the fitness values of the training set of solutions,
and F (�; x) is the regression model. [10] This surrogate model requires maxi-
mizing a likelihood function for the hyperparameters which is computationally
expensive.

Radial basis functions This surrogate is a weighted aggregation of basis func-
tions 	(�):

ŷrbf (x) =

n∑
i=1

wi	i;j (2)

In this paper, we utilize Gaussian radial basis functions, where the centre
of each Gaussian corresponds to each solution that the surrogate model is built
upon. The influence of each basis function is calculated using the squared Eu-

clidean distance from the point being evaluated, i.e., 	i;j = e�d2i,j where di;j
represents the Euclidean distance between the i-th and j-th solutions, and 
is a scalar that determines the spread of the basis functions. The weights are
determined through generalized linear regression, which involves computing the
pseudo-inverse of the 	 matrix. [7] This is much faster than what is needed to
build the Kriging model.

K-nearest neighbours linear regression We also consider a simpler surro-
gate that leverages linear regression. The local structure of the problem land-
scape is however captured by using only the k-nearest neighbours (knn) of the
solution of interest.

ŷlr-knn(x) = mode fyi j (xi; yi) 2 Nearestk(x;D)g (3)

where D is the training dataset consisting of pairs (xi; yi), where xi are the de-
cision vectors and yi are the fitness values. The function Nearestk(x;D) returns
the decision vectors and the fitness values of k-nearest neighbours using Eu-
clidean distance in the decision space of x in D. The mode function determines
the desired interpolation function between these neighbours. This model, we use
linear regression as the interpolation function defined as:

ŷlr-knn(x) = �0 +

D∑
q=1

�qxq (4)



Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 5

where �0 is the intercept, �q are the coefficients (slopes) in each problem dimen-
sion, D is the number of problem dimensions, and xq are the decision variables.

Nearest neighbour Finally, we also consider one of the simplest surrogates -
solely considering the nearest neighbour. This surrogate model is defined as:

ŷnn(x) = Nearest(x;D) (5)

where D is the training dataset and the function Nearest(x;D) returns the fitness
of the nearest neighbour of x in D in terms of Euclidean distance in decision
space.

2.3 Reference Vector Guided EA

The baseline MOEA that we use in this work, is a Reference Vector Guided
Evolutionary Algorithm (RVEA) [9]. In RVEA, offspring solutions are generated
using simulated binary crossover [11] and polynomial mutation, comparable to
what is used in other MOEAs like NSGA-III [12]. The selection of the parent
population for the subsequent generation of offspring, is performed using a tech-
nique known as angle penalized distance, which is guided by reference vectors.
RVEA is often used within a surrogate-assisted approach, including some state-
of-the-art expensive optimisation approaches for MO optimisation [10,35], which
is why we consider this EA here as well.

2.4 MAMaLGaM

For the real-world application, we additionally consider an estimation-of-distri-
bution algorithm (EDA), in particular iMAMaLGaM-X with a multivariate joint
Gaussian distribution [4]. In part, this is because an EDA can be considered a
different type of model-based EA, but also, this algorithm was previously used to
optimize a simpler version of the real-world problem [26] that we also consider in
this work. In iMAMaLGaM-X, solutions are selected from the parent population
and elitist archive, and are organized into a user-defined number of clusters (K).
A Gaussian distribution is estimated and adaptively scaled for each cluster, from
which new offspring solutions are sampled. For more details, see [4].

3 Methodology

To get insights into the impact of the computational expensiveness of the true
fitness function as well as the computational expensiveness associated with the
surrogate model, we run EAs and SAEAs using benchmark problems. For bench-
mark problems, the true function evaluation time is in the order of milliseconds
and is thus negligible. We use this fact to subsequently estimate the time an al-
gorithm would have taken if the true fitness function had been more expensive.



6 C.J. Rodriguez et al.

To this end, for each combination of problem instance and algorithm, we
run an optimisation process. After each true function evaluation FE true , the
measured execution timetm

FE � 1 is recorded. Because the time taken to evaluate
a benchmark problem is negligible, the execution timetm

FE � 1 represents time
taken by the algorithm in between true function evaluations. For EAs, this is
the time required for variation and selection and for SAEAs, this is the time for
surrogate building and optimisation using the surrogate model.

We can now estimate the total optimisation time t̂FE of an algorithm using

t̂FE = tm
FE � 1 + � FE (6)

where the execution time tm
FE � 1 is the surrogate building time and surrogate

evaluation time, FE is the number of true function evaluations and� is the true
function evaluation time.

In this paper, we consider� = 0 :0001� 2i minutes for i 2 f 0; 1; : : : ; 20g and a
total optimisation time budget of 16 � 2j minutes for j 2 f 0; 1; : : : ; 11g.

4 Experimental setup

In this section, we describe the considered benchmark problems, algorithm set-
tings used, and details regarding how we analysed the results.

4.1 Benchmark problems

We consider the bi-objectivebbob functions (bbob-biobj ) [5] with 20 continu-
ous problem variables from thecoco framework [18]. We only consider the �rst
instance of the 55 problems, since we are not exploring rotation and translational
invariances of algorithms. Eachbbob-biobj problem is composed of a pair-wise
combination of 10 single objectivebbob functions. The algorithms are initial-
ized in the default coco ranges:� 100 to 100. The termination criteria are set
to 10; 000 true function evaluations or a maximum runtime of 3 days, whichever
comes �rst. We execute 15 repeats per optimisation. A high-performance com-
puting cluster is used, composed of AMD EPYC 7H12 nodes, each containing 2
GB of memory and 64 cores with a 2.6GHz clock speed per node. Octave version
7.3.0 and thecoco framework [18]1 are used to perform all experiments.

4.2 Algorithm settings

In this work, we evaluate four SAEAs where two SAEAs utilise state-of-the-art
surrogates, namelyKriging from [10] and rbf from [22] as implemented in [32].
We also introduce two quick-to-compute surrogates namelynn and lrknn as de-
scribed in Section 2.2. As a baseline, we also considerrvea without any surrogate
assistance. This leads to �ve di�erent algorithms in total: kriging-rvea, rbf-rvea,
nn-rvea, lrknn-rvea, and rvea.

1 https://github.com/numbbo/coco



Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 7

All algorithms start with an initial population of 32 solutions, sampled using
LHS. Each repeat is completely independent, using a di�erent seed number. This
is the �rst multiple of 16 (available parallel cores for the real-world application)
larger than the problem's dimension of 20. After a surrogate optimisation cycle of
2000 surrogate evaluations usingrvea, for all SAEA variants except kriging-rvea,
the potential solutions for true evaluation are determined by pre-selecting the
non-dominated solutions in terms of the surrogate �tness values. ForKriging , we
utilise the acquisition function for the pre-selection as was described in [35] and
was implemented for Bayesian optimisation in the PlatEMO framework [32]. This
acquisition function prioritizes solutions with uncertain �tness estimation at the
beginning of the optimisation and solutions with good �tness estimations at the
end of the optimisation. This is reported in [35] to provide higher hypervolume on
the DTLZ [13] and UF [40] bi-objective benchmark problems compared to [10].
As suggested in [35], we also use an archive management method for theKriging
surrogate, limiting the archive size to 320 solutions.

For all SAEA variants, we then randomly select � solutions from this pre-
selection. In this work, we have used� = 1 so that the model is updated as
frequently as possible (every new true evaluation). Finally,rvea is used as im-
plemented by [9] in PlatEMO [32]. In this implementation, the parameter �
prioritizing convergence is set to 100; 000 and the population size is set to 32.

For the lrknn surrogate, k = 32 is used to �t a linear slope through the
training samples at the beginning of the optimisation and to capture the local
structure of the problem landscape at the end of the optimisation. Finally, nn-
rvea has no additional parameters to set.

4.3 Evaluation of results

For each (estimated) optimisation time budget and expensive function evaluation
time, the two algorithms are selected that exhibit the highest and second-highest
median hypervolume over the 15 repeats on abbob-biobj problem. The refer-
ence point is set to [1; 1], as suggested by [18]. We also evaluate whether there
is a statistically signi�cant di�erence between the hypervolume of the best and
second-best performing algorithms using a Wilcoxon test. When considering 55
bbob-biobj problems, 12 optimisation time budgets, and 21 expensive function
evaluation times, this leads to 13,860 statistical tests. We consider statistical
signi�cance to be p � 0.05 and correct this using the Bonferroni correction.
To get an aggregated view of an algorithm's performance over allbbob-biobj
problems, we estimate, for each combination of optimisation time budget and
expensive function evaluation time, the frequency that a particular algorithm
has been selected as the best-performing algorithm.

5 Results on Benchmark Problems

The best performing algorithms on the bbob-biobj problems 1 to 19 are visu-
alised using a heatmap, see Figure 1. Thebbob-biobj problems 20 to 55 can



8 C.J. Rodriguez et al.

be found in the Supplementary Material2. Because the �rst 32 function evalua-
tions correspond to the initial randomly sampled solutions in the population, we
shaded the regions where the total optimisation time is smaller than 32 times
the function evaluation time. The regions with high optimisation times and low
function evaluation times are also shaded because due to the termination criteria
of 10,000 evaluations, no data was gathered for this region.

It can be observed in Figure 1 and Figure 2 thatrvea typically has the highest
median hypervolume for function evaluation times below 0.0064 minutes (0.384
seconds). Furthermore,rvea only has a higher median hypervolume if the total
optimisation time is below 32 minutes. This is mostly due to the limit of 10,000
evaluations. If this budget was set larger,rvea is expected to also outperform all
other algorithms for the longer total optimisation times.

As expected, the current state-of-the-art surrogate models such askriging
and rbf lead to higher median hypervolumes obtained with the SAEA for smaller
budgets of function evaluations, which corresponds to the left-upper envelope of
the graphs, see Figure 2. In particular, for each row on the diagonal of the left-
upper envelope, the �rst three columns represent up to 80 function evaluations.
Interestingly, for some bbob-biobj problems (e.g., 7, 8, 13, 15) in Figure 1,rvea
still obtained a higher median hypervolume in these regions. A likely reason for
this is that the considered surrogates are not e�ective at modelling the problem
with such a limited number of function evaluations. Finally, and interestingly, on
almost all problems the use of \simple" surrogate models in our SAEA, i.e.,nn-
rvea and lrknn-rvea, obtains a higher median hypervolume for \medium"-range
expensive settings in which up to 10,000 function evaluations can be performed,
with 10,000 evaluations corresponding to the bottom-right envelope in Figure 2.
Only in a few cases doesrvea become the dominating algorithm again when
10,000 evaluations are used.

6 Real-world Application: A Biomechanical Simulation

While the bbob-biobj problems are certainly of importance and value, they
may still di�er from a real-world application in which a true expensive, and
often complex, optimisation problem needs to be solved.

We therefore also consider a real-world optimisation problem in this work
that is computationally demanding: biomechanical simulation optimisation for
the purpose of deformable medical image registration in radiation treatment of
cervical cancer. In radiation treatment, multiple medical images of the same pa-
tient are acquired, see Figure 3. Given that organs in the pelvic region are highly
deformable for various reasons, there is often an inherent mismatch between the
shapes of organs in any pair of medical images. Deformable image registration
is aimed at �nding the physically correct spatial mapping between two medical
image pairs to transfer spatial information, such as dosimetric data.

In this work, we consider a biomechanical approach to deformable image
registration in which the organs in one image are contoured by a medical pro-
2 https://zenodo.org/records/10992139



Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 9

Fig. 1. Heatmap per bbob-biobj problem, visualising the algorithm with the highest
median hypervolume given an optimisation time and function evaluation time. The
white dots indicate if there is a statistical di�erence between the best and second-best
performing algorithm.



10 C.J. Rodriguez et al.

Fig. 2. Heatmap per algorithm, where a higher colour intensity indicates, given an
optimisation time and function evaluation time, a higher frequency of highest median
hypervolume over all bbob-biobj problems.

fessional and are subsequently used to construct a mesh representation that can
be used inside a �nite element method (FEM) simulation. Tissue characteris-
tics, particularly related to elasticity, are adhered to di�erent parts of the mesh.
Subsequently, forces are de�ned that are applied to speci�c regions in the mesh.
A FEM simulation then adjusts the mesh nodes according to the forces applied.
Consequently, the underlying organ contours are deformed.

The optimisation task consists of �nding free simulation parameters such that
FEM simulation results in a mesh transformation that ensures the transformed
organ contours are aligned with those in the second image. Each function evalu-
ation necessitates a full FEM simulation, which is a computationally expensive
operation.

In this work, we focus on the deformable image registration of 3D pelvic com-
puted tomography (CT) scans for patients undergoing external beam radiation
treatment for cervical cancer. The treatment planning involves acquiring two 3D
CT scans: one with an empty bladder and another with a full bladder. In the
following section, we provide an overview of the process. For more details, we
refer the interested reader to the Supplementary Material.

Contouring and mesh generation Initially, a 3D CT scan with an empty
bladder is used for contouring important structures such as the body, bladder,
bones, cervix-uterus, bowel, and rectum. Subsequently, the contoured images
are converted into triangular surface meshes for each organ, which are then inte-



Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 11

Fig. 3. An illustrative representation of deformable image registration, where the top
two images represent medical images of the same patient with a di�erence in bladder
volume and the bottom two images depict the contoured organs overlayed with the
�nite element method mesh that is deformed to align the two images.

grated into a uni�ed tetrahedral mesh for each patient. Each tetrahedron within
this mesh is associated with a speci�c organ, facilitating a detailed anatomical
representation of the patient with an empty bladder.

Mesh transformation - biomechanical FEM simulation The organs in the
empty bladder scan are deformed according to the FEM simulation. To optimize
the match between the so-deformed organs and those in the full bladder CT
scan, the parameters corresponding to various forces to be applied to the mesh
are optimized. Speci�cally, 19 continuous simulation parameters are considered.

Organ comparison To determine the quality of the resulting FEM-based de-
formation, we utilize the Dice similarity coe�cient (DSC) score [15]. The DSC
score evaluates the overlap between the two volumes, with scores ranging from 0
(no volumetric overlap) to 1 (perfect volumetric overlap). However, relying solely
on DSC scores could still result in large and unrealistic organ deformations.
Therefore, a second objective, namely deformation energy, is considered that is
related to the magnitude of the resulting deformation. Speci�cally, this measure
quanti�es the energy required for organ deformation, calculated in Joules by
summing the energy needed to deform each tetrahedral element in the patient's
mesh based on its biomechanical properties. This bi-objective approach ensures
that we obtain results representing di�erent trade-o�s between accurate organ
registration and physical realism in the deformation process which can subse-
quently be inspected by a medical professional so as to ultimately decide which
deformation is the preferred one to use.

Problem settings, algorithm settings and result evaluation Optimizing
biomechanical simulations for seven patients involves stopping at either 10; 000
simulations or after �ve days. Since this function evaluation time is not negli-
gible compared to the surrogate optimisation time, we directly record the time



12 C.J. Rodriguez et al.

duration of the surrogate optimisation cycles (excluding the function evaluation
times). We run 16 simulations in parallel using 16 cores and repeat each opti-
misation 10 times. The same algorithms are used as in Section 4.2 as well as
iMAMaLGaM-X. The settings for iMAMaLGaM-X are based on the guidelines
in literature [3], except for the population size, which is set to 32 (equal torvea).
A high-performance computing system is used, composed out of nodes, each con-
taining 2 GB of memory per core and 16-128 Intel E5/Gold series cores. The
optimisation uses Octave version 7.3.0 and the simulation uses SOFA3 v.21.12.
The results are evaluated using the same procedure as in Section 4.3. The hy-
pervolume is calculated using the reference point of [0; 5000], which has been
established empirically.

7 Results on Real-world Application

The best performing algorithms are visualised per patient using a heatmap, see
Figure 4. Here, we see, similar to the benchmarks, thatrvea performs best for
a function evaluation time under 0.0064 minutes (0.384 seconds). Furthermore,
kriging and rbf surrogates seem to only show a bene�t for very small evaluation
budgets. Interestingly, iMAMaLGaM-X is consistently e�ective for intermediate
evaluation budgets which constitutes a large portion of the heatmap and the
use of thenn surrogate in RVEA is best around the 10,000 evaluations budget
limits. No statistically signi�cant di�erences were found.

Fig. 4. Heatmap per patient, visualising the algorithm with the highest median hyper-
volume given an optimisation time and function evaluation time.

3 https://github.com/sofa-framework/sofa


	Balancing Between Time Budgets and Costs in Surrogate-Assisted Evolutionary Algorithms

