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Abstract. Genetic programming (GP) approaches are among the state-
of-the-art for symbolic regression, the task of constructing symbolic ex-
pressions that fit well with data. To find highly accurate symbolic expres-
sions, both the expression structure and any contained real-valued con-
stants, are important. GP-GOMEA, a modern model-based evolutionary
algorithm, is one of the leading algorithms for finding accurate, yet com-
pact expressions. Yet, GP-GOMEA does not perform dedicated constant
optimization, but rather uses ephemeral random constants. Hence, the
accuracy of GP-GOMEA may well still be improved upon by the incor-
poration of a constant optimization mechanism. Existing research into
mixed discrete-continuous optimization with EAs has shown that a si-
multaneous and well-integrated approach to optimizing both discrete and
continuous parts, leads to the best results on a variety of problems, es-
pecially when there are interactions between these parts. In this paper,
we therefore propose a novel approach where constants in expressions
are optimized at the same time as the expression structure by merging
the real-valued variant of GOMEA with GP-GOMEA. The proposed ap-
proach is compared to other forms of handling constants in GP-GOMEA,
and in the context of other commonly used techniques such as linear
scaling, restarts, and constant tuning after GP optimization. Our results
indicate that our novel approach generally performs best and confirms
the importance of simultaneous constant optimization during evolution.

Keywords: Genetic programming · Constant optimization · Symbolic
regression · Model-based evolutionary algorithms.

1 Introduction

In recent years, the field of eXplainable AI (XAI) has received increased atten-
tion, especially for use cases where AI models can affect lives and livelihoods.
Given a dataset and a library of atomic functions such as {+,−,×,÷, sin}, sym-
bolic regression (SR) is the task of finding an interpretable expression that best
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describes the relation between one (output) variable and other (input) vari-
ables [15]. Compact SR models (i.e., expressions) are interesting from the per-
spective of XAI and interpretable ML (IML), as they are readable and therefore
have the potential to be humanly understandable [24,31]. GP-GOMEA is a ge-
netic programming (GP) based SR method that is amongst the state-of-the-art
for finding compact, yet accurate expressions and part of the non-dominated
front on the recent SR benchmark SRBench [17,29].

GP approaches generally primarily optimize the expression structure through
a process of iteratively recombining individuals in a population of (initially ran-
dom) expressions. The strength of GP-GOMEA in particular is finding expres-
sion structures by dynamically learning and exploiting a linkage model during
optimization that captures key dependencies between parts of an expression tem-
plate. Still, in general, for an SR expression to be highly accurate, not only must
the right expression structure be found, also the real-valued coefficients must be
optimized. Typically, ephemeral random constants (ERCs) are used [15], which
are random constants that are sampled during initialization and then not mod-
ified any further. Current approaches refine these by performing gradient-based
search or randomly mutating constant values. While the expression structure
is optimized by performing variation on the whole population, constant opti-
mization typically is performed on individual solutions. In the context of XAI,
where SR expressions need to be compact, finding better constants is expected
to increase expression accuracy while keeping expressions compact.

In this paper, we present and evaluate GP-RV-GOMEA, a new approach
to constant optimization in GP-GOMEA that takes inspiration from GAM-
BIT [25], a fully integrated model-based evolutionary algorithm (MBEA) ap-
proach to mixed discrete and continuous optimization. To make constant opti-
mization a first-class citizen in GP-GOMEA, SR is considered to be a mixed
discrete and real-valued problem, where GP-GOMEA is used to optimize the
structure of expressions and the real-valued GOMEA (RV-GOMEA) is used to
simultaneously optimize the constants of all expressions. Compared to random
coefficient mutations, the design and use of a dedicated MBEA is expected to
lead to a more directed and effective search that is better positioned to over-
come potentially ill-conditioned gradients that non-linear-least-squares methods
can encounter [16].

The remainder of this paper is organized as follows. Related works are first
discussed in the following Section. In Section 3 we describe the new method GP-
RV-GOMEA. In Section 4, we perform experiments to assess the performance
of GP-RV-GOMEA as well as other GP-GOMEA variants. We discuss our main
findings in Section 5 and draw our final conclusions in Section 6.

2 Related Work

Since the introduction of ERCs, constant optimization in GP has become a
well-studied subject and various approaches have been suggested, including co-



Model-based Evolutionary Constant Optimization in GP-GOMEA 3

efficient mutations [30], gradient-based search [9,14,23], and meta-heuristic op-
timization [5,10,20,1,26].

In [1] and [20], real-valued EAs are nested within a GP algorithm to sepa-
rately optimize the constants of either the best or all individuals, respectively.
In [26], simulated annealing is used in the same manner. Coefficient mutations,
gradient-based search, and the approaches presented in [20,26,1], all optimize
the constants in expressions separately per expression, either in a nested loop
inside GP, or after GP terminates. In this paper, we consider simultaneous evo-
lutionary optimization. The motivation for joint optimization is that as the GP
population converges over time, similar constant values are likely needed across
the population, and thus constant optimization is not viewed as an independent
problem for each individual in this work. Moreover, in related work with mixed
discrete and continuous variables, their joint optimization has been shown to be
advantageous over independent nested, or sequential optimization [25].

In [5], differential evolution is used to optimize the expression structure and
constants at once. However, GP is modeled as a fully real-valued optimization
problem by using a fixed number of decision variables to encode the expression
structure, combined with a mapping from continuous values to GP operators.
The remaining decision variables are the constant values available to an individ-
ual. Instead of ERCs, constant references are added that are substituted with
the corresponding constant value during evaluation. Our method differs from
this approach by interleaving optimization of the structure and constants, and
using separate algorithms to do so. A similar approach has been presented in [10],
however, significant progress both in GP and real-valued optimization has been
made since 1995. Moreover, our method further includes an optimization to avoid
unnecessary fitness evaluations, not present in any of the previous approaches.
To the best of our knowledge, this also is the first work comparing such a form
of constant optimization with other approaches.

An approach to mixed discrete and real-valued optimization using GOMEA
has been presented in [25]. Our new method takes direct inspiration from that
work but uses GP-GOMEA as a specialized GP algorithm for the discrete part
and RV-GOMEA for the constants. Regarding constants in GP-GOMEA, ERCs
and coefficient mutation have been explored in [29] and [30] respectively. Both
approaches are used as a baseline for the new method we introduce here.

3 Model-based Evolutionary Constant Optimization in
GP-GOMEA

In this section, GP-RV-GOMEA, a combination of GP-GOMEA and RV-GOMEA
based on GAMBIT is presented. First, the family of gene-pool optimal mix-
ing evolutionary algorithms (GOMEAs) and the individual algorithms used are
shortly described before the combination is introduced.
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3.1 Gene-pool Optimal Mixing Evolutionary Algorithms

Similar to other population-based algorithms, GOMEAs work by iteratively
refining an initially random set of candidate solutions. Each individual in a
GOMEA is typically represented as a fixed-length list of decision variables. To
achieve effective optimization, the aim in a GOMEA is to model and exploit
dependencies between linked variables [6].

These dependencies can be set a priori or learned in every generation dur-
ing optimization. This linkage information is modeled using a so-called family
of subsets (FOS) structure, a set that contains subsets of all decision variable
indices. Each subset in the FOS then corresponds to a group of linked variables
and is used as a crossover mask during variation. To learn the FOS during opti-
mization, hierarchical clustering using UPGMA [8] is often used on the decision
variables. As a similarity measure, typically the mutual information between the
decision variables is used [6]. Starting from all single variable subsets, a subset is
added for every pair of joined subsets during hierarchical clustering. This results
in a so-called Linkage Tree FOS.

Variation then is performed for each individual subset in the FOS, where
all variables in the given subset are varied together. For discrete variables, the
new values are inherited from a donor randomly picked from the population,
or sampled from a previously estimated multivariate normal distribution in the
real-valued case. The changed solution is then evaluated, and reverted in case the
fitness is worse compared to before the modification. This variation procedure is
called Gene-pool Optimal Mixing (GOM) and is performed for all FOS subsets
and individuals in a single generation. For discrete decision variables, the donors
are a copy of the population that is not modified, to match the distribution of
values at the time of learning the linkage model. The real-valued distribution
used corresponds to a potentially adapted (see Section 3.3) maximum-likelihood
estimate of the top 35% solutions in the population for every FOS subset.

Further, forced improvements, a mechanism which forces solutions that did
not improve within the last 1 + log10(population size) generations, are used [6].
This mechanism subjects such solutions to an additional round of GOM steps
until the solution has improved, where the donor is the elite of the current
population. If no improvement can be found after processing all FOS subsets,
the solution is replaced with the elite solution.

3.2 GP-GOMEA

GP-GOMEA [29] is the GP variant of GOMEA, where a fixed, tree-based sym-
bolic expression template is mapped to a string representation. This inherently
limits the maximum size of the learned expressions. Typically, full n-ary trees
are used, where n is the largest arity in the function set used. Using a fixed
template introduces syntactic introns for expressions smaller than the template
size, i.e., all subtrees of terminal nodes such as input features or constants have
no impact on the symbolic expression encoded by a solution. This is exploited
during GOM when no actively used node is changed. The inherited modifications
are simply accepted as the fitness remains unchanged.
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3.3 RV-GOMEA

RV-GOMEA [4] is the real-valued version of GOMEA for continuous search
spaces.When the linkage is not set a priori, then the similarity metric used
during clustering typically is the Pearson product-moment correlation coefficient.
However, in this paper, only the full FOS, i.e., a single crossover mask containing
all variables, is used as all constants used in a solution can affect each other.

In addition to sampling new values from a learned distribution, additional
mechanisms detailed in [4] influence the variation compared to other GOMEA
variants. These are the Anticipated Mean Shift (AMS), which shifts a part of the
population in the direction of the mean shift between the previous and current
generation, and Adaptive Variance Scaling (AVS) to adapt the step size in case
solutions are found more than a standard deviation away from the distribution
mean. Forced improvements in the real-valued case are performed by bisecting
the values of the solution and the elite for each FOS subset.

3.4 GP-RV-GOMEA

Solution Representation To make constant optimization a first-class citizen,
the GP-GOMEA genotype consisting of discrete decision variables is extended
with a fixed number of real-valued constants that will be optimized using RV-
GOMEA. Instead of special constant nodes, the GP terminal set is extended
with constant references for all added constants. This representation is shown
in Figure 1 and during evaluation, constant references are substituted with the
corresponding value from the real-valued decision variables. Note that introns
can be both discrete or real-valued.

Fig. 1. The genotype (left) of a single individual in GP-RV-GOMEA and how it relates
to the encoded expression (right). Shaded values are introns that do not affect the
semantic meaning of the expression.

Interleaving Scheme Using this mixed representation, optimization then fol-
lows the approach described in [25] with additional modifications specific to GP.
The approach is outlined in Algorithm 1. After initialization, in every generation,
first, the discrete linkage model used by GP-GOMEA is learned from the cur-
rent population. This is followed by a mixed variation procedure that interleaves
performing discrete GOM using GP-GOMEA and real-valued variation steps
using RV-GOMEA until all subsets in the discrete FOS have been processed.
In [25], this interleaving is done by shuffling the order of all variation steps, both
discrete and continuous, to balance the computational effort spent. However,
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as GP-GOMEA only performs evaluations if actively used nodes are modified,
this quickly leads to an imbalanced distribution of computational effort between
the discrete and real-valued optimization. Hence, a different approach directly
based on the number of evaluations performed for each variable type is used. To
balance the computational effort spent, the ratio of real-valued to discrete eval-
uations (∈ [0,∞]) is transformed into a probability of performing a real-valued
step and then the next step is sampled from the uniform distribution (lines 6-7
in Algorithm 1). Note that while GP steps amount to performing GOM for all
solutions and a single FOS subset, the real-valued steps amount to performing
a full RV-GOMEA generation. Thus, the real-valued steps consist of computing
the maximum-likelihood estimate, performing GOM, and finally AMS.

Algorithm 1: GP-RV-GOMEA

1 P ←− InitializeAndEvaluatePopulation()
2 while ¬TerminationCriteriaSatisfied do
3 O ←− P
4 F ←− LearnLinkageModel(P)
5 while F not empty do

6 pRV ←− 1− 0.5 · #RV evaluations
#GP evaluations

7 if U(0, 1) < pRV then
8 O ←− RVStep(O)
9 else

10 O ←− GPStep(O, P, TakeRandom(F))
11 O ←− ApplyForcedImprovements(O)
12 P ←− O

Forced Improvements After the main variation steps have been performed,
forced improvements are performed as described in [27,6]. The real-valued RV-
GOMEA steps also perform forced improvements, however, as opposed to the
procedure described in [4], the real-valued forced improvements in the proposed
method are modified to take the discrete structure into account. This is done by
ensuring that the donor used makes use of constant values and then interleav-
ing the discrete and real-valued forced improvements steps, as is done for the
main variation shown in Algorithm 1. Since improvements can be both of struc-
tural and real-valued nature, the number of generations without improvements
needed before real-valued forced improvements are applied was decreased from
the default of 100 in RV-GOMEA to 20 generations.

Real-valued Intron Handling Similar to how GP-GOMEA can have introns,
it is possible for real-valued constants to not be used in the encoded expression.
To avoid unnecessary evaluations, changes to unused constants thus are not eval-
uated and are simply accepted in line with the intron handling of GP-GOMEA.
Note that as we use the full FOS for RV-GOMEA, any change to the constants
of a solution that actively uses at least one constant still has to be evaluated.

In RV-GOMEA, the constant values used for the maximum-likelihood esti-
mation are selected based on the solution fitness. However, with the presence of
introns, some of the values used for this estimate possibly do not contribute to
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the fitness of an individual. To avoid introducing noise through these inactive
values, we make RV-GOMEA “intron aware” by filtering out these intron values
in all steps where constant values are used to guide optimization. When selec-
tion is performed, for each constant index, the top 35% of the active values are
selected. Similarly, AMS is performed only on individuals with active constants
and AVS only considers active values when updating the variance scaling factors.

4 Experiments and Results

In this section, we perform two types of experiments. The first experiment is
performed using noise-free synthetic problems to isolate constant optimization
and validate the effectiveness of the proposed approach. The second experiment
uses real-world data to confirm the practical usefulness of the approach.

4.1 Experimental Setup

We compare the proposed approach without and with intron-aware (IA) model
updates to GP-GOMEA with ERCs ([29]) and GP-GOMEA with coefficient
mutation ([30]), hereafter abbreviated as RV, RV+IA, ERCs, and ERCs+CM,
respectively. To isolate the effect of constant optimization from other techniques
commonly used to increase performance such as linear scaling [13] (hereafter LS),
constant tuning after optimization, and restarts, all combinations are tested.
The other parameters used are detailed in Table 1. The function set was chosen
based on [21], where it was shown that this function set tends to generalize well
to unseen data. In all experiments, cross-validation with 5 folds and 7 repeats
per fold using different seeds is used, corresponding to 35 runs per problem,
method, restart, and LS configuration.

We compare based on a fixed evaluation budget, as the different methods do
not use the same number of fitness evaluations per generation. In addition, a
run without restarts is stopped when it converges. A run is considered as con-
verged when either all individuals encode the same structure or no evaluations

Table 1. The parameter settings used in the experiments.

Method

Parameter ERCs ERCs+CM RV RV+IA

Objectives Mean squared error (MSE)
Tree height 5 (31 Nodes)
Operators +,−,×,÷, sin
Constant initialization U(min{ytrain},max{ytrain})
Termination 107 evaluations or convergence
Population size 1000
Constant probability 50%

Number of constants 10 10
Intron Awareness No Yes
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were spent during a full generation. For the synthetic problems, a target mean
squared error (MSE) value of 10−8 was used as an additional termination crite-
rion in the first experiment. With restarts, the previous convergence conditions
or no improvement to the elitist solution of the current restart within 10 genera-
tions trigger a full restart. Note that two elitist solutions are maintained, one to
maintain the best solution across all restarts and one for the best solution of the
current restart. A budget of 107 evaluations is used to ensure that all methods
can converge within the computational budget. Hence, without restarts the fit-
ness after convergence is compared, albeit this is not a fair comparison based on
the actual number of evaluations spent. With restarts, the comparison based on
evaluations is fair, however, the number of restarts or generations performed is
not. Constant optimization after GP is performed using the L-BFGS implemen-
tation from PyTorch[22] with a limit of 500 iterations, after which the resulting
model is simplified using SymPy[19].

4.2 Synthetic Problems: Does RV within GP Work as Desired?

In the first experiment, we use the following synthetic problems with 1000 in-
stances sampled with xi ∼ U(−10, 10):

• −4.2 · x0 +
√
2x1 + e · x2

• 0.1 · x0 + 0.2 · x1 + 2.4 · x2

• sin(π · x0)/(π · x0)

• sin(1.772 · x0) + sin(2.035 · x2)
• sin(π2 · x0 +

π
3 · x1)

• sin(π · x+ e)

These problems were selected with specific criteria in mind. First, discovering
the correct structure should not be overly challenging, to compare the constant
optimization capabilities of various methods. Second, the chosen problems were
designed to feature nested or non-linear combinations of constants, thereby en-
suring that LS does not fully mitigate the need for constant optimization. Lastly,
the synthetic problems were crafted to exhibit multi-modal constant optimiza-
tion landscapes, motivating the use of gradient-free techniques. The landscape
near the optimal constant values for sin(π · x+ e) is shown in Figure 2.
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Fig. 2. The constant optimization landscape can be multi-modal, both with and with-
out linear scaling (LS). The error for every constant combination was computed using
(the same) 500 instances sampled from U(−10, 10).
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Fig. 3. The training and testing MSE scores for the synthetic problems on a logarithmic
scale. The bar corresponds to the median MSE before tuning, while the circle and
horizontal line correspond to the median and interquartile range (IQR) after post-
processing. Note that the MSE was capped at the target value of 1e − 8, which is
highlighted with a vertical line.

The results are shown in Figure 3 and Table 2. Note that this is an inher-
ently biased comparison, as ERCs do not have an inherent ability to change the
value of constants other than recombining several constants to represent new
values not sampled initially. Likewise, coefficient mutation is random by nature,
and thus the likelihood of improving constants decreases as the constant val-
ues get closer to the closest local optima. Nonetheless, we can confirm that our
approach (i.e., RV and RV + IA) effectively optimizes constants, and clearly is
better at reaching the MSE target of 10−8 compared to the other constant opti-
mization types considered (Figure 3). Table 2 shows that with intron awareness
the proportion of runs reaching the MSE target increases, indicating that the
real-valued distributions estimated have a better fit.

Both LS and restarts increase the average performance of all methods and
decrease variance. With restarts, both RV variants reliably reach the target value
in almost all runs. The constant optimization performed during post-processing
is most noticeable for ERCs without LS or restarts, where it can lead to no-
ticeable MSE improvements. However, compared to optimizing constants during
optimization, the overall effect of tuning the best model after GP is small. Inter-
estingly, tuning after and restarts have an unintuitive interaction when consid-
ering ERCs. Without restarts, the re-occurring subexpression sin(π · x) is often
modeled with a constant that can be improved during post-processing. With
restarts, however, many runs find sin(x + x + x) instead, as 3 · x ≈ π · x. Since
constant tuning was only applied before simplification, the lack of an explicit
constant explains the decreased performance of ERCs with restarts.

In terms of the expressions found, in Figures 4 and 5 we can see that apart
from the simplification during post-processing, LS has a clear effect on both the
number of constants used and the expression size, partly explained by the added
scaling terms which add 2 constants and 4 nodes. The effect of simplification
for the problems used tends to be considerable, for some problems the size after
simplification is halved. The type of constant optimization used, however, has
little impact on the expression size.
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Table 2. Proportion of runs that reach the 10−8 MSE target. The best values per
setting are highlighted in bold and the percentage in parentheses corresponds to the
contribution of constant optimization after GP. The colored triangles indicate statisti-
cally significantly better methods (p < 0.05) as per Fisher’s exact test [7].

LS Restarts ERCs ▼ ERCs + CM ▼ RV ▼ RV + IA ▼

−4.2 · x0 +
√
2 · x1 + e · x2

No
No 37.1% (+37.1%) 2.9% (+0.0%) 60.0% (+25.7%) 60.0% (+22.9%)
Yes 0.0% (+0.0%) 5.7% (+0.0%) 88.6% (+0.0%) 97.1% (+0.0%)

Yes
No 5.7% (+5.7%) 20.0% (+0.0%) 74.3% (+8.6%) 94.3% (+0.0%)
Yes 0.0% (+0.0%) 74.3% (+0.0%) 97.1% (+0.0%) 94.3% (+0.0%)

0.1 · x0 + 0.2 · x1 + 2.4 · x2

No
No 14.3% (+14.3%) 5.7% (+0.0%) 40.0% (+5.7%) 42.9% (+5.8%)
Yes 0.0% (+0.0%) 14.3% (+0.0%) 94.3% (+0.0%) 100.0% (+0.0%)

Yes
No 34.3% (+2.9%) 71.4% (+0.0%) 97.1% (+0.0%) 100.0% (+0.0%)
Yes 97.1% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)

sin(1.772 · x0) + sin(2.035 · x2)

No
No 2.9% (+2.9%) 5.7% (+0.0%) 14.3% (+2.9%) 14.3% (+0.0%)
Yes 0.0% (+0.0%) 11.4% (+0.0%) 82.9% (+0.0%) 100.0% (+0.0%)

Yes
No 5.7% (+5.7%) 25.7% (+0.0%) 40.0% (+2.9%) 45.7% (+0.0%)
Yes 0.0% (+0.0%) 57.1% (+0.0%) 97.1% (+0.0%) 100.0% (+0.0%)

sin(π
2 · x0 + π

3 · x1)

No
No 14.3% (+14.3%) 0.0% (+0.0%) 34.3% (+0.0%) 45.7% (+0.0%)
Yes 2.9% (+0.0%) 80.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)

Yes
No 28.6% (+28.6%) 20.0% (+0.0%) 85.7% (+0.0%) 80.0% (+0.0%)
Yes 0.0% (+0.0%) 94.3% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)

sin(π · x + e)

No
No 85.7% (+85.7%) 74.3% (+0.0%) 97.1% (+0.0%) 100.0% (+0.0%)
Yes 0.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)

Yes
No 74.3% (+74.3%) 74.3% (+0.0%) 97.1% (+0.0%) 100.0% (+0.0%)
Yes 0.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)

sin(π · x)/(π · x)

No
No 40.0% (+40.0%) 2.9% (+0.0%) 88.6% (+0.0%) 80.0% (+0.0%)
Yes 5.7% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)

Yes
No 8.6% (+0.0%) 57.1% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)
Yes 97.1% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%) 100.0% (+0.0%)
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Fig. 4. The number of constants used and expression sizes for the synthetic problems.
The bar corresponds to the median before post-processing, while the circle and hori-
zontal line correspond to the median and IQR after post-processing.
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Fig. 5. The SHAP[18] values show how different aspects influence expression size for
the synthetic problems. The different methods are highlighted on the color map, for
the other binary aspects the color indicates whether it was enabled or not.

4.3 Real-world Problems: GP-RV-GOMEA vs ERCs and Coefficient
Mutation

In this experiment, we consider the problems listed in Table 3 and compare
the obtained expressions in terms of the coefficient of determination R2 score,
expression size, and the number of constants used. Compared to the previous
result, this experiment aims to provide a practically relevant comparison to the
other forms of constant optimization.

Table 3. The real-world problems used in the second experiment.

Problem # Instances # Features

Airfoil Self-noise [28] 1503 5
Concrete Compressive Strength [11] 1030 8
Energy Cooling [2] 768 8
Energy Heating [2] 768 8
Yacht Hydrodynamics [12] 308 6

No No
No Yes
Yes No
Yes Yes

R
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Fig. 6. The training and testing R2 scores for the real-world problems. The bar corre-
sponds to the median R2 before tuning, while the circle and horizontal line correspond
to the median and IQR after post-processing.
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The results for the R2 scores displayed in Figure 6 confirm that the proposed
approach performs competitively on real-world problems, again outperforming
both ERCs and coefficient mutation in terms of solution accuracy. Without LS
or restarts, the RV version with intron-aware Gaussian model updates performs
slightly worse compared to when intron awareness is not used. This could be ex-
plained by the noisy Gaussian distribution updates being more robust to changes
in the expression structure between real-valued steps, as updating the distribu-
tion takes longer in contrast to the intron-aware version. With restarts or LS,
however, the use of intron-awareness tends to perform a little better.

Figure 7 shows that while ERCs have an initial advantage as all computa-
tional effort is spent on finding better structures, the importance of constant
optimization becomes apparent as the evolution progresses. Improvements are
still found close to reaching the computational budget, indicating that an in-
creased budget could lead to improved results.

Both LS and restarts improve accuracy and decrease variance for all methods
tested, with LS having a bigger effect. In line with the synthetic problems in the
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Fig. 8. The number of constants used and expression sizes for the real-world problems.
The bar corresponds to the median before post-processing, while the circle and hori-
zontal line correspond to the median and IQR after post-processing.
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Fig. 9. The SHAP[18] values show how different aspects influence expression size for
the real-world problems. The different methods are highlighted on the color map, for
the other binary aspects the color indicates whether it was enabled or not.

previous experiment, the effect of tuning constants after GP is most noticeable
for ERCs and in the absence of LS and restarts, but small compared to the effect
of constant optimization during optimization.

In contrast to the synthetic problems, Figure 9 indicates that next to LS,
the RV constant optimization methods also lead to larger expressions while the
effect of simplification decreased. This motivates a multi-objective approach.

Statistical testing results following the approach recommended by [3] are
shown in Table 4, indicating that GP-RV-GOMEA is highly likely to lead to
similar or noticeably better R2 scores compared to ERCs and coefficient muta-
tion.

Table 4. The pair-wise probabilities of how likely M1 is to perform better, approxi-
mately equal (within 0.01R2), or worse in terms of test R2 compared to M2 with LS
and restarts, using a Bayesian hierarchical correlated t-test [3].

M1 M2 P (R2
M1

>R2
M2

) P (R2
M1
≈R2

M2
) P (R2

M1
<R2

M2
)

ERCs ERCs + CM 0.172 0.749 0.079
ERCs RV 0.019 0.400 0.581
ERCs RV + IA 0.025 0.205 0.771

ERCs + CM RV 0.059 0.114 0.827
ERCs + CM RV + IA 0.056 0.026 0.918

RV RV + IA 0.009 0.971 0.020

5 Discussion

We proposed GP-RV-GOMEA, a new form of constant optimization in GP-
GOMEA based on GOMEA-based mixed discrete and continuous optimiza-
tion. Our experiments confirmed that simultaenous constant optimization across
the whole population as opposed to per individual indeed works well for GP-
GOMEA, and that our proposed approach clearly outperforms previous forms of
constant optimization both with and without intron-aware real-valued Gaussian
model updates. This holds for all combinations of linear scaling, restarts, and
constant tuning after GP. Furthermore, on the problems considered, constant
optimization during evolution has a positive effect on solution quality. However,
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on real-world problems, solution sizes tend to increase as well. While LS gener-
ally has the largest impact on accuracy, clearly, constant optimization too can
have a noticeable impact.

The proposed approach introduces new parameters, such as the size of the
constant pool available and the parameters of RV-GOMEA. These have not
been explored extensively yet, as the goal of this work was to determine if such
an approach is feasible and effective, revitalizing the research by [10]. Notably,
not all mechanisms introduced in GAMBIT [25] were considered in this work,
possibly increasing the effectiveness of this approach further.

Furthermore, the method has not yet been compared to on-line gradient-
based constant optimization, which is a commonly used form of constant opti-
mization in GP. Possibly a hybrid approach akin to basin hopping could prove
to be more effective than only using one form of constant optimization.

This work introduced a novel, intron-aware approach to updating the real-
valued optimizer, showing increased performance on synthetic and real-world
problems when combined with linear scaling or restarts. Notably, intron-awareness
affects how fast the real-valued model can adapt to the changes in the real-
valued fitness landscape introduced by structural changes. Compared to the
intron-aware version, the decreased adaptivity can be seen as an implicit form
of regularization, although no overfitting was found with the settings used.

While primarily caused by LS, the observed increases in expression size with
constant optimization suggest that a multi-objective approach is needed to en-
sure small and accurate models. Concerning constant tuning after GP, the ob-
served interaction with restarts suggests that fine-tuning should be applied both
before and after simplification to obtain better results.

6 Conclusion

Over the years, several approaches to constant optimization in GP have been
proposed, however, they come with drawbacks such as the need for gradients
or large numbers of evaluations due to blind search. With this in mind, we
proposed a novel, model-based, way of optimizing constants in GP-GOMEA,
which we evaluated in the context of linear scaling, restarts, and optimization
after GP on both synthetic and real-world data.

Our experiments confirm that optimizing constants across GP individuals
can be effective and that simultaneous (evolutionary) constant tuning during GP
can be required for increased performance. Compared to ERCs and coefficient
mutation with the same underlying GP algorithm, we find that the proposed
method improves overall expression accuracy in all settings considered, while
achieving similar expression size.
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