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Abstract

An elastic-degenerate (ED) string is a sequence of n nite sets of strings of total length N , introduced
to represent a set of related DNA sequences, also known as a pangenome. The ED string matching
(EDSM) problem consists in reporting all occurrences of a pattern of length m in an ED text. The
EDSM problem has recently received some attention by the combinatorial pattern matching community,
culminating in an Õ(nmω−1) +O(N)-time algorithm [Bernardini et al., SIAM J. Comput. 2022], where
ω denotes the matrix multiplication exponent and the Õ(·) notation suppresses polylog factors. In the
k-EDSM problem, the approximate version of EDSM, we are asked to report all pattern occurrences with
at most k errors. k-EDSM can be solved in O(k2mG+ kN) time, under edit distance, or O(kmG+ kN)
time, under Hamming distance, where G denotes the total number of strings in the ED text [Bernardini
et al., Theor. Comput. Sci. 2020]. Unfortunately, G is only bounded by N , and so even for k = 1, the
existing algorithms run in Ω(mN) time in the worst case. In this paper we make progress in this direction.
We show that 1-EDSM can be solved in O((nm2 +N) logm) or O(nm3 +N) time under edit distance.
For the decision version of the problem, we present a faster O(nm2√logm+N log logm)-time algorithm.
We also show that 1-EDSM can be solved in O(nm2 + N logm) time under Hamming distance. Our
algorithms for edit distance rely on non-trivial reductions from 1-EDSM to special instances of classic
computational geometry problems (2d rectangle stabbing or 2d range emptiness), which we show how to
solve eciently. In order to obtain an even faster algorithm for Hamming distance, we rely on employing
and adapting the k-errata trees for indexing with errors [Cole et al., STOC 2004].

1 Introduction

String matching (or pattern matching) is a fundamental task in computer science, for which several linear-
time algorithms are known [19]. It consists in nding all occurrences of a short string, known as the pattern,
in a longer string, known as the text. Many representations have been introduced over the years to account
for unknown or uncertain letters in the pattern or in the text, a phenomenon that often occurs in real data.
In the context of computational biology, for example, the IUPAC notation [29] is used to represent locations
of a DNA sequence for which several alternative nucleotides are possible. Such a notation can encode the
consensus of a population of DNA sequences [39, 1, 2, 24] in a gapless multiple sequence alignment (MSA).

∗The work in this paper is supported in part by: the Netherlands Organisation for Scientic Research (NWO) through project
OCENW.GROOT.2019.015 Optimization for and with Machine Learning (OPTIMAL) and Gravitation-grant NETWORKS-
024.002.003; the PANGAIA and ALPACA projects that have received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreements No 872539 and 956229, respectively; and the
MUR - FSE REACT EU - PON R&I 2014-2020.
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Figure 1: An MSA of three sequences and its (non-unique) representation T̃ as an ED string of length n = 7 and size
N = 20. The only two exact occurrences of P = TTA in T̃ end at positions 6 (black underline) and 7 (blue overline);
a 1-mismatch occurrence of P in T̃ ends at position 2 (green underline); and a 1-error occurrence of P in T̃ ends
at position 3 (red overline). Note that other 1-error and 1-mismatch occurrences of P in T̃ exist (e.g., ending at
positions 1 and 5).

EDSM Features Running time

Grossi et al. [27] Combinatorial O(nm2 +N)
Aoyama et al. [5] Fast Fourier transform O(nm1.5√logm+N)
Bernardini et al. [7] Fast matrix multiplication O(nm1.381 +N)

Bernardini et al. [8] Fast matrix multiplication Õ(nmω−1) +O(N)

Table 1: The upper-bound landscape of the EDSM problem. The term combinatorial is arguably not well-dened;
lower bounds conditioned on Boolean Matrix Multiplication often indicate that other techniques, including fast matrix
multiplication, may be employed to obtain improved bounds for a specic problem. This is the case for EDSM.

Iliopoulos et al. generalized these representations in [28] to also encode insertions and deletions (gaps)
occurring in MSAs by introducing the notion of elastic-degenerate strings. An elastic-degenerate (ED) string
T̃ over an alphabet Σ is a sequence of nite subsets of Σ∗ (which includes the empty string ε), called segments.
The total number of segments is the length of the ED string, denoted by n = T̃ ; and the total number
of letters (including symbol ε) in all segments is the size of the ED string, denoted by N = ‖T̃‖. Inspect
Figure 1 for an example.

A natural problem is to nd all occurrences of a standard (non-degenerate) pattern P in an ED text T̃ ,
called the ED string matching (EDSM) problem in the literature. After the simple polynomial-time algorithm
proposed by Iliopoulos et al. [28], a series of results have been published for EDSM. The results for EDSM
summarized in Table 1 have a linear dependency on the size N of the ED text, a highly desirable property.
(A dierent line of research exists, which waives the linear-dependency restriction, and employs bit-vector
techniques to speed up the computation specically for short patterns [27, 34, 16].) In Table 1, m is the
length of the pattern, n is the length of the ED text, N is its size, and ω is the matrix multiplication exponent.
These algorithms are also on-line: the ED text is read segment-by-segment and occurrences are reported as
soon as the last segment they overlap is processed. Grossi et al. [27] presented an O(nm2+N)-time algorithm
for EDSM. This was later improved by Aoyama et al. [5], who employed fast Fourier transform to improve
the time complexity of EDSM to O(nm1.5

√
logm + N). Bernardini et al. [7] then presented a lower bound

conditioned on Boolean Matrix Multiplication suggesting that it is unlikely to solve EDSM by a combinatorial
algorithm in O(nm1.5− + N) time, for any  > 0. This was an indication that fast matrix multiplication
may improve the time complexity of EDSM. Indeed, Bernardini et al. [7] presented an O(nm1.381 +N)-time
algorithm, which they subsequently improved to an Õ(nmω−1) + O(N)-time algorithm [8], both using fast
matrix multiplication, thus breaking through the conditional lower bound for EDSM.

Our Results and Techniques In string matching, a single extra or missing letter in the pattern or
in a potential occurrence results in missing (many or all) occurrences. Hence, many works are focused
on approximate string matching for standard strings [30, 31, 18, 4, 25, 13]. For approximate k-EDSM,
Bernardini et al. [9] presented an on-line O(k2mG + kN)-time algorithm under edit distance and an on-line
O(kmG+ kN)-time algorithm under Hamming distance, where k is the maximum allowed number of errors
(edits) or mismatches, respectively, and G is the total number of strings in all segments. Unfortunately, G
is only bounded by N , and so even for k = 1, the existing algorithms run in Ω(mN) time in the worst case.
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Approximate EDSM Features Running time

Bernardini et al. [9] k errors O(k2mG+ kN)
This work 1 error O(nm3 +N)
This work 1 error O((nm2 +N) logm)
This work 1 error (decision) O(nm2√logm+N log logm)

Bernardini et al. [9] k mismatches O(kmG+ kN)
This work 1 mismatch O(nm3 +N)
This work 1 mismatch O(nm2 +N logm)

Table 2: The state of the art results for approximate EDSM and our new results for k = 1. Note that n ≤ G ≤ N .
All algorithms underlying these results are combinatorial and all the reporting algorithms are on-line.

Let us remark that the special case of k = 1 is not interesting for approximate string matching on
standard strings: the existing algorithms have a polynomial dependency on k and a linear dependency on
the length n of the text, and thus for k = 1 we trivially obtain O(n)-time algorithms under edit or Hamming
distance. However, this is not the case for other string problems, such as text indexing with errors, where
the rst step was to design a data structure for 1 error [3]. The next step, extending it to k errors, required
the development of new highly non-trivial techniques and incurred some exponential factor with respect to
k [17]. Interestingly, k-EDSM seems to be the same case, which highlights the main theoretical motivation
of this paper. In Table 2, we summarize the state of the art for approximate EDSM and our new results for
k = 1. Note that the reporting algorithms underlying our results are also on-line.

Indeed, to arrive at our main results, we design a rich non-trivial combination of algorithmic techniques.
Our algorithms for edit distance rely on non-trivial reductions from 1-EDSM to special instances of classic
computational geometry problems (2d rectangle stabbing or 2d range emptiness), which we show how to
solve eciently. In order to obtain an even faster algorithm for Hamming distance, we also rely on employing
and adapting the k-errata trees of Cole et al. for text indexing with k errors [17].

The combinatorial algorithms we develop here for approximate EDSM are good in the following sense.
First, the running times of our algorithms do not depend on G, a highly desirable property. Specically, all
of our results replace m ·G by an n · poly(m) factor. Second, our Õ(nm2 + N)-time algorithms are at most
one logm factor slower than O(nm2 + N), the best-known bound obtained by a combinatorial algorithm
(not employing fast Fourier transforms) for exact EDSM [27]. Notably, for Hamming distance, we show an
O(nm2 + N logm)-time algorithm. Last, our O(nm3 + N)-time algorithms have a linear dependency on N ,
another highly desirable property (at the expense of an extra m-factor).

Other Related Work The main motivation to consider ED strings is that they can be used to represent
a pangenome: a collection of closely-related genomic sequences that are meant to be analyzed together [39].
Several other pangenome representations have been proposed in the literature, mostly graph-based ones;
see [10] for a comprehensive overview by Carletti et al. Compared to these graph-based representations, ED
strings have at least two main advantages in the context of string matching, as they support: (i) simple
on-line string matching; and (ii) (deterministic) subquadratic in m string matching [5, 7, 8].

Similar in spirit to ED strings, and to the restricted notion of generalized degenerate strings, in which
strings of dierent lengths cannot be in the same segment [1, 2], is the representation of pangenomes via
founder graphs. The idea behind founder graphs is that a multiple alignment of few founder sequences can
be used to approximate the input MSA, with the feature that each row of the MSA is a recombination of the
founders. Unlike ED strings, that are believed not to be eciently indexable [26] (and indeed their value is
to enable fast on-line string matching algorithms), some subclasses of founder graphs are, and a recent line
of research is devoted to constructing and indexing such structures [32, 20]. Like founder graphs, ED strings
support the recombination of dierent rows of the MSA between consecutive columns.
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Paper Organization In Section 2, we provide the necessary denitions and notation, we describe the
basic layout of the developed algorithms, and we formally state our main results. In Section 3, we present
our solutions under edit distance; and in Section 4, we present our improvement for the special case of
Hamming distance. In Section 5, we conclude this work with some basic open questions for future work.

2 Preliminaries

We start with some basic denitions and notation following [19]. Let X = X[1]   X[n] be a string of length
X = n over an ordered alphabet Σ whose elements are called letters. The empty string is the string of
length 0; we denote it by ε. For any two positions i and j ≥ i of X, X[i   j] is the fragment of X starting
at position i and ending at position j. The fragment X[i   j] is an occurrence of the underlying substring
P = X[i]   X[j]; we say that P occurs at position i in X. A prex of X is a fragment of the form X[1   j]
and a sux of X is a fragment of the form X[i  n]. By XY or X · Y we denote the concatenation of two
strings X and Y , i.e., XY = X[1]   X[X]Y [1]   Y [Y ]. Given a string X we write XR = X[X]   X[1]
for the reverse of X. Given two strings X and Y we write LCP(X,Y ) for the length of their longest common
prex, namely for the integer max(i, X[1   i] = Y [1   i]), or 0 if X[1] 6= Y [1].

An elastic-degenerate string (ED string) T̃ = T̃ [1]    T̃ [n] over an alphabet Σ is a sequence of n = T̃ 
nite sets, called segments, such that for every position i of T̃ we have that T̃ [i] ⊂ Σ∗. By N = T̃ 
we denote the total length of all strings in all segments of T̃ , which we call the size of T̃ ; more formally,

N =
∑n

i=1

∑|T̃ [i]|
j=1 T̃ [i][j], where by T̃ [i][j] we denote the jth string of T̃ [i]. (As an exception, we also add 1

to account for empty strings: if T̃ [i][j] = ε, then we have that T̃ [i][j] = 1.) Given two sets of strings S1 and
S2, their concatenation is S1 · S2 = XY  X ∈ S1, Y ∈ S2. For an ED string T̃ = T̃ [1]    T̃ [n], we dene
the language of T̃ as L(T̃ ) = T̃ [1] ·    · T̃ [n]. Given a set S of strings we write SR for the set XR  X ∈ S.
For an ED string T̃ = T̃ [1]    T̃ [n] we write T̃R for the ED string T̃ [n]R    T̃ [1]R.

Given a string P and an ED string T̃ , we say that P matches the fragment T̃ [j   j′] = T̃ [j]    T̃ [j′] of T̃ ,
or that an occurrence of P starts at position j and ends at position j′ in T̃ if there exist two strings U, V ,
each of them possibly empty, such that P = Pj ·    · Pj′ , where Pi ∈ T̃ [i], for every j < i < j′, U · Pj ∈ T̃ [j],

and Pj′ · V ∈ T̃ [j′] (or U · Pj · V ∈ T̃ [j] when j = j′). Strings U, V and Pi, for every j ≤ i ≤ j′, specify an

alignment of P with T̃ [j   j′]. For each occurrence of P in T̃ , the alignment is, in general, not unique. In
Figure 1, P = TTA matches T̃ [5   6] with two alignments: both have U = ε, P5 = TT, P6 = A, and V is either
C or CAC.

We want to accept matches with edit distance at most 1 according to the following standard denition:

Denition 1. Given two strings P and Q over an alphabet Σ, we dene the edit distance dE(P,Q) between
P and Q as the length ` of a shortest sequence of string operations π1,    ,π` such that Q = (Π`

i=1πi)(P ),
where each πi (for 1 ≤ i ≤ `) is one of the following type:

• Replacement: There is j ∈ [1, P ] and σ 6= P [j] ∈ Σ s.t. πi(P )[j] = σ and πi(P )[j′] = P [j′] for j′ 6= j.

• Deletion: One has πi(P ) = P  − 1 and there is j ∈ [1, P ] s.t. πi(P )[j′] = P [j′] for 1 ≤ j′ ≤ j − 1
and πi(P )[j′] = P [j′ + 1] for j ≤ j′ ≤ P  − 1.

• Insertion: One has πi(P ) = P + 1 and there is j ∈ [1, P + 1] s.t. πi(P )[j′] = P [j′] for 1 ≤ j′ ≤ j− 1
and πi(P )[j′] = P [j′ − 1] for j + 1 ≤ j′ ≤ P  + 1.

Lemma 1 ([19]). The function dE is a distance on Σ∗.

The following lemma follows immediately from Denition 1.

Lemma 2. If P , Q are two strings with dE(P,Q) = 1, then P = π(Q) where π is a replacement, a deletion
or an insertion.
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We dene the main problem considered in this paper as follows:

1-Error EDSM
Input: A string P of length m and an ED string T̃ of length n and size N .
Output: All positions j′ in T̃ such that there is at least one string P ′ with an occurrence ending at
position j′ in T̃ , and with dE(P, P ′) ≤ 1 (reporting version); or YES if and only if there is at least one
string P ′ with an occurrence in T̃ , and with dE(P, P ′) ≤ 1 (decision version).

Let P ′ be a string starting at position j and ending at position j′ in T̃ with dE(P, P ′) = 1. We call this
an occurrence of P with 1 error (or a 1-error occurrence); or equivalently, we say that P matches T̃ [j   j′]
with 1 error. Let UP ′

j ,    , P
′
j′V be an alignment of P ′ with T̃ [j   j′] and i ∈ [j, j′] be an integer such that

the single replacement, insertion, or deletion required to obtain P from P ′ = P ′
j ·    · P ′

j′ occurs on P ′
i . We

then say that the alignment (and the occurrence) has the 1 error in T̃ [i]. (It should be clear that for one
alignment we may have multiple dierent i.) We show the following theorem.

Theorem 1. Given a pattern P of length m and an ED text T̃ of length n and size N , the reporting version
of 1-Error EDSM can be solved on-line in O(nm2 logm + N logm) or O(nm3 + N) time. The decision
version of 1-Error EDSM can be solved o-line in O(nm2

√
logm + N log logm) time.

Hamming distance, denoted by dH , is a special case of edit distance in which only replacement operations
are allowed (it is therefore dened for two strings of equal length). We dene the following problem:

1-Mismatch EDSM
Input: A string P of length m and an ED string T̃ of length n and size N .
Output: All positions j′ in T̃ such that there is at least one string P ′ with an occurrence ending at
position j′ in T̃ , and with dH(P, P ′) ≤ 1.

An occurrence of a string P ′ as in the problem denition is called an occurrence of P with 1 mismatch.
We call mismatch the single position in the support of the replacement π such that π(P ) = P ′. We show
the following theorem.

Theorem 2. Given a pattern P of length m and an ED text T̃ of length n and size N , 1-Mismatch EDSM
can be solved on-line in O(nm2 + N logm) or O(nm3 + N) time.

Denition 2. For a string P = P [1  m], an ED string T̃ = T̃ [1]    T̃ [n], a position 1 ≤ i ≤ n, and a
distance on Σ∗, we dene three sets:

• APi ⊆ [1,m], such that j ∈ APi if and only if P [1   j] is an active prex of P in T̃ ending in the
segment T̃ [i], that is, a prex of P which is also a sux of a string in L(T̃ [1]    T̃ [i]).

• ASi ⊆ [1,m], such that j ∈ ASi if and only if P [j  m] is an active sux of P in T̃ starting in the
segment T̃ [i], that is, a sux of P which is also a prex of a string in L(T̃ [i]    T̃ [n]).

• 1-APi ⊆ [1,m], such that j ∈ 1-APi if and only if P [1   j] is an active prex with 1 error of P in T̃
ending in the segment T̃ [i], that is, a prex of P which is also at distance at most 1 from a sux of a
string in L(T̃ [1]    T̃ [i]).

For convenience we also dene AP0 = ASn+1 = 1-AP0 = ∅.

The following lemma shows that the computation of active suxes can be easily reduced to computing
the active prexes for the reversed strings.

Lemma 3. Given a pattern P = P [1  m] and an ED text T̃ = T̃ [1  n], a sux P [j  m] of P is an active
sux in T̃ starting in the segment T̃ [i] if and only if the prex PR[1  m− j + 1] = (P [j  m])R of PR is an
active prex in T̃R, ending in the segment T̃R[n− i + 1] = (T̃ [i])R.
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Prex Case
(Section 3.3)

Anchor Case
(Section 3.2)

Sux Case
(Section 3.3)

Easy Case

(Section 3.1)

APi−1 APi

1-APi−1 1-APi

∗

∗

∗

∗

Figure 2: The layout of the algorithms for computing APi, 1-APi, and reporting occurrences. The green areas
correspond to the (partial) matches in T̃ [i], and the symbol ∗ indicates the position of an error. The vertical bold
lines indicate the beginning/the end of an occurrence or a 1-error occurrence. The cases without a label allow only
exact matches and were already solved by Grossi et al. in [27].

Proof. If P [j  m] is a prex of S ∈ L(T̃ [i  n]), then PR[1  m−j+1] is a sux of SR ∈ L(T̃ [1   n]R). From

the denition of T̃R we have T̃ [i  n]R = ( ˜T [n])R    ( ˜T [i])R = T̃R[1  n− i + 1], hence SR ∈ L(T̃R[1  n−
i + 1]).

This proves the forward direction of the lemma; the converse follows from symmetry.

The ecient computation of active prexes was shown in [27], and constitutes the main part of the
combinatorial algorithm for exact EDSM. Similarly, computing the sets 1-AP plays the key role in the
reporting version of our algorithm for 1-Error EDSM (see Figure 2). Finding active prexes (and, by
Lemma 3, suxes) reduces to the following problem, formalized in [7].

Active Prefixes Extension (APE)
Input: A string P of length m, a bit vector U of size m, and a set S of strings of total length N .
Output: A bit vector V of size m with V [j] = 1 if and only if there exists S ∈ S and i ∈ [1,m], such
that P [1   i] · S = P [1   j] and U [i] = 1.

Lemma 4 ([27]). The APE problem for a string P of length m and a set S of strings of total length N can
be solved in O(m2 + N) time.

Given an algorithm for the APE problem working in f(m) + N time, we can nd all active prexes for
a pattern P of length m in an ED text T̃ = T̃ [1]    T̃ [n] of size N in O(nf(m) + N) total time:

Corollary 3 ([27]). For a pattern P of length m and an ED text T̃ = T̃ [1]    T̃ [n] of total size N , computing
the sets APi for all i ∈ [1, n] takes O(nm2 + N) time.
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As depicted in Figure 2, the computation of active prexes with 1 error (1-APi) and the reporting of
occurrences with 1 error reduce to a problem where the error can only occur in a single, xed T̃ [i]. In
particular, this problem decomposes into 4 cases, which we formalize in the following proposition.

Proposition 4. Let T̃ = T̃ [1]    T̃ [n] be an ED text and P be a pattern that has an occurrence with 1 error
(resp. 1 mismatch) in T̃ . For each alignment corresponding to such occurrence, at least one of the following
is true:

Easy Case: P matches T̃ [i] with 1 error (resp. 1 mismatch) for some 1 ≤ i ≤ n.

Anchor Case: P matches T̃ [j   j′] with 1 error (resp. 1 mismatch) in T̃ [i] for some 1 ≤ j < i < j′ ≤ n.
T̃ [i] is called the anchor of the alignment.

Prex Case: P matches T̃ [j   i] with 1 error (resp. 1 mismatch) in T̃ [i] for some 1 ≤ j < i ≤ n, implying
an active prex of P which is a sux of a string in L(T̃ [j   i− 1]).

Sux Case: P matches T̃ [i   j′] with 1 error (resp. 1 mismatch) in T̃ [i] for some 1 ≤ i < j′ ≤ n, implying
an active sux of P which is a prex of a string in L(T̃ [i + 1   j′]).

Proof. Suppose P has a 1-error (resp. 1 mismatch) occurrence matching T̃ [j   j′] with 1 ≤ j ≤ j′ ≤ n. If
j = j′ we are in the Easy Case. Otherwise, each alignment has an error in some T̃ [i] for j ≤ i ≤ j′. If
j < i < j′, we are in the Anchor Case; if j < i = j′, we are in the Prex Case; and if j = i < j′, we are in
the Sux Case.

3 1-Error EDSM

In this section, we present algorithms for nding all 1-occurrences of P given by each type of possible
alignment described by Proposition 4 (inspect Figure 3). The Prex and Sux cases are analogous by
Lemma 3; the only dierence is in that, while the Sux Case computes new 1-AP , the Prex Case is used
to actually report occurrences. They are jointly considered in Section 3.3.

We follow two dierent procedures for the decision and reporting versions. For the decision version, we
precompute sets APi and ASi, for all i ∈ [1, n], using Corollary 3, and we simultaneously compute possible
exact occurrences of P . Then we compute 1-error occurrences of P by grouping the alignments depending on
the segment i in which the error occurs, and using APi and ASi. For the reporting version, we consider one
segment T̃ [i] at a time (on-line) and extend partial exact or 1-error occurrences of P to compute sets APi and
1-APi using just sets APi−1 and 1-APi−1 computed at the previous step. We design dierent procedures for
the 4 cases of Proposition 4. We can sort all letters of P , assign them rank values from [1,m], and construct
a perfect hash table over these letters supporting O(1)-time look-up queries in O(m logm) time [35]. Any
letter of T̃ not occurring in P can be replaced by the same special letter in O(1) time. In the rest we thus
assume that the input strings are over [1,m + 1].

Two problems from computational geometry have a key role in our solutions. We assume the word RAM
model with coordinates on the integer grid [1, n]d = 1, 2,    , nd. In the 2d rectangle emptiness problem,
we are given a set P of n points to be preprocessed, so that when one gives an axis-aligned rectangle as
a query, we report YES if and only if the rectangle contains a point from P . In the dual 2d rectangle
stabbing problem, we are given a set R of n axis-aligned rectangles to be preprocessed, so that when one
gives a point as a query, we report YES if and only if there exists a rectangle from R containing the point.

Lemma 5 ([11, 23]). After O(n
√

log n)-time preprocessing, we can answer 2d rectangle emptiness queries
in O(log log n) time.

Lemma 6 ([15, 36]). After O(n log n)-time preprocessing, we can answer 2d rectangle stabbing queries in
O(log n) time.

In Section 3.4, we note that the 2d rectangle stabbing instances arising from 1-Error EDSM have a
special structure. We show how to solve them eciently thus shaving logarithmic factors from the time
complexity.

7



3.1 Easy Case

The Easy Case can be reduced to approximate string matching with at most 1 error (1-SM):

1-SM
Input: A string P of length m and a string T of length n.
Output: All positions j in T such that there is at least one string P ′ ending at position j in T with
dE(P, P ′) ≤ 1.

We have the following well-known results.

Lemma 7 ([31, 18]). Given a pattern P of length m, a text T of length n, and an integer k > 0, all positions
j in T such that the edit distance of T [i   j] and P , for some position i ≤ j on T , is at most k, can be found

in O(kn) time or in O(nk4

m + n) time.1 In particular, 1-SM can be solved in O(n) time.

We nd occurrences of P with at most 1 error that are in the Easy Case for segment T̃ [i] in the following
way: we apply Lemma 7 for k = 1 and every string of T̃ [i] whose length is at least m− 1 (any shorter string
is clearly not relevant for this case) as text. If, for any of those strings, we nd an occurrence of P , we report
an occurrence at position i (inspect Figure 3a). The time for processing a segment T̃ [i] is O(Ni), where Ni

is the total length of all the strings in T̃ [i].

3.2 Anchor Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an alignment in the Anchor Case
with anchor T̃ [i]. Further let L = P [1   `]S′ and Q = S′′P [q  m] be a prex and a sux of P , respectively,
for some ` ∈ APi−1, q ∈ ASi+1, where S′, S′′ are a prex and a sux of some S ∈ T̃ [i], respectively (strings
S′, S′′ can be empty). By Lemma 2, a pair L,Q gives a 1-error occurrence of P if one of the following holds:

1 mismatch: L + Q + 1 = m and S′ + S′′ + 1 = S (inspect Figure 3b).

1 deletion in P : L + Q = m− 1 and S′ + S′′ = S.

1 insertion in P : L + Q = m and S′ + S′′ + 1 = S.

We show how to nd such pairs with the use of a geometric approach. For convenience, we only present
the Hamming distance (1 mismatch) case. The other cases are handled similarly.

Let λ ∈ APi−1 be the length of an active prex, and let ρ be the length of an active sux, that is,
m − ρ + 1 ∈ ASi+1. Note that APi−1 and ASi+1 can be precomputed, for all i, in O(nm2 + N) total time
by means of Corollary 3. (In particular, ASi+1 is required only for the decision version; for the reporting
version, we explain later on how to avoid the precomputation of ASi+1 to obtain an on-line algorithm.) We
will exhaustively consider all pairs (λ, ρ) such that λ + ρ < m. Clearly, there are O(m2) such pairs.

Consider the length µ = m − (λ + ρ) > 0 of the substring of P still to be matched for some prex and
sux of P of lengths (λ, ρ), respectively. We group together all pairs (λ, ρ) such that m − (λ + ρ) = µ by
sorting them in O(m2) time. We construct, for each such group µ, the compacted trie Tµ of the fragments
P [λ + 1  m − ρ], for all (λ, ρ) such that m − (λ + ρ) = µ, and analogously the compacted trie TR

µ of all

fragments PR[ρ + 1  m − λ]. For each group µ, this takes O(m) time [33]. We enhance all nodes with a
perfect hash table in O(m) total time to access edges by the rst letter of their label in O(1) time [22].

We also group all strings in segment T̃ [i] of length less than m by their length µ. The group for length
µ is denoted by Gµ. This takes O(Ni) time. Clearly, the strings in Gµ are the only candidates to extend
pairs (λ, ρ) such that m − (λ + ρ) = µ. Note that the mismatch can be at any position of any string of
Gµ: its position determines a prex S′ of length h and a sux S′′ of length k of the same string S, with
h + k = µ − 1, that must match a prex and a sux of P [λ + 1  m − ρ], respectively. We will consider

1Charalampopoulos et al. have announced an improvement on the exponent of k from 4 to 3.5; specically they presented

an O(nk3.5√logm log k
m

+ n)-time algorithm [14].
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P =
error

string from set T̃ [i]

(a) Easy Case: j = i = j′.

. . .

. . . . . .

. . .

string from set T̃ [j] string from set T̃ [i] string from set T̃ [j′]

P =
error

L Q

(b) Anchor Case: j 6= i, i 6= j′.

. . .

. . .
string from set T̃ [j] string from set T̃ [i]

P =
error

L Q

(c) Prex Case: j 6= i, i = j′.

. . .

. . .
string from set T̃ [j′]string from set T̃ [i]

P =
error

(d) Sux Case: i = j, i 6= j′.

Figure 3: Possible alignments of 1-error occurrences of P in T̃ . Each occurrence starts at segment T̃ [j], ends at T̃ [j′],
and the error occurs at T̃ [i].

all such pairs of positions (h, k) whose sum is µ − 1 (intuitively, the minus one is for the mismatch). This
guarantees that L = P [1   λ]S′ and Q = S′′P [m− ρ+ 1  m] are such that L+ Q+ 1 = m. The pairs are
(0, µ−1), (1, µ−2),    , (µ−1, 0). This guarantees that L and Q are one position apart (S′+ S′′+1 = S).

The number of these pairs is O(µ) = O(m). Consider one such pair (h, k) and a string S ∈ Gµ. We treat
every such string S separately. We spell S[1  h] in Tµ. If the whole S[1  h] is successfully spelled ending at
a node u, this implies that all the fragments of P corresponding to nodes descending from u share S[1  h] as
a prex. We also spell SR[1   k] in TR

µ . If the whole of SR[1   k] is successfully spelled ending at a node v,

then all the fragments of P corresponding to nodes descending from v share (SR[1   k])R as a sux. Nodes
u and v identify an interval of leaves in Tµ and TR

µ , respectively. We need to check if these intervals both
contain a leaf corresponding to the same fragment of P . If they do, then we obtain an occurrence of P with
1 mismatch (see Figure 4). We now have two dierent ways to proceed, depending on whether we need to
solve the o-line decision version or the on-line reporting version.

Decision Version Let us recall that Tµ, T
R
µ by construction are ordered based on lexicographic ranks.

For every pair (Tµ, T
R
µ ), we construct a data structure for 2d rectangle emptiness queries on the grid [1, `]2,

where ` is the number of leaves of Tµ (and of TR
µ ), for the set of points (x, y) such that x is the lexicographic

rank of the leaf of Tµ representing P [λ + 1  m − ρ] and y is the rank of the leaf of TR
µ representing
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T3

a

b

a

b
a

a a
a

b

TR
3

a

b

a

b

a

a

b

a

b

aaa

aba

baa

babaaa bba

Figure 4: An example of points and rectangles (solid shapes) for the decision version of the Anchor Case with 1
mismatch. Here P = bbaaaabababb, APi−1 = {1, 2, 4, 7, 8, 9}, ASi+1 = {5, 6, 9, 11, 12}, µ = 3, and T̃ [i] = {aaa, bba}.
T3 and TR

3 are built for 4 strings: P [2 . . 4] = baa, P [3 . . 5] = aaa, P [8 . . 10] = aba, P [9 . . 11] = bab; the 5 rectangles
correspond to pairs (ε, aa), (a, a), (aa, ε), (ε, ab), (b, a), namely, the pairs of prexes and reversed suxes of aaa and
bba (rectangle (bb, ε) does not exist as T3 contains no node bb).

PR[ρ+1  m−λ] for the same pair (λ, ρ). This denotes that the two leaves correspond to the same fragment
of P . For every (Tµ, T

R
µ ), this preprocessing takes O(m

√
logm) time by Lemma 5, since ` is O(µ) = O(m).

For all µ groups (they are at most m), the whole preprocessing thus takes O(m2
√

logm) time.
We then ask 2d range emptiness queries that take O(log logm) time each by Lemma 5. Note that all

rectangles for S can be collected in O(S) = O(µ) time by spelling S through Tµ and SR through TR
µ , one

letter at a time. Thus the total time for processing all Gµ groups of segment i is O(m2
√

logm+Ni log logm).

If any of the queried ranges turns out to be non-empty, then P ′ such that dH(P, P ′) ≤ 1 appears in L(T̃ )
with anchor in T̃ [i]; we do not have sucient information to output its ending position however.

Reporting Version For this version, we do the dual. We construct a data structure for 2d rectangle
stabbing queries on the grid [1, `]2 for the set of rectangles collected for all strings S ∈ Gµ. By Lemma 6,
for all µ groups, the whole preprocessing thus takes O(Ni logNi) time.

For every (Tµ, T
R
µ ), we then ask the following queries: (x, y) is queried if and only if x is the rank of

a leaf representing P [λ + 1  m − ρ] and y is the rank of a leaf representing PR[ρ + 1  m − λ]. For every
(Tµ, T

R
µ ), this takes O(m logNi) time by Lemma 6 and by the fact that for each group Gµ there are O(m)

pairs (λ, ρ) such that m − (λ + ρ) = µ. For all groups Gµ (they are at most m), all the queries thus take
O(m2 logNi) time. Thus the total time for processing all Gµ groups of segment i is O((m2 + Ni) logNi).

We are not done yet. By performing the above algorithm for active prexes and active suxes, we
nd out which pairs can be completed to a full occurrence of P with at most 1 error. This information is
not sucient to compute where such an occurrence ends (and storing additional information together with
the active suxes may prove costly). To overcome this, we use some ideas from the decision algorithm,
appropriately modied to preserve the on-line nature of the reporting algorithm. Instead of iterating ρ over
the lengths of precomputed active suxes, we iterate it over all possible lengths in [0,m] (including 0 because
we may want to include m in 1-APi). A sux of P of length ρ completes a partial occurrence computed up
to segment i exactly when m − ρ ∈ 1-APi (a pair x ∈ 1-APi, x + 1 ∈ ASi+1 corresponds to an occurrence).
We thus use the reporting algorithm to compute the part of 1-APi coming from the extension of APi−1 (see
Figure 2), and defer the reporting to the no-error version of the Prex Case for the right j′; which was solved

10



by Grossi et al. [27] in linear time.

3.3 Prex Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an alignment in the Prex Case with
active prex ending at T̃ [i− 1]. Let L = P [1   `]S′, with ` ∈ APi−1, be a prex of P that is extended in T̃ [i]
by S′; and Q be a sux of P occurring in some string of T̃ [i] (strings S′, Q can be empty). By Lemma 2,
we have 3 possibilities for any alignment of a 1-error occurrence of P in the Prex Case:

1 mismatch: L + Q + 1 = m, S′ is a prex of the same string in which Q occurs, and they are one
position apart (inspect Figure 3c).

1 deletion in P : L + Q = m − 1, S′ is a prex of the same string in which Q occurs, and they are
consecutive.

1 insertion in P : L + Q = m, S′ is a prex of the same string in which Q occurs, and they are one
position apart.

For convenience, we only present the method for Hamming distance (1 mismatch). The other possibilities
are handled similarly.

The techniques are similar to those for the Anchor Case (Section 3.2). We group the prexes of all strings
in T̃ [i] according to their length µ ∈ [1,m). The total number of these prexes is O(Ni). The group for
length µ is denoted by Gµ. We construct the compacted trie TGµ

of the strings in Gµ, and the compacted
trie TR

Gµ
of the reversed strings in Gµ. This can be done in O(Ni) total time for all compacted tries. To

achieve this, we employ the following lemma by Charalampopoulos et al. [12]. (Recall that we have already
sorted all letters of P . In what follows, we assume that Ni ≥ m; if this is not the case, we can sort all letters
of T̃ [i] in O(m + Ni) time.)

Lemma 8 ([12]). Let X be a string of length n over an integer alphabet of size nO(1). Let I be a collection of
intervals [i, j] ⊆ [1, n]. We can lexicographically sort the substrings X[i   j] of X, for all intervals [i, j] ∈ I,
in O(n + I) time.

We concatenate all the strings of T̃ [i] to obtain a single string X of length Ni, to which we apply, for each
µ, Lemma 8, with a set I consisting of the intervals over X corresponding to the strings in Gµ. By sorting,
in this way, all strings in Gµ (for all µ), and by constructing [21] and preprocessing [6] the generalized sux

tree of the strings in T̃ [i] in O(Ni) time to support answering lowest common ancestor (LCA) queries in
O(1) time, we can construct all TGµ

in O(Ni) total time. We handle TR
Gµ

, for all µ, analogously. Similar to

the Anchor Case we enhance all nodes with a perfect hash table within the same complexities [22].
In contrast to the Anchor Case, we now only consider the set APi−1: namely, we do not consider ASi+1.

Let λ ∈ APi−1 be the length of an active prex. We treat every such element separately, and they are O(m)
in total. Let µ = m−λ > 0 and consider the group Gµ whose strings are all of length µ. The mismatch being
at position h + 1 in one such string S determines a prex S′ of S of length h that must extend the active
prex of P of length λ, and a fragment Q of S of length k = µ − h − 1 that must match a sux of P . We
will consider all such pairs (h, k) whose sum is µ− 1. The pairs are again (0, µ− 1), (1, µ− 2),    , (µ− 1, 0),
and there are clearly O(µ) = O(m) of them.

Consider (h, k) as one such pair. We spell P [λ + 1   λ + h] in TGµ
. If the whole P [λ + 1   λ + h] is

spelled successfully, this implies an interval of leaves of TGµ
corresponding to strings from T̃ [i] that share

P [λ + 1   λ + h] as a prex. We spell PR[1   k] in TR
Gµ

. If the whole PR[1   k] is spelled successfully,

this implies an interval of leaves of TR
Gµ

corresponding to strings from T̃ [i] that have the same fragment

(PR[1   k])R. These two intervals form a rectangle in the grid implied by the leaves of TGµ
and TR

Gµ
. We

need to check if these intervals both contain a leaf corresponding to the same prex of length µ of a string
in T̃ [i]. If they do, then we have obtained an occurrence with 1 mismatch in T̃ [i].
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To do this we construct, for every (TGµ
, TR

Gµ
), a 2d range data structure for the set of points (x, y) such

that x is the rank of a leaf of TGµ
, y is the rank of a leaf of TR

Gµ
, and the two leaves correspond to the same

prex of length µ of a string in T̃ [i]. For every (TGµ
, TR

Gµ
), this takes O(Gµ

√
log Gµ) time by Lemma 5.

For all Gµ groups, the whole preprocessing takes O(Ni

√
logNi) time.

We then ask 2d range emptiness queries each taking O(log log Gµ) time by Lemma 5. Note that all
rectangles for λ can be collected in O(m) time by spelling P [λ+1   λ+µ−1] through TGµ

and PR[1  µ−1]
through TR

Gµ
, one letter at a time. This gives a total of O(m2 log logNi +Ni

√
logNi) time for processing all

Gµ groups of T̃ [i], because
∑

µ Gµ ≤ Ni.

To solve the Sux Case (compute active prexes with 1 error starting in T̃ [i]) we employ the mirror
version of the algorithm, but iterating λ over the whole [0,m] instead of ASi+1 (like in the reporting version
of the Anchor Case).

3.4 Shaving Logs using Special Cases of Geometric Problems

3.4.1 Anchor Case: Simple 2d Rectangle Stabbing

Lemma 9. We can solve the Anchor Case (i.e., extend APi−1 into 1-APi) in O(m3 + Ni) time.

Proof. By Lemma 6, 2d rectangle stabbing queries can be answered in O(log n) time using O(n log n) space
after O(n log n)-time preprocessing.

Notice that in the case of the 2d rectangle stabbing used in Section 3.2 the rectangles and points are all
in a predened [1,m] × [1,m] grid. In such a case we can also use an easy folklore data structure of size
O(m2), which after an O(m2 + rectangles)-time preprocessing answers such queries in O(1) time.

Namely, the data structure consists of a [1,m + 1]2 grid Γ (a 2d-array of integers) in which for every
rectangle [u, v] × [w, x] we add 1 to Γ[u][w] and Γ[v + 1][x + 1] and −1 to Γ[u][x + 1] and Γ[v + 1][w]. Then
we modify Γ to contain the 2d prex sums of its original values (we rst compute prex sums of each row,
and then prex sums of each column of the result). After these modications, Γ[x][y] stores the number of
rectangles containing point (x, y), and hence after O(m2 + rectangles)-time preprocessing we can answer
2d rectangle stabbing queries in O(1) time.

In our case we have a total of O(m) such grid structures, each of O(m2) size, and ask O(m2) queries,
and hence obtain an O(m3 + Ni)-time and O(m2)-space solution for computing 1-APi from APi−1.

3.4.2 Prex Case: a Special Case of 2d Rectangle Stabbing

Inspect the example of Figure 4 for the Anchor Case. Note that the groups of rectangles for each string have
the special property of being composed of nested intervals : for each dimension, the interval corresponding
to a given node is included in the one corresponding to any of its ancestors. Thus for the Prex Case, where
we only spell fragments of the same string P in both compacted tries, we consider the following special case
of o-line 2d rectangle stabbing.

Lemma 10. Let p1,    , ph and q1,    , qh be two permutations of [1, h]. We denote by Π the set of h points
(p1, q1), (p2, q2),    , (ph, qh) on [1, h]2.

Further let R be a collection of r axis-aligned rectangles ([u1, v1], [w1, x1]),    , ([ur, vr], [wr, xr]), such that

[ur, vr] ⊆ [ur−1, vr−1] ⊆ · · · ⊆ [u1, v1]

and
[w1, x1] ⊆ [w2, x2] ⊆ · · · ⊆ [wr, xr]

Then we can nd out, for every point from Π, if it stabs any rectangle from R in O(h + r) total time.

Proof. Let H be a bit vector consisting of h bits, initially all set to zero. We process one rectangle at a time.
We start with ([u1, v1], [w1, x1]). We set H [p] = 1 if and only if (p, q) ∈ Π for p ∈ [u1, v1] and any q. We
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collect all p such that (p, q) ∈ Π and q ∈ [w1, x1], and then search for these p in H : if for any p, H [p] = 1,
then the answer is positive for p. Otherwise, we remove from H every p such that p ∈ [u1, v1] and p ∈ [u2, v2]
by setting H [p] = 0. We proceed by collecting all p such that (p, q) ∈ Π, q ∈ [w2, x2] and q ∈ [w1, x1], and
then search for them in H : if for any p, H [p] = 1, then the answer is positive for p. We repeat this until H
is empty or until there are no other rectangles to process.

The whole procedure takes O(h + r) time, because we set at most h bits on in H , we set at most h bits
back o in H , we search for at most h points in H , and then we process r rectangles.

Lemma 11. We can solve the Prex (resp. Sux) Case, that is, report 1-error occurrences ending in T̃ [i]
(resp. compute active prexes with 1 error starting in T̃ [i]) in O(m2 + Ni) time.

Proof. We employ Lemma 10 to get rid of the 2d range data structure. The key is that for every length-µ
sux P [λ + 1  m] of the pattern we can aord to pay O(µ + Gµ) time plus the time to construct TGµ

and TR
Gµ

for set Gµ. Because the grid is [1, Gµ]2, we exploit the fact that the intervals found by spelling

P [λ + 1   λ + µ − 1] through TGµ
and PR[1  µ − 1] through TR

Gµ
, one letter at a time, are subset of each

other, and querying µ such rectangles is done in O(µ+ Gµ) time by employing Lemma 10. Since we process
at most m distinct length-µ suxes of P , the total time is O(m2 + Ni), because

∑
µ Gµ ≤ Ni.

3.5 Wrapping-up

To obtain Theorem 1 for the decision version of the problem we rst compute APi and ASi, for all i ∈ [1, n],
in O(nm2 + N) total time (Corollary 3). We then compute all the occurrences in the Easy Cases using
O(N) time in total (Section 3.1); and we nally compute all the occurrences in the Prex and Sux Cases
in

∑
i O(m2 + Ni) = O(nm2 + N) total time (Lemma 11).

Now, to solve the decision version of the problem, we solve the Anchor Cases with the use of the pre-
computed APi−1 and ASi+1 for each i ∈ [2, n− 1] in O(m2

√
logm + Ni log logm) time (Section 3.2), which

gives O(nm2
√

logm + N log logm) total time for the whole algorithm.
For the reporting version we proceed dierently to obtain an on-line algorithm; note that this is possible

because we can proceed without ASi (see Figure 2). We thus consider one segment T̃ [i] at the time, for each
i ∈ [1, n], and do the following. We compute 1-APi, as the union of three sets obtained from:

• The Sux Case for T̃ [i], computed in O(m2 + Ni) time (Lemma 11).

• Standard APE with 1-APi−1 as the input bit vector, computed in O(m2 + Ni) time (Lemma 4).

• Anchor Case computed from APi−1 in O((m2+Ni) logNi) (Section 3.2) or O(m3+Ni) time (Lemma 9).

If Ni ≥ m3, the algorithm of Lemma 9 works in the optimal O(m3 + Ni) = O(Ni) time, hence we can
assume that the O((m2 + Ni) logNi)-time algorithm is only used when Ni ≤ m3, and thus it runs in
O((m2 +Ni) logm) time. Therefore over all i the computations require O((nm2 +N) logm) or O(nm3 +N)
total time. For every segment i we can also check whether an active prex from 1-APi−1 or from APi−1

can be completed to a full match in T̃ [i] using the algorithms of Grossi et al. from [27] and Prex Case,
respectively, in O(m2 + Ni) extra time.

By summing up all these we obtain Theorem 1.

4 1-Mismatch EDSM

In this section, we give an alternative to the construction presented in Section 3.2, in the case of 1-Mismatch
EDSM. We do so by nding matches in a tree containing both suxes of P and elements from the segment
T̃ [i], as well as modied versions of those strings. The number of additional strings is bounded by using
the heavy-light decomposition of Sleator and Tarjan [37]. The construction is directly inspired by the one
presented by Thankachan et al. in [38], which is itself inspired by the k-errata tree construction introduced
by Cole et al. in [17] for indexing with errors. We give an algorithm to nd all occurrences of P in T̃
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with 1 mismatch by computing sets 1-APi under Hamming distance, which, combined with the previously
developed techniques, results in solving the 1-Mismatch EDSM problem in O(nm2 + N logm) time.

Let us start with the following basic denition.

Denition 3 ([37]). Let T be a rooted tree. The heavy path of T is the path that starts at the root and at
each node descends to the child (called heavy node) with the largest number of leaf nodes in its subtree (ties
are broken arbitrarily). The heavy-light decomposition of T is dened recursively as a union of the heavy
path of T and the heavy path decompositions of the o-path subtrees of the heavy path. The nodes that
are not heavy nodes are called light nodes (the root of T is always a light node). An edge on a heavy path
is called heavy ; and the other edges are called light.

A crucial property following from Denition 3 is that any root-to-leaf path crosses O(log T ) paths. Each
light edge on a path from the root decreases the size of the descending subtree by at least half. Thus the
number of light edges on a path from any node to the root is O(log T ).

We use the above properties to eciently construct a tree T1(P, T̃ [i]) (for a given ED text T̃ [1  n] of size
N , a pattern P [1  m] and an index 1 ≤ i ≤ n with T [i] = Ni) in three steps (inspect Figure 5):

Step 1 We construct the compacted trie containing the strings in T̃ [i] and suxes P [j + 1  m] of P for
each j ∈ APi−1. We call this set of suxes of P acti−1(P ). We also add labels (ι(X),#) to each node
in the tree corresponding to a string X in acti−1(P ) ∪ T̃ [i], where ι(X) is a pointer to X and # is
a special label. This takes O(m + Ni) time and space [21] (we add the suxes of P in O(m) total
time by constructing the sux tree of P and truncating the superuous suxes). We call T0(P, T̃ [i])
the tree we obtain from this step. In the next steps it will be extended with new nodes and labels to
obtain T1(P, T̃ [i]).

Step 2 We compute a heavy-light decomposition [37] of T0(P, T̃ [i]), which takes time linear in its size,
namely O(m + Ni).

Step 3 For each light node u of T0(P, T̃ [i]) let u′ be the leaf on the heavy path starting at u. Leaf u′

corresponds to a string X, and for each labeled descendant v of u outside of the heavy path u   u′,
if Y is the string corresponding to v, we compute p = 1 + LCP(X,Y ) (in O(1) time after linear-time
preprocessing of the tree for LCA queries [6]) and add to T1(P, T̃ [i]) the string obtained from Y by
replacing Y [p] with X[p], with a label (ι(Y ), p) (a given node can store multiple labels). Intuitively, p
is the position of a mismatch between (a prex of) X and (a prex of) Y . Since the tree T0(P, T̃ [i])
has O(m + Ni) nodes and each of them has O(log(m + Ni)) light node ancestors, there are no more
than O((m+Ni) log(m+Ni)) additional nodes and labels. Also the construction of new nodes can be
done each time in O(1) time, because we in fact just copy a subtree of a light node and merge it with
the subtree of its heavy sibling. We have thus arrived at the following lemma.

Lemma 12. The construction of T1(P, T̃ [i]) takes O((m + Ni) log(m + Ni)) time and space.

We now prove that the tree T1(P, T̃ [i]) satises the following property.

Lemma 13. Let X ∈ acti−1(P ). A string Y ∈ T̃ [i] is at Hamming distance at most 1 from a prex of
X having length Y  if and only if T1(P, T̃ [i]) contains two nodes u, v respectively labeled by (ι(X), p) and
(ι(Y ), p′), for some p, p′ ∈ N ∪ #, such that u is a descendant of v, and one of the following is satised:

• p = p′ ∈ N

• p = # or p′ = #.

Proof. For the forward implication, if Y is a prex of X then the claim is trivial since T0(P, T̃ [i]) contains
nodes with labels (ι(X),#) and (ι(Y ),#), and thus the rst node is a descendant of the second one. Now,
we assume that Y has one mismatch with X ′ = X[1   Y ] at a position p. Let u, v be nodes in T0(P, T̃ [i])
respectively corresponding to X and Y , and let w be their lowest common light ancestor. Let Z be the
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Figure 5: T0(P, T̃ [i]) and T1(P, T̃ [i]) for the example from Figure 4 (P = bbaaaabababb, APi−1 = {1, 2, 4, 7, 8, 9},
T̃ [i] = {aaa, bba}) with labels (pj = ι(P [j . .m]), tj = ι(T̃ [i][j])) and heavy paths.

string corresponding to the leaf on the heavy path starting at the heavy child of w. Since X and Y have
a mismatch at position p, at least one of them has a mismatch with Z at position p and there are no
mismatches to the left of p. Indeed, suppose towards a contradiction that there exists some p′ < p such that
Z[p′] 6= X[p′](= Y [p′]): then the node corresponding to X[1   p′](= Y [1   p′]) would not be on the heavy
path corresponding to Z, but would be a common ancestor of u and v, and thus w would not be the lowest
common light ancestor of u and v, a contradiction.

Assume rst that X[p] 6= Z[p]. Then, there is a node with a label (ι(X), p) in the tree, which is a
descendant of either v, having label (ι(Y ),#) (if Y [p] = Z[p]), or a node having label (ι(Y ), p) (if Y [p] 6= Z[p]),
because we assumed that X and Y do not have any other mismatch. Finally, if X[p] = Z[p], then Y [p] 6= Z[p]
and the node with label (ι(Y ), p) is an ancestor of u, having label (ι(X),#).

To prove the reverse implication, let us assume that the consequences are satised. Let u be the node
whose label contains (ι(X), p) and v the node whose label contains (ι(Y ), p′). We rst assume p = p′ ∈ N.
Note that, by the construction of T1(P, T̃ [i]), the node u (resp. v) corresponds to a string obtained by one
letter modication on X (resp. on Y ) at the same position p. We denote the resulting string X̂ (resp Ŷ ).
Since v is an ancestor of u in T1(P, T̃ [i]), Ŷ is a prex of X̂. But this exactly means that Y has Hamming
distance 1 with the length Y  prex of X (or Hamming distance 0 if both replacements replaced the same
letter). If the second condition is satised, namely if p = # or p′ = #, then it means that one replacement
in Y gives Ŷ which is a prex of X, or that Y is a prex of X̂, which is one replacement away from X,
therefore we have the claimed result.

We next formalize how to nd nodes satisfying one of the conditions from Lemma 13 and deduce the
approximate active prexes corresponding to the Anchor Case for segment T̃ [i]. Let v1 OR v2 denote a bitwise
OR of two vectors, and v1 ⊕ x denote vector v1 shifted by x positions to the right (the rst x positions are
set to 0).

Proposition 5. Algorithm 1 with input T1(P, T̃ [i]) returns Vres such that Vres[p] = 1 if and only if p is
an element of 1-APi corresponding to the Anchor Case for segment T̃ [i]. Algorithm 1 runs in O((m +
Ni) log(m + Ni) + m2) time.

Proof. We rst need the following remark: if P [1   k] extends into P [1   k′] in T̃ [i], that means that some
Y ∈ T̃ [i] is at Hamming distance 1 from the prex P [k + 1   k′] of P [k + 1   P ]. Therefore, we are looking
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Algorithm 1 Search(T )

1: Global variables: the set acti−1(P ), a segment T̃ [i], and bit vectors V#, V1,   , Vm, VANY , Vres all of
size P  + 1, and initially set to all 0’s

2: Input: T - a subtree of T1(P, T̃ [i]) with root r
3: Output: represented by global bit vector Vres

4: for each label (ι(X), p) with X ∈ T̃ [i] on r do
5: set Vp[X] and VANY [X] to 1

6: for each label (ι(X), p) with X ∈ acti−1(P ) on r do
7: if p = # then
8: update Vres to Vres OR (VANY ⊕ (m− X)).
9: else update Vres to Vres OR ((Vp OR V#) ⊕ (m− X ))

10: for each T ′ a subtree of T rooted at a child of r do
11: run Search(T ′)

12: for each label (ι(X), p) with X ∈ T̃ [i] on r do
13: set Vp[X] and VANY [X] to 0

for the pairs described in Lemma 13. We show then that Vres[k
′] = 1 after the end of the procedure if and

only if there is a pair of nodes u, v in T1(P, T̃ [i]) satisfying the conditions of Lemma 13 for X = P [k+1   P ],
Y ∈ T̃ [i], and Y  = k′ − k.

Let us assume the existence of such a pair (u, v). Since the tree is traversed in a DFS, the node v (with
a label (ι(Y ), p′), p′ ∈ N ∪ #) is traversed before u, which is its descendant; and at this moment, Vp′ [Y ]
is set to 1, as well as VANY [Y ]. Since u is a descendant of v, the vectors are not modied at position Y 
until u is visited: that would mean that v has a strict descendant representing a string of the same length as
the string represented by v. When the label (ι(X), p) for X ∈ acti−1(P ) is visited on u, we set the position
(m − X) + Y  = k′ of Vres to 1 if Vp[Y ] = 1 or V#[Y ] = 1 (which happens if p = p′ ∈ N ∪ # or if
p′ = #) and when p = # if VANY [Y ] = 1.

Vice versa, if after the processing one has Vres[k
′] = 1, this means that at some point in the DFS a

node u having a label (ι(X), p) with X ∈ acti−1(P ) and p ∈ N ∪ # was visited, and that at this point,
for k = m − X, one had VANY [k′ − k] = 1 or Vp′ [k′ − k] = 1 for (p, p′) satisfying the conditions from

Lemma 13. This one had to be set previously in the DFS at a node v having label (ι(Y ), p′) for Y ∈ T̃ [i]
with Y  = k′ − k. Finally, an ancestor of u can be chosen as such v, because otherwise, from the DFS
traversal order, the corresponding component of the vectors would have been set to 0. Now, the pair of
nodes (u, v) satisfy the conditions of Lemma 13, and from our observations that means that there is an
active prex with 1 error of P having length k, extending up to T̃ [i].

The running time follows from the fact that the algorithm visits only O((m + Ni) log(m + Ni)) labels
by Lemma 12, and from the fact that the tree is traversed in a DFS. The analysis of each label consists in
reading it and doing a constant number of bit modications in the stored vectors, and, for O(m log(m+Ni))
of them (the one corresponding to a sux of P ), doing an OR operation which takes O( m

log(N+m) ) time in

the word RAM model. This gives us the required running time.

Corollary 6. 1-Mismatch EDSM can be solved in O(nm2 + N logm) time.

Proof. We proceed in the same way as in the reporting version of Section 3.5; the only dierence is that,
when Ni ≤ m3, to extend APi−1 into 1-APi, instead of using the O((m2 +Ni) logm)-time algorithm, we use
the one from Proposition 5. Due to this change, the algorithm runs in the desired time. Indeed, notice that
when Ni ≤ m3, O((Ni+m) log(m+Ni)+m2) = O(Ni logm+m2), and when Ni ≥ m3, O(m3+Ni) = O(Ni).
The total time is thus O(nm2 + N logm).
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5 Open Questions

While our techniques (Sections 3 and 4) seem to generalize relatively easily to k errors, they would incur
some exponential factor with respect to k. We leave the following basic questions open:

1. Can we design an O(nm2 + N)-time algorithm for 1-EDSM under edit or Hamming distance?

2. Can our techniques be eciently generalized for k > 1 errors or mismatches?

3. Can our Hamming distance improvement for 1 mismatch (Section 4) be extended to edit distance?
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