
On the (In)Security of the BUFF Transform
Non-Resignability and Φ-Non-Malleability in the Plain and the Random Oracle Model

Jelle Don1, Serge Fehr1,2, Yu-Hsuan Huang1, and Patrick Struck3

1 C W & I (CWI), A, T N
2 M I, L U, L, T N

3 U  K, K, G
{jelle.don, serge.fehr, yhh}@cwi.nl, patrick.struck@uni-konstanz.de

Abstract. T BUFF         ,  
        , .., exclusive own-
ership  non-resignability. I     - ,   
   NIST  additional desirable security properties,      -
    BUFF       ,    
     BUFF     .
I  ,         -   ,
  BUFF   . I   ,        
                
  -  ( -       
      ). G   BUFF     
    ,     BUFF   not  -
         ,     .
W      (ROM),       
       -    ROM. F  
      ROM,        , 
       -   BUFF    ROM.
I,     -   BUFF     .
O   ,     salted    BUFF     weaker
  -   ROM,      , if  
   ()   -  ;    ,
     .

1 Introduction

1.1 Non-Resignability and the BUFF Transform

Since their introduction in the seminal work by Die and Hellman [DH76] as a concept, and by Rivest,
Shamir, and Adleman [RSA78] with the rst proposed instantiation, digital signature schemes play an indis-
pensable role in modern cryptography, both in the theory of cryptography and in practical applications.

The gold standard security property for digital signatures is unforgeability (under chosen message at-
tacks), demanding that it is hard to produce a valid signature without knowledge of the secret key. How-
ever, in certain situations, additional security properties may be desirable, like exclusive ownership [PS05],
message-bound signatures, and non-resignability [JCCS19]. The NIST explicitly mentioned them as addi-
tional desirable security properties in their call for additional post-quantum signatures [NIST22]. As dis-
cussed in [CDF+21], there are real-life attacks in certain applications that exploit the lack of these additional
security properties.

Non-resignability for example requires, informally, that it is hard for an attacker to maul a signature σ
for a message m into a signature σ under his own public-key, when he only gets to see the signature σ of m
(under someone else’s public key) and some auxiliary information on m, but not the message m itself. The
relevance of non-resignability has been shown in [JCCS19], where the authors identied an attack against the

Dynamically Recreatable Key protocol [KBJ+14] that indeed applies in case the deployed signature scheme
does not satisfy non-resignability, uncovering a aw in the protocol’s original security analysis [ZBPB17].

On top of discussing these additional security properties and their relevance in applications, Cremers,
Düzlü, Fiedler, Fischlin, and Janson [CDF+21] oer a generic transformation, the BUFF transform (which
stands for Beyond UnForgeability Features), that turns any signature scheme into a new signature scheme
that is argued to then satisfy these additional security properties either in the random oracle model (ROM)
or in the plain model under some non-standard assumptions on the hash function.1

Motivated by the reference in the NIST call and the little overhead caused by the BUFF transform, several
of the submissions to the NIST call for additional post-quantum signatures have the BUFF transform built
in, or mention the possibility of applying the BUFF transform to the proposed scheme.2

There have also been some claims about (some of) these additional security properties being achieved
by the three signature schemes that were selected by the NIST in 2022 to be standardized. Indeed, Cremers
et al. [CDF+21] argue that Dilithium [LDK+20] uses the BUFF transform implicitly, allowing them to
apply their main result regarding the BUFF transform. Falcon [PFH+20] does not achieve the beyond
unforgeability features; however, the Falcon team announced that they will deploy the BUFF transform
to achieve them [FHK+22]. Finally, Cremers et al. expect that Sphincs+ [HBD+20] also achieves non-
resignability, though only using some informal arguments.

1.2 Our Results.

In this work, we give both negative and positive results on the non-resignability property in general, and the
BUFF transform in particular, as discussed below in more detail.

Negative Results. First, we consider the plain model, and we observe that for any signature scheme with
the property that there is sucient (computational) entropy in the message when given its signature (and
the public key), there is a simple attack that entirely breaks non-resignability of the signature scheme.3

Given that, by design, the BUFF transform satises this entropy requirement, it follows directly that
the BUFF transform does not satisfy non-resignability in the plain model, regardless of the hash function
used (and regardless of the hash function being xed or chosen from a family of possible hash functions). We
stress that not only is there no proof for the non-resignability of the BUFF transform in the plain model,
but our aforementioned attack easily breaks it.

Moving to the random oracle model (ROM), somewhat surprising in the light of the positive results
claimed in [CDF+21] on the BUFF transform in the ROM, we show that, as a matter of fact, also in the
ROM the BUFF transform does not satisfy non-resignability. The matter is slightly more subtle here since
prior works did not rigorously dene the non-resignability property in the ROM. What we show is that
for the natural extension of the non-resignability property to the ROM, our negative results from the plain
model carry over, and thus, in particular, that the BUFF transform does not achieve (this natural notion
of) non-resignability in the ROM.

Given the positive claims in prior work, we discuss what is wrong with the reasoning in [CDF+21], where
the BUFF transform is claimed to satisfy non-resignability. Namely, the issue lies in the Φ-non-malleability
property of the random oracle, incorrectly claimed in [BFS11] and used in [CDF+21]. More precisely, we
show that Φ-non-malleability as stated in these works is unachievable.

We note that our generic attack on the non-resignability property is embarrassingly simple in retrospect.
It exploits that there is no restriction on the attacker’s auxiliary information on the signed messagem, subject
to that it does not reveal m; this pretty much allows to embed the mauled signature σ into the auxiliary

1 T   [CDF+21]        ;      
     [CDF+21];     [CDF+23]   S. 1.3.

2 T       BUFF : S [ENST23], R [PEK+23],
HAWK [BBD+23], PROV [GCF+23], V [PCF+23],  MLE [LZ23].

3 O   ,          , -   
,      [CDF+21].

2

information, making the attacker’s job of nding σ trivial. This attack has no (direct) real-world impact, since
the auxiliary information is typically not adversarially chosen, but determined by the application. Instead,
the point of our attack is to show that the formal denition put forward in [CDF+21] is too strong, and that
prior positive results on achieving non-resignability are incorrect. Thus, we need to go back to the drawing
board: both the formal denition as well as achievability results need to be revised. This is what we do, to
a certain degree, in the main part of the paper, as discussed below.

Positive (and More Negative) Results. Facing the above strong negative result, we introduce a weaker
variant of the original denition of the non-resignability property, which is still meaningful from an application
perspective yet avoids the above generic attack, by requesting the auxiliary information to be computed
without access to the random oracle.4 This denition is thus still meaningful whenever in the considered
application the computation of the auxiliary information does not depend on the random oracle that is
used in the signing process for the considered signature scheme (which can typically be enforced via domain
separation).

A natural question then is whether the BUFF transform satises this weakened variant of the non-
resignability property. Interestingly, this remains a non-trivial problem; as a matter of fact, depending on
the precise formulation of the entropy requirement, which captures that the signed message m should remain
hidden to the attacker, we show yet another negative result (see below).

On the positive side, we show that the above weakened variant of the non-resignability property is satised
in the ROM by a salted version of the BUFF transform, if the entropy requirement on the message m is
statistical (rather than computational). The salted version of the BUFF transform includes a random salt in
the hash and appends the salt to the signature.

Our proof follows a similar blueprint as the (faulty) proof in [CDF+21]. Indeed, we rst show that the
reduction from [CDF+21], which reduces non-resignability of the BUFF transform to Φ-non-malleability of
the random oracle (where the latter, however, is not satised), carries over to the salted BUFF transform
when considering the weaker variant of non-resignability and a correspondingly weaker and salted variant
of Φ-non-malleability, and considering the entropy requirement to be statistical. Then, the main technical
challenge, and thus the main technical contribution of this work, lies in proving that the random oracle
satises the considered weaker and salted variant of Φ-non-malleability.

The above positive result is proven in the classical as well as in the quantum ROM (with dierent
respective reduction losses), covering thus both classical and quantum attacks. We note that despite the
innocent-looking nature of the core problem, proving the considered Φ-non-malleability variant for the ran-
dom oracle turns out to be highly non-trivial, even just in the classical case.

Yet again on the negative side, by means of a counterexample in the form of a contrived signature scheme,
we show that the above result on the salted version of the BUFF transform does not carry over in case the
entropy requirement on the message m is computational (by means of the HILL entropy), as originally
considered in [CDF+21]. This in particular applies to the original (unsalted) BUFF transform.

Thus, despite our weakened version of the non-resignability property, showing positive results remains
challenging. In particular, whether the original BUFF transform satises our weaker non-resignability notion
in case the entropy requirement is statistical, remains an unsettling open question.

Conclusion. Altogether, our work shows that the non-resignability property for digital signature schemes,
introduced in [JCCS19], later formalized in [CDF+21], and mentioned by NIST as an desirable property
in their call for additional post-quantum signatures, is a very delicate security notion, and whether it is
achieved (by one or another construction)—or even achievable at all—depends on subtle choices in the
formal denition. Furthermore, our work shows that we actually have only very limited positive results so
far; in particular, there is currently no positive (meaningful) result on the non-resignability property of the
original BUFF transform.

4 A          ,       [CDF+23];
        [CDF+23].

3

1.3 Related Work

We already mentioned [CDF+21] and [JCCS19], upon which our work builds up. In reaction to our negative
results, the authors of [CDF+21] have updated their work; we briey discuss this update [CDF+23] here.

In order to avoid our negative results (cf. Theorem 5), which exploit that the auxiliary information can
be misused to embed a mauled signature, the authors modied the denition of non-resignability to require
the auxiliary information to be computationally independent of the message (see [CDF+23, Fig. 4] for the
non-resignability game and [CDF+23, Denition 4.3] for the actual denition). This is equivalent to not
allowing any auxiliary information at all, and thus weaker than the variant of non-resignability we consider.
Indeed, in the security reduction it is argued that, due to the computational independence, one can drop
the auxiliary information altogether, and so reduce the non-resignability of the original BUFF transform to
a variant of Φ-non-malleability with no auxiliary information (see [CDF+23, Fig. 1, right]).

Interestingly though, the authors have not adjusted their reasoning for their claim on the random oracle
satisfying (the now weaker notion of) Φ-non-malleability, which is the place where the original aw was
hiding. They still argue via the very same informal reasoning as in the original version (see the quote in our
Section 3.3). Although it is tempting to believe that this argumentation is sucient, it is actually not.

Indeed, by means of a simple counter example we show in Appendix A that no hash function (or hash
function family), including the random oracle, satises the considered (weaker) notion of Φ-non-malleability.
Thus, their claim on the BUFF transform satisfying the version of non-resignability considered in [CDF+23],
under the assumption that the hash function satises the considered Φ-non-malleability notion, is vacuous.

1.4 Overview

Given the various dimensions involved, Table 1 below provides an overview of the possibility and impossibility
results that follow from our work, and of what is still open. In this overview, we distinguish between the
original non-resignability security game NRH (Fig. 5) as proposed in [CDF+21] (but considered in the random
oracle model now), our weaker notion NRH,⊥ (Fig. 10, left) which requires the auxiliary information to be
computed without access to the random oracle H, and the further weakened variant NRH,0 where no auxiliary
information at all is allowed (as considered in [CDF+23], in essence). In the other directions, we distinguish
between the original and the salted BUFF transformation (respectively denoted by BUFF and $-BUFF),
and between the statistical and the computational entropy requirement (respectively denoted by H∞ and
HILL∞).

Table 1: Overview of possibility and impossibility results resulting from our work.
Positive results are indicated with ✓ while negative results are visualized with ✗; in
either case we refer to the corresponding theorem establishing that result. A question
mark (?) is used for cases that remain unsolved.

NRH NRH,⊥ NRH,0

H∞ HILL∞ H∞ HILL∞ H∞ HILL∞

BUFF
✗

Thm. 7

✗

Thm. 7
?

✗

Thm. 18
? ?

$-BUFF
✗

Thm. 7

✗

Thm. 7

✓

Thm. 11

✗

Thm. 18

✓

Thm. 11
?

4

2 Preliminary

2.1 (HILL) Entropy

We briey recall that, for a random variable X, specied by its probability distribution PX , the guessing
probability is given by guess(X) := maxx PX(x), and the min-entropy by H∞(X) := − log guess(X). As usual,
the log is in base 2.

In a similar spirit, for a pair of random variables (X,Z), specied by their joint distribution PXZ , the
conditional guessing probability guess(X  Z) is dened as

guess(X  Z) :=


z

PZ(z)guess(X  Z = z) ,

with the natural understanding that guess(X  Z = z) = maxx PXZ(x  z), and the conditional min-entropy
H∞(X  Z) as

H∞(X  Z) := − log guess(X  Z) 

Thus, in other words, H∞(X  Z) := − log


z PZ(z)2
−H∞(XZ=z)

The HILL entropy is a computational variant of the above min-entropy. First, we recall that for two
random variables X and Y , the computational distance

δs(X,Y) := max
C

 Pr[C(X) = 1]− Pr[C(Y) = 1] 

is the maximum distinguishing advantage over all circuits C of size s.

Denition 1. For a pair of random variables (X,Z), specied by their joint distribution PXZ , the condi-
tional HILL entropy (with parameters δ and s) is dened as

δ,sHILL∞(X  Z) := max
Y

H∞(Y  Z) ,

where the maximum is over all random variables Y , specied by its joint distribution PY Z with Z, such that
δs

(X,Z), (Y, Z)


≤ δ.

When switching to asymptotic notation, for a family of pairs of random variables (Xλ, Zλ)λ∈N, a bound
HILL∞(Xλ  Zλ) ≥ k(λ) then naturally means that for every λ there exists Yλ such that H∞(Yλ  Zλ) ≥ k(λ),
and for every polynomial s(λ) there exists a negligible δ(λ) such that δs(λ)


(Xλ, Zλ), (Yλ, Zλ)


≤ δ(λ). In

this case, we tend to omit the security parameter λ and simply write (X,Y) and HILL∞(X  Z) ≥ k.

2.2 Digital Signatures

We use the standard denition of a signature scheme. By default, the key-generation, signing, and verication
algorithms of a signature scheme S are respectively denoted by KGen, Sign, and Vfy, and the message space
by M.

In this work, we take it as understood that a signature scheme is correct up to a negligible error, i.e., for
any m ∈ M we have

Pr
(sk,pk)←KGen(1λ)

[Vfy(pk,m, Sign(sk,m)) = 0] ≤ negl(λ) 

Furthermore, we insist on the key generation to produce a public key pk that has negligible guessing proba-
bility

guess
(sk,pk)←KGen(1λ)

(pk) ≤ negl(λ) ;

this is obviously necessary for the scheme to be secure in any meaningful way. For a signature scheme in
the random oracle model (i.e., where KGen may query the random oracle H), we require guess(pk H) to be
negligible.

In expressions similar to those above, we will sometimes write (sk, pk) instead (sk, pk) ← KGen(λ), taking
the generation as understood.

5

2.3 Non-Resignability and Φ-Non-Malleability

For a signature scheme S = (KGen, Sign, Vfy), non-resignability is dened via game NR, given in Fig. 1, which
involves an adversary A = (A0,A1) and a (possibly randomized) auxiliary function aux. We say that A is
PPT if A0 and A1 are. In spirit, the goal of the adversary is to turn a signature σ for an unknown message
m into a signature for the same message, but under a dierent, adversarially chosen, public key. We write

AdvNR
S (λ,A, aux) = Pr[1 ← NRS]

for the probability that the NRS game outputs 1 when instantiated with signature scheme S and with
adversary A and auxiliary function aux. Similarly, for variants of NR and for other games that we will
consider. For simplicity, we will often leave the security parameter λ implicit. We stress that beyond the
input given to A1, no additional information is communicated from A0 to A1.

G NRS

1 : (sk, pk) ← KGen(1λ)

2 : m ← A0(pk)

3 : h := aux(m, pk)

4 : σ ← Sign(sk,m)

5 : (σ, pk) ← A1(pk,σ, h)

6 : v := Vfy(pk,m,σ)

7 : return (v = 1 ∧ pk ̸= pk)

Fig. 1: Security game NRS (in the plain model) with an explicit hint function aux and a
signature scheme S = (KGen, Sign, Vrfy). The original denition in [CDF+21] had both
m and h produced by A0(pk). This change in the denition only makes our negative
result stronger (since it is a restriction on how h is produced), and will be convenient
later on when trying to restore positive results.

As pointed out in [CDF+21], an adversary A can easily win this game if A1 can compute m; indeed, it can
then just sign m under a public-key pk for which it knows the secret key. Thus, for this to be a potentially
hard game, we need to enforce an entropy requirement on m. In this work, we consider two variants, by
requiring the statistical entropy H∞(m  pk, h) or the computational entropy HILL∞(m  pk, h) to be lower
bounded, where m, pk and h are chosen as in NR.

Following [CDF+21] (subject to this minor change in the game NR mentioned in Fig. 1), non-resignability
is dened as follows.

Denition 2. A signature scheme S = (KGen, Sign, Vfy) is called non-resignable if for any PPT adversary
A and any PPT function aux that satisfy the computational entropy condition

HILL∞
(sk,pk)←KGen(1λ)

m←A0(pk)


m

 pk, aux(m, pk)

≥ ω(log λ) (1)

it holds that AdvNR
S (λ,A, aux) ≤ negl(λ) 

A related notion, which is used in [CDF+21] towards proving non-resignability of the BUFF transform
(see Sect. 2.4), is Φ-non-malleability, rst introduced in [BCFW09], for a (keyed) hash function, specied by
a pair (KGen, Eval) of PPT key-generation and evaluation algorithms.

The denition is via game Φ-NMF , given in Fig. 2, and, as for non-resignability, we need to require a
certain amount of statistical entropy H∞(x  hk, h) or computational entropy HILL∞(x  hk, h), for the game
to be non-trivial.

6

G Φ-NMF

1 : hk ← KGen(1λ)

2 : x ← A0(hk)

3 : h ← aux(hk, x)

4 : y := Fhk(x)

5 : (y,ϕ) ← A1(hk, y, h)

6 : return (Fhk(ϕ(x)) = y ∧ ϕ(x) ̸= x)

Fig. 2: Security game Φ-NMF (in the plain model) with explicit hint function aux and
a keyed hash function F = (KGen, Eval), where we denote Fhk(x) := Eval(hk, x).

Following [BFS11,CDF+21], for a family Φ of functions, Φ-non-malleability is dened as follows. Looking
ahead, of particular interest is the case where x consists of two parts, conveniently written as x = (pk,m),
and Φ consists of shifts of pk but leaves m untouched.

Denition 3. A keyed hash function F = (KGen, Eval) is called Φ-non-malleable if for any PPT adversary
A that satises the computational entropy condition

HILL∞
hk←KGen(1λ)
x←A0(hk)


x
hk, aux(hk, x)


≥ ω(log λ) (2)

it holds that AdvΦ-NM
F (A) ≤ negl(λ) 

2.4 The BUFF Transform

The BUFF transform [CDF+21] is a generic transform for signature schemes to achieve additional security
properties beyond standard unforgeability. The transformation comes in two variants—BUFF and BUFF-
lite. Throughout this work, we only consider the former, stronger variant5 which is displayed in Fig. 3.

KGen(1λ)

1 : (skS, pkS) ← S.KGen(1λ)

2 : hk ← KGen(1λ)

3 : sk := (skS, hk)

4 : pk := (pkS, hk)

5 : return (sk, pk)

Sign(sk,m)

1 : (skS, hk) := sk

2 : y := Fhk(pk,m)

3 : σS ← S.Sign(skS, y)

4 : return σ := (σS, y)

Vfy(pk,m,σ)

1 : (pkS, hk) := pk

2 : (σS, y) := σ

3 : y := Fhk(pk,m)

4 : d := S.Vfy(pkS, y,σS)

5 : return d = 1 ∧ y = y

Fig. 3: The BUFF transform.

The idea of the BUFF transform is to sign the hash of the message and the public key, and to append
this hash to the signature. This binds the public key to the signature, which ensures that no other keys
can be generated that verify such a signature, thus ensuring what is known as exclusive ownership. The idea
behind non-resignability is as follows. In order to turn a signature into a new signature for the same message
but under a dierent public key pk, the adversary needs to produce the hash value y := Fhk(pk,m) for the
modied public key pk and the unknown message m, which should be hard by the Φ-non-malleability of
the hash function. Indeed, [CDF+21] states the following result (where we omit the claims regarding further
security properties that are not relevant to our work).

5 T  , BUFF-,    -,       .

7

Theorem 4 ([CDF+21, Theorem 5.5]). Let S be an EUFCMA-secure signature scheme. Then the ap-
plication of the BUFF transformation produces an EUFCMA-secure signature scheme BUFF[S,H] that
additionally provides [...] NR if H is Φ-non-malleable where Φ = ϕpk  pk ∈ K and ϕpk(pk,m) = (pk,m).

In combination with the claim on the random oracle being Φ-non-malleable for this choice Φ from [BFS11],
the authors of [CDF+21] then conclude non-resignability of the BUFF transform in the ROM.

3 On the Impossibility of Non-Resignability

In this section, we show strong negative results on the non-resignability property in general, and on the
BUFF transform in particular.

First, we consider the plain model, where we show, by means of a simple attack, that non-resignability
is not satised when applied to a signature scheme with the property that the message has high (computa-
tional) entropy when given its signature (and the public key).6 Since the BUFF transform, when applied to
any signature scheme, satises the considered entropy requirement (assuming the hash function to be com-
pressing), it follows directly that the BUFF transform does not satisfy non-resignability in the plain model,
regardless of the hash function used. We stress that not only is there no proof for the non-resignability of
the BUFF transform in the plain model, but there is also an attack that breaks it.

These negative results from the plain model carry over to the random oracle model (ROM) when con-
sidering the natural extension of the non-resignability property to the ROM (prior works did not rigorously
specify the property in the ROM). Thus, also in the ROM the BUFF transform does not (necessarily) satisfy
non-resignability, invalidating the positive results claimed in [CDF+21] in that respect. In essence, the claim
on the random oracle being Φ-non-malleable, made in [CDF+21,BFS11], is false.

3.1 Non-Resignability and BUFF Transform in the Plain Model

It is clear that the NRS game (Fig. 1) is easy to win if the message m can be eciently computed from its
signature σ. In the following theorem, we show that if, on the other hand, the signature scheme is such that
the message m has high computational entropy given its signature (and the public key), then another attack
applies.7

Theorem 5. Let S be a signature scheme such that for a random message m ← M and key-pair (sk, pk) ←
KGen(1λ) we have HILL∞(m  pk, Sign(sk,m)) ≥ ω(log λ). Then there exists a PPT adversary A = (A0,A1)
and a PPT function aux such that the computational entropy condition (1) is satised, yet

AdvNR
S (λ,A, aux) ≥ 1− negl(λ) 

The attack is surprisingly simple. Instead of burdening A1 with nding σ, which, intuitively, is hard since
A1 does not know m, we simply let aux compute σ and hand it over to A1 as auxiliary information h. The
entropy condition on the signature scheme then ensures that this is an eligible attack. The proof below spells
out the details.

Proof. We construct the adversary A = (A0,A1) and function aux as shown in Fig. 4. In the rst stage, A0

samples a message uniformly at random and outputs it. The function aux, which receives m as an input,
generates a new key pair (sk, pk) ← KGen(1λ), computes σ ← Sign(sk,m), and outputs the hint h := (σ, pk).
In the second stage, A1 receives as input the public key pk, the signature σ ← Sign(sk,m), and the hint
h = (σ, pk), and it outputs (σ, pk).

6 I   ,          , -   
,      [CDF+21].

7 T      ,          -:
              HILL .

8

By the completeness property, we have Pr[Vfy(pk,m,σ) = 1] ≥ 1 − negl(λ). We further have Pr[pk ̸=
pk] ≥ 1− negl(λ) due to the high min-entropy of key generation.

It remains to argue that A satises the entropy condition (1). It holds that

HILL∞

m

 pk, aux(m, pk)

= HILL∞


m

 aux(m, pk)


= HILL∞

m

 pk, Sign(sk,m)

≥ ω(log λ) ,

where the rst equality holds by the independence of pk and (m, aux(m, pk)), the second equality holds
by the construction of aux, and the last inequality holds from the entropy requirement. Taking all of this
together, we get that A is a valid adversary playing NRS such that

AdvNR
S (λ,A, aux) ≥ 1− negl(λ) 

This concludes the proof.

A A0(pk)

1 : m ← M
2 : return m

A A1(pk,σ, h)

1 : (σ, pk) ← h

2 : return (σ, pk)

F aux(m, pk)

1 : (sk, pk) ← KGen(1λ)

2 : σ ← S.Sign(sk,m)

3 : return (σ, pk)

Fig. 4: Adversary A = (A0,A1) and function aux used in the proof of Theorem 5.

Having established Theorem 5, it then follows as an immediate corollary that the BUFF-transform does
not achieve non-resignability, no matter what hash function is used, as long as it is compressing, so that
there is entropy in the message m when given Fhk(pk,m) (here, the entropy is even statistical).

Corollary 6. Let S be a signature scheme, and let BUFF[S,F] be the signature scheme obtained via the
BUFF transform obtained by using a (keyed) hash function F that compresses by at least the size of the
public key plus ω(log λ) bits. Then there exists a PPT adversary A = (A0,A1) and a PPT function aux such
that the entropy condition (1) is satised, yet

AdvNR
BUFF[S,F](λ,A, aux) ≥ 1− negl(λ) 

Clearly, a non-compressing hash function avoids this particular attack; however, it is unclear if security
would be restored (in particular in the light of Footnote 7). Also, from a practical point of view, hash
functions used in the BUFF transform will be compressing.

3.2 Non-Resignability and the BUFF Transform in the ROM

When considering the random oracle model, things become somewhat subtle. First, we note that no denition
of non-resignability in the ROM has been explicitly provided in the previous literature; the denitions given
in [CDF+21] are in the plain model. When switching to the ROM, one needs to specify who is given access
to the random oracle. Clearly, considering a signature scheme in the ROM, we give KGen, Sign, and
Vfy oracle access to the random oracle H.8 Also, by default, the attacker is given oracle access to the
random oracle. Thus, looking at Fig. 1, this means we certainly want to give A0 and A1 oracle access to the
random oracle. But, say, what about the function aux? Given that in the original denition in [CDF+21],
the auxiliary information h is actually computed by A0 (and our re-writing in terms of a function aux is for

8 W      KGenH .

9

later convenience), it is natural to then also allow the function aux to have oracle access the random oracle.
We make this explicit in Fig. 5, where we give the resulting security game for non-resignability in the ROM.

However, there is another subtle matter in the denition of non-resignability when switching to the ROM.
Namely, the entropy condition (1), as well as its unconditional counterpart H∞(m  pk, auxH(m, pk)) ≥
ω(log λ), are not sucient anymore for the denition to be meaningful. Indeed, AH

0 could simply choose m
to be the hash of 0. In the ROM, this will be of high entropy and independent of pk; yet, AH

1 can easily
recover it (as the hash of 0), and then honestly sign it using his secret key. For this reason, in the denition of
non-resignability in the ROM, we change the entropy requirement on the message to hold when additionally
conditioning on the random oracle, i.e., we require

H∞
(sk,pk)←KGenH(1λ)

m←AH
0 (pk)


m

 pk, auxH(m, pk),H

≥ ω(log λ)  (3)

We stress that we consider the statistical variant of the entropy condition here; with H an exponentially large
function table, switching to the computational HILL variant will bring up further issues, which we want to
avoid—for now (though we will look into this issue in Section 4.4). Furthermore, having this more stringent
requirement on the attacker only makes our negative result stronger.

G NRH
S

1 : (sk, pk) ← KGen
H(1λ)

2 : m ← AH
0 (pk)

3 : h := aux
H(m, pk)

4 : σ ← Sign
H(sk,m)

5 : (σ, pk) ← AH
1 (pk,σ, h)

6 : v := Vfy
H(pk,m,σ)

7 : return (v = 1 ∧ pk ̸= pk)

Fig. 5: Security game NRH
S for the signature SH = (KGenH, SignH, VfyH) in the random

oracle model. In this variant, both the adversary and the function aux are granted
access to the random oracle H.

The following theorem shows that, considering the above natural denition of non-resignability in the
ROM, the impossibility result from the plain model (Theorem 5) carries over pretty much in the obvious
way.

Theorem 7. Let H be a random oracle and SH = (KGenH, SignH, VrfyH) be a signature scheme given
query access to H such that for message m ← M and key-pair (sk, pk) ← KGenH(1λ) we have H∞(m 
pk, SignH(sk,m),H) ≥ ω(log λ). Then there exists a PPT adversary AH = (AH

0 ,AH
1) and a PPT function

auxH with access to H such that the entropy condition (3) is satised, yet

AdvNRH

S (λ,A, aux) ≥ 1− negl(λ) 

The proof follows essentially from the proof of Theorem 5 with some obvious adjustments regarding
the random oracle. The full proof is given in Appendix C. We can leverage Theorem 7 to show that a
BUFF-transformed signature scheme does not achieve non-resignability in the ROM. This is formalized in
the following corollary.

Corollary 8. Let H be a random oracle, FH be a PPT hash function given query access to H, compressing
by at least the size of the public-key plus ω(log λ) bits, SH be a signature scheme given query access to H,

10

A AH
0 (pk)

1 : m ← M
2 : return m

A AH
1 (pk,σ, h)

1 : (σ, pk) ← h

2 : return (σ, pk)

F auxH(m, pk)

1 : (sk, pk) ← KGen
H(1λ)

2 : σ ← S.SignH(sk,m)

3 : return (σ, pk)

Fig. 6: Adversary AH = (AH
0 ,AH

1) and function aux used in the proof of Theorem 7.

and BUFF[S,F] be the signature scheme obtained via the BUFF transform with FH. Then there exists a
PPT adversary AH = (AH

0 ,AH
1) and a PPT function aux such that the entropy condition (3) is satised, yet

AdvNRH

BUFF[S,F](λ,A, aux) ≥ 1− negl(λ) 

The above negative claim on the BUFF transform contradicts [CDF+21], which claims that the BUFF
transform does satisfy non-resignability in the ROM (though without being explicit about the denition in
the ROM). We discuss below the source of the false positive claim.

3.3 Φ-Non-Malleability in the ROM

[CDF+21] argues the non-resignability of the BUFF transform (in the ROM) in two steps. First, they prove
the security of the BUFF transform in the plain model under the assumption that the hash function (family)
satises the notion of Φ-non malleability (for a certain class Φ of functions). The formal statement is given
in [CDF+21, Theorem 5.5] (cf. Theorem 4). Then, the following is remarked in [CDF+21, page 9], from which
it is then concluded that the BUFF transform satises non-resignability in the ROM.

We note that if we model H as a random oracle then the hash function satises the denition of Φ-
non-malleability for any class Φ where the functions ϕ preserve sucient entropy in x, as will be the
case for our results. The reason is that the adversary can only output a related random oracle value
y if it has queried the random oracle about ϕ(x) before. But this is infeasible if ϕ(x) still contains
enough entropy.

Note that this claim originates from [BFS11], where a similar argument is made.
We show that this claim on the Φ-non-malleability of the random oracle is incorrect (under some mild

assumption on Φ). As a matter of fact, the same kind of attack as for the non-resignability of signature
schemes applies here as well: we can simply let aux compute the mauled hash value. This bypasses the
argument that the adversary has to make this particular query to the random oracle.

First, we explicitly spell out in Fig. 7 the security game of Φ-non-malleability in the ROM, for any PPT
hash function FH with query access to the random oracle H. Then, we state the negative result in Theorem 9
below. Note that the latter in particular implies that the random oracle itself, i.e., when setting FH = H , is
not Φ-non-malleable.

Theorem 9. Let H be a random oracle, FH : X → Y be a PPT hash function given query access to H,
compressing by least ω(log λ) bits, and Φ ⊆ XX be such that there is a PPT algorithm DΦ producing ϕ ∈ Φ
that does not x most points with overwhelming probability, i.e.

Pr
ϕ←DΦ
x←X

[ϕ(x) = x] ≤ negl(λ)  (4)

Then, there exists a PPT adversary AH = (AH
0 ,AH

1) and a PPT function auxH, both given query access to
H, such that the entropy condition

H∞
x←AH

0 ()


x
 auxH(x),H


≥ ω(log λ)

11

G Φ-NMH
F

1 : x ← AH
0 ()

2 : h := aux
H(x)

3 : y := FH(x)

4 : (y,ϕ) ← AH
1 (y, h)

5 : return (FH(ϕ(x)) = y ∧ ϕ(x) ̸= x)

Fig. 7: Security game Φ-NMH
F for the hash function FH in the ROM and an arbitrary

function family Φ.

is satised, yet

AdvΦ-NMH

F (λ,A, aux) ≥ 1− negl(λ) 

Proof. We give a PPT adversary AH = (AH
0 ,AH

1) that wins the game Φ-NMH with overwhelming probability.
Both AH = (AH

0 ,AH
1) and auxH are given in Fig. 8. In the rst stage, adversary A0 chooses x uniformly

at random. The auxiliary function on input x ∈ X , chooses a function ϕ ← DΦ, computes y := FH(ϕ(x)),
and returns the pair (y,ϕ) as hint. In the second stage, adversary A1 gets y = FH(x) along with the hint
h = (y,ϕ) as input and outputs the (y,ϕ) from the hint. It is easy to see that 1 ← Φ-NMH, unless ϕ(x) = x,
which only happens with negligible probability due to (4). Furthermore, the entropy requirement follows
from the fact that x is chosen uniformly from X independent of (ϕ,H), and that FH is compressing by
ω(log λ) bits.

A AH
0 (pk)

1 : x ← X
2 : return x

A AH
1 (y, h)

1 : (y,ϕ) := h

2 : return (y,ϕ)

F auxH(x)

1 : ϕ ← DΦ

2 : y := FH(ϕ(x))

3 : return (y,ϕ)

Fig. 8: Adversary AH = (AH
0 ,AH

1) and function auxH used in the proof of Theorem 9.

Remark 10. The above theorem is stated for the random oracle model. It is easy to see, though, that the
result carries over to the plain model for concrete hash functions.

4 Weak Non-Resignability and Salted BUFF

In this section, we partly recover from the negative results from the previous section by considering a salted
version of the BUFF transform, and showing that it satises a weaker variant of non-resignability in the
ROM. The formal specication of the salted BUFF transform, denoted $-BUFF, is given in Fig. 9. It matches
with the original BUFF transform, except that some random salt s is added to the signature and used for
the hash.

Our goal is to show that the salted BUFF transform satises the weaker variant of non-resignability in
the ROM obtained by replacing the non-resignability game NRH

S to NRH,⊥
S , as given in Fig. 10 (left). The

only dierence is that the function aux, which computes the auxiliary information h, is not given access to
the random oracle anymore.

12

KGen(1λ)

1 : (sk, pk) ← S.KGen(1λ)

2 : return (sk, pk)

Sign(sk,m)

1 : s ← {0, 1}ℓ

2 : y := F(pk,m, s)

3 : σ ← S.Sign(sk, y)

4 : return (σ, y, s)

Vfy(pk,m, (σ, y, s))

1 : y ← F(pk,m, s)

2 : d := S.Vfy(pk, y,σ)

3 : return (d = 1 ∧ y = y)

Fig. 9: The salted BUFF transform $-BUFF[S,F] for a signature scheme S and a hash
function F .

Indeed, below we will prove the following. To start with, we consider the entropy condition on the message
to be statistical; as explained in Sect. 3.2, here in the ROM we additionally need to condition on H (in order
to avoid letting m = H(0)). In Sect. 4.4, we then discuss the case of computational entropy.

We consider both the case of classical and of quantum queries by the adversary A when querying the
random oracle, as well as a semi-quantum case where A0 is classical yet A1 may be quantum. The latter
is motivated by the fact that A0 is typically not adversarially chosen, but determined by the considered
application.9

Theorem 11. Let H be a random oracle with co-domain denoted by Y, let SH = (KGen, SignH, VfyH) be a
signature scheme with a key generation that has no access to H, and let $-BUFF[S,H] be the signature scheme
obtained by applying the salted BUFF transform (cf. Fig. 9) to S. Furthermore, let AH = (AH

0 ,AH
1) be a com-

putationally unbounded NRH,⊥ adversary, aux be any (possibly randomized) function, and let SignH,AH
0 ,AH

1

make at most qS , q0, q1 queries to H respectively. Assuming

H∞
(sk,pk)←KGen(1λ)

m←AH
0 (pk)


m

H, pk, aux(m, pk)

≥ log(1ϵ) ,

then for SignH,A0,A1 making quantum queries in general, it holds that

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤


q0 · 2−ℓ +
q0 · 2−ℓ

2
+ 4(q1 + qS)

√
ϵ+

(2q0 + 1)2

Y  , (5)

and if AH
0 is restricted to classical queries,

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ q0 · 2−ℓ + 4(q1 + qS)
√
ϵ+

(q0 + 1)

Y   (6)

In case where SignH,AH
0 ,AH

1 are all restricted to classical queries, then we have

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ q0 · 2−ℓ + 2(q1 + qS) · ϵ+
(q0 + 1)

Y   (7)

Remark 12. In the setting where the key generation KGenH is given access to the random oracle H, it is not
too hard to extend the non-resignability of $-BUFF into such a setting, by noticing that any suciently
long portion of the random salt s in $-BUFF is hard to guess by KGenH, and hence separating the domain
queried by KGenH from ones queried by SignH and VfyH up to some negligible advantage.

Our proof goes along the following blueprint. First, we consider a weaker and salted variant of the Φ-non-
malleability property in the ROM (for a particular function family Φ), as specied in Fig. 10 (right), and
show that if the random oracle satises this variant (in the ROM) then the salted BUFF transform satises

9 I    ,            H;    
    .

13

NRH,⊥ (in the ROM). For this step (Sect. 4.1), we can simply recycle the original corresponding proof. The
bulk of the work, and thus our main technical contribution, is then proving that the random oracle indeed
satises this weaker and salted variant of Φ-non-malleability. This is done in Sect. 4.2 for the classical ROM,
and in Sect. 4.3 for the QROM, i.e., when allowing quantum queries to the random oracle.

Finally, in Sect. 4.4, we show how the relax the requirement on the statistical min-entropyH∞(mH, pk, aux(m, pk))
to a variant of the computation HILL entropy, adjusted to the ROM setting in order to avoid the conditioning
on H.

G NRH,⊥
S

1 : (sk, pk) ← KGen
H(1λ)

2 : m ← AH
0 (pk)

3 : h := aux(m, pk)

4 : σ ← Sign
H(sk,m)

5 : (σ, pk) ← AH
1 (pk,σ, h)

6 : v := Vfy
H(pk,m,σ)

7 : return (v = 1 ∧ pk ̸= pk)

G Φ-$-NMH,⊥
F (pk)

1 : m ← AH
0

2 : h := aux(m)

3 : s ← {0, 1}ℓ

4 : y := FH(pk,m, s)

5 : (y, pk, s) ← AH
1 (y, h, s)

6 : return (FH(pk,m, s) = y ∧ pk ̸= pk)

Fig. 10: Weaker variant of the non-resignability game for a signature scheme SH =
(KGenH, SignH, VrfyH), where aux has no access to H (left), and the salted Φ-non-
malleability game (right) for a hash function FH. The game is slightly changed towards
our use-case of the BUFF-transform: Instead of letting A0 output one value x and
requiring A1 to output the hash value of ϕ(x), we split x into (pk,m), where pk is
arbitrary but xed and (only) m is chosen by A0. To win the game, A1 has to nd a
hash for a dierent pk but the same m (very much in line with nding a signature for
the same message under a dierent public key).

4.1 Φ-$-NMH,⊥ ⇒ NRH,⊥ for $-BUFF

The following shows that the modied BUFF transformation provides the variant of non-resignability con-
sidered in Fig. 10 (left), given that the hash function H achieves the Φ-non-malleability variant considered
in Fig. 10 (right).

Proposition 13. Let H be a random oracle, let S be a signature scheme with a key generation that has
no access to H, and let $-BUFF[S,H] be the signature scheme obtained by applying the modied BUFF
transform (cf. Fig. 9) to S. Then for any adversary A = (A0,A1) and any (possibly randomized) function
aux as in the game NRH,⊥, there exists a keyed adversary B(sk, pk) = (B0(sk, pk),B1(sk, pk, •)) such that

guess
(sk,pk)

m←AH
0 (pk)


m

H, pk, aux(m, pk)

= E

(sk,pk)


guess

m←BH
0 (sk,pk)


m

H, aux(m, pk)



and

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ E
(sk,pk)


Adv

Φ-$-NMH,⊥(pk)
H (B(sk, pk), aux(•, pk))




B(sk, pk) is given in Fig. 11. In particular, B0 makes the same number and the same type (classical versus
quantum) of queries as A0, and B1 makes the same number and the same type of queries as the composition
of SSign and A1.

14

Proof. The claim on the guessing probability follows directly from the construction of B and the basic
properties of the conditional guessing probability. Towards the claim on the advantage, note that for any
pair (sk, pk), the adversary B(sk, pk) wins the game Φ-$-NMH,⊥(pk) if and only if

H(pk,m, s) = y ∧ pk ̸= pk ,

which, by Fig. 9, is necessary for

$-BUFF[S,H]VfyH(pk,m, (σ, y, s)) ∧ pk ̸= pk

to be satised, where σ is as specied in Fig. 11. The expectation of the latter being satised, taken over

(sk, pk) ← KGen(1λ), is precisely AdvNRH,⊥

$-BUFF[S,H](A, aux), and so this proves the claim in the advantage.

BH
0 (sk, pk)

1 : m ← AH
0 (pk)

2 : return m

BH
1 (sk, pk, y, h, s)

1 : σ ← S.SignH(sk, y)

2 : ((σ, y, s), pk) ← AH
1 (pk, (σ, y, s), h)

3 : return (y, pk, s)

Fig. 11: Adversary B used in the proof of Theorem 13.

4.2 The Random Oracle is Φ-$-NMH,⊥ in the ROM

Here, we show that the random oracle (i.e., the hash function FH := H) satises the notion of Φ-$-NMH,⊥,
specied in Fig. 10 (right).

Theorem 14. Let (AH
0 ,AH

1) be an (computationally unbounded) adversary against Φ-$-NMH,⊥, with AH
0

making at most q0 classical queries and AH
1 at most q1 classical queries to the random oracle H with co-

domain Y, and let aux be a (possibly randomized) function. Set

ϵ := guess
m←AH

0


m

H, aux(m)

,

and let pk be an arbitrary valid public key. Then,

Adv
Φ-$-NMH,⊥(pk)
H (A, aux) ≤ q0 · 2−ℓ + 2q1 · ϵ+ (q0 + 1)Y  

Proof. The proof proceeds via the games G0,    ,G
i
6 displayed in Fig. 12. Steps from G0 to G3 are symmetric,

in that they argue closeness between games, while each of the rest upperbounds the winning probability of
one game via another.

The closeness between games G0 ≈ G1 ≈ G2 ≈ G3 is via arguing that an adversary cannot detect some
reprogramming in the random oracle except with small probability. For G0 ≈ G1, one exploits that the
reprogrammed point involves a freshly chosen salt s in uniform distribution. For G1 ≈ G2 ≈ G3, one exploits
thatm has high entropy, conditioned on the view of the attacker throughout the execution of the intermediate
game G2.

G0 to G1 hop. The only dierence between G0 and G1 is that the former computes y ← H(pk,m, s), while
the latter does a reprogramming via H(pk,m, s) := y ← Y . Thus, both games behave identically unless A0

has queried the corresponding input (pk,m, s), which happens with probability at most q0 · 2−ℓ in either
game, due to the random choice of s.

15

G G0

1 : m ← AH
0 ()

2 : h := aux(m)

3 : s ← {0, 1}ℓ

4 : y := H(pk,m, s)

5 : (y, pk, s) ← AH
1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

G G1

1 : m ← AH
0 ()

2 : h := aux(m)

3 : s ← {0, 1}ℓ

4 : H(pk,m, s) := y ← Y
5 : (y, pk, s) ← AH

1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

G G2

1 : m ← AH
0 ()

2 : h := aux(m)

3 : s ← {0, 1}ℓ

4 : y ← Y
5 : (y, pk, s) ← AH

1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

G G3

1 : m ← AH
0 ()

2 : h := aux(m)

3 : s ← {0, 1}ℓ

4 : y ← Y
5 : (y, pk, s) ← AH[(·,m, ·) → ⊥]

1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

G G4

1 : m ← AH
0 ()

2 : (y, pk, s) ← BH[(·,m,·)→⊥]
1 (m)

3 : return H(pk,m, s) = y

G Gi
5

1 : m ← AH
0 ()

2 : (y, pk, s) ← BH[(·,m,·)→⊥]
1 (m)

3 : return H(pk,m, s) = y

4 : ∧(pk,m, s) = (pki,mi, si)

5 : // where (pki,mi, si) is A0’s i-th query

G Gi
6

1 : m ← AH
0 ()

2 : (y, pk, s) ← BH[(·,mi
,·)→⊥]

1 (mi)

3 : return H(pki,mi, si) = y

4 : // where (pk
i
,m

i
, s

i
) is A0’s i-th query

Fig. 12: The sequence of games considered in the proof of Theorem 14. In all games, H
is understood to be uniformly random. In the game G4 etc., H[(·,m, ·) → ⊥] denotes
the oracle that blocks queries of the form (·,m, ·), i.e., replies with some special value
⊥ in that case, and replies with H applied to the query otherwise.

16

G1 to G2 hop. Without loss of generality, we may assume pk ̸= pk, in which case the reprogramming of H,
done in G1 but not in G2, does not aect the nal hash H(pk,m, s). Thus, there is a dierence in the two
games only if A1 makes a query to (pk,m, s); however, in G2, using that y and s are independent of (m,H, h)
and by the entropy condition, we have that guess(m  H, y, h, s) = guess(m  H,h) ≤ ϵ, and so this happens
with probability at most q1ϵ. Thus,

Pr [1 ← G1] ≤ Pr [1 ← G2] + q1ϵ 

G2 to G3 hop. Similar as above, the dierence between G2 and G3 can only be noticed when A1 makes a
query of the form (·,m, ·), which again happens with probability at most guess(m  H, y, h, s) ≤ ϵ. Therefore,

Pr [1 ← G2] ≤ Pr [1 ← G3] + q1ϵ 

G3 to G4 hop. In G4, we relax the winning condition by dropping the requirement pk ̸= pk; this only increases
the winning probability. Furthermore, we replace A1 in G3 by B1 in G4, which computes h := aux(m) and
samples s ← 0, 1ℓ and y ← Y as a rst step, and then runs A1 on input (y, h, s); this change is only
syntactically and does not aect the winning probability. Thus,

Pr [1 ← G3] ≤ Pr [1 ← G4] 

G4 to Gi
5 hop. Since A0 is classical, assume without loss of generality that it never repeats a query. If

(pk,m, s) has never been queried by A0, i.e., (pk,m, s) ̸= (pkj ,mj , sj) for all j ∈ 1,    , q0, then (using
that A1 is blocked from queries of the form (·,m, ·)) the hash H(pk,m, s) is random and independent of y,
in which case they are equal with probability 1Y . Therefore we obtain,

Pr [1 ← G4] = 1Y +


i∈[q0]

Pr


1 ← G4

(pk,m, s) = (pki,mi, si)



= 1Y +


i∈[q0]

Pr

1 ← Gi

5




Gi
5 to Gi

6 hop. In Gi
5, due to the extra condition m = mi for winning the game, replacing m by mi as in

Gi
6 has no eect on the winning probability, and dropping the requirement again then only increases the

probability. Thus

Pr

1 ← Gi

5


≤ Pr


1 ← Gi

6




It remains to show that the latter probability is small. First, we may assume that A0’s queries (pk
j ,mj , sj)

are all distinct. Furthermore, we may assume that once A0 has decided on the i-th query (pki,mi, si), it
stops without making this query; the game then simply proceeds as described with running B1 on input mi.
This shows that B1’s input is independent of H(pki,mi, si), and so is his output y then, given that he is
blocked from queries of the form (·,m, ·). Hence

Pr

1 ← Gi

6


≤ 1Y  

Combining all the (in)equalities then concludes the proof.

Combining Proposition 13, Theorem 14, for A, Sign restricted to classical queries, we get

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ E
(sk,pk)


q0 · 2−ℓ + 2(q1 + qS) · ϵsk,pk + (q0 + 1)Y 



≤ q0 · 2−ℓ + 2(q1 + qS) · ϵ+ (q0 + 1)Y  ,
where

ϵsk,pk := guess
m←AH

0 (pk)


m

H, pk, aux(m, pk)

,

and the second inequality is via linearity. This concludes (7).

17

4.3 The Random Oracle is Φ-$-NMH,⊥ in the QROM

We now prove the same result in the QROM when AH
0 and AH

1 are algorithms that may make quantum (i.e.,
superposition) queries to the random oracle.

Theorem 15. Let A = (AH
0 ,AH

1) be a (computationally unbounded) adversary against Φ-$-NMH,⊥, with
AH

0 making at most q0 quantum queries and AH
1 at most q1 quantum queries to the random oracle H with

co-domain Y, and let aux be a (possibly randomized) function. Set

ϵ := guess
m←AH

0


m

H, aux(m)

,

and let pk be an arbitrary public key. Then,

Adv
Φ-$-NMH,⊥(pk)
H (A, aux) ≤


q0 · 2−ℓ +

q0 · 2−ℓ

2
+ 4q1

√
ϵ+ (2q0 + 1)2Y  

Proof. The proof of Theorem 15 is identical to that of Theorem 14 up to some small changes in the argu-
mentation for the rst four game hops, and a more signicant change of strategy in the last two. Indeed, we
reuse the rst four games and dene modied versions of Gi

5 and Gi
6, as specied in Fig. 13. Namely, in case

of superposition queries by A0, we cannot dene (pki,mi, si) as the i-th query; instead, rather naturally, we
introduce (pki,mi, si) by measuring the i-th query. Furthermore, for technical reasons, we then reprogram
H on (pki,mi, si) by a random value Θ, from this or the next query onward.

G Gi
5

1 : m ← AHΘ
i

0 ()

2 : # i : (pki,mi, si)

3 : (y, pk, s) ← BH[(·,m,·)→⊥]
1 (m)

4 : return HΘ
i (pk,m, s) = y

5 : ∧(pk,m, s) = (pki,mi, si)

G Gi
6

1 : m ← AHΘ
i

0 ()

2 : # i : (pki,mi, si)

3 : (y, pk, s) ← BH[(·,mi
,·)→⊥]

1 (mi)

4 : return HΘ
i (pk

i,mi, si) = y

Fig. 13: The modied games Gi
5 and Gi

6 for the proof of Theorem 15. In both games, H
is understood to be uniformly random. HΘ

i is the oracle that implements H until just
before the i-th query, then measures that query in the computational basis to obtain
(pki,mi, si), and subsequently answers queries from A0 with H[(pki,mi, si) → Θ], i.e.,
with H but reprogrammed to a random value Θ at (pki,mi, si), either from the i-th or
the i+ 1-th query onward, with this choice being made uniformly at random as well.

G0 to G1 hop. The only dierence between G0 and G1 is that the former computes y ← H(pk,m, s), while the
latter reprograms H(pk,m, s) := y ← Y . With s being uniformly random chosen, this is a direct application
of the adaptive reprogramming lemma (Theorem 1 in [GHHM21]) to bound the distinguishing probability:

Pr [1 ← G0] ≤ Pr [1 ← G1] +


q0 · 2−ℓ +
q0 · 2−ℓ

2


G1 to G2 hop. Without loss of generality, we may assume pk ̸= pk, in which case the reprogramming of H,
done in G1 but not in G2, does not aect the nal hash H(pk,m, s). Thus, the only dierence between the
two games is that A1 interacts with the original H in G2, and with H that is reprogrammed to ⊥ at the
point (pk,m, s) in G1.

This is a direct application for O2H ([AHU19, Theorem 3]). We note that in game G2, A1 has access to
H, y, h and s. Using that y and s are independent of (m,H, h), we obtain guess(m  H, y, h, s) = guess(m 

18

H,h) = ϵ (where the latter equality is given by the entropy condition). Thus, measuring a random query of
A1 in G2 yields (pk,m, s) with probability at most ϵ. Therefore, by O2H,

Pr [1 ← G1] ≤ Pr [1 ← G2] + 2q1
√
ϵ 

G2 to G3 hop. Again by O2H - arguing as above that the measurement outcome when measuring a random
query of A1 in G2 is of the form (·,m, ·) with probability at most ϵ - we obtain

Pr [1 ← G2] ≤ Pr [1 ← G3] + 2q1
√
ϵ 

G3 to G4 hop. Here we argue precisely as in the classical case: we relax the winning condition, and we do a
syntactical change by introducing B1, which does the computation of h and the sampling of s and y locally,
before it runs A1. Thus, also here

Pr [1 ← G3] ≤ Pr [1 ← G4] 

G4 to Gi
5 hop. In Gi

5, the oracle for A0 is replaced by HΘ
i , which implements H until just before the i-th query,

then measures that query in the computational basis to obtain (pki,mi, si), and subsequently switches to
H[(pki,mi, si) → Θ] either from the i-th or the i+1-th query onward, with this choice being made uniformly
at random.

The goal here is to use the measure-and-reprogram technique from [DFM20] to control the eect of this
change. For this purpose, we consider the oracle algorithm CH(A0,B1), which simply runs m ← AH

0 () followed

by (y, pk, s) ← BH[(·,m,·)→⊥]
1 (m).

We allow C conditional superposition query access to the random-oracle H , which it uses to forward
all queries from A0 unconditionally and queries x from B1 conditional on x ̸= (·,m, ·), returning ⊥ for
x = (·,m, ·). CH is thus an oracle algorithm with query complexity q0 + q1 and such that in its second phase
the only query inputs with non-zero amplitude are of the form x ̸= (·,m, ·). At the end of its run, CH(A0,B1)
outputs (x, z) with x := (pk,m, s) and z := y.

Furthermore, we dene the verication predicate V (x, y, z) that is 1 if and only if y = z. Then, V (x,H(x), z) =
1 if and only if H(pk,m, s) = y, which is the verication condition in G4. Thus,

Pr[V (x,H(x), z) = 1 : (x, z) ← CH((A0,B1))] = Pr [1 ← G4(A0,B1)] 

We are now in a situation where we can apply a modied version of the measure-and-reprogram technique
from [DFM20]. Theorem 22 in the Appendix ensures the existence of a simulator SC such that, for a random
Θ,

Pr[V (x,H(x), z) = 1 : (x, z) ← CH]

(2q + 1)2

≤ Pr[V (x,Θ, z) = 1 ∧ x = x′ : (x′, x, z, i) ← ⟨SC(Q),Θ⟩] ,
where Q is a set of queries where S has non-zero probability of success, and q = Q. We need to describe S
in a bit more detail before we can determine Q.

In the following, let Q0 := 0,    , q0 − 1 and Q1 := q0,    , q0 + q1 − 1 (we let C’s queries start at
0 and run until q0 + q1 − 1). The algorithm ⟨SC ,Θ⟩ works as follows: it measures the i-th query of CH for
a random i ∈ Q0 ∪ Q1 ∪ q0 + q1, with the measurement outcome being x′, and then reprograms future
queries to input x′ by Θ (starting from this or the next query, chosen uniformly at random).10 Finally, S
outputs x′ along with i and the nal output (x, z) of C.

In the case of our algorithm C it is easy to determine Q; C knows m by the end of its rst phase, and by
construction 1. never queries any input of the form (·,m, ·) from that point on and 2. at the end of its run
outputs x = (pk,m, s). Hence, for i ∈ Q1 we have x ̸= x′ with certainty and thus

Pr
(x′,x,z,i)←⟨SC,Θ⟩

[V (x,Θ, z) = 1 ∧ x = x′i ∈ Q1] = 0 

10 T  i = q0 + q1      (pk,m, s)  C  ,      .

19

It follows that Q = Q0 and therefore q = q0.

Thus, conditioned on i ∈ Q0, ⟨SC ,Θ⟩ works as AHΘ
i

0 () followed by BH[(·,m,·)→⊥]
1 (m) in Gi

5 for a random
i ∈ Q0, and the event V (x,Θ, z) = 1 ∧ x = x′ matches with the winning condition of Gi

5.
Hence, omitting the specication (x′, x, z, i) ← ⟨SC ,Θ⟩ of the probability space and writing V as a

shorthand for V (x,Θ, z) in the expressions to simplify notation, we obtain

Pr[V = 1 ∧ x = x′] = Pr[i ∈ Q0] Pr [V = 1 ∧ x = x′  i ∈ Q0]

+ Pr[i ∈ Q0] Pr [V = 1 ∧ x = x′  i ∈ Q0]

=
q0

q0 + 1
Pr


1 ← Gi

5  i ∈ Q0



+
1

q0 + 1
Pr [V = 1 ∧ x = x′  i ∈ Q0]  (8)

Finally, we argue that for (x′, x, z, i) ← ⟨SC ,Θ⟩

Pr[V (x,Θ, z) = 1 ∧ x = x′  i ∈ Q0] =
1

Y  

Consider i ∈ Q0, i.e. S measures the nal output of C. Then B1 learns no information on Θ before
producing its output, and so V (x,Θ, z) = 1 with probability 1

Y .
Putting all together, we obtain that

Pr [1 ← G4]

(2q0 + 1)2
≤ q0

q0 + 1
Pr


1 ← Gi

5  i ∈ Q0


+

1

(q0 + 1) · Y  

Gi
5 to Gi

6 hop. Let i ∈ Q0 now be xed. As in the classical case, due to the extra condition in Gi
5, we may

replace the occurrence of m with mi without aecting the output of the game. Thus

Pr

1 ← Gi

5


= Pr


1 ← Gi

6




Similarly (but not identically) to the classical case, we can argue the latter probability to be small. Indeed,
we may assume that A0 stops after having produced the i-th query, which is then measured. This then
means, given that H [(·,mi, ·) → ⊥]) blocks the query that would reveal Θ, the output (y, pk, s) produced by
B1 is independent of Θ. Thus, the probability that y = Θ is at most 1Y , showing that

Pr

1 ← Gi

6


= 1Y  for all xed i ∈ Q0

Substituting terms in Equation 8, we obtain that

Pr [1 ← G4] ≤
(2q0 + 1)2

Y  

Combining the above bounds concludes the proof.

With this, we have all ingredients to conclude (5), i.e., Theorem 11 for quantum adversaries. Similar to
the bottom of Section 4.2, we combine Proposition 13 and Theorem 15, except now replacing the use of
linearity to Jensen’s inequality.

Given that, in typical applications, A0 is not adversarially chosen but determined by the environment, and
typical applications take place in a classical environment, it makes sense to also consider the semi-quantum
case where we restrict A0 to classical queries, but we still allow A1 to be quantum. By an appropriate
mix-and-match of the classical and the (fully) quantum proof, we obtain the following bound then.11

11 T            A0.

20

Porism 16. Let A = (AH
0 ,AH

1) be a computationally unbounded adversary against Φ-$-NMH,⊥, with AH
0

making at most q0 classical queries and AH
1 at most q1 quantum queries to the random oracle H with co-

domain Y, and let aux be a (possibly randomized) function. Set

ϵ := guess
m←AH

0


m

H, aux(m)

,

and let pk be an arbitrary public key. Then,

Adv
Φ-$-NMH,⊥(pk)
H (A, aux) ≤ q0 · 2−ℓ + 4q1

√
ϵ+ (q0 + 1)Y  

Again, combining Proposition 13 and Porism 16, we conclude (6), i.e. the semi-quantum case of Theo-
rem 11.

4.4 Computational Entropy in the ROM

Previous denitions of non-resignability (and similar for Φ-non-malleability) in the plain model involved a
premise on the min-entropy of the signed message, making it hard for the adversary A1 to guess it. In the
random oracle model, however, the random oracle H : X → Y itself becomes a source of randomness. Thus,
by choosing the message to be the hash of a xed string, it has high entropy but is still easy to guess, by just
making one query to the random oracle. So far, we dealt with this by considering the statistical min-entropy
and additionally conditioning on the (function table of the) random oracle. However, conditioning on the
exponentially large function table of the random oracle is problematic when considering the computational
HILL entropy.

Below, we consider a natural way to overcome this issue by introducing a notion of HILL entropy in
the ROM. In spirit, a random variable X, which may be correlated with the random oracle, has high
HILL entropy, if it is indistinguishable from a random variable that has high statistical entropy, and where
indistinguishability must hold for ecient oracle algorithms that may query the random oracle. Looking
ahead, unfortunately, our positive result from above nevertheless does not carry over to the computational
setting, despite this new notion of HILL entropy in the ROM.

Formally, for two random variables X,Y that may depend on the random oracle H , we dene the
computational distance relative to H as

δHs,q(X,Y) := max
C

Pr

1 ← CH(X)


− Pr


1 ← CH(Y)

 ,

where the maximum is taken over all circuits C of size s and additionally given at most q queries to H . The
denition of the (conditional) HILL entropy HILLH∞ relative to H is then in line with Denition 1.

Denition 17. For a pair of random variables (X,Z), possibly dependent on the random oracle H, the
conditional HILL entropy (with parameters δ, s and q) relative to the random oracle is dened as

δ,s,qHILLH∞(X Z) := max
Y

H∞(Y Z,H) ,

where the max is over all random variables Y with δHs,q((X,Z), (Y, Z)) ≤ δ .

Note that we can also consider a variant where the indistinguishability is captured via quantum circuits,
but for the sake of simplicity, here we consider only the classical variant of HILL entropy. Furthermore,
similarly to the remark in Section 2.1, we may also use an asymptotic notation and omit the parameters.

Below, we show that our positive result on the salted BUFF transform in the ROM does not carry over
to the computational setting when considering the entropy requirement to be computational, i.e., captured
by the above notion of HILL entropy in the ROM. Concretely, we show that under the computational Die-
Hellman (CDH) assumption, there exists a (contrived) signature scheme that is secure in the standard sense
(and thus a meaningful signature scheme), but for which the salted BUFF transformation does not provide
the computational variant of NRH,⊥. Formally, this is summarized in Theorem 18.

21

Theorem 18. Let H be a random oracle with co-domain Y. Assuming CDH is hard, there exists a signature
scheme SH = (KGen, SignH, VfyH) in the ROM, with a key generation that has no access to H, for which
$-BUFF[S,H], obtained by applying the salted BUFF transform (see Fig. 9), satises the following:

There exists a PPT adversary AH := (AH
0 ,AH

1) given query access to H, and a PPT function aux without
any query to H such that

HILLH∞
(sk,pk)←$-BUFF[S,H].KGen(1λ)

m←AH
0 (pk)


m

 pk, aux(m, pk)

≥ log(Y ) ,

and yet they win the game NRH,⊥ against $-BUFF[S,H] with overwhelming probability, i.e.,

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≥ 1− negl(λ) 

Moreover, SH is strongly unforgeable under chosen message attacks.

Let SH
◦ be an arbitrary CDH-based (strongly unforgeable) signature scheme, with a key generation that

does not query H. Dene S to be as S◦, but modied as follows. The key generation additionally produces
a pair (a, ga), and attaches a to the secret key and ga to the public key. Furthermore, signing attaches a to
the actual signature (but will be ignored by the verication). Then, we consider an attacker that produces
the message m as m := (H(gab), gb), and the auxiliary function aux(m, pk) := gb. Then we have

HILLH∞

m

 pk, aux(m, pk)

≥ HILLH∞


H(gab)

 ga, gb

,

which is at least as large as log(Y ) by the CDH assumption; yet when given the signature of m, which
includes a (be it BUFF transformed or not), the attacker can compute all of m and so produce a new
signature by freshly signing m, which breaks the NRH,⊥ security of $-BUFF[S,H]. For completeness, the
detailed proof is spelled out in Appendix D.

5 Conclusion

Non-resignability was considered to be a meaningful, possibly desirable, additional security property for
digital signature schemes, beyond standard unforgeability, and the BUFF transform was believed to be a
generic transformation that turns any signature scheme into one that satises this additional security property
(in the random oracle model). Our work shows that the situation is actually much more negative; the above,
incorrect understanding is largely due to prior work not spelling out formal denitions, statements, and
proofs rigorously enough, leading to incorrect claims—or to claims that are not dened but easily incorrectly
interpreted.

We also show that there is room for positive results, but more work is necessary in that respect. In
particular, it is conceivable that the original BUFF transform satises our weaker notion of non-resignability
in the ROM when having a bound on the statistical entropy, i.e., that Theorem 11 holds (with adjusted
bounds) for the original BUFF transform. Achieving our weaker notion of non-resignability in the ROM, by
means of a generic transformation, when considering the computational variant of the entropy requirement
is another challenging open problem.

Acknowledgments

Yu-Hsuan Huang is supported by the Dutch Research Agenda (NWA) project HAPKIDO (Project No.
NWA.1215.18.002), which is nanced by the Dutch Research Council (NWO). Patrick Struck acknowledges
funding by the Bavarian State Ministry of Science and the Arts in the framework of the bidt Graduate
Center for Postdocs and the German Research Foundation (DFG) – SFB 1119 – 236615297 (while working
at University of Regensburg) as well as the Hector Foundation II. Part of this work was done while Patrick
Struck was visiting the Centrum Wiskunde & Informatica.

22

References

AHU19. A A, M H,  D U. Q    -
. I A B  D M, , CRYPTO 2019, Part II,  11693
 LNCS,  269–295. S, H, A 2019.

BBD+23. J B, O B, L́ D, S F, Y-H H, T P, E
P, T P, L P,  W  W. H. T , N-
 I  S  T, 2023. A  https://csrc.nist.gov/Projects/

pqc-dig-sig/round-1-additional-signatures.
BCFW09. A B, D C, M F,  B W. F  -

  - . I M M, , ASIACRYPT 2009,  5912  LNCS, 
524–541. S, H, D 2009.

BFS11. P B, M F,  D S̈. E -   
. I A K, , CT-RSA 2011,  6558  LNCS,  268–283. S,
H, F 2011.

CDF+21. C C, S D̈̈, R F, M F,  C J. BUFF 
       - . I 2021 IEEE Symposium on Se-
curity and Privacy,  1696–1714. IEEE C S P, M 2021. C P A
   https://eprint.iacr.org/archive/2020/1525/20230116:141028 (V 1.3).

CDF+23. C C, S D̈̈, R F, M F,  C J. BUFF 
       - , 2023. A   (V-
 1.4)  [CDF+21],   https://eprint.iacr.org/archive/2020/1525/20231020:082812.

DFM20. J D, S F,  C M. T --  2.0: M-
-  . I D M  T R, , CRYPTO 2020, Part III,
 12172  LNCS,  602–631. S, H, A 2020.

DH76. W D  M E. H. N   . IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

PEK+23. R  P, T E, S K, M M, F M, T
P, M́ R,  M-J S. R. T , N I
 S  T, 2023. A  https://csrc.nist.gov/Projects/pqc-dig-sig/

round-1-additional-signatures.
ENST23. T E, G N, C S,  M T. S. T , N-

 I  S  T, 2023. A  https://csrc.nist.gov/Projects/

pqc-dig-sig/round-1-additional-signatures.
FHK+22. P-A F, J H, P K, V L, T P,

T P, T R, G S, W W,  Z Z. F-
 -  ? https://csrc.nist.gov/csrc/media/Presentations/2022/falcon-update/

images-media/session-1-prest-falcon-pqc2022.pdf, 2022.
GCF+23. L G, B̂ı C, J-C F́, P-A F, R L, G

M-R, B M,  J P. P. T , N I
 S  T, 2023. A  https://csrc.nist.gov/Projects/pqc-dig-sig/

round-1-additional-signatures.
GHHM21. A B. G, K H̈, A H̈,  C M. T  -

   QROM. I M T  H W, , ASIACRYPT 2021, Part I, 
13090  LNCS,  637–667. S, H, D 2021.

HBD+20. A H̈, D J. B, C D, M E, S F, S-
L G, P K, S K̈, T L, M M. L, F M,
R N, C R, J R, P S, J-P A,
B W,  W B. SPHINCS+. T , N I  S
 T, 2020.   https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
JCCS19. D J, C C, K C-G,  R S. S : A  

      . I L C, J K, XF W,
 J K, , ACM CCS 2019,  2165–2180. ACM P, N 2019.

KBJ+14. T H-J K, C B, L J, S B L, Y-C H,  A P.
L     . I Proceedings of the 2014 ACM Conference on
SIGCOMM,  271–282, 2014.

23

LDK+20. V L, L́ D, E K, T L, P S, G S, D
S́,  S B. CRYSTALS-DILITHIUM. T , N I  S
 T, 2020.   https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
LZ23. D L  R Z. . T , N I  S  T,

2023. A  https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.
NIST22. N I  S  T. C       

-   . https://csrc.nist.gov/csrc/media/Projects/

pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf, 2022.
PCF+23. J P, B̂ı C, J-C F́, P-A F, L G, R

L, G M-R,  B M. V. T , N I 
S  T, 2023. A  https://csrc.nist.gov/Projects/pqc-dig-sig/

round-1-additional-signatures.
PFH+20. T P, P-A F, J H, P K, V L, T

P, T R, G S, W W,  Z Z. FALCON. T ,
N I  S  T, 2020.   https://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.
PS05. T P  J P. S. D      . I J

I, A K,  M Y, , ACNS 05,  3531  LNCS,  138–150.
S, H, J 2005.

RSA78. R L. R, A S,  L M. A. A      
- . Communications of the Association for Computing Machinery, 21(2):120–126,
F 1978.

ZBPB17. J K Z́, K B, J P,  B B.
HACL*: A    . I B M. T, D E, T
M,  D X, , ACM CCS 2017,  1789–1806. ACM P, O / N
2017.

A Unachievability of Φ-Non-Malleability as in [CDF+23]

Following the (updated) denition in [CDF+23, Def. 2.4], a hash function H is Φ-non-malleable if for every
pair (A0,A1) of PPT algorithms for which the Hill entropy HILL∞(xstate) is suciently large for (X , state) ←
A0 and x ← X , the probability of winning the game in Fig. 14 is negligible. In case of a hash function family,
the hash key is given as input to A0 and the HILL entropy is then also conditioned on the hash key. In case
of H a random oracle, A0 is given query access to H and the entropy requirement is then on the statistical
min-entropy H∞(xH, state), where one additionally conditions on the (function table of) the random oracle.

Φ-NM0:

1: (X , state) ← A0

2: x ← X
3: y := H(x)
4: (y,ϕ) ← A1(y, state)
5: return (H(ϕ(x)) = y ∧ ϕ(x) ̸= x)

Fig. 14: The Φ-non-malleability game, as considered in [CDF+23], but for a xed hash
function H. X is an eciently sampleable distribution. The subscript in Φ-NM0 here
is meant to distinguish it from the original denition, which considers some additional
auxiliary information.

The relevant choice of Φ for the non-resignability claim in [CDF+23] is

Φ = ϕpk : (pk,m) → (pk,m)  pk ∈ K ,

24

where K is the space of all public keys. In more detail, [CDF+23, Lemma 5.7] shows that the considered NR
property of the (original) BUFF transform is satised if the considered hash function H (or hash function
family) satises the above notion of Φ-non-malleability for this particular choice of Φ.

We show here a simple attack against this notion of Φ-non-malleability for this choice of Φ. The attack
applies to any hash function (family) H, including the random oracle, and so renders the non-resignability
claim in [CDF+23, Lemma 5.7], and in [CDF+23, Theorem 5.5], vacuous.

The attack works as follows. A0 outputs the distribution X that samples a random pk ∈ K and outputs
x = (pk, 0), and A1 ignores its input y = H(pk, 0) and simply outputs (H(pk, 0),ϕpk) for an arbitrary (xed)

pk ∈ K. Note that there is no state information state here, and the entropy condition is satised (assuming
K to be suciently large). Thus, this is a valid attack that succeeds with probability almost 1; it only fails
when the random pk ∈ K happens to be pk.

B A modied measure-and-reprogram lemma

In [DFM20] we nd the measure-and-reprogram technique 2.0 (Theorem 2):

Theorem 19 (Measure-and-reprogram). Let X and Y be nite non-empty sets. There exists a black-box
two-stage quantum algorithm S with the following property. Let A be an arbitrary oracle quantum algorithm
that makes q queries to a uniformly random H : X → Y and that outputs some x ∈ X and a (possibly
quantum) output z. Then, the two-stage algorithm SA outputs some x ∈ X in the rst stage and, upon a
random Θ ∈ Y as input to the second stage, a (possibly quantum) output z, so that for any x◦ ∈ X and any
(possibly quantum) predicate V :

Pr
H,Θ


x=x◦ ∧ V (x,Θ, z) : (x, z) ← ⟨SA,Θ⟩



≥ 1

(2q + 1)2
Pr
H


x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH




Furthermore, S runs in time polynomial in q, log X , and log Y .

Here ⟨SA,Θ⟩ works as follows: First, one of the q + 1 queries of A (also counting the nal output in
register X) is measured, and the measurement outcome x is output by (the rst stage of) S. Each of the q
actual queries is picked with probability 2

2q+1 , while the nal output is picked with probability 1
2q+1 . Then

this very query of A is answered either using the original H or using the reprogrammed oracle H∗Θx, with
the choice being made at random12, while all the remaining queries of A are answered using oracle H∗Θx.
Finally, (the second stage of) S outputs whatever A outputs.

The theorem follows directly from the above denition of S and a technical lemma. Let rst ϕi⟩ be dened
as A’s state right before making its i+1st query—with the special case ϕq⟩ denoting the nal output state—
to which we add the superscript O ∈ H,H ∗Θx when all previous queries have been answered using O.
Next, we use AO

i→j to denote the unitary that brings A from ϕi⟩ to ϕj⟩, using O from the i-th query on.
Finally, we use the shorthand X := x⟩⟨x. The lemma then reads:

Lemma 20. Let A be a q-query oracle quantum algorithm. Then, for any function H : X → Y, any x ∈ X
and Θ ∈ Y, and any projection Πx,Θ, it holds that

Ei,b

(X ⊗Πx,Θ)

AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 2
2


≥

(X ⊗Πx,Θ)
ϕH∗Θx

q

 2
2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ (0,    , q−1× 0, 1) ∪ (q, 0).
12 I               ,       .

25

Here the left-hand side corresponds to the success probability of S with respect to V and Θ, while (in
expectation over Θ) the right-hand side is equal to the success probability of the adversary in a normal run,
now with respect to V and the original oracle output H(x).

A rst observation is that the technical lemma actually proves something slightly stronger than Theorem
19; If we let S additionally output the measurement outcome x, we get the condition x = x′ for free (since
the same projector X is used on the query as well as the nal output state). On the other hand, for our
application it suces to use a slightly weaker statement (in a dierent respect) that we obtain by summing
over all x◦ ∈ X :

Pr
Θ


x=x′ ∧ V (x,Θ, z) : (x, x′, z) ← ⟨SA,Θ⟩



≥ 1

(2q + 1)2
Pr
H


V (x,H(x), z) : (x, z) ← AH




Next, we will reduce q to account for only those queries where S has a non-zero probability of measuring
the same x′ = x that will eventually be output by A, while also satisfying the quantum predicate. The
probability here is over the choice of H , Θ and the measurement outcome x′, we thus dene:

Qmin := i ∈ 0,    , q−1  ∃H ∈ YX , ∃Θ ∈ Y , ∃x ∈ X , ∃b ∈ 0, 1 s.t.
(X ⊗Πx,Θ)


AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 
2
̸= 0 

Let furthermore Q be any subset of queries such that Qmin ⊆ Q ⊆ 0,    , q−1. It will now be easy to prove
the following modied lemma:

Lemma 21. Let A be a q-query oracle quantum algorithm, with Q as dened above. Then, for any function
H : X → Y, any x ∈ X and Θ ∈ Y, and any projection Πx,Θ, it holds that

E
i,b

(X ⊗Πx,Θ)

AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 2
2


≥

(X ⊗Πx,Θ)
ϕH∗Θx

q

 2
2

(2Q+ 1)2
,

where the expectation is over uniform (i, b) ∈ (Q× 0, 1) ∪ (q, 0).
Note that the only dierence to Lemma 20 is in the expectation on the left-hand side and the denom-

inator on the right-hand side, as indicated in blue. The proof is largely taken from [DFM20], with a small
modication which we highlight with a gray background.

Proof. For any 0 ≤ i ≤ q, inserting a resolution of the identity and exploiting that


AH∗Θx

i+1→q


AH

i→i+1


I−X

 ϕH
i


=


AH∗Θx

i→q


I−X

 ϕH
i


,

we can write


AH∗Θx

i+1→q

 ϕH
i+1



=

AH∗Θx

i+1→q


AH

i→i+1


I−X

 ϕH
i


+


AH∗Θx

i+1→q


AH

i→i+1


X

ϕH
i



=

AH∗Θx

i→q


I−X

 ϕH
i


+


AH∗Θx

i+1→q


AH

i→i+1


X

ϕH
i



=

AH∗Θx

i→q

 ϕH
i


−


AH∗Θx

i→q


X

ϕH
i


+


AH∗Θx

i+1→q


AH

i→i+1


X

ϕH
i



Rearranging terms, applying GΘ
x = (X ⊗Πx,Θ) and using the triangle equality, we can thus bound

GΘ
x


AH∗Θx

i→q

 ϕH
i

 
2
≤

GΘ
x


AH∗Θx

i+1→q

 ϕH
i+1

 
2

+
GΘ

x


AH∗Θx

i→q


X

ϕH
i

 
2

+
GΘ

x


AH∗Θx

i+1→q


AH

i→i+1


X

ϕH
i

 
2


26

Summing up the respective sides of the inequality over i = 0,    , q − 1, dropping (some of) the zero
terms in the summation13, we get

GΘ
x

ϕH∗Θx
q

 
2
≤

GΘ
x

ϕH
q

 
2
+



i ∈ Q
b∈0,1

GΘ
x


AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 
2


By squaring both sides, dividing by 2Q + 1 (i.e., the number of terms on the right-hand side), and using
Jensen’s inequality on the right-hand side, we obtain

GΘ
x

ϕH∗Θx
q

 2
2

2Q+ 1
≤

GΘ
x

ϕH
q

 2
2
+



0≤i<q
b∈0,1

GΘ
x


AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 2
2

and thus, noting that we can write
GΘ

x

ϕH
q

 2
2
as

GΘ
x


AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 2
2

with i = q and b = 0,

GΘ
x

ϕH∗Θx
q

 2
2

(2Q+ 1)2
≤ E

i∈ Q,b

GΘ
x


AH∗Θx

i+b→q


AH

i→i+b


X

ϕH
i

 2
2




This concludes the proof.

The corresponding theorem reads as follows:

Theorem 22 (Measure-and-reprogram with stingy simulator). Let X and Y be nite non-empty sets.
There exists a black-box two-stage quantum algorithm S with the following property. Let A be an arbitrary
oracle quantum algorithm that makes q queries to a uniformly random H : X → Y and that outputs some
x ∈ X and a (possibly quantum) output z, and let V be a (possibly quantum) predicate. For i ∈ 0,    , q−1,
dene the two-stage algorithm SA

i as follows: In the rst stage Si measures the i-th query of A, and outputs
the measurement outcome x′. Then, upon a random Θ ∈ Y as input to the second stage, this very query of A
is answered either using the original H or using the reprogrammed oracle H∗Θx, with the choice being made
at random, while all the remaining queries of A are answered using oracle H∗Θx. At the end of its run Si

then outputs whatever A outputs (along with i). Now let Q ⊆ 0,    , q−1 be such that for all i ∈ Q we have
PrH,Θ


x′ = x ∧ V (x,Θ, z) : (x′, x, z) ← ⟨SA

i ,Θ⟩

= 0. Dene S(Q) to be the algorithm that with probability

2Q
2Q+1 picks i uniformly at random from Q and then runs Si, and with probability 1

2Q+1 chooses i = q and

just simulates A without any measurement or reprogramming, and again outputs whatever A outputs (along
with x′ := x and i). We then have

Pr
H,Θ


x′=x ∧ V (x,Θ, z) : (x′, x, z, i) ← ⟨SA(Q),Θ⟩



≥ 1

(2Q+ 1)2
Pr
H


V (x,H(x), z) : (x, z) ← AH




Furthermore, S runs in time polynomial in q, log X , and log Y .

C Proof of Theorem 7

Proof. For the signature scheme SH = (KGenH, SignH, VrfyH), we give an adversaryAH = (AH
0 ,AH

1) that wins
game NRH

S with overwhelming probability. The adversary AH = (AH
0 ,AH

1) and the function auxH are given

13 A  ( Q = Qmin)            b,H,Θ,  x.

27

in Fig. 6. In the rst stage, adversary AH
0 chooses a random message m that it will output. The auxiliary

function, which receives the message m as input, rst generates a new key pair (sk, pk) ← KGenH(1λ),
computes σ ← SignH(sk, y), and outputs h ← (pk,σ). In the second state, AH

1 gets the public key pk, the
signature σ (of message m using secret key sk), and the hint h (consisting of pk and σ) as input and simply
outputs h = (pk,σ). It is easy to see that NRH

S outputs 1 with overwhelming probability. This is because, by
the correctness of S, we have that σ is a valid signature of m under pk with overwhelming probability, and
by the high min-entropy of a public key conditioned on H, we have pk ̸= pk with overwhelming probability.

The remaining is to argue that A satises the entropy condition (3). It holds that

H∞(m  pk, auxH(m, pk),H) = H∞(m  auxH(m, pk),H)

= H∞(m  pk, SignH(sk,m),H) ≥ ω(log λ) 

The rst equality holds by noticing that m → (auxH(m, pk),H) → pk forms a Markov chain, the second
equality holds by the construction of auxH, and the last inequality holds from the entropy requirement.
Collecting the above yields

AdvNRH

S (λ,A, aux) ≥ 1− negl(λ) ,

which concludes the proof.

D Prove of Theorem 18

Let G be a cyclic group of order n generated by g, for which CDH is hard. The core of this negative result is
a generic compiler RSg as dened in Fig. 15. The compiler RSg appends a ← 1,    , n to sk and ga to pk
during key generation, and appends a to the signature during signing, transforming any signature scheme
SH
◦ into another RSg[S◦, H] that can easily be re-signed, as will be shown later. This transformation does

not make additional queries to H during key generation. Moreover, as can be clearly seen by construction,
RSg preserves strong (resp. weak) unforgeability, and additionally commutes with $-BUFF, i.e.

$-BUFF[RSg[S◦,H],H] ≡ RSg[$-BUFF[S◦,H],H] , (9)

where we use ≡ to denote that signatures on both sides behave identically (up to output re-formatting).
As a direct consequence, the salted BUFF applied to any such compiled signature RSg[S◦,H] yields another
RSg-transformed signature, thus can still be re-signed.

KGen(1λ)

1 : (sk, pk) ← S◦.KGen(1
λ)

2 : a ← {1, . . . , n}
3 : sk := (a, sk)

4 : pk := (ga, pk)

5 : return (sk, pk)

SignH(sk,m)

1 : (a, sk) := sk

2 : σ ← S◦.Sign(sk,m)

3 : return σ := (a,σ)

VfyH(pk′,m,σ′)

1 : (ga, pk) := pk

2 : (a,σ) := σ

3 : return S◦.Vfy(pk,m,σ)

Fig. 15: The compiler RSg[S◦, H] for a signature scheme SH
◦ and a hash function H.

Now we are ready to spell out the attack A = (A0,A1) and aux in Fig. 16 against NRH,⊥ in Fig. 10.
From the construction, we immediate see that they win the game with overwhelming probability, i.e.

AdvNRH,⊥

RSg [S◦,H](A, aux) ≥ 1− negl(λ)  (10)

28

Then, it follows from Lemma 23 that the above attack indeed satises the HILL entropy requirement, namely

HILLH∞
(sk,pk)←RSg [S◦,H].KGen(1λ)

m←AH
0 (pk)


m

 pk, aux(m, pk)

≥ log(Y ) 

Putting things together, we conclude Theorem 18.

AH
0 (pk)

1 : (ga, pk) := pk

2 : b ← [n]

3 : return m := (H(gab), gb)

aux(m, pk)

1 : (−, gb) := m

2 : return h := gb

AH
1 (pk,σ, h)

1 : (pk′, sk′) ← KGen(1λ)

2 : (a,−) := σ

3 : m := (H(ha), h)

4 : return (SignH(sk′,m), pk′)

Fig. 16: Attacker against NRH,⊥ in terms of HILL entropy

Lemma 23. Let H be a random oracle with co-domain Y, and G be a cyclic group of order n generated by
g, for which CDH is hard. Then we have

HILLH∞
a,b←[n]


H(gab)  ga, gb


≥ log(Y ) 

Proof. Let y ← Y be a fresh randomness, and CH be a q-query polynomial-circuit-size oracle algorithm
where q is polynomially bounded. To distinguish between (H(gab), ga, gb) and (y, ga, gb), the algorithm CH

has to query gab in one of its queries, i.e.

Pr

1 ← CH(H(gab), ga, gb)


− Pr


1 ← CH(y, ga, gb)



≤


i∈[q]

Pr

gab ← Ci(g

a, gb)

,

where the circuit Ci simulates CH and its queries to H via lazy sampling, and then simply output the ith
query to H . Since each Ci is still polynomial-circuit-size, it is unable to produce gab except with negligible
probability, i.e.

Pr
a,b←[n]

[gab ← Ci(g
a, gb)] ≤ negl(λ) ,

for some security parameter λ that has been kept implicit. Putting things together, we obtain

HILL∞
a,b←[n]


H(gab)  ga, gb


≥ H∞(y  H, ga, gb) = log(Y ) ,

where the last equality follows from the independence between y and (H, ga, gb).

29

