
Taming Quantum Time Complexity
Aleksandrs Belovs1, Stacey Jeffery2, and Duyal Yolcu3

1Center for Quantum Computing Science, Faculty of Science and Technology, University of Latvia
2QuSoft, CWI & University of Amsterdam
3https://github.com/qudent

Quantum query complexity has several nice properties with respect to compo-
sition. First, bounded-error quantum query algorithms can be composed without
incurring log factors through error reduction (exactness). Second, through care-
ful accounting (thriftiness), the total query complexity is smaller if subroutines are
mostly run on cheaper inputs – a property that is much less obvious in quantum al-
gorithms than in their classical counterparts. While these properties were previously
seen through the model of span programs (alternatively, the dual adversary bound),
a recent work by two of the authors (Belovs, Yolcu 2023) showed how to achieve these
benefits without converting to span programs, by defining quantum Las Vegas query
complexity. Independently, recent works, including by one of the authors (Jeffery
2022), have worked towards bringing thriftiness to the more practically significant
setting of quantum time complexity.

In this work, we show how to achieve both exactness and thriftiness in the setting
of time complexity. We generalize the quantum subroutine composition results of
Jeffery 2022 so that, in particular, no error reduction is needed. We give a time
complexity version of the well-known result in quantum query complexity, Qpf ˝gq “

OpQpfq ¨Qpgqq, without log factors.
We achieve this by employing a novel approach to the design of quantum algo-

rithms based on what we call transducers, and which we think is of large independent
interest. While a span program is a completely different computational model, a
transducer is a direct generalisation of a quantum algorithm, which allows for much
greater transparency and control. Transducers naturally characterize general state
conversion, rather than only decision problems; provide a very simple treatment of
other quantum primitives such as quantum walks; and lend themselves well to time
complexity analysis.

Accepted in Quantum 2024-07-22, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

31
1.

15
87

3v
3

 [
qu

an
t-

ph
]

 2
2

A
ug

 2
02

4

https://quantum-journal.org/?s=Taming%20Quantum%20Time%20Complexity&reason=title-click
https://orcid.org/0009-0004-1625-108X
https://orcid.org/0000-0003-0046-5089
https://github.com/qudent

Contents
1 Introduction 4

2 Conceptual Preliminaries: Quantum Las Vegas Complexity 7
2.1 Types of Composition . 7
2.2 Randomised Complexity . 8
2.3 Quantum Complexity . 9

3 Overview of the Paper 12
3.1 Transducers . 12
3.2 Connection to Quantum Walks . 14
3.3 Input Oracle and the Canonical Form . 16
3.4 Transducers from Quantum Algorithms . 18
3.5 Composition of Transducers . 20
3.6 Purifiers and Composition of Functions . 26

4 Preliminaries 32
4.1 Query Algorithms . 32
4.2 Multiple Input Oracles . 34
4.3 Evaluation of Functions . 34
4.4 Circuit Model . 36
4.5 QRAG model . 36
4.6 Perturbed Algorithms . 37
4.7 Efficient Implementation of Direct-Sum Finite Automata 38

5 Transducers 39
5.1 Definition . 39
5.2 Implementation . 41

6 Example I: Quantum Walks 43

7 Canonical Transducers 45
7.1 Definition . 45
7.2 Multiple Input Oracles . 47
7.3 Reducing the Number of Oracle Calls . 47

8 Example II: Adversary Bound 50
8.1 State Conversion . 50
8.2 Function Evaluation . 51

9 Composition of Transducers 53
9.1 Basic Properties . 53
9.2 Alignment . 54
9.3 Parallel Composition . 54
9.4 Sequential Composition . 56
9.5 Functional Composition . 59

10 Transducers from Programs 61
10.1 General Assumptions . 61
10.2 Building Blocks . 62

2

10.3 Circuit Model . 62
10.4 QRAG Model . 64

11 Example III: Iterated Functions 66

12 Perturbed Transducers 68
12.1 Definition . 68
12.2 Implementation . 69
12.3 Composition . 70

13 Purifiers 70
13.1 Boolean Case . 70
13.2 Non-Boolean Case . 73
13.3 Composition of Bounded-Error Algorithms . 76

3

1 Introduction
Since the introduction of span programs into quantum query complexity by Reichardt and
Špalek [36, 33]1, the quantum query world became a nicer place to be. A span program (alter-
natively, a feasible solution to the dual adversary bound) is an idealised computational model,
in the sense that no real device corresponds to it. Nonetheless, it has a strong connection to
quantum query complexity. We can turn any quantum query algorithm into a span program,2

or we can construct one from scratch. They can be composed as usual quantum subroutines.
At the end of the day, the span program can be transformed back into a quantum query algo-
rithm. We identify two main points of advantage of span programs compared to usual quantum
subroutines.

• We call the first one exactness. A span program evaluates a function exactly even if the
quantum query algorithm it was converted from had a bounded error. Therefore, span
programs can be composed without any error reduction. The conversion from the span
program to a quantum query algorithm does introduce an error, and we do not get an
exact quantum query algorithm at the end. However, the error is introduced only once
per the whole algorithm, and does not accumulate even in the case of many non-precise
subroutines.

This idea was the major driving force behind this line of research starting with the algo-
rithm for the iterated NAND function [24, 5] to general iterated Boolean functions [36, 35].

• We call the second one thriftiness. Span programs have a natural predisposition towards
accurate bookkeeping. If an execution of a subroutine happens to be cheap on a particular
input, this cheaper cost will contribute to the total complexity of the whole span program.
This is in contrast to the usual execution of quantum subroutines, where the maximal cost
is to be paid no matter how easy the input is in a particular execution. This is because
we generally cannot measure a subroutine, which may be run only in some branch of a
superposition, to see whether it has ended its work or not.3 At the end, when converting
to a quantum query algorithm, we still have to account for the maximal possible com-
plexity, but this is done only once per the whole algorithm, thus amortising complexities
of individual subroutines.

This point has been emphasised to a lesser extent than the exactness property, but we
find it equally important. In particular, this ability results in some rather interesting
super-polynomial speed-ups [42]. We consider the thriftiness property in more detail in
Section 2.

In a recent paper by a subset of the authors [17], it was shown that one does not even
have to change the model to obtain these benefits. It suffices to keep the model of a quantum
query algorithm, and only change the way query complexity is defined. Namely, one can count
total squared norm of all the states processed by the input oracle (coined quantum Las Vegas
query complexity in [17] as it can be interpreted as the expected number of queries) instead of

1However, this particular connection is attributed to Troy Lee in the first of these two papers.
2Originally, this construction was non-constructive as it came from the dual of a lower bound. Section 3 of [33]

contains a constructive construction for algorithms with one-sided error. This was later extended to two-sided
error in [27].

3In specific cases, Ambainis’ variable-time framework [2, 3, 6] allows for this particular approach. We consider
variable-time framework as a piece of motivation towards importance of thus defined thriftiness. See, e.g., the
results mentioned in the introduction of [6].

4

the number of executions of the input oracle (which is the usual definition, called Monte Carlo
in [17]). Note that quantum Las Vegas query complexity is an idealised complexity measure,
but it has an operational meaning: at the end of the day, a quantum Las Vegas query algorithm
can be turned into a Monte Carlo query algorithm with a constant increase in complexity and
introducing a small error.

A major drawback of the above results is that while accounting of query complexity is very
natural and important, analysis of the more meaningful time complexity of the resulting algo-
rithm can be quite difficult. While the time complexity of some nicely structured span program
algorithms has been successfully analyzed (e.g. [16, 36]), in other cases, time complexity analy-
ses have proven much more challenging, perhaps most notably in [10], where a query algorithm
was given, but a time complexity analysis remained elusive for more than a decade [29].

There has been a line of work attempting to extend some of the benefits of span programs
to time complexity. In [23], it was shown how span programs could be made to capture time
complexity of quantum algorithms, not only query complexity. Essentially what [23] did was to
extend the algorithm-to-span-program conversion of [33] so that the span program still encodes
information about the gate structure of the original algorithm. Thus, this structure can be
recovered when the span program is converted back into an algorithm. The resulting span
programs could be manipulated in a limited number of ways. For instance, this allowed for
an alternative implementation of Ambainis’ variable-time search algorithm [2]. This idea was
further exploited in [26] by one of the authors (in the framework of multidimensional quantum
walks [29]) to give a general composition result for time complexity of quantum algorithms,
similar to the query results of [17], but lacking in generality. While [26] achieved thriftiness, it
failed to achieve exactness. Instead, this work assumes that subroutines have had their success
probability amplified through majority voting so that errors occur with inverse polynomial
probability, which results in logarithmic factor overhead.

One of the main contributions of this paper is a framework that achieves both exactness and
thriftiness for quantum time complexity in a systematic manner. In order to do so, we introduce
transducers. While quantum Las Vegas query complexity keeps the model of a quantum algo-
rithm the same but changes the definition of the query complexity, transducers still keep the
same model but change the definition of computation. We consider two objects: a transducer
that is a usual quantum algorithm in a larger Hilbert space, and its transduction action that is
an idealised transformation obtained by “additively tracing out” a part of the Hilbert space of
the transducer. A simple procedure converts a transducer into an algorithm implementing its
transduction action, introducing a small error in the process. Monte Carlo query complexity of
the resulting algorithm is Las Vegas query complexity of the transducer. Its time complexity
is a product of two things: time complexity of the transducer (considered as a usual quantum
algorithm) and its transduction complexity, which measures the extent of the “traced-out” part
of the system. Compared to span programs, which most naturally model computations of deci-
sion problems, transducers naturally model arbitrary state conversion computations, and as a
transducer is itself a quantum computation, its time complexity analysis is more immediate.

For the composition results, we follow the same overall strategy as for span programs. We
can transform any quantum program into a transducer, and we can compose transducers in
essentially the same way as we compose quantum programs. The advantage is that both query
complexity and time complexity (in the guise of transduction complexity) are composed in a
thrifty manner. At the end, we convert the composed transducer back into a quantum algorithm.
In parcitular, we obtain the following results:

Exact and thrifty composition of quantum algorithms: We show how to compose quan-

5

tum algorithms in a way that is thrifty4 in time complexity, but also exact (Theorem 3.10).
This improves on [26] in several ways.

1. Exactness: We do not need to assume the composed algorithms have inverse poly-
nomial errors, which saves log factors in the overall complexity.

2. The results apply to composing quantum algorithms that solve general state conver-
sion problems, whereas [26] only applies to algorithms that decide Boolean functions.

3. In addition to achieving thrifty time complexity, the composed algorithm is also
thrifty in its number of queries to the input oracle.

The one way in which our results, as stated, are not more general than [26] is that [26] con-
siders quantum algorithms that work in the variable-time model, meaning their running
times can be random variables, achieved by performing intermediate partial measurements
that indicate if the algorithm is finished. While variable-time algorithms are also compat-
ible with transducers, we omit their explicit treatment here, for the sake of simplicity, and
leave it for future work. We also give results that apply purely to the circuit model (with-
out quantum random access gates (QRAGs)), but with worse complexity (Theorem 3.8).
We also explicitly consider multiple layers of composition (Theorem 3.11) in the QRAG
model, and its special case of iterated functions in the circuit model (Theorem 3.12).

Quantum analogue of majority voting, and time-efficient function composition: It
is known that the bounded-error quantum query complexity, Q, of a composed function
f ˝ g is Qpf ˝ gq “ OpQpfqQpgqq. This statement would be obvious with log factors, by
using the standard technique of majority voting to reduce the error of each call to g to
inverse polynomial, but the fact that this holds without log factors is somewhat surprising.
In Section 3.6, we shed some light on this surprising result, and show a similar result for
time complexity. We extend a notion from [14], called a purifier, to show how to take
a quantum algorithm with constant error, and convert it to a transducer with any error
ε ą 0 with only constant overhead on the query and time complexities. This, in turn,
allows us to prove a log-factor-free composition result for time complexity in the QRAG
model (Theorem 3.16). Specifically, if there is an algorithm for f that makes Q queries
and takes Tf additional time, and an algorithm for g that takes Tg time, then there is
an algorithm for f ˝ g that takes time OpTf ` QTgq. As with the aforementioned query
result, this would be obvious with log factors on the second term, but the fact that it
holds without log factor overhead is surprising. This implies log factor improvements in
the time complexity of quantum algorithms obtained by composition, such as [29].

We stress that in addition to our concrete results, a major contribution is conceptual. Along
with bringing the beautiful existing work on quantum query complexity to the real world of
quantum time complexity, transducers achieve many existing results in a much simpler and
cleaner way, and we feel that they are a novel and potentially instructive way of understanding
quantum algorithms.

For example, discrete-time quantum walks are an important technical tool. However, under-
standing their internal workings requires some background: the notion of the spectral gap, phase
estimation subroutine, non-trivial spectral analysis. In Section 3.2 we use transducers to devise
a very simple implementation of a quantum walk that completely avoids all this background.

Let us end this section with a few remarks on the model of computation. The previous
results towards thriftiness in time complexity, [23] and [26], assumed the QRAG model in a

4For an idea of what we mean by thrifty composition, see (2.2) and (2.4), and the surrounding discussion of
the “gold standard” for composition.

6

fundamental way. It is based around the quantum random access gate (QRAG), which allows
index access to an array of quantum registers in superposition. This should not be confused with
quantum random access memory (QRAM), which assumes such access to an array of classical
registers.5 QRAG is a stronger model than QRAM, but it is utilised in a large number of time-
efficient quantum algorithms, Ambainis’ element distinctness algorithm [1] being a noticeable
example.

Our general attitude towards the QRAG model is one of ambivalence. On the one hand, the
QRAG model is a very natural quantization of the classical RAM machine, and, thus, makes
a lot of sense to study theoretically. On the other hand, the assumption that we can swap a
large number of qubits in superposition in essentially constant time seems far-fetched given the
current state of the art in development of quantum computers. Because of that, we have chosen
to pursue both directions. We prove results involving the QRAG model, as they tend to have
more natural formulations, and continue the aforementioned line of research in [23, 26], but we
also design algorithms in the circuit model, which, while not being as efficient as in the QRAG
model, are of significant interest.

We now give a technical overview of our results in Section 2 and Section 3, before fleshing
out full details in the remaining sections.

2 Conceptual Preliminaries: Quantum Las Vegas Complexity
Quantum Las Vegas query complexity [17], also known as the total query weight [26], is a
cornerstone in understanding this paper for a number of reasons. First, the definition of the
query complexity of a transducer is intrinsically the Las Vegas one. Second, when converting
a quantum program into a transducer, we take into account its Las Vegas query complexity.
Finally, we use composition results for the Las Vegas query complexity as a model that we strive
to achieve for time complexity.

This section serves as a very brief overview of the composition properties for randomised
and quantum Las Vegas complexity. The main goal of this section is to highlight the connection
between quantum and randomised Las Vegas complexity, and to explain the composition prop-
erties we are interested in this paper. More technical exposition of these topics will be done in
Sections 4 and 9, respectively.

The randomised results in this section are folklore, and the quantum ones are either from [17]
or can be obtained similarly. Both are for purely illustrative purpose and will serve as reference
points to the results obtained later in the paper. The reader may choose to skip to Section 3,
and to return to this section if needed.

2.1 Types of Composition
The composition property we have in mind is as follows. Assume we have an algorithm A with
an oracle O1, and an algorithm B that implements the oracle O1. The functional composition
of the two is an algorithm A ˝ B, where the algorithm B is used as a subroutine to process
the queries made by A to O1. The subroutine B has access to some oracle O, which is also the
input to A ˝B. For simplicity we will now assume that A has no access to O, but we will drop
this assumption shortly. The main question is a bound on the complexity of A ˝B in terms of
complexities of A and B.

5This nomenclature is not completely standardised and has been a source of confusion, as different authors
use the same name to refer to different models.

7

One particular example studied extensively both classically and quantumly is given by com-
posed functions, i.e., functions of the form

f
`

g1pz1,1, . . . , z1,mq, g2pz2,1, . . . , z2,mq, . . . , gnpzn,1, . . . , zn,mq
˘

. (2.1)

(For simplicity of notation, we assume all the functions gi are on m variables, which is without
loss of generality.) Then, O encodes the input string z, and A evaluates the function f . Con-
cerning B, it is a parallel composition B “

À

iBi of algorithms evaluating gi. On query i, B
returns the output of Bi, which is gipzi,1, . . . , zi,mq.

In general, the parallel composition B “
À

iBi, which we also call the direct sum, has
queries of the form pi, jq, on which it responds with the output of Bi on query j. We assume
that all B and Bi have access to the same oracle O. In the example above, all j are absent.
Also, although each Bi has access to O, it only uses the substring zi “ pzi,1, . . . , zi,mq thereof.

2.2 Randomised Complexity
Recall the distinction between Las Vegas and Monte Carlo randomised algorithms. A Monte
Carlo algorithm is a randomised algorithm that takes at most some fixed number T of time
steps, and outputs the correct answer with bounded error. The complexity of such an algorithm
is simply T . This is analogous to the usual bounded-error quantum query model. In contrast,
a Las Vegas algorithm is a randomised algorithm whose number of steps is a random variable
T , and that never outputs an incorrect answer (though it may run forever). The complexity of
such an algorithm is ErT s. More generally, one might consider the Las Vegas complexity, ErT s,
of an algorithm whose running time is a random variable T , even if the algorithm has some
probability of erring (that is, it is not strictly a Las Vegas algorithm).

Randomised Las Vegas complexity behaves nicely with respect to composition. Here we
sketch the corresponding notions and results in order to facilitate the forthcoming introduction
of the related quantum notions, and to have a reference point against which we can gauge our
quantum composition results.

Let us start with functional composition. Let TrandpA,O1q be the complexity of the algorithm
A on the oracle O1. Let BpOq denote the action of the algorithm B on the oracle O, and

TrandpB,O, iq the complexity of BpOq on query i. Denote by p
piq
randpA,O1q the probability the

algorithm A will give i as a query to the oracle O1 at some point during the execution of the
algorithm (we assume each query is given at most once). Then, it is not hard to see that the
total complexity of A ˝B on oracle O is given by

TrandpA ˝B,Oq “ Trand
`

A,BpOq
˘

`
ÿ

i

p
piq
rand

`

A,BpOq
˘

¨ TrandpB,O, iq. (2.2)

Let us rewrite this formula to illuminate transition to the quantum case. Define the total
query vector of the algorithm A as a formal linear combination

qrandpA,O1q “
ÿ

i

p
piq
randpA,O1q ei

for ei the elements of the standard basis. Let by definition the complexity of B on such a vector
be

Trand

´

B,O,
ÿ

i

piei

¯

“
ÿ

i

pi Trand
`

B,O, i
˘

. (2.3)

Then, we can rewrite (2.2) as

TrandpA ˝B,Oq “ Trand
`

A,BpOq
˘

` Trand
`

B,O, qrandpA,BpOqq
˘

, (2.4)

8

which says that the complexity of the composed program on the oracle O equals the complexity
of A by itself plus the complexity of B on its total query vector. This equation will serve as our
“gold standard” of thriftiness in functional composition.

Similarly, thriftiness holds for parallel composition. Let ξ “
ř

i,j ξi,jei,j be a query vector
for

À

iBi. We can break it down as
ξ “

à

i

ξi, (2.5)

where ξi “
ř

j ξi,jei,j is the corresponding query vector for the constituent Bi. Then, we have

Trand

´

à

i

Bi, O, ξ
¯

“
ÿ

i

Trand
`

Bi, O, ξi
˘

. (2.6)

(We assume here that relaying from B to the corresponding Bi is done instantly.)
These results can be combined in various ways. For instance, assume the oracle O1 in the

functional composition settings is a direct sum O1 “
Àn

i“1O
piq of r independent oracles Opiq. Let

Bi implement Opiq, so that B “
À

iBi implements O1. Similarly as in (2.5), we can decompose
the corresponding total query vector

qrandpA,O1q “
à

i

q
piq
randpA,O1q

into partial query states corresponding to the i-th oracle. In this way, the multiple-oracle case
differs from the single-oracle case only by this change of perspective. Combining (2.4) and (2.6),
we obtain

TrandpA ˝B,Oq “ Trand
`

A,BpOq
˘

`
ÿ

i

Trand
`

Bi, O, q
piq
randpA,BpOqq

˘

. (2.7)

2.3 Quantum Complexity
The usual definition of quantum query algorithms does not allow for different complexities on
different inputs, hence, we cannot even properly define a meaningful analogue of (2.2). However,
it is possible for Las Vegas complexity of quantum query algorithms defined in [17]. We will
demonstrate here that it possesses properties essentially identical to those of the randomised
case. For a more formal definition of the model of query algorithms and the Las Vegas com-
plexity, refer to Section 4.1.

Let A “ ApOq be a quantum algorithm in space H with an oracle O in space M. We denote
by ApOq the action of A on a specific input oracle O. We use T pAq to denote time complexity
of A, and QpAq to denote the number of queries made by A.

What is important, is that the queries to the input oracle O are conditional. This means that
the query applies O to a subspace H‚ Ď H of the workspace H, and is the identity elsewhere.
The total query state qpA,O, ξq records the history of all the queries given by the algorithm A
to the input oracle O on the initial state ξ. In other words, it is the direct sum

qpA,O, ξq “

QpAq
à

t“1
ψ‚
t “

QpAq
ÿ

t“1
|t⟩|ψ‚

t ⟩,

where ψ‚
t P H‚ is the state given to the input oracle on the t-th query. We have qpA,O, ξq P EbM

for some space E . The Las Vegas query complexity is defined as LpA,O, ξq “ }qpA,O, ξq}2. This
definition has an operational meaning: the algorithm can be modified to use OpLq queries, where
L is the worst-case Las Vegas query complexity, by introducing some small error.

9

One convention of this paper is that we usually only allow unidirectional access to O. The
algorithm can only execute O, but not its inverse O˚. This is without loss of generality, as
bidirectional access to O, when the algorithm can execute both O and O˚, is equivalent to
unidirectional access to O ‘O˚.

As in the randomised case, r input oracles can be combined into one as follows:

O “ Op1q ‘Op2q ‘ ¨ ¨ ¨ ‘Oprq. (2.8)

The partial query state qpiqpA,O, ξq of the i-th input oracle is defined as the direct sum of
all the states given to that particular oracle Opiq. In particular, qpA,O, ξq “

À

i q
piqpA,O, ξq.

Similarly as before, the Las Vegas query complexity of the i-th input oracle is LpiqpA,O, ξq “∥∥qpiqpA,O, ξq
∥∥2
.

Parallel Composition The parallel composition is straightforward. For programsB1, . . . , Bn,
all on the input oracle O, its direct sum is

À

iBi, which executes Bi on orthogonal parts of the
space. It is not hard to show that

q
´

à

i

Bi, O,
à

i

ξi

¯

“
à

i

qpBi, O, ξiq, (2.9)

where we implicitly assume the correct arrangement of the entries in the corresponding direct
sums. A direct consequence is the following counterpart of (2.6):

L
´

à

i

Bi, O,
à

i

ξi

¯

“
ÿ

i

LpBi, O, ξiq.

Functional Composition Let us now derive a quantum query analogue of (2.4). First,
though, we define a counterpart of (2.3). For ξ1 P E b H, we can write ξ1 “ ξ1 ‘ ξ2 ‘ ¨ ¨ ¨ ‘ ξm
with ξt P H, and define

qpA,O, ξ1q “
à

t

qpA,O, ξtq. (2.10)

This is precisely the total query state we will get if we tensor-multiply A by the identity in the
register E and execute it on ξ1. The corresponding Las Vegas query complexity is

LpA,O, ξ1q “ }qpA,O, ξ1q}2. (2.11)

Now consider Figure 2.1, which depicts composition of two quantum programs, and which
goes along the lines of our previously discussed randomised case. This time, however, we
consider a more general case when A has access to the input oracle O as well.

The composed algorithm A ˝ B is implemented by replacing each execution of O1 by an
execution of B. Its action on the input oracle O is equal to A

`

O ‘ BpOq
˘

. It is not hard to
show that

qpA ˝B,O, ξq “ qp0q
´

A,O ‘BpOq, ξ
¯

‘ q
´

B,O, qp1q
`

A,O ‘BpOq, ξ
˘

¯

. (2.12)

Similarly to (2.4), this slightly complicated expression represents a very intuitive observation
that the total query state of A ˝B on the input oracle O consists of the part of the query state
of A given directly to O (denoted qp0q), together with the query state of B on the initial state
composed of the part of the query state of A given to O1 (denoted qp1q).

10

Figure 2.1

ξ
ApO ‘O1q

O1 “ BpOq

O

qp0qpA,O ‘ O1, ξq

qp1qpA,O ‘ O1, ξq

q
´

B,O, qp1qpA,O ‘ O1, ξq

¯

General case of functional composition of two programs. The outer program A has two
oracles O and O1, which we identify with the oracle O‘O1. The oracle O1 is implemented
by a program B with access to O. The diagram specifies the corresponding query states,
where we use the upper indices p0q and p1q in relation to O and O1, respectively.

It is quite often the case, that the oracle O1 above is composed of several input oracles, each
implemented by its own subroutine Bi, see Figure 2.2. In this case, we can use (2.9) to obtain
an analogue of (2.7):

qpA ˝B,O, ξq “ qp0q
´

A,O ‘BpOq, ξ
¯

‘
à

i

q
´

Bi, O, q
piq
`

A,O ‘BpOq, ξ
˘

¯

. (2.13)

It is often convenient to define LmaxpB,Oq as the worst-case complexity of LpB,O, ξq as
ξ ranges over all unit vectors (or over all unit vectors in some admissible subspace of initial
vectors). Then, using linearity, we can obtain from (2.12):

LpA ˝B,O, ξq “ Lp0q
´

A,O ‘BpOq, ξ
¯

` L
´

B,O, qp1q
`

A,O ‘BpOq, ξ
˘

¯

(2.14)

ď Lp0q
´

A,O ‘BpOq, ξ
¯

` LmaxpB,OqLp1q
`

A,O ‘BpOq, ξ
˘

. (2.15)

and from (2.13)

LpA ˝B,O, ξq “ Lp0q
´

A,O ‘BpOq, ξ
¯

`
ÿ

i

L
´

Bi, O, q
piq
`

A,O ‘BpOq, ξ
˘

¯

(2.16)

ď Lp0q
´

A,O ‘BpOq, ξ
¯

`
ÿ

i

LmaxpBi, OqLpiq
`

A,O ‘BpOq, ξ
˘

. (2.17)

In (2.15) and (2.17), it is assumed that B and Bi are only executed on the admissible initial
states.

To summarise, we see that quantum Las Vegas query complexity satisfies composition prop-
erties very similar to the “gold standard” of the randomised Las Vegas complexity. One of the
goals of this paper is to approach these results for quantum time complexity. In [26], a result in
this direction was obtained for evaluation of functions assuming the QRAG model of computa-
tion. In this paper, we consider more general state conversion settings, and also obtain partial
results for the circuit model. We also think that the approach of this paper is less technical
than the one taken in in [26].

11

Figure 2.2

ξ
ApO ‘O1q

Op1q “ B1pOq ¨ ¨ ¨ Oprq “ BrpOq

O

qp0qpA,O ‘ O1, ξq

qp1qpA,O ‘ O1, ξq qprqpA,O ‘ O1, ξq

q
´

B1, O, qp1qpA,O ‘ O1, ξq

¯

q
´

Br, O, qprqpA,O ‘ O1, ξq

¯

A version of Figure 2.1 where the oracle O1 is decomposed into r input oracles O1 “

Op1q ‘ ¨ ¨ ¨ ‘ Oprq and the program B is accordingly decomposed into B “ B1 ‘ ¨ ¨ ¨ ‘ Br
so that Bi implements Opiq. The diagram specifies the corresponding query states, where
we use the upper index p0q in relation to O. We note that it is without loss of generality
to assume that A and all Bi use the same input oracle O. Indeed, if this is not the case,
we can define O as the direct sum of the oracles used by A and Bi.

3 Overview of the Paper
This section serves as an informal version of the whole paper, where we introduce all the main
concepts, ideas, and sketch the proofs of the main results. In the remaining paper, we fill in all
the technical gaps.

3.1 Transducers
In the current paper, we take a different approach to time complexity than in the two papers [23,
26] mentioned in Section 1. Instead of using span programs or quantum walks, we build on the
key technical primitive from [17], which we call a transducer6 in this paper.

Transducers are based on the following mathematical observation we prove in Section 5.1:

Theorem 3.1 (Transduction). Let S be a unitary acting in a direct sum of two vectors spaces
H ‘ L. For every ξ P H, there exist a unique τ “ τpS, ξq P H and in some sense unique
v “ vpS, ξq P L such that

S : ξ ‘ v ÞÑ τ ‘ v. (3.1)

We say in the setting of (3.1) that S transduces ξ into τ , denoted ξ
S

ù τ or S : ξ ù τ .
This defines a mapping ξ ÞÑ τ on H, which turns out to be unitary. We call it the transduction
action of S on H, denoted by S

ù

H. See Figure 3.1 for a schematic depiction. The motivation
behind this terminology is that while S does not literally map ξ into τ , having S is a legitimate

6Not to be confused with transducers from the theory of finite automata, however there are some connections
between the two, as we discuss in Section 4.7.

12

and fruitful way of implementing S

ù

H on a quantum computer, as we show shortly. If a unitary
S is designed primarily with this application in mind, we call it a transducer, and say that it
implements S

ù

H.

Figure 3.1

S
v

ξ

v

τ S

ù

H
ξ τ

Schematic depiction of transducers. To the left is the real action of S, which is interpreted
as the action of S ù

H on H.
Note that parallel wires here denote direct sum of the corresponding subspaces, not tensor
product. The same applies to the other figures in this paper.

Let us note that this construction is not new. It has appeared before as an additive trace
in the category of isometries in finite-dimensional Hilbert spaces [8, 7]. Here we demonstrate
that this construction has an operational meaning. It would be interesting to understand the
connection between our construction and the one taken in these two references.

We will stick to the following terminology. We call H the public and L the private space
of S. We say that the transducer S is on the space H, but works in the space H ‘ L. Also,
we will call ξ the initial state of S, while ξ ‘ v is the initial coupling. We call v the catalyst of
the transduction (3.1) because it helps in the transformation of ξ into τ , but is not changed in
the process. The role of the catalyst is similar to the role of the witness in span programs. In
particular, the transduction complexity of the transducer S on an initial vector ξ P H is given
by its size:

W pS, ξq “ }vpS, ξq}2. (3.2)
Let T pSq denote the usual time complexity of implementing S as a unitary. As a rule of

thumb, among various transducers S with the same transduction action, there is a trade-off
between W and T so that the product

p1 `W pS, ξqq ¨ T pSq (3.3)

stays approximately the same. The importance of this product can be readily seen from the
following result.

Theorem 3.2 (Implementation of Transducer). Let spaces H,L, and parameters W, ε ą 0
be fixed. There exists a quantum algorithm that ε-approximately transforms ξ into S

ù

H ξ for
all transducers S : H ‘ L Ñ H ‘ L and initial states ξ P H such that W pS, ξq ď W . The
algorithm conditionally executes S as a black box K “ Op1 ` W {ε2q times, and makes OpKq

other elementary operations.

Since S generally takes at least one elementary operation, the complexity of the algorithm
is dominated by the executions of S, which takes time (3.3) up to constant factors (assuming
ε “ Θp1q). The term 1 in the definition of K is required as we can have non-trivial transducers
with W “ 0, see, e.g., Section 3.4. Also, as follows from the discussion in [17], the dependence
on ε is optimal.

Proof sketch of Theorem 3.2. We are given a copy of ξ, and our goal is to transform it into
τ “ S

ù

Hξ using S as a black box. Assume we are additionally given a copy of v (in the sense of

13

direct sum, cf. Figure 3.1). Then, we can perform the required transformation ξ ‘ v ÞÑ τ ‘ v
using S.

There are two problems here. First, the algorithm is not given v, and, second, v can have
a huge norm. The second problem is solved by breaking ξ down into K copies of ξ{

?
K, that

is, performing the transformation ξ ÞÑ
řK´1
t“0 |t⟩|ξ⟩{

?
K. The key idea is that we can use the

same scaled down catalyst v{
?
K to perform K scaled down transductions ξ{

?
K ù τ{

?
K as

v{
?
K does not change in the process. See Figure 3.2, for an illustration.
The first problem is solved by “guessing” v{

?
K, i.e., using that ξ is close to ξ‘ v{

?
K if K

is sufficiently large. The larger the value of K, the smaller the error imposed by guessing, but
the larger the number of executions of S. For a formal proof, see Section 5.2.

Figure 3.2

ξ τ

v?
K

S

ξ
?
K

τ?
K

v?
K

S

ξ
?
K

τ?
K

v?
K

S

ξ
?
K

τ?
K

v?
K

S

ξ
?
K

τ?
K

v?
K

A graphical illustration of the construction of Theorem 3.2. The initial state ξ is broken
down into K “ 4 copies of ξ{

?
K, which are sequentially transformed into τ{

?
K using

only one copy of the scaled-down catalyst v{
?
K.

3.2 Connection to Quantum Walks
In this section, we take a short detour, and inspect the connection between transducers and
quantum walks. Like transducers, quantum walks [39] replace the desired transformation with
some other transformation that is easier to implement: one iteration of the quantum walk. See
Figure 3.3 for an informal comparison between transducers and quantum walks, on which we
will elaborate in this section.

Figure 3.3

Transducer ÐÑ Quantum Walk
Execution of S ÐÑ One Iteration R2R1

Transformation S

ù

H ÐÑ Accept/reject of the initial state
W pS, ξq ÐÑ Spectral Gap

Theorem 3.2 ÐÑ Phase Estimation

An informal correspondence between transducers and quantum walks. The main point of
this comparison is to give some intuition about the roles of different objects from Section 3.1
by linking them to objects with similar functions in the context of quantum walks. This
comparison is purely indicative.

14

In this paper, we consider broadly interpreted discrete-time quantum walks. We identify the
two characteristic properties of such algorithms, where the first one is essential, and the second
one is usual, but not, strictly speaking, necessary.

The first, essential property is that one iteration of a quantum walk is a product of two
reflections R1 and R2. The quantum walk either rejects the initial state ξ, when it is close to
an eigenvalue-1 eigenvector of R2R1; or accepts it, when ξ is mostly supported on eigenvectors
with eigenvalues far from 1. The most standard implementation of quantum walks is a phase
estimation of the product R2R1 on the initial state ξ. The analysis of quantum walks involves
spectral analysis, sometimes assisted by the effective spectral gap lemma [30].

The second, optional property is that each reflection, R1 and R2, is broken down as a product
of local reflections that act on pairwise orthogonal subspaces. This allows for their efficient
implementation. The walk is usually described using a bipartite graph (like in Figure 6.1),
where each edge corresponds to a portion of the space. Local reflections are given by vertices,
and they act on the direct sum of spaces corresponding to their incident edges. The reflection
R1 executes all the local reflections for one part of the bipartite graph, and R2 for the second.
The two reflections, interleaving, transcend locality and form an involved global transformation.

Because of the second property, quantum walks find a large number of algorithmic appli-
cations. This includes such basic primitives as Grover’s algorithm [25] and amplitude amplifi-
cation [19]; as well as the element distinctness algorithm [1], Szegedy quantum walks [41] and
their various extensions, span programs [34], learning graphs [11], and others.

We will show that quantum walks are very often transducers of the following form. Let H
and L be the public and the private spaces, so that the initial state ξ P H. The transducer is
the iteration of the walk: S “ R2R1, where we additionally assume that the second reflection
R2 acts trivially on H. If ξ is negative, we have the following chain of transformations:

ξ ‘ v
R1

ÞÝÑ ξ ‘ v
R2

ÞÝÑ ξ ‘ v, (3.4)

certifying that ξ
S

ù ξ. In the positive case, we have the following sequence of transformations:

ξ ‘ v
R1

ÞÝÑ ´ξ ‘ ´v
R2

ÞÝÑ ´ξ ‘ v, (3.5)

certifying that ξ
S

ù ´ξ.
Both sequences follow the standard practice of designing quantum walks. In the negative

case, ξ‘v is a stationary vector of both R1 and R2, and, hence, R2R1. In the positive case, ξ‘v
is the witness for the Effective Spectral Gap Lemma. The transduction vantage point unites
these asymmetric positive and negative analyses. An interesting artefact of this construction
is that the transduction action of the corresponding quantum walk is exact: It transduces ξ to
either ξ or ´ξ exactly.

We will illustrate this construction in more detail in Section 6 by re-proving the main result
of [12] on electric quantum walks. However, the same applies to any quantum walk that adheres
to the same design principles, including algorithms derived from span programs [13, Section 3.4],
and more generally, algorithms of the type formally defined in [29, Section 3.1].

To epitomise, we keep the iteration of the quantum walk intact, but replace the wrapping
phase estimation by the algorithm of Theorem 3.2. In this way, we significantly simplify the
construction by abandoning any spectral analysis both from the implementation and the anal-
ysis of the algorithm. We believe this is worthy from the pedagogical point of view, as the
corresponding algorithms now require very little background knowledge.

15

3.3 Input Oracle and the Canonical Form
Our previous discussion in Section 3.1 did not consider the input oracle. In this paper, we
assume an approach similar to that of quantum query algorithms, where oracle executions and
the remaining operations are separated. Moreover, unlike the algorithms, it suffices to have one
query for a transducer.

We define the canonical form of a transducer S “ SpOq with the input oracle O in Figure 3.4.
The private space L “ L˝ ‘L‚ is decomposed into the work part L˝ and the query part L‚, with
the imposed decomposition v “ v˝ ‘ v‚ of the catalyst v. The query is the very first operation,
and it acts only on v‚. It is followed by a unitary S˝ without queries.

Figure 3.4

S˝

I bO
v‚

v˝

ξ

v‚

v˝

τ

A schematic depiction of a transducer in the canonical form. It consists of one application
of the oracle O and an input-independent unitary S˝. The catalyst v P L is separated into
two parts v “ v˝ ‘ v‚ with v˝ P L˝ and v‚ P L‚. The first one is not processed by the
oracle, and the second one is. Note that the input oracle is not applied to the public space.

Canonical transducers are easier to deal with, and every transducer can be converted into the
canonical form (see Proposition 10.4). We will generally assume our transducers are canonical.
We writeW pS,O, ξq instead ofW

`

SpOq, ξ
˘

for the transduction complexityW pS,O, ξq “ }v}2 “

}v˝}2 ` }v‚}2. Also, the total query state is defined by qpS,O, ξq “ v‚, and the query complexity
by LpS,O, ξq “ }v‚}2.

This definition is compatible with the case when O is combined of several input oracles like
in (2.8). In this case, we define the partial query state qpiqpS,O, ξq as the state processed by the

oracle Opiq, and LpiqpS,O, ξq “

∥∥∥qpiqpS,O, ξq

∥∥∥2
.

The following result, which justifies the name “query complexity”, is proven in Section 7.3:

Theorem 3.3 (Query-Optimal Implementation of Transducer). Let spaces H,L “ L˝ ‘ L‚

be fixed. Moreover, assume the transducer uses r “ Op1q input oracles combined as in (2.8).
Let ε,W,Lp1q, . . . , Lprq ą 0 be parameters. Then, there exists an algorithm that conditionally
executes S˝ as a black box K “ Op1 ` W {ε2q times, makes OpLpiq{ε2q queries to the i-th
input oracle Opiq, and uses OpKq other elementary operations. The algorithm ε-approximately
transforms ξ into τpS,O, ξq for all S, Opiq, and ξ such that W pS,O, ξq ď W and LpiqpS,O, ξq ď

Lpiq for all i.
Proof Sketch. Let us first consider the special case of r “ 1 for simplicity. The crucial new idea
compared to Theorem 3.2 is that we guess not one but some D copies of the state v‚. They
are all processed by one oracle call, and then gradually given to S˝, see Figure 3.5. Thus, the
transduction complexity becomes }v˝}2 `D}v‚}2, but we have to execute the input oracle only
once in every D iterations. The correct choice of D is around }v˝}2{}v‚}2, so that the norms
of the query and the non-query parts of the catalyst become equalised. If there are r “ Op1q

input oracles, we perform the same procedure for all of them. The total transduction complexity
grows by a factor of r, which is tolerable by our assumption of r “ Op1q.

16

Figure 3.5

ξ τ

v˝
?
K

v‚
?
K

v‚
?
K

S˝

ξ
?
K

τ?
K

Ov‚
?
K

v‚
?
K

v˝
?
K

S˝

ξ
?
K

τ?
K

Ov‚
?
K

v‚
?
K

v˝
?
K

S˝

ξ
?
K

τ?
K

Ov‚
?
K

v‚
?
K

v˝
?
K

S˝

ξ
?
K

τ?
K

Ov‚
?
K

v‚
?
K

v˝
?
K

O O

A graphical illustration of the construction of Theorem 3.3 with the same parameters as
in Figure 3.2, and D “ 2. We write O instead of I bO to save space.
Note that one oracle execution and D subsequent executions of S˝ form a transducer of
its own.

This theorem does not hold for superconstant values of r, in which case a more technical
Theorem 7.1 should be used. Note how canonicity of the transducer S is used here. Indeed,
the input oracle is executed only once in each execution of the transducer, reducing the total
number of oracle calls.

The definition of the canonical form is inspired by the implementation of the adversary
bound for state conversion from [17]. Moreover, as we show in Section 8.1, the adversary bound
is essentially equivalent to the above construction with L˝ being empty. Also, we show in
Section 8.2 how to implement the usual adversary bound for function evaluation:

Theorem 3.4 (Adversary Bound). For every function f : D Ñ rps with D Ď rqsn, there exists
a canonical transducer Sf with input oracle Ox encoding the input string x, such that, for every
x P D, Sf transduces |0⟩ ù |fpxq⟩ on the input oracle Ox, and

W
`

Sf , Ox, |0⟩
˘

“ L
`

Sf , Ox, |0⟩
˘

ď Adv˘pfq,

where Adv˘pfq is the adversary bound of f , defined in Section 8.2.

We can draw the following parallels with span programs. It is known that the dual adver-
sary bound for Boolean functions is equivalent to a very special case of span programs [33].
General span programs provide more flexibility, and thus are more suitable for time-efficient
implementations [16, 36, 28, 23]. While it is possible to implement the dual adversary bound
time-efficiently [4], the constructions are more complicated.

Span programs sometimes model more general function evaluation [9]; but the dual adversary
has been extended much further to include arbitrary state conversion [30] with general unitary
input oracles [14]. Transducers treat state conversion with unitary input oracles very naturally.
Adding the non-query space L˝ provides more flexibility compared to the dual adversary, which
again is beneficial for time-efficient implementations. It is also of great help that transducers
are quantum algorithms themselves, which makes time analysis especially straightforward.

Summarising, there are three basic complexity measures associated with a transducer:

17

• Time complexity T pSq, which is independent of the input oracle O and the initial state.
Similarly to usual quantum algorithms, the precise value of T pSq depends on the chosen
model of quantum computation.

• Transduction complexity W pS,O, ξq. It is defined mathematically, and does not depend
on the model. On the other hand, it depends on both the input oracle and the initial
state.

• Query complexity LpS,O, ξq. It is also defined mathematically, and does not depend on
the model. The query state qpS,O, ξq provides more information.

Let us finish this section with a few technicalities. Similarly to (2.10) and (2.11), we extend
the above definitions to ξ1 “ ξ1 ‘ ¨ ¨ ¨ ‘ ξm P E b H via

qpS,O, ξ1q “
à

t

qpS,O, ξtq, LpS,O, ξ1q “
ÿ

t

LpS,O, ξtq, and W pS,O, ξ1q “
ÿ

t

W pS,O, ξtq.

(3.6)
Again, these can be interpreted as the complexities of the transducer IE b S, see Corollary 9.7.

If for ξ P H we use a catalyst v, for cξ with c P C, we can use the catalyst cv. This yields

W pS,O, cξq “ |c|2W pS,O, ξq, qpiqpS,O, cξq “ c qpiqpS,O, ξq, LpiqpS,O, cξq “ |c|2LpiqpS,O, ξq.
(3.7)

It often makes sense to define the subspace Hgood Ď H of admissible initial vectors to the
transducer SpOq, and define WmaxpS,Oq as the supremum of W pS,O, ξq as ξ ranges over unit

vectors in Hgood. We define Lmax and L
piq
max similarly. We say that the initial state ξ1 P E b H

is admissible if it lies in E b Hgood. For any such state, by (3.6) and (3.7), we have

W pS,O, ξ1q ď WmaxpS,Oq}ξ1}2 and LpS,O, ξ1q ď LmaxpS,Oq}ξ1}2. (3.8)

3.4 Transducers from Quantum Algorithms
In this section, we briefly explain how we achieve one of the points on our agenda: conversion of
arbitrary quantum algorithms into transducers. We consider both the QRAG model mentioned
at the end of Section 1, and the usual circuit model. While the stronger QRAG model allows
for better and more intuitive exposition, we are still able to get some useful results in the circuit
model.

Let
ApOq “ GTGT´1 ¨ ¨ ¨G2G1 (3.9)

be a quantum algorithm, where Gi are individual elementary operations (gates), which also
include queries to the input oracle. We call the mapping i ÞÑ Gi the description of A. The
number of elementary operations T “ T pAq is the time complexity of the algorithm.

Trivial Transducer On the one extreme of the trade-off (3.3) is the trivial transducer S “ A.
In this case, the catalyst v “ 0, hence, W pS,O, ξq “ 0, and we get that (3.3) equals T pAq, as
expected. Of course, this does not require any change of the model.

QRAG Transducer The other extreme of the trade-off (3.3) is covered by the following
construction, which assumes the QRAG model. Write the sequence of states the algorithm (3.9)
goes through on the initial state ξ:

ξ “ ψ0
G1

ÞÝÑ ψ1
G2

ÞÝÑ ψ2
G3

ÞÝÑ ¨ ¨ ¨
GT
ÞÝÑ ψT “ τ. (3.10)

18

We utilize the following history state:

v “

T´1
ÿ

t“1
|t⟩|ψt⟩. (3.11)

And define the transducer SA as follows:

ξ ‘ v “

T´1
ÿ

t“0
|t⟩|ψt⟩

SA
ÞÝÑ

T
ÿ

t“1
|t⟩|ψt⟩ “ τ ‘ v, (3.12)

where, in SA, we first apply Gt conditioned on the first register having value t, and then
increment t by one. The first operation is possible assuming the QRAG model and QRAM
access to the description of A, see Section 4.5. The transduction action of SApOq is exactly
ApOq, and W pSA, O, ξq “ pT ´ 1q}ξ}2, which we will simplify to T }ξ}2 for brevity.

Comments on Time Complexity But what is the time complexity T pSAq? In SA, we
perform two operations: increment a word-sided register and execute one instruction from the
program specified by the address t. If this were a modern randomised computer, both operations
would be elementary and took Op1q time. From the theoretical side, this is captured by the
notion of RAM machine. If we consider the scale of individual qubits instead of word-sided
registers, the increment operation takes time Oplog T q, and the second operation at least as
much. In order to simplify the following discussion, let us assume that both operations take
some time we denote TR. That is

TR: time required to perform basic word operations, including random access. (3.13)

For simplicity, we do not discriminate between different word operations. We may think of TR
as being 1, or Oplog T q, but either way, it is some fixed factor which denotes transition from
the circuit model, where A operates,7 to the QRAG model, where SA is implemented.

Canonical Form Neither the first, nor the second transducer above are in the canonical form.
The latter is given by the following result, which we prove in Section 10.

Theorem 3.5. For a quantum program A on the input oracle O, there exists a canonical
transducer SA “ SApOq, whose transduction action is identical to A, and whose complexity is
given by Figure 3.6. In the QRAG model, we assume QRAM access to the description of the
program A.

Proof sketch. The constructions in both circuit and the QRAG models are already sketched
above. We describe here how they can both be transformed into the canonical form so that
the query state v‚ from Figure 3.4 becomes equal to the total query state qpA,O, ξq of the
algorithm.

For the trivial transducer, the catalyst is the total query state, which is all processed by one
query to the oracle. Whenever the algorithm was making a query, the transducer switches the
query state with the corresponding part of the catalyst, thus simulating a query.

For the QRAG transducer, the catalyst (3.11) already contains of all the intermediate states
of the program. The transducer can then apply the oracle to all of them in one go, and then
proceed as before without making a single additional query.

7It is the usual assumption that A is a bona fide quantum circuit, but we may also assume that A uses QRAG
gates.

19

Figure 3.6

Circuit Model QRAG model
Time T pSAq OpT pAqq OpTRq

Transduction W pSA, O, ξq LpA,O, ξq T pAq}ξ}2

Query state qpSA, O, ξq qpA,O, ξq qpA,O, ξq

Complexity of canonical transducers derived from a quantum algorithm in terms of com-
plexities of the algorithm. Both the circuit and the QRAG model versions are considered.

Query Compression One consequence of the above results is that we can compress the
number of queries of a quantum algorithm A to match its worst-case Las Vegas query complexity.
The following result is an immediate corollary of Theorems 3.5 and 3.3.

Theorem 3.6 (Query Compression). Assume A “ ApOq is a quantum algorithm with r “ Op1q

input oracles as in (2.8). Let ε, Lp1q, . . . , Lprq ą 0 be parameters. There exists a quantum
algorithm A1 “ A1pOq with the following properties:

• It makes OpLpiq{ε2q queries to the i-th input oracle Opiq.
• For every normalised initial state ξ and every input oracle O “ Op1q ‘ Op2q ‘ ¨ ¨ ¨ ‘ Oprq

as in (2.8), we have ∥ApOqξ ´A1pOqξ∥ ď ε as long as LpiqpA,O, ξq ď Lpiq for all i.
• In the QRAG model and assuming QRAM access to the description of A, its time com-

plexity is OpTR ¨ T pAq{ε2q.
• In the circuit model, its time complexity is OpL ¨T pAq{ε2q, where L “ 1`Lp1q `¨ ¨ ¨`Lprq.

This improves over the analogous result from [17] in two respects. First, it essentially
preserves the time complexity of the algorithm in the QRAG model, while [17] did not consider
time complexity at all. Second, it allows multiple input oracles, as long as its number is bounded
by a constant, while [17] only allowed for a single input oracle.

Proof of Theorem 3.6. First, obtain the transducer SA as in Theorem 3.5. Then, apply Theo-
rem 3.3 to SA.

One key observation is that qpSA, O, ξq “ qpA,O, ξq for all O and ξ. Hence, SA and A have
the same partial Las Vegas query complexities on all O and ξ. This yields the statement on the
number of queries bounded by Lpiq{ε2.

In the QRAG model, W pSA, O, ξq “ T pAq and T pSAq “ OpTRq. This gives the required
runtime, as we can use that T pAq ě 1 to remove the additive 1 factor.

In the circuit model, we use that T pSAq “ O
`

T pAq
˘

and

W pSA, O, ξq “ LpA,O, ξq “
ÿ

i

LpiqpA,O, ξq ď
ÿ

i

Lpiq.

We take care of the additive 1 factor by adding it explicitly to L. This covers the extreme case
of L being too small, in particular, 0.

3.5 Composition of Transducers
Transducers can be composed just like usual quantum algorithms: we consider parallel, sequen-
tial, and functional composition of transducers. Thus, from the design point of view, there is
little difference between dealing with quantum algorithms and transducers. The advantage is

20

that in all these composition modes, the resources are more tightly accounted for than is the
case for traditional quantum algorithms.

We will first sketch the composition results for transducers. We will completely omit the
case of sequential composition from this section. It suffices to say, that it is very similar to the
transformation of programs in Section 3.4. After that, we will give few applications both in the
circuit and the QRAG models. Unlike other subsections of this section, we will be able to give
complete proofs for most of the results.

Composition of Transducers The parallel composition of transducers is straightforward.
They are just implemented in parallel as usual quantum algorithms. We have the following
relations, akin to (2.6) and (2.9):

W
´

à

i

Si, O,
à

i

ξi

¯

“
ÿ

i

W pSi, O, ξiq and q
´

à

i

Si, O,
à

i

ξi

¯

“
à

i

qpSi, O, ξiq. (3.14)

For the time complexity of implementing
À

i S
˝
i , we can say precisely as much as for usual

quantum algorithms. In some cases it is easy: when all S˝
i are equal, for example. Also, it can

be efficiently implemented assuming the QRAG model, see Corollary 4.4. In general, however,
direct sum in the circuit model can take as much time as the total complexity of all S˝

i together.
The functional composition of transducers parallels Figure 2.1, where we replace the pro-

grams A and B with transducers SA and SB, respectively. The functional composition of the
two is a transducer SA ˝ SB whose transduction action on the oracle O is equal to the trans-
duction action of SA on the oracle O ‘ O1, where O1 is the transduction action of SBpOq. The
following result, proven in Section 9.5, parallels (2.12).

Proposition 3.7 (Functional Composition of Transducers). The functional composition SA˝SB
can be implemented in the following complexity, where we use the extended notion of complexity
from (3.6).

• Its transduction complexity satisfies

W pSA ˝ SB, O, ξq “ W pSA, O ‘O1, ξq `W
´

SB, O, q
p1qpSA, O ‘O1, ξq

¯

. (3.15)

• Its total query state is

qpSA ˝ SB, O, ξq “ qp0qpSA, O ‘O1, ξq ‘ q
´

SB, O, q
p1qpSA, O ‘O1, ξq

¯

. (3.16)

• Its time complexity is the sum of the (conditional) time complexities of SA and SB.

Here qp0q and qp1q denote the partial query states of SA to the oracles O and O1, respectively.

One can see that (3.15) and (3.16) meet the form of the “gold standard” of (2.4). The second
one strongly resembles (2.12). One unfortunate deviation from this is the time complexity, which
afterwards gets multiplied by the transduction complexity in (3.3). But since the dependence
is additive, we can generally tolerate it, see, e.g., Theorem 3.12 below.

Let us state, for the ease of future referencing, a number of simple consequences of Proposi-
tion 3.7 similar to (2.13)–(2.17). First, if all the queries to SB are admissible, we have by (3.15)
and (3.8):

W pSA ˝ SB, O, ξq ď W pSA, O ‘O1, ξq `WmaxpSB, OqLp1q
`

SA, O ‘O1, ξ
˘

. (3.17)

21

Also, from (3.16):

LpSA ˝ SB, O, ξq “ Lp0qpSA, O ‘O1, ξq ` L
´

SB, O, q
p1qpSA, O ‘O1, ξq

¯

(3.18)

ď Lp0qpSA, O ‘O1, ξq ` LmaxpSB, OqLp1q
`

SA, O ‘O1, ξ
˘

. (3.19)

In the case of multiple input oracles, similar to Figure 2.2, with O1 “
À

iO
piq and SB “

À

SBi ,
so that SBi implements Opiq, we have by (3.14):

W pSA ˝ SB, O, ξq “ W pSA, O ‘O1, ξq `
ÿ

i

W
´

SBi , O, q
piqpSA, O ‘O1, ξq

¯

(3.20)

ď W pSA, O ‘O1, ξq `
ÿ

i

WmaxpSBi , OqLpiq
`

SA, O ‘O1, ξ
˘

, (3.21)

qpSA ˝ SB, O, ξq “ qp0qpSA, O ‘O1, ξq ‘
à

i

q
´

SBi , O, q
piqpSA, O ‘O1, ξq

¯

(3.22)

and

LpSA ˝ SB, O, ξq “ Lp0qpSA, O ‘O1, ξq `
ÿ

i

L
´

SBi , O, q
piqpSA, O ‘O1, ξq

¯

(3.23)

ď Lp0qpSA, O ‘O1, ξq `
ÿ

i

LmaxpSBi , OqLpiq
`

SA, O ‘O1, ξ
˘

. (3.24)

In (3.21) and (3.24), we used (3.8) in assumption that all the queries to SB and SBi are admis-
sible.

Composition of Programs Let us give a few examples of composition of quantum pro-
grams using transducers. We focus on the general state conversion here, evaluation of function
postponed till Section 3.6. We consider both the circuit and the QRAG models.

Theorem 3.8 (Composition of Programs, circuit model). Assume the settings of Figure 2.2,
where r “ Op1q and all A and Bi are in the circuit model. Define B “

À

iBi, and let
ε, Lp1q, . . . , Lprq ą 0 be parameters.

Then, there exists a quantum algorithm A1 “ A1pOq such that
∥∥A1pOqξ´A

`

O‘BpOq
˘

ξ
∥∥ ď ε

for every normalised ξ as long as LpiqpA,O‘BpOq, ξq ď Lpiq for all i ě 1. The program A1 can
be implemented in the circuit model in time

O

˜

L ¨ T pAq `
ř

i T pBiqL
piq

ε2

¸

, (3.25)

where L “ 1 ` Lp1q ` ¨ ¨ ¨ ` Lprq.

Proof. Use the circuit version of Theorem 3.6 for the program A, where we treat calls to O as
ordinary operations (in other words, we assume A has r input oracles Op1q, . . . , Oprq). After
that, replace each call to Opiq by the execution of Bi.

It turns out that it is not efficient to use Proposition 3.7 here as this would increase time
complexity of the resulting transducer.

Remark 3.9. In Theorem 3.8, the emphasis is on the time complexity. If we want to simulta-
neously bound query complexity, we treat O as the input oracle in A as well. This gives time
complexity (3.25) with L “ 1 ` Lp0q ` Lp1q ` ¨ ¨ ¨ ` Lprq and the total number of queries

O

˜

Lp0q `
ř

iQpBiqL
piq

ε2

¸

,

22

where QpBiq is the number of queries made by Bi. We additionally require that Lp0q
`

A,O ‘

BpOq, ξ
˘

ď Lp0q.

Theorem 3.10 (Composition of Programs, QRAG model). Assume the settings of Figure 2.2.
Let ε, T ą 0 be parameters. Assuming the QRAG model and QRAM access to an array with
description of A and all Bi, there exists a quantum algorithm A1 “ A1pOq with time complexity
OpTR ¨ T {ε2q such that, for every normalised ξ, we have }A1pOqξ ´A

`

O‘BpOq
˘

ξ} ď ε as long
as

T pAq `

r
ÿ

i“1
T pBiqL

piqpA,O ‘BpOq, ξq ď T. (3.26)

The algorithm makes OpL{ε2q queries to the input oracle O, where L is an upper bound on
LpA ˝B,O, ξq, given by (2.16).

Proof. Convert A and all the Bi into transducers SA and SBi as in Theorem 3.5. We obtain the
transducer SB “

À

i SBi for B. Then compose SA ˝ SB using Proposition 3.7. By definition,
its transduction action is identical to ApBq.

Since the transduction complexity of SA on a normalised initial state is bounded by T pAq

and that of SBi by T pBiq, we get from (3.21) that for a normalised ξ:

W pSA ˝ SB, O, ξq ď T pAq `
ÿ

i

T pBiqL
piq
`

A,O ‘BpOq, ξ
˘

.

The main reason this construction is efficient in the QRAG model is that the time complexity
of the transducers stays bounded by OpTRq the whole time. Indeed, such is the time complexity
of the individual transducers obtained from A and Bpiq. Parallel composition can be performed
efficiently in the QRAG model (Proposition 10.6), and the time complexity of the functional
composition is the sum of its constituents.

The transducers SA and SBi have the same query states as A and Bi, respectively. By (3.22),
we get that the total query state of SA˝SB is identical to that of A˝B, which is given by (2.13).
The statement of the theorem follows from Theorem 3.3.

Observe that Theorem 3.10, while assuming a stronger model, gives a stronger result than
Theorem 3.8. The differences are as follows. First, we do not have to assume that r “ Op1q.
Second, the LpiqpA,O‘BpOq, ξq in (3.26) are the actual values of the Las Vegas query complexity,
while Lpiq in (3.25) are only upper bounds on them. This can be important if LpiqpA,O‘BpOq, ξq

heavily fluctuates over different input oracles O. Finally, the T pAq term is oddly multiplied by
L in (3.25).

Altogether, the expression in (3.26) is more natural. It is also similar to the one in Section 1.2
of [26]. Our result is more general though, as it covers arbitrary state conversion, and not
only function evaluation (we can assume ε “ Ωp1q in Theorem 3.10 as it gives bounded-error
evaluation of a function).

On the other hand, if the estimates Lpiq are sufficiently precise, and T pAq is smaller than
average T pBpiqq, the expression in (3.25) is quite close to (3.26).

Multiple Layers of Composition Here we assume the QRAG model of computation. The-
orems 3.8 and 3.10 considered one layer of composition. In the case of multiple layers, similarly
as for the span programs, it is advantageous to perform all the compositions in the realm of
transducers, and to transform the resulting transducer back into an actual algorithm only at
the very end.

Consider a composition tree of quantum subroutines. The top layer is the algorithm B0 that
has several subroutines of the form B1,i, like Bi used to be for A in Figure 2.2. We define the

23

Figure 3.7

ξt;i1,i2,...,it Bt;i1;i2,...,it

Bt`1;i1;i2,...,it,1 Bt`1;i1;i2,...,it,2 ¨ ¨ ¨ ¨ ¨ ¨Bt`1;i1;i2,...,it,it`1

ξt`1;i1,i2,...,it,1 ξt`1;i1,i2,...,it,2 ξt`1;i1,i2,...,it,it`1

One node Bt;i1,i2,...,it in the composition tree. Its initial state (in the general sense of (3.6))
is given by ξt;i1,i2,...,it . It has several subroutines of the form Bt`1;i1;i2,...,it,it`1 with the
corresponding query state ξt`1;i1;i2,...,it,it`1 .

tree downwards so that, in general, a subroutine Bt;i1,i2,...,it has several subroutines of the form
Bt`1;i1,i2,...,it,it`1 , see Figure 3.7. Let d be the maximal value of t in Bt;i1,i2,...,it . It is the depth
of the composition tree. We assume all the subroutines have access to some common oracle O.
Define the composition B “ BpOq of the whole tree in the obvious inductive way, so that the
initial state ξ of the composed algorithm is the initial state ξ of B0.

It is not hard to get the Las Vegas query complexity of B using (2.13) inductively or from
the general principles. Let qt;i1,i2,...,itpO, ξq be the query state given by Bt;i1,i2,...,it to the input
oracle O when B is executed on the initial state ξ. Then,

qpB,O, ξq “
à

t;i1,...,it
qt;i1,i2,...,itpO, ξq. (3.27)

We obtain a similar result for the time complexity. Let ξt;i1,i2,...,itpO, ξq be the total query state
given to the subroutine Bt;i1,i2,...,it . In particular, ξ0pO, ξq “ ξ.

Theorem 3.11 (Composition Tree). Assuming the QRAG model and QRAM access to the
description of all Bt;i1,...,it as above, there exists a quantum algorithm B1 “ B1pOq with time
complexity OpTR ¨ pd` 1q ¨ T {ε2q such that, for every ξ, we have }B1pOqξ ´BpOqξ} ď ε as long
as

ÿ

t;i1,...,it
T pBt;i1,i2,...,itq}ξt;i1,i2,...,itpO, ξq}2 ď T, (3.28)

where the summation is over all the vertices of the composition tree. The algorithm makes
OpL{ε2q queries to O, where L is an upper bound on the Las Vegas query complexity of B as
obtained from (3.27).

Proof. We use the induction on d to show that, under the assumptions of the theorem, there ex-
ists a transducer SB whose transduction action is identical to B, whose transduction complexity
is given by the left-hand side of (3.28), and whose time complexity is O

`

pd` 1q ¨ TR
˘

.
The base case is given by d “ 0, where we only have B0, which we transform into a transducer

using Theorem 3.5. The transduction complexity of SB0 on a normalised initial state is T pB0q.
Hence on the initial state ξ0, the transduction complexity is T pB0q}ξ0}2 by (3.7).

Assume the theorem is true for depth d. For the depth d` 1, we treat the nodes Bt;i1,i2,...,it
with t ď d as forming a composition tree A with depth d, and the nodes Bd`1;i1,i2,...,id,id`1 as
input oracles to A. In other words, A has an input oracle O ‘O1 with

O1 “
à

i1,...,id,id`1

Bd`1;i1,...,id,id`1pOq.

24

We use the induction assumption to obtain a transducer SA for the composition tree A,
whose transduction complexity on O‘O1 and ξ is given by the sum in (3.28), where we restrict
the sum to t ď d. We convert each Bd`1;i1,...,id,id`1 into a transducer and join them via direct
sum to obtain a transducer SBd`1 whose transduction action on the oracle O is identical to
O1. Then, we apply Proposition 3.7 to get the transducer SB “ SA ˝ SBd`1 . Its transduction
complexity on O and ξ is given by the left-hand side of (3.28) with all the terms involved, where
the term

T pBd`1;i1,i2,...,id,id`1q}ξd`1;i1,i2,...,id,id`1pO, ξq}2

is the contribution of Bd`1;i1,i2,...,id,id`1 .
All the transducers in SBd`1 can be implemented in parallel due to the QRAG assumption

(see Proposition 10.6), hence, its time complexity is OpTRq. Thus, T pSBq “ T pSAq`T pSBd`1q “

O
`

pd ` 1qTR
˘

. Finally, using (2.13) and (3.22), we get that SB and B have the same query
state. The statement of the theorem again follows from Theorem 3.3.

Iterated Functions Due to the discussion after Theorem 3.8, one might think that several
layers of composition are difficult for the circuit model. However, this is not the case if the
composition tree is sufficiently homogenous. As an example, we consider evaluation of iterated
functions in the circuit model.

Let f : rqsn Ñ rqs and g : rqsm Ñ rqs be total functions. The composed function f ˝

g : rqsnm Ñ rqs is defined by

pf ˝ gqpz1,1, . . . , z1,m, z2,1, . . . , z2,m, , zn,1, . . . , zn,mq

“ f
`

gpz1,1, . . . , z1,mq, gpz2,1, . . . , z2,mq, . . . , gpzn,1, . . . , zn,mq
˘

,
(3.29)

which is equivalent to (2.1) with all the inner functions being equal. The function composed
with itself several times is called iterated function. We use the following notation f p1q “ f and
f pd`1q “ f pdq ˝ f “ f ˝ f pdq.

Iterated functions have been studied before both classically [40, 37, 38, 32, 31] and quan-
tumly [24, 5, 35, 36]. For the case of Boolean functions, an essentially optimal algorithm was
given by Reichardt and Špalek in [35, 36] using span programs.8 It is based on the use of span
programs. Similar results for the general case of non-Boolean functions can be easily obtained
using composition of transducers. While it is true that the time complexity grows with each
layer of iteration, it only does so additively, which is overshadowed by optimal multiplicative
handling of the query complexity. We formally prove the following result in Section 11.

Theorem 3.12 (Iterated Functions). Let f : rqsn Ñ rqs be a total function. There exists a
bounded-error quantum algorithm that evaluates the iterated function f pdq in query complexity
OpAdv˘pfqdq and time complexity9 Of

`

d ¨ Adv˘pfqd
˘

, where Adv˘pfq is the adversary bound
of f . The algorithm works in the circuit model.

Proof sketch. We use induction to construct the transducer Sf pdq evaluating the function f pdq

and having worst-case query complexity Adv˘pfqd, and transduction complexity O
`

Adv˘pfqd
˘

.
The base case is the transducer Sf from Theorem 3.4. For the inductive step, we use

Proposition 3.7 with SA “ Sf pdq and SB “ Sf to get Sf pd`1q “ SA ˝ SB. In notations of that
theorem, O encodes the input to f pd`1q and O1 the input to f pdq obtained by evaluating the
lowest level of the composition tree. First, SA does not make direct queries to O. Second,

8Papers [35, 36] are mostly known for their query results, but they also contain statements on the time
complexity of the resulting algorithms. It is these time complexity statements that we extend in Theorem 3.12.

9We use Of p¨q to indicate that the suppressed constant may depend on the particular function f .

25

SB “ Sf has worst-case Las Vegas query complexity Adv˘pfq on a unit admissible vector.
Hence, by (3.19) and the induction assumption:

L
`

SA ˝ SB, O, |0⟩
˘

ď Adv˘pfqL
`

SA, O
1, |0⟩

˘

ď Adv˘pfqd`1.

Similarly, the worst-case transduction complexity of SB on a unit admissible vector is Adv˘pfq,
hence by (3.17):

W
`

SA ˝ SB, O, |0⟩
˘

ď W
`

SA, O, |0⟩
˘

` Adv˘pfqLpSA, O
1, |0⟩q

ď O
`

Adv˘pfqd
˘

` Adv˘pfqd`1 “ O
`

Adv˘pfqd`1˘

for a sufficiently large constant behind the big-Oh.
For the time complexity, we have by induction that Sf pdq has time complexity d ¨T pSf q. The

theorem follows from Theorem 3.3.

Note that the transducer Sf pdq in the proof of Theorem 3.12 is different from the transducer

S1
f pdq we would get by applying Theorem 3.4 to the adversary bound of f pdq obtained using

the composition results for the adversary bound. Indeed, for S1
f pdq , its transduction and query

complexities are equal, which is not the case for Sf pdq . Also, for S1
f pdq , we have no guarantees

on its running time. In Theorem 3.12, we use the non-query part v˝ of the catalyst as a
“scaffolding” to build a time-efficient iterative algorithm.

3.6 Purifiers and Composition of Functions
Although we have studied thriftiness from Section 1, we have so far not touched much on
exactness. True, in most cases, like in Section 3.2 on quantum walks, or Theorem 3.4 on the
adversary bound, the transduction action of the corresponding transducer is exact. In this
section, we will show how to get very close to general exactness starting from an arbitrary
algorithm evaluating a function with bounded error.

We consider both Boolean and non-Boolean functions. In the Boolean case, we abstract the
action of the function-evaluating algorithm as an input oracle performing the following state
generation:

Oψ : |0⟩M ÞÑ |ψ⟩M “ |0⟩B|ψ0⟩N ` |1⟩B|ψ1⟩N (3.30)
in some space M “ B b N with B “ C2. The action of the purifier only depends on the state
ψ in (3.30), hence the notation Oψ. We allow the gap to be at any position c between 0 and 1.
In other words, we assume there exist constants 0 ď c´ d ă c` d ď 1 such that

either }ψ1}2 ď c´ d or }ψ1}2 ě c` d. (3.31)

The first case is negative, the second one positive, or, fpψq “ 0 and fpψq “ 1, respectively.
In the non-Boolean case, the range is some rps. For simplicity, we assume p “ Op1q here.

An input oracle has the form

Oψ : |0⟩M ÞÑ |ψ⟩M “

p´1
ÿ

j“0
|j⟩B|ψj⟩N , (3.32)

with B “ Cp, and we assume there exists a (unique) fpψq P rps such that

}ψfpψq}
2 ě

1
2 ` d (3.33)

for some constant d ą 0.
The traditional way of performing error reduction is via majority voting. The following

result is folklore.

26

Theorem 3.13 (Majority Voting). For any ε ą 0, there exists an algorithm with bidirectional
access to an oracle like in (3.32) that has the following properties. Assuming the oracle satis-
fies (3.31) or (3.33), the algorithm evaluates fpψq with error at most ε. The query complexity
of the algorithm is O

`

log 1
ε

˘

and its time complexity in the circuit model is polynomial in log 1
ε .

The majority-voting construction is a direct quantisation of a purely classical technique. The
logarithmic query complexity in the above theorem results in extra logarithmic factors that can
be found in the analyses of a large variety of quantum algorithms. In this paper, we develop an
alternative, genuinely quantum approach to error reduction, that we call a purifier. The main
feature is that, unlike majority voting, the query complexity of a purifier stays bounded by a
constant no matter how small the error ε is. This is effectively equivalent to having an errorless
algorithm (although, we cannot obtain an exact algorithm with a finite overhead in general).
We prove the following theorem in Section 13.

Theorem 3.14 (Purifier). For any ε ą 0, there exists a canonical transducer Spur with bidirec-
tional access to an oracle like in (3.32) that has the following properties. Assuming the oracle
satisfies (3.31) or (3.33), the purifier transduces |0⟩ into |fpψq⟩ with error at most ε (in the
sense to be made exact in Section 12). Both its transduction and query complexities are bounded
by a constant. Its time complexity is O

`

s log 1
ε

˘

in the circuit model, and OpTRq in the QRAG
model, where s is the number of qubits used by M.

The purifier is inspired by the corresponding construction in [14], which used the dual
adversary bound. It had the same characteristic property of query complexity being bounded
by a constant, but there are some differences.

• The purifiers in [14] worked solely in the query complexity settings. The resulting dual
adversary bound was for exact function evaluation. Also, by the nature of the adversary
bound, it was implicitly assumed that there is only a finite collection of possible input
oracles, and, technically, for different collections, we obtain different purifiers.

• The purifiers in the current paper are constructed keeping both query and time complexity
in mind. Also, the same purifier works for all (infinitely many) possible input oracles.

• Due to these improvements, the purifier ceases to be exact, but introduces a small error.

Proof sketch of Theorem 3.14. We consider the Boolean case, as the general case can be easily
obtained using the Bernstein-Vazirani algorithm [18] as in, e.g., [29, Section 4]. Our construction
is a quantum walk in the sense of Section 3.2. In particular, it transduces |0⟩ into p´1qfpψq|0⟩.

The overall structure is given by the following toy transducer Stoy in Figure 3.8. It is a
quantum walk on the one-sided infinite line. That is, Stoy “ R2R1, where the reflection R1 is
the product of the local reflections about the odd vertices 1, 3, 5, ¨ ¨ ¨ , and R2 about the positive
even vertices 2, 4, 6, ¨ ¨ ¨ . The local reflection at the vertex i ą 0 is given by the X operation,
which maps

|i´ 1⟩ ` |i⟩ ÞÑ |i´ 1⟩ ` |i⟩ and |i´ 1⟩ ´ |i⟩ ÞÑ ´|i´ 1⟩ ` |i⟩. (3.34)

Now, it is not hard to see that in the negative and the positive case, we have the following
mappings, which follow the general case of (3.4) and (3.5):

|0⟩ `

`8
ÿ

i“1
|i⟩ Stoy

ÞÝÑ |0⟩ `

`8
ÿ

i“1
|i⟩ and |0⟩ `

`8
ÿ

i“1
p´1qi|i⟩ Stoy

ÞÝÑ ´|0⟩ `

`8
ÿ

i“1
p´1qi|i⟩. (3.35)

27

Figure 3.8

(a) 0 11
|0⟩

21
|1⟩

31
|2⟩

41
|3⟩

51
|4⟩

¨ ¨ ¨

(b) 0 11
|0⟩

2
´1
|1⟩

31
|2⟩

4
´1
|3⟩

51
|4⟩

¨ ¨ ¨

A toy transducer illustrating the overall construction of a purifier. It is a quantum walk
on the one-sided infinite line. Each edge correspond to an element of the standard basis
written below it. The public space is given by |0⟩. We have two different catalysts (a)
and (b) for the same initial state, the numbers above the edge giving the corresponding
coefficients.

This formally gives us both |0⟩ Stoy
ù |0⟩ and |0⟩ Stoy

ù ´|0⟩. Of course, this does not contradict
Theorem 3.1, because the corresponding space has infinite dimension and both catalysts in (3.35)
have infinite norm.

Nonetheless, we will be able to utilise this general construction. The first order of business is
to reduce the norm of the catalysts. Our next step towards a purifier will be a multidimensional
quantum walk on the line, in the sense that each edge corresponds to a multidimensional
subspace. See Figure 3.9.

Figure 3.9

(a) 0 1
|0⟩

2
|1⟩

3
|2⟩

4
|3⟩

5
|4⟩

1 rψ rψb2
rψb3

rψb4
¨ ¨ ¨

(b) 0 1
|0⟩

2
|1⟩

3
|2⟩

4
|3⟩

5
|4⟩

1 ´ rψ rψb2 ´ rψb3
rψb4

¨ ¨ ¨

An improved transducer. It is a multidimensional quantum walk. Each edge corresponds
to the element of the standard basis beneath it tensor multiplied by Mb8. The public
space is given by |0⟩. For the negative and positive case, we have the catalysts like in
(a) and (b), respectively, where the vector above the edge is placed in the corresponding
subspace.

We will define a vector rψ that depends on ψ and satisfies } rψ} “ 1 ´ Ωp1q. The initial
coupling is given by

8
ÿ

i“0
p´1qi¨fpψq|i⟩| rψybi,

28

and the transduction complexity is bounded by
8
ÿ

i“1
} rψ}2i “ Op1q.

Let us now explain how to implement the local reflections (3.34) for this modified transducer.
Up to a sign, the content of the space incident to a vertex i ą 0 is given by

|i´ 1⟩| rψybi´1 ` p´1qfpψq|i⟩| rψybi. (3.36)

We use the input oracle to obtain the state

|i´ 1⟩| rψybi´1|ψ⟩ ` p´1qfpψq|i⟩| rψybi. (3.37)

Later we can get back from (3.37) to (3.36) by uncomputing the ψ. Therefore, bringing the
term |i⟩| rψybi´1 outside the brackets, it suffices to implement the mapping

#

|0⟩|ψ⟩ ` |1⟩| rψy ÞÑ |0⟩|ψ⟩ ` |1⟩| rψy, if fpψq “ 0; and
|0⟩|ψ⟩ ´ |1⟩| rψy ÞÑ ´|0⟩|ψ⟩ ` |1⟩| rψy, if fpψq “ 1.

(3.38)

This is where the condition (3.31) comes into play. We use the same rescaling idea as in [14],
and define the state

rψ “

#

1
a |0⟩|ψ0⟩ ` b|1⟩|ψ1⟩, if fpψq “ 0;
a|0⟩|ψ0⟩ ` 1

b |1⟩|ψ1⟩, if fpψq “ 1.
with

a “
4

c

1 ´ c` d

1 ´ c´ d
and b “

4

c

c` d

c´ d
.

It is not hard to check that } rψ}2 “ 1 ´ Ωp1q. Now the operation in (3.38) reads as
#

`

|0⟩ ` 1
a |1⟩

˘

|0⟩|ψ0⟩ `
`

|0⟩ ` b|1⟩
˘

|1⟩|ψ1⟩ ÞÑ
`

|0⟩ ` 1
a |1⟩

˘

|0⟩|ψ0⟩ `
`

|0⟩ ` b|1⟩
˘

|1⟩|ψ1⟩,
`

|0⟩ ´ a|1⟩
˘

|0⟩|ψ0⟩ `
`

|0⟩ ´ 1
b |1⟩

˘

|1⟩|ψ1⟩ ÞÑ
`

´|0⟩ ` a|1⟩
˘

|0⟩|ψ0⟩ `
`

´|0⟩ ` 1
b |1⟩

˘

|1⟩|ψ1⟩,

which can be implemented as the 2-qubit reflection about the span of the states
`

a|0⟩ ` |1⟩
˘

|0⟩ and
`

|0⟩ ` b|1⟩
˘

|1⟩.

Following the same logic as in the toy example, we obtain that |0⟩ ù p´1qfpψq|0⟩. However,
this time, both the transduction and the query complexities are bounded by a constant. The
problem is that this construction still requires infinite space. We solve this by truncating the
line after some vertex D. This introduces an error, but since the norms of the vectors decrease
exponentially with i, it suffices to take D “ O

`

log 1
ε

˘

. Finally, the transducer can be converted
into a canonical form by the standard technique of Proposition 10.4.

The main purpose of purifiers is to reduce error. Let us give few examples. First, recall the
definition of the composed function f ˝ g from (3.29):

pf ˝ gqpz1,1, . . . , z1,m, z2,1, . . . , z2,m, , zn,1, . . . , zn,mq

“ f
`

gpz1,1, . . . , z1,mq, gpz2,1, . . . , z2,mq, . . . , gpzn,1, . . . , zn,mq
˘

.

We use notation

y⃗i “ pzi,1, . . . , zi,mq and x “
`

gpy⃗1q, gpy⃗2q, . . . gpy⃗nq
˘

so that fpxq “ pf ˝ gqpzq. In the circuit model, we have the following result on the evaluation
of this function.

29

Theorem 3.15. Let A and B be quantum algorithms in the circuit model that evaluate the
functions f and g, respectively, with bounded error. Then, there exists a quantum algorithm in
the circuit model that evaluates the function f ˝ g with bounded error in time complexity

OpLq
`

T pAq ` T pBq ` s logL
˘

(3.39)

where L is the worst-case Las Vegas query complexity of A, and s is the space complexity of B.

Proof sketch. We obtain the transducer SA in the circuit model using Theorem 3.5. The trans-
duction and query complexities of SA are bounded by L. Let Spur be the purifier for the input
oracle B. Consider the transducer S “ SA ˝

À

i Spur, see Figure 3.10. The transducer Spur on
the input oracle BpOy⃗iq evaluates gpyiq with diminished error. It suffices to make error some-
what smaller than 1{L. Then, S on the input oracle

À

iBpOy⃗iq evaluates f ˝ g with bounded
error.

Figure 3.10

SA

Spur

B

Oy⃗1

Spur

B

Oy⃗2

¨ ¨ ¨ Spur

B

Oy⃗n

A composition scheme for Theorem 3.15. The input oracle Oz is broken down as
À

iOy⃗i .
The composed transducer contains the elements inside the blue box. The program B is
executed as is, serving as an input oracle to the composed transducer.

The transduction complexity of Spur on a unit admissible vector is Op1q. Hence, by (3.17)

W pS,Oz, |0⟩q ď W pSA, Ox, |0⟩q ` Op1q ¨ LpSA, Ox, |0⟩q “ OpLq.

All the purifiers can be implemented in parallel, hence by Proposition 3.7,

T pSq “ T pSAq ` T pSpurq “ O
`

T pAq
˘

` Ops logLq.

The theorem follows from Theorem 3.2 applied to S, where we replace execution of the input
oracle by the execution of B. Again, all the B can be executed in parallel.

In the QRAG model, we can easily deal with different functions gi, like in the following
function, which we already considered in (2.1):

f
`

g1pz1,1, . . . , z1,mq, g2pz2,1, . . . , z2,mq, . . . , gnpzn,1, . . . , zn,mq
˘

. (3.40)

30

We again use notation

y⃗i “ pzi,1, . . . , zi,mq and x “
`

g1py⃗1q, g2py⃗2q, . . . gnpy⃗nq
˘

.

Theorem 3.16. Consider the function as in (3.40). Let A and B1, . . . , Bn be quantum algo-
rithms that evaluate the functions f and g1, . . . , gn, respectively, with bounded error. Assuming
the QRAG model and QRAM access to the description of A and B1, . . . , Bn, there exists a
quantum algorithm that evaluates the function (3.40) with bounded error in time complexity

OpTRq max
x

´

T pAq `

n
ÿ

i“1
T pBiqL

piq
x pAq

¯

. (3.41)

Here Lpiq
x pAq is the i-th partial Las Vegas complexity Lpiq

`

A,Ox, |0⟩
˘

of the algorithm A on the
input oracle encoding x.
Proof sketch. We obtain the transducer SA in the QRAG model using Theorem 3.5. Its trans-
duction complexity is T pAq. We assume all Bi have the same range and the same error. Let
Spur be the corresponding purifier. Finally, let SBi be the transducer in the QRAG model
corresponding to Bi. Consider the composed transducer S as in Figure 3.11. Similarly to The-
orem 3.15, the transducer S on the input oracle Oz “

À

iOy⃗i evaluates the function f ˝ g with
bounded error provided that the error of the purifier is sufficiently smaller than 1{L.

Figure 3.11

SA

Spur

SB1

Oy⃗1

Spur

SB2

Oy⃗2

¨ ¨ ¨ Spur

SBn

Oy⃗n

A composition scheme for Theorem 3.16. The input oracle Oz is again broken down as
À

iOy⃗i . The composed transducer S contains the elements inside the blue box. This time
every Bi is turned into a transducer and partakes in the composition.

Using that the transduction and the query complexity of Spur are Op1q, we obtain that
WmaxpSpur ˝ SBi , Oy⃗iq “ O

`

T pBiq
˘

. Therefore, by (3.21) and using that A and SA have the
same query state:

W
`

S,Oz, |0⟩
˘

ď W pSA, Ox, |0⟩q `
ÿ

i

O
`

T pBiq
˘

Lpiq
`

A,Ox, |0⟩
˘

.

For the time complexity, S is a composition of three transducers, where the last two are direct
sums. All three of them have time complexity OpTRq, hence, this is also the time complexity
of S. The theorem follows from Theorem 3.2.

31

Comparison between Theorems 3.15 and 3.16 is similar to the comparison between Theo-
rems 3.8 and 3.10 in Section 3.5. The second theorem considers a more general case (3.40), and
its formulation is close to (2.4). On the other hand, in (3.39), T pBq will most likely dominate
s logL, so the latter can be removed. Also, if T pAq is smaller than T pBq, the whole expression
is dominated by L ¨ T pBq, which is what we would like to have.

Finally, in the QRAG model, any bounded-error quantum algorithm A can be turned into
an essentially exact transducer SA such that, up to constant factors, its transduction complexity
is T pAq and its query complexity is the query complexity of A. The latter transducers can be
composed in multiple layers as in Theorem 3.11.

4 Preliminaries
If not said otherwise, a vector space is a finite-dimensional complex inner product space. They
are denoted by calligraphic letters. We assume that each vector space has a fixed orthonormal
basis, and we often identify an operator with the corresponding matrix. IX stands for the
identity operator in X . The inner product is denoted by x¨, ¨y. A˚ stands for the adjoint linear
operator. All projectors are orthogonal projectors. We use ket-notation to emphasise that a
vector is a state of a quantum register, or to denote the elements of the computational basis.

We use O for the big-Oh notation in order to distinguish from O, which we use for input
oracles. OA means that the constant may depend on A. If P is a predicate, we use 1P to denote
the corresponding indicator variable; which is equal to 1 if P is true, and to 0 otherwise.

4.1 Query Algorithms
In this section, we briefly describe the model of quantum query algorithms, and define quantum
Las Vegas query complexity. The query model itself is essentially standard [20, 22], with the
main difference that we do not restrict ourselves to the evaluation of functions, and also allow
for multiple input oracles, which can be arbitrary unitaries. The notion of quantum Las Vegas
query complexity is relatively new [17].

A quantum query algorithm A works in space H, which we call the workspace of the al-
gorithm. The algorithm is given an oracle O, which is a unitary10 in some space M. The
interaction between the algorithm and the oracle is in the form of queries, which we are about
to define. The workspace is decomposed as H “ H˝ ‘ H‚, where the oracle is only applied to
the second half. Also, H‚ “ HÒ b M for some HÒ, and the query is

rO “ I˝ ‘ I bO, (4.1)

where I˝ and I are the identities in H˝ and HÒ, respectively.
In terms of registers, we assume the decomposition H “ H˝ ‘ H‚ is marked by a register

R so that |0⟩R corresponds to H˝ and |1⟩R to H‚. Then, the query rO is an application of O,
controlled by R, where O acts on some subset of the registers (which constitute M).

The quantum query algorithm A “ ApOq is a sequence of linear transformations in H:

ApOq “ UQ rOUQ´1 rO ¨ ¨ ¨U1 rOU0, (4.2)

where Ut are some input-independent unitaries in H. See Figure 4.1. Thus, the algorithm im-
plements a transformation O ÞÑ ApOq: from the input oracle O in M to the linear operator (4.2)
in H.

10While [17] define more general input oracles, we, for simplicity, consider only unitary input oracles in this
paper.

32

Figure 4.1

ξ

U0

I b O

U1

ψ˝
1

ψ‚
1

I b O

U2

ψ˝
2

ψ‚
2

I b O

U3

ψ˝
3

ψ‚
3

τ

A graphical illustration of a quantum query algorithm with Q “ 3 queries. The algorithm
interleaves input-independent unitaries Ut with queries rO “ I˝ ‘ I bO. The intermediate
state ψt after Ut´1 and before the t-th query is decomposed as ψ˝

t ‘ ψ‚
t , where only the

second half is processed by the oracle.

We will generally work with the state conversion formalism. We say that A transforms ξ
into τ on oracle O, if ApOqξ “ τ . We say that A does so ε-approximately if

∥∥τ ´ ApOqξ
∥∥ ď ε.

In this context, we will often call ε the error of the algorithm.
Let us make two important remarks on the structure of thus defined query algorithms.

Remark 4.1 (Alignment). Note that all the queries in (4.2) are identical, i.e., the oracle O is
always applied to the same registers and is always controlled by R. To acknowledge this, we say
that all the queries in A are aligned. Usually, this is not important, but the alignment property
will play a significant role in this paper, in particular in Sections 9 and 10. The main reason is
that for the aligned program we can perform all the queries in parallel (assuming we have the
intermediate states ψt from Figure 4.1 somehow).

Remark 4.2 (Unidirectionality). The input oracle is unidirectional: the algorithm only has
access to O. This suffices for most of our results. Quite often, however, bidirectional access
to the input oracle is allowed, where the algorithm can query both O and O˚. The latter is a
special case of the former, as bidirectional access to O is equivalent to unidirectional access to
O‘O˚. As this situation will be common in some sections of the paper, we utilise the following
piece of notation:

ÐÑ
O “ O ‘O˚. (4.3)

The standard complexity measure of a quantum query algorithm is Q “ QpAq: the total
number of times the query rO is executed. It was called Monte Carlo complexity in [17] in order
to distinguish it from Las Vegas complexity defined next.

Let Π‚ be the projector onto H‚. The state processed by the oracle on the t-th query is
ψ‚
t “ Π‚Ut´1 rOUt´2 ¨ ¨ ¨ rOU0, and the total query state is

qpA,O, ξq “

Q
à

t“1
ψ‚
t . (4.4)

This is the most complete way of specifying the work performed by the input oracle O in the
algorithm A on the initial state ξ. It is a member of E bM for some space E (the latter actually
being equal to CQ b HÒ). The simplest way to gauge the total query state is by defining the
corresponding quantum Las Vegas query complexity :

LpA,O, ξq “ }qpA,O, ξq}2. (4.5)

33

As mentioned in Section 2.3, we extend the definitions (4.4) and (4.5) for the case ξ1 P E b H
for some E using identities (2.10) and (2.11).

4.2 Multiple Input Oracles
It is also possible for an algorithm to have access to several input oracles Op1q, . . . , Oprq. Las
Vegas query complexity can naturally accommodate such a scenario. Indeed, access to several
input oracles is equivalent to access to the one combined oracle

O “ Op1q ‘Op2q ‘ ¨ ¨ ¨ ‘Oprq. (4.6)

Consequently, the space of the oracle has a similar decomposition M “ Mp1q ‘ ¨ ¨ ¨ ‘ Mprq,
where Opiq acts in Mpiq. The total query state can also be decomposed into partial query states

qpA,O, ξq “ qp1qpA,O, ξq ‘ qp2qpA,O, ξq ‘ ¨ ¨ ¨ ‘ qprqpA,O, ξq,

where qpiqpA,O, ξq is processed by Opiq. This gives partial Las Vegas query complexities

LpiqpA,O, ξq “
∥∥qpiqpA,O, ξq

∥∥2
.

In terms of registers, it can be assumed that the input oracle is controlled by some register R,
where the value |0⟩R indicates no application of the input oracle, and |i⟩R with i ą 0 indicates
the i-th input oracle Opiq. We note that we use i in |i⟩R only as a label. In particular, we do not
perform any arithmetical operations on them. Therefore, |i⟩R can have a complicated internal
encoding that can facilitate the application of the oracle.

The assumption on the register R in this section is not necessarily in contradiction with the
assumptions of Section 4.1, as R can have a separate qubit that indicates whether i in |i⟩R is
non-zero. This qubit can serve as R in the sense of Section 4.1.

The case of usual Monte Carlo query complexity requires additional changes, as per now it
turns out that all the oracles are queried the same number of times, Q. One way to allow for
different number of queries is as follows. Similarly to (4.1), define the query to the i-th input
oracle as

rOpiq “ I˝ ‘ I b

´

Ip1q ‘ ¨ ¨ ¨ ‘ Ipi´1q ‘Opiq ‘ Ipi`1q ‘ ¨ ¨ ¨ ‘ Iprq
¯

,

where the decomposition in the brackets is the same as in (4.6). In other words, rOpiq is just the
application of Opiq controlled by |i⟩R. The query algorithm is then defined as

ApOq “ UQ rOpsQq UQ´1 rOpsQ´1q ¨ ¨ ¨ U2 rOps2q U1 rOps1q U0, (4.7)

where s1, s2, . . . , sQ P rrs. The number of invocations of the i-th oracle, Qpiq, is defined as the
number of sj equal to i in (4.7).

4.3 Evaluation of Functions
The standard settings for quantum algorithms evaluating a (partial) function f : D Ñ rps with
D Ď rqsn are as follows. For an input x P rqsn, the corresponding input oracle acts in Cn b Cq
as

Ox : |i⟩|b⟩ ÞÑ |i⟩|b‘ xi⟩ (4.8)

for all i P rns and b P rqs. Here ‘ stands for the bitwise XOR, and we assume that q is a power
of 2 (we can ignore the inputs outside of the domain).

34

The algorithm A itself has a special output register isomorphic to Cp. After finishing the
algorithm, measuring the output register should yield the value fpxq. This either happens with
probability 1 (for exact algorithms), or with probability at least 1{2`d for some constant d ą 0
(bounded error).

This definition is nice because there is one well-defined input oracle Ox for each input.
Also O2

x “ I, which makes uncomputing very easy. Unfortunately, the standard definition has
a drawback that the input oracle of the algorithm has a more restricted form than the one
required for the algorithm itself. This is problematic if the algorithm is expected to be used as
an input oracle for another algorithm. This issue is solved by noting that |b⟩ ÞÑ |b‘ fpxq⟩ can
be implemented by evaluating fpxq, performing the XOR operation, and uncomputing fpxq.
This increases the complexity by a factor of 2, which is fine if we ignore constant factors. We
call it robust evaluation of function, as the action of the algorithm is specified for all input
states, not just |0⟩.

However, constant factors can be important, for instance, in iterated functions, where such
factors appear as a base of the exponent, or in the settings of Las Vegas complexity in [17],
where precise complexity is sought for. In this case, a more homogenous definition would be
appreciated.

We follow one such approach from [14], which we call state-generating. We say that the
input oracle Ox encodes the input string x P rqsn if it performs the transformation

Ox : |i⟩|0⟩ ÞÑ |i⟩|xi⟩ (4.9)

for all i P rns. The action of this oracle on |i⟩|0⟩ is identical to that of (4.8), but we do not
require anything for other states. In other words, the admissible subspace of Ox consists of
vectors having |0⟩ in the second register. The admissible subspace of the algorithm itself is
spanned by |0⟩. On that, it has to perform the transformation |0⟩ ÞÑ |fpxq⟩. The algorithm has
bidirectional access to Ox, which we treat as unidirectional access to

ÐÑ
Ox defined in (4.3). It is

possible to assume the input oracle Ox is a direct sum of n unitaries acting in Cq in order to
apply the multiple input oracle settings from Section 7.2.

As the initial state is always |0⟩, and Ox is essentially determined by x, we will write

LxpAq “ L
`

A,
ÐÑ
Ox, |0⟩

˘

and LpAq “ max
xPD

LxpAq. (4.10)

More precisely, we define LxpAq as the supremum over all input oracles Ox that encode the

input x. We use similar notation for L
piq
x and Lpiq.

This approach has a number of advantages. First, it casts function evaluation as a special
case of state conversion with state-generating input oracles [14]. Second, the algorithm can be
directly used as a part of the input oracle for another algorithm without any uncomputation.
Finally, this definition does not involve the somewhat arbitrary XOR operation and may be,
thus, regarded as being more pure. In particular, it makes sense to ask for the precise value of
its quantum Las Vegas query complexity (and not just only up to constant factors).

This approach has a number of disadvantages. First, we have to explicitly allow bidirectional
access to Ox in order to allow uncomputing, as it is no longer the case that Ox is its own inverse.
More importantly, though, neither the action nor the Las Vegas complexity of the algorithm is
specified for the initial states orthogonal to |0⟩. For our own algorithms, we can design them
so that Ox is only executed with |0⟩ in the second register (maybe after some perturbation, see
Section 4.6). But, if we are dealing with an arbitrary algorithm, we have no such guarantees.

35

4.4 Circuit Model
We assume that the space of the algorithm is embedded into a product of qubits, pC2qbs, for
some s called the space complexity of the algorithm. A quantum program is a product of
elementary operations called gates:

A “ GTGT´1 ¨ ¨ ¨G1. (4.11)

In the circuit model, each gate Gi is usually a 1- or a 2-qubit operation that can be applied
to any qubit or a pair of qubits. The number of elementary operations, T , is called the time
complexity of A, and is denoted by T pAq. We assume a universal gate set, so that every unitary
can be written as a quantum program. We do not focus too much on a particular model, as
they are all essentially equivalent.

In a query algorithm like in Section 4.1, each execution of the input oracle rO also traditionally
counts as one elementary operation. In other words, each unitary in (4.2) can be decomposed
into elementary gates as in (4.11) to give a corresponding program in the circuit model. We use
T to denote its time complexity, and Q to denote its Monte Carlo query complexity.

We will often require an algorithm like in (4.11) to be executed conditionally, that is, con-
trolled by the value of some external qubit. In other words, we would like to perform an
operation Ac of the form

|0⟩|ξ⟩ Ac
ÞÝÑ |0⟩|ξ⟩, |1⟩|ξ⟩ Ac

ÞÝÑ |1⟩|Aξ⟩,

where the first qubit is the control qubit. We will denote time complexity of this procedure by
TCpAq.

Since it is possible to substitute each Gi in (4.11) by its controlled version, we have that
TCpAq “ OpT pAqq. But it is often possible to do better. For instance, assume that A is of the
form A2A

c
1, i.e., a large chunk of A is already conditioned. We have that T pAq “ T pA2q`TCpA1q.

On the other hand, TCpAq “ TCpA2q ` TCpA1q ` Op1q, because we can calculate the AND of
the two control qubits of A1 into a fresh qubit, execute A1 controlled by this fresh qubit, and
uncompute the new qubit afterwards. In other words, the constant factor of TCpAq “ OpT pAqq

is not getting accumulated with each new conditioning, but is, in a way, paid only once.

4.5 QRAG model
The QRAG model extends the circuit model by allowing the following Quantum Random Access
Gate:

QRAG: |i⟩|b⟩|x1, . . . , xi´1, xi, xi`1, . . . , xm⟩ ÞÑ |i⟩|xi⟩|x1, . . . , xi´1, b, xi`1, . . . , xm⟩,

where the first register is an m-qudit, and the remaining ones are quantum words (i.e., quantum
registers large enough to index all the qubits in the program). We assume the QRAG takes
time TR as specified in (3.13). Note that this gate would require time Ωpmq to implement in
the usual circuit model, as it depends on all m` 2 registers.

This should not be confused with the QRAM model, which allows oracle access to an array
of classical registers x1, x2, . . . , xm:

QRAM: |i⟩|b⟩ ÞÑ |i⟩|b‘ xi⟩,

where ‘ stands for the bit-wise XOR. The difference is that xis are being fixed during the
execution of the quantum procedure (but they may be changed classically between different
executions). The QRAG model is more powerful than the QRAM model.

The main reason we need the QRAG is the following result (see, e.g., [29] for a formal
statement, although the same construction has been used elsewhere including [2, 23, 26]):

36

Theorem 4.3 (Select Operation). Assume the QRAG model and that we have QRAM access
to a description of a quantum program as in (4.11) in some space H, where each gate Gi either
comes from a fixed set of 1- or 2-qubit operations (which can be applied to different qubits each
time), or is a QRAG. Let I be a T -qudit. Then, the following Select operation

ÿ

i

|i⟩I |ψi⟩H ÞÑ
ÿ

i

|i⟩I |Giψi⟩H (4.12)

can be implemented in time OpTRq.

Proof sketch. We add a number of scratch registers to perform the following operations. Con-
ditioned on i, we use the QRAM to read the description of Gi. We switch the arguments of
Gi into the scratch space using the QRAG. We apply the operation Gi on the scratch space.
We switch the arguments back into memory, and erase the description of Gi from the scratch
memory. All the operations besides applying Gi take time OpTRq. Application of a usual gate
Gi takes time Op1q as the gate set is fixed, or OpTRq if Gi is a QRAG.

It is also possible to not store the whole program in memory, but compute it on the fly,
in which case the complexity of this computation should be added to the complexity stated in
Theorem 4.3.

Corollary 4.4 (Parallel execution of programs). Assume that in the settings of Theorem 4.3
we have QRAM access to an array storing descriptions of m quantum programs Ap1q, . . . , Apmq.
Let I be a m-qudit. Then, the following operation

ÿ

i

|i⟩I |ψi⟩H ÞÑ
ÿ

i

|i⟩I
ˇ

ˇApiqψi
〉

H,

can be implemented in time O
`

TR ¨ maxi T pApiqq
˘

.

Proof sketch. Use Theorem 4.3 to implement the first gate in all of Apiq in parallel, then the
second one, and so on until the time mark maxi T pApiqq.

Another important primitive is the random access (RA) input oracle. If O : M Ñ M is an
input oracle, then its RA version acts on J b MbK , where J is a K-qudit. If the register J
contains value i, the input oracle is applied to the i-th copy of M in MbK .

The idea behind this is that if O is implemented as a subroutine, then the RA input oracle is
a special case of Corollary 4.4, where all Apiq are the same, but act on different sets of registers
(which is easy to define using |i⟩J as an offset). Therefore, it makes sense to define the RA
input oracle as an elementary operation in the QRAG model.

4.6 Perturbed Algorithms
The following lemma is extremely useful in quantum algorithms, but for some reason has seldom
experienced the honour of being explicitly stated.

Lemma 4.5. Assume we have a collection of unitaries U1, . . . , Um all acting in the same vector
space H. Let ψ1

0, . . . , ψ
1
m be a collection of vectors in H such that

ψ1
t “ Utψ

1
t´1

for all t. Let ψ0, . . . , ψm be another collection of vectors in H such that ψ0 “ ψ1
0 and∥∥ψt ´ Uiψt´1

∥∥ ď εi (4.13)

37

for all i. Then, ∥∥ψm ´ ψ1
m

∥∥ ď

m
ÿ

t“1
εt. (4.14)

Proof. Denote by Vt the product UmUm´1 ¨ ¨ ¨Ut`1. In particular, Vm “ I. Then,

ψm ´ ψ1
m “ Vmψm ´ V0ψ0 “

m
ÿ

t“1

`

Vtψt ´ Vt´1ψt´1
˘

“

m
ÿ

t“1
Vt
`

ψt ´ Utψt´1
˘

.

We obtain (4.14) from the triangle inequality using (4.13) and the unitarity of Vt.

In the application of this lemma, Ut stands for sequential sections of a quantum algorithm.
The vectors ψ1

t form the sequence of states the algorithm goes through during its execution.
The vectors ψt is an idealised sequence, which is used instead of ψ1

t in the analysis.
We call the difference between ψt and Utψt´1 a (conceptual) perturbation. The expression

in (4.13) is the size of the perturbation. Therefore, the Eq. (4.14) can be stated as the total
perturbation of the algorithm does not exceed the sum of the perturbations of individual steps.
If this sum is small, the final state ψm of the analysis is not too far away from the actual final
state ψ1

m of the algorithm.
This lemma is implicitly used every time an approximate version of a quantum subroutine

is used, which happens in pretty much every non-trivial quantum algorithm.

4.7 Efficient Implementation of Direct-Sum Finite Automata
We will repeatedly use the following construction in this paper, for which we describe a time-
efficient implementation. We call it direct-sum quantum finite automata due to its superficial
similarity to quantum finite automata.

The space of the algorithm is K b P b H, where K is a K-qudit, P is a qubit, and H is an
arbitrary space. Additionally, we have black-box access to K unitaries S0, . . . , SK´1 in P b H.
The algorithm is promised to start in the state of the form

|0⟩K|0⟩P |ϕ⟩H `

K´1
ÿ

t“0
|t⟩K|1⟩P |ψt⟩H, (4.15)

and it has to perform the following transformation

• For t “ 0, 1, . . . ,K ´ 1:
(a) Execute St on P b H conditioned on |t⟩K.

(b) Conditioned on |0⟩P , replace |t⟩K by |t` 1⟩K.

(4.16)

Let us elaborate on the “replace” in point (b). It is not hard to show by induction that the
|0⟩P -part of the state contains a vector of the form |t⟩K|ϕt`1⟩H. This vector has to be replaced
by |t` 1⟩K|ϕt`1⟩H. We also assume that |K⟩K is identical with |0⟩K. For a graphical illustration
refer to Figure 4.2.

It is trivial to implement the transformation in (4.16) in OpK logKq elementary operations
besides the executions of St. It is a technical observation that we can remove the logarithmic
factor.

Lemma 4.6. The transformation in (4.16) can be implemented in time OpKq `
ř

t TCpStq,
where TC is defined in Section 4.4.

38

Figure 4.2

S0
ϕ0

ψ0

ψ1
0

S1
ϕ1

ψ1

ψ1
1

S2
ϕ2

ψ2

ψ1
2

S3
ϕ3

ψ3

ψ1
3

ϕ4

A graphical illustration of the action of a direct-sum finite automaton. States ϕt repre-
sent the internal state of the automaton, as it processes a “string” of quantum vectors
ψ0, . . . , ψK´1 into ψ1

0, . . . , ψ
1
K´1. Unlike the usual quantum automata, the internal state

of the automaton and the current “letter” of the “string” are joined via the direct sum.
Similarity with Figure 3.2 is apparent. It is an interesting question, whether such finite
automata can find other applications.

Proof. The register K uses ℓ “ logK qubits. We introduce an additional register C that also
consists of ℓ qubits. For i, t P rKs, we denote

|iO t⟩C “ |1⟩bc
|0⟩bℓ´c

if the binary representations of i and t, considered as elements of t0, 1uℓ, agree on the first c
most significant bits, and disagree on the pc` 1q-st one (or c “ ℓ).

We modify the algorithm so that before the t-th iteration of the loop, the algorithm is in a
state of the form

|t⟩K|0⟩P |tO t⟩C |ϕt⟩H `

t´1
ÿ

i“0
|i⟩K|1⟩P |iO t⟩C

ˇ

ˇψ1
t

〉
H `

K´1
ÿ

i“t

|i⟩K|1⟩P |iO t⟩C |ψt⟩H (4.17)

In particular, in the |0⟩P -part, the register C contains ℓ ones.
The state (4.17) with t “ 0 can be obtained from (4.15) in Opℓq elementary operations by

computing C starting from the highest qubit. Execution of St on Step (a) can be conditioned
on the lowest qubit of C, which is equal to 1 if and only if K contains t.

It remains to consider Step (b) and the update of the register C during the increment from
t to t ` 1. Assume that t ` 1 is divisible by 2d, but not by 2d`1. Then, Step (b) takes d ` 1
controlled 1-qubit operations. Similarly, the change from t to t ` 1 in |iO t⟩C in (4.17) takes
time Opdq by first uncomputing the d ` 1 lowest qubits for t, and then computing them for
t` 1. Finally, after the loop, the register C can be uncomputed in Opℓq operations. Therefore,
the total number of elementary operations is OpKq.

5 Transducers
In this section, we define transducers and give their basic properties. This is an initial treatment
and will be extended in Section 7 to include query complexity.

5.1 Definition
Mathematically, our approach is based on the following construction.

39

Theorem 5.1. Let H ‘ L be a direct sum of two vector spaces, and S be a unitary on H ‘ L.
Then, for every ξ P H, there exist τ P H and v P L such that

S : ξ ‘ v ÞÑ τ ‘ v. (5.1)

Moreover,

(a) The vector τ “ τpS, ξq “ τHpS, ξq is uniquely defined by ξ and S.
(b) The vector v “ vpS, ξq “ vHpS, ξq is also uniquely defined if we require that it is orthogonal

to the 1-eigenspace of ΠSΠ, where Π is the projection on L.
(c) The mapping ξ ÞÑ τ is unitary and ξ ÞÑ v is linear.

We will prove the theorem at the end of this section.

In the setting of Theorem 5.1, we will say that S transduces ξ into τ , and write ξ
S

ù τ .
The mapping ξ ÞÑ τ on H will be called the transduction action of S on H and denoted by S

ù

H.

We call any v satisfying Spξ‘vq “ τ ‘v a catalyst for ξ
S

ù τ . The condition in Point (b) of
v to be orthogonal to the 1-eigenspace of ΠSΠ is crucial for uniqueness, as adding such a vector
to v does not affect (5.1). Clearly, the vector v as defined in Point (b) has the smallest possible
norm. Therefore, we can define transduction complexity of S on ξ as W pS, ξq “ }vpS, ξq}2 for
the latter v. We write WHpS, ξq if the space H might not be clear from the context. The above
discussion can be formulated as the following claim.

Claim 5.2. For any catalyst v of the transduction ξ
S

ù τ , we have W pS, ξq ď }v}2.

On the other hand, checking orthogonality to ΠSΠ is complicated and unnecessary, and we
avoid doing it. We usually couple a transducer with some chosen catalyst v for all the ξ of
interest, which need not have the smallest possible norm. In this case, we somewhat sloppily
write W pS, ξq “ }v}2 even for this catalyst v. This agreement will become especially important
when we add query complexity into the picture in Section 7; see in particular the note towards
the end of Section 7.1.

Other important notions related to the transducer are its time and query complexity. Its
time complexity, T pSq, is defined as its time complexity as an algorithm. For ξ P H, its query
state, qHpS,O, ξq, and query complexity, LHpS,O, ξq, are defined as those of S as an algorithm
on the initial state ξ ‘ v. Note that for transducers with input oracles, we will adopt a special
canonical form defined in Section 7, until then we mostly ignore the oracle-related notions.

Example 5.3. Let us a give a simple concrete example illustrating the above notions. Assume
that H is one-dimensional and spanned by |0⟩, and L is two-dimensional and spanned by |1⟩
and |2⟩. Let S be the reflection of the vector |0⟩ ´ |1⟩ ´ |2⟩, so that its orthogonal complement
stays intact.

The transduction action of S on H is the identity, which is certified by

S : |0⟩ `
1
2 |1⟩ `

1
2 |2⟩ ÞÑ |0⟩ `

1
2 |1⟩ `

1
2 |2⟩.

Hence, we have vpS, |0⟩q “ p|1⟩ ` |2⟩q{2, and W pS, |0⟩q “ 1{2. This is not the only catalyst, as
one can also take v “ |1⟩ or v “ |2⟩. However, p|1⟩ ` |2⟩q{2 is the only catalyst orthogonal to
the 1-eigenspace of ΠSΠ, which is spanned by |1⟩ ´ |2⟩, and also has the smallest norm.

Proof of Theorem 5.1. The vector v can be found from the equation

Πv “ Π
`

τ ` v
˘

“ Π
`

Spξ ` vq
˘

“ ΠSξ ` ΠSv “ ΠSξ ` ΠSΠv.

40

From this we would like to argue that v can be expressed as

v “ pΠ ´ ΠSΠq`ΠSξ, (5.2)

where p¨q` stands for the Moore-Penrose pseudoinverse. Let us show that this is indeed the
case.

Denote by K the kernel of Π ´ ΠSΠ in L, and by KK its orthogonal complement in L. The
subspace K equals the 1-eigenspace of ΠSΠ. But since S is a unitary, a 1-eigenvector of ΠSΠ
is necessarily a 1-eigenvector of S. Hence, S is a direct sum of the identity on K and a unitary
on H ‘ KK. Thus, Π ´ ΠSΠ is a direct sum of the zero operator in H ‘ K and some operator
in KK. Moreover, the latter operator is invertible in KK as its kernel is empty. Since ξ P H is
orthogonal to K, we get that ΠSξ P KK. Hence, (5.2) indeed uniquely specifies v. This proves
(b) and the second half of (c).

The uniqueness of τ and the linearity of ξ ÞÑ τ now follow from (5.1) and the linearity of S.
Finally, unitarity of S implies }ξ} “ }τ}, hence, the map ξ ÞÑ τ is also unitary.

Proposition 5.4 (Transitivity of Transduction). Assume H Ď H1 Ď H2 are vector spaces, and
S is a unitary in H2. Then,

S
ù

H “ pS

ù

H1
q

ù

H,

and, for every ξ P H, a possible catalyst is

vHpS, ξq “ vHpS

ù

H1
, ξq ` vH1

`

S, ξ ‘ vHpS

ù

H1
, ξq

˘

. (5.3)

Proof. By definition,
S

ù

H1
: ξ ‘ vHpS

ù

H1
, ξq ÞÑ τ ‘ vHpS

ù

H1
, ξq

for some τ P H. The latter means that

S : ξ ‘ vHpS
ù

H1
, ξq ‘ vH1

`

S, ξ ‘ vHpS

ù

H1
, ξq

˘

ÞÑ τ ‘ vHpS

ù

H1
, ξq ‘ vH1

`

S, ξ ‘ vHpS

ù

H1
, ξq

˘

,

proving (5.3).

5.2 Implementation
The key point we will now make is that given a transducer S, there exists a very simple quantum
algorithm that approximately implements its transduction action on H. This algorithm is a
generalisation of the one from [17], which was used for implementation of the adversary bound.

Before we describe this algorithm, let us establish a few conventions. We call H the public
and L the private space of S. We indicate this separation of H and L by a privacy qubit P.
The value 0 of P will indicate the public space H, and the value 1 the private space L. This
means that both H and L are embedded into the same register during implementation. Thus,

ξ ‘ v “ |0⟩P |ξ⟩H ` |1⟩P |v⟩L (5.4)

explicitly specifying the public and the private spaces. We will extend this notation in Sec-
tion 7.1.

As it can be understood from the name, the algorithm does not have direct access to the
private space L of the transducer. All the interaction between the transducer and its surrounding
is through the public space H.

41

Theorem 5.5. Let spaces H, L, and a positive integer K be fixed. There exists a quantum
algorithm that transforms ξ into τ 1 such that

}τ 1 ´ τpS, ξq} ď 2
c

W pS, ξq

K

for every transducer S : H ‘ L Ñ H ‘ L and initial state ξ P H. The algorithm conditionally
executes S as a black box K times, and uses OpKq other elementary operations.

Theorem 3.2 is a direct corollary of Theorem 5.5. A sketch of the proof of Theorem 5.5 was
already given in the same section, see, in particular, Figure 3.2.

Proof of Theorem 5.5. The space of the algorithm is K b pH ‘ Lq, where K is a K-qudit. The
register H ‘ L contains the privacy qubit P as described above. The algorithm starts in the
state ξ “ |0⟩K|0⟩P |ξ⟩H, and performs the following transformations:

1. Map |0⟩K into the uniform superposition 1?
K

řK´1
t“0 |t⟩K.

2. For t “ 0, 1, . . . ,K ´ 1:

(a) Execute S on H ‘ L conditioned on |t⟩K.
(b) Conditioned on |1⟩P , replace |t⟩K by |t` 1⟩K (where |K⟩K is equal to |0⟩K).

3. Run Step 1 in reverse.

Clearly, the algorithm conditionally executes S exactly K times. As described now, the
algorithm takes time OpK logKq, but it is implementable in time OpKq using Lemma 4.6.

Let us prove correctness. We write v “ vpS, ξq and τ “ τpS, ξq. After Step 1, the algorithm
is in the state

1
?
K

K´1
ÿ

i“0
|i⟩K|0⟩P |ξ⟩H. (5.5)

We perform a perturbation in the sense of Lemma 4.5 and assume the algorithm is instead in
the state

1
?
K

K´1
ÿ

i“0
|i⟩K|0⟩P |ξ⟩H `

1
?
K

|0⟩K|1⟩P |v⟩L. (5.6)

On the t-th iteration of the loop, the transducer S on Step 2(a) transforms the part of the state

1
?
K

|t⟩K|0⟩P |ξ⟩H `
1

?
K

|t⟩K|1⟩P |v⟩L ÞÝÑ
1

?
K

|t⟩K|0⟩P |τ⟩H `
1

?
K

|t⟩K|1⟩P |v⟩L, (5.7)

and on Step 2(b) the following transformation of the part of the state is performed:

1
?
K

|t⟩K|1⟩P |v⟩L ÞÝÑ
1

?
K

|t` 1⟩K|1⟩P |v⟩L.

Therefore, after the execution of the loop in Step 2, we get the state

1
?
K

K´1
ÿ

i“0
|i⟩K|0⟩P |τ⟩H `

1
?
K

|0⟩K|1⟩P |v⟩L. (5.8)

We perturb the state to
1

?
K

K´1
ÿ

i“0
|i⟩K|0⟩P |τ⟩H. (5.9)

42

After Step 3, we get the state τ “ |0⟩K|0⟩P |τ⟩H.
Note that the difference between the states in (5.5) and (5.6) has norm }v}{

?
K. The same

is true for the difference between the states in (5.8) and (5.9). Therefore, by Lemma 4.5, the
actual final state τ 1 of the algorithm satisfies

}τ 1 ´ τ} ď 2 }v}
?
K

as required.

6 Example I: Quantum Walks
In this section, we implement the electric quantum walk from [12] using the construction outlined
in Section 3.2. See also a subsequent paper [15], where similar ideas are applied to search and
to the Welded Tree problem [21].

Figure 6.1

A

u2

u1

B

we

u1
2

u1
1

σ1

σ2

An example of the extension of a graph for a quantum walk. The original graph contains
two parts A and B of 4 and 3 vertices, respectively. The initial probability distribution is
supported on two vertices tu1, u2u Ď A. The original edges E of the graph are black, the
new ones E1 are red. One marked vertex in B is coloured blue.

A quantum walk is described by a bipartite graph G, whose parts we denote by A and B.
Let E be the set of edges of G. Each edge e of the graph is given a non-negative real weight
we. We have some set M Ď A Y B of marked vertices. There is a subroutine Check that, for
every vertex u, says whether it is marked. The goal of the quantum walk is to detect whether
M is empty or not.

In the framework of electric quantum walks, the graph is extended as follows, see Figure 6.1.
The quantum walk is tailored towards a specific initial probability distribution σ on A. Let
Aσ Ď A be the support of σ. For each u P Aσ, we add a new vertex u1 and a new dangling edge
u1u to the graph. The newly added vertices are not contained in B. Let E1 be the set of newly
added edges. For edges if E1 we assume the weight wu1u “ σu.

We treat this construction as a transducer. The private space L of the quantum walk is CE .
The public space H is CE1

. The initial state ξ is given by

ξ “
ÿ

uPAσ

?
σu

ˇ

ˇu1u
〉

P H.

For a vertex u, let Lu denote the space spanned by all the edges incident to u (including the
ones in E1). Define

ψu “
ÿ

e:e„u

?
we|e⟩ P Lu (6.1)

43

where the sum is over all the edges incident to u.
For U Ď A or U Ď B, let RU denote the reflection of all ψu for u P U , i.e., RU acts as

negation on the span of all these ψu and as identity on its orthogonal complement. We define
the transducer, which depends on the set of marked vertices M , as

SM “ RBzMRAzM .

Each of RAzM and RBzM is decomposable into products of local reflections in Lu as u ranges
over A and B, respectively. The corresponding local reflections are either identities for u P M ,
or reflections of ψu for u R M . The implementation of SM can be done using local reflections
controlled by the Check subroutine.

Let
W “

ÿ

ePE

we

be the total weight of the graph. For M ‰ H, let Rσ,M be the minimum of

ÿ

ePE

p2
e

we
, (6.2)

over all flows p “ ppeq on the graph where σu units of flow are injected in u P Aσ, and the flow
is collected at the vertices in M . The minimum is attained by the electrical flow, and Rσ,M is
the corresponding effective resistance.

Theorem 6.1. The transducer SM defined above transduces ξ ù ´ξ if M “ H, and ξ ù ξ
otherwise. Its transduction complexity is

W
`

SH, ξ
˘

“ W and W
`

SM , ξ
˘

“ Rσ,M (6.3)

respectively.

Thus, the transduction action of the quantum walk encodes the answer to the detection
problem in the phase, and this is done exactly. Let R denote the maximal effective resistance
over all possible choices ofM ‰ H. We can rescale all wi by the same factor so that the maximal
transduction complexity in (6.3) becomes equal to

?
RW . By Theorem 3.2, the presence of

marked elements can be detected, with bounded error, in Op
?
RW q executions of SM . This

coincides with the complexity estimate established in [12].

Proof of Theorem 6.1. Let us start with the case M “ H. The initial coupling is

ξ ‘ vH “
ÿ

ePEYE1

?
we|e⟩.

We have ξ ‘ vH “
ř

uPA ψu and vH “
ř

uPB ψu. Hence, RA reflects all ξ ‘ vH, and RB only
reflects vH. This gives us the following chain of transformations

ξ ‘ vH
RA
ÞÝÑ ´ξ ‘ ´vH

RB
ÞÝÑ ´ξ ‘ vH,

giving ξ SH
ù ´ξ. Note that this chain of transformation adheres to (3.5).

Now assume M ‰ H. Let pe be a flow on the graph where σu units of flow are injected in
u1, and the flow is collected at M . To solve the sign ambiguity, we assume that all the edges
are oriented towards A. This time, we define the catalyst vM so that

ξ ‘ vM “
ÿ

ePEYE1

pe
?
we

|e⟩. (6.4)

44

Recall that pu1u “ wu1u “ σu, hence the above equation is satisfied in H.
The projection of (6.4) onto Lu is given by

ÿ

e:e„u

pe
?
we

|e⟩. (6.5)

This state is not changed by the corresponding local reflection in Lu. Indeed if u P M , the
corresponding local reflection is the identity. If u R M , then, by the flow condition, the state
in (6.5) is orthogonal to ψu in (6.1). Thus, neither RAzM nor RBzM change ξ ‘ vM , hence,
ξ
SM
ù ξ. Note that in this case we adhere to (3.4).

The corresponding transduction complexities are as given in (6.3). The catalyst in the
second case uses the flow pe through the graph, which is not unique. We choose the minimal
one as per Claim 5.2.

7 Canonical Transducers
In this section, we define a specific form of transducers we will be using in this paper. The main
point is in the application of the input oracle. Inspired by the construction in [17], we assume
that the transducer first executes the input oracle, and then performs some input-independent
unitary. Moreover, the input oracle is always applied to the private space of the transducer.
These assumptions simplify many constructions, and any transducer can be transformed into
the canonical form with a small overhead as shown later in Proposition 10.4.

7.1 Definition
Concerning the input oracle, the assumptions are similar to those in Section 4.1. The input
oracle is a unitary O in some space M, and we have unidirectional access to O. The oracle only
acts on the local space L of the transducer. Let us decompose the latter in two parts L “ L˝‘L‚,
which stand for the work (non-query) and query parts. We also have L‚ “ LÒ b M for some
space LÒ. We denote the identity on LÒ simply by I.

A canonical transducer S “ SpOq performs the following transformations, see also Figure 3.4:

• It executes the input oracle I bO on L‚. Similarly to (4.1), we call it a query and denote
it by

rO “ IH ‘ I˝ ‘ I bO, (7.1)

where IH and I˝ are identities on H and L˝, respectively.

• It performs an input-independent work unitary S˝ on H ‘ L.

The decomposition L “ L˝ ‘ L‚ yields the decomposition v “ v˝ ‘ v‚ of the catalyst. Thus,
the action SpOq of the transducer S on the input oracle O is given by the following chain of
transformations:

SpOq : ξ ‘ v˝ ‘ v‚ rO
ÞÝÑ ξ ‘ v˝ ‘ pI bOqv‚ S˝

ÞÝÑ τ ‘ v˝ ‘ v‚. (7.2)

Now we can make the following complexity-related definitions. The catalyst is v “ vpS,O, ξq.11

The transduction complexity is

W pS,O, ξq “
∥∥vpS,O, ξq

∥∥2
. (7.3)

11It is the same as vpSpOq, ξq in the previous notation, however, we opted to vpS, O, ξq to reduce the number
of brackets and to keep notation synchronised with [17].

45

The query state is qpS,O, ξq “ v‚ “ Π‚vpS,O, ξq, where Π‚ denotes the orthogonal projector
onto L‚. The (Las Vegas) query complexity of the transducer is

LpS,O, ξq “
∥∥qpS,O, ξq

∥∥2
. (7.4)

Note that formally the definitions qpS,O, ξq and LpS,O, ξq are in conflict with the same defi-
nitions (4.4) and (4.5) if S is considered as a program and not as a transducer. However, this
should not cause a confusion. If the space H is not clear from the context, we will add it as a
subscript as in Section 5.1.

Time complexity T pSq of the transducer is the number of elementary operations required
to implement the unitary S˝. Note that we do not count the query towards time complexity of
the transducer.

Finally, the definitions (7.3) and (7.4) can be extended to ξ1 P E b H using (3.6).

Note on Non-Uniqueness of Catalyst It is important to note that in this setting the non-
uniqueness of the catalyst v discussed in Section 5.1 becomes very important. To understand
why, consider again Example 5.3 from that section. This time, assume that L˝ is spanned by
|1⟩ and L‚ by |2⟩, the input oracle is O “ I, and S˝ “ S as defined previously.

The “right” catalyst v “ p|1⟩`|2⟩q{2 for the initial state ξ “ |0⟩ suggests thatW pS,O, |0⟩q “

1{2 and LpS,O, |0⟩q “ 1{4. However, if we take v “ |1⟩, we get that W pS,O, |0⟩q “ 1 and
LpS,O, |0⟩q “ 0. Therefore, there is no longer a single catalyst that minimises both the trans-
duction and the query complexity. This is similar to usual algorithms, where time and query
complexity can be minimised by different algorithms.

We solve this complication by implicitly assigning a specific catalyst vpS,O, ξq for every O
and ξ of interest, that gives both W pS,O, ξq and LpS,O, ξq simultaneously. Of course, neither
of the two are guaranteed to be minimal. It is possible to study the trade-off between the
transduction and the query complexity for a fixed O and ξ, but we will not explicitly pursue
that in this paper.

Implementation Details In terms of registers, as in Section 4.1, the separation L “ L˝ ‘L‚

is indicated by the qubit R. Now it makes sense to assume that the registers H, L˝ and L‚ are
the same, the distinction being given by the values of the registers P and R. We will usually
place this common register as the unnamed last register in our expressions. In particular,

ξ ‘ v “ |0⟩P |0⟩R|ξ⟩ ` |1⟩P |0⟩R|v˝⟩ ` |1⟩P |1⟩R|v‚⟩. (7.5)

Note that the space H is indicated by |0⟩P |0⟩R meaning that it is not acted on by the oracle.
This allows us to implement the query as an application of O controlled by |1⟩R, which is in
accord with the convention established in Section 4.1.

We will also use registers H and L in the sense of Section 5.2, that is, containing R. In
particular, we can write the action of a canonical transducer (7.2) in registers like

SpOq : |0⟩P |ξ⟩H ` |1⟩P |v⟩L
rO

ÞÝÑ |0⟩P |ξ⟩H ` |1⟩P
ˇ

ˇ rOv
〉

L
S˝

ÞÝÑ |0⟩P |τ⟩H ` |1⟩P |v⟩L, (7.6)

where we used shorthand
rOv “ |0⟩R|v˝⟩ ` |1⟩R

ˇ

ˇpI bOqv‚
〉
. (7.7)

46

7.2 Multiple Input Oracles
Following [17], we can also allow multiple input oracles joined by direct sum:

O “ Op1q ‘Op2q ‘ ¨ ¨ ¨ ‘Oprq, (7.8)

where the i-th input oracle Opiq acts in space Mpiq and M “ Mp1q ‘ ¨ ¨ ¨ ‘ Mprq. We get the
corresponding decomposition of the query state:

qpS,O, ξq “ qp1qpS,O, ξq ‘ ¨ ¨ ¨ ‘ qprqpS,O, ξq, (7.9)

where qpiqpS,O, ξq is the partial query state of the i-th input oracle. This also gives query
complexities of the individual oracles:

LpiqpS,O, ξq “
∥∥qpiqpS,O, ξq

∥∥2
.

It makes sense to tweak the notation assumed earlier in Section 7.1 to make it in line with
Section 4.2. We assume the register R can hold an integer from 0 to r, where |i⟩R with i ą 0
indicates the space of the i-th input oracle. Thus, in place of (7.5), we have

ξ ‘ v “ |0⟩P |0⟩R|ξ⟩ ` |1⟩P |0⟩R|v˝⟩ ` |1⟩P

r
ÿ

i“1
|i⟩R

ˇ

ˇvpiq〉 (7.10)

with vpiq “ qpiqpS,O, ξq. To apply the i-th input oracle Opiq, it suffices to condition it on |i⟩R.
The action of a canonical transducer stays given by (7.6), where, this time,

rOv “ |0⟩R|v˝⟩ `

r
ÿ

i“1
|i⟩R

ˇ

ˇ

ˇ

`

I bOpiq
˘

vpiq
〉
. (7.11)

For notational convenience, we will assume a single input oracle in most of the paper. The
case of multiple oracles can be obtained using the decomposition of the query state in (7.9),
which contains all the necessary information.

7.3 Reducing the Number of Oracle Calls
One problem with the algorithm in Theorem 5.5 is that, when applied to a canonical transducer,
the input oracle O is executed the same number of times as the work unitary S˝. This is
suboptimal as the transduction complexity can be much larger than the query complexity. In
this section, we describe a query-efficient implementation, which can also handle multiple input
oracles.

Let S be a canonical transducer with r input oracles joined into one oracle O via direct
sum as in (7.8). In the following theorem, we assume the spaces H, L˝, LÒ, Mp1q, . . . ,Mprq are
fixed, while the operators S˝ and Op1q, . . . , Oprq can vary.

Theorem 7.1 (Query-Optimal Implementation of Transducers). Let K ě Kp1q, . . . ,Kprq be
positive integers, which we assume to be powers of 2 for simplicity. There exists a quantum
algorithm that conditionally executes S˝ as a black box K times, makes Kpiq queries to the i-th
input oracle Opiq, and uses OpK`Kp1q `¨ ¨ ¨`Kprqq log r other elementary operations. For each
S˝, Opiq, and initial state ξ, the algorithm transforms ξ into τ 1 such that

∥∥τ 1 ´ τpS,O, ξq
∥∥ ď

2
?
K

d

W pS,O, ξq `

r
ÿ

i“1

ˆ

K

Kpiq
´ 1

˙

LpiqpS,O, ξq. (7.12)

47

Theorem 5.5 is a special case of this theorem with all Kpiq equal to K. Observe that the
number of elementary operations is equal to the total number of invocations of S˝ and Opiq times
log r. It is highly unlikely that this part of the algorithm would dominate its time complexity.

Proof of Theorem 7.1. The proof is an extension of that of Theorem 5.5. Its outline was already
given in Section 3.3; see in particular Figure 3.5.

Let us define Dpiq “ K{Kpiq, which is a power of 2. The space of the algorithm is KbpH‘Lq,
where K is a K-qudit. The register H ‘ L contains the registers P and R as described above.
The algorithm starts its work in the state ξ “ |0⟩K|0⟩P |0⟩R|ξ⟩. Its steps are as follows.

1. Map |0⟩K into the uniform superposition 1?
K

řK´1
t“0 |t⟩K.

2. For t “ 0, 1, . . . ,K ´ 1:

(a) For each i “ 1, . . . , r:
• if t is divisible by Dpiq, execute the input oracle Opiq conditioned on |i⟩R.

(b) Execute the work unitary S˝ on H ‘ L conditioned on |t⟩K.
(c) Conditioned on |1⟩P |0⟩R, replace |t⟩K by |t` 1⟩K.
(d) For each i “ 1, . . . , r:

• if t` 1 is divisible by Dpiq, add Dpiq to K conditioned on |i⟩R. The operation is
performed modulo K.

3. Run Step 1 in reverse.

The analysis is similar to that in the proof of Theorem 5.5. Now we assume that after
Step 1, instead of the state 1?

K

řK´1
t“0 |t⟩K|0⟩P |0⟩R|ξ⟩, we are in the state

1
?
K

K´1
ÿ

t“0
|t⟩K|0⟩P |0⟩R|ξ⟩ `

1
?
K

|1⟩P

”

|0⟩K|0⟩R|v˝⟩ `

r
ÿ

i“1

Dpiq´1
ÿ

t“0
|t⟩K|i⟩R

ˇ

ˇvpiq〉ı. (7.13)

Since t “ 0 is divisible by all Dpiq, after Step 2(a) of the first iteration of the loop, we have the
state

1
?
K

K´1
ÿ

t“0
|t⟩K|0⟩P |0⟩R|ξ⟩ `

1
?
K

|1⟩P

”

|0⟩K|0⟩R|v˝⟩ `

r
ÿ

i“1

Dpiq´1
ÿ

t“0
|t⟩K|i⟩R

ˇ

ˇpI bOpiqqvpiq〉ı.
The crucial observation is that on each iteration of the loop on step 2(b), the following trans-
formation is performed. The part of the state

1
?
K

|t⟩K

”

|0⟩P |0⟩R|ξ⟩ ` |1⟩P |0⟩R|v˝⟩ ` |1⟩P

r
ÿ

i“1
|i⟩R

ˇ

ˇpI bOpiqqvpiq〉ı (7.14)

gets mapped by S˝ into

1
?
K

|t⟩K

”

|0⟩P |0⟩R|τ⟩ ` |1⟩P |0⟩R|v˝⟩ ` |1⟩P

r
ÿ

i“1
|i⟩R

ˇ

ˇvpiq〉ı, (7.15)

where we used (7.6) with (7.11).

48

If t “ cDpiq ´ 1 for some integer c, then on Step 2(d), we perform the transformation of the
part of the state

1
?
K

|1⟩P |i⟩R

Dpiq´1
ÿ

t“0

ˇ

ˇ

ˇ
pc´ 1qDpiq ` t

〉
K

ˇ

ˇvpiq〉 ÞÝÑ
1

?
K

|1⟩P |i⟩R

Dpiq´1
ÿ

t“0

ˇ

ˇ

ˇ
cDpiq ` t

〉
K

ˇ

ˇvpiq〉, (7.16)

which is then mapped on Step 2(a) of the next iteration into

1
?
K

|1⟩P |i⟩R

Dpiq´1
ÿ

t“0

ˇ

ˇ

ˇ
cDpiq ` t

〉
K

ˇ

ˇ

ˇ
pI bOpiqqvpiq

〉
.

Therefore, after all the K iterations of the loop in Step 2, we result in the state

1
?
K

K´1
ÿ

t“0
|t⟩K|0⟩P |0⟩R|τ⟩ `

1
?
K

|1⟩P

”

|0⟩K|0⟩R|v˝⟩ `

r
ÿ

i“1

Dpiq´1
ÿ

t“0
|t⟩K|i⟩R

ˇ

ˇvpiq〉ı.
After that, we finish as in Theorem 5.5, by assuming we are in the state 1?

K

řK´1
t“0 |t⟩K|0⟩P |0⟩R|τ⟩

instead, and applying Step 3.
The total perturbation of the algorithm is

2
?
K

∥∥∥|0⟩K|0⟩R|v˝⟩ `

r
ÿ

i“1

Dpiq´1
ÿ

t“0
|t⟩K|i⟩R

ˇ

ˇvpiq〉∥∥∥, (7.17)

which is equal to the right-hand side of (7.12).
The claim on the number of executions of S˝ and Opiq in the algorithm is obvious. Besides

that, it is trivial to implement the algorithm in OpK `Kp1q ` ¨ ¨ ¨ `Kprqq logK log r elementary
operations, where the log r factors comes from the necessity to index one of the r input oracles.
Using a slight modification of Lemma 4.6, the algorithm can be implemented in OpK `Kp1q `

¨ ¨ ¨ ` Kprqq log r elementary operations. One crucial point here is that when t “ cDpiq ´ 1,
addition of Dpiq on Step 2(d) is equivalent to the replacement of c´ 1 by c in the highest qubits
of the register K as indicated by (7.16). We omit the details.

The following corollary, which is equivalent to Theorem 3.3, is easier to apply.

Corollary 7.2. Assume r “ Op1q, and let ε,W,Lp1q, . . . , Lprq ą 0 be parameters. There exists a
quantum algorithm that conditionally executes S˝ as a black box K “ Op1`W {ε2q times, makes
OpLpiq{ε2q queries to the i-th input oracle Opiq, and uses OpKq other elementary operations.
The algorithm ε-approximately transforms ξ into τpS,O, ξq for all S, Opiq, and ξ such that
W pS,O, ξq ď W and LpiqpS,O, ξq ď Lpiq for all i.

Proof of Corollary 7.2. We first prove a relaxed version of the corollary, where we allow each
input oracle to be called O

`

1 ` Lpiq{ε2˘ times. Afterwards, we show how to remove this as-
sumption. We allow error ε{2 in this relaxed version.

If W ă ε2{16, the (relaxed) corollary follows from Theorem 5.5, as the algorithm then
executes S˝ and each input oracle K “ 1 times. Therefore, we will assume W ě ε2{16. Also, by
definition we have that W pS,O, ξq ě LpiqpS,O, ξq. Therefore, we may assume that W ě Lpiq,
reducing Lpiq otherwise.

We intend to use Theorem 7.1. We take K as the smallest power of 2 exceeding 32pr `

1qW {ε2. In particular, K “ ΘpW {ε2q by our assumption on W and r “ Op1q. We take Kpiq

as the largest power of 2 that does not exceed max
␣

1, KLpiq{W
(

. It satisfies Kpiq ď K as

49

required. On the other hand, Kpiq ě KLpiq{p2W q implying K{Kpiq ď 2W {Lpiq, which gives the
error estimate (7.12) at most

2
?
K

a

2pr ` 1qW ď
2
a

2pr ` 1qW
a

32pr ` 1qW {ε2
ď ε{2.

If Kpiq ą 1, we get Kpiq ď KLpiq{W “ OpLpiq{ε2q, which finishes the proof of the relaxed
statement of the corollary.

In the following, we assume we used Theorem 7.1 in the proof, the case of Theorem 5.5
being similar. Consider all the values of i such that Kpiq “ 1. By the proof of Theorem 7.1, the
input oracles are applied to the perturbation added in (7.13), also the norm of the perturbation
is at most ε{4 (cf. (7.17)).

To get the original statement of the corollary, we do not apply all the input oracles Opiq

with Kpiq “ 1. As they are applied once in the algorithm, this gives additional perturbation of
size at most ε{2. Combining with the perturbation ε{2 of the relaxed algorithm itself, we get
an estimate of the total error of at most ε.

8 Example II: Adversary Bound
As mentioned in the introduction, the construction of transducers is based on the implemen-
tation of the adversary bound in [17]. The quantum adversary bound was first developed as
a powerful tool for proving quantum query lower bounds. However, it was later extended to
include upper bounds as well, and we consider the latter in this paper. For more detail on the
adversary bound, refer to the introduction of [17] and the references therein. We first consider
the general case of state conversion with unidirectional unitary input oracles, and then move
on to more usual function evaluation problems.

8.1 State Conversion
We consider the adversary bound for state conversion from [17]. In the state conversion problem,
we have a collection of pairs ξx ÞÑ τx of states in H and input oracles Ox : M Ñ M, where x
ranges over some finite set D. The task is to develop an algorithm A such that ApOxqξx “ τx for
all x. The goal is to minimise LpA,Ox, ξxq. The corresponding adversary bound is the following
multi-objective optimisation problem:

minimise
`

∥vx∥2˘
xPD

(8.1a)
subject to xξx, ξyy ´ xτx, τyy “

@

vx, pIW b pIM ´O˚
xOyqqvy

D

for all x, y P D; (8.1b)
W is a vector space, vx P W b M. (8.1c)

A canonical transducer Sv can be obtained from any feasible solution v “ pvxq to this
problem. It works as follows (with I “ IW):

ξx ‘ vx
IbOx
ÞÝÑ ξx ‘ pI bOxqvx

S˝
v

ÞÝÑ τx ‘ vx,

where S˝
v is an input-independent unitary whose existence is assured by (8.1b), as the latter

can be rewritten as

xξx, ξyy `
@

pI bOxqvx, pI bOyqvy
D

“ xτx, τyy ` xvx, vyy,

50

and two state collections with the same combination of inner products always admit such a

state-independent transforming unitary. Thus we have a transduction ξx
SvpOxq
ù τx with the

transduction and the query complexities satisfying

W pSv, Ox, ξxq “ LpSv, Ox, ξxq “ }vx}2, qpSv, Ox, ξxq “ vx.

As shown in [17], this perfectly captures Las Vegas query complexity of state conversion.
Note that canonical transducers with empty non-query space L˝ are essentially equivalent to
this construction.

8.2 Function Evaluation
Now we describe the usual case of function evaluation. These results can be derived from [17]
and [14]. First, we define the formalism behind function-evaluating transducers, and then move
on to the adversary bound.

Let f : D Ñ rps be a function with domain D Ď rqsn. We want to construct a transducer Sf
that evaluates f . We assume the state-generating settings from Section 4.3, which means that,
for every x P D, with bidirectional access to the input oracle Ox : |i⟩|0⟩ ÞÑ |i⟩|xi⟩, the transducer
Sf has to perform the transduction |0⟩ ù |fpxq⟩. Again, we cast this as unidirectional access

to
ÐÑ
Ox from (4.3).
Similarly to (4.10), we write

WxpSq “ W
`

S,
ÐÑ
Ox, |0⟩

˘

and W pSq “ max
xPD

WxpSq. (8.2)

We use similar notation for L and Lpiq.
There is a slight discrepancy between various existing definitions of the adversary bound

Adv˘pfq for non-Boolean functions, in the sense that they differ by a factor of at most 2 (see,
e.g., Section 3 of [30].) We adopt the formulation from [14], which reads in notation of that
paper as

Adv˘pfq “ γ2

´

1fpxq‰fpyq

ˇ

ˇ

à

iPrns
1xi‰yi

¯

x,yPD
,

and which is equivalent to γ2pJ ´ F |∆q in notations of [30]. An explicit definition of Adv˘pfq

is:12

minimise max
xPD

1
2

n
ÿ

i“1

ˆ

}ux,i}
2 ` }vx,i}

2
˙

(8.3a)

subject to 1fpxq‰fpyq “
ÿ

i:xi‰yi
xux,i, vy,iy for all x, y P D; (8.3b)

W is a vector space, ux,i, vx,i P W. (8.3c)

Let us now describe the canonical transducer Su,v corresponding to a feasible solution
ux,i, vx,i of (8.3). Its local space L “ L‚ is of the form W b R b B b Q. Here W acts as
LÒ in notation of Section 7.1, R is an n-qudit indicating the index of the input variable, B is a
qubit indicating direction of the query, and Q is a q-qudit storing the output of the query. We

12The usual definition has max
␣
řn
i“1 }ux,i}

2,
řn
i“1 }vx,i}

2(in the objective instead of 1
2

´

řn
i“1 }ux,i}

2
`}vx,i}

2
¯

.
The two formulations are equivalent [17]. But even a priori, our formulation does not exceed the usual formulation,
and, since we are interested in upper bounds, supersedes the latter.

51

use Ò and Ó to denote the basis states of B. The first one stands for the direct, and the second
one for the inverse query. The input oracle acts on R b B b Q as

ÐÑ
Ox “

à

iPrns

ÐÑ
Ox,i, (8.4)

where
Ox,i : Q Ñ Q, |0⟩ ÞÑ |xi⟩ (8.5)

is the ith constituent of the input oracle.
Define the following vectors in W:

vÒ
x,i “

ux,i ` vx,i
2 and vÓ

x,i “
ux,i ´ vx,i

2 .

They possess the following important property:

@

vÒ
x,i, v

Ò
y,i

D

´
@

vÓ
x,i, v

Ó
y,i

D

“
xux,i, vy,iy ` xvx,i, uy,iy

2 . (8.6)

The catalyst for the input x is

vx “
ÿ

iPrns

|i⟩R

”

|Ò⟩B|0⟩Q
ˇ

ˇvÒ
x,i

〉
W ` |Ó⟩B|xi⟩Q

ˇ

ˇvÓ
x,i

〉
W

ı

. (8.7)

The transducer starts in ξx ‘ vx “ |0⟩ ‘ |vx⟩. It applies the input oracle (8.4), which gives the
state

ψx “ |0⟩ ‘
ÿ

iPrns

|i⟩R

”

|Ò⟩B|xi⟩Q
ˇ

ˇvÒ
x,i

〉
W ` |Ó⟩B|0⟩Q

ˇ

ˇvÓ
x,i

〉
W

ı

. (8.8)

The construction then follows from the following claim.

Claim 8.1. There exists an input-independent unitary S˝
u,v that maps the state ψx from (8.8)

into |fpxq⟩ ‘ |vx⟩ for all x.

Proof. Indeed, for a pair of x, y P D, we have

xψx, ψyy “ 1 `
ÿ

iPrns

“

1xi“yi
@

vÒ
x,i, v

Ò
y,i

D

`
@

vÓ
x,i, v

Ó
y,i

D‰

. (8.9)

On the other hand, the inner product between |fpxq⟩ ‘ |vx⟩ and |fpyq⟩ ‘ |vy⟩ is

1fpxq“fpyq `
ÿ

iPrns

“@

vÒ
x,i, v

Ò
y,i

D

` 1xi“yi
@

vÓ
x,i, v

Ó
y,i

D‰

. (8.10)

To establish the existence of the unitary S˝
u,v it suffices to show that (8.9) and (8.10) are equal

for all x, y P D. Subtracting the latter from the former gives us

1fpxq‰fpyq ´
ÿ

i:xi‰yi

“@

vÒ
x,i, v

Ò
y,i

D

´
@

vÓ
x,i, v

Ó
y,i

D‰

“ 1fpxq‰fpyq ´
1
2

ÿ

i:xi‰yi

“

xux,i, vy,iy ` xvx,i, uy,iy
‰

“ 0

using (8.6) and (8.3b).

52

Thus, we have that Su,v on the input oracle
ÐÑ
Ox transduces |0⟩ into |fpxq⟩. If we consider

ÐÑ
Ox as a direct sum of n input oracles as in (8.4), we get the partial query states

qpiq
x pSu,vq “ vÒ

x,i ‘ vÓ
x,i,

with

Lpiq
x pSu,vq “ }vÒ

x,i}
2 ` }vÓ

x,i}
2 “

}ux,i}
2 ` }vx,i}

2

2
by the parallelogram identity. Finally, the transduction complexity and the total query com-
plexity is

WxpSu,vq “ LxpSu,vq “
1
2

ˆ n
ÿ

i“1
}ux,i}

2 ` }vx,i}
2
˙

which is in the objective of (8.3a). This can be summarised as

Theorem 8.2. For every function f : D Ñ rps with D Ď rqsn, there exists a canonical trans-
ducer Sf evaluating the function f and whose transduction complexity is bounded by Adv˘pfq.
In more detail, the admissible subspace of Sf is |0⟩; for every x P D, Sf transduces |0⟩ ù |fpxq⟩
with bidirectional access to the input oracle Ox encoding the input string x; and WxpSf q “

LxpSf q ď Adv˘pfq. Moreover, the catalyst of the transducer Sf is as in (8.7). In particular, it
executes the input oracle only on its admissible subspace.

9 Composition of Transducers
In this section, we describe basic properties of transducers. In particular, we show how to
combine simple transducers in order to obtain more complex ones. This is akin to quantum
algorithms being build out of elementary operations and subroutines. In this section, we mostly
focus on the circuit model of computation.

9.1 Basic Properties
From Theorem 5.1, it follows that, for a fixed S and O, the mappings ξ ÞÑ vpS,O, ξq and
ξ ÞÑ qpS,O, ξq are linear. In particular, for c P C, we have

W pS,O, cξq “ |c|2W pS,O, ξq and LpiqpS,O, cξq “ |c|2LpiqpS,O, ξq. (9.1)

Notice, however, that it is not necessarily true thatW pS,O, ξ1 `ξ2q “ W pS,O, ξ1q`W pS,O, ξ2q

even for orthogonal ξ1 and ξ2. On the other hand, it is the case that for ξ1 P E1 b H and
ξ2 P E2 b H, we have

W pS,O, ξ1 ‘ ξ2q “ W pS,O, ξ1q `W pS,O, ξ2q,

using the extended definition of (3.6).

Proposition 9.1 (Inverse). For a canonical transducer S, the inverse transducer S´1 satisfies
τ
S´1pO˚q

ù ξ whenever ξ SpOq
ù τ . Moreover, S´1 can be implemented in the canonical form, it has

the same time complexity as S,

W pS´1, O˚, τq “ W pS,O, ξq, and qpS´1, O˚, τq “ pI bOqqpS,O, ξq.

53

Proof. Let v “ v˝ ‘ v‚ be the catalyst of the transduction ξ
S

ù τ . From (5.1), it is clear that
if SpOq maps ξ ‘ v ÞÑ τ ‘ v, then SpOq˚ maps τ ‘ v ÞÑ ξ ‘ v, hence, transduces τ into ξ with
the same catalyst. One problem is that its action, as the inverse of (7.2),

τ ‘ v˝ ‘ v‚ pS˝q˚

ÞÝÑ ξ ‘ v˝ ‘ pI bOqv‚ rO˚

ÞÝÑ ξ ‘ v˝ ‘ v‚.

is not in the canonical form. But we can take the following transducer S´1 in its stead:

τ ‘ v˝ ‘ pI bOqv‚ rO˚

ÞÝÑ τ ‘ v˝ ‘ v‚ pS˝q˚

ÞÝÑ ξ ‘ v˝ ‘ pI bOqv‚.

It is in the canonical form, and satisfies all the conditions.

9.2 Alignment
In the remaining part of this section, we will study different ways of combining transducers
S1, . . . , Sm. First, we consider parallel composition of transducers

À

i Si, where individual Si
act on orthogonal parts of the workspace. Then we move onto sequential composition Sm ˚

Sm´1 ˚ ¨ ¨ ¨ ˚ S1, where they act on the same space one after another. Finally, we consider
functional composition of two transducers, where the second transducer acts as an oracle for
the first one.

We generally assume that all Si use the same oracle O. This is without loss of generality
since if they use different sets of input oracles, we can assume they all use the oracle O which
is the direct sum of the union of these sets of oracles. Individual Si will then just ignore the
input oracles they are not using.

In principle, the spaces Hi and Li can differ between different Si, but we assume they are all
embedded into some larger register H, which also serves as L per our convention of Section 5.2.
What is crucial, though, is that all Si use the same privacy qubit P, the same query register R,
and, most importantly, the oracle O is applied to the same subset of registers in all Si. This is
summarised by the following definition, cf. Remark 4.1:

Definition 9.2 (Alignment). We say that canonical transducers S1, . . . , Sm are aligned in the
oracle Opiq if the query of Opiq is conditioned on the same value |i⟩R of the same register and
acts on the same subset of registers in all of them. We say that S1, . . . , Sm are aligned if they
are aligned in all their oracles, and, additionally, use the same privacy qubit P.

If the alignment condition is not satisfied, the transducers have to explicitly move their
registers around to meet it. This might take time if the registers are lengthy.

9.3 Parallel Composition
Parallel composition of two or several quantum programs is their execution as a direct sum on
orthogonal parts of the space of the algorithm. For transducers, parallel composition can be
implemented in a straightforward way.

Definition 9.3 (Direct Sum of Transducers). Let S1, . . . , Sm be canonical transducers. We
assume they all use the same space H ‘ L, the same input oracle O : M Ñ M, and are aligned.
In particular, the query rO “ IH ‘ I˝ ‘ I b O is given by (7.1) and is controlled by |1⟩R in all
of them.

Let the register J “ Cm. The direct sum
À

i Si is a canonical transducer in the space
J b pH ‘ Lq “ pJ b Hq ‘ pJ b Lq. It has the same input oracle O as all Si. The query is again
controlled by |1⟩R. The work unitary of

À

i Si is
À

i S
˝
i , where S˝

i is the work unitary of Si.

54

Proposition 9.4 (Parallel Composition). The canonical transducer S “
À

i Si from Defini-
tion 9.3 satisfies the following conditions. Assume ξi

SipOq
ù τi for all i. Then, SpOq transduces

ξ “
À

i ξi into τ “
À

i τi. Moreover,

W pS,O, ξq “
ÿ

i

W pSi, O, ξiq and qpS,O, ξq “
à

i

qpSi, O, ξiq. (9.2)

The time complexity of S is equal to the time complexity of implementing
À

i S
˝
i .

Proof. Recall that all Si are aligned, and, hence, use the same space, P is their common privacy
qubit, and R their common query register. The privacy and the query registers of S will still
be P and R.

Let vi be the catalyst of transduction ξi
SipOq
ù τi. The initial coupling of S is

ξ ‘ v “

m
ÿ

i“1
|i⟩J

“

|0⟩P |ξi⟩H ` |1⟩P |vi⟩L
‰

. (9.3)

As required by canonicity, we first apply the input oracle O controlled by |1⟩R. This has the
effect that O is applied to all Si in parallel. Then, conditioned on the value i in J , we apply
the work unitary S˝

i to the last two registers. By the assumption ξi
SipOq
ù τi , this gives

m
ÿ

i“1
|i⟩J

“

|0⟩P |τi⟩H ` |1⟩P |vi⟩L
‰

“ τ ‘ v.

Eq. (9.2) follows from (9.3).

Remark 9.5 (Different input oracles in Si). In Definition 9.3, we assume all Si use the same
input oracle O. It is, however, possible to allow each Si to use its own input oracle Oi so that
the total input oracle of

À

i Si is
À

iOi, and ξi
SipOiq
ù τi. This is used, for instance, in iterated

and composed functions. We account for this possibility by allowing M to contain J , so that
the input oracle of Si has read-only access to the value of |i⟩E . This does not interfere with the
proof of Proposition 9.4, and we get the following identities instead of (9.2):

W pS,O, ξq “
ÿ

i

W pSi, Oi, ξiq and qpS,O, ξq “
à

i

qpSi, Oi, ξiq. (9.4)

The time complexity of implementing
À

i Si greatly depends on the structure of Si and the
computational model. For instance, if we assume the QRAG model, implementation of

À

Si
can be done in time essentially maxi T pSiq as per Corollary 4.4. The important special case
when all Si are the same can be efficiently handled in the circuit model as well. We write it out
explicitly for ease of referencing.

Definition 9.6 (Multiplication by Identity). Let S be a canonical transducer with space H‘L,
input oracle O : M Ñ M, and query given by (7.1). Let also E be a space, and IE be the identity
on E . We define IE bS as a canonical transducer in the space pE b Hq ‘ pE b Lq, with the work
unitary IE b S˝. In other words, IE b S “

À

i S where the summation is over the basis of E .

Corollary 9.7. In the settings of Definition 9.6, assume ξi
SpOq
ù τi as i ranges over the basis of

E. Then, IE b SpOq transduces ξ “
À

i ξi into τ “
À

i τi. The complexities are given by (9.2)
or (9.4) with all Si “ S. The time complexity is T pIE b Sq “ T pSq.

Note that complexities in (3.6) are the same as in this corollary with Eq. (9.2) used.

55

9.4 Sequential Composition
A quantum program (4.11) is a sequence of gates applied one after the other. Therefore,
sequential composition is of prime importance in quantum algorithms. Let us formally define
it for transducers.

Definition 9.8 (Sequential Composition). Let S1, . . . , Sm be an aligned family of canonical
transducers, all on the same public space H and the same input oracle O. Its sequential
composition is a canonical transducer S “ Sm ˚ Sm´1 ˚ ¨ ¨ ¨ ˚ S1 on the same public space with
the following property. For every sequence of transductions

ξ “ ψ1
S1pOq
ù ψ2

S2pOq
ù ψ3

S3pOq
ù ¨ ¨ ¨

Sm´1pOq
ù ψm

SmpOq
ù ψm`1 “ τ, (9.5)

SpOq transduces the initial state ξ into the final state τ .

The above definition does not specify the implementation as we give two different imple-
mentations in this section. The first one is tailored towards the circuit model, and the second
one towards the QRAG model. This division is not strict though.

Proposition 9.9 (Sequential Composition, Sequential Implementation). A sequential composi-
tion S “ Sm ˚Sm´1 ˚ ¨ ¨ ¨ ˚S1 as in Definition 9.8 can be implemented by a canonical transducer
with the following parameters:

W pS,O, ξq “

m
ÿ

t“1
W pSt, O, ψtq, qpS,O, ξq “

m
à

t“1
qpSt, O, ψtq, (9.6)

and
T pSq “ Opmq `

m
ÿ

t“1
TCpStq, (9.7)

where TC is defined in Section 4.4.

Proof. The general idea is simple. We first apply the input oracle to make the queries in all St
in parallel. After the query, we execute all S˝

t one after the other, see Figure 9.1. Some care
must be taken, however, so that transducers act inside their respective private spaces and do
not interfere with private spaces of other transducers.

The transducer S uses the same privacy and query registers P and R as the family S1, . . . , Sm.
We additionally use an m-qudit K, so that the local space of the transducer St is marked by
the value |t⟩K. Therefore, the space of S is of the form K b pH ‘ Lq. Its public space is still H
embedded as |0⟩K b H.

Let ξ and ψt be as in (9.5). For each t, let vt be the catalyst of the transduction ψt
StpOq
ù ψt`1

from (9.5). For the transduction ξ
SpOq
ù τ , we have the following initial coupling:

ξ ‘ v “ |0⟩P |0⟩K|ξ⟩H ` |1⟩P

m
ÿ

t“1
|t⟩K|vt⟩L. (9.8)

This already implies (9.6).
As required by the definition, the first operation is the application of the input oracle

conditioned on |1⟩R. This gives the state

|0⟩P |0⟩K|ψ1⟩H ` |1⟩P

m
ÿ

t“1
|t⟩K

ˇ

ˇ rOvt
〉

L,

56

Figure 9.1

S˝
1

v˝
1

v˝
1

v‚
1

Ov‚
1

v‚
1

ψ2
S˝

2

v˝
2

v˝
2

v‚
2

Ov‚
2

v‚
2

ψ3
S˝

3

v˝
3

v˝
3

v‚
3

Ov‚
3

v‚
3

ψ4
S˝

4

v˝
4

v˝
4

v‚
4

Ov‚
4

v‚
4

Im b I b O

ξ
ψ1 ψ5

τ

A graphical illustration to the construction of Proposition 9.9 with m “ 4. For convenience
of representation, we draw the catalyst states by vertical lines, not horizontal ones like in
Figure 3.4. We also write Ov‚

t instead of pI bOqv‚
t to save space.

We first apply the query Im b I b O, which implements the queries in all S˝
t . After that,

we apply all of S˝
t one after the other.

where rOvt is defined as in (7.7), and we used that ξ “ ψ1.
The work part of the transducer S is as follows. We assume the indexing of K is done

modulo m.

• For t “ 1, . . . ,m:

1. Controlled by |0⟩P , replace the value |t´ 1⟩K by |t⟩K.
2. Apply the work unitary S˝

t controlled by |t⟩K.

By induction and using (7.6), after ℓ iterations of the loop, we have the state

|0⟩P |ℓ⟩K|ψℓ`1⟩H ` |1⟩P

ℓ
ÿ

t“1
|t⟩K|vt⟩L ` |1⟩P

m
ÿ

t“ℓ`1
|t⟩K

ˇ

ˇ rOvt
〉

L.

And after execution of the whole transducer S, we have the state

|0⟩P |0⟩K|τ⟩H ` |1⟩P

m
ÿ

t“1
|t⟩K|vt⟩L “ τ ‘ v,

where we used that ψm`1 “ τ . The time complexity in (9.7) can be achieved using the direct-
sum finite automaton of Lemma 4.6.

The second implementation of the sequential composition is slightly less intuitive. We move
all the intermediate states in (9.5) to the catalyst. This increases the catalyst size, but now all
the operations S˝

t can be implemented in parallel.

Proposition 9.10 (Sequential Composition, Parallel Implementation). A sequential composi-
tion S “ Sm ˚ Sm´1 ˚ ¨ ¨ ¨ ˚ S1 as in Definition 9.8 can be implemented by a transducer with the

57

following parameters:

W pS,O, ξq “

m
ÿ

t“2
}ψt}

2 `

m
ÿ

t“1
W pSt, O, ψtq, qpS,O, ξq “

m
à

t“1
qpSt, O, ψtq (9.9)

and
T pSq “ Oplogmq ` T

ˆ

à

t

S˝
t

˙

. (9.10)

In the QRAG model, we usually replace Oplogmq in (9.10) by OpTRq.

Proof. The main new idea compared to Proposition 9.9 is that we do not compute the inter-
mediate ψt from (9.5), but store the sequence ψ2, . . . , ψm in the catalyst. We apply all of S˝

t in
parallel, thus moving this sequence forward by one position, see Figure 9.2.

Figure 9.2

S˝
1

v˝
1

v˝
1

v‚
1

Ov‚
1

v‚
1

ψ2

ψ2

S˝
2

v˝
2

v˝
2

v‚
2

Ov‚
2

v‚
2

ψ3

ψ3

S˝
3

v˝
3

v˝
3

v‚
3

Ov‚
3

v‚
3

ψ4

ψ4

S˝
4

v˝
4

v˝
4

v‚
4

Ov‚
4

v‚
4

Im b I b O

ξ
ψ1 ψ5

τ

A graphical illustration to the construction of Proposition 9.10 with m “ 4. For conve-
nience of representation, we draw the catalyst states by vertical lines, not horizontal ones
like in Figure 3.4. We also write Ov‚

t instead of pI bOqv‚
t to save space.

We first apply the query Im b I b O, which implements the queries in all S˝
t . After that,

we apply all of S˝
t in parallel. The initial state ξ becomes the input for S˝

1 . The input
of S˝

t for t ą 1 is taken from the catalyst, and the output becomes the catalyst for t ` 1,
except for t “ m, which yields the terminal state τ .

Again, we assume all S have space H ‘ L, have privacy qubit P, and query register R. The
transducer S uses the same query register R, but we introduce a new privacy qubit P 1. We also
use an m-qudit K, so that the space of S is of the form K b P 1 b pH ‘ Lq.

Let ξ and ψt be as in (9.5). For each t, let vt be the catalyst of transduction ψt
StpOq
ù ψt`1.

We start with the following initial coupling

ξ ‘ v “ |0⟩P 1 |ξ⟩H ` |1⟩P 1

„ m
ÿ

t“2
|t⟩K|0⟩P |ψt⟩H `

m
ÿ

t“1
|t⟩K|1⟩P |vt⟩L

ȷ

.

This already gives (9.9). As required by the canonicity assumption, we first apply the input
oracle. This gives

|0⟩P 1 |ξ⟩H ` |1⟩P 1

„ m
ÿ

t“2
|t⟩K|0⟩P |ψt⟩H `

m
ÿ

t“1
|t⟩K|1⟩P

ˇ

ˇ

ˇ

rOvt
〉

L

ȷ

,

58

where rO is defined in (7.7). Here we use that H has value 0 in the register R and is not affected
by the input oracle. Next, we exchange |0⟩P 1 b H with |1⟩P 1 |1⟩K|0⟩P b H. Since ξ “ ψ1, this
gives

|1⟩P 1

„ m
ÿ

t“1
|t⟩K|0⟩P |ψt⟩H `

m
ÿ

t“1
|t⟩K|1⟩P

ˇ

ˇ

ˇ

rOvt
〉

L

ȷ

.

Now we apply S˝
t to the last two registers, controlled by the value in the register K. In other

words, we apply
À

t S
˝
t . By (7.6), this gives

|1⟩P 1

„ m
ÿ

t“1
|t⟩K|0⟩P |ψt`1⟩H `

m
ÿ

t“1
|t⟩K|1⟩P |vt⟩L

ȷ

. (9.11)

Now we increment the value in the register K conditioned on |0⟩P , and exchange |0⟩P 1 b H with
|1⟩P 1 |m` 1⟩K|0⟩P b H. Since τ “ ψm`1, we get

|0⟩P 1 |τ⟩H ` |1⟩P 1

„ m
ÿ

t“2
|t⟩K|0⟩P |ψt⟩H `

m
ÿ

t“1
|t⟩K|1⟩P |vt⟩L

ȷ

“ τ ‘ v. (9.12)

The time complexity estimate is obvious.

9.5 Functional Composition
We defined functional composition in Section 2.1 as an algorithm where a subroutine is used
to implement an oracle call. In the case of transducers, this falls under the transitivity of
transduction, Proposition 5.4, as part of the transducer (the oracle call) is implemented as a
transduction action of another transducer. In this section, we give an explicit construction for
canonical transducers.

We assume the settings similar to Figure 2.1, except we use transducers SA and SB instead
of programs A and B. The outer transducer SA has two input oracles O ‘ O1 joined as in
Section 7.2. The first one, O, is the global input oracle, and the second one, O1, is the oracle
realised as the transduction action of the inner transducer SB. We assume both transducers are
in the canonical form and aligned in the oracle O. We denote their public spaces by HA and
HB, respectively. If there are several subroutines implemented by different transducers, then,
as in Figure 2.2, they can be joined via parallel composition of Proposition 9.4.

Proposition 9.11 (Functional Composition). Under the above assumptions, there exists a
canonical transducer SA ˝ SB with the public space HA and the oracle O, which satisfies the
following properties.

• Its transduction action on input oracle O is equal to the transduction action of SA on
oracle O ‘O1, where O1 “ SBpOq

ù

HB
.

• Its transduction complexity satisfies

W pSA ˝ SB, O, ξq “ W pSA, O ‘O1, ξq `W
´

SB, O, q
p1qpSA, O ‘O1, ξq

¯

. (9.13)

• Its total query state is

qpSA ˝ SB, O, ξq “ qp0qpSA, O ‘O1, ξq ‘ q
´

SB, O, q
p1qpSA, O ‘O1, ξq

¯

. (9.14)

• Its time complexity is TCpSAq ` TCpSBq.

59

Here qp0q and qp1q denote the partial query states of SA to the oracles O and O1, respectively.
We also used the extended versions of W and q from (3.6) for the transducer SB.

Note that both Equations (9.13) and (9.14) are reminiscent of the “gold standard” (2.4).

Proof. Let M be the space of the input oracle O. The space of the transducer SA is of the form
HA ‘ L˝

A ‘ L‚
A ‘ L1

A, where the last two spaces are for the queries to O and O1, respectively. In
particular, L1

A “ LÒ

A b HB by the assumption that SBpOq implements O1.
Let v “ v˝ ‘ v‚ ‘ v1 be the catalyst for the transduction ξ ù τ by SApO ‘ O1q. That is,

v‚ “ qp0qpSA, O ‘ O1, ξq and v1 “ qp1qpSA, O ‘ O1, ξq. By (7.6), the transducer SA imposes the
following chain of transformations in HA ‘ L˝

A ‘ L‚
A ‘ L1

A:

ξ‘v˝ ‘v‚ ‘v1 rO
ÞÝÑ ξ‘v˝ ‘pIbOqv‚ ‘v1

ĂO1

ÞÝÑ ξ‘v˝ ‘pIbOqv‚ ‘pIbO1qv1 S˝
A

ÞÝÑ τ‘v˝ ‘v‚ ‘v1,
(9.15)

where we separated the applications of O and O1. Recall that the identity I acts on LÒ

A.
The space of SB is HB ‘ L˝

B ‘ L‚
B, where L‚

B “ LÒ

B b M. We obtain the transducer I bSB
as in Definition 9.6, whose space is LÒ

A b pHB ‘ L˝
B ‘ L‚

Bq.
Let w “ w˝ ‘w‚ be the catalyst for the transduction v1 ù pIbO1qv1 by IbSBpOq. In par-

ticular, w‚ “ q
`

SB, O, q
p1qpSA, O‘O1, ξq

˘

. By (7.6) again, we have the chain of transformations
in LÒ

A b pHB ‘ L˝
B ‘ L‚

Bq:

v1 ‘ w˝ ‘ w‚ rO
ÞÝÑ v1 ‘ w˝ ‘ pI b IB bOqw‚ IbS˝

B
ÞÝÑ pI bO1qv1 ‘ w˝ ‘ w‚, (9.16)

where IB is the identity on LÒ

B.

Figure 9.3

ξ

v˝

v˝

v1

w˝

w‚
pI ‘ I b IBq bO

Ow‚

I b S˝
B

Ov‚

O1v1

w˝

w‚

S˝
A

ξ

v˝

v‚

v1

A graphical representation of a function composition of transducers SA and SB. We
omit the tensor multipliers of O and O1 on the arrows to save space. The vector v1 is
simultaneously a non-queried catalyst for SA ˝ SB and the input to I b SB.

The transducer SA ˝ SB works as follows; see Figure 9.3. It starts in

ξ ‘ v˝ ‘ v‚ ‘ v1 ‘ w˝ ‘ w‚. (9.17)

60

It applies the input oracle O to the third and the last terms, which corresponds to the first
steps in both (9.15) and (9.16). This gives

ξ ‘ v˝ ‘ pI bOqv‚ ‘ v1 ‘ w˝ ‘ pI b IB bOqw‚. (9.18)

Then it performs I b S˝
B, which is the second operation in (9.16), and which gives

ξ ‘ v˝ ‘ pI bOqv‚ ‘ pI bO1qv1 ‘ w˝ ‘ w‚. (9.19)

After that, S˝
A is performed, which is the last operation of (9.15), and we get the final state

τ ‘ v˝ ‘ v‚ ‘ v1 ‘ w˝ ‘ w‚. (9.20)

The transduction (9.13) and the query (9.14) complexities follow from (9.17). In order to get
the time complexity, we have to elaborate on the placement of all these transducers in registers.
Since SA and SB are aligned in O, we assume they use the same value |1⟩R of the same register to
denote its execution. Concerning O1, which is an oracle only for SA, we assume it is indicated
by another qubit R1. Let PA and PB be the privacy qubits of SA and SB, respectively; we
assume they are different.

Let us write down the values of these indicator qubits for the various subspaces of the
composed transducer:

HA L˝
A L‚

A L1
A and HB L˝

B L‚
B

PA 0 1 1 1 1 1
R 0 0 1 0 0 1
R1 0 0 0 1 1 1
PB 0 0 0 0 1 1

Other than that, we assume we can embed all these subspaces into registers also preserving
L1
A “ LÒ b HB. The privacy qubit of SA ˝ SB is PA and its query register is R.

Let us go through the steps of SA ˝SB. The application of the query to O to get to (9.18) is
conditioned on |1⟩R as required, and it is possible because we assume SA and SB are aligned in
O. The application of I b S˝

B to get to (9.19) is conditioned on |1⟩R1 . Finally, the application
of S˝

A to get to the final state (9.20) is conditioned on |0⟩PB
. This gives the required time

complexity estimate.

10 Transducers from Programs
In this section, we describe how to convert a quantum program A like in (4.11) into a canonical
transducer SA, and give the corresponding corollaries. We consider both the circuit and the
QRAG models. The general idea is similar in both cases. First, we obtain transducers for
individual gates, and then compose them using either Proposition 9.9 for the circuit model, or
Proposition 9.10 for the QRAG model.

10.1 General Assumptions
We are given a program A, and our goal is to construct a canonical transducer SA whose
transduction action is identical to the action of A.

One thing to observe is that we have to modify our assumptions on the execution of input
oracles by introducing an additional register related to R. There are two main reasons for that.
First, the initial state ξ of SA can be any state in H. In particular, it can use H‚ which is in

61

contradiction with the assumption of Section 7.1 that ξ must be contained in H˝. Second, as
described in Section 3.4, the catalyst in the QRAG case is the history state (3.11). Various ψt
can use H‚, and we would like to protect them from the application of the input oracle in SA.

Because of that, we introduce an additional qubit rR. The input oracle in the canonical
transducer SA is applied conditioned by |1⟩

rR. More precisely, the i-th input oracle is controlled
by |1⟩

rR|i⟩R.
Additionally, we assume that all the queries made by the program A are aligned, see Defini-

tion 9.2, and, in case of several programs, they are aligned by their shared input oracles. This
is necessary since the composition results of Section 9 require the transducers to be aligned.

10.2 Building Blocks
Here we describe transducers corresponding to elementary operations. The following proposition
is trivial.

Proposition 10.1 (Trivial Transducer). Let A be a quantum algorithm (without oracle calls)
that implements some unitary in H. It can be considered as a transducer with L being empty,
T pAq being the time complexity of A, and both W pA, ξq and qpA, ξq equal to zero.

Oracle execution is more tricky because of the canonicity assumption. Recall the query
rO “ I˝ ‘ I b O from (4.1) taking place in H “ H˝ ‘ H‚ with H‚ “ HÒ b M. Let us divide
ξ “ ξ˝ ‘ ξ‚ accordingly.

Proposition 10.2 (Oracle). For a fixed embedding H “ H˝ ‘ HÒ b M as above, there exists
a canonical transducer SQ such that ξ SQpOq

ù rOξ for all ξ P H and unitaries O : M Ñ M. The
transducer satisfies W pSQ, O, ξq “ }ξ‚}2, qpSQ, O, ξq “ ξ‚, and T pSQq “ Op1q.

Proof. The private space of SQ will be L “ L‚ “ LÒ b M with LÒ equal to HÒ. The catalyst
is v “ v‚ “ ξ‚. The transducer SQ first applies the input oracle to L‚, which is achieved by
conditioning on |1⟩

rR:

|0⟩P |0⟩
rR|ξ⟩H ` |1⟩P |1⟩

rR|ξ‚⟩L
rO

ÞÝÑ |0⟩P |0⟩
rR|ξ⟩H ` |1⟩P |1⟩

rR
ˇ

ˇpI bOqξ‚
〉

L
“ |0⟩P |0⟩

rR|0⟩R|ξ˝⟩ ` |0⟩P |0⟩
rR|1⟩R|ξ‚⟩ ` |1⟩P |1⟩

rR|1⟩R|pI bOqξ‚⟩.

Now apply C-NOT to both P and rR controlled by |1⟩R. This gives

|0⟩P |0⟩
rR|0⟩R|ξ˝⟩`|0⟩P |0⟩

rR|1⟩R|pI bOqξ‚⟩`|1⟩P |1⟩
rR|1⟩R|ξ‚⟩ “ |0⟩P |0⟩

rR
ˇ

ˇ rOξ
〉

H`|1⟩P |1⟩
rR
ˇ

ˇξ‚
〉

L.

10.3 Circuit Model
For the circuit model, we have the following result, which is a first half of Theorem 3.5.

Theorem 10.3 (Program to Transducer, Circuit Model). Let A “ ApOq be a quantum program
in some space H assuming the circuit model. We assume all the queries in A are aligned, see
Definition 9.2. Then, there exists a canonical transducer SApOq with the following properties.

• SApOq

ù

H “ ApOq for all input oracles O.
• For any input oracle O and the initial state ξ, we have qpSA, O, ξq “ qpA,O, ξq. In

particular, LpSA, O, ξq “ LpA,O, ξq.

62

• The catalyst vpSA, O, ξq is equal to the query state qpSA, O, ξq. In particular, W pSA, O, ξq “

LpA,O, ξq.
• Finally, the transducer SA can be implemented in the circuit model, and T pSAq “ TCpAq`

OpQpAqq “ OpT pAqq, where the complexity measures of A are as in Section 4.4.

Proof. Take the representation of the query algorithm as in (4.2). We interpret each unitary Ut
as a transducer using Proposition 10.1, and transform each query into an independent copy of
the transducer SQ from Proposition 10.2.

Now, we apply sequential composition of Proposition 9.9 with m “ 2QpAq ` 1. The total
query state qpA,O, ξq is defined as the direct sum of all the queries given to the input oracle,
hence, the third and the second points follow from (9.6). The time complexity follows from (9.7)
using that T pAq “ QpAq `

ř

t T pUtq.

While canonical transducers are nice from the theoretical point of view, designing one from
scratch is usually inconvenient. The following result shows that we can convert any transducer
into a canonical form with a slight increase in complexity.

Let S “ SpOq be a transducer in H ‘ L not in the canonical form. Recall from Section 5.1
that we defined its total query state qHpS,O, ξq, and Las Vegas query complexity LHpS,O, ξq

on ξ P H as that of S, considered as a usual quantum algorithm in H ‘ L, on the initial state
ξ‘ vpSpOq, ξq, where v

`

SpOq, ξ
˘

is as in Theorem 5.1. We assume all the queries made in S are
aligned.

Proposition 10.4 (Transforming Transducers into Canonical Form). For a non-canonical
transducer S “ SpOq as above, there exists a canonical transducer S1 “ S1pOq with the same
transduction action and such that, for all O and ξ,

qpS1, O, ξq “ qHpS,O, ξq, W pS1, O, ξq “ W pSpOq, ξq ` LHpS,O, ξq, (10.1)

and T pS1q “ OpT pSqq.

Proof. Let SS “ SSpOq be a canonical transducer as obtained in Theorem 10.3 from S “ SpOq

considered as a quantum program. Its public space is H ‘ L, and SSpOq

ù

H‘L “ SpOq.
Let ξ1 “ ξ ‘ v

`

SpOq, ξ
˘

. By Theorem 10.3, we have T pSSq “ O
`

T pSq
˘

, and

vH‘LpSS , O, ξ
1q “ qH‘LpSS , O, ξ

1q “ qH‘LpS,O, ξ1q “ qHpS,O, ξq, (10.2)

where, in the third expression, we consider S as a usual quantum program in H ‘ L.
We obtain S1 “ S1pOq as the transduction action of SSpOq on H, using the transitivity of

transduction, Proposition 5.4. First, SSpOq is in canonical form when considered as a transducer
with the public space H‘L. A fortiori, it is canonical also on the public space H. Next, its time
complexity does not change, hence, T pS1q “ T pSSq “ O

`

T pSq
˘

. For the query state, from (5.3)
and (10.2), we get

qHpS1, O, ξq “ qH‘LpSS , O, ξ
1q “ qHpS,O, ξq.

Finally, for the transduction complexity, we can utilise (5.3) in the following way:

W pS1, O, ξq “ WH
`

SSpOq, ξ
˘

“ WH
`

SSpOq

ù

H‘L, ξ
˘

`WH‘L
`

SSpOq, ξ1
˘

“ WHpSpOq, ξq ` LHpS,O, ξq,

where we used (10.2) in the last equality.

63

The remaining corollaries of Theorem 10.3 were already proven in Section 3: Theorems 3.6
and 3.8.

Let us note that Theorem 10.3 might not always be the best way to get a transducer SA from
a quantum program A in the circuit model. One can use additional structure of A to get better
transducers. For instance, if A repeatedly uses the same sequence of gates, one can define it as
a new oracle, thus reducing the time complexity of the transducer, see, e.g., Proposition 11.3.
If A contains a large loop, one can use Proposition 9.10. Obtaining efficient transducers in the
circuit model for specific cases seems like an interesting research direction.

10.4 QRAG Model
Assuming the QRAG model, we get the remaining half of Theorem 3.5.

Theorem 10.5. Let A “ ApOq be a quantum program in some space H, and assume we have
QRAM access to the description of A. Then, there exists a canonical transducer SApOq with
the following properties.

• SApOq

ù

H “ ApOq for all input oracles O.
• For any input oracle O and initial state ξ, we have qpSA, O, ξq “ qpA,O, ξq. In particular,
LpSA, O, ξq “ LpA,O, ξq.

• Also, W pSA, O, ξq ď T pAq}ξ}2.
• Finally, in the QRAG model, we have T pSAq “ OpTRq as defined in (3.13).

Proof. The proof parallels that of Theorem 10.3 using Proposition 9.10 instead of Proposi-
tion 9.9, but since this special case might be of interest, we give an explicit construction here,
slightly simplifying it along the way.

It is convenient to assume a different but essentially equivalent form of a quantum algorithm.
Namely, we assume that the algorithm A is given as

ApOq “ Gm´1 rO
bm´1Gm´2 ¨ ¨ ¨ rOb2G1 rO

b1G0, (10.3)

where each Gi is a gate (not a query), rO is the query operator (4.1), and each bt is a bit that
indicates whether there is a query before the t-th gate (b0 is always 0). A program like in (4.11)
can be transformed into (10.3) with m ď T ` 1 adding identity Gt if necessary. We assume we
have QRAM access to an array specifying the gates Gt as well as to the array of bt.

Let the algorithm A go through the following sequence of states on the initial state ξ and
the oracle O:

ξ “ ψ0
G0

ÞÝÑ ψ1
G1 rOb1
ÞÝÑ ψ2

G2 rOb2
ÞÝÑ ¨ ¨ ¨

Gm´1 rObm´1
ÞÝÑ ψm “ τ. (10.4)

At high level, the action of SA is

ξ ‘ v “

m´1
ÿ

t“0
|t⟩|ψt⟩

rObt
ÞÝÑ

m´1
ÿ

t“0
|t⟩

ˇ

ˇ rObtψt
〉 Gt

ÞÝÑ

m´1
ÿ

t“0
|t⟩|ψt`1⟩ ÞÝÑ

m
ÿ

t“1
|t⟩|ψt⟩ “ τ ‘ v, (10.5)

where, we first apply the input oracle conditioned on bt, then Gt conditioned on t using Theo-
rem 4.3, and then increment t by 1 modulo m.

Recall that we have a decomposition H “ H˝ ‘ H‚ of the space of A, which is indicated by
the query register R. As mentioned in Section 10.1, the transducer SA uses a different query
qubit rR. We will use notation rH “ rR b H. Let D denote the C-NOT on rR controlled by R.
Then, for ψ “ ψ˝ ‘ ψ‚ P H, we have

|ψ⟩
rH “ |0⟩

rR|0⟩R|ψ˝⟩ ` |0⟩
rR|1⟩R|ψ‚⟩ and |Dψ⟩

rH “ |0⟩
rR|0⟩R|ψ˝⟩ ` |1⟩

rR|1⟩R|ψ‚⟩.

64

Let T be an m-qudit with operations modulo m, and P be the privacy qubit of SA.
Let us go through the steps of (10.5). The initial coupling is given by

ξ ‘ v “ |0⟩P |0⟩T |ψ0⟩
rH `

m´1
ÿ

t“1
|1⟩P |t⟩T

ˇ

ˇDbtψt
〉
rH.

First, as required by the canonical form and our assumptions in Section 10.1, we apply the
input oracle O conditioned on |1⟩

rR. This acts as rO on Dψt, but does not change ψt. Then, we
apply the operation D controlled on bt (which can be accessed using the QRAM). After that,
we apply C-NOT to P controlled by |0⟩T . This gives the second state in the sequence (10.5):

|1⟩P

m´1
ÿ

t“0
|t⟩T

ˇ

ˇ rObtψt
〉
rH.

Now, we apply the last two operations from (10.5): Gt conditioned on |t⟩T , and increment of
T by 1 modulo m. This gives

|1⟩P

m
ÿ

t“1
|t⟩T |ψt⟩

rH.

Now we apply the operation D controlled on bt and apply C-NOT to the register P controlled
by |0⟩T “ |m⟩T . This gives the final state

|0⟩P |0⟩T |ψm⟩
rH `

m´1
ÿ

t“1
|1⟩P |t⟩T

ˇ

ˇDbtψt
〉
rH “ τ ‘ v.

Since }ψt} “ }ξ}, we have that W pSA, O, ξq “ pm ´ 1q}ξ}2 ď T pAq}ξ}2. It is clear that
qpSA, O, ξq “ qpA,O, ξq, and the time complexity of SA is OpTRq thanks in particular to Theo-
rem 4.3.

In applications like in Section 3.5, we often have to apply this construction in parallel. The
following easy modification of the proof takes care of that.

Proposition 10.6. Let A1, . . . , An be quantum programs in some space H, all using the same
oracle O. Assume we have QRAM access to their joint description. Then, the direct sum
Àn

i“1 SAi of transducers defined in Theorem 10.5 can be implemented in time OpTRq.

By the joint access, we mean that we have access to the list m1, . . . ,mn of the parameters
m in (10.3), as well as access to bt and Gt of Ai as a double array with indices i and t.

Proof of Proposition 10.6. We execute the transducers SAi in parallel using a register J to
store the value of i. Accessing bt and Gt now is double-indexed by i and t, and by our general
assumption of (3.13) it takes time OpTRq to access them. For incrementation of T modulo m,
we use the array containing mi. Other than that, it is a standard word-sided operation and
takes time OpTRq.

The consequences of this result were already considered in Section 3: Theorems 3.6, 3.10,
and 3.11.

65

11 Example III: Iterated Functions
In this section, we give a more detailed proof of Theorem 3.12. We will use notation of Section 8.2
for the transducer Sf built from the adversary bound. However, we assume a more general
variant of a canonical transducer Sf for evaluation of f : rqsn Ñ rqs. Its public space is Cq, its

admissible space is spanned by |0⟩, and |0⟩
Sf p

ÐÑ
Oxq

ù |fpxq⟩ for all x P rqsn. We assume the initial
coupling of Sf on

ÐÑ
Ox is given by

|0⟩ ‘vx “ |0⟩P |0⟩R|0⟩ `|1⟩P |0⟩R|v˝
x⟩ `|1⟩P

ÿ

iPrns

|i⟩R

”

|Ò⟩B|0⟩Q
ˇ

ˇvÒ
x,i

〉
W `|Ó⟩B|xi⟩Q

ˇ

ˇvÓ
x,i

〉
W

ı

(11.1)

for some vectors v˝
x, v

Ò
x,i, and vÓ

x,i, where the registers are as in (8.7). The difference be-
tween (11.1) and (8.7), however, is addition of the term v˝

x that is not processed by the input
oracle. Note that (11.1) gives the general form of a canonical transducer that executes the input
oracle on the admissible subspace: the constituent Ox,i from (8.5) on |0⟩ and O˚

x,i on |xi⟩.
Recall the definition of the composed function f ˝ g from (3.29):

pf ˝ gqpz1,1, . . . , z1,m, z2,1, . . . , z2,m, , zn,1, . . . , zn,mq

“ f
`

gpz1,1, . . . , z1,mq, gpz2,1, . . . , z2,mq, . . . , gpzn,1, . . . , zn,mq
˘

.
(11.2)

We define
y⃗i “ pzi,1, . . . , zi,mq and x “

`

gpy⃗1q, gpy⃗2q, . . . gpy⃗nq
˘

(11.3)

so that fpxq “ pf ˝gqpzq. Recall also notationWxpSq “ W
`

S,
ÐÑ
Ox, |0⟩

˘

andW pSq “ maxxWxpSq

from (8.2).

Proposition 11.1. Let Sf and Sg be canonical transducers for the functions f and g of the
form described above. Then, there exists a canonical transducer Sf˝g for the composed function
f ˝ g from (11.2) that has the same form, and such that

WzpSf˝gq “ WxpSf q `

n
ÿ

i“1
Lpiq
x pSf q ¨Wy⃗ipSgq ď W pSf q ` LpSf q ¨W pSgq (11.4)

and
LzpSf˝gq “

n
ÿ

i“1
Lpiq
x pSf q ¨ Ly⃗ipSgq ď LpSf q ¨ LpSgq, (11.5)

for every z P rqsnm. Time complexity satisfies T pSf˝gq “ TCpSf q ` 2TCpSgq.

Proof. As the first step, we create a bidirectional version ÐÑ
Sg of Sg. Its public space is B b Q,

and its admissible space on the input oracle ÐÑ
Oy is spanned by |Ò⟩B|0⟩Q and |Ó⟩B|gpyq⟩Q. Its

corresponding transduction action is

|Ò⟩B|0⟩Q ù |Ò⟩B|gpyq⟩Q and |Ó⟩B|gpyq⟩Q ù |Ó⟩B|0⟩Q.

Its time complexity is 2TCpSgq and, in notation at the end of Section 3.3:

Wmax
`ÐÑ
Sg ,

ÐÑ
Oy

˘

“ WypSgq and Lmax
`ÐÑ
Sg ,

ÐÑ
Oy

˘

“ LypSgq.

We obtain ÐÑ
Sg as follows. By swapping Ò and Ó if necessary, we may identify ÐÑ

Oy
˚ and ÐÑ

Oy.
Then from Proposition 9.1, we obtain a transducer S´1

g with transduction action |gpyq⟩ ù |0⟩
on ÐÑ

Oy, whose complexity is identical to Sg. We may assume Sg and S´1
g are aligned. We get

66

ÐÑ
Sg as Sg ‘ S´1

g , where the direct sum is done via the register B. By the definition of Wmax, we
have that for some unit vector pα, βq P C2:

Wmaxp
ÐÑ
Sg ,

ÐÑ
Oyq “ W

´

ÐÑ
Sg ,

ÐÑ
Oy, α|Ò⟩B|0⟩Q ` β|Ó⟩B|gpyq⟩Q

¯

“ |α|2W
`

Sg,
ÐÑ
Oy, |0⟩

˘

` |β|2W
`

S´1
g ,

ÐÑ
Oy, |gpyq⟩

˘

“ WypSgq,

where we used Propositions 9.4 and 9.1, as well as (9.1). Query complexity derivation is similar.
As the next step, we construct the transducer Inb

ÐÑ
Sg , where In acts on the span of |i⟩R with

i ą 0. Moreover, as in Remark 9.5, we assume the input oracle uses the register R. Therefore,
the transduction action of In b

ÐÑ
Sg on the input oracle

ÐÑ
Oz “

n
à

i“1

ÐÑ
Oy⃗i

is identical to the action of ÐÑ
Ox on its admissible subspace.

Finally, we get Sf˝g as Sf ˝
`

In b
ÐÑ
Sg

˘

. The time complexity estimate follows from Propo-
sition 9.11. For the transduction complexity, we obtain from (3.21), using that Sf makes only
admissible queries to ÐÑ

Ox and does not have direct access to ÐÑ
Oz :

WzpSf˝gq “ W
`

Sf˝g,
ÐÑ
Oz , |0⟩

˘

ď W
`

Sf ,
ÐÑ
Ox, |0⟩

˘

`

n
ÿ

i“1
Wmax

`ÐÑ
Sg ,

ÐÑ
Oy⃗i

˘

LpiqpSf ,
ÐÑ
Ox, |0⟩q

“ WxpSf q `

n
ÿ

i“1
Wy⃗ipSgq ¨ Lpiq

x pSf q.

The last inequality in (11.4) follows from LxpSf q “
ř

i L
piq
x pSf q. The estimate (11.5) is similar,

where we again use that Sf does not make direct queries to ÐÑ
Oz . Finally, since ÐÑ

Sg makes only
admissible queries to Oy, we get that Sf˝g makes only admissible queries to Oz.

Now we can prove a more detailed version of Theorem 3.12.

Theorem 11.2. Let Sf be a canonical transducer for a function f of the form as in (11.1), and
such that L “ LpSf q “ 1 ` Ωp1q. Let W “ W pSf q and T “ T pSf q, assuming the circuit model.
Then, for each d, there exists a bounded-error quantum algorithm evaluating the iterated function
f pdq in Monte Carlo query complexity OpLdq and time complexity O

`

d ¨ TWLd´1˘ “ Of pd ¨Ldq

in the circuit model.

Proof. Define Sf pdq as Sf composed with itself d times using Proposition 11.1. By induction,
we have that L

`

Sf pdq

˘

ď Ld, and

W
`

Sf pdq

˘

ď
`

1 ` L` ¨ ¨ ¨ ` Ld´1˘W “ O
`

Ld´1W
˘

.

Similarly, its time complexity is at most 2d ¨ TCpSf q “ Opd ¨ T q. The theorem follows from
Theorem 7.1.

The time complexity of the previous theorem can be slightly improved. Let s denote the
initial space complexity of the transducer Sf , i.e, the number of qubits used to encode the initial
coupling |0⟩ ‘ vx. It can be much smaller than the time complexity of Sf , as well as its space
complexity, which is the total number of qubits used by Sf .

67

Proposition 11.3. The time complexity of Theorem 11.2 can be improved to O
`

psd`T qWLd´1˘,
where s is the initial space complexity of the transducer Sf .

We only sketch the proof, as it does not improve the overall asymptotic Of pd ¨ Ldq.

Proof sketch of Proposition 11.3. By studying the proof of Theorem 11.2, we can observe that
the work unitary of Sf pdq consists of repeated applications of ÐÑ

Sf to different registers. We can
treat ÐÑ

Sf as an oracle. Then, the work unitary of Sf pdq becomes a non-canonical transducer with
the oracle ÐÑ

Sf . It is non-aligned, but we can make it aligned in additional time s ¨d by switching
the registers before each execution of ÐÑ

Sf . We can convert it into the canonical form using
Proposition 10.4, which increases the transduction complexity by at most a constant factor.
However, now it takes only one execution of ÐÑ

Sf and Opsdq other operations to implement the
transducer. The statement again follows from Theorem 7.1.

12 Perturbed Transducers
It is quite common in quantum algorithm to use subroutines that impose some error. The total
correctness of the algorithm then follows from a variant of Lemma 4.5, assuming that the error
of each constituent is small enough.

In most cases in this paper, like in Sections 6 and 8.2, the transduction action is the exact
implementation of the required transformation. However, it is not always feasible, and it makes
sense to study what happens if a transducer satisfies the condition (5.1) only approximately.

It is worth noting that small errors in a transducer can result in large errors in the corre-

sponding transduction action. In other words, it is possible that ξ ‘ v
S

ÞÝÑ τ 1 ‘ v1 with v close

to v1, but ξ
S

ù τ with τ being far from τ 1. For example, let both H and L be 1-dimensional,
and assume S acts as

S :
ˆ

0
v

˙

ÞÑ

ˆ

a
?
v2 ´ a2

˙

for some positive real v and a. Observe that

v ´
a

v2 ´ a2 “
a2

v `
?
v2 ´ a2

can be very small for large v, even if a is substantial. Thus, on the basis of v « v ´
?
v2 ´ a2

we may be tempted to assume that S approximately transduces 0 into a, but this is very far

from the true transduction action 0 S
ù 0.

12.1 Definition
In order to solve this issue, we incorporate a perturbation, in the sense of Lemma 4.5, into the
transducer S. Let S be a unitary in H ‘ L that maps

rS : ξ ‘ v ÞÑ rτ ‘ rv.

We assume its idealised version maps

S : ξ ‘ v ÞÑ τ ‘ v

with the perturbation
δpS, ξq “

∥∥pτ ‘ vq ´ prτ ‘ rvq
∥∥.

68

We call S the idealised or perturbed transducer, and rS the approximate transducer. We

say that S transduces ξ into τ , and we keep notation ξ
S

ù τ , vpS, ξq “ v, W pS, ξq “ }v}2, and
τpS, ξq “ τ .

This also extends to the canonical form of transducer in Section 7.1, where we decompose
v “ v˝ ‘ v‚, and let qpS,O, ξq “ v‚ and LpS,O, ξq “ }v‚}2. As before, we write δpS,O, ξq

instead of δpSpOq, ξq, and similarly for other pieces of notation.
As for usual quantum algorithms, we can use approximate transducers instead of the ide-

alised ones, as long as we carefully keep track of the perturbations. In the remaining part of
this section, we will briefly study the main results of this paper under the perturbation lenses.

12.2 Implementation
We have the following variant of Theorem 5.5.

Theorem 12.1. Under the assumptions of Section 12.1, for every positive integer K, there
exists a quantum algorithm that transforms ξ into τ 1 such that

∥∥τ 1 ´ τpS, ξq
∥∥ ď 2

c

W pS, ξq

K
`

?
KδpS, ξq

for every rS : H ‘ L Ñ H ‘ L, perturbed version S, and initial state ξ P H. The algorithm
conditionally executes rS as a black box K times, and uses OpKq other elementary operations.

Proof. The algorithm is identical to that of Theorem 5.5. The analysis is similar with the only
difference that, on Step 2(a), in order to obtain the mapping

1
?
K

|t⟩T |0⟩P |ξ⟩H `
1

?
K

|t⟩T |1⟩P |v⟩L ÞÝÑ
1

?
K

|t⟩T |0⟩P |τ⟩H `
1

?
K

|t⟩T |1⟩P |v⟩L

as in (5.7), we introduce a perturbation of size δpS, ξq{
?
K. By Lemma 4.5, the total perturba-

tion is then
2 }v}

?
K

`K ¨
δpS, ξq

?
K

,

which gives the required estimate.

Again, this theorem can be reformulated as follows.

Corollary 12.2. For all W, ε ą 0, there exists a quantum algorithm that executes rS as a black
box K “ Op1 ` W {ε2q times, uses OpKq other elementary operations, and ε-approximately
transforms ξ into τpS, ξq for all S, rS, and the initial state ξ that satisfy W pS, ξq ď W and
δpS, ξq ď ε

2
?
K

.

We get a version of Theorem 7.1 in a similar fashion.

Proposition 12.3. Theorem 7.1 works assuming a perturbed transducer S. The estimate is

∥∥τ 1 ´ τpS,O, ξq
∥∥ ď

2
?
K

d

W pS,O, ξq `

r
ÿ

i“1

ˆ

K

Kpiq
´ 1

˙

LpiqpS,O, ξq `
?
KδpS,O, ξq.

Corollary 7.2 also works assuming a perturbed transducer S under the additional assumption of
δpS,O, ξq ď ε

2
?
K

.

Proof. The proof is analogous to Theorem 12.1: we use perturbation of size δpS,O, ξq{
?
K to

get from (7.14) to (7.15).

69

12.3 Composition
The composition of perturbed transducers exactly follows the corresponding constructions of
Section 9, where we use Lemma 4.5 to evaluate the total perturbation. This gives us the
following proposition.

Proposition 12.4. Propositions 9.4, 9.9, 9.10 and 9.11 work assuming perturbed transducers.
We get the following estimates:

δpS,O, cξq “ |c|δpS,O, ξq, (12.1)

δpS,O, ξq ď

d

m
ÿ

i“1
δpSi, O, ξiq2 (12.2)

for Proposition 9.4, and

δpS,O, ξq ď

m
ÿ

t“1
δpSt, O, ψtq (12.3)

for Propositions 9.9 and 9.10. For Proposition 9.11, we have

δpSA ˝ SB, O, ξq ď δ
`

SA, O ‘O1, ξ
˘

` δ
`

SB, O, q
p1qpSA, O ‘O1, ξq

˘

. (12.4)

Proof. Eq. (12.1) follows by linearity. All the remaining estimates follow from the corresponding
proofs in Section 9 replacing each transducer with its approximate version and using Lemma 4.5.
The estimate (12.2) follows from the observation that perturbations in terms of the direct sum
act on orthogonal subspaces.

13 Purifiers
In this section, we formulate and prove the formal version of Theorem 3.14, as well as draw
some consequences of it for composition of bounded-error algorithms.

13.1 Boolean Case
Recall our settings from Section 3.6. The input oracle performs the transformation

Oψ : |0⟩M ÞÑ |ψ⟩M “ |0⟩B|ψ0⟩N ` |1⟩B|ψ1⟩N (13.1)

for some unit vector ψ in some space M “ B b N with B “ C2, and it is promised that there
exist constants 0 ď c´ d ă c` d ď 1 such that

either }ψ1}2 ď c´ d or }ψ1}2 ě c` d, (13.2)

which corresponds to fpψq “ 0 and fpψq “ 1, respectively. Let

µ “
a

p1 ´ cq2 ´ d2 `
a

c2 ´ d2 ă 1. (13.3)

We say the input oracle Oψ is admissible if it satisfies (13.1) and (13.2).

Theorem 13.1. Let D be a positive integer. In the above assumptions, there exists a perturbed
transducer Spur on the 1-dimensional public space and with bidirectional access to Oψ which
satisfies the following conditions:

70

• It transduces |0⟩ into p´1qfpψq|0⟩ for all admissible input oracles Oψ. In particular, every
vector in its public space is admissible.

• On every admissible input oracle and normalised input state, its perturbation is at most
δpur “ 2µD´1.

• Its transduction and query complexities, WmaxpSpurq and LmaxpSpurq, are O
`

1{p1 ´µq
˘

“

Op1q.
• It executes the input oracle on the admissible subspace only: Oψ on |0⟩M and O˚

ψ on |ψ⟩M.

In the circuit model, the purifier can be implemented in time OpD ¨ sq, where s is the number
of qubits used in M. In the QRAG model and assuming the RA input oracle, the purifier can
be implemented in time OpTRq.

Here we used WmaxpSpurq to denote maximal W pSpur,
ÐÑ
Oψ, |0⟩q over all admissible input

oracles Oψ. LmaxpSpurq is defined similarly.

Proof. The outline of the proof was already given in Section 3.6. We will assume that D is even
for concreteness, the case of odd D being analogous. Recall the parameters

a “
4

c

1 ´ c` d

1 ´ c´ d
and b “

4

c

c` d

c´ d
.

and the following vector in M:

rψ “

#

1
a |0⟩|ψ0⟩ ` b|1⟩|ψ1⟩, if fpψq “ 0;
a|0⟩|ψ0⟩ ` 1

b |1⟩|ψ1⟩, if fpψq “ 1.

We have the following important estimate. If fpψq “ 0:

} rψ}2 “
1
a2 }ψ0}2 ` b2}ψ1}2 ď

1
a2 p1 ´ c` dq ` b2pc´ dq “ µ, (13.4)

where we used that 1{a2 ă 1 ă b2. Similarly, for fpψq “ 1:

} rψ}2 “ a2}ψ0}2 `
1
b2 }ψ1}2 ď a2p1 ´ c´ dq `

1
b2 pc` dq “ µ. (13.5)

We describe the transducer as non-canonical, and we will turn it into the canonical form
later. The space of the transducer is D b MbD´1, where D is a D-qudit. The one-dimensional
public space is spanned by ξ “ |0⟩D|0⟩bD´1. The initial coupling is given by

ξ ‘ v “

D´1
ÿ

i“0
p´1qi¨fpψq|i⟩D| rψybi|0⟩bD´i´1. (13.6)

The transduction complexity is

}v}2 ď }ξ ‘ v}2 ď

8
ÿ

i“0

∥∥ rψ∥∥2i
“

1
1 ´

∥∥ rψ∥∥2 ď
1

1 ´ µ
. (13.7)

Let us now describe the action of the transducer. The transducer is a multidimensional
quantum walk on the line graph, see Figure 13.1. It is a product of two reflections R1 and R2.
The reflection R1 is the product of the local reflections on the odd vertices, i “ 1, 3, 5, . . . , D´1.
The reflection R2 is the product of the local reflections on the even vertices, i “ 2, 4, . . . , D´ 2.

The local reflection for the vertex i “ 1, . . . , D´1 is as follows. It acts in spant|i´ 1⟩D, |i⟩Dub

MbD´1. Define a qubit A whose value 0 corresponds to |i´ 1⟩D and 1 to |i⟩D. If i is odd, this
could be the least significant qubit of D. Let Mpiq “ Bpiq b N piq be the i-th multiplier in the
tensor product MbD´1. The reflection is as follows:

71

Figure 13.1

0 1 2 3 D ´ 1 D
|0⟩bD´1

|0⟩D

p´1qfpψq| rψy|0⟩bD´2

|1⟩D

| rψyb2|0⟩bD´3

|2⟩D
¨ ¨ ¨

p´1qfpψq| rψybD´1

|D ´ 1⟩D

A purifier is a multidimensional quantum walk on the line graph seen above. The edge
between the vertices i and i`1 corresponds to the subspace |i⟩D bMbD´1 as indicated by
the state below the edge. The local reflections on the vertices 0 and D are identities. The
local reflection at the vertex i “ 1, . . . , D ´ 1 acts on the subspace spant|i´ 1⟩D, |i⟩Du b

MbD´1. The expressions above the edges give the initial coupling from (13.6).

1. Execute the input oracle Oψ on Mpiq conditioned on |0⟩A “ |i´ 1⟩D.
2. Execute a two-qubit unitary on A b Bpiq, which is the reflection about the span of the

states
`

a|0⟩A ` |1⟩A
˘

|0⟩B and
`

|0⟩A ` b|1⟩A
˘

|1⟩B.

3. Execute the inverse oracle O˚
ψ on Mpiq conditioned on |0⟩A “ |i´ 1⟩D.

Claim 13.2. The local reflection for the vertex i multiplies the corresponding part of the state
in (13.6)

|i´ 1⟩D| rψybi´1|0⟩bD´i
` p´1qfpψq|i⟩D| rψybi|0⟩bD´i´1

by the phase p´1qfpψq.

Proof. After application of the oracle in Step 1, we get the state

| rψybi´1 b

”

|i´ 1⟩D|ψ⟩M ` p´1qfpψq|i⟩D
ˇ

ˇ rψ
〉

M

ı

b |0⟩bD´i´1.

The local reflection acts on the state in the square brackets, which can be rewritten as
´

|0⟩A `
1
a

|1⟩A

¯

|0⟩B|ψ0⟩N `

´

|0⟩A ` b|1⟩A

¯

|1⟩B|ψ1⟩N (13.8)

if fpψq “ 0, and
´

|0⟩A ´ a|1⟩A

¯

|0⟩B|ψ0⟩N `

´

|0⟩A ´
1
b

|1⟩A

¯

|1⟩B|ψ1⟩N (13.9)

if fpψq “ 1. It is easy to see that the operation on Step 2 does not change the state in (13.8)
and negates the one in (13.9), from which the claim follows.

From the claim, it immediately follows that, if fpψq “ 0, the transducer does not change
the state (13.6). Therefore, in this case |0⟩ Spur

ù |0⟩.
On the other hand, if fpψq “ 1, then R1 reflects the whole state ξ ‘ v, and R2 reflects all

the terms in the sum except for i “ 0 and i “ D ´ 1. Thus, the final state is

´ξ ‘ v ´ 2p´1qpD´1qfpψq|D ´ 1⟩D| rψybD´1.

This can be interpreted as transducing |0⟩ into ´|0⟩ with a perturbation of size at most 2µD´1

by (13.4) and (13.5).

72

One can see that the local reflection for the vertex i applies the input oracle and its inverse
on the part of the state v in the subspace |i´ 1⟩D b MbD´1. Hence, the query complexity is at
most 2}ξ‘v}2 ď 2{p1´µq by (13.7). The transformation into canonical form, Proposition 10.4,
adds the query complexity to the transduction complexity, hence, the latter stays O

`

1{p1 ´µq
˘

.
Let us estimate time complexity. We start with the circuit model. The queries in transducer

of Theorem 13.1 are not aligned, as they are applied to different copies of M. In order to make
them aligned, as required by Proposition 10.4, the register Mpiq should be moved to some
specific array of qubits shared by all the local reflections. This takes time Opsq per each local
reflection. Step 2 of the local reflection can be implemented in constant time. Thus, each local
reflection takes time Opsq. There are D´ 1 local reflections performed. By Lemma 4.6 with all
ϕi being absent, the whole transducer can be implemented in time OpD ¨ sq. Transformation
into canonical form in Proposition 10.4 keeps the time complexity of the transducer essentially
the same.

Now consider the QRAG model. All local reflections in R1 can be performed in parallel,
and the same is true for R2. The first and the third operation in the local reflection are
implemented by the RA input oracle. The second operation can be performed in OpTRq time
by Theorem 4.3.

13.2 Non-Boolean Case
This time let M “ B b N be a space with B “ Cp. Let Oψ be an oracle that performs the
following state generation:

Oψ : |0⟩M ÞÑ |ψ⟩M “

p´1
ÿ

j“0
|j⟩B|ψj⟩N . (13.10)

Let d ą 0 be a constant. We assume that for every ψ there exists (unique) fpψq P rps such that

}ψfpψq}
2 ě

1
2 ` d. (13.11)

Define
µ “ 2

a

1{4 ´ d2 ă 1,

which is the same as in (13.3) for c “ 1{2. We treat B “ Cp as composed out of ℓ “ log p qubits.
We do not assume that ℓ “ OpTRq here, as functions, in principle, can have very long output.
Again, we call every input oracle Oψ satisfying (13.10) and (13.11) admissible.

Theorem 13.3. Let D be a positive integer. Under the above assumptions, there exists a
perturbed transducer Spur on the public space Cp and with bidirectional access to Oψ which
satisfies the following conditions:

• For all b P t0, 1uℓ, and admissible Oψ, it transduces |b⟩ into
ˇ

ˇb ‘ fpψq
〉
, where ‘ stands

for the bit-wise XOR. In particular, every initial vector in Cp is admissible.
• On any admissible input oracle and unit initial vector, its perturbation is at most δpur “

2µD´1.
• Its query complexity satisfies LmaxpSpurq “ O

`

1{p1 ´ µq
˘

“ Op1q.
• It executes the input oracle on the admissible subspace only: Oψ on |0⟩M and O˚

ψ on |ψ⟩M.

For the time and the transduction complexity, we have the following estimates:

73

• In the circuit model, WmaxpSpurq “ O
`

1{p1 ´ µq
˘

“ Op1q and T pSpurq “ Ops ¨ Dq, where
s is the number of qubits used in M.

• In the QRAG model, assuming the RA input oracle, we have WmaxpSpurq “ Oplog p{p1 ´

µqq “ Oplog pq and T pSpurq “ OpTRq.

Here we use WmaxpSpurq to denote maximal W pSpur,
ÐÑ
Oψ, ξq over all admissible input oracles

Oψ and admissible normalised initial states ξ. LmaxpSpurq is defined similarly.

Proof. We reduce the non-Boolean case to the Boolean case of Theorem 13.1 by encoding the
value into the phase and using the Bernstein-Vazirani algorithm [18] to decode it back.

For simplicity of notation, we will assume p “ 2ℓ so that Oψ in (13.10) just does not use the
extra dimensions. For a, b P rps, we denote by ad b P t0, 1u their inner product when considered
as elements of Fℓ2.

Denote the public space Cp of Spur by J . We first apply the Hadamard Hbℓ to perform the
following transformation

Hbℓ : |b⟩J ÞÝÑ
1

?
p

p´1
ÿ

i“0
p´1qidb|i⟩J . (13.12)

Consider the following procedure E that evaluates the inner product between i and the
output of the oracle into an additional qubit Z:

EpOψq : |i⟩J |0⟩M|0⟩Z
Oψ

ÞÝÑ |i⟩J

p´1
ÿ

j“0
|j⟩B|ψj⟩N |0⟩Z ÞÝÑ |i⟩J

p´1
ÿ

j“0
|j⟩B|ψj⟩N |id j⟩Z .

We consider it as a direct sum E “
À

iPrps E
piq with

EpiqpOψq : |0⟩M|0⟩Z ÞÝÑ

p´1
ÿ

j“0
|j⟩B|ψj⟩N |id j⟩Z . (13.13)

We convert them into canonical transducers SE and S
piq
E . We have Lmax

`

S
piq
E

˘

“ 1, where
the admissible subspace is |0⟩M|0⟩Z . Using Propositions 9.1 and 9.4, we get transducers

ÐÑ
SE

`ÐÑ
Oψ

˘

“ SEpOψq ‘ S´1
E pO˚

ψq and ÐÑ
SE

piq`ÐÑ
Oψ

˘

“ S
piq
E pOψq ‘ pS

piq
E q´1pO˚

ψq.

Again, Lmax
`ÐÑ
SE

piq˘
“ 1. We still have ÐÑ

SE “
À

i
ÐÑ
SE

piq with the help of Remark 9.5. It is also
clear that ÐÑ

SE only executes the input oracle ÐÑ
Oψ on the admissible subspace.

We treat EpiqpOψq as an oracle encoding a Boolean value into the register Z. By (13.11),
we get that EpiqpOψq evaluates i d fpψq with bounded error. Take the purifier S1

pur from
Theorem 13.1 with c “ 1{2 and the same values of d and D. This purifier satisfies

S1
pur

´ÐÝÝÝÝÑ
EpiqpOψq

¯

: |0⟩ ù p´1qidfpψq|0⟩.

Taking direct sum over all i P rps, we get that a transducer

pIJ b S1
purq

´

ÐÝÝÝÑ
EpOψq

¯

“

p´1
à

i“0
S1

pur

´ÐÝÝÝÝÑ
EpiqpOψq

¯

(13.14)

performs the following transduction:

1
?
p

p´1
ÿ

i“0
p´1qidb|i⟩J ù

1
?
p

p´1
ÿ

i“0
p´1qidb`idfpψq|i⟩J . (13.15)

74

Finally, we again apply Hbℓ to get

Hbℓ : 1
?
p

p´1
ÿ

i“0
p´1qidb`idfpψq|i⟩J ÞÝÑ |b‘ fpψq⟩J . (13.16)

Combining (13.12), (13.15) and (13.16), we see that we can use sequential composition of
Proposition 9.9 to get

Spur “ SHbℓ ˚
`

pIJ b S1
purq ˝

ÐÑ
SE

˘

˚ SHbℓ ,

where SHbℓ is a transducer from Proposition 10.1 with transduction action Hbℓ and no input
oracle.

Let us estimate query complexity on a unit vector ξ P J . We have the following estimate,
where we explain individual lines after the equation.

LpSpur,
ÐÑ
Oψ, ξq “ L

`

pIJ b S1
purq ˝

ÐÑ
SE ,

ÐÑ
Oψ, H

bℓξ
˘

“

p´1
ÿ

i“0
L
`

S1
pur ˝

ÐÑ
SE

piq
,
ÐÑ
Oψ, ϕi

˘

ď

p´1
ÿ

i“0
Lmax

`

S1
pur

˘

Lmax
`ÐÑ
SE

piq˘
}ϕi}

2

ď Op1{p1 ´ µqq

p´1
ÿ

i“0
}ϕi}

2 “ Op1{p1 ´ µqq.

On the first line, we used sequential composition of Proposition 9.9 and that the transducer
SHbℓ does not use the input oracle. On the second line, we decomposed Hbℓξ “

À

i ϕi,
and used (13.14) and Proposition 9.4. On the third line, we used functional composition of
Proposition 9.11, Eq. (9.1), and that S1

pur does not have direct access to Oψ and executes its
input oracle Epiq on the admissible subspace only.

In a similar way, we have

W pSpur,
ÐÑ
Oψ, ξq “ 2WmaxpSHbℓq `W

`

pIJ b S1
purq ˝

ÐÑ
SE ,

ÐÑ
Oψ, H

bℓξ
˘

“ 2WmaxpSHbℓq `

p´1
ÿ

i“0
W

`

S1
pur ˝

ÐÑ
SE

piq
,
ÐÑ
Oψ, ϕi

˘

ď 2WmaxpSHbℓq `

p´1
ÿ

i“0

”

Wmax
`

S1
pur

˘

` Lmax
`

S1
pur

˘

Wmax
`ÐÑ
SE

piq˘
ı

}ϕi}
2

ď 2WmaxpSHbℓq `WmaxpS1
purq ` LmaxpS1

purq max
i
Wmax

`ÐÑ
SE

piq˘

ď 2WmaxpSHbℓq ` O
`

1{p1 ´ µq
˘

max
i

´

1 `Wmax
`ÐÑ
SE

piq˘
¯

. (13.17)

For the perturbation, we have using Proposition 12.4:

δpSpur,
ÐÑ
Oψ, ξq “ δ

`

pIJ b S1
purq ˝

ÐÑ
SE ,

ÐÑ
Oψ, H

bℓξ
˘

“

g

f

f

e

p´1
ÿ

i“0
δ
`

S1
pur, E

piqpOψq, ϕi
˘2

ď

g

f

f

e

p´1
ÿ

i“0

`

δpur}ϕi}
˘2

“ δpur.

75

Finally,
T pSpurq “ 2TCpSHbℓq ` TCpS1

purq ` TCp
ÐÑ
SEq ` Op1q. (13.18)

In the circuit model, the transduction complexities of SHbℓ and ÐÑ
SE

piq are 0 and 1, respec-
tively, and we get the required estimate from (13.17). Also, both T pSHbℓq and T p

ÐÑ
SEq are

Oplog pq, and T pS1
purq “ Ops ¨Dq. Since s ě log p, we get the required estimate from (13.18).

In the QRAG model, we have both WmaxpSHbℓq and Wmaxp
ÐÑ
SE

piq
q bounded by Oplog pq,

which gives the required estimate on the transduction complexity. For the time complexity, all
the terms in (13.18) are OpTRq, which shows that T pSpurq “ OpTRq.

13.3 Composition of Bounded-Error Algorithms
Purifier can be composed with algorithms evaluating functions with bounded error to reduce
the error. In this section, we mention some examples.

Since we are ignoring the constant factors, we will assume the standard version of the input
oracle: Ox : |i⟩|b⟩ ÞÑ |i⟩|b‘ xi⟩. In particular, it is its own inverse, and we use Ox instead of

ÐÑ
Ox

everywhere in this section.
Let us again recall the composed function f ˝ g from (11.2):

pf ˝ gqpz1,1, . . . , z1,m, z2,1, . . . , z2,m, , zn,1, . . . , zn,mq

“ f
`

gpz1,1, . . . , z1,mq, gpz2,1, . . . , z2,mq, . . . , gpzn,1, . . . , zn,mq
˘

.
(13.19)

and
y⃗i “ pzi,1, . . . , zi,mq and x “

`

gpy⃗1q, gpy⃗2q, . . . gpy⃗nq
˘

(13.20)

so that fpxq “ pf ˝ gqpzq. The following result is essentially Theorem 3.15.

Theorem 13.4. Let A and B be quantum algorithms in the circuit model that evaluate functions
f and g, respectively, with bounded error. Then, there exists an algorithm in the circuit model
that evaluates the function f ˝ g with bounded error in time complexity

OpLq
`

T pAq ` T pBq ` s logL
˘

(13.21)

where L is the worst-case Las Vegas query complexity of A, and s is the space complexity of
B. The algorithm makes O

`

L ¨ QpBq
˘

queries, where QpBq is the usual Monte Carlo query
complexity of B.

Proof. First, use Theorem 10.3 to get a transducer SA whose transduction action is identical
to the execution of A. Its time complexity T pSAq “ O

`

T pAq
˘

and its transduction and query
complexities are bounded by L.

The algorithm B on the input oracle Oy evaluates gpyq with bounded error. We obtain the
algorithm B´1 with the input oracle O˚

y “ Oy whose action is the inverse of B. Combining
the two via direct sum, we get the algorithm ÐÑ

B pOyq “ BpOyq ‘ B´1pOyq. Let Spur be the
corresponding purifier from Theorem 13.3, and D and δpur be the parameters therein. The
transduction action of Spur on the input oracle ÐÑ

B pOyq is |b⟩ ù |b‘ gpyq⟩.
By (13.20), we have Oz “

À

iOy⃗i . Let us denote by ÐÑ
B pOzq the algorithm pIn b

ÐÑ
B qpOzq “

À

i
ÐÑ
B pOy⃗iq. By Corollary 9.7 with Remark 9.5, the transducer In b Spur on the input oracle

ÐÑ
B pOzq performs the transduction |i⟩|b⟩ ù |i⟩|b‘ gpy⃗iq⟩ for every i P rns. In other words, its
transduction action is Ox.

Now consider the transducer
S “ SA ˝ pIn b Spurq

76

with the input oracle ÐÑ
B pOzq. By the definition of functional composition, it transduces |0⟩ into

pg ˝ f qpzq. By (3.21), its transduction complexity is at most

W pSA, Ox, |0⟩q `
ÿ

i

LpiqpSA, Ox, |0⟩q ¨Wmax
`

Spur,
ÐÑ
B pOy⃗iq

˘

“ OpLq.

We obtain the required algorithm by using Corollary 12.2 with ε “ Θp1q on the above
transducer S. The transducer S is executed OpLq times. Each execution takes times O

`

T pAq `

sD
˘

to execute the transducer and O
`

T pBq
˘

to execute the input oracle. Therefore, the total
time complexity is

OpLq
`

T pAq ` T pBq ` sD
˘

and the query complexity is OpLqQpBq.
It remains to estimate D. We may assume the error of A is a small enough constant. By

Corollary 12.2, in order to get a bounded-error algorithm from the transducer SA ˝ pIn b Spurq,
we should have

δ
`

In b Spur,
ÐÑ
B pOzq, qpSA, Ox, |0⟩q

˘

“ O
`

1{
?
L
˘

.

for a small enough constant. Using (12.1) and that ∥qpSA, Ox, |0⟩q∥ ď
?
L, we get that it suffices

to have δpur “ Op1{Lq. Therefore, we can take D “ OplogLq, which finishes the proof.

Let us now proceed with QRAG case, Theorem 3.16. Recall the function from (3.40):

f
`

g1pz1,1, . . . , z1,mq, g2pz2,1, . . . , z2,mq, . . . , gnpzn,1, . . . , zn,mq
˘

. (13.22)

with notation

y⃗i “ pzi,1, . . . , zi,mq and x “
`

g1py⃗1q, g2py⃗2q, . . . gnpy⃗nq
˘

.

For simplicity, we assume all functions f and g use the same input and output alphabet
q. Let A and Bi be quantum algorithms that evaluate f and gi, respectively. To simplify
expressions, we assume that T pBiq ě log q. In other words, we spend at least 1 iteration per
bit of the output. Also, all the algorithms have the same upper bound on permissible error.
We use an approach similar to Section 11 on iterated functions, so that we are able to compose
several layer of functions.

As in Section 8.2, we denote LxpAq “ LpA,Ox, |0⟩q and similarly for other notation. This
time, however the input oracle Ox : |i⟩|b⟩ ÞÑ |i⟩|b‘ xi⟩ is uniquely defined. As we can make the
perturbation of a purifier as small as necessary without increasing complexity, we ignore the
perturbations in the following implicitly assuming they are small enough.

Theorem 13.5. Let Sf be a perturbed transducer evaluating the function f , and B1, . . . , Bn be
algorithms evaluating the functions g1, . . . , gn with bounded-error. Assuming the QRAG model
with RA input oracle, and QRAM access to the description of B1, . . . , Bn, there exists a perturbed
transducer S evaluating the function (13.22) with the following parameters. Its transduction
complexity is

W pS,Oz, |0⟩q “ W pSf , Ox, |0⟩q `

n
ÿ

i“1
O
`

Lpiq
x pSf qT pBiq

˘

(13.23)

its query complexity is
Lpi,jqpS,Oz, |0⟩q “ O

`

Lpiq
x pSf qL

pjq

y⃗i
pBiq

˘

(13.24)

and its time complexity is T pSq “ TCpSf q ` OpTRq.

77

Proof. From Theorem 10.5, for each i, we obtain a transducer SBi whose transduction action
is identical to the action of Bi. Its transduction complexity WmaxpSBiq “ O

`

T pBiq
˘

and query
state is identical to that of Bi. Also, we obtain ÐÑ

SBi “ SBi ‘S˚
Bi

whose complexity is identical to
SBi . Let Spur be the corresponding purifier. We have that the transduction action of Spur ˝

ÐÑ
SBi

on an input oracle Oy is |b⟩ ù |b‘ gipyq⟩.
Using direct sum, we get that the transducer

Sg “ pIn b Spurq ˝
à

i

ÐÑ
SBi “

à

i

Spur ˝
ÐÑ
SBi

on the input oracle Oz “
À

iOy⃗i transduces |i⟩|b⟩ ù |i⟩|b‘ gipy⃗iq⟩ for every i P rns. Thus, its
transduction action is Ox, and the transducer S “ Sf ˝ Sg evaluates the function in (13.22).

Let us estimate its transduction complexity. First by (3.17):

WmaxpSpur˝
ÐÑ
SBi , Oy⃗iq ď WmaxpSpurq`LmaxpSpurqWmaxp

ÐÑ
SBiq “ Oplog pq`OpT pBiqq “ OpT pBiqq

using our assumption on T pBiq ě log p. Therefore, by (3.21):

W
`

S,Oz, |0⟩
˘

ď W pSf , Ox, |0⟩q `
ÿ

i

Lpiq
x pSf qWmax

`

Spur ˝
ÐÑ
SBi , Oy⃗i

˘

ď W pSf , Ox, |0⟩q `
ÿ

i

Lpiq
x pSf qOpT pBiqq.

For the query complexity, we use a partial-query variant of (3.19) and that the purifier only
executes the subroutine on the admissible initial states to obtain:

Lpjq
max

`

Spur ˝
ÐÑ
SBi , Oy⃗i

˘

ď LmaxpSpurqL
pjq
`

SBi , Oy⃗i , |0⟩
˘

“ O
`

L
pjq

y⃗i
pBiq

˘

.

Hence, by (3.24):

Lpi,jq
`

S,Oz, |0⟩
˘

ď Lpiq
x pAqLpjq

max
`

Spur ˝
ÐÑ
SBi , Oy⃗i

˘

ď Lpiq
x pAqO

`

L
pjq

y⃗i
pBiq

˘

.

The time complexity of Spur is OpTRq. Also, the direct sum
À

i
ÐÑ
SBi can be implemented in

OpTRq by Proposition 10.6. Thus, the time complexity of S is TCpSf q ` OpTRq.

We get Theorem 3.16 from this theorem by using a transducer Sf obtained from the pro-
gram A using Theorem 10.5, and then applying Proposition 12.3 to the resulting transducer.
Moreover, we get that the algorithm executes the input oracle Oz

O
´

max
z

n
ÿ

i“1
Lpiq
x pAqLy⃗ipBiq

¯

times.
Theorem 13.5 can be used multiple times in a row to obtain a composed transducer for a

tree of functions similar to the one in Theorem 3.11. If d is the depth of the tree, the query
complexity grows by the factor of Cd, where C is the constant in (13.24). This growth is
completely analogous to what one obtains using span programs for the query complexity. The
contribution to the time complexity from the subroutines on layer ℓ also grows by the factor
of Cℓ because they are multiplied by the corresponding query complexity in (13.23). The time
complexity of the final transducer is OpdTRq.

78

Acknowledgements
We would like to thank Titouan Carette for bringing references [8, 7] to our attention. We are
grateful to anonymous referees for their useful suggestions on the presentation of this paper.

AB is supported by the Latvian Quantum Initiative under European Union Recovery and
Resilience Facility project no. 2.3.1.1.i.0/1/22/I/CFLA/001 and the QuantERA project QOPT.

SJ is supported by NWO Klein project number OCENW.Klein.061; and ARO contract no
W911NF2010327. SJ is funded by the European Union (ERC, ASC-Q, 101040624). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them. SJ is supported by the project Divide
& Quantum (with project number 1389.20.241) of the research programme NWA-ORC which is
(partly) financed by the Dutch Research Council (NWO). SJ is a CIFAR Fellow in the Quantum
Information Science Program.

References
[1] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing,

37(1):210–239, 2007. Earlier: FOCS’04, arXiv:quant-ph/0311001. 7, 15

[2] A. Ambainis. Quantum search with variable times. Theory of Computing Systems, 47(3):786–807,
2010. Earlier: STACS’08, arXiv:quant-ph/0609188. 4, 5, 36

[3] A. Ambainis. Variable time amplitude amplification and quantum algorithms for linear alge-
bra problems. In Proc. of 29th STACS, volume 14 of LIPIcs, pages 636–647. Dagstuhl, 2012.
arXiv:1010.4458. 4

[4] A. Ambainis, A. Belovs, O. Regev, and R. de Wolf. Efficient Quantum Algorithms for (Gapped)
Group Testing and Junta Testing. In Proc. of 27th ACM-SIAM SODA, pages 903–922, 2016.
arXiv:1507.03126. 17

[5] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Any AND-OR formula of
size N can be evaluated in time N1{2`op1q on a quantum computer. SIAM Journal on Computing,
39(6):2513–2530, 2010. Earlier: FOCS’07. 4, 25

[6] A. Ambainis, M. Kokainis, and J. Vihrovs. Improved algorithm and lower bound for variable
time quantum search. In Proc. of 18th TQC, volume 266 of LIPIcs, pages 7:1–7:18, 2023.
arXiv:2302.06749. 4

[7] P. Andrés-Mart́ınez. Unbounded loops in quantum programs: categories and weak while loops. PhD
thesis, University of Edinburgh, 2022. arXiv:2212.05371. 13, 79

[8] M. Bartha. Quantum Turing automata. In Proc. of 8th DCM, volume 143 of EPTCS, pages 17–31,
2014. arXiv:1404.0074. 13, 79

[9] S. Beigi and L. Taghavi. Span program for non-binary functions. Quantum Information & Compu-
tation, 19(9):760––792, 2019. arXiv:1805.02714. 17

[10] A. Belovs. Learning-graph-based quantum algorithm for k-distinctness. In Proc. of 53rd IEEE
FOCS, pages 207–216, 2012. arXiv:1205.1534. 5

[11] A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proc. of 44th ACM
STOC, pages 77–84, 2012. arXiv:1105.4024. 15

[12] A. Belovs. Quantum walks and electric networks. arXiv:1302.3143, 2013. 15, 43, 44

[13] A. Belovs. Applications of the Adversary Method in Quantum Query Algorithms. PhD thesis,
University of Latvia, 2014. arXiv:1402.3858. 15

[14] A. Belovs. Variations on quantum adversary. arXiv:1504.06943, 2015. 6, 17, 27, 29, 35, 51

[15] A. Belovs. Global phase helps in quantum search: Yet another look at the welded tree problem.
arXiv:2404.19476, 2024. 43

79

https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1109/FOCS.2004.54
http://arxiv.org/abs/quant-ph/0311001
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.4230/LIPIcs.STACS.2008.1333
http://arxiv.org/abs/quant-ph/0609188
https://doi.org/10.4230/LIPIcs.STACS.2012.636
http://arxiv.org/abs/1010.4458
https://doi.org/10.1137/1.9781611974331.ch65
http://arxiv.org/abs/1507.03126
https://doi.org/10.1137/080712167
https://doi.org/10.1109/FOCS.2007.57
https://doi.org/10.4230/LIPIcs.TQC.2023.7
http://arxiv.org/abs/2302.06749
http://arxiv.org/abs/2212.05371
https://doi.org/10.4204/EPTCS.143.2
http://arxiv.org/abs/1404.0074
http://arxiv.org/abs/1805.02714
https://doi.org/10.1109/FOCS.2012.18
http://arxiv.org/abs/1205.1534
https://doi.org/10.1145/2213977.2213985
http://arxiv.org/abs/1105.4024
http://arxiv.org/abs/1302.3143
http://arxiv.org/abs/1402.3858
http://arxiv.org/abs/1504.06943
http://arxiv.org/abs/2404.19476

[16] A. Belovs and B. W. Reichardt. Span programs and quantum algorithms for st-connectivity and
claw detection. In Proc. of 20th ESA, volume 7501 of LNCS, pages 193–204. Springer, 2012.
arXiv:1203.2603. 5, 17

[17] A. Belovs and D. Yolcu. One-way ticket to Las Vegas and the quantum adversary.
arXiv:2301.02003, 2023. 4, 5, 7, 9, 12, 13, 17, 20, 32, 33, 35, 41, 45, 47, 50, 51

[18] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997. Earlier: STOC’93. 27, 74

[19] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation.
In Quantum Computation and Quantum Information: A Millennium Volume, volume 305 of AMS
Contemporary Mathematics Series, pages 53–74, 2002. arXiv:quant-ph/0005055. 15

[20] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey. Theo-
retical Computer Science, 288:21–43, 2002. 32

[21] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman. Exponen-
tial algorithmic speedup by a quantum walk. In Proc. of 35th ACM STOC, pages 59–68, 2003.
arXiv:quant-ph/0209131. 43

[22] R. Cleve. An introduction to quantum complexity theory. arXiv:quant-ph/9906111, 1999. 32

[23] A. Cornelissen, S. Jeffery, M. Ozols, and A. Piedrafita. Span programs and quantum time complexity.
In Proc. of 45th MFCS, pages 26:1–26:14, 2020. arXiv:2005.01323. 5, 6, 7, 12, 17, 36

[24] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND tree.
Theory of Computing, 4:169–190, 2008. arXiv:quant-ph/0702144. 4, 25

[25] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc. of 28th ACM
STOC, pages 212–219, 1996. arXiv:quant-ph/9605043. 15

[26] S. Jeffery. Quantum subroutine composition. arXiv:2209.14146, 2022. 5, 6, 7, 11, 12, 23, 36

[27] S. Jeffery. Span programs and quantum space complexity. Theory of Computing, 18(11):1–49, 2022.
arXiv:1908.04232. 4

[28] S. Jeffery and S. Kimmel. Quantum algorithms for graph connectivity and formula evaluation.
Quantum, 1:26, 2017. arXiv:1704.00765v3. 17

[29] S. Jeffery and S. Zur. Multidimensional quantum walks, with application to k-distinctness. In Proc.
of 55th ACM STOC, pages 1125–1130, 2023. arXiv:2208.13492. 5, 6, 15, 27, 36

[30] T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and M. Szegedy. Quantum query complexity of state
conversion. In Proc. of 52nd IEEE FOCS, pages 344–353, 2011. arXiv:1011.3020. 15, 17, 51

[31] N. Leonardos. An improved lower bound for the randomized decision tree complexity of recursive
majority. In Proc. of 40th ICALP, Part I, volume 7965 of LNCS, pages 303–314. Springer, 2013.
ECCC:2012/099. 25

[32] F. Magniez, A. Nayak, M. Santha, and D. Xiao. Improved bounds for the randomized decision tree
complexity of recursive majority. In Proc. of 38th ICALP, volume 6755 of LNCS, pages 317–329.
Springer, 2011. ECCC:2010/192. 25

[33] B. W. Reichardt. Span programs and quantum query complexity: The general adversary bound
is nearly tight for every Boolean function. In Proc. of 50th IEEE FOCS, pages 544–551, 2009.
arXiv:0904.2759. 4, 5, 17

[34] B. W. Reichardt. Reflections for quantum query algorithms. In Proc. of 22nd ACM-SIAM SODA,
pages 560–569, 2011. arXiv:1005.1601. 15

[35] B. W. Reichardt. Span-program-based quantum algorithm for evaluating unbalanced formulas. In
Proc. of 6th TQC, volume 6745 of LNCS, pages 73–103. Springer, 2014. arXiv:0907.1622. 4, 25

[36] B. W. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating formulas.
Theory of Computing, 8:291–319, 2012. Earlier: STOC’08, arXiv:0710.2630. 4, 5, 17, 25

[37] M. Saks and A. Wigderson. Probabilistic Boolean decision trees and the complexity of evaluating
game trees. In Proc. of 27th IEEE FOCS, pages 29–38, 1986. 25

[38] M. Santha. On the Monte Carlo boolean decision tree complexity of read-once formulae. Random
Structures and Algorithms, 6(1):75–87, 1995. 25

80

https://doi.org/10.1007/978-3-642-33090-2_18
http://arxiv.org/abs/1203.2603
http://arxiv.org/abs/2301.02003
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1145/167088.167097
http://arxiv.org/abs/quant-ph/0005055
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1145/780542.780552
http://arxiv.org/abs/quant-ph/0209131
http://arxiv.org/abs/quant-ph/9906111
https://doi.org/10.4230/LIPIcs.MFCS.2020.26
http://arxiv.org/abs/2005.01323
https://doi.org/10.4086/toc.2008.v004a008
http://arxiv.org/abs/quant-ph/0702144
https://doi.org/10.1145/237814.237866
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/2209.14146
https://doi.org/10.4086/toc.2022.v018a011
http://arxiv.org/abs/1908.04232
https://doi.org/10.22331/q-2017-08-17-26
http://arxiv.org/abs/1704.00765v3
https://doi.org/10.1145/3564246.3585158
http://arxiv.org/abs/2208.13492
https://doi.org/10.1109/FOCS.2011.75
http://arxiv.org/abs/1011.3020
https://doi.org/10.1007/978-3-642-39206-1_59
http://eccc.hpi-web.de/report/2012/099
https://doi.org/10.1007/978-3-642-22006-7_27
http://eccc.hpi-web.de/report/2010/192
https://doi.org/10.1109/FOCS.2009.55
http://arxiv.org/abs/0904.2759
https://doi.org/10.1137/1.9781611973082.44
http://arxiv.org/abs/1005.1601
https://doi.org/10.1007/978-3-642-54429-3_6
http://arxiv.org/abs/0907.1622
https://doi.org/10.4086/toc.2012.v008a013
https://doi.org/10.1145/1374376.1374394
http://arxiv.org/abs/0710.2630
https://doi.org/10.1109/SFCS.1986.44
https://doi.org/10.1002/rsa.3240060108

[39] M. Santha. Quantum walk based search algorithms. In Proc. of 5th TAMC, volume 4978 of LNCS,
pages 31–46. Springer, 2008. arXiv:0808.0059. 14

[40] M. Snir. Lower bounds for probabilistic linear decision trees. Theoretical Computer Science, 38:69–
82, 1985. 25

[41] M. Szegedy. Quantum speed-up of Markov chain based algorithms. In Proc. of 45th IEEE FOCS,
pages 32–41, 2004. 15

[42] B. Zhan, S. Kimmel, and A. Hassidim. Super-polynomial quantum speed-ups for Boolean evaluation
trees with hidden structure. In Proc. of 3rd ACM ITCS, pages 249–265, 2012. arXiv:1101.0796. 4

81

https://doi.org/10.1007/978-3-540-79228-4_3
http://arxiv.org/abs/0808.0059
https://doi.org/10.1016/0304-3975(85)90210-5
https://doi.org/10.1016/0304-3975(85)90210-5
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1145/2090236.2090258
http://arxiv.org/abs/1101.0796

	Introduction
	Conceptual Preliminaries: Quantum Las Vegas Complexity
	Types of Composition
	Randomised Complexity
	Quantum Complexity

	Overview of the Paper
	Transducers
	Connection to Quantum Walks
	Input Oracle and the Canonical Form
	Transducers from Quantum Algorithms
	Composition of Transducers
	Purifiers and Composition of Functions

	Preliminaries
	Query Algorithms
	Multiple Input Oracles
	Evaluation of Functions
	Circuit Model
	QRAG model
	Perturbed Algorithms
	Efficient Implementation of Direct-Sum Finite Automata

	Transducers
	Definition
	Implementation

	Example I: Quantum Walks
	Canonical Transducers
	Definition
	Multiple Input Oracles
	Reducing the Number of Oracle Calls

	Example II: Adversary Bound
	State Conversion
	Function Evaluation

	Composition of Transducers
	Basic Properties
	Alignment
	Parallel Composition
	Sequential Composition
	Functional Composition

	Transducers from Programs
	General Assumptions
	Building Blocks
	Circuit Model
	QRAG Model

	Example III: Iterated Functions
	Perturbed Transducers
	Definition
	Implementation
	Composition

	Purifiers
	Boolean Case
	Non-Boolean Case
	Composition of Bounded-Error Algorithms

