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A B S T R A C T

In many countries, the rapid aging of the population leads to an additional burden on already stretched long-
term care systems. This often manifests itself in excessive waiting times for long-term care centers, and in
abandonments (i.e., patients passing away while they are waiting). Interestingly, in practice, long waiting
times are not caused by a lack of available total capacity in the system, but by systematic inefficiencies in the
allocation of patients, each with their personal preferences and (in)flexibility, to geographically distributed
care centers.

Motivated by this, we propose a new and easy-to-implement method for the optimal allocation of patients-
in-need to nursing homes, balancing the trade-off between the waiting time performance and the individual
patients’ preferences and levels of flexibility. The optimal placement policy found by solving a Markov Decision
Process demonstrates that for small instances, the mean optimality gap of the allocation model is equal to 1.
3%. We validate a simulation model for a real-life use case of allocating somatic patients to nursing homes in
the Amsterdam area. The results show that if more patient replacements are approved, the allocation model can
reduce the abandonment fraction under the current policy from 32.2% to 7.4% and waiting times at the same
time. Moreover, with the allocation model individual preferences can be served better, which thus provides a
powerful means to face the increasing need for patient-centered and sustainable long-term care solutions.
1. Introduction

Between 2015 and 2050, the worldwide proportion of people aged
60+ will nearly double [1]. This imposes major challenges on long-
term healthcare systems. Growing public expectations regarding the
quality of long-term care, together with an increasing demand, lead to
a growing need for housing facilities, skilled personnel, and medical
equipment, which puts an additional strain on the system. At the same
time, health expenditures need to be kept at an acceptable level. There-
fore, serious concerns have been raised about the (financial) stability
of the long-term care system [2]. Policy makers are saddled with the
difficult task of designing the system in such a way that admission to
appropriate care can be guaranteed.

Today, deficits in local nursing home capacity lead to overcrowded
waiting lists [3,4], and the aging population causes longer waiting
times in prospect. Lack of timely access to long-term care is a crucial is-
sue due to the resulting confusion, distress, and anxiety of patients [5].
In addition, during the delay in admission, informal caregivers expe-
rience depressive symptoms and feelings of burden [6]. In addition,
high costs are involved for the healthcare system because waiting
patients occupy hospital beds [7], and patients may suffer injuries due
to omission of proper care [8].

∗ Corresponding author at: Vrije Universiteit Amsterdam, Department of Mathematics, De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands.
E-mail address: rebekka.arntzen@cwi.nl (R.J. Arntzen).

In addition to the costly solution of increasing facility capacity,
waiting list management can be used to get patients to the right
place more quickly. However, little research has been done on how
long-term care waiting lists should be managed or organized [9,10].
Even from this small amount of research, almost all studies focus on
improving available capacity (e.g., implementing the use of transitional
care facilities [11]) and not on the organization of the waiting list
itself. The Operational Research community is explicitly called upon to
develop models for effective healthcare waiting lists [12]. Nevertheless,
no mathematical models have yet been developed that can be used to
study this highly socially relevant issue.

A core characteristic that distinguishes long-term care from other
domains in terms of waiting list management is that patients have
specific preferences for nursing homes. The possibility of including
preferences in designing a waiting list policy is currently lacking in
relevant research fields such as the queueing literature on routing and
admission control. The contribution of this paper is two-fold. First, we
propose a waiting list management method that incorporates routing
preferences to parallel facilities. Second, we provide a solution to the
currently existing waiting list problem in nursing home care. More
specifically, our research objective is to design an allocation model
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for waiting list management policies that is (i) easy to implement and
understandable for healthcare employees, (ii) scalable as the number of
patients and nursing home beds can be large, and (iii) able to combine
the goals of retaining preferences best and keeping waiting times at a
small level.

2. Literature

Long-term care is provided for patients who have physical and/or
mental deficits that prevent them from performing the usual daily
tasks. The majority of long-term care is utilized by the elderly (65+),
nd therefore most long-term care facilities are designed for this sub-
opulation. Long-term care can be divided into three categories: (1)
nformal care, (2) community care, and (3) institutional care [13]. Infor-
al care is provided by the patient’s family, friends, and neighbors and

onsists mainly of basic activities such as cooking a meal or walking
utside. It has been found that 92% of patients who live at home receive
oluntary help [14]. Community care involves paid services targeted
t patients who live at home and consists of a broad range of services
rom nursing care at home to day care at an external location. If home
s not an appropriate living environment for the patient’s condition,
nstitutional care is required. Institutional facilities in which specialized
are is provided by nurses are referred to as typical ‘nursing homes’.

Proper access to nursing homes cannot always be guaranteed due
o excessive waiting times. The European Commission reports high
roportions of older people in need of institutional care who are
urrently on waiting lists in the EU [4]. For example, these fractions
f older people on the waiting list are 16% in the Netherlands, 33%
n Bulgaria, and 53% in Hungary. The problem exists in countries all
ver the world; see, for example, [15–17] for some reports in Australia,
anada, and South Africa. The lack of regional nursing home capacity
an further exacerbate the problem. For example, in Copenhagen, the
aiting time for a bed in a nursing home, which is not necessarily
preferred one, is over 3.5 years. Even in countries where waiting

ists for nursing homes are not (yet) an issue, we observe regional and
opularity issues with certain nursing homes. In the USA, only 29%
f all residential care communities reported having a waiting list, but
mong those, the average waiting time for admission was around 5
onths [18].

In the following, we address the literature regarding the manage-
ent of waiting lists for nursing homes from different angles: waiting

or nursing homes and waiting for healthcare in general. Thereafter, we
laborate on the relation of our paper with the literature on routing and
onclude with our contribution.

.1. Waiting-list management in long-term care

The long-term care waiting process starts with the selection of the
ight nursing home to apply for, based mainly on patient preferences,
uch as location [19] and cultural factors [20]. Specific preferences,
uch as cultural background, significantly influence waiting times [20,
. 1348]. If a patient’s application to a nursing home is not immediately
ccepted, the waiting period begins. To better manage the waiting
eriod, interventions such as transition care settings and adjustment
f home care levels are explored. For example, Crotty et al. [11] found
hat off-site transitional care units can be utilized during the waiting
eriod without adversely affecting patients’ conditions. However, some
atients may prefer not to use such units, suggesting a voluntary
pproach. Furthermore, research by Pedlar and Walker [21] highlights
he preference for increased home care over nursing home admission
y 90% of patients on waiting lists. This preference can significantly
educe nursing home demand and lead to substantial cost savings, given
he higher expense of nursing home care compared to home care.

Limited research exists on the management of waiting lists them-
elves. In a meta-analysis by Chafe et al. [9], only two papers on this
opic were identified. The first paper by Burkell et al. [22] examined the
 l

2 
hange from a first-come-first-served policy to one that prioritizes pa-
ients based on urgency. They observed significant variability in patient
are needs, suggesting that a needs-based criterion would drastically
lter priority. Similarly, in a study by Meiland et al. [23], priority
as based on urgency, revealing that non-urgent patients experienced

onger waits without deterioration of their condition. Moreover, their
atisfaction levels remained consistent while waiting at home, indicat-
ng that prioritizing urgent patients had minimal negative consequences
or nonurgent ones.

In [10], waiting-list management is discussed in a more general set-
ing, including patients discharged from hospitals who need residential
are. A Markov Decision Process was developed to determine when
atients in hospitals should receive priority for nursing home placement
ver those waiting at home. However, lowering the threshold simply
hifts the waiting time problem to patients at home. Furthermore, a
imulation tool estimated that nursing home stays must decrease by
–3 years to meet service level targets.

.2. Waiting-list management in healthcare

The impact of priority settings is also studied in other health con-
exts. Bowers [24] aimed to simulate the waiting lists of the UK’s
ational Health Service. By studying empirical waiting-time distribu-

ions, it was found that a FCFS policy did not correctly describe the
ehavior of the waiting lists. Motivated by this, a model was developed
hat includes priority parameters to differentiate between urgent and
outine patients and to include specified target waits for those different
roups of patients. Although the goodness-of-fit test revealed that the
eveloped model could not adequately describe empirical data, the
odel can be used to predict waiting times when such alternative
olicies are implemented.

The priority setting can depend on more factors than just urgency.
owever, determining the right priority instruments is complex. In
996, the International Society for Priorities in Health was founded
o investigate health priorities for both theoretical and practical pur-
oses [25]. Priority settings may even be more complicated when
emand is heterogeneous, such as in the case of surgical procedures
or which the expected outcome depends on the characteristics of the
atient. There are even settings in which both demand and supply are
eterogeneous, such as in the allocation of kidneys to patients where
ach kidney-patient combination determines the expected lifetime of
he patient, as seen in Zenios et al. [26]. In those cases, a regular
aiting list will not suffice, and an allocation model is needed.

.3. Routing models

The issue of waiting-list management can also be examined from
queueing-theoretic perspective. There is now a substantial body of

iterature on routing customers to parallel queues. For our purposes,
t is most intriguing to consider queues with both heterogeneous cus-
omers and heterogeneous server pools. Such systems have traditionally
een studied in the call center domain [27,28], where the assignment
f customers to server pools is known as skill-based routing (SBR). As
ndicated in [29], the analysis of SBR is typically intractable. Therefore,
ptimal routing decisions often rely on asymptotic approximations
see, e.g., [30–32]) and special cases, such as the V, inverted V, N,
nd X designs. For additional background and references, we refer
he reader to the recent survey [29]. This survey also discusses the
omplexities of SBR models in healthcare applications, focusing on in-
ospital patient flow from emergency departments to hospital wards.
t should be noted that [29] also explores an MDP formulation for
ptimal routing. Due to the explosion of the state (and action) space,
he authors only considered small-scale examples. For a recent study
sing approximate dynamic programming techniques for somewhat
arger instances, see [33].
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In computer server applications, the number of server pools 𝑁 is
generally considerably larger than in our nursing home setting. To
avoid excessive communication overhead, power-of-d routing policies
have been suggested. For such a policy, 1 ≤ 𝑑(𝑁) ≤ 𝑁 of the 𝑁
server pools are randomly selected, and the customer is routed to the
shortest of those queues. Even in the case of sampling two queues
(𝑑(𝑁) = 2), waiting times are drastically reduced (see, e.g. [34]). In
fact, [35], among others, demonstrate that for relatively small 𝑑(𝑁),
asymptotically optimal behavior can be preserved. We note that these
models fundamentally differ from our setting, as customers are routed
to a single queue upon arrival, and there are no preferences (server
pools are homogeneous). Nonetheless, the power-of-d results indicate
the enormous potential to add some flexibility in the allocation of
patients to nursing homes.

2.4. Our contribution

Long waiting lists for nursing homes are a significant societal prob-
lem, yet existing research often overlooks a crucial aspect: incorporat-
ing patient preferences into nursing home assignments. To fill this gap,
we propose a method that integrates patient preferences into waiting-
list management policies. Our aim is to develop a system that is easy
for healthcare employees to implement and understand, that is scalable
to accommodate varying numbers of patients and nursing homes, and
that effectively balances patient preference retention with minimizing
waiting times.

In addition to individual nursing home preferences, we also consider
patients’ preferences regarding willingness to wait. Drawing from the
concept of utilities, as studied by Nomura et al. [36] in content delivery
networks, we formalize this aspect. Using utilities as a measure of
patient preferences, our model offers a practical and comprehensible
approach for healthcare managers. This patient-centered allocation
method not only aligns with the individuality of patients but also allows
efficient bed allocation by leveraging explicit preferences.

3. Context and problem description

In this section, we define the scope of the problem, which involves
the system that incorporates the placement of patients in nursing
homes.

3.1. Background and terminology

For the sake of clarity, we elucidate the terms used throughout the
paper.

Patients: We consider patients on a waiting list for nursing home
placement, excluding high-emergency cases. All patients require the
same type of care, allowing nursing home beds to be used inter-
changeably. Patients enter the system upon expressing readiness for
placement, but remain at home while waiting.

Nursing home capacity: According to Ribbe [37], nursing homes are
institutions that provide nursing, psycho-social, and personal care, as
well as room and board. The capacity of a nursing home location is
expressed in terms of the number of beds available at the location. The
available number of beds may either be determined by the physical
beds present at the nursing home or may depend on the availability of
other resources such as personnel and services.

Preferences: In practice, certain nursing homes may be more ap-
pealing to patients due to factors such as proximity to their home,
familiarity with the coordinating care organization, and specialization
in specific subpopulations (e.g., LGBTQ+ patients or patients with the
same ethnic background [20]). We assume that each patient has at least
one preferred nursing home where they would ideally like to reside
permanently. If a patient is placed in a nursing home other than one of

their preferred choices, the placement may be temporary.

3 
3.2. Problem outline

The conventional procedure involves patients enrolling in the wait-
ing list(s) of their preferred nursing home(s) upon arrival. However,
we propose an alternative that allocates patients to nursing homes to
satisfy as many individual preferences as possible. Let 𝑁 = 0, 1,… , 𝑛max
enote the set of nursing homes, where we define nursing home 0 as the
ocation of the patient’s home. We denote by 𝑏𝑛 the number of beds
vailable in the nursing home 𝑛, and let 𝑏 =

∑

𝑛∈𝑁⧵0 𝑏𝑛 be the total
number of beds. Moreover, let 𝑃 be the set of patients who need a bed
in a nursing home. Each patient 𝑝 ∈ 𝑃 has a set of preferred nursing
homes, 𝐿𝑝 ⊆ 𝑁 ⧵ 0, in which they would like to reside permanently.
If a patient is placed in a nursing home in the set 𝑀𝑝 ∶= 𝑁 ⧵ 𝐿𝑝,
the placement is temporary and the patient still waits for a bed in a
preferred nursing home.

Patients are assumed to arrive according to a Poisson process with
rate 𝜆. The service times in nursing homes are exponentially distributed
with mean 1∕𝜇. These assumptions are validated in Section 6 using data
for our case study. Finally, the time until abandonment from the queue
is exponentially distributed with mean 1∕𝜃.

The patient placement process unfolds over time and space, as
shown in Fig. 1. Initially, the patient joins the waiting list for their
preferred nursing home while remaining at home. As time elapses and
the patient’s condition worsens, a preference for temporary placement
in a nursing home may arise. If a bed is available in a temporary facility,
the patient can be relocated there while still awaiting placement at their
preferred home. Upon availability, the patient moves to the preferred
nursing home, staying until they leave the system, often due to death
or transfer. Each patient’s journey is unique, with factors like disease
affecting progression.

Objective and performance measures
The goal is to efficiently allocate patients to nursing homes while

incorporating their preferences. This involves optimizing the aggre-
gate utility of patients based on preferences for nursing homes and
willingness-to-wait. We evaluated the trade-off between adhering to
preferences and efficiency using the key metrics detailed in Table 1.
Each patient 𝑝 is assigned a preference, expressed in terms of 𝑔𝑝𝑛, for
each nursing home 𝑛, the preferred nursing homes being those with the
highest values. Negative values (𝑔𝑝𝑛 < 0) indicate a patient’s unwill-
ingness to be placed in a specific nursing home. We also account for
patients’ willingness to wait, formalizing this trade-off through utility
functions; see Section 4.1 for a further discussion with an emphasis on
the waiting aspect.

We allow each patient to have unique utility structures, offering
customization appreciated by healthcare professionals. However, in
practice, employing a limited set of patient profiles can streamline op-
erations. These profiles capture common utility structures, simplifying
the acquisition of patient preferences. Our model presents individual
utility structures, while practical examples in Section 5 illustrate the
use of patient profiles.

4. Allocation model and method

In this section, we first formalize the preference profiles and
willingness-to-wait using utility functions in Section 4.1. These utility
functions are used in our allocation model for assigning patients to
nursing homes in Section 4.2. In Section 4.3, we evaluate the alloca-
tion model using simulation. We discuss some benchmark policies in
Section 4.4.

4.1. Utility functions

We established the utility functions in collaboration with and with

approval of experts in the elderly care domain. Specifically, the
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Fig. 1. Example patient journey.
Table 1
Performance measures.

Performance measure Description

Waiting time Time between arrival to waiting list and first and/or final placement
Abandonments Fraction of patients that abandon the system
% preferred NH Fraction of patients that end up in their preferred nursing home
Replacements Average number of replacements per patient
application of utility functions is an intuitive and attractive way for
health professionals to reflect the impact of preferences for nursing
homes and waiting on the choices of individual patients. In this setting,
the utility for each nursing home 𝑛 ∈ 𝑁 represents the ‘level of
happiness’ to reside there.

The utility depends on the initial preferences of the patient 𝑝,
the current location 𝑙𝑝 and the elapsed waiting time 𝑤𝑝, ∀ 𝑝 ∈ 𝑃 .
We denote the utility function for patient 𝑝 toward nursing home 𝑛
as 𝑢𝑝𝑛(𝑙𝑝, 𝑤𝑝),∀ 𝑝 ∈ 𝑃 , 𝑛 ∈ 𝑁 . In particular, it should comprise the
following four elements (with corresponding notation):

(i) Each patient 𝑝 ∈ 𝑃 can indicate initial preferences for each
nursing home 𝑛 ∈ 𝑁 . These preferences are denoted by 𝑔𝑝𝑛.

(ii) The patient’s 𝑝 ∈ 𝑃 willingness to be placed in a temporary
nursing home 𝑛 ∈ 𝑀𝑝⧵0 increases with the waiting time 𝑤𝑝. This
is described by the function 𝑣𝑈𝑝𝑛(𝑤𝑝), which is strictly increasing
in 𝑤𝑝.

(iii) The patient’s 𝑝 ∈ 𝑃 willingness to be placed in preferred nursing
home 𝑛 ∈ 𝐿𝑝 increases with the waiting time 𝑤𝑝. This is
described by the function 𝑣𝐹𝑝𝑛(𝑤𝑝), which is strictly increasing in
𝑤𝑝.

(iv) Patient’s 𝑝 ∈ 𝑃 relocation between two temporary nursing
homes results in a utility loss. This utility loss is modeled by the
replacement penalty 𝐾.

The preferences (i) remain constant over time, but if a patient’s
preferences change during the waiting period due to new information
about nursing home features, they can update their preferences. The
impact of waiting time is captured by elements (ii) and (iii). Specifi-
cally, 𝑣𝑈𝑝𝑛(𝑤𝑝) reflects the flexibility of a patient in waiting time. Patients
who prefer a quicker placement in a temporary nursing home will see
their utility increase more rapidly with waiting, ensuring that they are
placed sooner. However, this faster placement comes at the expense
of their opportunity for rapid placement in a preferred nursing home,
4 
as reflected in a less steep increase in 𝑣𝐹𝑝𝑛(𝑤𝑝) for preferred nursing
homes. The waiting time utility function 𝑣𝑈𝑝𝑛(𝑤𝑝) is added to the utility
of temporary nursing homes if a patient resides at home. Thus, a patient
may initially have a negative utility for a temporary nursing home, but
as the waiting time increases, their utility may become positive, leading
them to prefer the temporary nursing home over staying at home.

Regarding element (iv), patient relocations between temporary
nursing homes are only considered if the increase in utility outweighs
a replacement penalty 𝐾. Patients typically only relocate between tem-
porary nursing homes if the utility gain exceeds this penalty. However,
if a patient’s preference is a preferred nursing home, the replacement
penalty is not included.

Waiting-time utility
The waiting-time utility functions can be chosen so that the prefer-

ences of individual patients are best represented. In the following, we
discuss two different forms of utility functions. First, a simple choice for
waiting-time utility is a linear function of the elapsed waiting time 𝑤𝑝
of the form 𝑣𝑈𝑝𝑛(𝑤𝑝) = 𝛼𝑝𝑤𝑝−𝛽𝑝, with 𝛼𝑝 > 0, 𝛽𝑝 ≥ 0, 𝑝 ∈ 𝑃 . In this case,
the increase in waiting-time utility always grows at the same speed.
However, according to elderly care experts, the increase in waiting-time
utility is not constant. They describe the willingness to be placed in
a nursing home as follows: Initially, the waiting time utility increases
slowly, whereas after some ‘breaking point’ (e.g. an abrupt loss in
functionality) the utility increases drastically, after which the utility
increases slowly again. For that reason, a second more natural choice
for the waiting time utility function is to use a sigmoidal function, thus
of the form 𝑣𝑈𝑝𝑛(𝑤𝑝) =

𝛼𝑝
1+𝑒−(𝜖𝑝𝑤𝑝−𝛾𝑝 )

− 𝛽𝑝 ∀ 𝑝 ∈ 𝑃 .
The parameter values of the utility functions determine the speed

with which a person is willing to be placed in a nursing home. Patient
𝑝 ∈ 𝑃 wants to be placed in nursing home 𝑛 ∈ 𝑁 if 𝑢𝑝𝑛(𝑙𝑝, 𝑤𝑝) > 0, thus
in the linear case if 𝑔 + 𝛼 𝑤 − 𝛽 > 0. If 𝛽 > 0, only if 𝑤 is large
𝑝𝑛 𝑝 𝑝 𝑝 𝑝 𝑝



R.J. Arntzen et al. Operations Research for Health Care 42 (2024) 100442 
Fig. 2. Example waiting time utility functions.
enough we have 𝑔𝑝𝑛+𝛼𝑝𝑤𝑝−𝛽𝑝 > 0. An example of this for both waiting
time utility functions is provided in Fig. 2.1

Now, the utility function of patient 𝑝 ∈ 𝑃 at location 𝑙𝑝 ∈ 𝑀𝑝
towards location 𝑛 ∈ 𝑁 with elapsed waiting time 𝑤𝑝 is defined as
follows:

𝑢𝑝𝑛(𝑙𝑝, 𝑤𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑛 ∶= 𝑙𝑝
𝑔𝑝𝑛 + 𝑣𝑈𝑝𝑛(𝑤𝑝) if 𝑙𝑝 = 0, 𝑛 ∈ 𝑀𝑝 ⧵ 0
𝑔𝑝𝑛 − 𝑔𝑝𝑙𝑝 + 𝑣𝐹𝑝𝑛(𝑤𝑝) if 𝑛 ∈ 𝐿𝑝

𝑔𝑝𝑛 − 𝑔𝑝𝑙𝑝 −𝐾 if 𝑙𝑝 ≠ 0, 𝑛 ∈ 𝑀𝑝 ⧵ 𝑙𝑝
−∞ if 𝑛 = 0, 𝑙𝑝 ∈ 𝑀𝑝 ⧵ 0.

(4.1)

In words, the utility is 0 if patient 𝑝 ∈ 𝑃 stays at the same location.
The utility is 𝑔𝑝𝑛 + 𝑣𝑈𝑝𝑛(𝑤𝑝) if the patient lives at home and goes to
a temporary nursing home. The utility is 𝑔𝑝𝑛 − 𝑔𝑝𝑙𝑝 + 𝑣𝐹𝑝𝑛(𝑤𝑝) if the
patient goes to a preferred nursing home. Furthermore, the utility is
𝑔𝑝𝑛−𝑔𝑝𝑙𝑝 −𝐾 if a patient resides in a temporary nursing home and goes

to another temporary nursing home. Finally, if the patient no longer
lives at home, i.e., 𝑙𝑝 ∈ 𝑀𝑝 ⧵ 0, the utility for home is set to −∞, which
prohibits a return placement. Adding the waiting-time utilities in this
way ensures that if there are two patients 𝑝′, 𝑝′′ ∈ 𝑃 with the same
utility functions and where 𝑙𝑝′ = 𝑙𝑝′′ , but 𝑤𝑝′ > 𝑤𝑝′′ , then patient 𝑝′ is
given priority over patient 𝑝′′ for nursing home 𝑛. This fosters fairness
in the system.

4.2. Allocation model

We propose a Binary Integer Programming (BIP) model to allocate
patients to nursing homes. The allocation model is based on a static
setting (snap shot) of the dynamic process. The model solves the optimal
allocation for the static setting so that the utility sum of all patients
is maximized. For our allocation model, we are not interested in the
patients who are already residing in a preferred nursing home, since
these patients do not have to be re-allocated to another nursing home.
Thus, we have that for each patient 𝑝 ∈ 𝑃 , the current location is
𝑙𝑝 ∈ 𝑀𝑝. Note that the set 𝑀𝑝 also includes the home location 0.

Similarly, we define the capacity 𝑐𝑛 of nursing home 𝑛 ∈ 𝑁 as the
number of beds not assigned to patients 𝑝 ∈ 𝑃 for whom 𝑛 ∈ 𝐿𝑝. This is
based on the reasoning that these patients already have a bed allocated.
The capacity 𝑐𝑛 thus includes beds that could be occupied by patients
who temporarily reside there. Utility functions ensure that temporary
patients are primarily allocated to the nursing home where they already
reside, allowing them to stay in the same bed.

1 In Fig. 2, we assume that 𝑔𝑝𝑛 = 20 for patient 𝑝 ∈ 𝑃 and nursing home
𝑛 ∈ 𝑁 . Then, only if 𝑣𝑈𝑝𝑛(𝑤𝑝) > −20 we have 𝑢(𝑙𝑝, 𝑤𝑝) > 0, after which the
patient prefers to be placed in nursing home 𝑛 ∈ 𝑁 over staying at home. In
the linear case this holds if 𝑤 > 100 and in the sigmoidal case if 𝑤 > 125.
𝑝 𝑝

5 
For the allocation problem, we define the decision variable 𝑥𝑝𝑛,
which equals 1 if patient 𝑝 ∈ 𝑃 is placed at location 𝑛 ∈ 𝑁 , and 0
else. An overview of the notation is provided in Table 2.

Now, the allocation problem can be formulated as follows:

max
∑

𝑝∈𝑃

∑

𝑛∈𝑁
𝑢𝑝𝑛(𝑙𝑝, 𝑤𝑝)𝑥𝑝𝑛 (4.2)

s.t.
∑

𝑝∈𝑃
𝑥𝑝𝑛 ≤ 𝑐𝑛 ∀𝑛 ∈ 𝑁 (4.3)

∑

𝑛∈𝑁
𝑥𝑝𝑛 = 1 ∀𝑝 ∈ 𝑃 (4.4)

𝑥𝑝𝑛 ∈ {0, 1} ∀𝑝 ∈ 𝑃 , 𝑛 ∈ 𝑁. (4.5)

The objective of the allocation problem (4.2) is to maximize the total
utility of all patients 𝑝 ∈ 𝑃 . This must be done under the constraints
that (4.3) no more patients can be allocated to a nursing home than
the capacity allows and that (4.4) each patient can only be allocated to
one location. Constraints (4.5) are binary constraints.

Since the constraint matrix is totally unimodular and the elements
on the right-hand side of the constraints are integral, the solution of the
linear problem is integral. Therefore, the allocation model can be solved
using a linear solver, which makes it fast and scalable. Furthermore,
the (binary) allocation problem is a special case of the Generalized
Assignment Problem, in which the capacity needed for each job is equal
to 1 [38].

Moreover, our waiting-time utilities structure not only caters to
patient preferences but also promotes efficiency. If a patient faces
prolonged waiting times for a specific nursing home, their utility for
alternative options may increase, causing placement in another fa-
cility. This design ensures optimal bed utilization, balancing patient
preferences with efficient resource allocation.

4.3. Simulation model

In this section, we describe how the allocation model performs in
a dynamic setting and can be evaluated using simulation. First, in
line with the current procedure, we assume that patients can only
be admitted to a nursing home at fixed regular moments (e.g. every
morning). We define 𝛥 as the time between two consecutive allocation
moments. Then, the (deterministic) sequence of allocation moments can
be described as 𝑡𝑛 = 𝑡𝑛−1+𝛥, for 𝑛 = 1, 2,…. For example, if patients can
enter once a day, 𝛥 equals one day. The set of all allocation moments
is denoted by 𝑇 = {𝑡𝑛}∞𝑛=1.

The time interval between the decision moments, 𝛥, determines
the speed with which entry takes place. If 𝛥 → 0, then entering a
nursing home can be done instantaneously, such that the nursing home
𝑛 behaves as an M/M/𝑏𝑛+M queue. If 𝛥 is chosen to be rather large,
a bed might remain empty for some time, resulting in inefficiency in
capacity use. On the other hand, a larger 𝛥 implies that during a time
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Table 2
Notation allocation model.
Sets
𝑃 Patients
𝑁 Nursing homes, with 𝑛 = 0 the home location
𝐿𝑝 ⊆ 𝑁 ⧵ 0 Preferred nursing homes of patient 𝑝 ∈ 𝑃
𝑀𝑝 Non-preferred nursing homes, i.e. 𝑁 ⧵ 𝐿𝑝

Parameters
𝑢𝑝𝑛(𝑙𝑝 , 𝑤𝑝) The utility of patient 𝑝 ∈ 𝑃 at location 𝑙𝑝 towards location 𝑛 ∈ 𝑁 , after waiting time 𝑤𝑝
𝑙𝑝 The current location of patient 𝑝 ∈ 𝑃 , where 𝑙𝑝 ∈ 𝑀𝑝
𝑔𝑝𝑛 The fixed utility of patient 𝑝 ∈ 𝑃 for location 𝑛 ∈ 𝑁

𝑣𝑈𝑝𝑛(𝑤𝑝) The waiting time utility of patient 𝑝 ∈ 𝑃 until placed in nursing home after waiting time 𝑤𝑝

𝑣𝐹𝑝𝑛(𝑤𝑝) The waiting time utility of patient 𝑝 ∈ 𝑃 until placed in permanent nursing home after waiting time 𝑤𝑝

𝐾 The replacement penalty
𝑏𝑛 The capacity of nursing home 𝑛 ∈ 𝑁 , where 𝑏0 = ∞
𝑐𝑛 The remaining capacity of nursing home 𝑛 ∈ 𝑁 , i.e. the number of beds not occupied by patients 𝑝 ∈ 𝑃 for which 𝑛 ∈ 𝐿𝑝

Decision variables
𝑥𝑝𝑛 Binary variable to indicate if patient 𝑝 ∈ 𝑃 is placed at location 𝑛 ∈ 𝑁
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interval more arrivals and departures have taken place, which increases
the allocation possibilities.

More specifically, the model above with entering possibilities can
be related to a queueing model with discharges at inspection in-
stances [39]. In case of a single nursing home 𝑛 and infinite patience
(i.e., the M/M/𝑏𝑛 variant), the stability condition is

𝑏𝑛
(

1 − 𝑒−𝜇𝛥
)

> 𝜆𝛥,

where the term on the left-hand side corresponds to the maximum
number of departures per 𝛥 time units, which follows a Binomial(𝑏𝑛,
1 − 𝑒−𝜇𝛥)) distribution. Intuitively, 1 − 𝑒−𝜇𝛥 can be interpreted as the
ffective service rate. Observe that 1−𝑒−𝜇𝛥 ≈ 𝜇𝛥 for 𝜇𝛥 small, such that
he capacity lost due to entering possibilities is small.

Now, in order to evaluate the allocation model in the dynamic
etting, we implemented a simulation model, where the allocation
odel of Section 4.2 is executed based on a rolling horizon, i.e., at

ll instants 𝑡𝑛 after updating arrivals, departures, and utilities. The
rocedure consists, after the initialization, of two steps: (1) incorpo-
ating the dynamic features of the simulation, and (2) running the
llocation model. The two-step procedure is iteratively run until a
topping criterion is met. We refer to Appendix A for a more detailed
escription of the simulation procedure.

.4. Benchmark policies

As mentioned, the aim of the allocation model is to have the ‘best of
oth worlds’, i.e., short waiting times, few abandonments, and place-
ent in a preferred nursing home. Clearly, there are extreme policies

hat are best for one of such performance measures. Such policies
rovide insight into the best value that can be achieved, i.e., serve
s a lower or upper bound. Ideally, the allocation model yields a
erformance close to those bounds.

hared queue. This refers to the situation in which there is a single
aiting list for all nursing homes (and preferences are completely
eglected). The system is similar to the Erlang C or A model, with the
apacity equal to the total number of beds of all nursing homes. This
orresponds to the most efficient system design. Hence, the correspond-
ng mean waiting times and fraction of abandonments provide lower
ounds for the actual performance.

eparate queues. This corresponds to the other extreme, namely ded-
cated waiting lists for each individual nursing home. The queue of

single nursing home is similar to the Erlang C or A model, with
apacity equal to the number of beds of the corresponding nursing
ome. Clearly, the number of preferred placements is now maximized
provides an upper bound), at the cost of waiting times and abandon-
ents.

ptimal policy. An optimal policy can be formulated using a Markov

ecision Process (MDP) that considers both direct and future costs in w

6 
erms of preferred placements, abandonments, and waiting. For any
easonably sized instance, solving such an MDP is computationally
rohibitive due to the curse of dimensionality. The goal of the optimal
olicy is to verify the optimality gap of the allocation model for very
mall instances. The precise MDP formulation and the size of the state
pace can be found in Appendix B.

. Experiments for small setting

In this section, we present numerical results from applying the
llocation model (AM) to a small-scale setting. The aim is to gain
nsights into the model’s performance and behavior under various
arameter settings. Since our model facilitates in serving individual
eeds, we want to show the benefits of the allocation model for
ndividual patients. For that purpose, selecting the same utility function
or all patients will not suffice. Therefore, we created two characteristic
roups of patients with similar utilities. The two utility groups are ‘‘Fast
lacement’’ (FP) and ‘‘Preferred placement’’ (PP). FP patients prefer
uick placement in a (temporary) nursing home, while PP patients opt
o wait for availability at their preferred nursing home. We denote the
P group as elements of the set 𝐶𝐹𝑃 ⊆ 𝐶 and the PP group as elements
nd consequently ⊆ 𝐶.

.1. Instance specification

The small setting contains four nursing homes with 20 beds each.
irst, we elucidate the patients’ utilities and then the dynamic param-
ters.

For all patients 𝑝 ∈ 𝑃 and nursing homes 𝑛 ∈ 𝑁 ⧵ 0, we set the
ixed utility to 𝑔𝑝𝑛 = 30. The FP and PP utility groups can be identified
y their unique waiting-time utilities. For the FP group, the waiting
ime utilities equal 𝑣𝑈𝑝𝑛(𝑤𝑝) = 0.1𝑤𝑝 + 100 for 𝑝 ∈ 𝑃 𝐹𝑃 . This implies
hat in combination with 𝑔𝑝𝑛 > 0 for 𝑝 ∈ 𝑃 , 𝑛 ∈ 𝑁 ⧵ 0, if a bed is
vailable in a nursing home, a patient of the FP group will always
e placed there. For the FP group, this results in a fast placement
n a nursing home. For the PP group, the waiting time utilities are
𝑈
𝑝𝑛(𝑤𝑝) = 0.1𝑤𝑝 − 500 for 𝑝 ∈ 𝑃 𝑃𝑃 . In this case, patients have to wait
xtremely long before the utility for temporary nursing homes becomes
ositive, which means that patients only receive a placement in their
referred nursing home. The probabilities of arrival of a patient from
he FP and PP groups are indicated by 𝑝𝐹𝑃 and 𝑝𝑃𝑃 , respectively. Thus,
he arrival rates for the groups are 𝜆𝑝𝐹𝑃 and 𝜆𝑝𝑃𝑃 .

The waiting time utilities for the preferred nursing homes are set to
iffer between the two groups. Namely, 𝑣𝐹𝑝𝑛(𝑤𝑝) = 0.1𝑤𝑝 for 𝑝 ∈ 𝑃 𝐹𝑃 ,
nd 𝑣𝐹𝑝𝑛(𝑤𝑝) = 0.15𝑤𝑝 for 𝑝 ∈ 𝑃 𝑃𝑃 . This implies that the utilities for the
referred nursing homes of PP increase slightly faster than those of FP.
n this way, at some moments, a PP group patient might surpass the

aiting FP patients, although the waiting time is shorter. The utilities
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Table 3
Parameter values small setting.

Parameter Value Parameter Value

|𝑁| 4 𝐾 1000
|𝐿𝑝| 1 ∀ 𝑝 ∈ 𝑃 𝑣𝑈𝑝𝑛(𝑤𝑝) 0.1𝑤𝑝 + 100 ∀ 𝑝 ∈ 𝑃 𝐹𝑃

𝜃−1 {∞, 730} 𝑣𝑈𝑝𝑛(𝑤𝑝) 0.1𝑤𝑝 − 500 ∀ 𝑝 ∈ 𝑃 𝑃𝑃

𝜇−1 1095 𝑣𝐹𝑝𝑛(𝑤𝑝) 0.1𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝐹𝑃

𝑀 1000 𝑣𝐹𝑝𝑛(𝑤𝑝) {0.25𝑤𝑝 , 0.15𝑤𝑝} ∀ 𝑝 ∈ 𝑃 𝑃𝑃

𝑐𝑛 Initial value: 20 ∀ 𝑛 ∈ 𝑁 𝑝𝐹𝑃 0.5
𝛥 1 day 𝑝𝑃𝑃 0.5
𝑔𝑝𝑛 30 ∀ 𝑝 ∈ 𝑃 , 𝑛 ∈ 𝑁

Fig. 3. Comparison allocation model to extremes (𝜃 = 0).

are chosen in this way to place PP patients faster in their preferred
nursing home. Finally, the replacement penalty 𝐾 is set to 1000, which
prohibits replacements to be performed between temporary nursing
homes.

Dynamic parameters are set with realistic values, where available.
The mean length-of-stay in nursing homes is approximately two years,
reflecting real-world data [40]. Estimating the abandonment rate at
home, 𝜃, is challenging due to data scarcity. The abandonment rate
at home is assumed to be higher than the service rate in nursing
homes, given care limitations and the potential for patients to seek
alternatives outside the region. Thus, 𝜃−1 is set to two years. In the
absence of abandonments, 𝜃 = 0. This adjustment prompts a mod-
ification in the waiting-time utility function, specifically for patients
who prioritize placement in preferred nursing homes. Here, 𝑣𝐹𝑝𝑛(𝑤𝑝) =
0.25𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝑃𝑃 , accommodating the altered dynamics in waiting
times characteristic of abandonment-free scenarios.

We define the offered load per server as 𝜌 = 𝜆
𝑐𝜇 . In case there are

no abandonments (𝜃 = 0), we need at least that 𝜌 < 1 to attain stability
of the system. However, the assumption only applies to parts of our
small-scale setting. For the allocation model, we allow 𝜌 ≥ 1 as long
as 𝜃 > 0. In our experiments, when studying the impact of the offered
load, we will only vary the arrival rate 𝜆 and keep the service rate 𝜇
fixed. An overview of the parameter settings is given in Table 3.

5.2. Results for the small setting

First, we investigate the situation without abandonments, i.e., 𝜃 = 0
and 𝑣𝐹𝑝𝑛(𝑤𝑝) = 0.25𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝑃𝑃 . The performance of the allocation
model can be compared with respect to the two extreme policies
separate and shared queues (see Section 4.4), which is shown in Fig. 3.
It can be seen that the mean waiting time of the allocation model
is much shorter than the mean waiting time of the separate queues,
whereas it is only slightly longer compared to the shared queue (i.e., the
lower bound). This observation is in line with the principle that ‘‘a
little flexibility goes a long way’’; see, e.g. [28] for SBR examples in
which some flexibility in resource pooling suffices to obtain most of
the efficiency gain.
7 
Fig. 4. Comparison patient groups within allocation model (𝜃 = 0).

Fig. 5. Effect of increasing 𝐾 on the number of replacements of FP.

To get more insight into the performance measures of the two
groups of patients, we split the waiting times of the allocation model
into groups, as shown in Fig. 4. We see that for all different loads,
the mean waiting time until the placement of the FP group is the
lowest. In addition, the time until a patient of this group is placed
in their preferred nursing home is longer than for the PP group. In
that respect, the needs of both groups are indeed served: FP is placed
quickly, whereas PP is placed slightly faster in their preferred nursing
home.

The next experiment is conducted on the effect of the replacement
penalty 𝐾. Note that in our parameter setting, 𝐾 only influences
the replacement potential of the FP group, as the PP group is not
temporarily placed. In addition, for this experiment, we diversify our
𝑔𝑝𝑛-values into 𝑔𝑝𝑛 ∈ {10, 20, 30, 40}, where each value is selected with
probability 0.25. The results of the different replacement penalties are
shown in Fig. 5. Clearly, an increase in 𝐾-penalty is observed to lead to
fewer replacements of the FP group. In addition, we see that the number
of replacements between two temporary nursing homes increases as
the system is more congested. This seems in line with the fact that
congestion leads to longer waiting times and consequently to more
potential benefits of temporary replacements.

The results of the simulation model, including abandonments, are
detailed in Table 4.2 Across various load levels, the allocation model
exhibits slightly higher abandonment rates compared to the shared
queue but significantly lower rates than separate queues, indicating
efficient capacity utilization. The mean occupancy levels for AM are

2 The values in Table 4 are the results of the simulation model that
incorporates uncertainty. Since the model ran for a sufficient duration, the
uncertainty around the results is negligible and therefore omitted.
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Table 4
Results small setting.

Offered
load

Policy % abandonments % died at
temp. NH

% died at
pref. NH

MWT till
placement (d)

MWT till
preferred (d)

Mean nr. of
replacements

Mean
occupancy

0.9

Shared queue 1.5% 0.0% 98.5% 10.3 10.3 0.98 0.89
AM: tot 2.8% 2.5% 94.6% 18.4 44.2 1.14 0.87
AM: FP 0.6% 5.1% 94.3% 4.3 55.5 1.35 –
AM: PP 5.1% 0.0% 94.9% 33.1 33.1 0.95 –
Separate queues 5.8% 0.0% 94.2% 38.4 38.4 0.94 0.85

1

Shared queue 5.2% 0.0% 94.8% 37.7 37.7 0.95 0.95
AM: tot 6.3% 3.5% 90.2% 41.2 78.3 1.18 0.94
AM: FP 2.5% 7.0% 90.5% 17.4 89.6 1.47 –
AM: PP 10.0% 0.0% 90.0% 67.0 67.0 0.90 –
Separate queues 9.7% 0.0% 90.3% 65.6 65.6 0.90 0.90

1.1

Shared queue 10.2% 0.0% 89.8% 75.8 75.8 0.90 0.98
AM: tot 11.5% 3.3% 85.1% 76.3 115.4 1.14 0.97
AM: FP 6.7% 6.7% 86.6% 46.4 121.0 1.44 –
AM: PP 16.3% 0.0% 83.7% 109.7 109.7 0.84 –
Separate queues 14.6% 0.0% 85.4% 101.6 101.6 0.85 0.94
Table 5
Parameter values for randomly generated instances.

Parameter Value from distribution

𝜇 Unif(0.01, 0.03)
𝜆 = 𝑝𝜆 ⋅ 𝜇 ⋅

∑

𝑛∈𝑁⧵{0} 𝑏𝑛 With 𝑝𝜆∼Unif(0.5, 0.99)
𝑔𝑖𝑛 𝑖 ∈ {𝐹𝑃1 , 𝐹𝑃2}, 𝑛 ∈ 𝑀𝑖 Unif(20, 40)
𝑔𝑖𝑛 𝑛 ∈ 𝐿𝑖 Unif(50, 70)
𝐾𝑖 𝑖 ∈ {𝐹𝑃1 , 𝐹𝑃2}, 𝑛 ∈ 𝑁 ⧵ {0} Unif(1, 10)
𝑤𝑖 𝑖 ∈ {𝐹𝑃1 , 𝐹𝑃2} Unif(0.5, 1.5)
𝑤𝑖 𝑖 ∈ {𝑃𝑃1 , 𝑃𝑃2} Unif(1.5, 3)

only marginally lower than those for the shared queue. The efficiency is
also apparent from the mean waiting times until placement, which are
only slightly higher for AM compared to the shared queue. In addition,
the waiting times for the preferred AM placement are only slightly
longer than those of separate queues. AM is the only model using
temporary nursing home placements. However, the fraction of patients
who end up in their preferred nursing home is similar to both separate
and shared queue strategies. For the shared queue policy, patients are
treated as having no preferences (all nursing homes are preferred),
providing a clear upper bound. Naturally, the shared queue policy does
not facilitate patient preferences.

Based on these results, the allocation model is found to have ‘the
best of both worlds’: both short waiting times are obtained next to
preferences being retained well (both are relatively close to their lower
and upper bound, respectively). However, these achieved gains are at
the cost of the number of replacements, which increases by more than
20% for all offered loads. Hence, the allocation model yields promising
results only if more patient replacements are allowed.

5.3. Comparison to optimal solution

To compare the allocation model with the optimal solution, we
developed an MDP that gives us the optimal policy for small instances.
More information on the MDP setup can be found in Appendix B.
We run an experiment with 50 randomly generated small instances,
where we have two nursing homes with two beds each. We choose the
parameters as much as possible in line with previous experiments. For
example, we choose 𝜇 such that the maximum total departure rate is
equal to that of the small-scale example, i.e., we let 𝜇 = 80

4 ⋅ 1
1095 = 0.018,

where the first ratio is the number of beds in the small-scale example
divided by the number of beds in the current experiment. To create
diversity in the numerical experiments, we add randomization and let
𝜇 ∼ Unif(0.01, 0.03). All parameter values are realizations of the values
provided in Table 5.

To align the allocation model with the optimal solution, we use the
same classes, 𝑔 values, and similar waiting utility, that is, 𝑣𝑈 (𝑤) =
𝑖𝑛 𝑖𝑛

8 
Fig. 6. Optimality gap in %.

𝑣𝐹𝑖𝑛(𝑤) = 𝑤𝑖𝑤, ∀ 𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁 for the generated 𝑤𝑖 in the instances.
This ensures that the waiting costs for the MDP correspond to the
increase in waiting utility in the allocation model. The resulting long-
term average rewards for the allocation model are determined through
simulation, using the parameter values described in Table 5, to ensure
consistency with the optimal solution found by the MDP. The optimality
gap between the long-term average reward of the allocation model
(denoted 𝑔𝐴𝑀 ) and the optimal solution (denoted 𝑔∗) can now be

defined as 𝑔𝐴𝑀−𝑔∗
𝑔∗ .

For the 50 instances, we observe a mean optimality gap of 1.6%,
which is rather small. Fig. 6 illustrates the distribution of this gap.
Furthermore, Fig. 7 shows the percentages of patients who died in
preferred nursing homes, while Fig. 8 presents the waiting time distri-
butions. Although the allocation model slightly lags behind in ‘‘accurate
placement’’ (with an average of 92.7% compared to 94.2% for the
MDP solution), it compensates with shorter waiting times. The mean
waiting time for the allocation model is marginally lower at 17.6 days,
attributed to its immediate placement policy once a suitable bed is
available.

We conducted 50 instances of a slightly larger MDP, maintaining
the parameter values from Table 5 but with 3 beds per nursing home
instead of 2. The mean optimality gap for this setting was 1.0%,
suggesting a potential decrease in the gap as the problem scale in-
creases (from 1.6% to 1.0%). These additional results are detailed in
Appendix C.

Overall, the allocation model shows close to optimal performance
with a mean optimality gap of 1.3%. Several factors contribute to its
excellence. First, the ability to relocate patients post-placement allows
for rectification of undesirable placements, which benefits static or
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Fig. 7. % died in pref. nursing home.

Fig. 8. Waiting time (d).

greedy policies (cf. [41]). Second, the structure of waiting-time utilities
exhibits similarities to threshold policies, known for their optimality
in dynamic systems [42,43]. Third, uniformity in length of stay and
abandonment rate between patient types creates a more homogeneous
system. Lastly, it is worth noting that static policies have been proven
optimal in various multi-class queue scenarios, such as the well-known
𝑐𝜇 or 𝑐𝜇∕𝜃 rule [44].

5.4. Effect of multiple preferred nursing homes

In the small setting, the number of nursing homes preferred by
all patients is set at one. However, patients may be amenable to
selecting multiple nursing homes as their preferred options. For that
reason, we show the effect of choosing multiple nursing homes as their
preferred ones. The results for the small setting without abandonments
are presented in Fig. 9.

In Fig. 9 it becomes clear that if patients select two preference
homes, the waiting times for various offered loads are nearly as short
as the (minimal) waiting times of the shared queue. In this setting,
increasing the number of preferred nursing homes to two is a very effec-
tive intervention, which is in line with the principle that adding a little
flexibility provides most of the benefits of complete flexibility [28,45].

5.5. Effect of popular nursing homes

Although the preceding results are obtained for nursing homes with
equal demand, in practice some nursing homes are more popular than
9 
Fig. 9. Mean waiting time AM multiple preferences (𝜃 = 0).

Fig. 10. Percentage abandonments scenario popular nursing homes.

others. Therefore, we define a scenario in which demand is not equally
distributed. In this scenario, a nursing home 𝑗∗ ∈ 𝑁 is selected with
probability 0.5 as the preferred nursing home for each patient 𝑝 ∈ 𝑃 ,
hence 𝑃 (𝑙𝑝 ∶= 𝑗∗) = 0.5. The comparison between the number of
abandonments under the allocation model and the extremes is shown
in Fig. 10.

First, note that the policy for the shared queue does not change,
since in this policy we do not take into account individual preferences.
In contrast, we see in Fig. 10 that the percentage of abandonments
for the separate queue policy and the allocation model has increased
significantly. Compared to the results without popular nursing homes,
the abandonment fraction 𝜌 = 1 has increased for the separate queues
from 9.7% to 37.7% and for the allocation model from 6.3% to 18.0%.
We thus see that the allocation model is far better in retaining the
waiting times, and therefore fraction of abandonments, at an acceptable
level.

6. Case study: Amsterdam

To show the results of the model in a realistic parameter setting,
we applied the model to the situation in Amsterdam, the capital of
the Netherlands. First, we describe the current policy in Amsterdam,
the obtained data and then we validate our model by validating the
assumptions and using information on current waiting times. There-
after, the results of our proposed alternative – the allocation model –
are discussed.

6.1. Current policy

In Amsterdam, the current allocation policy allows patients to sign
up for one preferred nursing home and wait at home until placement.
However, if the waiting time becomes excessive, patients may opt for
immediate placement due to impatience. Since bed availability is not
centrally managed and information is limited, a regional office man-
ager contacts nursing homes individually to inquire about temporary
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Fig. 11. Current policy model.

residency options, ceasing calls once a suitable bed is found. Under this
policy, patients are initially placed on a waiting list for their preferred
nursing home and later added to a secondary waiting list shared among
all regional nursing homes, where beds are allocated if the primary list
is empty. This policy framework is depicted in Fig. 11.3

We stress that the policy introduced here is the current policy, which
may differ from the current practice. Namely, no centralized admin-
istration system exists that prohibits patients to register for multiple
nursing homes, although this is against the rules. This phenomenon is
recognized by experts as the ‘grey waiting list’.

6.2. Data

For our case study, we focus on Amsterdam and a specific patient
group: those with severe somatic conditions, categorized as ZZP 6 and
ZZP 8 in the Dutch healthcare system. These patients exhibit physical
symptoms and require intensive care. In Amsterdam, there are 39 nurs-
ing homes with dedicated somatic departments, accommodating these
patients (see Fig. 12). Utilizing non-public microdata from Statistics
Netherlands, we derive essential parameters. The arrival rate (𝜆 =
1.24/day) is determined from nursing home allowance requests, while
the capacity (𝑐 = 775) reflects the maximum number of simultaneous
residents. Considering a balanced distribution of capacity across nurs-
ing homes, each is assumed to have 20 beds, resulting in 780 beds.
The average length-of-stay ( 1

𝜇 = 666 days) is obtained from patient
declaration data. With the offered load calculated at 𝜌 = 1.07, we
adjusted the arrival rate to 1.25 accordingly so that the offered load
remained the same.

For the simulations, patient arrivals are generated using demo-
graphic data from data.amsterdam.nl. The total number of people in
Amsterdam older than 65 is circa 110,000. Moreover, we identify the
number of people older than 65 on neighborhood level. Then, for each
neighborhood we calculate the fraction 𝑓𝑟 of the total number of elderly
people who live in the specific neighborhood 𝑟 ∈ 𝑅. We generate
patients for neighborhood 𝑟 ∈ 𝑅 with rate 𝜆𝑓𝑟. The fractions of each
neighborhood are shown in Fig. 13.

The preference groups correspond to the Dutch ‘waiting classifica-
tion’ of patients: the group FP corresponds to the ‘Active Placement’
group and PP corresponds to ‘Wait For Preference’ group [46]. From
this report we know that in October 2022, 20.1% of the patients on a
waiting list is of the FP category. However, as we do not know the
waiting times of the different subgroups, we cannot calculate their
arrival probabilities. Due to the lack of this information, we roughly
set the arriving patients probabilities to 𝑝𝑃𝑃 = 0.5 and 𝑝𝐹𝑃 = 0.5.

3 Note that all patients initially enter one queue. Then, after waiting >15
months, the patient additionally takes place in the common queue with second
priority, which is displayed for patient A and B.
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Fig. 12. Somatic nursing homes.

Fig. 13. Fractions for each neighborhood.

6.3. Model validation

We aim to validate our model in two ways. First, we use the real-life
data to verify the assumptions that we provided in the dynamic model.
Thereafter, we show that our model of the current policy is a decent
representation of reality, by comparing the resulting waiting times of
our model by existing data on waiting times.

Assumptions validation
We validate assumptions of our dynamic model using real-world

data. Firstly, we assess the assumption that the length-of-stay in nursing
homes follows an exponential distribution. Survival analysis is em-
ployed on data comprising lengths-of-stay, accounting for censored data
where patients remain alive beyond the observation period. The result-
ing Kaplan–Meier curve, depicted in Fig. 14, reveals that after three
years, approximately 15% of patients are still present. A two-sample
Kolmogorov–Smirnov test compares this curve with an exponential
distribution fitted to the lowest 85% of values. With a 𝑝-value exceeding
.01, we cannot reject the null hypothesis, indicating similarity between
the distributions. Thus, we conclude that the length-of-stay for this
patient group conforms to an exponential distribution.

The second assumption that we aim to validate is that the arrival
process is Poisson. As data source for the arrival process, we use
acceptance data for ZZP 6 and 8 indications, i.e. after acceptance
patients can apply for a nursing home. A histogram with the number
of arrivals per week is displayed in Fig. 15. Moreover, a chi-square test
indicated that the number of arrivals per week can be according to a
Poisson distribution 𝜒2(𝑑𝑓 = 12, 𝑁 = 52) = 24.8, 𝑝 > .01.

Current policy validation
To validate the results of the current policy model, data about

waiting lines for long-term care are used. The best data source found
contains information on the waiting time distribution of all patients to
receive long-term care in the Netherlands [47], and thus not specified
for our somatic patient population, although it is noted that ‘‘the
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Fig. 14. Kaplan–Meier curve: survival probability.

Fig. 15. Histogram arrival data per week 2016.

Fig. 16. Fraction of patients waiting for some amount of time.

individual indications show a similar distribution’’ [47, p. 1348]. The
data used is from April 1, 2020 and thus pre-COVID-19. We use this
information to compare to our current policy model, as displayed in
Fig. 16.

From Fig. 16, we conclude that the waiting times resulting from
the current policy model are similar to the real-life data. However, it
was found that the occupancy level resulting from the current policy
model is 0.76, which is unrealistically low. Therefore, we also run
a scenario that represents the current practice better, which is the
scenario in which (against the rules) 10% of the patients register for
three nursing homes instead of one. In this case, the waiting times can
also be approximated fairly well, as can be seen in Fig. 17. Next to that,
the occupancy level is found to be the realistic value of 0.93. Hence,
we validated the current policy by introducing a more realistic scenario
for the current practice. In the following, we will use the current policy
model as reference, since this model contains the least assumptions and
is the official protocol.
11 
Fig. 17. Fraction of patients waiting for some amount of time, with 𝑃 (3 pref. NHs) =
0.1.

6.4. Parameter setting for the allocation model

For the allocation model, we have defined the utilities for the pa-
tients in close collaboration with experts from the elderly care domain.
To obtain the initial utilities 𝑔𝑝𝑛 for the patients to the nursing homes,
we assume that preferences for certain nursing homes mainly depend
on the travel distance between the home location of the patient and the
nursing home, dist𝑝𝑛, where the distance is defined as travel distance
by car. This was motivated by research on nursing home selection
where location was the ‘‘single most frequently cited factor’’ [19]. The
home locations of the patients are chosen as the midpoints of the
neighborhood from which they were generated. The midpoints of the
neighborhoods are calculated in the following way:

Midpoint latitude = 1
2

(maximum latitude − minimum latitude),

Midpoint longitude = 1
2
(maximum longitude − minimum longitude).

After this, we used the following utility scheme for the region of
Amsterdam for patient 𝑝 ∈ 𝑃 towards nursing home 𝑛 ∈ 𝑁 :

𝑔𝑝𝑛 =

⎧

⎪

⎨

⎪

⎩

100 if dist𝑝𝑛 ≤ 5 min
50 if 5 < dist𝑝𝑛 ≤ 15 min
10 otherwise.

If dist𝑝𝑛 ≤ 5 min, the nursing home is in the same neighborhood,
which is preferred by most patients. A drive between 5 and 15 min can
still be seen as close by, whereas more than 15 min driving is rather
far. We also developed corresponding waiting-time utilities based on
the presumed preferences of patients in Amsterdam. We use the same
groups FP and PP as for the small setting, i.e. the same interpreta-
tion but different parameter values. For the FP group, we have for
both placement and preferred placement a linear waiting time utility,
namely 𝑣𝑈𝑝𝑛(𝑤𝑝) = 0.1𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝐹𝑃 and 𝑣𝐹𝑝𝑛(𝑤𝑝) = 0.1𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝐹𝑃 .
For the PP group, we have that the waiting time utility to be placed
in a preferred nursing home increases slightly faster, thus 𝑣𝐹𝑝𝑛(𝑤𝑝) =
0.15𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝑃𝑃 .

For the placement waiting time utility, we developed a sigmoidal
function such that the preferences of this group are best described
according to elderly care experts. This function equals 𝑣𝑈𝑝𝑛(𝑤𝑝) =

100
1+𝑒−(0.09𝑤𝑝−13)

− 101 ∀ 𝑝 ∈ 𝑃 𝑃𝑃 , such that in combination with 𝑔𝑝𝑛 ∀ 𝑝 ∈
𝑃 , 𝑛 ∈ 𝑁 we have at 𝑤𝑝 = 0, all resulting utilities are negative
except those of the preferred nursing homes. Then, after approximately
3 months, the utility becomes positive for the nursing homes with
dist𝑝𝑛 ≤ 5 min, after approximately 4.5 months, the utility becomes
positive for the nursing homes with dist𝑝𝑛 ≤ 15 min as well, and after
approximately 6 months, the utility becomes positive for all (resulting)
nursing homes.

Preferred nursing homes for patients are selected based on the
highest utilities, with priority given to those with the highest scores.
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Table 6
Parameter values case study Amsterdam.

Parameter Value Parameter Value

|𝑁| 39 𝑣𝑈𝑝𝑛(𝑤𝑝) 0.1𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝐹𝑃

𝜆−1 1.25/day 𝑣𝐹𝑝𝑛(𝑤𝑝) 0.1𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝐹𝑃

𝜃−1 666 days (≈2 years) 𝑣𝑈𝑝𝑛(𝑤𝑝)
100

1+𝑒−(0.09𝑤𝑝−13) − 101 ∀ 𝑝 ∈ 𝑃 𝑃𝑃

𝜇−1 666 days (≈2 years) 𝑣𝐹𝑝𝑛(𝑤𝑝) 0.15𝑤𝑝 ∀ 𝑝 ∈ 𝑃 𝑃𝑃

𝑀 1000 𝑐𝑛 Initial value: 20 ∀ 𝑛 ∈ 𝑁
𝛥 1 day

𝑔𝑝𝑛

⎧

⎪

⎨

⎪

⎩

100 if dist𝑝𝑛 ≤ 5 min
50 if 5 < dist𝑝𝑛 ≤ 15 min
10 else
Table 7
Allocation model Amsterdam.

Policy % abandonments % died at temp. NH % died at pref. NH MWT till
placement (d)

MWT till
preferred (d)

Mean nr. of
replacements

Mean queue
length

Mean occupancy

Shared queue 6.0% (5.3%–6.7%) 0.0% (0.0%–0.0%) 91.3% (87.4%–95.2%) 40 (36–43) 40 (36–43) 0.91 (0.87–0.95) 91 (82–100) 1.0 (1.0–1.0)
AM: tot 7.4% (7.2%–7.7%) 25.1% (24.8%–25.3%) 67.5% (67.2%–67.8%) 47 (46–48) 191 (189–193) 1.34 (1.33–1.34) 85 (83–87) 0.99 (0.99–0.99)
AM: FP 0.4% (0.4%–0.5%) 33.1% (32.8%–33.4%) 66.4% (66.1%–66.7%) 3 (2–3) 196 (192–199) 1.58 (1.58–1.58)
AM: PP 14.5% (14.0%–14.9%) 16.9% (16.6%–17.2%) 68.6% (68.2%–69.0%) 99 (97–101) 186 (184–188) 1.09 (1.09–1.1)
CP 32.2% (32.0%–32.4%) 4.5% (4.3%–4.6%) 63.3% (63.1%–63.6%) 234 (232–235) 257 (255–259) 0.86 (0.86–0.87) 313 (311–315) 0.72 (0.72–0.73)
Separate queues 36.9% (36.6%–37.1%) 0.0% (0.0%–0.0%) 63.1% (62.9%–63.4%) 256 (254–258) 256 (254–258) 0.63 (0.63–0.63) 350 (348–353) 0.67 (0.67–0.68)

Note: The values in parentheses are the 95% confidence interval.
Table 8
Allocation model multiple preferences Amsterdam.

Policy % abandonments % died at temp. NH % died at pref. NH MWT till
placement (d)

MWT till
preferred (d)

Mean nr. of
replacements

Mean queue
length

Mean occupancy

AM(2): tot 6.6% (5.7%–7.5%) 8.5% (8.0%–9.1%) 84.8% (84.0%–85.6%) 40 (37–44) 98 (93–102) 1.35 (1.33–1.36) 75 (66–84) 0.99 (0.99–1.0)
AM(2): FP 1.1% (0.5%–1.6%) 14.6% (13.7%–15.4%) 84.3% (83.6%–85.1%) 6 (4–9) 102 (98–105) 1.69 (1.67–1.7)
AM(2): PP 12.2% (10.9%–13.5%) 2.5% (2.1%–3.0%) 85.3% (84.1%–86.5%) 79 (73–85) 94 (88–100) 1.0 (0.98–1.03)
AM(3): tot 6.3% (5.3%–7.3%) 2.5% (2.1%–2.9%) 91.2% (90.3%–92.1%) 43 (39–47) 61 (58–64) 1.27 (1.25–1.3) 86 (75–97) 1.0 (1.0–1.0)
AM(3): FP 4.2% (2.9%–5.4%) 5.0% (4.2%–5.9%) 90.8% (89.7%–91.9%) 26 (21–31) 61 (58–64) 1.63 (1.59–1.67)
AM(3): PP 8.5% (7.6%–9.4%) 0.0% (0.0%–0.0%) 91.5% (90.6%–92.4%) 60 (57–64) 60 (57–64) 0.92 (0.91–0.93)

Note: The values in parentheses are the 95% confidence interval.
Table 9
Current policy multiple preferences Amsterdam.

Policy % abandonments % died at temp. NH % died at pref. NH MWT till
placement (d)

MWT till
preferred (d)

Mean nr. of
replacements

Mean queue
length

Mean occupancy

CP(1) 32.2% (32.0%–32.4%) 4.5% (4.3%–4.6%) 63.3% (63.1%–63.6%) 234 (232–235) 257 (255–259) 0.86 (0.86–0.87) 313 (311–315) 0.72 (0.72–0.73)
CP(2) 14.7% (14.4%–15.0%) 0.0% (0.0%–0.0%) 85.3% (85.0%–85.6%) 100 (98–102) 100 (98–102) 0.85 (0.85–0.86) 164 (161–166) 0.91 (0.91–0.91)
CP(3) 7.5% (6.6%–8.4%) 0.0% (0.0%–0.0%) 92.5% (91.6%–93.4%) 51 (47–56) 51 (47–56) 0.92 (0.92–0.93) 100 (89–111) 0.98 (0.98–0.99)
CP(4) 6.8% (5.8%–7.7%) 0.0% (0.0%–0.0%) 93.2% (92.3%–94.2%) 46 (41–51) 46 (41–51) 0.93 (0.92–0.94) 94 (83–106) 0.99 (0.99–0.99)
CP(5) 6.7% (6.4%–7.0%) 0.0% (0.0%–0.0%) 93.3% (93.0%–93.6%) 45 (44–47) 45 (44–47) 0.93 (0.93–0.94) 97 (93–101) 0.99 (0.99–1.0)
In cases where multiple nursing homes have equal utility, a random
selection is made. To ensure fairness in comparing the model to the
current situation, we selected preferred nursing homes for the current
policy using the same utility scheme. The parameter values for the case
study can be found in Table 6.

6.5. Results

We analyzed various policies to assess their impact on performance
measures. The results comparing the allocation model to the two ex-
tremes and the current policy are summarized in Table 7. Abandonment
rates range from 6.0% for the shared queue to 36.9% for separate
queues, indicating significant differences. Notably, under the separate
queue policy, only 63.1% of individuals end up in their preferred
nursing home, highlighting diverse bed demand across facilities in
Amsterdam.

Table 7 illustrates the overall favorable performance of the al-
location model. Compared to the current policy, abandonment rates
decrease significantly from 32.2% to 7.4%, with the allocation model
showing only slightly higher abandonment rates than the shared queue
(which sets a lower bound). In addition, mean waiting times until
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placement and preferred placement are significantly reduced. However,
the number of replacements increases in the allocation model compared
to the current policy. Observe that the performance of the FP and PP
groups is well in line with their goals in terms of time to placement and
preference.

Furthermore, in a scenario with ‘popular’ nursing homes, where de-
mand is considerably higher for some locations, the allocation model’s
superiority over the current policy becomes even more evident. In
this scenario, the allocation model results in a less substantial in-
crease in abandonments compared to the current policy. Details for this
experiment can be found in Appendix D.

Scenario of multiple preferred nursing homes
The results of the allocation model, applied to Amsterdam, when

patients have two or three preferences are presented in Table 8. As
anticipated, allowing two preferences leads to notable improvements,
such as a considerable reduction in mean waiting time until placement
in a preferred nursing home (from 177 to 105 days). In addition,
the percentage of patients who end up in their preferred nursing
home increases from 71.2% to 82.5%, albeit with an increase in the
mean number of replacements. When the number of preferred nursing
homes is increased to three, overall performance improves further,
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although not as dramatically as observed between one and two pref-
erences. Therefore, the decision to adopt multiple preferences depends
on balancing these improvements against the loss of specific nursing
home preferences, particularly given that bed efficiency approaches
its maximum level with two preferences (mean occupancy of 0.99).
Healthcare managers must carefully consider these factors to determine
the optimal strategy.

The impact of multiple preferred nursing homes within the current
policy setting is explored in Table 9. These results reveal significant
reductions in abandonment rates and mean waiting times when the
current policy allows for more preferred nursing homes. However,
compared to the allocation model, the current policy’s performance
is inferior even when allowing the same number of preferred nurs-
ing homes. For example, with two nursing homes, the abandonment
fraction is 18.5% for the current policy (CP(2)) and only 5.7% for
the allocation model (AM(2)). Thus, the allocation model significantly
outperforms the simple alternative of allowing patients to choose more
than one preferred nursing home.

In summary, we find that if the system allows more patient replace-
ments, the allocation model outperforms the current policy, signifi-
cantly reducing waiting times in Amsterdam while also accommodating
individual patient preferences.

7. Conclusion and discussion

The allocation model proposed in this article offers an alternative
to conventional waiting lines for nursing home placements, boasting a
patient-centered approach. By prioritizing individual preferences and
allowing flexibility in waiting times, the model achieves a balance
between minimizing waiting times, similar to shared queues, and en-
abling patients to choose their preferred nursing home, as if separate
queues were employed. Moreover, the optimal placement policy found
by solving a Markov Decision Process shows that, for small instances,
the mean optimality gap of the allocation model equals 1.3%. Hence,
the model is found to have ‘the best of both worlds’, resulting in a
quicker placement of patients into the nursing home of their preference.

Applied to a population of somatic patients in Amsterdam, the
allocation model significantly reduced the abandonment fraction from
32.2% to 7.4% and decreased the mean time until placement by five
months. However, these improvements required a higher rate of patient
replacements, increasing from 0.89 to 1.44 on average. Furthermore,
allowing patients to choose two preferred nursing homes further im-
proved the model’s performance, reducing the abandonment fraction
to 5.7%. These findings underscore the relevance of the model in
addressing the pressing need for efficient and sustainable long-term
care solutions.

Future research avenues include incorporating predictive informa-
tion about bed availability to enhance allocation accuracy and ex-
panding the model’s scope to encompass broader elderly care contexts,
such as addressing bed-blocking in hospitals or exploring the impact
of transitional care units. Furthermore, the promising outcomes of the
allocation model underscore the importance of centralized monitoring
of nursing home waiting lists. In privatized care settings such as the
Netherlands, where nursing homes operate independently, information
sharing and collaborative strategies in the elderly care sector can
significantly enhance efficiency for both patients and nursing homes. A
potential direction towards practical implementation is to investigate
the set-up of a regional care center that manages the available beds,
waiting list, and placement of patients, using a scientifically-based al-
location model. In addition, refinement of the utility functions warrants
further investigation to ensure that they align with the diverse needs of
patients. These steps seem to be important prerequisites for a successful
practical implementation.

Although our research focuses primarily on the elderly care domain,
the allocation policy framework is relevant for various other domains
facing bed scarcity and trade-offs between preferences and waiting
13 
times. From long-term care for mentally disabled people to psychiatric
patient care, applying logistic perspectives to address excessive waiting
times is imperative. We hope that this paper inspires Operations Re-
search experts to contribute their expertise to these domains, ultimately
enhancing patient well-being regardless of future care challenges.
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Appendix A. Simulation model

In this section, we discuss the simulation procedure of the allocation
heuristic in more detail. First, denote 𝐼 𝑡 as the set of patients arrived
and not yet left before time 𝑡 ∈ 𝑇 , where we see that the 𝑝th arrival is
enoted as patient 𝑝 ∈ 𝐼 𝑡. We define the patient sets that reside at time
∈ 𝑇 at a certain location:

𝐹 𝑡
𝑛 = {𝑝 ∣ 𝑝 ∈ 𝐼 𝑡, 𝑙𝑝 ∈ 𝐿𝑝} ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁 (A.1)

𝐺𝑡
𝑛 = {𝑝 ∣ 𝑝 ∈ 𝐼 𝑡, 𝑙𝑝 ∈ 𝑀𝑝} ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁. (A.2)

Thus, at time 𝑡 ∈ 𝑇 , 𝐹 𝑡
𝑛 denotes patients who reside permanently in

(final) nursing home 𝑛 ∈ 𝑁 . 𝐺𝑡
𝑛 is the set with temporary patients at

nursing home 𝑛 ∈ 𝑁 . Note that 𝐺𝑡
0 is the set of patients at home.

The simulation procedure can be described as follows; see Fig. 18 for
a schematic representation. First, the initialization takes place, which
includes a warming-up period for the model. The warming period
begins with adding patients to nursing homes until an occupancy of
90%; this is to speed up the process of reaching steady state. The
determination of when the steady state was reached was made visually
using a graph with confidence intervals of the waiting times until
placement. For the small instances, the warming period was ended after
1000 clients had left the system, and for the full-size instances, this was
reached after 10,000 clients had left.

Then, in the dynamic setting, the time is set to the next time moment
(A.3) and the system is updated according to all events that occurred
during the interval of length 𝛥. The corresponding output values are
updated. Then, for the current 𝑡 ∈ 𝑇 the sets 𝐼 𝑡, 𝐺𝑡

𝑛 and 𝐹 𝑡
𝑛 ∀ 𝑛 ∈ 𝑁

are defined in (A.9). The set of patients 𝑃 is updated in a way that
includes new arrivals and excludes departures (A.10). The capacity of
all nursing homes is updated so that it includes only empty beds and
beds occupied by temporary patients (A.11). At the end of the dynamic
setting, the utilities are updated according to the new waiting times

(A.12).
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Fig. 18. Simulation procedure.
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In the next step, the allocation model is run (A.13). Finally, the
esulting replacements are carried out, including an update of the
ocations 𝑙𝑝 of all patients 𝑝 ∈ 𝑃 (A.14).

Finally, two stopping criteria were defined on the basis of the
instance size. For the toy examples, the simulations were run until the
width of the confidence interval for waiting times was less than 1% of
the mean waiting time for placement. For realistic full-size instances,
this was not achievable, and therefore we ran the simulations for at
least 12 h and presented the results accompanied by their confidence
intervals.

Appendix B. Markov decision process for optimal allocation

Let 𝑋𝑡 denote the state of the system at times 𝑡 ≥ 0, defined
in the following, such that {𝑋 } represents the stochastic process.
𝑡 𝑡∈𝑇 M

14 
Moreover, let 𝛱 denote the set of allocation policies. Then, policy
𝜋 ∈ 𝛱 has a long-term average reward

𝑟𝜋 = lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
𝑟𝜋 (𝑋𝑡).

he optimal policy is a policy 𝜋 for which we have 𝑚𝑎𝑥𝜋𝑟𝜋 .

.1. Problem formulation

Now we discuss all components of the MDP: the state space, action
pace, transition probabilities, and rewards. All notation used in this
ection can be found in Table 10.

tate space
In the allocation model, we have that each patient is unique. In an
DP framework, this leads to an excessive state space. Therefore, we
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Table 10
MDP notation.

Sets
𝐼 Patient classes
𝑁 Nursing homes, with 𝑛 = 0 the home location
𝐿𝑖 ⊆ 𝑁 Preferred nursing homes of class 𝑖 ∈ 𝐼
𝑀𝑖 ⊆ 𝑁 Non-preferred nursing homes of class 𝑖 ∈ 𝐼 , i.e. 𝑁 ⧵ 𝐿𝑖

Parameters
𝜆𝑖 Arrival rate of class 𝑖 ∈ 𝐼
𝜇 Service rate
𝑟𝑖𝑛𝑚 Lumpsum reward of class 𝑖 ∈ 𝐼 residing at location 𝑛 moving to location 𝑚
𝑋𝑖𝑛 The number of (temporary) patients of class 𝑖 ∈ 𝐼 at location 𝑛 ∈ 𝑁
𝑦𝑛 The number of preferred persons at location 𝑛 ∈ 𝑁
𝑤𝑖 Waiting penalty of class 𝑖 ∈ 𝐼
𝑐𝑟𝑒𝑗 Rejection costs
𝑏𝑛 Number of beds available at location 𝑛 ∈ 𝑁
𝐴𝑖𝑚𝑛 Number of patients of class 𝑖 ∈ 𝐼 allocated from location 𝑚 to location 𝑛 ∈ 𝑁
𝑔𝑖𝑛 (Initial) willingness of class 𝑖 ∈ 𝐼 to be placed in nursing home 𝑛 ∈ 𝑁
𝐾𝑖 Replacement penalty of class 𝑖 ∈ 𝐼
w
e

define a set of patient classes 𝐼 for the MDP. The patients of class 𝑖 ∈ 𝐼
arrive according to a Poisson process with rate 𝜆𝑖, have sets of preferred
nursing homes 𝐿𝑖 and nonpreferred nursing homes 𝑀𝑖.

For the state space, we introduce the variable 𝑋𝑖𝑛 ∈ N defined as the
number of patients of class 𝑖 ∈ 𝐼 residing in nursing home 𝑛 ∈ 𝑁 . Let

∈ N|𝐼|×|𝑁| be the matrix with the entries 𝑋𝑖𝑛. In addition, we only
eed to keep track of the classes of patients that are not yet in their
referred nursing home, since only those are candidates to be replaced.
or the preferred placed patients (that is, patient classes 𝑖 for which
∈ 𝐿𝑖), only the number of patients 𝑦𝑛 ∈ N satisfies. We store those

lements in a vector 𝐲 ∈ N|𝑁|, with 𝑦𝑛 as the 𝑛th entry. Note that we
runcate the total number of patients on the waiting list at 𝑏0, such that
he state space remains finite. This implies that patients arriving who
ind 𝑏0 patients on the waiting list are rejected.

Hence, a state can be described as {𝐗, 𝐲}, where the state space is
iven by

=

{

{𝐗, 𝐲} |

∑

𝑖∈𝐼
𝑋𝑖𝑛 + 𝑦𝑛 ≤ 𝑏𝑛 ∀𝑛 ∈ 𝑁

}

.

ction space
As actions we define the number of temporarily placed patients of

certain class 𝑖 ∈ 𝐼 that are replaced from nursing home 𝑚 to 𝑛 ∈ 𝑁 ,
enoted by 𝐴𝑖𝑚𝑛. We define the action matrix 𝐀 ∈ N|𝐼|×|𝑁|×|𝑁| with
lements 𝐴𝑖𝑚𝑛. Note that we allocate all temporary patients, which can
lso be in their current location. Now, let 𝑌 ({𝐗, 𝐲}) denote the set of
ll possible actions for state {𝐗, 𝐲}. Then, we have

({𝐗, 𝐲}) =
{

𝐀 | 𝑋𝑖𝑛 =
∑

𝑚∈𝑁
𝐴𝑖𝑛𝑚,

∑

𝑖∈𝐼

∑

𝑚∈𝑁
𝐴𝑖𝑚𝑛 + 𝑦𝑛 ≤ 𝑏𝑛 ∀𝑛 ∈ 𝑁

}

.

ransition probabilities
The transition probabilities consist of two ‘consecutive’ parts. First,

ased on the actions to allocate patients to other locations, we move
rom state 𝑠 → 𝑠∗. Then, based on probabilities induced by the
tochastic process, we arrive at our final state 𝑠′.

For the first part, we have the following state transitions from {𝐗, 𝐲}
o {𝐗∗, 𝐲∗} :
∗
𝑖𝑛 =

∑

𝑚∈𝑁
𝐴𝑖𝑚𝑛, for 𝑛 ∈ 𝑀𝑖,

𝑦∗𝑛 =𝑦𝑛 +
∑

𝑚∈𝑁
𝐴𝑖𝑚𝑛, for 𝑛 ∈ 𝐿𝑖.

Now consider the second part, that is, the transition probabilities
ut of the state 𝑠∗. Without loss of generality, we rescale the time
uch that ∑

𝑖∈𝐼 𝜆𝑖 +
∑

𝑛∈𝑁⧵{0} 𝑏𝑛𝜇 = 1, in which case the rates can be
nterpreted as transition probabilities. Moreover, for notation purposes,
15 
e define the single-entry matrix 𝐸𝑖𝑗 as a matrix with zeros and a 1-
ntry in the 𝑖th row and the 𝑗th column, and the unit vector 𝑒𝑗 as

a vector with zeros and a 1 as the 𝑗th element. The final transition
probabilities are

𝑃({𝐗,𝐲}),({𝐗′ ,𝐲′})(𝐀) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

𝑖∈𝐼
𝜆𝑖 if 𝐗′ = 𝐗∗, 𝐲′ = 𝐲∗,

∑

𝑖∈𝐼
𝑋∗

𝑖0 = 𝑏0

𝜆𝑗 if 𝐗′ = 𝐗∗ + 𝐸𝑗0, 𝐲′ = 𝐲∗,
∑

𝑖∈𝐼
𝑋∗

𝑖0 < 𝑏0, 𝑗 ∈ 𝐼

𝜇𝑋∗
𝑗𝑚 if 𝐗′ = 𝐗∗ − 𝐸𝑗𝑚, 𝐲′ = 𝐲∗, 𝑗 ∈ 𝐼, 𝑚 ∈ 𝑁 ⧵ {0}

𝜇𝑦∗𝑚 if 𝐗′ = 𝐗∗, 𝐲′ = 𝐲∗ − 𝑒𝑚, 𝑚 ∈ 𝑁 ⧵ {0}

1 − 𝜇

(

∑

𝑖∈𝐼

∑

𝑛∈𝑁⧵{0}
𝑋∗

𝑖𝑛 + 𝑦∗𝑛

)

−
∑

𝑖∈𝐼
𝜆𝑖 if 𝐗′ = 𝐗∗, 𝐲′ = 𝐲∗.

Rewards
The reward at each decision epoch depends on the action reward

𝑟𝑖𝑚𝑛 (defined below), waiting costs 𝑤𝑖 and rejection costs 𝑐𝑟𝑒𝑗 . The
formula for this is the following:

𝑟({𝐗, 𝐲},𝐀) =
∑

𝑖∈𝐼

∑

𝑚∈𝑁

∑

𝑛∈𝑁
𝑟𝑖𝑚𝑛𝐴𝑖𝑚𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
action reward

−
∑

𝑖∈𝐼
𝑤𝑖𝑋𝑖0

⏟⏞⏞⏟⏞⏞⏟
waiting costs

− 𝑐𝑟𝑒𝑗
∑

𝑖∈𝐼
𝜆𝑖1{

∑

𝑖∈𝐼 𝑋
∗
𝑖0=𝑏0}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
rejection costs

.

The action rewards are based on the utilities for placement in nursing
homes, as provided in (4.1), without the waiting times utilities. For
notational convenience, we set 𝑔𝑝𝑛 ∶= 𝑔𝑖𝑛 for the patients 𝑝 that belong
to class 𝑖. The precise relation between the utilities and the action
rewards 𝑟𝑖𝑚𝑛 is given by

𝑟𝑖𝑚𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔𝑖𝑛 if 𝑚 = 0, 𝑛 ∈ 𝑁 ⧵ {0}
𝑔𝑖𝑛 − 𝑔𝑖𝑚 −𝐾𝑖 if 𝑚 ∈ 𝑀𝑖, 𝑛 ∈ 𝐿𝑖
0 if 𝑚 = 𝑛
−∞ otherwise.

(B.1)

B.2. Value iteration

In order to solve the MDP and find the optimal long-term average
reward 𝑔∗, we use value iteration. Hence, we need to find the value
function 𝑉 (𝑠) for all states 𝑠 ∈ 𝑆. This is done by iteratively computing
the value function 𝑉𝑛(𝑠) until convergence occurs. For this purpose,
we initialize 𝑉0(𝑠) = 0 ∀𝑠 ∈ 𝑆 and then iteratively solve the Bellman
equations for 𝑖 ∈ 𝑆,

𝑉𝑛+1(𝑖) = max
𝑎∈𝐴(𝑖)

𝑟(𝑖, 𝑎) +
∑

𝑃𝑖𝑗 (𝑎)𝑉𝑛(𝑗).

𝑗∈𝑆
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Fig. 19. Optimality gap in %.

Fig. 20. % died in pref. nursing home.

After each iteration, we compute ℎ𝑛 = inf 𝑖 |𝑉𝑛(𝑖) − 𝑉𝑛−1(𝑖)| and 𝐻𝑛 =
sup𝑖 |𝑉𝑛(𝑖) − 𝑉𝑛−1(𝑖)|. The value functions are converged if 𝐻𝑛−ℎ𝑛 < 𝜖ℎ𝑛,
where 𝜖 is a prespecified accuracy. As the value function has converged,
we have ∀ 𝑠 ∈ 𝑆, 𝑉 (𝑠) = 𝑉𝑛(𝑠) and 𝑔∗ = 𝑉𝑛(𝑠) − 𝑉𝑛−1(𝑠).

B.3. State space size

To illustrate the impact on the state space, we define the following
instances to compare the allocation model with the optimal solution.
We take two nursing homes, 𝑁 = {0, 1, 2} with 0 the home location, and
four classes, 𝐼 = {FP1, FP2,PP1,PP2}. The class subscripts correspond to
the preferred nursing home. For this example, the number of possible
states for 𝐗 and 𝐲 provides an upper bound for the size of the state
space:

|𝐗| =
(

𝑏0 + 4
𝑏0

)(

𝑏1 + 2
𝑏1

)(

𝑏2 + 2
𝑏2

)

|𝐲| = (𝑏1 + 1)(𝑏2 + 1)

As can be seen, the size of the state space grows quickly. Moreover, we
see that the number of possible actions is also large, since the empty
beds can be filled by all possible combinations of waiting patients. For
these reasons, we are only able to solve small instances.
16 
Fig. 21. Waiting time (d).

Fig. 22. Selected popular nursing homes in city parts. Note: In the city part in the
north-west (Westpoort), no popular nursing home is selected, since no nursing home
is located in this part.

Appendix C. Additional results MDP instances

In this appendix, we present the results for the instances defined in
Section 5.3, with 3 beds per nursing home. As can be seen in Fig. 19, the
optimality gap is lower for these instances than for the instances with
2 beds per nursing home. For the other output measures, the results for
the instances with 3 beds show a similar behavior to the instances with
2 beds per nursing home; see Figs. 20 and 21.

Appendix D. Scenario with popular nursing homes

For the region of Amsterdam, we also consider a scenario with more
popular nursing homes. More specifically, in each of the eight parts
of the city (called ‘stadsdelen’), we randomly select a really popular
nursing home. That is, with probability 𝑝𝑝𝑜𝑝 = 0.25, this nursing home
is selected to be the preferred nursing home of a patient who belongs
to that part of the city. The parts of the city and the popular nursing
homes chosen are provided in Fig. 22.

In Table 11 we show the results for both the current policy and the
allocation model. The table illustrates that in a scenario with popular
nursing homes, the number of abandonments increases for both policies
(recall that the abandonment fractions were 7.4% and 32.2% for the
allocation model and the current policy, respectively). However, we see



R.J. Arntzen et al.

t
c
1
i
m
a

R

Operations Research for Health Care 42 (2024) 100442 
Table 11
Results scenario popular Amsterdam.

Policy % abandonments % died at temp. NH % died at pref. NH

AM: tot 8.6% (7.7%–9.4%) 72.5% (71.5%–73.5%) 18.7% (18.4%–19.2%)
AM: FP 0.7% (0.4%–0.9%) 79.2% (78.3%–80.1%) 20.1% (19.3%–21.1%)
AM: PP 16.3% (14.7%–17.7%) 66.3% (64.4%–68.0%) 17.5% (16.6%–18.5%)
CP 37.4% (36.7%–38.1%) 42.0% (41.0%–43.2%) 20.5% (19.4%–21.6%)

Note: The values in parentheses are the 95% confidence interval.
hat compared to the situation without popular nursing homes, the per-
entage of abandonments under the allocation model only increases by
.3%, while the percentage of abandonments under the current policy
ncreases by 7.2%. This implies that the current policy is considerably
ore sensitive to a change in the popularity of nursing homes than the

llocation model.
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