
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19447  | https://doi.org/10.1038/s41598-024-69901-7

www.nature.com/scientificreports

The deep latent space particle filter 
for real‑time data assimilation 
with uncertainty quantification
Nikolaj T. Mücke 1,3*, Sander M. Bohté 2,4 & Cornelis W. Oosterlee 3

In data assimilation, observations are fused with simulations to obtain an accurate estimate of the 
state and parameters for a given physical system. Combining data with a model, however, while 
accurately estimating uncertainty, is computationally expensive and infeasible to run in real‑
time for complex systems. Here, we present a novel particle filter methodology, the Deep Latent 
Space Particle filter or D-LSPF, that uses neural network‑based surrogate models to overcome this 
computational challenge. The D‑LSPF enables filtering in the low‑dimensional latent space obtained 
using Wasserstein AEs with modified vision transformer layers for dimensionality reduction and 
transformers for parameterized latent space time stepping. As we demonstrate on three test cases, 
including leak localization in multi‑phase pipe flow and seabed identification for fully nonlinear 
water waves, the D‑LSPF runs orders of magnitude faster than a high‑fidelity particle filter and 3‑5 
times faster than alternative methods while being up to an order of magnitude more accurate. The 
D‑LSPF thus enables real‑time data assimilation with uncertainty quantification for the test cases 
demonstrated in this paper.

Keywords Particle filter, Transformers, Wasserstein autoencoders, Partial differential equations, Data 
assimilation

Virtual representations of physical systems like digital twins have proven to be invaluable tools for monitoring, 
predicting, and optimizing the performance of intricate systems, ranging from industrial machinery to biologi-
cal  processes1. The efficacy of digital twins relies however on the accurate assimilation of real-time data into the 
simulations to ensure accurate calibration and state estimation in situations where the state and its dynamics are 
not known. Importantly, to confidently rely on the information provided, data assimilation should be accompa-
nied by a quantification of the associated uncertainty originating from both measurements and model  errors2,3.

Performing data assimilation with uncertainty quantification in real time for high-dimensional systems, such 
as discretized partial differential equations (PDEs), is computationally infeasible due to the need to compute large 
ensembles of solutions. Approaches such as (ensemble) Kalman  filtering4 aim to overcome this computational 
bottleneck by assuming Gaussian distributed prior, likelihood, and posterior  distributions5, which is restrictive 
in practical situations where these assumptions do not hold and when the problems are highly  nonlinear6,7. As 
an alternative, iterative ensemble smoother methods have recently  emerged8. These methods speed up the com-
putations by utilizing efficient nonlinear solvers and can handle stronger nonlinearities. However, unlike filtering 
methods, they assimilate all data at once and are thereby not immediately suitable for online data assimilation. 
Particle filters, on the other hand, can approximate any distribution sequentially provided there is a sufficient 
number of particles in the  ensemble9,10. The necessary ensemble size for particle filters however often makes it 
infeasible to run in real-time for complex, high-dimensional systems. Therefore, there is a need for methods to 
speed up the computations of ensembles.

To speed up the computation of ensembles, surrogate models are used to approximate the forward problem 
by replacing the full order model with a computationally cheaper alternative. Surrogate models based on proper 
orthogonal decomposition and dynamic mode decomposition have been developed with reasonable  success7. 
However, for nonlinear, hyperbolic, and/or discontinuous problems, advanced surrogates are necessary to achieve 
the desired speed-up11. Therefore, deep learning approaches have received increased attention in efforts to obtain 
significant speed-ups without sacrificing essential  accuracy11–14.
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Deep learning-based surrogate models can be designed in various ways. One approach is to make use of 
latent space representations. Here, high-dimensional states are mapped onto a low-dimensional latent space 
such that the expensive computations, such as time stepping, can be performed cheaply in this latent space. The 
autoencoder (AE)15 is the principal enabling architecture for this. In the AE, an encoder network reduces the 
original data into a latent representation and a decoder subsequently reconstructs the original data from the 
latent representation. Since Ballard (1987)15, many extensions and improvements have been developed, such as 
adding probabilistic priors to the latent  space16,17. In the context of surrogate modeling for physical systems, the 
focus has been on ensuring that AEs learn latent representations that are suitable for downstream tasks, such as 
time stepping, via various regularization  techniques12,13,18. The success of such regularization is important when 
embedding the surrogate model into a data assimilation framework.

Utilizing neural network surrogate models for speeding up data assimilation has been explored in various 
studies, see also Cheng et al. (2023)19 for a review.  In20–23, generative deep learning has been used for high-dimen-
sional state- and parameter estimation. However, none of these approaches performed sequential assimilation of 
the data. In Brunton et al. (2016)24, deep learning was used for model discovery. In such applications, the model 
is a-priori unknown and is learned from observations, typically requiring a huge number of observations in 
space and time to recover the complete, unknown state; to this point it is not clear how these methods perform 
with real-time data assimilation. Similarly, in Maddison et al. (2017)25 and Moretti et al. (2019)26 a particle filter 
approach to data assimilation has been used to formulate a variational objective for training a latent space model. 
Hence, the latent model is trained while data is arriving, which severely limits real-time assimilation for high-
dimensional, nonlinear problems with limited observations. In Silva et al. (2023)27, a GAN set-up, combined 
with proper orthogonal decomposition, was used for sequential data assimilation with an approach similar to 
randomized maximum likelihood. However, unlike particle filters, convergence of such methods is not ensured 
for nonlinear  cases5.

Yet, while many deep learning-based surrogate models have been used to speed up data assimilation, there is 
limited work on such approaches using particle  filters28,29. In Gonczarek and Tomczak (2016)28 a back-constrained 
Gaussian process latent variable model is used to parameterize both the dimensionality reduction and latent space 
dynamics. In Yang et al. (2022)29, a particle filter using a latent space formulation was presented. The approach 
evaluated the likelihood by iterative closest point registration fitness scores and the latent time stepping was 
mainly linear. Since we are only dealing with highly nonlinear PDE-based problems with very few observations 
in space and time in this paper, we have chosen not implement and compare with these methods, as it is unlikely 
that linear time stepping will be sufficient.

Closest to our work are the works of Cheng et al. (2023), Zhang et al. (2022), Peyron et al. (2021), and Chen 
et al. (2023)30–33, where real-time data assimilation through deep learning was also the aim. Autoencoders are 
used for dimensionality reduction and a secondary neural network is used for time stepping in the latent space. 
Subsequently, they perform data assimilation in the latent space. However, in Cheng et al. (2023)30 and Zhang 
et al. (2022)31 variational data assimilation is employed, therefore not quantifying the corresponding uncertainty, 
while in Peyron et al. (2021)32 and Chen et al. (2023)33 variations of the ensemble Kalman filter are used, thereby 
restricting the involved distributions to be Gaussians.

Here, we propose a deep learning framework for performing particle filtering in real-time using latent-space 
representations: the Deep Latent Space Particle Filter, or D-LSPF, targeting complex nonlinear data assimilation 
problems modeled by PDEs. For this, we develop a novel extension to the vision transformer layer for dimen-
sionality reduction of the high-dimensional state in an AE setup. A transformer-based network is then used for 
parameterized time stepping, which enables filtering in the latent space as well parameter estimation. To ensure 
that the latent space has the appropriate desirable properties, we combine several regularization techniques such 
as divergence and consistency  regularization17,18. The proposed methodology differs from earlier methods in 
multiple ways. It focuses on real-time data assimilation by training the neural networks in an offline stage before 
assimilating the incoming data. Furthermore, by utilizing particle filters instead of ensemble Kalman filters and 
variational approaches, the uncertainty can be quantified independent of what distributions the observations, 
prior, or posterior follow. Moreover, the use of rather involved neural network architectures facilitates the use 
of the present methodology for nontrivial problems, including highly nonlinear, high-dimensional, and even 
discontinuous problems. We showcase the D-LSPF on three distinct test problems with varying characteristics, 
such as discontinuity, few observations in space and time, parameter estimation, and highly oscillatory real-
world data. In all cases, the D-LSPF demonstrates significant speed-ups compared to alternative methods without 
sacrificing accuracy. This promises to enable true or near real-time data assimilation for new, more complex 
classes of problems, with direct applications in engineering such as leak localization as well as seabed and wave 
height estimation.

The paper is organized as follows. In the second section we describe the problem setting. This consists of a 
brief description of the Bayesian filtering problem and an overview of the particle filter. In the next section, we 
present the D-LSPF. Firstly, we outline the latent filtering problem, followed by a description of the latent space 
regularized AE using the novel transformer-based dimensionality reduction layers, and parameterized time 
stepping. Lastly, we showcase the performance of the D-LSPF on three test cases, namely the viscous Burgers 
equation, harmonic wave generation over a submerged bar, and leak localization for multi-phase flow in a pipe. 
The D-LSPF is compared with a high-fidelity particle filter and the Reduced-Order Autodifferentiable Ensemble 
Kalman Filter (ROAD-EnKF)33.
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Problem setting
We consider problems that are modeled by time-dependent PDEs. Such problems consist of a state, typically 
made up by several quantities such as velocity and pressure, and parameters, source terms, boundary conditions, 
and initial conditions. Since the model won’t be perfect and true values of the parameters are rarely known, the 
problem needs to be accompanied by observations coming from a series of sensors. However, sensors deliver 
noisy data and are often scarcely placed in the domain of interest, so that the data needs to be assimilated into 
the model to yield an accurate estimate of the state and parameters.

Consider a time and spatially discretized PDE, with accompanying observations:

where F is a (nonlinear) operator advancing the state, G is an operator advancing the parameters, qn(mn) ∈ R
Nx 

is a parameter-dependent state at time step n, mn ∈ R
Nm are the parameters, yn ∈ R

No is an observation vector at 
time step n, h : RNx → R

No is the observation operator, ξn is the model error, ζ n is the parameter error, and ηn is 
the observation noise. Note that when parameters are constant in time, we use G(mn) = mn . To simplify notation, 
we introduce the combined state-parameter variable, un = (qn,mn) . We will refer to un as the augmented state 
and introduce the notation for time series, u0:n = (u0, . . . , un) . We further assume that the probability density 
functions exist and will therefore continue with the derivations using the densities.

The goal is to compute the posterior density of the augmented state given observations, i.e., ρ(u0:Nt |y0:Nt
) . 

Based on the formulation as a filtering problem, it can be solved sequentially as observations become available. 
This leads to the filtering distribution, ρ(un+1|y0:n+1) . Bayes’ theorem then gives us:

The problem at hand is to compute equation (2) as observations become available. The posterior density is not 
analytically tractable, so we must resort to numerical approximations.

We will make use of the particle filter, also referred to as sequential Monte Carlo method, where one aims to 
sample from the posterior instead of computing  it34. The approximation is performed by creating an ensemble 
of augmented states (particles) and advancing each augmented state in time using the prior distribution. The 
posterior is then approximated by the empirical density, made up of N particles,

where uin represents particle i at time step n and wi
n is its corresponding weight. δ is the Dirac delta function, 

which gives wi
nδ(x) = wi

n for x = 0 and zero otherwise. ρN (un|y0:n) can therefore be considered a discrete 
approximation of the true posterior. The computation of the weights is done by the specific choice of particle 
filter. A common choice is the bootstrap filter which makes use of importance sampling, originally described  in9.

The bootstrap filter assimilates data by advancing each particle using the prior distribution and assigning a 
weight to each. The weights are the normalized likelihoods, computed by evaluating the observation noise density 
at the residual between the observations and the particles. The weights are then normalized and used to resample 
the particles using a multinomial distribution with replacement. Note, however, that resampling when a new 
observation becomes available can lead to poor variablity in the ensemble. Therefore, resampling only occurs 
when the effective sampling size, ESS = 1/

∑N
i=0(w

i
n)

2 , is below a certain threshold, �ESS , typically chosen as N/2.
We will refer to the particle filter solution of equation (1) as the high-fidelity (HF) solution as it is the most 

accurate solution available.
The prior distribution is sampled by time stepping in the underlying discretized PDE and adding random 

noise. For high-dimensional problems, it is generally not feasible to run a particle filter in real-time as several 
thousands of particles are needed to accurately approximate the posterior, since the true model error is typi-
cally unknown. Therefore, reduced order models are often employed to speed up the computations at the cost 
of accuracy and training time.

Methodology
Here, we present the proposed methodology for real-time data assimilation with particle filters—the Deep Latent 
Space Particle Filter (D-LSPF).

At its heart, we represent the high-fidelity state in a more compact and cheaper to compute latent space and 
perform the data assimilation in the latent space. We then compute a posterior distribution over the latent state 
after which we transform back to the high-fidelity space to obtain the high-fidelity posterior. For this, we employ 
an autoencoder (AE) to reduce to the latent state, which we combine with a latent time stepping model to advance 
the latent state. AEs consist of two neural networks: An encoder, φenc : q �→ z , that reduces the dimension of the 
data to a latent state, and a decoder, φdec : (z ,m) �→ q̃ , that reconstructs the data. The AE is trained by minimiz-
ing the Mean Squared Error (MSE) loss between the input and the reconstruction—for the parameter dependent 
cases, we include the parameters in the decoder, which increases the reconstruction  accuracy35. The encoder and 
the decoder are then used to represent equation (1) in the latent space:

(1)

qn = F(qn−1;mn−1)+ ξn−1,

mn = G(mn−1)+ ζ n−1,

yn = h(qn)+ ηn−1,

ξn−1 ∼ Pξ (ξn−1),

ζ n−1 ∼ Pζ (ζ n−1),

ηn−1 ∼ Pη(ηn−1),

(2)ρ(un|y0:n) =
ρ(yn|un)ρ(un|y0:n−1)

ρ(yn|y0:n−1)
.

(3)ρN (un|y0:n) =
N∑

i=1

wi
nδ
(
un − uin

)
,
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Equation (4) differs from Eq. (1) in three ways:

• qn is replaced by zn—we advance the latent state instead of the high-fidelity state in time;
• ξn is replaced by ξ̂n—the latent time stepping model introduces a model error that differs from the high-

fidelity model error;
• qn = φdec(zn) is added—we need to decode the latent state to get synthetic observations in the high-fidelity 

space. Note that the decoder may also take the parameters as input. This is the case when a supervised AE is 
used. If an unsupervised AE were used, the parameters would not be used as input to the decoder.

It is worth noting that the error terms ζ n−1 and ηn are not affected by the transformation to the latent state. This 
is because both the model parameters and the observations are still in the same space as in Eq. (1). One could, 
however, modify the observation noise to account for the potential errors associated with the decoder. This is 
subject to future work.

With the augmented latent state, an = (zn,mn) , the high-fidelity posterior density is replaced by the latent 
posterior density, ρ(a0:Nt |y0:Nt

) . Formulating the problem as a filtering problem, the sequentially defined pos-
terior density is given by:

The latent prior density is then computed by:

which is an integral of much lower dimension than the high-fidelity equivalent. The latent likelihood is com-
puted by:

which is faster to evaluate than the high-fidelity equivalent, since φdec(an)) is fast to compute once f and φdec have 
been trained. Eqs. (5), (6), and (7) are approximated using the particle filter, as for the high-fidelity equations. 
The computationally expensive part of the particle filter, namely the time stepping, is performed efficiently in 
the latent space.

Here, we make use of the bootstrap particle filter; other types of particle filter algorithms could possibly be 
used instead. An outline of the D-LSPF algorithm is shown in Algorithm 1 and in Fig. 1.

(4)
zn = f (zn−1;mn−1)+ ξ̂n−1,

mn = G(mn−1)+ ζ n−1,

yn = h(φdec(zn,mn))+ ηn,

ξ̂n ∼ P
ξ̂
(ξ̂n),

ζ n ∼ Pζ (ζ n),

ηn ∼ Pη(ηn),

(5)ρ(an|y0:n) =
ρ(yn|an)ρ(an|y0:n−1)

ρ(yn|y0:n−1)
.

(6)ρ(an|y0:n−1) =
∫

ρ(an|an−1)ρ(an−1|y0:n−1)dan−1,

(7)ρ(yn|an) = ρηn
(
yn − h(φdec(an))

)
,

Figure 1.  Schematic of the D-LSPF.
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Algorithm 1.  D-LSPF (based on the Boostrap particle filter)
Note that the speed-up in running the particle filter in the latent space comes at a cost of a training stage 

and the cost of encoding and decoding (which is fast due to parallel computations on a GPU). This is, however, 
not a significant drawback as the training takes place offline and the AE and time stepping network can be used 
numerous times after training. If the system under consideration appears to be prohibitively large, the neces-
sary training time and amount of training data may make the problem intractable for the proposed method. 
Furthermore, the method requires the existence of a low-dimensional solution manifold, which makes its use 
for chaotic systems troublesome.

Latent space regularized autoencoder
For the D-LSPF to function efficiently, the latent space needs to satisfy certain properties. Firstly, the latent space 
must be smooth enough: to ensure that the latent space perturbations are meaningful, two states that are close 
to each other in the high-fidelity space must also be close in the latent space. With smoothness thus defined, we 
enforce this property using a prior distribution on the learned latent space in the form of a Wasserstein autoen-
coder (WAE)17 using the maximum mean discrepancy (MMD) loss term—the variational autoencoder (VAE)16 
could serve the same purpose; however, the VAE tends to also smoothen the reconstructions which is undesirable 
in our settings. For a training dataset, Dq = {q1, . . . , qN } , of high-fidelity states, the MMD loss term is given by

 where zi ∼ N(0, 1) , for i = 1, . . . ,N  , are sampled in each batch, and k is a kernel function chosen to be the 
following in this  work17:

 Secondly, the autoencoder should ensure that latent space trajectories are simple and easy to learn by a time 
stepping neural network. We achieve this by adding a consistency regularization term, as in Wan et al. (2023)18, 
which ensures that the time evolution of the latent state can be modeled by means of an ODE system and thus 
promotes differentiability, and thereby smoothness, of the time evolution map. The consistency regularization 
term is given by:

 As in Eq. (8), zi for i = 1, . . . ,N , are sampled from a standard normal distribution. In summary, the complete 
loss function is given by:

The regularization, RAE(φenc,φdec) , is a weight regularization term that aims to ensure generalization beyond the 
training set. In this work, we choose the l2 norm of the neural network weights. The parameters α , β , and � , are 
considered hyperparameters and are determined through hyperparameter tuning. Furthermore, the dimension 
of the latent space is problem dependent and is chosen via hyperparameter tuning.

(8)MMD
(
φenc;Dq

)
= 1

N(N − 1)

N∑

l �=j

[
k(zl , zj)+ k(φenc(ql),φenc(qj))

]
+ 2

N2

N∑

l,j

k(zl ,φenc(qj)),

(9)k(zl , zj) =
∑

s∈S

s2

s2 + ||zl − zj||22
, S = {0.2, 0.5, 0.9, 1.3}

(10)C(φenc,φdec) =
N∑

i=1

|zi − φenc(φdec(zi))|2.

(11)

LWAE(φenc,φdec;Dq) =
1

N

N∑

i=1

(
qi − φdec(φenc(qi))

)2

︸ ︷︷ ︸

Reconstruction

+αRAE(φenc,φdec)
︸ ︷︷ ︸

Weight regularization

+βMMD
(
φenc;Dq

)

︸ ︷︷ ︸

Divergence

+ �C(φenc,φdec)
︸ ︷︷ ︸

Consistency

.
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Remark There are several alternative approaches to achieve similar effects as the divergence and consistency 
regularization terms. For example, in Geneva & Zabaras (2022)12 a Koopman-based embedding is utilized so that 
the latent dynamics become suitable for time stepping. However, despite extensive experimentation, we obtained 
results of significantly lower quality than with the above mentioned approaches.

Transformer‑based dimensionality reduction
In our approach, the loss function ensures that the autoencoder, and thereby the latent space, has certain desir-
able properties. To ensure that the autoencoder can learn a low-dimensional representation and reconstruct it 
accurately, the architecture also has to be able to handle a multitude of possible high-fidelity states.

The arguably most common layers for AEs are convolutional and pooling  layers12,14,18. Convolutional layers 
however tend to have inherent inductive biases and struggle with discontinuous signals, resulting in spurious 
oscillations. Transformers, originally developed for text processing, have proven effective for image processing 
in the form of vision transformers (ViT)36. These transformers divide images into patches and apply the atten-
tion mechanism between each set of patches. Yet, since there is no natural way of reducing or expanding the 
dimensionality of the data, the ViT has been used to dimensionality reduction tasks only to a limited  degree37–40. 
Importantly, current ViTs have not been integrated with increasing numbers of channels in convolutional layers 
to represent increasingly complicated features. In this section, we extend the vision transformer layer to com-
bine the advantages of convolutional layers (i.e., dimensionality reduction/expansion and increasing/decreasing 
number of channels) and ViTs (global information, patch processing).

Before presenting the proposed layer, we briefly describe the standard transformer layer. The main component 
of which is the so-called scaled dot-product attention. For a matrix, X ∈ R

c×d , the scaled dot-product attention 
is computed by:

where K is denoted the keys, Q the queries, and V the values. Fk , Fq , and Fv are shallow neural networks to be 
trained. c is the so-called context length and d the embedding dimension. The context length refers to the num-
ber of elements in the input sequence, e.g., words in a sentence or pixels in an image. By defining multiple Fk , 
Fq , and Fv networks, we can compute several attention maps between the different embeddings in parallel and 
then concatenate the attention maps along the dth dimension. Each of these attention computations is called 
a head. The number of heads is typically considered a hyperparameter. By connecting the attention layer to a 
residual connection, a normalization layer, a dense neural network, another residual connection and another 
normalization, we form the transformer encoder module, see Fig. 2 for a visualization. We should keep in mind 
that the term transformer encoder refers to a naming convention of this layer and should not be confused with 
the AE encoder. The transformer layer is unaware of the relative positions of the individual nodes. Therefore, a 
positional encoding is added to the features before passing them through the transformer.

The attention mechanism scales quadratically with the context length. Therefore, it is infeasible for large 
images or when real-time inference is of importance. The vision transformer layer overcomes this by dividing the 
data into a number of patches, where each patch is flattened and embedded, after which the attention between 
the patches is computed.

In the proposed layer, the expansion/reduction of channels and dimensions is done on each individual patch. 
It can be interpreted as a type of domain decomposition, where the reduction/expansion is performed on each 
subdomain and the communication between subdomains is handled through the attention mechanism. Formally, 

(12)

Attention(Q,K ,V) = softmax

(
QKT

√
d

)

V , K = Fk(X) ∈ R
c×d , Q = Fq(X) ∈ R

c×d , V = Fv(X) ∈ R
c×d ,

Figure 2.  Visualization of the ViT dimensionality reduction/expansion layer.
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let the superscript, l, denote the l’th layer. We divide an input xl ∈ R
Nl
c×Nl

x ( Nl
c channels and a spatial dimension 

of size Nl
x ), into p patches, xl1, x

l
2, . . . , x

l
p of size Nl

p . That is, xli ∈ R
Nl
c×Nl

p , for all i. Then, each patch is flattened and 
projected onto an Nl

e-dimensional embedding space, e = (e1, e2, . . . , ep) ∈ R
Ne×Np . Positional encodings are then 

added after which the embeddings are passed through a standard transformer encoder layer. Each embedded 
vector, ei , is projected onto a new dimension of size Nl+1

c Nl+1
p  , unflattened, xl+1

i ∈ R
Nl+1
c ×Nl+1

p  and recombined, 
xl+1 ∈ R

Nl+1
c ×Nl+1

x  . The process is visualized in Fig. 2.

Time stepping
Once the AE is trained, we can transform high-fidelity trajectories into latent trajectories. To compute the latent 
trajectories, we next need to perform time stepping in the latent space. For this, we make use of  transformers41 as 
they are well suited for modeling physical systems, being able to mimic the structure of multistep time-marching 
 methods12.

Time stepping in the latent space is done by means of a map, f, that advances a latent state in time. Adopt-
ing the concept of multistep time integrators, we use several previous time steps to predict the next latent state:

where k is referred to as the memory. For multiple time steps, we apply the transformer model recursively. Train-
ing is done by minimizing the loss function:

 where Dz = {z1, . . . , zNt } is the training dataset of latent states, Rf  is a weight regularization term similar to RAE 
in Eq. (11), f i means applying f i times, recursively, on the output, and s is the output sequence length. In this 
paper, we choose Rf  to be the l2 norm of the neural network weights. After trajectories are computed in the latent 
space, high-fidelity trajectories are recovered through the decoder.

In the high-fidelity space, dynamics are not only dependent on the previous state but also on a set of param-
eters, and the same applies to the latent dynamics. Including the parameters of interest in the latent space time 
stepping model can be done in several ways, depending on the specific choice of neural network architecture. 
We adopt the approach presented  in42, where the parameters are encoded and added to the sequence of states 
as the first entry:

where g is a parameter encoder that lifts a vector of parameters to the same dimension as the latent state. This 
efficiently allows attention to be computed between the parameters and the sequence of states. Figure 3 visualizes 
the time stepping transformer model.

Results and discussion
We demonstrate the potential and strength of the D-LSPF for a variety of numerical experiments. The first test 
case serves as a simple benchmark problem. The second test case uses real-world data from an experimental set-
ting, and shows that the D-LSPF can be applied to real-world situations even when trained on simulation data. 
The last test case is a realistic engineering setting and is used as an ablation study to emphasize the performance 
of the architectural choices. An overview of the test cases can be found in Table 1.

For all neural networks, hyperparameter tuning was performed to find the optimal settings. For both the AE 
and the time stepping neural network, the performance was measured with a validation dataset that was differ-
ent from both the training and test datasets. For the WAE we measured the reconstruction error with the MSE, 
and for the time stepping neural network we measured the MSE of the predicted latent states. The regularization 
parameters α , β , and γ , as well as the number of channels in each layer, learning rate, and latent space dimension 
were considered hyperparameters for the WAE. For the time stepping neural network, the number of previous 
time steps, regularization parameter α , the number of transformer layers, and the transformer embedding dimen-
sion were considered hyperparamters. In general, we found that the time stepping network was not sensitive to 

(13)zn+1 = f (zn−k:n;mn),

L(f ;Dz)=
Nt−s∑

n=k

s∑

i=1

||f i(zn−k:n;mn)− zn+1:n+1+i||22+αRf (f ),

(14)
{
g(mn), zn−k , zn−k+1, . . . , zn

}
→ f

({
g(mn), zn−k , zn−k+1, . . . , zn

})
= zn+1,

Figure 3.  Illustration of the transformer model for parameterized time stepping.
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the choice of hyperparameters, while the WAE required more tuning. Around 20 runs were used to determine 
the final choice of hyperparameters for the WAE for all test cases and for the time stepping network around 5 
runs were used. While this is, in general, considered a relatively small number of runs, it appeared sufficient to 
get the desired performance. For the alternative methods we compare with, we adopt hyperparameters as chosen 
in the respective papers when applicable, and performed hyperparameter tuning when not.

All neural networks were implemented using  PyTorch43. The modified ViT layers are implemented by modi-
fying the code from https:// github. com/ lucid rains/ vit- pytor ch. Training and testing were performed using an 
Nvidia RTX 3090 GPU and 32 core AMD Ryzen 9 3950X CPU. All models are trained with the Adam  optimizer44 
and a warm-up cosine annealing learning rate scheduler. Gradient clipping was applied when training the 
transformers. The states and parameters were transformed to be between 0 and 1 before being passed to the 
autoencoder. The time stepping networks are trained without teacher forcing, and with a limited unrolling.

Training of the WAE costs approximately 1 hour for the viscous Burgers equations, 16 hours for the harmonic 
wave generation over a submerged bar test case, and 48 hours for the multi-phase leak localization test case. Simi-
lar training time was spent for the time stepping neural networks. All the training was performed using 1 GPU.

Importantly, we focus on the performance of the online data assimilation by the dimensionality reduction 
and time stepping. Therefore, we do not go into great detail about the stability and generalization aspects of the 
methodology. These topics were however discussed in detail in e.g. Mücke (2021)14 and Geneva and Zabaras 
(2022)12. Stability and generalization were tested using validation datasets, where we observed that the neural 
networks generalized beyond the training data and the time stepping appeared sufficiently stable to predict an 
entire time horizon of interest without assimilating data. This suggests that the surrogate models are suitable for 
the test cases considered even when observations are sparse in time. Testing how the surrogate models would 
perform beyond the training horizon is beyond the scope of this work. Furthermore, in many applications, the 
possible outcomes are relatively well-understood and can be represented well in the training data and we found 
no reason to assume that the trained models would deteriorate if the training horizon were expanded further. It 
should be noted that the neural networks were trained with relatively large datasets and sufficient training time. 
Analyzing whether similar results can be achieved with less data and training time is subject to future work.

We compare the D-LSPF with a high-fidelity particle filter and the Reduced-Order Autodifferentiable Ensem-
ble Kalman Filter (ROAD-EnKF)  method33. We adopt the same architectures as presented in the original paper, 
namely a Fourier decoder network for decoding the latent state and dense neural network for time stepping. 
The ROAD-EnKF has already been compared with alternative methods and has shown superior performance 
in the original paper. Hence, it serves as a suitable representation of the state-of-the-art. Furthermore, with 
this comparison we show the increased accuracy one can achieve by using particle filters rather than ensemble 
Kalman filters, even when the ensemble Kalman filter is used in conjunction with neural networks. In particular, 
this increased accuracy can be achieved without sacrificing the real-time constraints due to the low-dimensional 
latent space and surrogate model of the D-LSPF.

Viscous Burgers equation
The first test case is the viscous Burgers equation:

(15)

∂tq(x, t) = ν∂xxq(x, t)− q(x, t)∂xq(x, t),

q(0, t) = q(L, 0) = 0,

q(x, 0) = Q sin

(
2πx

L

)

,

Table 1.  Overview of test cases.

Burgers Multi-phase pipeflow Waves over submerged bar

Num train samples 1024 5000 210

Num test samples 20 8 1

Parametric No Yes Yes

Simulated observations Yes Yes No

Noise variance 0.01 10−5 ( pressure2 [ bar2]) –

Num sensors 8 9 8

Num time steps between obs 30 400 [25, 75]

State degrees of freedom 256 1536 1024

Num states 1 3 2

Num states observed 1 1 1

Likelihood variance 0.01 10−5 ( pressure2 [ bar2]) 7.5× 10−5 ( wave height2 [ m2])

Latent model error, ξ̂  , variance 10−8 10−5 10−5

 Parameter perturbation, ζ  , variance 10−10 0.0 10−6

 Parameter prior distribution - Cd ∼ U[1, 2] , xl ∼ U[10, 5990] U[0.07, 0.35]

https://github.com/lucidrains/vit-pytorch
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with x ∈ [0, L] , L = 2 , ν = 1/150 , and Q ∼ U[0.5, 1.5] . We only perform state estimation so neither the AE 
nor the time stepping NN receives any parameters as input. The observations used for the data assimilation are 
simulated, as well as the training data. We add normally distributed noise with a standard deviation of 0.1. equa-
tion (15) is discretized using a second-order finite difference scheme in space and a Runge-Kutta 45 method in 
time. The observations are simulated using the same discretization as the training data. We consider t ∈ [0, 0.3] 
with a step size of 0.001, resulting in 300 time steps. For the data assimilation, we test on a case where the state is 
observed at 8 spatial locations, x = (0.0, 0.286, 0.571, 0.857, 1.143, 1.429, 1.714, 2.0) , Ny = 8 , at every 10th time 
step. The latent dimension in the D-LSPF is chosen to be 16.

We compare the D-LSPF with 100 and 1000 particles with the ROAD-EnKF with a latent dimension of 40. 
The hyperparameters are taken from the original paper as they also consider the viscous Burgers equation. The 
ROAD-EnKF is trained on the same training data as the D-LSPF with full access to the entire states in space 
and time. All methods are evaluated on 20 different simulated solutions, with Q ∼ U[0.5, 1.5] . We compare 
the performance by computing the root-mean-square error (RMSE) and the averaged RMSE of the 2nd, 3rd, 
and 4th moment of the state ensemble, referred to as the average moment RMSE (AMRMSE). The AMRMSE 
measures how accurately the distributional information of the posterior is approximated and therefore how 
accurately uncertainty is quantified. Moreover, we also present the negative log-likelihood (NLL) with respect 
to the high-fidelity posterior.

In Table 2, the results for the test case are shown. The D-LSPF shows superior performance with respect to 
AMRMSE and NLL by one order of magnitude, suggesting that the D-LSPF quantifies the uncertainty in a more 
accurate way compared to ROAD-EnKF for this case. For the mean state estimation, the D-LSPF also performs 
3.75 times better. It is worth noting that the D-LSPF with 100 and 1000 particles exhibit very similar performance 
under all metrics. For the RMSE, they are the same up to O(10−2) . Regarding the NLL, we see that the D-LSPF 
with 100 particles performs a bit better than with 1000 particles, which may be due to random effects. In general, 
the results suggest that 100 particles are sufficient. Regarding timing, the D-LSPF with 100 particles and the 
ROAD-EnKF are comparable using GPUs, while the ROAD-EnKF is slightly faster using a CPU.

Lastly, in Fig. 4, we show state estimation results at three different time points. It is clear that the uncertainty 
bands shrink as time passes and more observations become available as expected. The ROAD-EnKF state estima-
tion is visually slightly worse than the D-LSPF and the high-fidelity particle filter.

Harmonic wave generation over a submerged bar
In this test case, the data comes from a real-world  experiment45. The setting is a 25m long and 0.4m tall 
wave tank, with waves being generated from the left side, traveling to the right. At the seabed of the tank, 
a 0.3m tall submerged bar is placed, see Fig. 5. Eight sensors measure the surface height of the water at 

Table 2.  Results for the viscous Burgers equation, with in parenthesis the number of particles. For the high-
fidelity (HF) particle filter, 30 CPUs were used in parallel. For the other methods a single CPU or GPU was 
used. The downward pointing arrow means lower values are better. RMSE is the root mean squared error, 
the AMRMSE is the average moment RMSE with respect to the high-fidelity particle posterior, and NLL is 
the negative log-likelihood with respect to the high-fidelity particle posterior. The AMRMSE is computed by 
comparing the surrogate model ensembles with the HF particle filter solution. Best values are in bold.

RMSE ↓ AMRMSE ↓ NLL ↓ GPU ↓ CPU ↓

HF(1000) 9.0× 10
−3 – – 22.7 s

D-LSPF(100) 1.6× 10
−2 1.3× 10−4 0.38 0.6 s 1.5 s

D-LSPF(1000) 1.6× 10
−2 1.1× 10

−4 0.42 1.2 s 13.4 s

ROAD-EnKF (100) 6.0× 10−2 1.2× 10−3 4.73 0.6 s 0.8 s

Figure 4.  State estimation for the viscous Burgers equations with observations every 10 time step using the 
high-fidelity particle filter, the D-LSPF and the ROAD-EnKF. The high-fidelity particle filter was run with 1000 
particles and the D-LSPF and ROAD-EnKF were run with 100 particles. (a) t = 0.03 . (b) t = 0.15 . (c) t = 0.29 . 
It is clear that all methods approximates the state well. The ROAD-EnKF approximation is slightly off in (c). This 
difference is, however, negligible. .
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x = (4, 10.5, 13.5, 14.5, 15.7, 17.3, 19.0, 21.0) . For the state and parameter estimation, we aim to reconstruct the 
surface elevation, the velocity potential, and the height of the submerged bar. A similar study was conducted  in46, 
where the uncertainty of the water wave height was quantified given random perturbations on the seabed;  in46 
however only uncertainty of the forward problem was considered, whereas we solve the inverse problem with 
uncertainty quantification, given the observations. For the neural network surrogate model, we only consider 
the surface elevation, η , and the surface velocity potential, φ̃ , as the state and the height of the submerged bar is 
the parameter of interest. This highlights an important advantage of using a non-intrusive surrogate model, as 
it becomes possible to only model the relevant quantities of interest, bypassing the computations of the velocity 
potential in the vertical direction.

To generate the training data, we model the setup using the fully nonlinear water wave model for deep fluids 
as described  in47. The problem is modeled in 2D by means of a set of 1D PDEs for the free surface boundary 
conditions, together with a 2D Laplace problem in the full domain. Let x be the horizontal component and z 
the vertical component, see Fig. 5. The velocity potential, φ : (x, z, t) �→ φ(x, z, t) , is the scalar function defined 
on the whole 2D domain, and the free surface elevation, η : (x, t) �→ η(x, t) , is defined only on the 1D surface. 
The free surface boundary conditions can be expressed in the so-called Zakharov  form48, modeled by two 1D 
PDEs—the wave height, η , and the velocity potential, φ̃:

Equation (16) is defined on the surface part of the domain, ŴFS . w̃ = ∂zφ|z=η and φ̃ = φ|z=η are the surface parts 
of the functions that are defined on the 2D domain and ŴFS is the free surface, as shown in Fig. 5. The velocity 
potential on the domain is modeled by the 2D Laplace problem, via the σ-transform:

where σ = (z + h(x))d(x, t)−1 , �c = {(x, σ)|0 ≤ σ ≤ 1} , and

We use the spectral element method, as described  in47, for the discretization of the equations. We use 103 ele-
ments in the horizontal direction and 1 element in the vertical direction, both with 6th order polynomials, to 
generate the training data. The equations are solved with a step size of 0.03535 with t ∈ [0, 42.42] , resulting in 
1200 time steps, and the bar height is uniformly sampled between 0.1 and 0.325. The states are interpolated onto 
a regular grid of 512 points.

Sensor observations from the experiment are available at a time frequency of 0.03535s, which was also 
chosen as the step size for the simulations. To demonstrate how the D-LSPF performs with varying time inter-
vals between the observations, we show the results for sensor observations at every 25th and 75th time step, 
corresponding to every 0.884s and 2.651s, respectively. We refer to these two settings as case 1 and 2. We only 
observe the wave height and not the velocity potential. Since we deal with real-world data, the true full state is 
not available. Therefore, we measure the accuracy against the full time series of observations, showcasing that 
the D-LSPF can accurately estimate the state between observations. We do, however, also compare the results 
with a high-fidelity simulation with the true bar height. Furthermore, we present the accuracy of the bar height 
estimates.

We compare the D-LSPF with the ROAD-EnKF33, where we train the ROAD-EnKF model on the same simu-
lated data as the D-LSPF with full access to the states in space and time. To deal with the multiple states, wave 
height and velocity potential, we introduce a slight modification in the decoder network in the ROAD-EnKF 
compared to the original  paper33, by ensuring that the Fourier decoder networks outputs data with two chan-
nels. The latent dimension is chosen to be 8 for the D-LSPF and 40 for the ROAD-EnKF. The neural network 
architectures for the modified ROAD-EnKF model have been chosen through hyperparameter tuning. Note that 
the ROAD-EnKF method is not able to perform parameter estimation.

(16)

∂η

∂t
= −∇η ·∇φ̃ + w̃(1+∇η ·∇η),

∂φ̃

∂t
= −gη − 1

2

(

∇φ̃ ·∇φ̃ − w̃2(1+∇η ·∇η)

)

.

(17)

∇σ (K(x; t)∇σ φ) = 0, in �c ,

φ = φ̃, z = η on ŴFS ,

n · ∇φ = 0, z = −h(x, y) on Ŵb,

(18)K(x, t) =
[

d − σ∂xη

−σ∂xη
1+(σ∂xη)

2

d

]

.

Figure 5.  Wave tank setup and physical variables. Figure comes  from47.
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Table 3 contains the Relative RMSE (RRMSE), probability interval coverage percentage (PICP), and timings 
for the D-LSPF and the ROAD-EnKF in both variations of the test case using 100 and 1000 particles. The D-LSPF 
clearly performs best with respect to the state estimation with an improvement of one order of magnitude, for 
both 100 and 1000 particles. For the PICP, the ROAD-EnKF does slightly better, however, inspecting Figs. 6a, b, 
we see that the ROAD-EnKF has large uncertainty intervals while being quite inaccurate on average compared 
to the D-LSPF. In general, the PICP is less relevant when the RRMSE is bad. The large uncertainty intervals for 
the ROAD-EnKF state estimation are found because the problem is highly nonlinear and EnKF type methods are 
known to perform insufficiently well in such cases. Moreover, the lacking parameter estimation in the method 
also contributes to the large uncertainties. These results are further highlighted in Fig. 7a, b, plotting the win-
dowed RRMSE versus time. The windowed RRMSE measures the RRMSE in a time window in order to show 
how the state estimation improves when more observations become available. The D-LSPF converges and even 

Table 3.  Results for the harmonic wave generation test case using the D-LSPF and the ROAD-EnKF with 
100 and 1000 particles. Timings are measured using a single GPU. The PICP is computed using the 2.5th and 
the 97.5th percentile. An upward pointing arrow means larger values are better and a downward pointing 
arrow means lower values are better. “S-” and “P-” refer to the state and parameters, respectively. RRMSE is 
the relative root mean squared error and PICP is the probability interval coverage percentage for the 95th 
percentile.  Best values are in bold.

Case 1—every 25 time step Case 2—every 75 time step

S-RRMSE ↓ S-PICP ↑ P-RRMSE ↓ Time ↓ S-RRMSE ↓ S-PICP ↑ P-RRMSE ↓ Time ↓

D-LSPF(100) 3.6× 10
−1 4.4× 10−1

4.4 × 10
−3 1.5 s 4.3× 10−1 4.9× 10−1 5.3× 10−3 1.4 s

D-LSPF(1000) 3.8× 10−1 3.9× 10−1 4.6× 10−3 10.5 s 4.0× 10
−1 5.6× 10−1

4.9× 10
−3 10.0 s

ROAD-EnKF(100) 1.1 5.0× 10−1 – 5.4 s 1.0 5.8× 10
−1 – 5.1 s

ROAD-EnKF(1000) 1.0 5.5× 10
−1 – 31.3 s 1.0 5.8× 10

−1 – 29.9 s

Figure 6.  State estimation at t = 40 s for the harmonic wave test case with observations every 75 time steps. 
Note that only wave height is observed and not velocity potential. (a) Wave height estimation, η ± 2σ . 
(b) Velocity potential estimation, φ̃ ± 2σ.

Figure 7.  Windowed RRMSE for the harmonic wave test case with a window size of 75 time 
steps. (a) Observations every 25 time step. (b) Observations every 75 time step.
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surpasses the high-fidelity simulation, showcasing how assimilating observations impactfully improves accuracy. 
We also notice for both the D-LSPF and ROAD-EnKF that there are only minor differences between using 100 
and 1000 particles. Furthermore, the RRMSE only varies slightly between the two cases, suggesting that both 
methods are stable with respect to observation frequency.

Besides the accuracy, Table 3 also notes the computation time. In both cases, both the D-LSPF and the ROAD-
EnKF are faster than real-time, as the data assimilation takes place over 40s in physical time and the D-LSPF and 
ROAD-EnKF computation times vary between 1.4 and 29.9 s. In general, the D-LSPF is between 3 and 4 times 
faster than the ROAD-EnKF. For comparison, a single high-fidelity model simulation takes on average some 
1062s. Hence, running the particle filter using the high-fidelity model on 30 CPU cores, assuming no overhead 
associated with the parallelization, would take approximately 3542 s with 100 particles and 35,420 s for 1000 
particles, yielding a speed-up of 2345 for 100 particles and 3376 for 1000 particles on a GPU when using the 
D-LSPF. When deploying the D-LSPF and running it as the data comes in, it is not possible to perform the data 
assimilation task faster than the arrival of observations. However, the timings show that the method assimilates 
the data without any delay.

Figure 8 shows the quality of the D-LSPF estimates of the state and the sensor locations between observations. 
Furthermore, the difference between using 100 and 1000 particles is negligible for the state estimates. However, 
when zooming in, it becomes clear that using more particles result in better uncertainty intervals. Lastly, in 
Fig. 9, the posterior distributions of the bar height for varying numbers of particles and observation frequency 
are shown. While the average bar height estimates are very similar for the 100 and 1000 particles, the distribu-
tions change from being multimodal to unimodal.

Multi‑phase leak localization
Here, we consider leak localization in a two-phase pipe flow for liquid (water) and air, and we assume that they 
are mixed. We consider a case where only a few sensors are placed along a 5km long pipe, measuring pressure. 

Figure 8.  State estimation at two sensor locations computed with the D-LSPF with 100 and 100 particles 
compared with a high-fidelity simulation with the true bar height and the true sensor data. (a) Sensor located at 
13.5m . (b) Sensor located at 14.5m.

Figure 9.  Posterior distribution over the bar height at t = 40s for varying observation frequency and number 
of particles. The density outlines are computed using kernel density estimation based on the posterior particles. 
Vertical lines represent the mean of the distributions. (a) D-LSPF with 100 particles. (b) D-LSPF with 1000 
particles.
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The system is in a steady state when a leak occurs, where we then use the particle filter to compute a distribution 
over the leak location, leak size, liquid holdup, mixture velocity, and pressure. This problem is similar to the setup 
 in6, where single-phase CO2 was considered, but state estimation was only performed in a non-leakage case.

The state for data assimilation and our surrogate model is the primitive state, consisting of the liquid holdup, 
pressure, and mixture velocity, q = (αl , p, um) . Both training, testing, and observations data are simulated and 
noise is artificially added to the observations with a standard deviation of 0.01. We use the homogeneous equi-
librium model (HEM)49 for the simulations. The HEM is a set of nonlinear, hyperbolic one-dimensional PDEs:

with boundary conditions ρgum(0, t) = (ρgum)0 and ρlum(0, t) = (ρlum)0 at the pipe inlet on the left side, and 
p(L, t) = pL at the outlet on the right side. ff  is the wall friction, Re is the Reynolds number, and L is the leak 
size. δ is the Dirac delta function, ensuring that the leak is only active at x = xl . A is the cross section area of 
the pipe, Ag is the area occupied by gas and Al the area occupied by liquid. Hence, for αg ∈ [0, 1] and αl ∈ [0, 1] 
being the fraction of gas and liquid, respectively, we have:

ρl is the liquid density assumed to be constant, ρg is the gas density, and ρm is the mixture density (not to be 
confused with the probability density functions, ρ),

The wall friction, ff  , is given by,

the Reynolds number, Re, is given by

and the leak size, L, is given by,

 For specific values of all constants in Eq. (19), see Table 4. We discretize the PDEs using the nodal discontinuous 
Galerkin  method50 with Legendre polynomials for the modal representation and Lagrange polynomials for the 

(19)

∂t(Agρg )+ ∂x(Agρgum) = −αgL(ρm)δ(x − xl),

∂t(Alρl)+ ∂x(Alρlum) = −αlL(ρm)δ(x − xl),

∂t(Aρmum)+ ∂x
(
ρmu

2
mA+ p(ρg )A

)
= −ρum|um|

2
ff (ρ, um),

(20)Ag = αgA, Al = αlA, A = Ag + Al , αg + αg = 1.

(21)ρm = αgρg + αlρl .

(22)

ff = 2

((
8

Re

)12

+ (a+ b)−1.5

)1/12

, a =
(

−2.457 ln

(
7

Re

)0.9

+ 0.27
ε

2r

)16

, b =
(
37530

Re

)16

,

(23)Re = 2rρmum

µm
, µm = αgµg + αlµl ,

(24)L(ρm) = Cd

√

ρm(p(ρg )− pamb).

Table 4.  Parameters for the multi phase pipe flow equations (19).  Note that the discharge coefficient and the 
leakage location have values denoted by intervals, as they are the parameters to determine.

Physical quantity Constant Value Unit

Pipe length L 5000 m

Diameter d 0.2 m

Radius r  0.1  m

Cross-sectional area A 0.0314 m2

Speed of sound in gas c 308 m/s

Ambient pressure pamb 1.01325 bar

Reference pressure pref 1.0 bar

Reference density (gas) ρg 1.26 kg/m3

Reference density (liquid) ρl 1003 kg/m3

Inflow velocity v0 4.0 m/s

Outflow pressure pL 10.0 bar

Pipe roughness ε 10−8 m

Fluid viscosity (gas) µg 1.8× 10−5 Ns/m2

Fluid viscosity (liquid) µl 1.516× 10−5 Ns/m2

Temperature T 278 Kelvin

Discharge coefficient Cd [1, 2] m

Leakage location xl [10, 5990] m
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nodal degrees of freedom. We use the Lax-Friedrichs discretization for the numerical flux and BDF2 for time 
stepping. The nonlinear equations coming from the implicit time stepping are solved using Newton’s method, 
where the resulting linear systems are solved via an LU factorization. Furthermore, the Jacobian matrix is only 
updated every 500 time-steps to speed up the computations.

The true state and observations used for the data assimilation are simulated using 3000 elements and third-
order polynomials. The states are then evaluated on regular grid of 512 points. The training data is simulated 
using 2000 elements and second-order polynomials. Thereafter, it is evaluated on a regular grid consisting of 512 
grid points. The equations are solved with a time-step size of 0.01, for t = [0, 120] s. Hence, there are 12,000 time 
steps. The surrogate model is trained to take steps 10 times larger than the high-fidelity model.

For testing the D-LSPF, we compute a high-fidelity particle filter solution with 5000 particles as a baseline 
to measure if we estimate the distributional information accurately. The high-fidelity solver uses 700 elements 
and 3rd order polynomials. The available observations are located at eight spatial locations: x=(489.24, 978.47, 
1467.71, 1956.95, 2446.18, 2935.42, 3424.66, 3913.89, 4403.13). Only pressure is observed. The observations 
arrive with a time frequency of 4 s, corresponding to every 400 time steps of the PDE model. To ensure consist-
ent performance across various configurations, we compute the metrics over eight different test trajectories with 
varying leak locations and sizes and take the average. We compute the state and parameter RRMSE against the 
true solution, the state AMRMSE against a HF particle filter solution, the state and parameter NLL against the 
HF particle filter solution, as well as the Wasserstein-1 distance of the posterior parameter distribution against 
the HF posterior.

We use this test case as an ablation study: we use the same particle filter setting for all approaches and only 
replace the chosen architectures. We compare the presented architectures with three alternatives: One where 
the transformer-based AE layers are replaced with convolutional ResNet layers. The dimensionality reduction in 
this network is performed through strided convolutions and the dimensionality expansion is performed using 
transposed convolutions. The second alternative is using the proposed ViT architecture but without the Was-
serstein distance and consistency regularization in the latent space for the autoencoder. Lastly, we compare with 
a setup that still uses the proposed ViT AE with regularization, but replaces the transformer based time stepping 
with a neural ODE (NODE)51. In all cases, a latent dimension of 8 is chosen.

Remark We also trained a Fourier Neural Operator (FNO)52 as a surrogate model, but without success. In all 
attempts, the solutions exploded after a certain number of time steps. This may be due to the fact that there is a 
clear discontinuity which is located at the parameter, xl . Fourier series may not be good approximators for such 
tasks. For this reason, FNO results are omitted from this work.

The results are summarized in Table 5. Our chosen architecture demonstrates superior performance in most 
metrics. Note in particular that the results using the convolutional AE are significantly worse compared to 
the ViT AE, emphasizing the advantages of the transformer-based architecture across different combinations. 
Furthermore, the D-LSPF outperforms the high-fidelity particle filter in estimating the leak location and size as 
well as the state. This can be explained from the fact that the D-LSPF is trained on higher resolution trajectories. 
As this came at a higher cost only at the training stage, it does not add to the computation time when running 
the particle filter.

In Fig. 10, the true velocity at t = 40 and t = 120 are compared with estimates using a high-fidelity model, 
the D-LSPF with the ViT AE, and the D-LSPF with convolutional AE. The convolutional AE clearly fails to 
reconstruct the state in any meaningful way, while the D-LSPF with the ViT AE accurately estimates the velocity 

Table 5.  Computation times using a GPU for the D-LSPF applied to the multi phase leak localization test 
case. All timings are computed with 5000 particles. The high-fidelity solver makes use of 100 CPU cores and 
the neural network uses one GPU. “P-” refers to parameter estimation and “S-” refers to state estimation. 
RRMSE is the relative root mean squared error, the AMRMSE is the average moment RMSE with respect to the 
high-fidelity particle posterior, and NLL is the negative log-likelihood with respect to the high-fidelity particle 
posterior. Best values are in bold.

HF Reg-ViT-Trans NoReg-ViT-Trans Reg-Conv-Trans Reg-ViT-NODE

P-RRMSE ↓ 5.2× 10−1
9.6× 10

−3 1.1× 10−2 7.4× 10−1 1.5× 10−2

P-Wasserstein-1 ↓ – 169.9 168.4 875.7 172.7

S-RRMSE ↓ 7.9× 10−2
2.5× 10

−2 2.9× 10−2 8.3× 10−2 3.1× 10−2

S-AMRMSE ↓ – 4.3× 10
−3 4.4× 10−3 4.5× 10−3 4.5× 10−3

P-NLL ↓ – 5.09 5.70 6.01 12.54

S-NLL ↓ – 16.87 15.37 18.37 17.32

Time (GPU) ↓ – 24.89 s 24.90 s 23.58 s 6.52

Speed-up (GPU) ↓ – 1807.95 1807.23 1908.40 6901.84

Time (CPU) ↓ 45,000 s 332.3 s 317.0 s 328.8 s 45.9 s

Speed-up (CPU) ↓ – 135.4 142.0 136.9 980.8
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with the uncertainty concentrated around the leak location as expected. It is, however, worth noticing that the 
uncertainty is significantly smaller for the D-LSPF solution, suggesting that the particles may have degenerated. 
In Fig. 11, we show the convergence accuracy of the leak location estimation for all the neural network setups. 
We see in Fig. 11a that the proposed setup is superior than the alternatives with respect to the RRMSE for all 
number of particles. Similarly, we reach the same conclusion with respect to the Wasserstein-1 distance of the 
posterior distribution of the leak location.

Conclusion
We presented a novel particle filter, the D-LSPF, for fast and accurate data assimilation with uncertainty quanti-
fication. The D-LSPF was based on a surrogate model utilizing dimensionality reduction and latent space time 
stepping. The use of particle filters provided estimates for the state and parameters as well as for the associated 
uncertainties. For the AE, we made use of a novel extension of the vision transformer for dimensionality reduc-
tion and reconstruction. Furthermore, we discussed a number of regularization techniques to improve the 
performance of the D-LSPF.

We demonstrated the D-LSPF on three different test cases with varying characteristics and complexities. 
In the first test, we compared with alternative deep learning-based data assimilation methods for the viscous 
Burgers equation. The D-LSPF showed superior performance by an order of magnitude regarding uncertainty 
estimation as well as almost 4 times better mean reconstruction. In the second test case, we performed state and 
parameter estimation on a wave tank experiment with few observations available in time and space. The D-LSPF 
performed up to 3 times better than alternative approaches while also being faster and successfully estimated 
both the state and parameter. Lastly, we applied the D-LSPF on a leak localization problem for multi-phase flow 
in a long pipe. We showed how the ViT AE and the regularization techniques drastically improved the state and 
parameter estimation: the D-LSPF provided speed-ups of 3 orders of magnitude compared with a high-fidelity 
particle filter while also being more accurate.

Several aspects of our work could benefit from future investigations. In particular, we made use of the boot-
strap particle filter. While this particular version of the particle filter has many advantages such as relative ease 
of implementation and convergence, there are alternatives. It might be fruitful to analyze the quality of filters 
that utilize the differentiability of neural networks, such as the nudging particle filter with gradient  nudging53 or 
particle filters based on Stein variational gradient  descent54,55.

Figure 10.  Velocity estimation results for the multi phase pipeflow test case. (a) Velocity estimation at t = 40.  
(b) Velocity estimation at t = 120s.

Figure 11.  Results for the leak size and location estimation at time 120 s, for varying neural network 
specifications and number of particles. (a) Leak location and size Relative RMSE. (b) Wasserstein distance for 
the leak location.
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In all, the D-LSPF significantly sped up complex data assimilation tasks without sacrificing accuracy, thus 
enabling fusing of increasingly complex models with data in real-time. It is important to note that the D-LSPF 
is not exclusively for use in fluid dynamics. The only prerequisites for the method are that a low-dimensional 
solution manifold must exist, and a high-fidelity model that approximates the system at hand sufficiently well 
is available, such that training data can be simulated. Hence, the D-LSPF can potentially be used in other fields 
where real-time data assimilation is of importance, such as e.g. healthcare and climate modeling.

Data availibility
The code for setting up and training the neural networks, including hyperparameter settings, for the test cases 
can be found in the GitHub repository https:// github. com/ nmucke/ latent- time- stepp ing. The code for simulating 
training data for Burgers equations and the multi-phase leak location problem can be found in the same reposi-
tory. The code for simulating the training data for the harmonic wave generation over a submerged bar test case 
can be made available upon request and in consultation with Associate professor Allan Peter Engsig-Karup. The 
code for the particle filter implementations as well as the test data can be found in the GitHub repository https:// 
github. com/ nmucke/ data- assim ilati on.
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