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Abstract

The goal of graph sparsification is to compress large graphs into smaller ones. In vertex
sparsification we are given a graph and a set of terminals. We aim to find a graph
with the terminals as vertices, that preserves some property of interest. For vertex-
flow sparsification we aim to preserve flows. Moitra proved that vertex-flow sparsifiers

exist with quality O
(

log k
log log k

)
, where k is the number of terminals. There is a classical

algorithm with runtime Õ(m2) to find such vertex-flow sparsifier, where m is the number
of edges of the original graph. In this work we present a new quantum algorithm with
runtime Õ(m11/6n1/6) that finds the same quality vertex-flow sparsifier, where n is the
number of vertices of the original graph. This is a small polynomial speedup for dense
graphs. The quantum speedup is based on the classical algorithm, but uses various
quantum subroutines from the literature.
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1 Introduction

1.1 Vertex sparsification

Graph theory is essential in understanding communication networks. If, for example, we
are interested in transferring data between data centers, then we would like to know how
to do that efficiently. In this example, our graph could form a gigantic communication
network. For solving problems in graph theory, we typically need a runtime which
depends on the number of edges and the number of vertices of our graph. If the graph is
very large, then we would need a lot of storage space and time to solve these problems.
Graph sparsification offers a solution to this problem. In graph sparsification we try

to make our graph smaller, while approximately preserving some properties of interest
of the graph. This reduces the storage space needed to store the graph and it reduces
computational time for various problems, at the expense of having only approximate so-
lutions. Broadly speaking, there are two types of graph sparsification: edge sparsification
and vertex sparsification.
In edge sparsification we are only allowed to reduce the number of edges, while we

keep all vertices. There are different formal definitions of edge sparsification, depending
on what features of the graph we want to preserve. Examples are edge sparsifiers that
ϵ-approximate cuts [17, 2] or exactly preserve cuts smaller than some constant [24].
Special interest goes to spectral sparsification, introduced by Spielman and Teng [27].
Given a graph G with graph Laplacian L, we want to find a graph on the same set of
vertices that has a Laplacian that ϵ-approximates L. Spielman and Teng proved such
spectral sparsifiers exist with a number of edges nearly linear in the number of vertices
of the graph, and that it can be found in time nearly linear in the number of edges. An
example of spectral sparsification is given in Figure 1.1. We see the complete graph on
n = 10 vertices, K10. This is a dense graph, and we want to find a sparse graph that
approximates the Laplacian of K10. The Petersen graph depicted in Figure 1.1b is a
3-regular graph that

√
5/2-approximates the Laplacian of K10, as argued by Spielman

and Teng [27] in their Example 1. The sparse graph will now be easier to work with
than the original dense graph, but we have to pay an expense in
Apers and de Wolf [1] showed that the runtime to find spectral sparsifiers can be

improved to Õ(
√
mn/ϵ) using quantum algorithms, where n is the number of vertices

and m the number of edges of the original graph. Note that this is a polynomial speedup
in the case that ϵ >

√
n/m.

This quantum speedup directly gives speedups for a number of other problems from
graph theory, for example Laplacian solving. In this problem we are given a graph
Laplacian L and a vector b ∈ Rn, and we want to find a vector x ∈ Rn such that Lx = b.
If we allow ourselves a small error, then we could look at the problem of finding an x
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(a) The complete graph on n = 10 vertices,
K10. Every edge has weight 1.

(b) A d-regular spectral sparsifier with d =
3. Every edge has weight n/d = 10/3.
This graph is known as the Petersen
graph.

Figure 1.1: Spectral sparsification of K10

such that ||x − L+b||L ≤ ϵ||L+b||L, where ϵ > 0 is some real number, ||b||L :=
√
bTLb

and L+ is the pseudo-inverse of L. There is a classical algorithm that finds such an x
in runtime Õ(m log(1/ϵ)) [30, Theorem 3.1]. If ϵ >

√
n/m, then we could apply the

quantum spectral sparsification algorithm of Apers and de Wolf beforehand, giving us a
runtime of Õ(

√
mn/ϵ).

Inspired by the work of Apers and de Wolf on spectral sparsification, in this thesis we
want to see if we could speed up algorithms for vertex sparsification as well.
In vertex sparsification we are not only allowed to remove edges, but we are also

allowed to reduce the number of vertices. To go back to our example of the data centers:
maybe we are only interested in how we can communicate between a few data centers.
Many of the vertices in the graph describing the communication network will thus not
be of interest to us. In a vertex-sparsification problem we are typically given a graph
G = (V,E) and a subset of the vertices K ⊂ V , that we call the terminals. We want to
return a graph with fewer vertices than G, but still containing all vertices in K. While
making the graph smaller, we want to preserve certain properties of the graph.
Just like in edge sparsification, there are different notions of vertex sparsification,

depending on which properties we want to preserve. In Chapter 2 we discuss three
different definitions. We will discuss vertex-flow sparsifiers (Section 2.1) where we want
to approximately preserve flows, vertex-cut sparsifiers (Section 2.2) where we want to
approximately preserve cuts, and connectivity-c mimicking networks (Section 2.4) where
we want to exactly preserve small cuts.
In Chapter 3 we discuss a classical algorithm to find vertex-flow sparsifiers. Moitra [22]

showed that vertex-flow sparsifiers on vertex set K exist with quality

q = O

(
log |K|

log log |K|

)
,

i.e. flows get preserved up to a factor q. Note that because |K| tends to be small, often
a constant independent of the number of vertices, this quality is quite good. The clas-
sical algorithm we discuss in Chapter 3 finds a vertex-flow sparsifier with this quality.
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It was first stated by Englert, Gupta, Krauthgamer, Räcke, Talgam-Cohen and Tal-
war [11], and a complexity analysis was given by Moitra [23]. This classical algorithm
has runtime Õ(m2).

Chapter 4 is about quantum algorithms.

1.2 Quantum algorithms

Classical computers store information using bits, that can be either in the state 0 or 1.
Quantum computers use qubits, which are different than bits in the sense that they can
be in a superposition of 0 and 1. A superposition can be interpreted as being both 0
and 1 “at the same time”. We formally define the state of a qubit as a vector in C2

|ψ⟩ = α |0⟩+ β |1⟩

where α, β ∈ C. We also require that |α|2 + |β|2 = 1. If we measure the qubit in the
standard basis, then we find |0⟩ with probability |α|2 and |1⟩ with probability |β|2. After
the measurement, the state collapses to the state that we received as the outcome of
the measurement. For example, if we measure the state |ψ⟩ = 1√

2
|0⟩ + 1√

2
|1⟩ in the

computational basis, and we obtained outcome |0⟩, then the state of the qubit after the
measurement will be |0⟩, and not the state that we started with.
If we have n qubits, then a state looks like

|ψ⟩ =
2n−1∑
i=0

αi |i⟩ ,

where αi ∈ C for every i, and
∑2n−1

i=0 |αi|2 = 1. We note that if we wanted to store this
state on a classical computer, then we would need to store 2n complex numbers. This
suggests that quantum computers have the potential to perform certain computations
much faster than classical computers.
To make use of these qubits, we need the ability to implement some elementary gates

on them. In quantum computers, gates correspond to unitary matrices that we can
apply to the states. Some common examples of quantum gates on one qubit are

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
.

The X-gate flips the |0⟩ and |1⟩ states, while the H-gate brings the |0⟩ or |1⟩ state into
a superposition. A common example of a quantum gate on two qubits is the CNOT
(controlled not) gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The CNOT gate is a two qubit gate that applies the X gate to the second qubit iff the
first qubit is in the |0⟩ state.
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There are several computational problems where quantum algorithms offer significant
speedups. We will outline two of the most famous examples.
Shor’s algorithm [26] is a polynomial-time quantum algorithm for factoring an in-

teger into its prime factors. This algorithm is exponentially faster than the best known
classical algorithm. This speedup could have far-reaching implications in cryptogra-
phy [28].
Grover’s algorithm [15] is a polynomial speedup for searching a marked element

in a set of size N . The fastest classical algorithm to do so runs in time roughly N ,
but Grover’s algorithm runs in time roughly

√
N . We will discuss some applications of

Grover’s algorithm in Section 4.2.
Today’s computers are classical computers, but a lot of research is being done in

building a well functioning quantum computer. The quantum computers that exist
today are not yet powerful enough to perform useful computations: they do not have
many qubits yet, and both the qubits and the gates are too noisy. However, we hope
that in the future quantum computers will be made that can actually be used. It is
therefore useful to study what classical computations could be sped up using quantum
computers. We refer to the lecture notes of Ronald de Wolf [8] for more information on
quantum algorithms.
In Chapter 4 we discuss our own quantum algorithm. It is a polynomial speedup for

vertex sparsification, based on the classical algorithm by Englert et al. [11]. The main
theorem of the thesis is as follows:

Theorem 1. Let G = (V,E, c) be a capacitated graph, and K ⊂ V a set of terminals.
Let k = |K|, n = |V | and m = |E|. There exists a quantum algorithm that outputs a
vertex-flow sparsifier of G on vertex set K with quality

q = O

(
log k

log log k

)
,

in runtime
Õ
(
m11/6n1/6

)
,

with success probability ≥ 2/3.

The classical runtime is Õ
(
m2
)
. Therefore, if m is larger than n by more than a

polylogarithmic factor, then this quantum algorithm achieves a better runtime than the
best known classical algorithm.
Our quantum algorithm is one of the first quantum optimization algorithms to combine

an iterative algorithm with a dynamic data structure. This approach has become very
prominent in classical algorithms in recent years, as evidenced by the breakthrough by
Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva [7], who found an almost-linear time
algorithm that computes exact maximum flows and minimum-cost flows on directed
graphs.
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2 Different types of vertex sparsification

In this chapter we discuss vertex-flow sparsification and vertex-cut sparsification. We
also discuss the relation between the two. Then we discuss a third definition of vertex
sparsification: the connectivity-c mimicking networks.

2.1 Vertex-flow sparsification

Let G = (V,E, c) be a graph, where c : E → R+ is a capacity function. The capacity
function can be interpreted as the amount of flow that can pass an edge. We will
sometimes write the capacity function as a map c : V ×V → R+, which gives c(u, v) = 0
if (u, v) ̸∈ E. We are interested in calculating the maximum flow between various
vertices. However, we are not interested in all vertices. We are only interested in a
subset of the vertices K ⊂ V , which we will call the terminals. Instead of calculating
all the flows separately, we could also choose to create a smaller graph. This smaller
graph should still contain the terminals, and should have approximately the same flows
between the terminals. We can then use this smaller graph as a proxy for the bigger
graph, giving us a more efficient way to store the relevant aspects of our network. This
smaller graph, called a vertex-flow sparsifier, will be defined more exactly in this
section.
Let us say that we are interested in routing multiple flows simultaneously in graph G.

We are given pairs of vertices si, ti ∈ V , and a demand di ∈ R+, for i = 1, . . . ,m for
some m > 0. In this case the terminals will be the set K = ∪i∈{1,...,m}{si, ti} ⊂ V . For
every i we are now looking for a set Pi of paths from si to ti, and weights on the paths
x : ∪iPi → R+ that satisfy ∑

P∈Pi

x(P ) ≥ di, ∀i ∈ {1, . . . ,m} (2.1)

∑
P : e∈P

x(P ) ≤ c(e), ∀e ∈ E. (2.2)

Equation (2.1) enforces that the demands are met. Equation (2.2) enforces that the
capacities of the edges are not exceeded. If the two equations are satisfied, then we say
that the paths ∪iPi and x form a flow satisfying the demands di.
Not every demand can be satisfied. To formalize vertex-flow sparsification we define

a demand vector for a set of terminals K as a vector d⃗ ∈ R(
k
2)

+ , where k = |K| and
in which each coordinate corresponds to a pair of terminals x, y ∈ K, x ̸= y. The
congestion of a demand vector congG(d⃗) is now defined as the smallest C ≥ 0 such
that d⃗/C can be satisfied in G by some flow. The congestion is thus a measure to
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quantify how well a demand can be routed in a graph. In vertex-flow sparsification we
want to approximately preserve this quantity.

Definition 2. Let G = (V,E, c) be a capacitated graph with terminals K ⊂ V . A graph
H = (VH , EH , cH) is a vertex-flow sparsifier of G if K ⊆ VH and for every demand

vector d⃗ ∈ R(
k
2)

+ we have

congH(d⃗) ≤ congG(d⃗). (2.3)

The quality q of a vertex-flow sparsifier is defined as

q := max

{
congG(d⃗)

congH(d⃗)
: d⃗ ∈ R(

k
2)

+

}
. (2.4)

We note that the quality q is always at least 1. The closer q is to 1, the better of
an approximation the vertex-flow sparsifier gives for the congestion. We will therefore
say that a vertex-flow sparsifier is of better quality that another vertex-flow sparsifier if
its quality is closer to 1. We typically also want to keep |VH | small, since the idea of a
vertex sparsifier is to reduce the number of vertices.
We can look at a first easy example.

Example 3. Let G = (V,E, c) be a capacitated graph and let K = {s, t} ⊂ V contain
exactly two vertices. In this case a demand vector d⃗ ∈ R1

+ is just a non-negative real

number d. The congestion will now simply be congG(d⃗) = d/b, where b is the maximum
flow between s and t in G. We can construct a “trivial” vertex-flow sparsifier H =
(VH , EH , cH), where VH = K = {s, t} and EH just consists of one edge connecting s and
t with capacity b. This trivial vertex-flow sparsifier has quality 1.

Of course this example is not very exciting. If we allow K to have more than 2
elements, then it gets more interesting.
In the case where |K| = 2 it is easy to calculate the quality of a vertex-flow sparsifier,

but it gets more complicated when |K| > 2. There is a lemma that will help us to
calculate the quality.

Lemma 4 (Claim 1 by Leighton and Moitra [20]). Let G = (V,E, c) be a capacitated
graph, K ⊂ V a set of terminals, k = |K|, and H = (K,EH , cH) a vertex-flow sparsifier

on vertex-set K. If H⃗ ∈ R(
k
2)

+ is the demand vector such that the entry corresponding to
every pair (a, b) of terminals is exactly cH(a, b), then the quality q of H is

q = congG(H⃗).

Proof. Since H⃗ can be routed in H by saturating all edges, we have that congH(H⃗) = 1.
It follows directly from Equation (2.4) that q ≥ congG(H⃗).
Now let d⃗ be a demand vector and assume without losing generality that congH(d⃗) = 1.

If we prove that congG(d⃗) ≤ congG(H⃗), then we are done. It thus suffices to find a flow
f⃗G in G that satisfies the demand d⃗/ congG(H⃗).
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Let f⃗H be a flow in H that satisfies the demand d⃗. For a, b ∈ K let

Pa,b = (p0, p1), (p1, p2), . . . , (pℓ, pℓ+1)

be a path connecting p0 = a to pℓ+1 = b that has weight xH(Pa,b) = δ > 0 in f⃗H . Let
Pi be the set of paths in G connecting pi to pi+1 in the flow in G that satisfies demand
vector H⃗/ congG(H⃗). We multiply the weights in Pi by δ/cH(pi, pi+1). We define P ′

a,b

as being the union over all i of these reweighed flow paths. We note that P ′
a,b sends δ

units of flow from a to b in G.
Let f⃗G be the flow that we get by taking the union over all these flow paths P ′

a,b that

were defined from all flow paths Pa,b in f⃗H . By construction it is now possible to route

f⃗G/ congG(H⃗) in G. Combining this with the fact that f⃗G satisfies the demand vector
d⃗, we proved that q ≤ congG(H⃗).

2.2 Vertex-cut sparsification

In Section 2.1 we discussed vertex-flow sparsification. In this section we discuss a similar,
yet different, notion of vertex sparsification, called vertex-cut sparsification.
Let G = (V,E, c) be a capacitated graph and suppose we are given a set of terminals

K ⊂ V . We want to find a graph on fewer vertices than G, but still containing K, that
approximately preserves the minimum cuts between subsets of K. To formally define
these sparsifiers we first define the cut function hG : 2V → R+ of a graph G as

hG(U) =
∑

e∈δ(U)

c(e),

where δ(U) denotes the set of all edges crossing the cut (U, V \ U) in G. We can now
define the terminal cut function hG,K : 2K → R+ as

hG,K(A) = min
U⊂V,U∩K=A

hG(U).

The interpretation of hG,K(A) is that it is the value of the minimum cut separating
A from K \ A in graph G, where A ⊂ K is a subset of the terminals. We want to
approximately preserve the terminal cut function for vertex-cut sparsification.

Definition 5. Given a capacitated graph G = (V,E, c) and a set of terminals K ⊂ V , a
vertex-cut sparsifier is a graph H = (VH , EH , cH), where K ⊂ VH , such that the cut
function hH,K(A) : 2K → R+ of H satisfies

hG,K(A) ≤ hH,K(A)

for every A ⊂ K. The quality q of a vertex-cut sparsifier is defined as

q = max
A⊊K,A̸=∅

hH,K(A)

hG,K(A)
.

We note that hG,K(K) = hG,K(∅) = 0. Assuming G is connected will make sure that
hG,K(A) ̸= 0 for A ̸= ∅,K, and that the quality is well defined.
Just like in the case of vertex-flow sparsification, the quality is always at least 1. The

interesting cases, again, are the cases in which H has much fewer vertices than G.
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2.3 Relation

There is a famous theorem relating flows and cuts.

Theorem 6 (mincut-maxflow, 11.3 in [3]). If G = (V,E, c) is a capacitated graph and
s, t ∈ V are two distinct vertices, then the maximum flow passing from s to t equals the
minimum cut separating s and t.

Using Theorem 6 we see that Example 3 is also an example of a vertex-cut sparsifier,
of the same quality. In this section we discuss the relation between the two definitions
of vertex sparsification further.
It turns out that in an important case vertex-cut sparsification is a relaxation of

vertex-flow sparsification.

Theorem 7 (Leighton and Moitra [20]). Let G = (V,E, c) be a capacitated graph with
terminals K ⊂ V . If a graph H = (K,EH , cH) is a vertex-flow sparsifier of quality q,
then H is a vertex-cut sparsifier of quality at most q.

Proof. Let H = (K,EH , cH) be a vertex-flow sparsifier and let q be its quality. We know

that for every demand vector d⃗ ∈ R(
k
2)

+ we have

congH(d⃗) ≤ congG(d⃗) ≤ q · congH(d⃗). (2.5)

Our goal is to prove that hG,K(A) ≤ hH,K(A) ≤ q · hG,K(A) for all A ⊂ K.
We assume, to get to a contradiction, that there exists some A ⊂ K such that

hG,K(A) > hH,K(A). The mincut-maxflow theorem tells us that there exists a flow
r⃗ feasible in G such that the total flow crossing the cut (A,K \ A) is exactly hG,K(A).
But r⃗ cannot be feasible in H, since the cut (A,K \ A) has capacity hH,K(A) in H
which is strictly smaller than hG,K(A). We get that congG(r⃗) ≤ 1 < congH(r⃗), which
contradicts Equation (2.5). We thus proved that hG,K(A) ≤ hH,K(A) for all A ⊂ K.

Now we assume, to get to a contradiction, that there is a A ⊂ K such that hH,K(A) >

q ·hG,K(A). We define H⃗ ∈ R(
k
2)

+ as in Lemma 4. As we saw in the proof of the lemma, we

have that congH(H⃗) = 1. Now let U ⊂ V be such that U∩K = A and hG(U) = hG,K(A),
such U exists by the definition of hG,K . The sum of the capacities of the edges crossing
the cut (U, V \U) is hG,K(A), but the demand crossing the cut is hH,K(A). We find that

congG(H⃗) ≥
hH,K(A)

hG,K(A)
> q.

Therefore, congG(H⃗) > q = q · congH(H⃗), which contradicts Equation (2.5). We thus
proved that hH,K(A) ≤ q · hG,K(A).

We conclude that hG,K(A) ≤ hH,K(A) ≤ q · hG,K(A) for all A ⊂ K, which means
that H is a vertex-cut sparsifier of G of quality at most q.

Note that in Theorem 7 we are looking at the case in which the set of vertices of
the vertex sparsifier is exactly the set of terminals, i.e. VH = K. We could wonder if
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vertex-flow sparsifiers and vertex-cut sparsifiers are the same in this case. However, this
is not the case; Leighton and Moitra [20] proved that there exists an infinitely large
family of capacitated graphs G = (V,E, c) and sets K ⊂ V with k = |K| such that there
exists a vertex-cut sparsifier of quality O(1), but there exists no vertex-flow sparsifier
with quality less than Ω(log log k).

So vertex-cut sparsifiers and vertex-flow sparsifiers are really different concepts. In
Section 2.6 we will see that vertex-flow sparsifiers of good quality exist. This directly
implies the same for vertex-cut sparsifiers.

2.4 Connectivity-c mimicking network

In this section we discuss a form of vertex sparsification introduced by Chalermsook, Das,
Kook, Laekhanukit, Liu, Peng, Sellke and Vaz [5]. Just like for vertex-flow sparsification
and vertex-cut sparsification we are only interested in a subset of the vertices of our
graph, called the terminals. For connectivity-c mimicking networks we are interested in
preserving small cuts exactly, but we do not care about large cuts. We first make this
precise. Recall the definition of the terminal cut function hG,K in Section 2.2. In this
section all graphs are multigraphs, which can be interpreted as weighted graphs with
integer weights.

Definition 8. Let G = (V,E) be a multigraph with K ⊂ V a set of terminals, k = |K|,
n = |V |, m = |E| and c an integer. A multigraph H = (V ′, E′), with K ⊂ V ′, is
(K, c)-equivalent to G if for every A ⊂ K we have that

min{c, hG,K(A)} = min{c, hH,K(A)}.

We say that H is a connectivity-c mimicking network of G.

A special case of (K, c)-equivalency is if we do not want to decrease the number of
vertices, i.e. we have that V = V ′ = K. If we also require that E′ ⊂ E, then this is
a form of edge sparsification, distinct from spectral sparsification. There is a theorem
from the literature about this.

Lemma 9 (Nagamochi and Ibaraki [24]). For a multigraph G = (V,E) with n = |V |
there exists a sub-multigraph H = (V,E′) such that G and H are (K, c)-equivalent, and
such that the number of edges |E′| is upper bounded by O(nc).

Furthermore, Chalermsook et al. [5, Lemma 2.6] showed that this sparse graph can be
found in time O(cm). This can be useful for an algorithm to find connectivity-c mimick-
ing networks on fewer vertices, because we can do this edge-sparsification beforehand.
Thus, we can assume that the graph is sparse.
A natural way to construct connectivity-c mimicking networks is by contractions.

For an edge e ∈ E we define G/e as the graph obtained from G identifying the two
endpoints of e as a single vertex. We say that we have contracted the edge e. If at least
one of the two endpoints was a terminal, then we mark the new vertex as a terminal

12



as well. For a set of edges Ê ⊂ E we let G/Ê denote the graph obtained from G by
contracting all edges in Ê.
We note that contractions do not decrease the terminal cut function.

Lemma 10. If A ⊂ K and Ê ⊂ E is such that no terminal is identified with another
terminal in G/Ê, then we have that

hG,K(A) ≤ hG/Ê,K(A).

This gives an idea for an algorithm to find connectivity-c mimicking networks. For an
edge e ∈ E, check if contracting it preserves (K, c)-equivalency, i.e. if

min{c, hG,K(A)} = min{c, hG/e,K(A)}

for every A ⊂ K. If this is the case, then we call this edge contractible.
A high-level approach for an algorithm is now to enumerate over the edges and con-

tract an edge if it is contractible. The problem with this approach is that there is no
known algorithm that runs in polynomial time that checks if an edge is contractible. An
algorithm presented by Chalermsook et al. [5] works with this approach, but their algo-
rithm does not run in polynomial time in c. However, there exists a classical algorithm
that finds connectivity-c mimicking networks in polynomial time.

Lemma 11 (Liu [21]). For a multigraph G = (V,E) with K ⊂ V , n = |V |, k = |K| there
exists a connectivity-c mimicking network H = (V ′, E′) with |E′| = O(kc3) edges. There
is a classical algorithm that runs in time nO(1) that finds a connectivity-c mimicking
network with O(kc3 log3/2 n log log n) edges.

In the rest of this thesis we will focus on vertex-flow sparsifiers and vertex-cut sparsi-
fiers.

2.5 Various directions of study

In Section 2.3 we looked at vertex sparsifiers on vertex-set VH = K, but in Definition 2
and Definition 5 we only required that K ⊂ VH . The vertices VH \K are called Steiner
vertices. Taking into account that the set of Steiner vertices does not need to be empty,
we can look at the following question.
What happens if we fix q ≥ 1, and we look for vertex sparsifiersH = (VH , EH , cH) that

have quality at most q? The interesting question now is: how small can we keep |VH |?
In the answer to this question there turns out to be a clear distinction between the two
types of vertex sparsification, just like in the case in which we do require that K = VH .

Let us for example take q = 1, which means that we are looking for vertex sparsi-
fiers that exactly preserve either cuts or flows. It was shown by Hagerup, Katajainen,
Nishimura and Ragde [16] that such vertex-cut sparsifiers exist with |VH | = O(22

k
).

This is remarkable, since this value does not depend on the size of the original graph,
only on the number of terminals. On the other hand, Krauthgamer and Mosenzon [19]
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showed that such a statement cannot be made concerning vertex-flow sparsifiers. More
precisely, they showed that there exists no numberM > 0 such that all graphs with k = 6
terminals have a quality q = 1 vertex-flow sparsifier with |VH | ≤M .
There is also research being done on vertex sparsification in which some requirement

is put on the input graph. For example, Goranci and Räcke [14] proved that trees and
quasi-bipartite graphs admit vertex-flow sparsifiers of quality 2, without using Steiner
vertices. Goranci, Henzinger and Peng [13] looked at planar graphs where all terminals
lie on the same face. They proved that in this case there exists a vertex-cut sparsifier
of quality q = 1 with O(|K|2) vertices, that is still planar and all terminals still lie on
the same face. Leighton and Moitra [20] showed that if a graph excludes a fixed minor,
then there exists a O(1)-quality vertex-flow sparsifier on the terminal set.
Steiner vertices are an interesting field for future research, and it is also interesting to

look at specific classes of graphs. However, from now on in this thesis we will assume
that VH = K, and we will not assume that our input graph is of any specific class.

2.6 0-extensions

The class of all graphs that satisfy Definition 2 is hard to characterize, so let us look at
ways to create these vertex-flow sparsifiers in a structured way. It turns out there is an
easy way to find graphs that satisfy Equation (2.3), using 0-extensions. Let us discuss
the formal definition.

Definition 12. Let G = (V,E, c) be a capacitated graph, and K ⊂ V a set of terminals.
A 0-extension is a map f : V → K such that f(a) = a for all a ∈ K.

We can interpret a 0-extension as a partition of the vertices of the graph into k = |K|
sets, with exactly one terminal in each set of the partition. Given a 0-extension we can
define a vertex-flow sparsifier by contracting all vertices to their image by f . The vertices
of our new graph are thus exactly the terminals. The capacity of the edge connecting
two terminals in the new graph will now be the sum of all capacities of edges between
elements of the two sets, where a capacity of 0 means that there is no edge. If we define
cf as the capacity function of this new graph, then we have

∀a, b ∈ K, cf (a, b) =
∑

u∈f−1(a),v∈f−1(b)

c(u, v). (2.6)

We let Gf = (K,Ef , cf ) denote the capacitated graph on vertices K that we get with
these capacities. A small example is shown in Figure 2.1. In Figure 2.1a we see a graph
with 4 vertices and two terminals. We see that the vertices are partitioned in red and
green vertices, by their image under the 0-extension f . In Figure 2.1b we see the graph
Gf induced by the 0-extension f . The capacity of the one remaining edge is 1 + 2 = 3,
calculated using Equation (2.6).
Note that we can interpret Gf as the graph G after having contracted some of its

edges. This makes it clear that if we can route a flow in G, then we can also route it in
Gf . We get the following lemma.
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v2

b

v1

a

9

25

1

(a) An example of a graph with four ver-
tices and k = 2 terminals a and b. We
define the 0-extension f by f(v1) =
f(a) = a and f(v2) = f(b) = b. The
vertices are colored red or green de-
pending on their image under the 0-
extension.

v2

b

v1

a
3

(b) The 0-extension f sends the green ver-
tices to a and the red vertices to b. The
capacity of the edge between a and b
is now the sum of the capacities of the
edges in the original graph that crossed
from the green to the red vertices.

Figure 2.1: A small example of a 0-extension

Lemma 13. For every 0-extension f : V → K, the graph Gf is a vertex-flow sparsifier
of G on terminals K.

Now Gf is a vertex-flow sparsifier of G, but possibly not a good one, i.e. it could be of
bad quality q ≫ 1. We can now look at the problem: can we always find a 0-extension
that has a good quality? If this would be the case, then our problem would become
much simpler, since there exists only a finite number of 0-extensions. The answer to the
question, however, is no, as we will see in Example 14.

We thus need to find more ways to construct vertex-flow sparsifiers. We can do that by
considering convex combination of 0-extensions. A convex combination in this context
means that we have a vector µ⃗ ∈ RH

+ where H is the set of all 0-extensions and
∑

i µi = 1.
We can define a vertex-flow sparsifier H = (K,EH , cH) by cH =

∑
f∈H µfcGf

. We will
look at an example that shows why this can be useful.

Example 14. We consider the star graph G depicted in Figure 2.2a. The terminal
set K = {a1, . . . , ak} is defined as all the vertices in G except for vertex u in the center.
In Figure 2.2b we see Gf for a 0-extension f , which sends u, without loss of generality,

to terminal a1. We can now define the demand vector G⃗f ∈ R(
k
2)

+ such that the (a1, ai)
entry is 1 for all i ̸= 1, and all other entries are 0. This demand is easily routed in Gf ,
since we can canonically send a flow by saturating every edge. However, in graph G, we
will for sure get congestion k − 1 in the edge (u, a1). According to Lemma 4 we have
quality q = k − 1, which is a really bad result since it increases linearly in k.

However, we can take a convex combination of 0-extensions. There are k different
choices for what 0-extension to choose, i.e. we have to send u to a terminal, and we
can choose between k terminals. We can make a convex combination of all these 0-
extensions, giving every one the same weight 1

k . We will get a complete graph on k
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u

a1

a2

a3a4

a5

a6

(a) The star graph G with k = 6 terminals
ai and one non-terminal u in the center.
Every edge has capacity 1.

a1

a2

a3a4

a5

a6

(b) The graph Gf where f is the 0-
extension defined by f(u) = a1. Every
edge has capacity 1.

a1

a2

a3a4

a5

a6

(c) The convex combination of all 0-
extensions with weight 1

k = 1
6 . Every

edge now has capacity 2
k = 1

3 .

Figure 2.2: An example of a graph where the best vertex-flow sparsifier is not a 0-
extension

vertices such that each edge has capacity 2
k . Using Lemma 4 this vertex-flow sparsifier

has quality q = 2(k−1)
k . This is a really good result since q = O(1) is small, also for large

values of k. We see that this convex combination of 0-extensions gives a much better
vertex-flow sparsifier than a single 0-extension does.

Note, however, that not all vertex-flow sparsifiers on vertex set VH = K are convex
combinations of 0-extensions. This is shown in the next example.

Example 15. We again look at the star graph of Example 14, but choosing k = 3. The
convex combination of all 0-extensions gives us the graph K3 with edge capacities 2

3 . This
vertex-flow sparsifier has quality q = 4

3 . However, if we take K3 with edge capacities 1
2 ,

then we get a vertex-flow sparsifier with quality q = 1 < 4
3 . This vertex-flow sparsifier of

quality 1, however, is not a convex combination of 0-extensions.

So there are cases in which there exist vertex-flow sparsifiers of better quality than the
best convex combination of 0-extensions. However, considering only convex combinations
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of 0-extensions, we can still find vertex-flow sparsifiers of reasonable quality, as was
proven by Moitra using a zero-sum game.

Theorem 16 (Moitra [22]). Let G = (V,E, c) be a capacitated graph, and K ⊂ V a
set of terminals. There exists a convex combination of 0-extensions that is a vertex-flow

sparsifier of quality O
(

log k
log log k

)
, where k = |K|.

This result is remarkable, since it states that for every graph, no matter how many
vertices it contains, there exists a vertex-flow sparsifier of quality that only depends on k.
In Chapter 3 we discuss a classical algorithm to find vertex-flow sparsifiers that match
the quality promised by Moitra. By constructing it we also prove the theorem.
It is unknown if the upper bound given in Theorem 16 is tight. Charikar, Leighton,

Li and Moitra [6] found a class of graphs that admit no vertex-cut sparsifiers of quality
less than Ω(log1/4 k). By Theorem 7 this also gives a lower bound on the best possible
vertex-flow sparsifiers.
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3 A classical algorithm for vertex-flow
sparsification

When running a classical algorithm on a graph, we need to access the graph a number of
times. We also need to apply elementary classical operations. We use the word-RAM
(word random access machine) model. This model assumes we have a finite memory
and word-length. If we can store logN bits, then we can store an integer up to N . We
can do basic operations on these logN bits, like summing or multiplying the bits with
each other. We assume that doing such a basic operation can be done efficiently, in
time O(1). The word-RAM model defines a runtime.
It turns out there exist efficient classical algorithms to find vertex-flow sparsifiers that

achieve the quality promised by Theorem 16. One such algorithm was presented by
Charikar, Leighton, Li and Moitra [6]. This algorithm returns a vertex-flow sparsifier
that is not necessarily a convex combination of 0-extensions, but that has a good quality.
It has a quality at least as good as the best convex combination of 0-extensions. This
algorithm has runtime polynomial in n and k, where n is the number of vertices of
the original graph and k is the number of terminals. We will not further discuss this
algorithm in this thesis.

In this chapter we discuss another algorithm, presented by Englert, Gupta, Krauthgamer,
Räcke, Talgam-Cohen and Talwar [11]. This algorithm returns a convex combination

of 0-extensions that has a quality of at most O
(

log k
log log k

)
. This second algorithm thus

returns a vertex-flow sparsifier of possibly a worse quality than the first algorithm. How-
ever, this second algorithm runs faster. We assume that k is small, at most O(log n). In
our runtime-analysis we will absorb all factors of k and of logn in the Õ-notation.

3.1 The 0-extension problem

Before we discuss the algorithm, we should study the 0-extension problem. In this
problem, first proposed by Karzanov [18], we are given a capacitated graph G = (V,E, c)
and terminals K ⊂ V . We are also given a metric D on the terminals K. The goal of
the 0-extension problem is to find a 0-extension g : V → K that minimizes∑

(u,v)∈E

c(u, v)D(g(u), g(v)).

As observed by Karzanov [18], this problem is NP-hard. We will therefore not try to
solve this problem itself, but a relaxation of it.
For this we define the concept of a semi-metric d : V × V → R+. For d to be a

semi-metric we need that
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• d(u, v) ≥ 0 and d(u, u) = 0 for all u ∈ V

• d(u, v) = d(v, u) for all u, v ∈ V

• d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V .

A semi-metric is similar to a metric, but note that in a semi-metric there can be a
distance 0 between two non-equal vertices. We can use this property to link the concept
of a 0-extension to the concept of a semi-metric on the graph.
Let G,K and D be as above, and f be a 0-extension. We can define a semi-metric

δ : V × V → R+ as δ(u, v) = D(f(u), f(v)). We easily check that this indeed gives a
semi-metric, and we see that it coincides with D on the terminals, i.e. δ(a, b) = D(a, b)
for every a, b ∈ K. We will say that the semi-metric δ is induced by the 0-extension f .
We can look at the following problem: given G,K and D as above, find a semi-

metric δ, under the constraint that δ(a, b) = D(a, b) for all pairs of terminals a, b ∈ K,
that minimizes ∑

(u,v)∈E

c(u, v)δ(u, v).

Note that if a semi-metric that minimizes this sum is induced by a 0-extension, then it
is a solution to the 0-extension problem. However, not all semi-metrics are induced by
a 0-extension. But the problem of finding such a semi-metric δ is a relaxation of the
0-extension problem.
The question that we now ask ourselves is: if we find a semi-metric δ that solves

the relaxation stated above, can we then efficiently find a 0-extension f that solves the
0-extension problem? It turns out we can!

Theorem 17 (Fakcharoenphol, Harrelson, Rao and Talwar [12]). Let G = (V,E, c) be
a capacitated graph and K ⊂ V a set of terminals, k = |K|. Also let D be a metric on
the terminals, and δ a semi-metric on V such that δ(a, b) = D(a, b) for all terminals
a, b ∈ K. Let

C :=
∑

(u,v)∈E

c(u, v)δ(u, v).

If we choose parameters M = log log k and

Av = min
a∈K
{δ(a, v)},

then Algorithm 1 outputs a 0-extension f such that∑
(u,v)∈E

c(u, v)D(f(u), f(v)) = O

(
log k

log log k

)
C.

We refer to Fakcharoenphol, Harrelson, Rao and Talwar [12] for the analysis of Algo-
rithm 1.
Note that this algorithm will assign every vertex to a terminal, since δ(v, a) = Av ≤

αA′
v for the terminal a closest to v. The algorithm thus outputs a 0-extension. Also
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Algorithm 1 by Fakcharoenphol, Harrelson, Rao and Talwar [12]

1: Pick a real number γ ∈ [1, 2] uniformly
2: for v ∈ V do
3: A′

v ← min{2s | 2s ≥ 2Av/γ}
4: Choose uniformly at random i ∈ {1, . . . ,M}
5: Choose uniformly at random α ∈ (2i, 2i+1]
6: Choose a random permutation σ of the terminals
7: for ℓ := 1 . . . k do
8: for each unassigned vertex v ∈ V \K do
9: if δ(v, σ(ℓ)) ≤ αA′

v then
10: assign vertex v to terminal σ(ℓ)

note that the runtime of the algorithm is Õ(kn), since we loop over the terminals and
over the vertices in Steps 7 and 8. However, we only get this runtime if δ(v, a) is given
as input for every pair v ∈ V , a ∈ K.
We will use Algorithm 1 as a subroutine for the algorithm for finding vertex-flow

sparsifiers, which we will discuss in the next section.

3.2 Classical algorithm

We discuss the algorithm found by Englert, Gupta, Krauthgamer, Räcke, Talgam-Cohen
and Talwar [11] and discussed by Moitra [23, Section 3.2.4] to construct convex combi-
nations of 0-extensions that give good-quality vertex-flow sparsifiers. For a capacitated
graph G = (V,E, c) and K ⊂ V , writing n = |V |,m = |E|, k = |K|, this classical algo-

rithm provides a O
(

log k
log log k

)
-quality vertex-flow sparsifier on exactly the vertices K ⊂ V

in runtime Õ(m2). First we need to discuss some relevant concepts.
We define R as the set of all sets of

(
k
2

)
simple paths in G such that each path connects

a distinct pair of terminals. For R ∈ R and a, b ∈ K we write Ra,b for the path in R
connecting a to b, so an R ∈ R is of the form R = {Ra,b | a, b ∈ K, a ̸= b}.

We recall that H denotes the set of all 0-extensions. For an H ×R ∈ H×R we define
the load and the relative load, abbreviated by rload, of an edge e ∈ E as

loadH×R(e) :=
∑

a,b∈K; e∈Ra,b

cH(a, b)

and

rloadH×R(e) :=
loadH×R(e)

c(e)
.

We can now look at the problem of finding a λ⃗ ∈ RH×R
+ with

∑
H×R λH×R = 1 such

that we have

∀e ∈ E,
∑
H×R

λH×R rloadH×R(e) ≤ β, (3.1)
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for some β ≥ 1. If we find such λ⃗, then we can construct a convex combination of
0-extensions G′ =

∑
H×R λH×RH. The demand vector G⃗′ as defined in Lemma 4 can

now be routed in G with congestion at most β, since we can define a flow that routes
cG′(a, b) between terminals a, b through the path Ra,b. Therefore, G′ is a vertex-flow

sparsifier of quality q ≤ β. If we thus find a λ⃗ that satisfies Equation (3.1), then we find
a vertex-flow sparsifier of quality at most β.

The problem of finding an adequate λ⃗ cannot directly be solved efficiently since the
set of all 0-extensions contains exponentially many elements, more precisely |H| = kn−k.
We thus need some more tricks. The idea is to transform Equation (3.1) into something
smooth, so that we can take the derivatives and use gradient descent. For this purpose
we define

lmax(x⃗) = ln

(∑
e

exp(xe)

)
for x⃗ ∈ RE

+. We then define an E×(H×R) matrixM such thatMe,H×R = rloadH×R(e).
We thus have

(Mλ⃗)e =
∑
H×R

λH×R rloadH×R(e).

We note that lmax(x⃗) ≥ xe for all e ∈ E. Therefore, the following equation implies
Equation (3.1),

lmax(Mλ⃗) ≤ β. (3.2)

The idea now is to start with λ⃗ = 0, and slowly increase some indices λH×R, without
raising lmax(Mλ⃗) too much. To know which indices to raise, we look at

∂ lmax(Mλ⃗)

∂λH×R
(3.3)

which we want to be small. For a small δ⃗ we will have lmax(x⃗ + δ⃗) − lmax(x⃗) ≈∑
e δe

∂ lmax(x⃗)
∂xe

. We can make this precise using a lemma from the literature.

Lemma 18 (Lemma 1 by Young [31]). If x⃗, δ⃗ ∈ RE
+ with 0 ≤ δe ≤ 1 for all e ∈ E, then

lmax(x⃗+ δ⃗)− lmax(x⃗) ≤ 2
∑
e

δe
∂ lmax(x⃗)

∂xe
.

We can use this lemma to learn something useful in our case.

Lemma 19. Let H ×R ∈ H ×R. If δ⃗ = δH×Re⃗H×R ∈ RH×R, where

0 ≤ δH×R ≤
1

maxe{rloadH×R(e)}
(3.4)

and e⃗H×R is the unit vector in direction H ×R, then we have that

lmax(M(λ⃗+ δ⃗))− lmax(Mλ⃗) ≤ 2δH×R
∂ lmax(Mλ⃗)

∂λH×R
.
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Proof. We first note that 0 ≤ (Mδ⃗)e = δH×R rloadH×R(e) ≤ 1 for all e ∈ E, so we can
use Lemma 18. We calculate

lmax(M(λ⃗+ δ⃗))− lmax(Mλ⃗) ≤ 2
∑
e

(Mδ⃗)e
∂ lmax(Mλ⃗)

∂(Mλ⃗)e

= 2δH×R

∑
e

rloadH×R(e)
∂ lmax(Mλ⃗)

∂(Mλ⃗)e

= 2δH×R
∂ lmax(Mλ⃗)

∂λH×R
,

where we used the chain rule to see that

∂ lmax(Mλ⃗)

∂λH×R
=
∑
e

rloadH×R(e)
∂ lmax(Mλ⃗)

∂(Mλ⃗)e
.

If we now find an H ×R such that ∂ lmax(Mλ⃗)
∂λH×R

≤ β/2 for some β > 0, then we get that

lmax(M(λ⃗+ δ⃗))− lmax(Mλ⃗) ≤ δH×Rβ

for δ⃗ = δH×ReH×R for some δH×R in the interval specified in Lemma 19.
We get that

∑
H×R λH×R increases by δH×R while lmax(Mλ⃗) increases at most by

δH×Rβ. The idea of the algorithm is to repeatedly find an H×R such that ∂ lmax(Mλ⃗)
∂λH×R

≤
β/2, and then add δH×R to λH×R.
Let us say that after repeating this procedure a number of times we get∑

H×R

λH×R = α

for some α > 0. This will give us lmax(Mλ⃗) ≤ lmax(0)+αβ = lnm+αβ, since at every
iteration lmax(Mλ) increases at most by δH×R · β.

If we have α = lnm, then we get
∑

H×R λH×R = lnm and lmax(Mλ⃗) ≤ (1 + β) lnm.

Therefore, for every e ∈ E we have (Mλ⃗)e ≤ (1 + β) lnm. If we now define µ⃗ = 1
lnm λ⃗,

then we get that
∑

H×R µH×R = 1 and (Mµ⃗)e ≤ 1 + β for every e ∈ E.
While running the algorithm, we choose δH×R = 1/maxe{rloadH×R(e)} where pos-

sible, since we want to increase
∑

H×R λH×R as much as possible. Only in the last
iteration we do δH×R ← lnm −

∑
H×R λH×R to make sure that the sum ends up at

exactly lnm.
To find an H×R with the required property we will first define a suitable R ∈ R. For

a pair of terminals a, b ∈ K we define Ra,b as the shortest path in G connecting them
given edge-lengths defined by

d
λ⃗
(e) =

exp
(
(Mλ⃗)e

)
c(e)

. (3.5)
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Naively we will find that we need a runtime of Õ(mS) to compute d
λ⃗
, where S is the

support of λ⃗, since we need to compute (Mλ⃗)e =
∑

H×R λH×R rloadH×R(e) for every

edge e ∈ E. However, if we know (Mλ⃗)e, then we can efficiently compute (M(λ⃗+ δ⃗))e =
(Mλ⃗)e + (Mδ⃗)e = (Mλ⃗)e + δH×R rloadH×R(e), where δ⃗ is a vector that has support in
exactly one entry. If we thus store all values (Mλ⃗)e and update them every iteration in
our algorithm, then we will just need a runtime of Õ(m) every iteration to update d

λ⃗
(e)

for every e ∈ E. Once we computed the edge-lengths we can use the following lemma to
find an appropriate H ×R.

Lemma 20. If λ⃗ and d
λ⃗
as in Equation (3.5) are given, then there is a classical algorithm

that finds an H ×R ∈ H ×R with ∂ lmax(Mλ⃗)
∂λH×R

= O
(

log k
log log k

)
in runtime Õ(m).

Proof. For every pair of terminals a, b ∈ K we define Ra,b as the shortest path connecting
a to b in the graph G with edge-lengths d

λ⃗
, and we define D as the shortest path metric.

Using Dijkstra’s algorithm on a terminal a ∈ K we can compute D(a, v) and Ra,b for
every v ∈ V, b ∈ K in runtime Õ(m). Since we absorbed poly(k) into the Õ-notation we
can compute D(a, v) and Ra,b for every a, b ∈ K, v ∈ V in runtime Õ(m).

We note that ∑
u,v∈V

c(u, v)D
λ⃗
(u, v) ≤

∑
e∈E

c(e)d
λ⃗
(e).

We can use Theorem 17 to find a 0-extension f , H := Gf that satisfies

∑
(u,v)∈E

c(u, v)D
λ⃗
(f(u), f(v)) = O

(
log k

log log k

)∑
e∈E

c(e)d
λ⃗
(e).

Using this 0-extension we can calculate that

∂ lmax(Mλ⃗)

∂λH×R
=
∑
e

loadH×R(e)
exp
(
(Mλ⃗)e

)
c(e)

∑
e′ exp

(
(Mλ⃗)e′

)
=

∑
a,b∈K cH(a, b)

∑
e∈Ra,b

d
λ⃗
(e)∑

e′ exp
(
(Mλ⃗)e′

)
=

∑
a,b∈K cH(a, b)D

λ⃗
(a, b)∑

e∈E c(e)dλ⃗(e)
= O

(
log k

log log k

)
.

(3.6)

The discussion under Theorem 17 states that we can find the 0-extension f in time Õ(n),
so the runtime is dominated by the part finding R and the distances D(a, v) for every
a ∈ K, v ∈ V . The runtime is thus Õ(m).

Step 8 of Algorithm 2 can also be computed efficiently.

Lemma 21. Given H × R ∈ H × R, there is a classical algorithm that finds ℓH×R :=
maxe{rloadH×R(e)} in time Õ(m).

23



Proof. We remember the definition

rloadH×R(e) =

∑
a,b∈K; e∈Ra,b

cH(a, b)

c(e)
.

Since we are summing over a, b ∈ K we can calculate rloadH×R(e) for a given e ∈ E in
time O(k2). We can thus calculate rloadH×R(e) for every e ∈ E in time O(k2m), while
taking note of the largest such rloadH×R(e). We can thus compute maxe{rloadH×R(e)}
in time O(k2m) = Õ(m).

Algorithm 2 Finding a vertex-flow sparsifier

1: λ⃗← 0 ∈ RH×R
+

2: for e ∈ E do
3: d

λ⃗
(e)← 1

c(e)

4: while
∑

H×R λH×R < lnm do ▷ Õ(m) iterations
5: for a ∈ K do
6: Compute D(v, a), Ra,b, ∀v ∈ V,∀b ∈ K ▷ Õ(m)

7: Find H ∈ H using Theorem 17 ▷ Õ(n)
8: ℓH×R ← maxe{rloadH×R(e)} ▷ Õ(m)
9: δH×R ← min

{
1/ℓH×R, lnm−

∑
H×R λH×R

}
10: λH×R ← λH×R + δH×R

11: for e ∈ E do ▷ m iterations
12: d

λ⃗
(e)← d

λ⃗
(e) · exp(δH×R rloadH×R(e))

13: return the non-zero entries of µ⃗ = λ⃗/ lnm

We combine all the subroutines described in this section in Algorithm 2. Using the
following lemma we will upper bound the number of iterations of the algorithm. The
lemma and its proof are based on a similar lemma by Räcke [25].

Lemma 22. Algorithm 2 stops after Õ (m) iterations.

Proof. We define the potential function∑
e

∑
H×R

λH×R rloadH×R(e).

We know that
∑

H×R λH×R rloadH×R(e) ≤ lmax(Mλ⃗) for every e ∈ E, and that lmax(Mλ⃗) =

lnm + O
(

log k
log log k

)
lnm = O

(
log k

log log k

)
lnm at the end of the algorithm. We can thus

upper bound the potential function by O
(
m logm · log k

log log k

)
= Õ(m).

During every iteration that is not the last iteration, we choose an H × R and raise
λH×R by 1

ℓH×R
, where ℓH×R = maxe{rloadH×R(e)}. Therefore, the potential function

will increase by at least 1. We conclude that the algorithm stops after at most Õ(m)
iterations.
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We have now proved Theorem 23.

Theorem 23. Algorithm 2 outputs a O(log k/ log log k)-quality vertex-flow sparsifier in
time Õ(m2).

Proof. In every iteration we raise
∑

H×R λH×R by some δH×R > 0, and by Lemma 20

we raise lmax(Mλ⃗) by at most δH×R ·O
(

log k
log log k

)
. The algorithm stops by Lemma 22,

so when the algorithm stops we have (Mλ⃗)e ≤ lmax(Mλ⃗) = lnm+O
(

log k
log log k

)
lnm for

every e ∈ E. Therefore, µ⃗ = λ⃗/ lnm has the property that
∑

H×R µH×R = 1 and

∀e ∈ E,
∑
H×R

µH×R rloadH×R(e) = O

(
log k

log log k

)
.

By the discussion after Equation (3.1) we see that µ⃗ is a convex combination of 0-

extensions that forms a vertex-flow sparsifier of quality O
(

log k
log log k

)
.

Steps 6 and 8 have runtime Õ(m), Step 7 has runtime Õ(n) and Step 12 is done m
times every iteration. By Lemma 22 the algorithm stops after Õ(m) iterations, so the
total runtime is Õ(m2).

3.3 A speedup by spectral sparsification

In Section 2.3 we saw that vertex-flow sparsifiers are also vertex-cut sparsifiers. There-
fore, if we are interested in finding a vertex-cut sparsifier, then we can also find one in
time Õ(m2) using the same algorithm as for vertex-flow sparsification. Actually, it can
be sped up by doing edge sparsification beforehand. Let us define spectral sparsification.

Definition 24. Let G = (V,E, c) be a capacitated graph. The graph Laplacian LG of
G is the |V |× |V | matrix where the rows and columns are indexed by the vertices V , and
the entries are as follows:

• For diagonal elements we have that LG(u, u) is the sum of all the capacities of
edges connected to u.

• For the off-diagonal elements u ̸= v ∈ V we have that LG(u, v) = −c(u, v), where
we say c(u, v) = 0 if (u, v) ̸∈ E.

Definition 25. Let G = (V,E, c) be a capacitated graph, and let LG be its graph Lapla-
cian. An ϵ-spectral sparsifier of G is a sparse graph H on the same vertices such
that

(1− ϵ)LG ⪯ LH ⪯ (1 + ϵ)LG,

where A ⪯ B means that B −A is positive semidefinite.

A graph H is sparse if the number of edges in H is low. It turns out spectral sparsifiers
exist and they can be found efficiently.
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Theorem 26 (Spielman and Teng [27]). Let G = (V,E, c) be a capacitated graph and
let n = |V |,m = |E| and ϵ > 0. There exists a ϵ-spectral sparsifier H = (V,EH , cH) such
that |EH | = Õ(n/ϵ2). There is a classical algorithm that finds a spectral sparsifier with
this property in time Õ(m).

Note that the capacities of H could be different than the capacities in G.
If we could do spectral sparsification before doing vertex sparsification, then Algo-

rithm 2 would run in time Õ(n2), which is faster than Õ(m2). If we are just interested
in finding a vertex-cut sparsifier, then we could do this by the following lemma.

Lemma 27. An ϵ-spectral sparsifier approximates all cuts by a factor 1± ϵ.

Proof. Let G be a graph and H an ϵ-spectral sparsifier of G. We know that

(1− ϵ)LG ⪯ LH ⪯ (1 + ϵ)LG.

This implies that for every vector x ∈ Rn we have that

(1− ϵ)xTLGx ≤ xTLHx ≤ (1 + ϵ)xTLGx. (3.7)

For some S ⊂ V , let us define a vector χS such that χS(u) = 1 for u ∈ S and χS(u) = 0
for u ∈ V \ S. We have that

χT
SLGχS =

∑
u∈S

LG(u, u) +
∑

u,v∈S;u̸=v

LG(u, v)

=
∑

u∈S,v∈V
cG(u, v)−

∑
u,v∈S;u̸=v

cG(u, v)

=
∑

u∈S,v∈V \S

cG(u, v)

= hG(S),

which is the cut function. By Equation (3.7) this implies that the cuts are ϵ-approximated
in H.

Combining Theorem 7, Theorem 23 and Lemma 27 we find the next theorem.

Theorem 28. There exists a classical algorithm that computes a vertex-cut sparsifier of

quality O
(

log k
log log k

)
in runtime Õ(n2).
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4 A quantum speedup

The classical Algorithm 2 finds a vertex-flow sparsifier of quality O
(

log k
log log k

)
in run-

time Õ
(
m2
)
. In this section we will give a quantum speedup. We present a quantum

algorithm with runtime Õ
(
m

11
6 n

1
6

)
, which is a small polynomial speedup for dense

graphs.

4.1 Computational model

Before discussing our quantum algorithm, we need to specify the computational model
we are using. The model we use is a classical computer that can use a quantum com-
puter for subroutines. The input of the algorithm is stored in a QROM (quantum-
readable classical-writable classical memory). The classical computer can also write bits
to a QRAM (quantum-readable classical-writable classical memory). The QRAM and
QROM allow quantum queries. This means that if an N -bit string a0 . . . aN−1 is stored,
then we can apply an oracle Oa such that

Oa : |i⟩ |0⟩ → |i⟩ |ai⟩ (4.1)

for every i ∈ {0, . . . , N−1}. The number of times such a query is applied in an algorithm
is called the query complexity. A quantum computer can also implement elementary
quantum gates that are not a query. The classical computer sends to the quantum
computer what quantum queries and what other quantum gates to implement for a
specific subroutine. At the end of the subroutine, the quantum computer measures the
qubits in the computational basis and sends the outcome to the classical computer.
We define the runtime of an algorithm as the sum of the number of elementary

quantum gates, the number of quantum queries and the classical runtime of the classical
subroutines.

4.2 Quantum preliminaries

Before we can discuss our quantum algorithm, we need to have a look at some quan-
tum subroutines we want to use. One of the most important quantum algorithms is
Grover’s algorithm [15]. We will discuss a version of this algorithm that is slightly
more complicated. We define [N ] = {0, 1, . . . , N − 1}.

Theorem 29 (Boyer, Brassard, Høyer and Tapp [4]). Let F : [N ] → {0, 1} be a map.
Let t be the number of entries i such that F (i) = 1. There is a quantum algorithm
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that outputs uniformly at random an element from the set {i | F (i) = 1} in expected
runtime O(

√
N/t).

Note that Theorem 29 does not require that we know t beforehand. In our quantum
algorithm we will need a subroutine to find the minimum of a function. This can be
done using Algorithm 3.

Algorithm 3 Finding the minimum of F : [N ]→ R
1: Choose j ∈ [N ] uniformly at random
2: repeat
3: Find an index i ∈ [N ] such that F (i) < F (j)
4: j ← i
5: until there is no such i
6: return j

Theorem 30 (Dürr and Høyer [10]). If F : [N ]→ R is a function that we have query
access to, then Algorithm 3 finds the minimum output of F . The expected runtime of
the algorithm is O(

√
N).

Proof. It is clear that the j that is returned is a minimum, so we just need to analyze
the runtime.
We assume that F is injective. We define the rank of an index j ∈ [N ] as the number

of indices i such that F (i) ≤ F (j). When running the algorithm, there is a probability
that at some point in the algorithm we get to an index j that has rank r, we define pr
as this probability.
For some r ≥ 1, let i be the first index that we find running the algorithm such that

rank(i) ≤ r. We know with probability 1 that this i exists, since we will end with the
index that has rank 1. Since in Step 3 we find an index with lower rank uniformly at
random, the probability that i has rank r is 1

r , so pr =
1
r .

If at some point in the algorithm we find an index i that has rank r, then the next step
will have expected runtime upper bounded by C

√
N/(r − 1) for some constant C ≥ 0

by Theorem 29. We can easily find a constant c > 0 such that C
√
N/(r − 1) < c

√
N/r

for all r ≥ 2. We can thus upper bound the total expected runtime by

N∑
r=2

prc
√
N/r = c

√
N

N∑
r=2

r−3/2 = O
(√

N
)

where we used the fact that
∑∞

r=1 r
−p <∞ for all p > 1.

Now that we have discussed some basic quantum algorithms directly based on Grover’s
algorithm, we can look at more advanced quantum algorithms applied to graph theory
problems. In such quantum algorithms we need some type of query access to the graph,
similar to Equation 4.1. We discuss two query models.
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• In the adjacency model the graph is given as the adjacency matrix A ∈ Rn×n

where n is the number of vertices of our graph. We have Au,v = c(u, v) if there
is an edge connecting u, v with capacity c(u, v), and Au,v = 0 if there is no edge
connecting u, v or if u = v. An oracle over the QROM in which such a matrix is
stored looks like

OA : |i, j⟩ |0⟩ → |i, j⟩ |Ai,j⟩ ,
where the second register contains enough qubits to write down Ai,j with enough
precision.

• In the adjacency array model we are given the degrees di of the vertices vi, and
for every vertex vi an array of length di of its neighbors vj and the capacity of the
edges connecting vi to its neighbor vj . The oracle looks like

Oad : |i⟩ |a⟩ |0⟩ |0⟩ → |i⟩ |a⟩ |j⟩ |c(vi, vj)⟩ ,

where a ≤ Degree(vi), and the last register contains enough qubits to write down
c(vi, vj) with enough precision.

We note that, given access to one of these models, we can convert to the other in
runtime Õ(n2). We can do this before running our algorithm, and our algorithm runs
slower than Õ(n2), so for the various steps in our algorithm we can choose which one of
these models to use.

Dürr, Heiligman, Høyer and Mhalla [9] wrote a useful paper about quantum algorithms
in graph theory. They give quantum speedups for various important classical problems
from graph theory. One of these speedups will be of use to us, namely the speedup for
Dijkstra’s algorithm.

Theorem 31 (Theorem 18 by Dürr, Heiligman, Høyer and Mhalla [9]). There is a
bounded-error quantum algorithm with worst-case runtime Õ(

√
nm) that finds the short-

est path from one given vertex v to all other vertices. This algorithm uses the array
model.

Dürr, Heiligman, Høyer and Mhalla [9] state in their Theorem 18 that the query
complexity of their algorithm is Õ(

√
nm). In their introduction they state that the

runtime is at most a polylogarithmic factor larger than the query complexity.
An algorithm is bounded-error if for every possible input the probability of giving a

correct output is at least 2/3, but this can be improved to any constant in [2/3, 1). We
need one more subroutine for our quantum algorithm.

Theorem 32 (van Apeldoorn, Gribling and Nieuwboer [29]). Let v ∈ [0, 1]A. Let
ρ,∆ ∈ (0, 1) be such that log(1/ρ)∆ = O(A). Then there is a quantum algorithm that,
with probability ≥ 1 − ρ, finds a multiplicative ∆-approximation of

∑A
i=1 vi with query

complexity

O

(√
A

∆
log(1/ρ)

)
,

and a runtime which is larger by a factor polylogarithmic in A, 1/∆ and 1/ρ.
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4.3 Our algorithm

The bottlenecks of Algorithm 2 are Steps 6, 8 and 12, that each have runtime Õ(m).
Step 8 from the classical algorithm can be sped up easily using Theorem 30, giving

an improvement of Lemma 21.

Lemma 33. There is a quantum algorithm with expected runtime Õ(
√
m) that finds

ℓH×R := maxe{rloadH×R(e)}.

Proof. As we saw in the proof of Lemma 21 we can calculate rloadH×R(e) in time O(k2)
for a given e ∈ E. We now use Theorem 30 to find the largest rloadH×R(e) over all
e ∈ E. This search has runtime Õ(

√
m). In total we thus get runtime

Õ(k2
√
m) = Õ(

√
m).

In Step 6 of the classical algorithm we use Dijkstra’s algorithm, which has run-
time Õ(m). This can be improved by Theorem 31, which has runtime Õ(

√
nm).

The only bottleneck left in the classical algorithm is Step 12. To speed it up, we define
an integer A. The idea is to calculate d

λ⃗
(e) only once every A iterations. Doing this we

get Algorithm 4.

Algorithm 4 Quantum speedup for Algorithm 2

1: λ⃗← 0 ∈ RH×R
+

2: for e ∈ E do
3: d

λ⃗
(e)← 1

c(e)

4: i← 0
5: while

∑
H×R λH×R < lnm do ▷ Õ(m) iterations

6: for a ∈ K do
7: Compute δ(v, a), Ra,b,∀v ∈ V,∀b ∈ K ▷ Õ(A

√
mn)

8: Find H ∈ H using Theorem 17 ▷ Õ(n)
9: ℓH×R ← maxe{rloadH×R(e)} ▷ Õ(

√
m)

10: δH×R ← min
{
1/ℓH×R, lnm−

∑
H×R λH×R

}
11: λH×R ← λH×R + δH×R

12: if A | i then
13: for e ∈ E do ▷ m iterations
14: d

λ⃗
(e)← d

λ⃗
(e) · exp

((∑i
j=i−A+1 δj rloadj(e)

)
(1±∆)

)
▷ Õ(

√
A)

15: i← i+ 1

16: return the non-zero entries of µ⃗ = λ⃗/ lnm

Not knowing the edge-lengths at every step forms a problem for Step 7 of the quantum
algorithm, where we need d

λ⃗
to calculate D(v, a) for all v ∈ V, a ∈ K. To fix this, we

will redefine the query used in Theorem 31.
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We write di, Hi, Ri for respectively the edge-lengths at the start of iteration i, and the
0-extension and shortest paths that we find in Steps 8 and 7 of iteration i. For simplicity
we define δi := δHi×Ri and rloadi := rloadHi×Ri .
Suppose that for some integer N we know dNA, i.e. all edge-lengths at the start of

iteration NA. Assume that in Algorithm 4 we are at iteration number AN + a for
some 0 ≤ a < A, and we know δi, Hi, Ri for integers NA < i ≤ NA + a. To store Hi

for every i ∈ {NA + 1, . . . , NA + a} it suffices to have storage space Õ(na) = Õ(nA)
since a 0-extension H ∈ H is defined as a map V → K. To store Ri for a specific
i ∈ {NA + 1, . . . , NA + a} we should store k2 paths. A path has length at most
n, so we can store Ri in storage space Õ(nk2) = Õ(n), so to store Ri for every i ∈
{NA+1, . . . , NA+ a} it suffices to have Õ(nA) storage space. Since the δi are just real
numbers, Õ(nA) storage space suffices to store δi, Hi, Ri for all i ∈ {NA+1, . . . , NA+A}.
For some edge e ∈ E we can now calculate

dNA+a(e) = dNA(e) exp

(
AN+a∑

i=AN+1

δi rloadi(e)

)
(4.2)

in time Õ(a) = Õ(A). In Theorem 31 we use a query to access the graph. In our
case we can not directly implement this query. We need an extra factor of Õ(A) in
the query complexity, since that is the runtime to calculate dNA+a(e) for a given edge
e ∈ E. Finding the shortest paths can thus be done in runtime Õ(A

√
nm). Note that

the calculation done in Equation (4.2) is deterministic, so we do not need to worry about
error probabilities here.
Every A iterations we will calculate d

λ⃗
(e) = dNA(e) for every edge e ∈ E. We could

do this as in Equation (4.2), choosing a = A. However, this would result in a runtime
of Õ(Am) to calculate all edge-lengths, which would not give us a speedup. We need to

find a smarter way to calculate the exponent exp
(∑AN+A

i=AN+1 δi rloadi(e)
)
. We do this

using Theorem 32.
We note that for every i ∈ {AN + 1, . . . , AN + A} we have that δi rloadi(e) ∈ [0, 1],

since in the algorithm we defined δi ≤ 1
maxe{rloadi(e)} . We can thus use Theorem 32 to

calculate
∑AN+A

i=AN+1 δi rloadi(e) up to a factor 1±∆ in time O

(√
A
∆ log(1/ρ)

)
with error

probability ρ. If we already would know
∑AN

i=1 δi rloadi(e) up to a factor 1±∆, then we
could calculate

AN+A∑
i=1

δi rloadi(e) =
AN∑
i=1

δi rloadi(e) +
AN+A∑
i=AN+1

δi rloadi(e)

up to a factor 1±∆ as well, since δi rloadi(e) ≥ 0 at every iteration i.
It turns out that this factor 1 ±∆ does not affect the outcome of the algorithm in a

significant way if we choose ∆ appropriately.

In the analysis of the classical algorithm we assumed that d
λ⃗
(e) =

exp((Mλ⃗)e)
c(e) , but in

our case we can have an error. The edge-lengths d
λ⃗
(e) that we compute using Theorem 32

will satisfy
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exp
(
(Mλ⃗)e(1−∆)

)
c(e)

≤ d
λ⃗
(e) ≤

exp
(
(Mλ⃗)e(1 + ∆)

)
c(e)

,∀e ∈ E. (4.3)

This holds at every iteration. A problem arises in Step 8 of the quantum algorithm. In
the following lemma we show that the error we get in the edge-lengths does not need to
be a problem if we choose ∆ small enough.

Lemma 34. Let G = (V,E, c) be a capacitated graph with terminals K ⊂ V that we
input in Algorithm 4. We define m = |E|, k = |K|. There is a constant C > 0 such that
if we choose

∆ = C
log log k

log k · logm
,

then Algorithm 4 outputs a vertex-flow sparsifier of quality

q = O

(
log k

log log k

)
.

Proof. Note that the proof of Theorem 22 also holds for Algorithm 4. The algorithm will
thus stop after a number of iterations and output a convex combination of 0-extensions.
It only remains to compute the quality.

As in Algorithm 2, every iteration i we find an H × R ∈ H ×R such that ∂ lmax(Mλ⃗)
∂λH×R

is small, where λ⃗ is as we found it at at the start of iteration i. We can upper bound
this partial derivative, inspired by Equation (3.6) and using Equation (4.3) as follows

∂ lmax(Mλ⃗)

∂λH×R
=
∑
e

loadH×R(e)
exp
(
(Mλ⃗)e

)
c(e)

∑
e′ exp

(
(Mλ⃗)e′

)
≤
∑
e

loadH×R(e)
d
λ⃗
(e)∑

e′ c(e
′)d

λ⃗
(e′)
· exp

(
2max

e′′
{(Mλ⃗)e′′}∆

)

=

∑
a,b∈K cH(a, b)

∑
e∈Ra,b

d
λ⃗
(e)∑

e′ c(e
′)d

λ⃗
(e′)

· exp
(
2max

e′′
{(Mλ⃗)e′′}∆

)
≤ exp

(
2max

e
{(Mλ⃗)e}∆

)
· S log k

log log k
.

(4.4)

In the last step we used that the H ∈ H that we used came from the algorithm described
in Theorem 17, and we choose the constant S > 0 appropriately.

Let us define the map
F : x→ exp(x/3).

We calculate numerically that F (x) − x = 0 has roots x0 ≈ 1.9 and x1 ≈ 4.5. We note
that for every x < x0 we have that F (x) < x0 and 1 < x0. Therefore, F ◦i(1) < x0 for
every i ≥ 0, where F ◦i is defined as iterating the map i times.
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We choose C = 1
12(S+1) . We now claim that for every iteration i ≥ 0 we have that the

vector λ⃗ that we find at the start of iteration i satisfies

lmax(Mλ⃗) ≤ F ◦i(1)

(
lnm+ 2S

log k

log log k
·
∑
H×R

λH×R

)
. (4.5)

We prove the claim using induction on i.
For i = 0 we have lmax(0) = lnm, so the induction basis holds.
We now assume that Equation (4.5) holds at the start of iteration i for given i ≥ 0.

We know that

2max
e
{(Mλ⃗)e} ≤ 2 lmax(Mλ⃗) ≤ F ◦i(1)

4(S + 1) log k

log log k
logm = F ◦i(1)∆−1/3. (4.6)

Combining Equation (4.4) and Equation (4.6) we find that

∂ lmax(Mλ⃗)

∂λH×R
≤ exp

(
F ◦i(1)/3

)
· S log k

log log k

= F ◦(i+1)(1) · S log k

log log k
.

If δ⃗ = δeH×R is the vector we find in Step 10 at iteration i, then we have that

lmax(M(λ⃗+ δ⃗)) ≤ lmax(Mλ⃗) + 2δ
∂ lmax(Mλ⃗)

∂λH×R

≤ F ◦(i+1)(1)

(
lnm+ 2S

log k

log log k
·

(
δ +

∑
H×R

λH×R

))
,

where we used Lemma 19 and the fact that F (i+1)(1) ≥ F i(1). This proves that Equa-
tion (4.5) holds at the start of iteration i + 1, and the induction step holds. We thus
proved the claim.

The algorithm ends when
∑

H×R λH×R = lnm. If we take µ⃗ = λ⃗/ lnm, then we get
that

(Mµ⃗)e = F ◦I(1) ·O
(

log k

log log k

)
= O

(
log k

log log k

)
.

for every e ∈ E, where I is the total number of iterations. This proves that µ⃗ is a

vertex-flow sparsifier with quality q = O
(

log k
log log k

)
.

LetN = Õ(m2/A) denote the number of times that Theorem 32 is used in Algorithm 4.
We can use the union bound to upper bound the overall error probability by the sum of
the individual error probabilities

∑N
i=1 ρ = Nρ. If we want the overall error probability

to be smaller than some ϵ > 0, then it suffices to have

Nρ < ϵ.
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The ρ-dependence of the runtime in Theorem 32 is O
(
log1/2(1/ρ)

)
. To have the total

error probability of every iterations of Step 14 upper bounded by ϵ, an extra factor of

O
(
log1/2

(
ϵ
N

))
thus suffices in the runtime. This term will not make a difference for our

final result since we absorb log-factors in the Õ-notation.
The runtime of Algorithm 4 is now dominated by Step 7 and Step 14. Step 7 has run-

time Õ(A
√
mn) and Step 14 has runtime O

(
m
√

A
∆ log(1/ρ)

)
= Õ(m

√
A), but needs

to be done only once every A iterations. There are Õ(m) iterations in total, so the run-

time becomes Õ
(√

mnA ·m+m
√
A ·m/A

)
= Õ

(√
mnmA+m2/

√
A
)
. If we choose

A =
(
m
n

) 1
3 , then we get runtime Õ

(
m

11
6 n

1
6

)
. If m is larger than n by more than a poly-

logarithmic factor, then we have a speedup, and then we have that log(1/ρ)∆ = O(A)
as was required by Theorem 32. We conclude Theorem 1, which is the main result of
this thesis. As we saw in the discussion above Equation (4.2), the space complexity of
the algorithm is Õ(mA) = Õ(m7/6n−1/6). We thus need O(log n) qubits.
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5 Conclusion and future work

5.1 Conclusion

Vertex sparsification is useful when we have a really large graph but we are only inter-
ested in a few terminals. In Chapter 2 we discussed three different definitions of vertex
sparsifiers.

• Vertex-flow sparsification. The goal in this case is that for every demand vector
on the terminals, the congestion is approximately preserved.

• Vertex-cut sparsification. The goal in this case is that the value of every minimum
cut between subsets of terminals is approximately preserved.

• Connectivity-c mimicking networks. The goal in this case is that cuts smaller than
some constant c are exactly preserved. We do not care about larger cuts.

We focus on vertex-flow sparsifiers and vertex-cut sparsifiers. In the special case where
we require the vertex sparsifier to have a vertex set equal to the set of terminals, every
vertex-flow sparsifier is also a vertex-cut sparsifier. A theorem by Moitra [22] states that

vertex-flow sparsifiers exist with a quality of q = O
(

log k
log log k

)
.

In Chapter 3 we discussed a classical algorithm to find vertex-flow sparsifiers of
the quality promised by Moitra. The algorithm was first stated by Englert, Gupta,
Krauthgamer, Räcke, Talgam-Cohen and Talwar [11]. The algorithm constructs a con-
vex combination of 0-extensions. It starts with the empty combination of 0-extensions
with coefficient-vector λ⃗ = 0. In every iteration of the algorithm, one 0-extension is
chosen and its index is raised by a small δ. We chose which 0-extension to raise by
looking at lmax(Mλ⃗), where M is a matrix defined in a way that the entries of Mλ⃗ are
exactly the congestion of the various edges. We want to keep lmax(Mλ⃗) small, because
it is an upper bound for the congestion on every edge. To find a suitable 0-extension,
an algorithm by Fakcharoenphol, Harrelson, Rao and Talwar [12] is used, that finds a
0-extension that keeps the partial derivative of the lmax small enough. The classical al-
gorithm has runtime Õ(m2). This can be sped up to Õ(n2) in case we are only interested
in finding vertex-cut sparsifiers.
In Chapter 4 we presented our own work: a quantum speedup of the algorithm pre-

sented in Chapter 3. There are three steps in the classical algorithm that form its
bottlenecks.

• Finding the shortest paths between vertices and terminals can be done classically
using Dijkstra’s algorithm with a runtime Õ(m). A quantum algorithm by Dürr,
Heiligman, Høyer and Mhalla [9] does the same in runtime Õ(

√
mn).

35



• Finding the real number δ that we will add to the combination of 0-extensions
λ⃗ takes Õ(m) time classically. This can be sped up using the minimum finding
algorithm by Dürr and Høyer [10].

• In the classical algorithm we compute every edge-length, every iteration. This
step has a runtime of Õ(m) every iteration. To speed this up, we compute the
edge-lengths only every A iterations, for some integer A. In the meantime, we
can still find the shortest paths by calculating the edge-lengths on the spot when
needed. This results in a longer runtime for the single-source shortest path step.
To calculate all edge-lengths once per every A iterations, we use a subroutine by
van Apeldoorn, Gribling and Nieuwboer [29]. This subroutine approximates the
sum of some real numbers faster than can be done classically, but it gives an error.
This error can be made small enough for the algorithm to still output a vertex-flow
sparsifier of good quality.

Combining all these techniques gives us Algorithm 4, the main result of this the-
sis: a quantum algorithm that finds vertex-flow sparsifiers of good quality with a run-
time Õ(m11/6n1/6). This beats the classical Õ(m2)-runtime algorithm by a small poly-
nomial factor for dense graphs.

5.2 Future work

In this section we state a few ideas for future work.

• As discussed in Section 3.3, we can speed up Algorithm 2 in the case that we are
only interested in preserving cuts, doing spectral sparsification beforehand. The
question arises if we could do something similar for vertex-flow sparsifiers. We are
not aware of a proof that spectral sparsifiers preserve flows, but if it would be the
case, then Theorem 28 would hold for vertex-flow sparsifiers as well. If it turns out
that spectral sparsifiers do not preserve flows, then it would be interesting to see
if there exists another notion of edge sparsification that does, and if implementing
it beforehand would give us a speedup.

• The speedup in the main result of this thesis, Theorem 1, was found implementing
Theorem 32 while calculating all edge-lengths every A iterations. Perhaps a similar
speedup could be found by applying Theorem 32 when calculating the edge-lengths
in Step 7 of the quantum algorithm.

However, the queries in Step 7 happen in superposition over edges. Therefore,
subsequent queries would give superpositions over approximations if we use The-
orem 32 to approximate the edge-lengths in the query. More analysis of the algo-
rithm is needed to determine whether this forms a problem or not. If, however, it
turns out that it works, then implementing the trick would result in Step 7 having
runtime Õ(

√
Amn) instead of Õ(A

√
mn). In the main Theorem 1 this would result

in a runtime of Õ
(
m7/4n1/4

)
instead of Õ

(
m11/6n1/6

)
, providing a better, but still

small, polynomial speedup.
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• In Section 2.4 we saw another definition of vertex sparsification: the connectivity-c
mimicking networks. There exists a classical algorithm that finds them and runs
in time nO(1), where n is the number of vertices of the original graph. It would be
interesting to study what this polynomial exactly is and if it could be improved
using a quantum algorithm.

• In this thesis we discussed algorithms to find vertex sparsifiers of capacitated
graphs, without requiring anything about the graph. It might be possible to achieve
a better runtime, either classical or quantum, for specific classes of graphs, such as
trees, quasi-bipartite graphs or planar graphs. See the discussion in Section 2.5.
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Popular summary

Imagine the train network of Europe. We can represent this train network as a huge
graph. A graph is a mathematical structure that can be drawn as a collection of
vertices, which we will draw as points, and edges, which we will draw as lines between
the vertices.

Amsterdam

Paris

Berlin

Barcelona

Milan

Figure 5.1: Some train connections
in Europe

Let us say that we are interested in the con-
nections between five big European cities: Ams-
terdam, Paris, Berlin, Milan and Barcelona. In
Figure 5.1 we draw a graph representing a part
of the train network of Europe, showing the five
cities that interest us as vertices of the graph. We
draw an edge between cities that are connected by
a direct train. There is no direct train connect-
ing Berlin to Milan, so we did not draw an edge
between those cities. The figure, however, is de-
ceiving us! It looks like the only way to get from
Berlin to Milan is to pass through Amsterdam and
Paris. This of course is not true: We could also
choose to take the train from Berlin to Basel, and from Basel to Milan. We do not see
this in Figure 5.1 because we chose not to show Basel in the graph. We could choose
to add Basel to the figure to solve the problem, but then a similar problem arises: do
we need to pass through both Paris and Milan if we want to travel from Barcelona to
Basel? The only way to solve the problem is to add many, if not all, the train stations
of Europe to the graph. However, Germany alone already has about 5000 train stations.
If we added all the train stations of Europe to our graph, it would become huge, and we
would completely lose the nice overview that Figure 5.1 gives us!
This is where vertex sparsification comes in. The goal of vertex sparsification is

to represent a really large graph as a small graph. Instead of a large graph with all the
train stations of Europe, we would have a small graph that we could put in our pocket
if we wanted. Figure 5.1 is an example of such a vertex sparsifier, only showing the five
cities we are interested in. However, as we note when traveling from Berlin to Milan,
it is not a really good vertex sparsifier. In previous research it was shown that there
exists a classical algorithm to find better ones. In this thesis we present a new quantum
algorithm that runs faster.
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