
 
 

Delft University of Technology

Energy-consistent formulations of the one-dimensional two-fluid model

Buist, J.F.H.

DOI
10.4233/uuid:1db9efbc-9494-4c5e-af78-08bc9ea84537
Publication date
2024
Document Version
Final published version
Citation (APA)
Buist, J. F. H. (2024). Energy-consistent formulations of the one-dimensional two-fluid model. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:1db9efbc-9494-4c5e-af78-
08bc9ea84537

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:1db9efbc-9494-4c5e-af78-08bc9ea84537
https://doi.org/10.4233/uuid:1db9efbc-9494-4c5e-af78-08bc9ea84537
https://doi.org/10.4233/uuid:1db9efbc-9494-4c5e-af78-08bc9ea84537


Energy-consistent formulations of the
one-dimensional two-fluid model





Energy-consistent formulations of the
one-dimensional two-fluid model

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T. H. J. J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
dinsdag 3 september 2024 om 15.00 uur

door

Jurriaan Frederick Hubert BUIST

Ingenieur in de Technische Natuurkunde,
Technische Universiteit Eindhoven,

geboren te Boxmeer



Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:

Rector Magnificus voorzitter
Prof. dr. ir. R. A.W.M. Henkes Technische Universiteit Delft, promotor
Prof. dr. ir. C.W. Oosterlee Universiteit Utrecht, promotor
Dr. ir. B. Sanderse Centrum Wiskunde & Informatica, copromotor

Onafhankelijke leden:
Prof. dr. ir. B. J. Boersma Technische Universiteit Delft
Prof. dr. ir. B. Koren Technische Universiteit Eindhoven
Prof. dr. ir. R.W. C. P. Verstappen Rijksuniversiteit Groningen
Dr. S. T. Munkejord SINTEF Energy Research, Noorwegen
Prof. dr. R. Pecnik Technische Universiteit Delft, reservelid

Dr. S. B. Dubinkina (VU Amsterdam) heeft als begeleider in belangrijke mate aan de tot-
standkoming van het proefschrift bijgedragen.

This work is part of the Industrial Partnership Program (IPP) “Computational Science
for Energy Research” (CSER) of the Dutch Research Council (NWO), with project num-
ber 15CSER017. The research work was carried out at Centrum Wiskunde & Informatica
(CWI), the Dutch national institute for mathematics and computer science.

Style: TU Delft House Style, with modifications by Moritz Beller

Printed by: Gildeprint

Cover: Graphs of growth rate versus wavelength for small perturbations to a
steady state of the two-fluid model, when including different stabiliz-
ing effects.

Copyright © 2024 by J. F. H. Buist

ISBN 978-94-6496-155-3

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


It is important to realize that in physics today, we have no knowledge what energy is …
However, there are formulas for calculating some numerical quantity, and when we

add it all together it gives … always the same number.

Richard Feynman, Lectures on Physics
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Summary
Two-phase pipe flows are found in diverse industrial applications, such as cooling systems
in nuclear reactors, processes in chemical plants, the production of oil and gas, and the
transport of carbon dioxide which is captured to prevent its emission into the atmosphere.
In many cases, the pipelines are too long to be analyzed using a full three-dimensional
computational model, which would come with high computational cost. Therefore, the
three-dimensional flow equations are averaged, yielding a one-dimensional model which
only describes variations along the direction of flow. However, the simplification of three-
dimensional reality to a one-dimensional model requires making assumptions, which can
result in nonphysical behavior. Similarly, the process of discretizing the equations can
yield a computational model with different properties than the continuous model. This
thesis focuses on retaining energy conservation properties in both continuous and discrete
versions of the one-dimensional model, yielding improved physical fidelity and nonlinear
stability.

To provide insight into the model assumptions, the one-dimensional two-fluid model
for stratified incompressible flow is derived from first principles. Integral mass and mo-
mentum balances are set up for the two fluids (phases) separately, with the two-fluid in-
terface forming the boundary between the two control volumes, which together span the
cross-section of the pipe. From the integral balances, a set of four partial differential equa-
tions follows: one mass and one momentum conservation equation for each fluid. These
equations describe the evolution of the height of the interface, and of the cross-sectionally
averaged velocity of each fluid.

The basic form of the resulting model (without source terms, diffusion, or surface ten-
sion) is analyzed in detail. A conserved energy is proposed, consisting of potential energy
associated with the height of the interface, and kinetic energy associated with the av-
eraged velocities. Taking the dot product of an energy gradient vector with the model
equations yields an equation for the time derivative of the energy. The remaining terms
in the equation are associated with the fluxes of mass and momentum, and for them to
have conservative contributions to the energy equation, a set of compatibility conditions
needs to be satisfied. It is shown that these conditions are indeed satisfied, proving that
the proposed energy is a secondary conserved quantity of the one-dimensional two-fluid
model.

Using a finite volume scheme on a staggered grid, the model is discretized in a general
manner, leaving open the precise expressions for the numerical fluxes. A discrete form
of the energy is proposed. Energy-conserving expressions for the numerical fluxes then
follow from the discrete forms of the conditions for energy conservation. With these
numerical fluxes, a discrete energy conservation equation is obtained from the discrete
model, in the sameway as the continuous energy equation is obtained from the continuous
model.



xii Summary

The conditions for energy conservation are used to correct an inconsistency in a de-
rived version of the one-dimensional two-fluid model, in which the pressure is eliminated
through substitution. This pressure-free two-fluid model requires an explicit expression
for the volumetric flow rate, which is typically set to zero, resulting in solutions that dif-
fer from those of the original model, and also in a lack of energy conservation. Using
the demand for energy conservation, an expression for the volumetric flow rate is found
that removes the inconsistency. Having been made fully consistent with the standard two-
fluid model, the pressure-free model becomes a more efficient alternative, due to its lack
of implicit constraints. This enables the use of fully explicit time integration methods, and
results in reduced numerical error and reduced computational cost.

Additional physical effects beyond those of the basic model are included in the en-
ergy analysis. Each model term has an independent contribution to the energy equation,
that is found by taking the dot product of the energy gradient vector with the model
term. The contributions of streamwise gravity and surface tension are shown to be energy-
conserving, while those of diffusion and friction are shown to be strictly dissipative. For
each model term, a discretization is proposed such that its energy behavior is retained in
the computational model.

Evenwithout diffusion and friction being explicitly added to themodel, energymust be
dissipated in the presence of shocks. To this end a novel advective flux discretization is pro-
posed, which is designed to conserve energy where the solution is smooth, and to provide
numerical diffusion and resulting dissipation in the presence of sharp gradients. These
properties are obtained by combining, using flux limiters, the original energy-conserving
advective flux with a new strictly dissipative upwind advective flux.

The computational model formed by the discretization methods and modeling choices
proposed in this work has two main advantages over the standard model. First, it pos-
sesses a bound on the mechanical energy, which can be interpreted as a nonlinear stabil-
ity bound. Dissipating when necessary, but never increasing, the energy behavior of the
computational model is physically sound. The dissipation can be quantified andmonitored
throughout the course of a numerical simulation. Second, the model possesses favorable
linear stability properties. Physical long-wavelength instabilities are allowed to develop,
while nonphysical short-wavelength instabilities are damped.

Together, these advantages result in accurate, bounded, and convergent numerical so-
lutions. Physical instabilities grow and develop into shocks, at which point they reach a
nonlinear bound and propagate without further growth. Shocks are resolved with neither
numerical oscillations nor excessive numerical diffusion. A gradual and monotonic con-
vergence of the solution is observed under highly unstable flow conditions, for which the
standard model fails to converge.

These properties make the computational model robust, allowing it to be reliably used
under a wide range of flow conditions. This robustness is obtained without compromising
on the computational efficiency of the model. The work of this thesis therefore increases
the viability of fully physics-based dynamical simulations in two-phase pipe flow engi-
neering practice.
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Samenvatting
Twee-fase stromingen in buizen komen voor in diverse industriële toepassingen, zoals
koelsystemen in kerncentrales, processen in chemische fabrieken, de winning van olie en
gas, en het transport van koolstofdioxide, wat wordt afgevangen om te voorkomen dat het
wordt uitgestoten in de atmosfeer. In veel gevallen zijn de pijpleidingen te lang om te ana-
lyseren met volledig driedimensionale computersimulaties, wat te veel rekenkracht zou
kosten. Daaromworden de driedimensionale stromingsvergelijkingen gemiddeld, wat een
eendimensionaal model oplevert dat alleen variaties beschrijft langs de stromingsrichting.
Een nadeel hiervan is dat het vereenvoudigen van de driedimensionale werkelijkheid tot
een eendimensionaal model bepaalde aannames vergt, die kunnen leiden tot niet-fysisch
gedrag. Vergelijkbaar hiermee is het probleem dat het discretiseren van de modelvergelij-
kingen kan leiden tot een computermodel met andere eigenschappen dan het analytische
model. Dit proefschrift richt zich op het bewaren van energiebehoudseigenschappen in zo-
wel continue als discrete versies van het eendimensionale model, wat leidt tot verbeterde
fysische betrouwbaarheid en niet-lineaire stabiliteit.

Om inzicht te verschaffen in de modelvergelijkingen wordt het eendimensionale ‘two-
fluid model’ voor gestratificeerde incompressibele stroming afgeleid vanuit fundamentele
principes. Integrale massa- en impulsbalansen worden opgezet voor de twee fluïda (fasen,
vloeistof of gas) afzonderlijk, met het contactoppervlak tussen de twee fluïda als grens tus-
sen de twee controlevolumes, die samen de dwarsdoorsnede van de buis beslaan. Uit de
integrale balansen volgt een set van vier partiële differentiaalvergelijkingen: één massa-
en één impulsbehoudsvergelijking voor elk van de twee fluïda. Deze vergelijkingen be-
schrijven de ontwikkeling van de hoogte van het contactoppervlak tussen de twee fluïda,
en van de over de dwarsdoorsnede gemiddelde snelheden van de twee fluïda.

Een basale vorm van het resulterende model (zonder brontermen, diffusie, of opper-
vlaktespanning) wordt in detail bestudeerd. Een behouden energie wordt geponeerd, be-
staande uit potentiële energie gerelateerd aan de hoogte van het contactoppervlak, en ki-
netische energie gerelateerd aan de gemiddelde snelheden. Het nemen van het inwendig
product van een energiegradiëntsvector met de modelvergelijkingen leidt tot een verge-
lijking voor de tijdsafgeleide van de energie. De overige termen van de vergelijkingen
zijn gerelateerd aan de flux van massa en impuls, en deze termen leveren alleen conserva-
tieve bijdragen aan de energievergelijking wanneer ze aan bepaalde voorwaarden voldoen.
Het wordt aangetoond dat inderdaad aan deze voorwaarden wordt voldaan, wat bewijst
dat de geponeerde energie een secundair behouden grootheid is van het eendimensionale
two-fluid model.

Het model wordt op een algemene manier gediscretiseerd, gebruikmakend van een
eindige-volume methode op een verspringend rooster, terwijl de uitdrukkingen voor de
numerieke fluxes open worden gelaten. Een discrete vorm van de energie wordt voor-
gesteld. Energiebehoudende uitdrukkingen voor de numerieke fluxes volgen dan uit de
discrete vormen van de voorwaarden voor energiebehoud. Met deze numerieke fluxes
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kan een discrete energiebehoudsvergelijking worden afgeleid van het discrete model, op
dezelfde manier waarop de continue energiebehoudsvergelijking werd afgeleid van het
continue model.

De voorwaarden voor energiebehoud worden gebruikt om een inconsistentie te cor-
rigeren in een afgeleide versie van het eendimensionale two-fluid model, waarin de druk
wordt geëlimineerd door substitutie. Dit druk-vrije two-fluid model vraagt een expliciete
uitdrukking voor het volumedebiet, die doorgaans op nul wordt gezet, wat leidt tot oplos-
singen die verschillen van die van het originele model, en ook tot een gebrek aan ener-
giebehoud. Door gebruik te maken van de eis van energiebehoud wordt een uitdrukking
gevonden voor het volumedebiet die de inconsistentie uit het model haalt. Na volledig
consistent te zijn gemaakt met het standaard two-fluid model, is het druk-vrije model een
efficiënter alternatief, doordat het vrij is van impliciete restricties op de oplossing. Dit
maakt het mogelijk om een volledig expliciete tijdsintegratiemethode te gebruiken, en
leidt tot een vermindering van de numerieke fout en de benodigde rekenkracht.

Aanvullende fysische effecten, voorbij die van de basale vorm van het model, worden
toegevoegd aan de energieanalyse. Elke term in het model levert onafhankelijk een bij-
drage aan de energievergelijking, die wordt gevonden door het inwendig product te nemen
van de energiegradiëntsvector met de modelterm. Voor de bijdragen van zwaartekracht
in de stromingsrichting en van oppervlaktespanning wordt aangetoond dat ze energiebe-
houdend zijn, terwijl voor diffusie en wrijving wordt aangetoond dat ze strikt dissipatief
zijn. Voor elke modelterm wordt vervolgens een discretizatie voorgesteld zodanig dat de
energiebehoudseigenschappen bewaard blijven in het computermodel.

Het computermodel dat wordt gevormd door de discretizatiemethoden en modelle-
ringskeuzes die worden voorgesteld in dit werk heeft twee belangrijke voordelen ten op-
zichte van het standaardmodel. Ten eerste bezit het model een bovengrens voor de me-
chanische energie, die kan worden geïnterpreteerd als een niet-lineaire stabiliteitsgrens.
De energie dissipeert wanneer nodig, maar neemt nooit toe, waarmee het voldoet aan
fysische principes. De dissipatie kan worden gekwantificeerd en bijgehouden gedurende
het verloop van een numerieke simulatie. Ten tweede bezit het model gunstige lineaire
stabiliteitseigenschappen. Fysische instabiliteiten met lange golflengtes kunnen zich on-
gehinderd ontwikkelen, terwijl niet-fysische instabiliteiten met kleine golflengtes worden
gedempt.

Samen leiden deze voordelen tot nauwkeurige, begrensde, en convergerende nume-
rieke oplossingen. Fysische instabiliteiten groeien en ontwikkelen zich tot schokken, op
welk punt ze een niet-lineaire stabiliteitsgrens bereiken en vervolgens propageren zonder
verdere groei. De verkregen schokoplossingen vertonen noch numerieke oscillaties noch
overmatige numerieke diffusie. Onder hoogst instabiele stromingscondities, waarvoor het
standaardmodel niet convergeert, wordt een geleidelijke en monotone convergentie van
de oplossing bereikt.

Deze eigenschappen maken het computermodel robuust, waardoor het betrouwbaar
kan worden toegepast onder verschillende omstandigheden. De robuustheid wordt ver-
kregen zonder in te leveren op rekenkundige efficiëntie. Het werk van dit proefschrift
vergroot daarmee de haalbaarheid van volledig op fysica gebaseerde dynamische simula-
ties in de ingenieurspraktijk van twee-fase buisstromingen.
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1
Introduction

In this thesis we design computational models for the stable and accurate prediction of
the flow of two fluids through a pipe. Reliable and computationally efficient models for
the full range of flow patterns appearing in two-phase pipe flow could greatly assist the
design and control of pipeline systems in a variety of applications, minimizing costs and
maximizing safety. The nature of two-phase pipe flow, with its complex flow patterns,
and the nature of the accompanying one-dimensional equations, with their physical and
nonphysical instabilities, make designing proper numerical models a real challenge. The
approach of this thesis is based on a careful consideration of the energy conservation and
dissipation properties of the discretized one-dimensional equations.

1.1 Two-phase pipe flow
Two-phase pipe flow refers to the simultaneous flow through a pipe of two phases (gas-
liquid) of a certain substance, or more in general two different immiscible fluids (liquid-
liquid or gas-liquid). These two fluids can interact in complicated ways, leading to in-
creased complexity over single-phase flow. Depending on the flow conditions, the two
fluids can arrange themselves in different ways. The different shapes that the flow can
take have been categorized into different flow regimes, or flow patterns [82, 116]. Fig-
ure 1.1 depicts some of the different flow patterns that can arise in horizontal gas-liquid
flow.

When the liquid flow rate is very large but the gas flow rate is low, the dispersed flow
pattern is observed, in which a continuous liquid phase flows through the pipe, with small
spherical gas bubbles dispersed in it. On the other hand, when the gas flow rate is very
large but the liquid flow rate is low, the annular flow pattern is observed, in which the gas
flows through the center, with the liquid wetting the perimeter of the pipe.

When both fluids flow at a low rate, the liquid and gas will separate due to the effect
of gravity, leading to the stratified flow regime. At slightly higher flow rates, waves will
appear at the interface between the gas and the liquid. At even higher flow rates, these
waves can grow large and bridge the pipe, forming what is called a slug. A slug is a lump
of liquid that locally fills the pipe and travels through it at high speed. Typically, the
flow will develop multiple slugs in sequence, alternated with gas pockets. When slugs
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grow through the growth of unstable waves, this is called ‘hydrodynamic slugging’ [54].
Alternatively, slugs may develop through the accumulation of liquid in dips in the pipe.
This is known as ‘terrain-induced slugging’.

This thesis will focus on the stratified and stratified wavy flow regimes in (nearly)
horizontal pipe flow, working towards the transition to slug flow.

Figure 1.1: A possible classification of the different flow regimes in horizontal two-phase pipe flow [108].

1.2 Applications
Two-phase pipe flows are found in diverse industrial applications. An important driver
of the modeling of two-phase pipe flow has been the field of nuclear reactor safety anal-
ysis [8, 9, 80]. In most nuclear power plants, water is used as a coolant, to carry off the
heat produced by the nuclear reactions. During a typical reference failure mode called
a loss-of-coolant accident (LOCA), a pipe carrying the cooling water ruptures. The pipe
depressurizes and the water rapidly changes into a two-phase mixture of liquid and vapor,
which spills out of the pipe. Due to the resulting lack of cooling, the temperature in the
reactor may increase and more of the water may boil. This is a dangerous type of poten-
tial accident which must be well understood for specific reactor designs (including their
countermeasures).

Another industry where much effort is put into the modeling of two-phase pipe flow,
is the oil and gas industry [7, 33, 93]. In the exploitation of a reservoir, crude oil and
associated gas are extracted simultaneously, with the possible additions of water and sand.
The reservoirs are often located below deep and rough seas, where it is impractical to
construct and operate the equipment needed to separate the fluids. Instead, the fluids are
transported together, from the offshore well to a central processing facility, which may
be located onshore. This transport takes place through long pipelines along the sea floor,
which may be hundreds of kilometers in length (see Figure 1.2).

At processing facilities, a steady and predictable input of oil and gas is preferred. In
contrast, when slugs form, the flow becomes highly intermittent. Slugs can threaten to
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flood the separator with a sudden surge of liquid, exceeding the capacity of the separator
[13, 38]. Therefore separators need to be somewhat oversized, or so-called slug catchers
are needed to temporarily store the slug. A second issue is that slugs form a body of liquid
that carry much momentum. At bends in the pipe, the direction of the slug is changed,
and the pipe will experience a large reaction force. This necessitates extra reinforcement
of the pipe and its restraints.

Figure 1.2: Schematic of a pipeline between an offshore well and a processing facility [13].

An application which has recently attractedmuch interest is the capture and storage of
CO2 [4]. Carbon dioxide is injected into the earth’s subsurface, with the aim of preventing
its emission into the atmosphere. Pipeline transport is needed in order to transport CO2
in large quantities and over long distances. CO2 is preferably transported at high pressure
in liquid state (supercritical dense phase CO2), but can transition into a gas when the
pressure drops, for example due to frictional pressure losses, or when the CO2 is injected
in low-pressure subsurface reservoirs. This can give two-phase CO2 transport in pipelines
and in injection wells. The pressure decrease and phase change can be accompanied by a
large drop in temperature that may render the pipe brittle and vulnerable to cracks.

For all these applications, computational modeling is important. First, for the design of
pipeline systems. With computational models, the properties of a design can be analyzed,
which enables efficient optimization. Designs can also be subjected to an extensive safety
analysis, in which different scenarios are evaluated. This is particularly important in the
nuclear industry.

Second, computational modeling can be used to monitor the flow in real time, through
the creation of a so-called Digital Twin of the physical pipeline system. The Digital Twin
is fed with real measurements, and uses computational modeling to fill in the gaps for the
flow in between measurement points, and for properties of the flow that cannot be easily
measured. It therefore provides a full picture of the real physical system. Additionally, it
can be used to forecast the flow for a period of time in the future. These forecasts can be
used for the control of a pipeline system, ensuring its steady and safe operation.
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1.3 Modeling
Pipes are characterized by a much longer length scale along the axis of the pipe than in the
radial direction. For some applications, the length of the pipe is on the scale of kilometers
versus a diameter on the scale of decimeters. For such a geometry, data of every small fluc-
tuation in the three-dimensional (3D) flowwould be intractable. Instead, we are interested
in variations along the pipe axis, for example of the pressure, the accumulation of the two
fluids, and the mass fluxes. These quantities can be provided by a one-dimensional (1D)
model. Such a model will have a much lower computational cost than a 3D model, which
is important for the applications discussed above, which require either a large number of
calculations for different conditions, or faster than real time calculations.

The one-dimensional two-fluid model (TFM) is a dynamic model for two-phase flow in
pipes, which resolves only cross-sectionally averaged quantities. There are many variants
of the model, but the basic idea, of two interacting fluids whose behavior is averaged to
obtain a 1D model, was introduced by Wallis (1969) [127]. In this work we consider a
version that models the stratified flow regime. It has the ability to dynamically simulate
hydrodynamic instabilities, and has the potential to simulate the transition to slug flow,
which may develop from these instabilities.

The full TFM is derived in chapter 2. It consists of two mass conservation equations
and two momentum conservation equations. A basic form of the model, for horizontal
stratified incompressible flow in a 2D channel (see Figure 1.3), is given by

𝜕
𝜕𝑡 (𝜌𝑈𝐻𝑈 )+

𝜕
𝜕𝑠 (𝜌𝑈 𝑢𝑈𝐻𝑈 ) = 0 (1.1a)

𝜕
𝜕𝑡 (𝜌𝐿𝐻𝐿)+

𝜕
𝜕𝑠 (𝜌𝐿𝑢𝐿𝐻𝐿) = 0 (1.1b)

𝜕
𝜕𝑡 (𝜌𝑈 𝑢𝑈𝐻𝑈 )+

𝜕
𝜕𝑠 (𝜌𝑈 𝑢

2𝑈𝐻𝑈 − 1
2𝜌𝑈 𝑔𝐻

2𝑈 ) = −𝐻𝑈
𝜕𝑝
𝜕𝑠 + 𝜏𝑈 +𝜏int (1.1c)

𝜕
𝜕𝑡 (𝜌𝐿𝑢𝐿𝐻𝐿)+

𝜕
𝜕𝑠 (𝜌𝐿𝑢

2𝐿𝐻𝐿 +
1
2𝜌𝐿𝑔𝐻

2𝐿) = −𝐻𝐿
𝜕𝑝
𝜕𝑠 + 𝜏𝐿 −𝜏int (1.1d)

Here 𝑠 is the streamwise spatial coordinate, 𝑡 is time, 𝜌𝑈 and 𝜌𝐿 are the densities of the
upper and lower fluids respectively, 𝐻𝑈 and 𝐻𝐿 are the heights taken up by these fluids,
𝑢𝑈 and 𝑢𝐿 are the averaged velocities of these fluids, 𝑔 is the acceleration of gravity, and
𝑝 is the pressure. The source terms 𝜏𝑈 and 𝜏𝐿 represent the friction with the walls and 𝜏int
represents the friction between the two fluids, acting at the interface. The hold-up of each
fluid is defined as 𝛼𝑈 = 𝐻𝑈 /𝐻 and 𝛼𝐿 = 𝐻𝐿/𝐻 . The equations are subject to the constraint
that the two fluids must together fill the channel:

𝛼𝐿 +𝛼𝑈 = 1.
For the applications discussed earlier, the drift-flux model [39, 83, 127, 132] is com-

monly used. This can be considered a simplification of the two-fluidmodel, which assumes
equal pressures between the phases and requires a closure relation for the slip velocity (the
difference between the two fluids’ velocities). Closure relations are a typical characteristic
of averaged and simplified models, in which not all of the relevant physics can be resolved,
so that empirical correlations are needed to close the equations. The drift-flux model re-
moves the Kelvin-Helmholtz instabilities present in the TFM [76], and can therefore not
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Figure 1.3: A schematic of stratified 1D two-fluid flow in a 2D channel.

be used to predict the transition to slug flow explicitly. Rather, the standard approach is to
use flow regime maps to determine the current flow regime, and essentially switch models
based on the flow regime [49]. A typical flow regime map is shown in Figure 1.4. Flow
regime maps have a highly empirical nature, and are only strictly valid for steady-state
flow [11].

Figure 1.4: Generalized flow regime map of Taitel and Dukler [116]. Curves A & B are plotted against the
dimensionless parameters X & F. Curve C is plotted against the dimensionless parameters X & K. Curve D is
plotted against the dimensionless parameters X & T.

This thesis works towards a more fundamental approach, in which the transition from
stratified flow to slug flow is predicted using solely the conservation equations of the TFM,
with a minimal number of closure relations. Modeling slug flow in this way, with a natural
evolution of the hold-up fractions to values of 0 and to 1, is called ‘slug capturing’ [60], as
opposed to ‘slug tracking’ and ‘empirical slug specification’.

The first difficulty with this is that the initial value problem for the basic model is only
conditionally well-posed [81]. This means that it is well-posed for some flow states and
ill-posed for others (i.e. when there is a large velocity difference between the two fluids).
When the initial value problem for the equations is ill-posed, the smallest wavelengths
present in the solution are unstable and will grow at an unbounded rate. In this case
the solution is said to carry no physical meaning [74], and some authors interpret the ill-
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posedness as the trigger for the transition to a different flow regime (slug or annular flow)
[6, 17]. Slugs can also develop for flow states where the model is well-posed unstable,
which means that perturbations will grow, but at a bounded rate. In principle, this can
be modeled without special difficulty. However, when the state is well-posed unstable,
there is a high risk that the solution travels into the ill-posed region of state space [106].
Therefore, in turn, the growth of slugs can be said to trigger the ill-posedness of the model.

A second issue with applying the TFM to slug capturing is that when one of the hold-
ups becomes zero (meaning that one of the phases locally ‘disappears’), the equation sys-
tem becomes singular [131]. For example, if the gas hold-up becomes zero, the gas mass
and momentum equations will admit infinitely many solutions for the gas velocity. Before
reaching this singularity, the system will become ‘stiff’, so that a numerical algorithm for
its advancement in time will run a high risk of being numerically unstable [67].

This thesis will tackle the issue of the instability of the two-fluidmodel, taking a crucial
step towards a robust method for slug capturing.

1.4 Well-posedness
The Hadamard definition of a well-posed (or properly posed) problem is a problem for
which [84, p. 27]

1. a solution exists,

2. the solution is unique, and

3. the solution depends in a continuous manner on the initial and boundary conditions.

For the two-fluid model, the issue is with the third condition.
The third condition is somewhat vague in this form. A rigorous definition (for an initial

value problem) is given by Morton and Mayers [89, p. 158] and Richtmyer and Morton
[100, p. 41]: There exists some constant 𝐾 such that for any initial conditions 𝑤′(𝑥,0) and
𝑤(𝑥,0) the following holds:

‖𝑤′(𝑥, 𝑡) −𝑤(𝑥, 𝑡)‖ ≤ 𝐾 ‖𝑤′(𝑥,0) −𝑤(𝑥,0)‖ , for 𝑡 ≥ 0. (1.2)

This means that the norm of the difference between two solutions, resulting from two
different initial conditions, can be bounded by the norm of the difference between the
initial conditions. This should hold for any fixed (finite) time 𝑡 ; 𝐾 may be a function of 𝑡 .
The norm ‖⋅‖ is typically chosen to be the 𝐿2 norm (over 𝑥). For linear partial differential
equations, (1.2) is equivalent to the following condition [113, p. 206], which is often used
in practice:

‖𝑤(𝑥, 𝑡)‖ ≤ 𝐾 ‖𝑤(𝑥,0)‖ , for 𝑡 ≥ 0. (1.3)

A typical example where (1.2) is not satisfied is the Hadamard instability [30, p. 229].
Consider the following (linear) initial value problem (known as the Laplace equation in
the context where 𝑡 is a spatial variable)

𝜕2𝑢𝑛
𝜕𝑡2 + 𝜕2𝑢𝑛

𝜕𝑥2 = 0, (1.4)



1.4 Well-posedness

1

7

with initial conditions

𝑢𝑛(𝑥,0) = 0, 𝜕𝑢𝑛
𝜕𝑡 (𝑥,0) = 𝑓𝑛(𝑥) =

sin(𝑛𝑥)
𝑛2 , 𝑛 = 1,2,3… (1.5)

The initial condition 𝑓𝑛(𝑥) converges to zero for 𝑛→∞ (see Figure 1.5).

Figure 1.5: Initial conditions (1.5) (left), and exact solutions at finite time (1.6) (right), with different 𝑛.

An exact solution to this initial value problem is

𝑢𝑛(𝑥, 𝑡) = sinh(𝑛𝑡) sin(𝑛𝑥)𝑛2 . (1.6)

The difference in norm between two initial conditions 𝑢𝑛(𝑥,0) and 𝑢𝑛+1(𝑥,0) defined by
(1.5) is zero (since they are both zero):

‖𝑢𝑛+1(𝑥,0) −𝑢𝑛(𝑥,0)‖ = 0 < 𝛿, (1.7)

and for large 𝑛 the difference in the time derivatives is similarly small:

‖‖‖
𝜕𝑢𝑛+1
𝜕𝑡 (𝑥,0)− 𝜕𝑢𝑛

𝜕𝑡 (𝑥,0)‖‖‖ < 𝛿′, with 𝛿′ a decreasing function of 𝑛. (1.8)

However, for fixed 0 < 𝑡 < ∞ and fixed |𝑥| < ∞, the solution (1.6) explodes as 𝑛 → ∞ (i.e.
the short wavelength limit), and the series 𝑢𝑛+1(𝑥, 𝑡)−𝑢𝑛(𝑥, 𝑡) diverges: there is no bound
for

‖𝑢𝑛+1(𝑥, 𝑡) −𝑢𝑛(𝑥, 𝑡)‖ , at fixed 𝑡. (1.9)

The example violates the well-posedness criterion; there is no constant 𝐾 such that (1.2)
holds for all finite 𝑡 and all 𝑛, since ‖𝑢𝑛+1(𝑥, 𝑡) −𝑢𝑛(𝑥, 𝑡)‖→∞ for 𝑛→∞ (at fixed 𝑡), while
‖𝑢𝑛+1(𝑥,0) −𝑢𝑛(𝑥,0)‖ remains zero (see Figure 1.6).
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Figure 1.6: Difference in initial conditions (1.8) (left), and difference in exact solutions at fixed time (1.9) (right),
as a function of 𝑛, for the initial value problem specified by (1.4) and (1.5). Here the 𝐿2 norm is taken over the
interval [−2𝜋,2𝜋].

One of the problems with an ill-posed model is that it cannot describe observable nat-
ural phenomena [30]. As Courant and Hilbert put it, data in nature can never be defined
with infinite precision; a measurement will always involve small errors. An ill-posed ini-
tial value problem can amplify these measurement errors via an unbounded growth rate,
so that for any moment past the initial point in time the predicted solution diverges com-
pletely.

This leads directly to another problem, when solving the model equations numerically.
Though numerical viscosity can bound the wave growth rate at small wavelengths, the so-
lution will not converge with grid refinement, since numerical viscosity is grid-dependent
[8, 46, 60]. In fact, as stated by the Lax equivalence theorem [72], well-posedness of the
(linear) initial value problem is one of the conditions (along with consistency and numeri-
cal stability) for convergence of the finite difference equations. If the (linear) initial value
problem is ill-posed, then no numerical scheme that is consistent with the problem can
be stable [100, p. 59]. Convergence is a crucial property for a reliable numerical model. If
convergence is achieved, this can be regarded as proof that the model is well-posed.

1.5 Characteristic analysis
Since it is in general not possible to obtain exact solutions for the TFM, it is more difficult
to judge its well-posedness. It is typically studied using two different techniques: char-
acteristic analysis and linear stability analysis. These two analyses are well-defined for
quasi-linear first-order systems of partial differential equations of the form

𝐀(𝐰)𝜕𝐰𝜕𝑡 +𝐁(𝐰)𝜕𝐰𝜕𝑥 = 𝐜(𝐰), (1.10)
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with 𝐰 the solution vector, 𝑡 time, 𝑥 a spatial coordinate, 𝐀 and 𝐁 square matrices, and
𝐜 a vector of source terms. The TFM as given by (1.1) can be written in this form (see
section 5.B). Systems that are higher order in 𝜕𝐰/𝜕𝑥 can be reformulated to fit this form
through substitution. For example, equation (1.4) can be written in the form (1.10) with

𝑝𝑛 =
𝜕𝑢𝑛
𝜕𝑡 , 𝑞𝑛 =

𝜕𝑢𝑛
𝜕𝑥 , 𝐰 = [𝑝𝑛𝑞𝑛] , 𝐀 = 𝐈 = [1 0

0 1] , 𝐁 = [ 0 1
−1 0] , and 𝐜 = [00] . (1.11)

Characteristic analysis yields the (generalized) eigenvalues and eigenvectors of (1.10).
These can be used for classification. There are multiple possibilities (with different names
in different texts) [50, 53, 68, 73, 129, 130], but a useful classification is the following:

• If there are no real eigenvalues, i.e. all eigenvalues are complex, the system is called
elliptic.

• If the system has a mix of real and complex eigenvalues, the system is said to be
hybrid.

• If all eigenvalues are real but the system does not have a full set of linearly indepen-
dent eigenvectors, the system is called parabolic, or weakly hyperbolic if 𝐀 = 𝐈.

• If all eigenvalues are real and the system has a full set of linearly independent
(left) eigenvectors, the system is called hyperbolic, or strongly hyperbolic if 𝐀 = 𝐈.
A strongly hyperbolic system is diagonalizable.

• If additionally all eigenvalues are distinct, the system is called totally hyperbolic or
strictly hyperbolic.

For linear systems that can be written in the form (1.10) with 𝐀 = 𝐈, it can be rigorously
proven that strong hyperbolicity is a necessary and sufficient condition for the initial value
problem to bewell-posed, in the sense that it satisfies (1.2) [50, 68]. Consider as an example
equation (1.4), whichwritten in the form (1.10) with substitutions (1.11), can be determined
to be elliptic with eigenvalues 𝜆 = ±√−1, and is clearly ill-posed.

For the basic incompressible two-fluid model as given by (1.1), characteristic analysis
yields two eigenvalues that are real in a portion of state space where the difference be-
tween the velocities of the two fluids small, and complex where the velocity difference
exceeds the Kelvin-Helmholtz stability criterion [74, 107]. The model is therefore said to
be conditionally hyperbolic: it has a hyperbolic character when its eigenvalues are real,
and a hybrid character when its eigenvalues are complex. This suggests that the model
becomes unusable.

However, the TFM is highly nonlinear, and the extension of the proof of the connec-
tion between hyperbolicity and the satisfaction of (1.2) to nonlinear systems relies on a lin-
earization principle, which requires that the solution is smooth [50, 68]. Some researchers
[15, 65, 66, 69, 70] propose that “The Hadamard instability suggests that the initial value
problem for a linear elliptic problem is meaningless. Nonlinear problems may nonetheless
have features which mitigate this conclusion” [66].

Additionally, when higher order terms such as diffusion and surface tension are added
to the model (see chapter 2), the characteristic analysis requires that these terms are re-
duced to first order terms. Montini [87] found that this process makes the results of the
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characteristic analysis unreliable. In the limit of vanishing viscosity and surface tension,
the results of the characteristic analysis do not reduce to those of the basic model without
viscosity and surface tension.

Standard techniques for the analysis of nonlinear conservation laws with discontinu-
ous solutions [73] are unfortunately not directly applicable due to the non-conservative
(pressure) terms in the TFM [95, p. 274]. A further complication is that (in addition to the
two previously discussed eigenvalues) the incompressible TFM carries two infinite eigen-
values, and the characteristics belonging to these eigenvalues correspond to constraints
that should be satisfied instantaneously, at each moment in time [107]. For its quasilinear
form (see section 5.B), the matrix 𝐀 is not invertible. Even when the basic TFM has all
real eigenvalues, it does not have a full set of linearly independent eigenvectors, so that it
is strictly speaking only parabolic. This stands in contrast to the related shallow water or
Saint-Venant equations, which are of fully conservative form and are strongly hyperbolic,
making their analysis relatively straightforward.

1.6 Linear stability analysis
Linear stability analysis is a more straightforward way of studying the stability and well-
posedness of the TFM. A general description of the technique is given by [95], and it has
been applied to the TFM by amongst others [46, 74, 76, 96]. In a linear stability analysis,
the system is linearized around a base state, and a linear system is solved for the evolution
in time of a Fourier decomposition of a small perturbation to the base state. The results
of the analysis are expressions for the angular frequency of the perturbation (known as
dispersion relations), of which the imaginary component represents the growth (or damp-
ing) rate. These may depend on the wavelength of the perturbation, and on the current
solution. In section 5.B the analysis and its results will be described in detail for the TFM.

In absence of source terms, linear stability analysis of a system of the form (1.10) gives
the same result as its characteristic analysis [96]. This means that the eigenvalues found in
the characteristic analysis are equal to the complex frequency divided by the wavenumber
of the perturbation. In the limit of short wavelengths, the source term may be neglected
in the linear stability analysis, so the two analyses are equivalent for short wavelengths.
This means that the eigenvalues of the system will be real if and only if perturbations
of vanishing wavelength do not grow. In contrast, when the eigenvalues are complex,
perturbations of vanishing wavelength will have an infinite growth rate. There thus is an
intimate connection between the linear stability analysis of (1.10) and its characteristic
analysis.

The infinite growth rate of perturbations of vanishing wavelength, found by the lin-
ear stability analysis of the basic model when the velocity difference exceeds the Kelvin-
Helmholtz stability criterion, stands in clear contrast to the well-posedness condition (1.2).
For linear partial differential equations, the linear stability analysis is exact, and this result
would be a clear proof of ill-posedness. However, for the nonlinear two-fluid model, linear
stability analysis is an approximation that is valid only when the perturbation is small and
the solution is smooth.

When higher order terms such as diffusion and surface tension are added to the model,
the connection between the characteristic analysis and the linear stability analysis be-
comes unclear, because unlike the source terms these cannot be neglected at short wave-
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lengths. For the characteristic analysis they need to be converted to first-order form, while
in the linear stability analysis they can be left in higher order form. Higher order terms
drastically alter the dispersion relations at short wavelengths, bounding the growth rate
[94]. When both diffusion and surface tension are added, the growth rate becomes neg-
ative, leading to damping (see chapter 5). The instability of longer wavelength perturba-
tions is unchanged, but their bounded growth rate does not contradict (1.2), and these are
physical instabilities that should not be removed from the model.

For these reasons, the important question becomes what happens when instabilities
grow large and form (non-smooth) shocks. This concerns the nonlinear stability of the
model [76].

1.7 Energy stability
This thesis proposes to analyze the two-fluid model from the perspective of energy stability
[112]. This is a property of the full nonlinear model.

As an example we will consider the inviscid incompressible Navier-Stokes equations
(also known as the Euler equations), which can be averaged to obtain the TFM. These can
be written as

∇ ⋅𝐮 = 0, (1.12)
𝜕𝐮
𝜕𝑡 +∇ ⋅ (𝐮⊗𝐮)+

1
𝜌 ∇𝑝 = 0. (1.13)

The vector 𝐮 represents the velocities in different directions, 𝜌 is the density, and 𝑝 is the
pressure. We use the following vector identities:

∇ ⋅ (𝐚⊗𝐛) = 𝐛(∇ ⋅ 𝐚)+ (𝐚 ⋅∇)𝐛, ∇ ⋅ (𝑎𝐛) = 𝑎 (∇ ⋅ 𝐛)+ (𝐛 ⋅∇)𝑎,
(𝐛 ⋅ ∇)𝑎 = 𝐛 ⋅ (∇𝑎) , ∇(𝐚 ⋅ 𝐛) = (∇𝐚) ⋅ 𝐛+ (∇𝐛) ⋅ 𝐚.

The derivation is based on [102]. Take the dot product of (1.13) with 𝐮:

𝐮 ⋅ 𝜕𝐮𝜕𝑡 +𝐮 ⋅ (∇ ⋅ (𝐮⊗𝐮))+
1
𝜌 𝐮 ⋅ (∇𝑝) = 0. (1.14)

The time derivative term can be written as

𝐮 ⋅ 𝜕𝐮𝜕𝑡 = 𝜕
𝜕𝑡 (

1
2𝐮 ⋅𝐮) .

Using the vector identities, the advective term in (1.14) can be written as

𝐮 ⋅ (∇ ⋅ (𝐮⊗𝐮)) = ∇ ⋅ (12 (𝐮 ⋅ 𝐮)𝐮)+
1
2 (𝐮 ⋅ 𝐮)(∇ ⋅ 𝐮) = ∇ ⋅ (12 (𝐮 ⋅ 𝐮)𝐮) ,

where in the last step we have substituted (1.12). Now, using the identities and assuming
𝜌 constant, the pressure term can be written as

1
𝜌 𝐮 ⋅ (∇𝑝) =

1
𝜌 ∇ ⋅ (𝑝𝐮)−

1
𝜌 𝑝 (∇ ⋅ 𝐮) = ∇ ⋅ (𝑝𝜌 𝐮) .
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Gathering terms, (1.14) becomes the local energy equation, for which a TFM equivalent
will be derived in chapter 3:

𝜕𝑒
𝜕𝑡 +∇ ⋅𝐡𝑓 +∇ ⋅𝐡𝑝 = 0, (1.15)

with 𝑒 = 1
2𝐮 ⋅𝐮, 𝐡𝑓 = 1

2 (𝐮 ⋅ 𝐮)𝐮, 𝐡𝑝 =
𝑝
𝜌 𝐮.

Here 𝑒 is the locally defined mechanical energy. The terms 𝐡𝑓 and 𝐡𝑝 are energy fluxes,
describing the in- and outflow of energy from a point in space. This energy conservation
equation is not part of the governing equations, but is a consequence of the mass and
momentum conservation equations (1.12) and (1.13). Mechanical energy is a secondary
conserved quantity, in relation to the primary conserved quantities of mass and momen-
tum.

Note that in order to obtain (1.14), we took the dot product with

𝐯 = [ 𝜕𝑒𝜕𝐮]
𝑇
= 𝐮.

This will have a direct parallel in the analysis of the TFM.
Integrating (1.15) over the domain and applying Gauss’ theorem yields the global en-

ergy equation (similar to [40, p. 160])

d𝐸
d𝑡 +∮𝑆

𝐡𝑓 ⋅ 𝐧d𝑆 +∮𝑆
𝐡𝑝 ⋅ 𝐧d𝑆 = 0, (1.16)

with integrals over the surface 𝑆, and a global energy

𝐸 = ∫𝑉
1
2𝐮 ⋅𝐮d𝑉 = 1

2 ‖𝐮‖
2 ,

defined using an integral over the volume 𝑉 . For periodic or closed boundaries (𝐮 = 𝟎),
(1.16) reduces to

d𝐸
d𝑡 = 0. (1.17)

This equation has a direct interpretation as a form of nonlinear stability, since it sets a
bound on the norm of the solution. It directly implies that the simplified well-posedness
condition (1.3) is satisfied. When viscous diffusion terms are added to the model, a strictly
negative dissipation term is added to the right-hand side of (1.17), and in chapter 5 the
same will be shown to hold for the TFM.

For the Navier-Stokes equations, energy stability is therefore a useful analytical prop-
erty. Additionally, it can be used to guide the design of numerical schemes, which should
ideally retain this property. To achieve this, the discretization must be designed such that
the steps made in the derivation of the continuous energy conservation equation can be
repeated in the discrete setting, which requires that the discretization satisfies certain sym-
metries (the advection operator must be skew-symmetric and the gradient and divergence
operators must be each other’s negative transpose [29, 125]).
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Energy-conserving schemes yield non-linearly stable numerical models [126]. They
prevent nonlinear instability, which may otherwise arise due to the accumulation of nu-
merical error stemming from the spatial discretization of the advective terms [29]. Energy-
conserving schemes also add physical consistency, since they retain an additional property
of the physical fluid flow equations. They add no artificial dissipation: all of the dissipa-
tion is due to the physical viscous terms. This is important for the accurate simulation of
turbulent flow [51, 103].

1.8 Research goal and outline
Summarizing, the TFM has both a severe nonphysical instability leading to ill-posedness
(for the short wavelengths), and a physical instability that is well-behaved (for the long
wavelengths). These instabilities are important to understand for the continuous model,
and to control for the numerical model. A lack of satisfactory methods for understanding
and controlling these instabilities stands in the way of robust physics-based simulations
of the wavy stratified flow regime and the transition to slug flow.

We have seen how ill-posedness manifests itself for an initial value problem, making
the model nonphysical, and preventing convergence of numerical solutions. We have
discussed the method of characteristic analysis, which yields clear results on the well-
posedness of linear systems of partial differential equations, but is inconclusive for the
nonlinear, non-conservative, and sometimes higher order TFM. We have discussed the
method of linear stability analysis, which yields clear results for small perturbations to
a smooth solution, but is inconclusive when perturbations grow large and develop into
(discontinuous) shocks. Finally, we have discussed the energy method, which yields clear
nonlinear stability results for the Navier-Stokes equations, and can be used to guide the
design of non-linearly stable numerical models.

The goal of this thesis is to develop computationally efficient, accurate, and nonlin-
early stable models and numerical methods for the simulation of waves and instabilities
in two-phase pipe flow. We aim for the most physically fundamental model that the one-
dimensional setting allows, based on the conservation equations, without unnecessary
closure terms and artificial regularization. This will provide the basis for a robust and
reliable computational model for slug capturing.

To this end, we formulate a concept of energy stability for the one-dimensional two-
fluid model, aiming to replicate the benefits that this type of analysis offers to the Navier-
Stokes equations. By studying the energy conservation properties of the TFM, we obtain a
new perspective on its stability, in addition to the traditional approaches of characteristic
analysis and linear stability analysis. This new perspective provides a new tool for ana-
lyzing solutions to the TFM. By analyzing the dissipation of energy, we gain insight into
how shocks are bounded, providing a form of nonlinear stability to the linearly unstable
model.

As a natural complement to the energy analysis of the TFM, this thesis develops an
energy-consistent spatial discretization. This yields a numerical model with stability prop-
erties similar to those of the continuous model. By retaining the energy conservation
properties of the continuous model, the numerical model gains an additional aspect of
accuracy and physical fidelity.

After deriving the model in chapter 2, these developments are made in a few steps.
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• First, chapter 3 sets up the basis of the energy-conserving framework. The energy
conservation equation is derived for the basic model, without higher order terms.
The derivation is conducted in a general manner, in order to guide the derivation
of an energy-conserving spatial discretization. This discretization is obtained in
a constructive manner. The energy is demonstrated to be conserved up to near
machine precision for simulations of waves in a channel.

• Second, in chapter 4, the results of chapter 3 are applied to a new pressure-free
version of the two-fluid model, the development of which the author contributed
to in an article not included in this thesis [105]. The demand for energy conserva-
tion is used to remedy a prior discrepancy between the pressure-free and original
models, and yields an energy-consistent model. Additionally, the streamwise gravity
term is included in the energy-conserving framework, enabling energy-consistent
simulations for inclined flow. The energy-consistent pressure-free two-fluid model
(PFTFM) is more computationally efficient than the original TFM, and is free of the
numerical error stemming from the solution of the pressure Poisson equation.

• Third, in chapter 5, the energy-consistent framework is extended with higher order
effects which remedy the unbounded short wavelength linear instability of the basic
model. This includes dissipative effects, which appear as strictly negative terms on
the right hand side of the energy equation, yielding an energy-stablemodel. Energy-
consistent discretizations of these terms are presented, with expressions for the nu-
merical dissipation rates which are consistent with their continuous counterparts.
Additionally, an energy-stable discretization of the advective terms is developed,
that provides numerical dissipation near shocks when the grid resolution is too low
to fully resolve the physical dissipation. The combination of stabilizing effects is
shown to yield bounded shocks, and smoothly converging solutions, for conditions
under which the basic TFM is ill-posed.

These chapters are directly based on the publications [20], [21], and [22], respectively. As
a result, these chapters show some overlap in the introductions, and there are some small
inconsistencies in notation between the different chapters.
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2
Derivation of the two-fluid model

In this chapter we derive the one-dimensional two-fluid model for stratified incompress-
ible flow, starting from first principles. It is important to understand the averaged nature
of the model, as it sometimes has counter-intuitive implications. In literature, different
derivations are available, based on different types of averaging. The different approaches
include ensemble averaging [35], time averaging [58], and volume averaging [88]. These
derivations are typically quite general, being performed for multidimensional disperse
flows, and are only specified to one-dimensional flow at a later stage, as described for ex-
ample in [76]. Here, we restrict the derivation to stratified one-dimensional flow in ducts,
resulting in a simpler process and a more direct relation to the final model. This deriva-
tion provides insight into the meaning of the different terms in the model, and the model’s
limitations.
This chapter will start by introducing standard integral conservation laws, and the bound-
ary conditions between two fluids in multiphase flow. Second, in section 2.2, the averag-
ing procedure will be described, which will be applied to the mass conservation law in
section 2.3. Section 2.4 will derive the momentum equations term-by-term. Finally, in sec-
tion 2.5, the assumptions made during the derivation will be collected, providing a basis
for a thorough understanding of the model.

2.1 Preliminaries
2.1.1 Integral balances
The incompressible two-fluid model is based on the principles of mass and momentum
conservation. These are most fundamentally expressed as an integral balance over a con-
trol volume. The mass in the control volume can change due to a difference in the inflow
and the outflow of mass at the boundaries. The momentum in the control volume can
change due to inflows and outflows, and due to forces acting throughout the volume, or
on the boundaries.

A standard integral mass balance [128] can be written as

d
d𝑡 ∫𝑉

𝜌 d𝑉 +∮𝑆
𝜌𝐮 ⋅𝐧d𝑆 = 0, (2.1)
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where d/d𝑡 is a derivative with respect to time, ∫𝑉 d𝑉 is an integral over the control volume
𝑉 , 𝜌 = 𝜌(𝐱, 𝑡) is the density (𝐱 representing coordinates in three-dimensional space and 𝑡
representing time), ∮𝑆 d𝑆 is an integral over the closed surface 𝑆 bounding 𝑉 , 𝐮 = 𝐮(𝐱, 𝑡)
is the velocity vector and ⋅𝐧 is the dot product with the vector normal to the surface 𝑆,
pointing outward. Figure 2.1 shows such a control volume, including an interface between
two fluids. If the velocity is continuous at the interface (see section 2.1.2), the velocity field
𝐮(𝐱, 𝑡) can be defined as a continuous combined velocity field which encompasses both
fluids.

𝑠

ℎ

𝑧

𝑆𝐧

𝐧

𝐧

𝐧

𝑉

𝑢

𝑣

𝑤

Figure 2.1: A schematic of a control volume 𝑉 in two-phase flow. The control volume is bounded by 𝑆, with
normal vectors pointing outward. The spatial coordinate vector 𝐱 has components 𝑠, ℎ, and 𝑧. The velocities in
these directions are the components 𝑢, 𝑣 , and 𝑤 of 𝐮, respectively.

The momentum balance, i.e. the Navier-Stokes equations in integral form [128], can
be written as

d
d𝑡 ∫𝑉

𝜌𝐮d𝑉 +∮𝑆
𝜌𝐮(𝐮 ⋅𝐧) d𝑆 = −∮𝑆

𝑝𝐧d𝑆 +∮𝑆
𝝉 ⋅ 𝐧d𝑆 +∫𝑉

𝜌𝐠d𝑉 , (2.2)

where 𝑝 = 𝑝(𝐱, 𝑡) is the pressure, 𝝉 = 𝝉(𝐮(𝐱, 𝑡)) is the stress tensor, and 𝐠 is the gravity force
vector. For a control volume containing an interface between two fluids, a term

+∫𝑉
𝐟𝜎𝛿𝑆int d𝑉 (2.3)

can be added to the right-hand side of (2.2) [119, p. 42]. The surface tension term 𝐟𝜎 is
added as a body force that acts only at the interface, which is marked by the delta function
𝛿𝑆int = 𝛿(𝐱−𝐱int). For constant surface tension 𝜎 , it can be written as

𝐟𝜎𝛿𝑆int = 𝜎𝜅𝐧int𝛿𝑆int ,

with 𝐧int the interface normal (pointing outward) and 𝜅 = ∇ ⋅𝐧int the surface curvature.
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A similar conservation equation as for mass and momentum can be formulated for
energy. However, if the flow is assumed to be isothermal, an equation of state 𝜌 = 𝑓 (𝑝)
suffices to close the system. If additionally the flow is assumed to be incompressible, 𝜌
becomes a constant independent of 𝑝. The density may differ between the fluids, but each
fluid and its density are simply advected with the flow field 𝐮.

2.1.2 Interface conditions
The jump conditions at the interface between two fluids can be derived by considering a
thin control volume including the interface, as depicted in Figure 2.2 [119]. The width of
the control volume is defined to be zero, so that no mass can accumulate inside of it. The
control volume travels with the interface at velocity 𝐮int. The integral mass balance (2.1)
then leads to the so-called Rankine-Hugoniot condition

𝜌1 (𝐮1 −𝐮int) ⋅ 𝐧int = 𝜌0 (𝐮0 −𝐮int) ⋅ 𝐧int = 𝑚̇, (2.4)

in which 𝐮int is the interface velocity, 𝐮1 is the velocity of fluid 1, 𝐮0 is the velocity of fluid
0 and 𝑚̇ is the mass flow across the interface. We will assume there to be no phase change,
implying that mass cannot traverse the phase boundary, so that 𝑚̇ = 0. This leads to the
interface condition

𝐮int ⋅ 𝐧int = 𝐮1 ⋅ 𝐧int = 𝐮0 ⋅ 𝐧int. (2.5)
Assuming no slip between the fluids, this becomes

𝐮1 = 𝐮0.

𝑆

𝐧int
𝐮int𝐭int𝑉

𝜌0

𝜌1

Figure 2.2: A schematic of thin control volume𝑉 with boundary 𝑆, centered around the interface. At the interface,
the normal vector 𝐧int points outward from fluid 1. Along the interface lies the tangent vector 𝐭int.

Applying the integral momentum balance (2.2) to the control volume in Figure 2.2, and
substituting (2.5), yields another interface condition [119]:

(𝑝1 −𝑝0)𝐧int − (𝝉1 −𝝉0) ⋅ 𝐧int = 𝐟𝜎 , (2.6)

By taking dot products with 𝐧int and 𝐭int, this is split into two different interface conditions:
𝑝1 −𝑝0 −𝐧int ⋅ (𝝉1 −𝝉0) ⋅ 𝐧int = 𝜎𝜅, (2.7)

𝐭int ⋅ (𝝉1 −𝝉0) ⋅ 𝐧int = 0. (2.8)
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The first of these interface conditions involves forces acting on the interface in the direc-
tion normal to the interface, and the second involves forces acting in the direction tangen-
tial to the interface. Surface tension is now included in the interface conditions, through
which it can be included in the two-fluid model, where the interface forms the boundary
between two control volumes. With such control volumes, surface tension must be left
out of the momentum balance as given by (2.2).

2.2 Two-fluid model averaging
The central idea of the one-dimensional two-fluid model for stratified flow is to consider
the flow of two fluids in a closed duct, and take the cross-sectional average of the flow, over
the two fluids separately. Here this will be done by defining control volumes as depicted
in Figures 2.3 and 2.4, and setting up integral mass and momentum balances for each one.
Drawing such control volumes means that we assume that the interface height 𝐻𝐿 can be
given as a function of 𝑠 (and 𝑡); nowhere is any of the lower fluid located above any of the
upper fluid. The control volumes are bounded by the interface perimeter 𝑃int and the wall
perimeters 𝑃𝐿 and 𝑃𝑈 .

𝐻

𝑧 𝑠

ℎ

𝛿𝑠

𝐧𝑈− 𝐧𝑈+

𝐧𝐿− 𝐧𝐿+

𝐧𝐿𝑊

𝐧𝑈𝑊

𝐧𝐿int
𝐧𝑈 int

𝑉𝑈

𝑉𝐿

𝐠

𝜙
𝑢

𝐻𝐿

𝐻𝑈

Figure 2.3: Side view of the control volumes used in the derivation of the 1D two-fluid model. 𝑉𝑈 is the control
volume for the upper fluid, 𝑉𝐿 the control volume for the lower fluid, and the boundary between the two control
volumes forms the interface. Mass and momentum can enter at boundaries normal to the streamwise direction,
while the duct walls are impenetrable. A typical (unaveraged) velocity profile is pictured.

To derive the two-fluid model, the integral balances for the two control volumes are
written in terms of volume and cross-sectional averages. Before averaging is applied, any
locally defined flow variable 𝜉 is a function of the streamwise coordinate 𝑠, the normal
coordinate ℎ, the horizontal coordinate 𝑧, and the time 𝑡 : 𝜉 = 𝜉 (𝑠,ℎ,𝑧, 𝑡). Its cross-sectional
average over the cross-section 𝐴𝐿 occupied by the lower fluid will only be a function of 𝑠
and 𝑡 and is defined as

⟨𝜉 ⟩𝐿 (𝑠, 𝑡) =
1

𝐴𝐿(𝑠, 𝑡) ∫𝐴𝐿(𝑠,𝑡)
𝜉 (𝑠,ℎ,𝑧, 𝑡)d𝐴, with 𝐴𝐿(𝑠, 𝑡) = ∫𝐴𝐿(𝑠,𝑡)

d𝐴,

in which 𝐴𝐿(𝑠, 𝑡) is the local size of the lower fluid’s cross section, with 𝐴𝑈 (𝑠, 𝑡) its equiv-
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𝑉𝐿

𝑉𝑈

𝑠

ℎ

𝑧

𝑃int

𝑃𝐿

𝑃𝑈

Figure 2.4: Cross section of the control volumes depicted in Figure 2.3. The control volumes 𝑉𝑈 and 𝑉𝐿 are
bounded by the wall perimeters 𝑃𝑈 and 𝑃𝐿, and the interface perimeter 𝑃int between them.

alent for the upper fluid, adding up to the (constant) total duct cross section 𝐴 = 𝐴𝐿(𝑠, 𝑡) +
𝐴𝑈 (𝑠, 𝑡). The volume average over the control volume 𝑉𝐿 is defined similarly:

{𝜉 }𝐿 (𝑡) =
1

𝑉𝐿(𝑡) ∫𝑉𝐿(𝑡)
𝜉 (𝑠,ℎ,𝑧, 𝑡)d𝑉 , with 𝑉𝐿(𝑡) = ∫𝑉𝐿(𝑡)

d𝑉 .

Note that the area integral can alternatively be written as

𝐴𝐿(𝑠, 𝑡) = ∫
𝐻𝐿(𝑠,𝑡)

0
𝑤(ℎ)dℎ,

with 𝑤(ℎ) the width of the duct as a function of the coordinate ℎ, with 𝑤(𝐻𝐿) = 𝑃int.
The derivation that will be given in the following sections is based on the same princi-

ples as the derivation of the Saint-Venant equations [31].

2.3 Mass equations
We write (2.1) for the lower fluid control volume, which is bounded by the duct wall and
by the interface. We split the surface integral into contributions of the four faces. This
becomes

d
d𝑡 ∫𝑉𝐿

𝜌 d𝑉 +∫𝑆𝐿int
𝜌 (𝐮−𝐮int) ⋅ 𝐧d𝑆 +∫𝑆𝐿+

𝜌𝐮 ⋅𝐧d𝑆 +∫𝑆𝐿𝑊
𝜌𝐮 ⋅𝐧d𝑆 +∫𝑆𝐿−

𝜌𝐮 ⋅𝐧d𝑆 = 0,

in which the second integral takes the given form due to the fact that the boundary moves
with the interfacial velocity. For the same reason, the volume of the control volume
changes over time.

We assume that there is no mass transfer between the fluids, so (2.5) can be substituted,
so that the contribution of the interface becomes zero. Since the wall face is impenetrable,
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its contribution is also zero. Therefore, using the averaging definitions given above, the
mass balance for the lower fluid control volume centered at 𝑠 can be written as

d
d𝑡 ({𝜌}𝐿 (𝑡)𝑉𝐿(𝑡))+ ⟨𝜌𝑢⟩𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)

− ⟨𝜌𝑢⟩𝐿 (𝑠 − 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 − 𝛿𝑠/2, 𝑡) = 0.
For small 𝛿𝑠, the volume average can be approximated by a cross-sectional average, and
the volume can be approximated by 𝑉𝐿(𝑡) ≈ 𝐴𝐿(𝑠, 𝑡)𝛿𝑠. Substituting these approximations,
dividing by 𝛿𝑠, and taking the limit 𝛿𝑠 → 0 yields

𝜕
𝜕𝑡 (⟨𝜌⟩𝐿 (𝑠, 𝑡)𝐴𝐿(𝑠, 𝑡))+

𝜕
𝜕𝑠 (⟨𝜌𝑢⟩𝐿 (𝑠, 𝑡)𝐴𝐿(𝑠, 𝑡)) = 0.

The last approximation in the derivation of the lower fluid’s mass conservation equation
is to equate the average of a product to the product of averages: ⟨𝜌𝑢⟩𝐿 ≈ ⟨𝜌⟩𝐿 ⟨𝑢⟩𝐿. Finally,
simplifying the notation of the cross-sectional averages to ⟨𝜉 ⟩𝐿 (𝑠, 𝑡) = 𝜉𝐿(𝑠, 𝑡) yields

𝜕
𝜕𝑡 (𝜌𝐿𝐴𝐿)+

𝜕
𝜕𝑠 (𝜌𝐿𝑢𝐿𝐴𝐿) = 0. (2.9)

which is the conservative form of the mass conservation equation for the lower fluid in
the TFM. The conservation equation for the mass of the upper fluid is derived in the same
way and is given by

𝜕
𝜕𝑡 (𝜌𝑈𝐴𝑈 )+

𝜕
𝜕𝑠 (𝜌𝑈 𝑢𝑈𝐴𝑈 ) = 0. (2.10)

2.4 Momentum equations
Themomentum conservation equation (2.2) has three vector components. In the two-fluid
model, we only resolve the streamwise momentum equation, which is an equation for the
cross-sectionally averaged streamwise velocities (per fluid). Along the ℎ-direction the mo-
mentum equation will be simplified to a hydrostatic balance, and along the 𝑧-direction we
will assume the pressure is uniform (see section 2.4.2). This implies that the (variation of) 𝑣
and 𝑤 are negligible, and through the continuity equation ∇ ⋅𝐮 = 0 (𝐮 being the combined
velocity field before averaging), the conclusion is that the streamwise scale over which
variations in the flow occur must be much larger than the normal and horizontal scales
over which variations occur: 𝐿 ≫ 𝐻 [120, p. 51]. This is known as the long wavelength as-
sumption [87, p. 79]. This does not mean that the (unaveraged) streamwise velocity cannot
vary along the ℎ and 𝑧 axes: it surely will, see the velocity profile in Figure 2.3.

2.4.1 Advective terms
We write the advective part of (2.2) for the lower control volume, in the streamwise direc-
tion:

d
d𝑡 ∫𝑉𝐿

𝜌𝑢d𝑉 +∫𝑆𝐿int
𝜌𝑢 (𝐮−𝐮int) ⋅ 𝐧d𝑆 +∫𝑆𝐿+

𝜌𝑢 (𝐮 ⋅𝐧) d𝑆

+∫𝑆𝐿𝑊
𝜌𝑢 (𝐮 ⋅𝐧) d𝑆 +∫𝑆𝐿−

𝜌𝑢 (𝐮 ⋅𝐧) d𝑆 = 0,
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where 𝐧 is the outward facing normal vector. For the same reasons as in the mass equa-
tions, the contributions of the interface and wall faces are zero. In terms of averages the
equation can be written as

d
d𝑡 ({𝜌𝑢}𝐿 (𝑡)𝑉𝐿(𝑡))+ ⟨𝜌𝑢

2⟩𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)
− ⟨𝜌𝑢2⟩𝐿 (𝑠 − 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 − 𝛿𝑠/2, 𝑡) = 0.

With the same procedure as taken for the mass equations, and additionally the assumption
⟨𝜌𝑢2⟩𝐿 ≈ ⟨𝜌⟩𝐿 ⟨𝑢⟩

2
𝐿, this becomes

𝜕
𝜕𝑡 (𝜌𝐿𝑢𝐿𝐴𝐿)+

𝜕
𝜕𝑠 (𝜌𝐿𝑢

2𝐿𝐴𝐿) = 0. (2.11)

For the upper fluid we obtain

𝜕
𝜕𝑡 (𝜌𝑈 𝑢𝑈𝐴𝑈 )+

𝜕
𝜕𝑠 (𝜌𝑈 𝑢

2𝑈𝐴𝑈 ) = 0. (2.12)

2.4.2 Pressure terms
For the lower control volume, the pressure terms in (2.2) take the following form:

∮𝑆
𝐞𝑠 ⋅ 𝑝𝐧d𝑆 = ∫𝑆𝐿+

𝐞𝑠 ⋅ 𝑝𝐧d𝑆 +∫𝑆𝐿−
𝐞𝑠 ⋅ 𝑝𝐧d𝑆 +∫𝑆𝐿int

𝐞𝑠 ⋅ 𝑝𝐧d𝑆 +∫𝑆𝐿𝑊
𝐞𝑠 ⋅ 𝑝𝐧d𝑆, (2.13)

in which 𝐞𝑠 is the unit vector in the streamwise direction. We assume that the pipe is of
constant cross-section, so that in the last term 𝐞𝑠 ⋅ 𝐧 = 𝐞𝑠 ⋅ 𝐧𝐿𝑊 = 0, and it drops out. The
first and second terms on the right-hand side can be written in terms of 𝐴𝐿:

∫𝑆𝐿+
𝐞𝑠 ⋅ 𝑝𝐧d𝑆 +∫𝑆𝐿−

𝐞𝑠 ⋅ 𝑝𝐧d𝑆 = ⟨𝑝⟩𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)

− ⟨𝑝⟩𝐿 (𝑠 − 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 − 𝛿𝑠/2, 𝑡) .
For the third term, we note that an integral over the interface can be written as an

integral over the perimeter 𝑃int spanned by the interface, and the length of the control
volume, in the following manner:

∫𝑆𝐿int
d𝑆 = ∫

𝑠+𝛿𝑠/2

𝑠−𝛿𝑠/2 ∫𝑃int
d𝑃 d𝑠

|𝐞ℎ ⋅ 𝐧𝐿int|
,

with |𝐞ℎ ⋅ 𝐧𝐿int| = cos𝜁 , as depicted in Figure 2.5. Here we have assumed that the interface
is flat along the 𝑧-coordinate. Next, note that 𝐞𝑠 ⋅ 𝐧𝐿int = cos (𝜋/2− 𝜁 ) = sin𝜁 , and that
𝜕𝐻𝐿/𝜕𝑠 = −sin𝜁 /cos𝜁 . Using these relations, the third term on the right-hand side of
(2.13) can be written in terms of the interface height 𝐻𝐿 [104]:

∫𝑆𝐿int
𝐞𝑠 ⋅ 𝑝𝐧d𝑆 = ∫𝑆𝐿int

𝑝𝐞𝑠 ⋅ 𝐧d𝑃
d𝑠

|𝐞ℎ ⋅ 𝐧𝐿int|
= ∫𝑆𝐿int

𝑝 𝐞𝑠 ⋅ 𝐧𝐿int
|𝐞ℎ ⋅ 𝐧𝐿int|

d𝑃 d𝑠 = −∫𝑆𝐿int
𝑝 𝜕𝐻𝐿

𝜕𝑠 d𝑃 d𝑠.
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𝐧𝐿int𝐞ℎ
𝜁

𝐞𝑠
𝜁

d𝑠
d𝑆

d𝐻𝐿

Figure 2.5: Illustration of the geometry of the integral over the interface.

Combining terms, dividing by 𝛿𝑠, and taking its limit to zero, the right-hand side of
(2.13) becomes

𝜕
𝜕𝑠 (⟨𝑝⟩𝐿𝐴𝐿)−∫𝑃int

𝑝 𝜕𝐻𝐿
𝜕𝑠 d𝑃 = 𝜕

𝜕𝑠 (⟨𝑝⟩𝐿𝐴𝐿)−𝑝int,𝐿
𝜕𝐻𝐿
𝜕𝑠 ∫𝑃int

d𝑃

= 𝜕
𝜕𝑠 (⟨𝑝⟩𝐿𝐴𝐿)−𝑝int,𝐿

𝜕𝐴𝐿
𝜕𝑠

= 𝜕
𝜕𝑠 ((⟨𝑝⟩𝐿 −𝑝int,𝐿)𝐴𝐿)+

𝜕
𝜕𝑠 (𝑝int,L𝐴𝐿)−𝑝int,𝐿

𝜕𝐴𝐿
𝜕𝑠

= 𝜕
𝜕𝑠 ∫

𝐻𝐿

0
(𝑝 −𝑝int,L)𝑤(ℎ)dℎ+𝐴𝐿

𝜕𝑝int,L
𝜕𝑠 , (2.14)

where we have assumed that 𝑝 is independent of 𝑧 and that the interface is flat along the
cross section. Here 𝑝int,𝐿 is the pressure at the interface, on the side of the lower fluid.
Similarly, for the upper fluid, we have

𝜕
𝜕𝑠 (⟨𝑝⟩𝑈 𝐴𝑈 )−∫𝑃int

𝑝 𝜕𝐻𝑈
𝜕𝑠 d𝑃 = 𝜕

𝜕𝑠 ∫
𝐻

𝐻𝐿
(𝑝 −𝑝int,U)𝑤(ℎ)dℎ+𝐴𝑈

𝜕𝑝int,U
𝜕𝑠 , (2.15)

with 𝑝int,𝑈 the pressure at the interface on the side of the upper fluid.
We assume hydrostatic balance within the phases (which can be derived from the mo-

mentum equation in the ℎ-direction if 𝑣 or its acceleration is assumed negligible):

𝑝 −𝑝int,L = −𝑔𝑛𝜌𝐿(ℎ−𝐻𝐿),
𝑝 −𝑝int,U = −𝑔𝑛𝜌𝑈 (ℎ−𝐻𝐿),

with 𝑔𝑛 = 𝑔 cos (𝜙) the normal component of gravity (see Figure 2.3). Substituting these
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relations in the first terms of (2.14) and (2.15) yields

𝜕
𝜕𝑠 ∫

𝐻𝐿

0
(𝑝 −𝑝int,L)𝑤(ℎ)dℎ = − 𝜕

𝜕𝑠 (𝜌𝐿𝑔𝑛𝐻𝐿) ,

𝜕
𝜕𝑠 ∫

𝐻

𝐻𝐿
(𝑝 −𝑝int,U)𝑤(ℎ)dℎ = − 𝜕

𝜕𝑠 (𝜌𝑈 𝑔𝑛𝐻𝑈 ) ,

with 𝐻𝐿 and 𝐻𝑈 general geometric functions of 𝐴𝐿 and 𝐴𝑈 , respectively, for which defini-
tions are given in Appendix A.These terms are known as the ‘level gradient’ or ‘hydraulic
gradient’ terms, and describe the effect of the hydrostatic variation of the pressure.

Assuming that the pressure is continuous across the interface: 𝑝int,L = 𝑝int,U = 𝑝int, the
second terms of (2.14) and (2.15) can be simplified. The added terms on the right hand side
of the momentum equations become (adding the minus signs present in (2.2) again)

𝜕
𝜕𝑠 (𝜌𝐿𝑔𝑛𝐻𝐿)−𝐴𝐿

𝜕𝑝int
𝜕𝑠 , (2.16)

𝜕
𝜕𝑠 (𝜌𝑈 𝑔𝑛𝐻𝑈 )−𝐴𝑈

𝜕𝑝int
𝜕𝑠 . (2.17)

2.4.3 Surface tension
Surface tension enters the equations through the interface condition (2.7). Instead of the
assumption 𝑝int,L = 𝑝int,U = 𝑝int, we allow the pressure to be discontinuous across the in-
terface. The pressure difference is given by [87, 96]

Δ𝑝int = 𝑝int,𝑈 −𝑝int,𝐿 = −𝜎𝜅 = 𝜎 𝜕
2𝐻𝐿
𝜕𝑠2 [1+(𝜕𝐻𝐿

𝜕𝑠 )
2
]
−3/2

.

This is the so-called Young-Laplace equation for the two-fluid model (in which the in-
terface is assumed flat along 𝑧). Here we have left out the viscous terms in (2.7), which
involve the interface-normal spatial derivative of the interface-normal velocity, and can
typically be neglected with respect to the pressure terms [58]. Typically the assumption
(𝜕𝐻𝐿/𝜕𝑠 ≪ 1)2 will be made (see e.g. [6]) to approximate Δ𝑝int as

Δ𝑝int ≈ 𝜎
𝜕2𝐻𝐿
𝜕𝑠2 ≈ 𝜎

𝑃int
𝜕2𝐴𝐿
𝜕𝑠2 . (2.18)

We revisit the derivation of section 2.4.2, and this time do not assume that the pres-
sure is continuous across the interface. We choose to define the reference pressure as the
interface pressure of the upper fluid, 𝑝int = 𝑝int,U, so that nothing changes in the upper mo-
mentum equation. Then the pressure term on the right hand side of the lower momentum
equation can be expressed in terms of this reference pressure, and the pressure jump:

−𝐴𝐿
𝜕𝑝int,𝐿
𝜕𝑠 = −𝐴𝐿

𝜕
𝜕𝑠 (𝑝int −Δ𝑝int) = −𝐴𝐿

𝜕𝑝int
𝜕𝑠 +𝐴𝐿

𝜕Δ𝑝int
𝜕𝑠 . (2.19)

The result is a combination of the typical pressure term and an additional surface tension
term, in which (2.18) should be substituted. This form of the surface tension is similar to
that of [46].
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2.4.4 Stress terms
For the lower control volume, the stress terms in (2.2) take the following form:

∮𝑆
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 = ∫𝑆𝐿int

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 +∫𝑆𝐿+
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 +∫𝑆𝐿𝑊

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 +∫𝑆𝐿−
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆, (2.20)

where 𝐧 is the outward facing normal vector. The relevant stresses are the stresses acting
on the streamwise momentum balance, with 𝐞ℎ the unit vector in the ℎ-direction, and 𝐞𝑧
the unit vector in the 𝑧-direction:

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧 = 𝜏𝑠𝑠 (𝐞𝑠 ⋅ 𝐧)+ 𝜏𝑠ℎ (𝐞ℎ ⋅ 𝐧)+ 𝜏𝑠𝑧 (𝐞𝑧 ⋅ 𝐧) .
Following the geometric analysis given in section 2.4.2, the interface term in (2.20) can be
written as

∫𝑆𝐿int
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 = ∫

𝑠+𝛿𝑠/2

𝑠−𝛿𝑠/2 ∫𝑃int
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿int
|𝐞ℎ ⋅ 𝐧𝐿int|

d𝑃 d𝑠.

Similarly, the wall term in (2.20) can be written as

∫𝑆𝐿𝑊
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 = ∫

𝑠+𝛿𝑠/2

𝑠−𝛿𝑠/2 ∫𝑃int
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿𝑊
|𝐞ℎ ⋅ 𝐧𝐿𝑊 | d𝑃 d𝑠.

The streamwise terms can be written as

∫𝑆𝐿+
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 +∫𝑆𝐿−

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧d𝑆 = ⟨𝜏𝑠𝑠⟩𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 + 𝛿𝑠/2, 𝑡)

− ⟨𝜏𝑠𝑠⟩𝐿 (𝑠 − 𝛿𝑠/2, 𝑡)𝐴𝐿 (𝑠 − 𝛿𝑠/2, 𝑡) .
For the combined stress terms, dividing by 𝛿𝑠 yields

∫𝑃int
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿int
|𝐞ℎ ⋅ 𝐧𝐿int|

d𝑃 +∫𝑃𝐿
𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿𝑊
|𝐞ℎ ⋅ 𝐧𝐿𝑊 | d𝑃 +

𝜕
𝜕𝑠 (⟨𝜏𝑠𝑠⟩𝐿𝐴𝐿) .

We define the perimeter-averaged stresses

𝜏𝐿int =
1
𝑃int ∫𝑃int

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿int
|𝐞ℎ ⋅ 𝐧𝐿int|

d𝑃, 𝜏𝐿 =
1
𝑃𝐿 ∫𝑃𝐿

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿𝑊
|𝐞ℎ ⋅ 𝐧𝐿𝑊 | d𝑃,

which allows us to write the combined stress terms as

𝜏𝐿𝑃𝐿 +𝜏𝐿int𝑃int +
𝜕
𝜕𝑠 (⟨𝜏𝑠𝑠⟩𝐿𝐴𝐿) .

Likewise, for the upper control volume, we have

𝜏𝑈 𝑃𝑈 +𝜏𝑈 int𝑃int +
𝜕
𝜕𝑠 (⟨𝜏𝑠𝑠⟩𝑈 𝐴𝑈 ) ,

with
𝜏𝑈 int =

1
𝑃int ∫𝑃int

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝑈 int
|𝐞ℎ ⋅ 𝐧𝑈 int|

d𝑃, 𝜏𝑈 = 1
𝑃𝑈 ∫𝑃𝑈

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝑈𝑊
|𝐞ℎ ⋅ 𝐧𝑈𝑊 | d𝑃.
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The tangential stresses present in (2.8) will typically dominate the normal stresses
present in (2.7). Adding to this that the pressure terms in (2.7) have already been bal-
anced against the surface tension terms, the two interface conditions determine that the
stress must be continuous across the interface. Therefore, we can define a single interface
stress

𝜏int = 𝜏𝑈 int =
1
𝑃int ∫𝑃int

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝑈 int
|𝐞ℎ ⋅ 𝐧𝑈 int|

d𝑃 = −𝜏𝐿int = − 1
𝑃int ∫𝑃int

𝐞𝑠 ⋅ 𝝉 ⋅ 𝐧𝐿int
|𝐞ℎ ⋅ 𝐧𝐿int|

d𝑃.

With this sign convention, the stresses 𝜏𝐿, 𝜏𝑈 , and 𝜏int are negative for the velocity pro-
file given in Figure 2.3. Since the velocity field is not resolved, and 𝝉(𝐮(𝐱, 𝑡)) is not known,
closure relations need to be introduced for 𝜏𝐿, 𝜏𝑈 , and 𝜏int, which express these stresses
in terms of known cross-sectionally averaged variables. They are typically modeled in the
following manner [116]:

𝜏𝐿 = −12𝑓𝐿𝜌𝐿𝑢𝐿|𝑢𝐿|, 𝜏𝑈 = −12𝑓𝑈 𝜌𝑈 𝑢𝑈 |𝑢𝑈 |, 𝜏int = −12𝑓int𝜌𝑈 (𝑢𝑈 −𝑢𝐿) |𝑢𝑈 −𝑢𝐿|,

in which 𝑓𝐿, 𝑓𝑈 , and 𝑓int are Fanning friction factors which require further closure re-
lations. These can be based on experiments or numerical simulations (see [19] for an
overview, and section 5.A for some specific examples).

The streamwise stress terms

⟨𝜏𝑠𝑠⟩𝐿 = ∫𝐴𝐿
𝜏𝑠𝑠 d𝐴 and ⟨𝜏𝑠𝑠⟩𝑈 = ∫𝐴𝑈

𝜏𝑠𝑠 d𝐴

also require closure. In [35, 63] the effective stresses are determined to be given by

⟨𝜏𝑠𝑠⟩𝐿 = 𝜌𝐿𝜈eff,𝐿
𝜕𝑢𝐿
𝜕𝑠 and ⟨𝜏𝑠𝑠⟩𝑈 = 𝜌𝑈 𝜈eff,𝑈

𝜕𝑢𝑈
𝜕𝑠 ,

which makes the associated terms in the model act as (momentum) diffusion along the
streamwise axis. In [44, 46] the effective viscosity of each fluid is modeled as a combination
of the material viscosity 𝜈𝑚 , and the turbulent viscosity 𝜈𝑡 :

𝜈eff = 𝐶𝜖 (𝜈𝑚 +𝜈𝑡 ) ,

with 𝐶𝜖 an adjustment factor to scale the dissipation of the 1Dmodel so that it agrees with
its multidimensional counterpart.

Finally, the contributions to the right-hand side of the momentum equations are given
by

𝜏𝐿𝑃𝐿 −𝜏int𝑃int +
𝜕
𝜕𝑠 (𝜌𝐿𝜈eff,𝐿𝐴𝐿

𝜕𝑢𝐿
𝜕𝑠 ) , (2.21)

𝜏𝑈 𝑃𝑈 +𝜏int𝑃int +
𝜕
𝜕𝑠 (𝜌𝑈 𝜈eff,𝑈𝐴𝑈

𝜕𝑢𝑈
𝜕𝑠 ) . (2.22)
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2.4.5 Gravity terms
The gravity terms in (2.2) take the following form:

∫𝑉
𝐞𝑠 ⋅ 𝜌𝐠d𝑉 = −∫𝑉

𝜌𝑔𝑠 d𝑉 = −{𝜌𝑔𝑠}𝐿𝑉𝐿 = −⟨𝜌𝑔𝑠⟩𝐿𝐴𝐿𝛿𝑠 = −𝜌𝐿𝐴𝐿𝑔𝑠𝛿𝑠,

with 𝑔𝑠 = 𝑔 sin(𝜙) the streamwise component of gravity. Dividing by 𝛿𝑠 yields
−𝜌𝐿𝐴𝐿𝑔𝑠 . (2.23)

Likewise, for the upper fluid, we have

−𝜌𝑈𝐴𝑈 𝑔𝑠 . (2.24)

2.4.6 Combined results
Finally, we add the contributions from (2.16) (2.17), (2.19), (2.21), (2.22), (2.23), and (2.24)
to the right-hand sides of (2.11) and (2.12) to obtain the momentum equations of the TFM.
This yields

𝜕
𝜕𝑡 (𝜌𝐿𝑢𝐿𝐴𝐿)+

𝜕
𝜕𝑠 (𝜌𝐿𝑢

2𝐿𝐴𝐿 −𝜌𝐿𝑔𝑛𝐻𝐿) = −𝐴𝐿
𝜕𝑝
𝜕𝑠 +𝜎𝐴𝐿

𝜕3𝐻𝐿
𝜕𝑠3 −𝜌𝐿𝐴𝐿𝑔𝑠

+𝜏𝐿𝑃𝐿 −𝜏int𝑃int +
𝜕
𝜕𝑠 (𝜌𝐿𝜈eff,𝐿𝐴𝐿

𝜕𝑢𝐿
𝜕𝑠 ) (2.25)

for the lower fluid, and

𝜕
𝜕𝑡 (𝜌𝑈 𝑢𝑈𝐴𝑈 )+

𝜕
𝜕𝑠 (𝜌𝑈 𝑢

2𝑈𝐴𝑈 −𝜌𝑈 𝑔𝑛𝐻𝑈 ) = −𝐴𝑈
𝜕𝑝
𝜕𝑠 −𝜌𝑈𝐴𝑈 𝑔𝑠

+𝜏𝑈 𝑃𝑈 +𝜏int𝑃int +
𝜕
𝜕𝑠 (𝜌𝑈 𝜈eff,𝑈𝐴𝑈

𝜕𝑢𝑈
𝜕𝑠 ) . (2.26)

for the upper fluid, where we have redefined 𝑝 = 𝑝int. Often, the surface tension and
diffusion terms in these equations will be left out, due to being short scale effects, that can
be neglected due to the long-wavelength assumption. Together, (2.9), (2.10), (2.25) and
(2.26) form the governing equations of the TFM. The volume constraint

𝐴𝐿 +𝐴𝑈 = 𝐴, (2.27)

with 𝐴 constant, closes the equations (which possess five unknowns).

2.5 Summary of the assumptions
The assumptions made in the derivation of the TFM can be summarized as follows:

• The flow is assumed to be isothermal, so no energy balance is needed as a part of
the model.

• The interface height 𝐻𝐿 can be given as a function of 𝑠; nowhere is any of the lower
fluid located above any of the upper fluid. This means that waves cannot overturn,
or at least that this cannot be modeled explicitly.



2.5 Summary of the assumptions

2

27

• There is no mass transfer between the two fluids. The fluids are immiscible, with a
sharp interface that moves with the local fluid velocity.

• The average of a product is approximated by a product of averages: ⟨𝜉 2⟩ ≈ ⟨𝜉 ⟩⟨𝜉 ⟩.
A more advanced option is the introduction of momentum flux parameters [109].

• The duct cross section is constant along the streamwise axis, and constant in time.

• The flow is assumed to be incompressible, so that instead of using equations of state
𝜌(𝑝), we take 𝜌𝑈 and 𝜌𝐿 to be constants.

• Normal velocities are assumed negligible, so that along the ℎ-direction the flow is in
hydrostatic balance. The hydrostatic balance assumption reduces the two pressure
variables to one variable 𝑝 (defined at the interface).

• Along the 𝑧-direction the pressure is assumed constant. The velocity is negligible
in the 𝑧-direction, and the interface is flat in the 𝑧-direction.

• The assumption of hydrostatic balance implies that the streamwise length scale of
the flow is much larger than the normal length scale (i.e. the pipe diameter). This
is called the long wavelength assumption [56, 87], and it is shared with the shallow
water equations [71, p. 721]. It means that the 1D TFM does not accurately model
short-wavelength phenomena.

• For wall and interface friction closure terms are introduced. These are usually for-
mulated assuming steady state flow.

The resulting model is similar to the two-layer shallow water equations [1], with as
important differences:

• The existence of the pressure as a variable in the TFM, and the presence of the
volume constraint (2.27), which dictates that the fluids together fill the duct. The
Poisson equation for the pressure enforces the constraint (see chapter 4).

• The use of arbitrary duct cross-sectional shapes (geometries). This means that in the
relations

𝐴𝐿 = ∫
𝐻𝐿

0
𝑤(ℎ)dℎ and 𝐴𝑈 = ∫

𝐻

𝐻𝐿
𝑤(ℎ)dℎ,

the duct width 𝑤(ℎ) may be an arbitrary function of ℎ. Two important examples
are the 2D channel and the circular pipe, for which the relations between the cross
sections and the fluid heights (𝐻𝐿 and 𝐻𝑈 ) are given in Appendix A.

In the rest of this thesis, we will work with the TFM as derived in this chapter. In
chapter 3 we will analyze a basic form of the model, without source terms or higher order
terms. Chapter 4 deals with a variant of the model in which the pressure is eliminated.
Finally, chapter 5 analyzes the full model, with all of the physical terms included in this
derivation. In each case, we will be bound by the assumptions listed here.





3

29

3
Energy-conserving formulation of

the basic two-fluid model
We show that the one-dimensional (1D) two-fluid model (TFM) for stratified flow in chan-
nels and pipes (in its incompressible, isothermal form) satisfies an energy conservation
equation, which arises naturally from the mass and momentum conservation equations
that constitute the model. This result extends upon earlier work on the shallow water
equations, with the important difference that we include non-conservative pressure terms
in the analysis, and that we propose a formulation that holds for ducts with an arbitrary
cross-sectional shape, with the 2D channel and circular pipe geometries as special cases.
The second novel result of this chapter is the formulation of a finite volume scheme for
the TFM that satisfies a discrete form of the continuous energy equation. This discretiza-
tion is derived in a manner that runs parallel to the continuous analysis. Due to the
non-conservative pressure terms it is essential to employ a staggered grid, which requires
careful consideration in defining the discrete energy and energy fluxes, and the relations
between them and the discrete model. Numerical simulations confirm that the discrete
energy is conserved.

This chapter is based on the article “Energy-conserving formulation of the two-fluid model for incompressible
two-phase flow in channels and pipes”, published in Computers & Fluids, 244:105533, 2022 [20].
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3.1 Introduction
The one-dimensional (1D) two-fluid model (TFM) is a dynamic model for stratified flow in
channels and pipes. It simplifies the full three-dimensional multiphase flow problem by re-
solving only the cross-sectionally averaged quantities (hold-ups, velocities, and pressure),
which are often of practical interest. There are many variants of the model, but the basic
idea, of two interacting fluids whose behavior is cross-sectionally averaged to obtain a 1D
model, was introduced by Wallis (1969) [127] and Ishii (1975) [57]. The model has among
others applications in the oil and gas industry [48], in CO2 transport and storage [4], and
in nuclear reactor safety analysis [8].

An unsolved issue with the basic version of the TFM is that the initial value prob-
lem for the governing equations is only conditionally well-posed [81]. This means that
it is well-posed for some flow configurations and ill-posed for others (e.g. when there is
a large velocity difference between the two fluids). Conventionally, ill-posedness of the
TFM is demonstrated by a linear stability analysis which shows an unbounded growth
rate for the smallest wavelengths, when the values of the model variables are such that
the eigenvalues are complex. In this case the solution is said to carry no physical mean-
ing [74]. However, when drawing conclusions on the well-posedness of the TFM, it is
important to also consider its nonlinear aspects, and not only rely on a linearized analysis
[70, 111]. Examples of studies that have included nonlinear effects in the TFM analysis
can be found in [65, 76]. However, a complete nonlinear analysis, with implications for
obtaining a robust discretization, is still missing.

In this work, we strive towards such a nonlinear analysis by presenting an expres-
sion for an energy which is conserved by the full (nonlinear) TFM, in its incompressible
and isothermal form. This approach is motivated by the fact that for the incompressible
Navier-Stokes equations such an analysis provides stability estimates [29, 103], and that
for compressible equations it is closely related to the concept of entropy stability [114].
Important to note is that such an energy is not the thermodynamic energy for which a
separate conservation equation exists in the compressible TFM. Rather, the considered
energy conservation is an inherent property of the mass and momentum conservation
equations that constitute the incompressible TFM: the energy is a secondary conserved
quantity of the model. Its physical meaning is therefore the mechanical energy of the
system (kinetic plus potential energy).

In order to derive this mechanical energy equation, we take the approach from [43], in
which the dot product of the shallow water equations (SWE) and a vector of entropy vari-
ables is taken in such a way that a scalar energy equation results. However, an important
difference with the SWE (and two-layer SWE [41]) is the presence of non-conservative
pressure terms that are linked to the constraint that the fluid phases have to fill the cross
section. Another important difference is that we consider arbitrary duct geometries, as
opposed to the 1D SWE which in effect utilizes a planar channel geometry. Given these
differences, the key challenge is thus to find a conserved energy and corresponding energy
flux function for the TFM, and this will be the first main focus of this chapter.

The second focus of this chapter is to derive a spatial discretization which conserves
a discrete version of the energy. Again, our approach is inspired by methods which have
been developed for the SWE [42]. An important difference is that these methods are de-
signed for collocated grids, while we will adapt them to a staggered grid. This is motivated
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by the presence of the (non-conservative) pressure terms in the TFM, which makes the
use of a staggered grid much more convenient (similar to the case of the incompressible
Navier-Stokes equations [29]). However, the staggered grid introduces new challenges,
for example in terms of the definitions of the energy and energy fluxes. We will formulate
a discretization method that tackles these issues and yields, in a constructive manner, a
new set of numerical fluxes on a staggered grid that is energy-conserving. Our approach
adheres to the conservative form of the model, and therefore yields a discretization that
satisfies the proper shock conditions. This discretization can also be viewed as an exten-
sion (to the TFM) of the staggered grid SWE discretization found in [122], although that
discretization is derived using a rather different approach (based on a comparison to the
compressible Euler equations and arguments on skew-symmetric operators).

Since our discretization takes the form of a finite volume scheme, mass and total mo-
mentum are also conserved, along with energy. These discrete conservation properties
match the properties of the continuous equations, and improve the physical fidelity of
long-term numerical simulations, by preventing artificial (numerical) damping or amplifi-
cation of the flow. This will be illustrated in this chapter by a sloshing test case in a closed
tank, which in absence of viscosity will constantly remain in motion, like an undamped
pendulum.

This chapter is set up as follows. First, in section 3.2 we present the governing equa-
tions of the TFM. In section 3.3 we discuss the conditions for energy conservation, and
introduce an energy and energy flux that satisfies these conditions, providing local and
global energy conservation equations for the continuous TFM. We outline how the equa-
tions are discretized in section 3.4, while leaving open the specific form of the numerical
fluxes. Then, in section 3.5, we present the discrete versions of the continuous conditions
for energy conservation, and propose a set of new conservative numerical fluxes. Finally,
in section 3.6 we present numerical results which demonstrate exact conservation of the
aforementioned energy.

3.2 Governing equations
The 1D TFM, as considered in this work, describes the separated flow of a (heavier) lower
fluid 𝐿 and a (lighter) upper fluid 𝑈 through a channel or pipe. It can be derived by ap-
plying a cross-sectional averaging procedure to the Navier-Stokes equations [59, 111]. An
important assumption made in the derivation of the model is that the streamwise length
scale is much larger than the normal length scale (i.e. the pipe diameter), which is referred
to as the long wavelength assumption. As a consequence, along the normal direction the
flow is in hydrostatic balance. We will omit source terms, such as wall friction, since such
terms are sources or sinks of energy, and we are interested in the energy conservation
properties of the core model. Good discussions of the assumptions underlying the TFM
are given by [87, 90].

The cross-sectionally averaged equations can be written in the following concise form
[106, 107] (with 𝐪 = 𝐪(𝑠, 𝑡)):

𝜕𝐪
𝜕𝑡 +

𝜕𝐟(𝐪)
𝜕𝑠 + 𝐣(𝐪)𝜕𝑝𝜕𝑠 = 𝟎, (3.1)
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ℎ 𝐻

𝑠

𝑢𝐿

𝑢𝑈

𝐻𝐿

𝐻𝑈

𝐴𝐿

𝐴𝑈

𝑃𝐿

𝑃𝑈
𝑃int

Figure 3.1: A schematic of stratified two-fluid flow in ducts (a circular pipe segment is shown as an example)
described by the 1D TFM.

where 𝐪 constitutes the vector of ‘conserved’ variables¹, namely the mass and momentum
of each phase:

𝐪𝑇 = [𝑞1 𝑞2 𝑞3 𝑞4] = [𝜌𝑈𝐴𝑈 𝜌𝐿𝐴𝐿 𝜌𝑈 𝑢𝑈𝐴𝑈 𝜌𝐿𝑢𝐿𝐴𝐿] .
Here 𝜌𝑈 and 𝜌𝐿 are the densities, 𝐴𝑈 and 𝐴𝐿 are the cross sections, and 𝑢𝑈 and 𝑢𝐿 are
the averaged velocities, all of the upper and lower fluids, respectively. The superscript 𝑇
indicates a transpose. We consider the isothermal, incompressible case, so that 𝜌𝑈 and 𝜌𝐿
are constant.

The fluxes 𝐟 describe convection of mass and momentum and gradients in the interface
level. In terms of 𝐪 they are given by

𝐟(𝐪) =
⎡⎢⎢⎢⎢
⎣

𝑞3
𝑞4

𝑞23
𝑞1
−𝜌𝑈 𝑔𝑛𝐻𝑈

𝑞24
𝑞2
−𝜌𝐿𝑔𝑛𝐻𝐿

⎤⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

𝜌𝑈 𝑢𝑈𝐴𝑈
𝜌𝐿𝑢𝐿𝐴𝐿

𝜌𝑈 𝑢2𝑈𝐴𝑈 −𝜌𝑈 𝑔𝑛𝐻𝑈
𝜌𝐿𝑢2𝐿𝐴𝐿 −𝜌𝐿𝑔𝑛𝐻𝐿

⎤⎥⎥⎥
⎦
, (3.2)

where 𝐻𝑈 = 𝐻𝑈 (𝐪) and 𝐻𝐿 = 𝐻𝐿(𝐪) are geometric terms (to be discussed shortly), and 𝑔𝑛
is the gravitational acceleration in the normal direction.

The fifth variable is the interface pressure 𝑝, and the non-conservative pressure terms
are given by 𝐣(𝜕𝑝/𝜕𝑠) with

𝐣(𝐪)𝑇 = [0 0 𝑞1
𝜌𝑈

𝑞2
𝜌𝐿 ] = [0 0 𝐴𝑈 𝐴𝐿] .

The quantities𝐻𝑈 = 𝐻𝑈 (𝐴𝑈 (𝑞1, 𝜌𝑈 )) and𝐻𝐿 = 𝐻𝐿(𝐴𝐿(𝑞2, 𝜌𝐿)) are geometry-dependent
and are defined by

𝐻𝑈 ≔ ∫𝐴𝑈
(ℎ−𝐻𝐿)d𝐴, 𝐻𝐿 ≔ ∫𝐴𝐿

(ℎ−𝐻𝐿)d𝐴. (3.3)

Here the difference between the coordinate ℎ and the two-fluid interface height 𝐻𝐿 is
integrated over the area 𝐴𝑈 occupied by the upper fluid and the area 𝐴𝐿 occupied by

¹Note that the pressure term is not in conservative form, so 𝑞3 and 𝑞4 individually are not conserved, but 𝑞3 +𝑞4
is.
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the lower fluid, respectively. Using these general expressions, the model equations are
valid for arbitrarily shaped cross sections. See Appendix A for evaluations of the integrals
for the 2D channel and circular pipe geometries. The spatial derivatives of 𝐻𝑈 and 𝐻𝐿
that appear in the fluxes 𝐟 are known as the level gradient terms, which result from the
hydrostatic variation of the pressure.

Since the upper and lower fluid together fill the pipe, the system is subject to the
volume constraint 𝑞1

𝜌𝑈
+ 𝑞2
𝜌𝐿

= 𝐴. (3.4)

The entire system therefore consists of four evolution equations plus one constraint, and
four ‘conserved’ variables plus the pressure. In our incompressible setting, a derived con-
straint can be obtained by differentiating the constraint (3.4) and substituting the mass
equations, leading to [107]:

𝜕
𝜕𝑠 (

𝑞3
𝜌𝑈

+ 𝑞4
𝜌𝐿

) = 0, (3.5)

which can be integrated in space to give that the volumetric flow 𝑄 is constant in space,
and a function of time only:

𝑄(𝐪) ≔ 𝑞3
𝜌𝑈

+ 𝑞4
𝜌𝐿

= 𝑄(𝑡). (3.6)

This derived constraint, termed the volumetric flow constraint, can be seen as the incom-
pressibility constraint for the TFM.

We can use these constraints to set up an equation for the pressure. The pressure
equation is obtained by summing the momentum equations [107]:

𝐥𝑇 𝐣 𝜕𝑝𝜕𝑠 = −𝐥𝑇 (𝜕𝐪𝜕𝑡 +
𝜕𝐟
𝜕𝑠 ) , with 𝐥𝑇 = [0 0 1

𝜌𝑈
1
𝜌𝐿 ] ,

which can be expanded and rewritten with the definition of 𝑄 to yield

( 𝑞1
𝜌2𝑈

+ 𝑞2
𝜌2𝐿

) 𝜕𝑝
𝜕𝑠 = −d𝑄

d𝑡 − 𝜕
𝜕𝑠 (

𝑓3
𝜌𝑈

+ 𝑓4
𝜌𝐿

) .

Finally, taking the derivative of this equation to 𝑠 and applying constraint (3.5) gives

𝜕
𝜕𝑠 ((

𝑞1
𝜌2𝑈

+ 𝑞2
𝜌2𝐿

) 𝜕𝑝
𝜕𝑠 ) = − 𝜕2

𝜕𝑠2 (
𝑓3
𝜌𝑈

+ 𝑓4
𝜌𝐿

) . (3.7)

This is a ‘Poisson-type’ equation for the pressure, which can be used in place of (3.4) to
close the system of equations. In our numerical algorithm (discussed in section 3.4) we
apply a discrete version of (3.7) in this manner.
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3.3 Energy conservation equation for the continuousTFM
3.3.1 Outline: conditions for energy conservation
Having set-up the TFM governing equations, the first key objective of this chapter is to
prove local and global energy equalities that are implied by this equation set. This is
similar to the energy analyses for e.g. the incompressible Navier-Stokes equations [29],
the SWE [115], and the two-layer SWE [41]. In all these models, no energy conservation
equation is included in the model, but energy conservation follows from the mass and
momentum conservation equations alone. It can therefore be said that the energy is a
secondary conserved quantity.

Our proof of global energy conservation follows the approach in [42, 43] and starts by
showing that a local energy conservation equation of the form

𝜕𝑒
𝜕𝑡 +

𝜕
𝜕𝑠 (ℎ𝑓 +ℎ𝑝) = 0 (3.8)

can be derived, purely based on manipulating the governing equations, given by (3.1).
Here 𝑒(𝐪) is the local energy, and ℎ𝑓 (𝐪) and ℎ𝑝(𝐪) are energy fluxes (to be detailed later).
If (3.8) holds, then it can be integrated in space to yield

d𝐸
d𝑡 = −[ℎ𝑓 +ℎ𝑝]

𝑠2
𝑠1 = 0, (3.9)

where the last equality (‘=0’) holds in case of periodic or closed boundaries, and the global
energy 𝐸(𝑡) is defined as

𝐸(𝑡) ≔ ∫
𝑠2

𝑠1
𝑒 d𝑠. (3.10)

The key is therefore to obtain the local energy conservation equation (3.8). To achieve
this, one first postulates an energy 𝑒(𝐪) (typically guided by physical considerations). Sec-
ond, one calculates the vector of so-called entropy variables, defined as²

𝐯(𝐪) ≔ [ 𝜕𝑒𝜕𝐪]
𝑇
.

Taking the dot product of the system (3.1) with 𝐯 leads to

⟨𝐯 , 𝜕𝐪𝜕𝑡 ⟩+ ⟨𝐯 ,
𝜕𝐟
𝜕𝑠 ⟩+ ⟨𝐯 , 𝐣

𝜕𝑝
𝜕𝑠 ⟩ = 0, (3.11)

in which we have ignored source terms (as indicated before), and the brackets denote a
dot product over the vector elements:

⟨𝐱 ,𝐲⟩ ≔ 𝐱𝑇𝐲.
The time derivative term can be written as

⟨𝐯 , 𝜕𝐪𝜕𝑡 ⟩ = ( 𝜕𝑒𝜕𝐪)
𝜕𝐪
𝜕𝑡 = 𝜕𝑒

𝜕𝑡 ,

²We take the convention that 𝜕𝑒/𝜕𝐪 is a row vector, making 𝐯 a column vector.
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so (3.11) becomes an equation for the time evolution of the energy.
Given an expression for 𝑒, the art is to find an energy flux ℎ𝑓 that satisfies

⟨𝐯 , 𝜕𝐟𝜕𝑠 ⟩ =
𝜕ℎ𝑓
𝜕𝑠 , (3.12)

since then the second term in (3.11) can be written in the (locally) conservative form given
by (3.8). In order to get a condition solely referring to the relations between different
functions of 𝐪 (i.e. independent of 𝑠), the chain rule (valid for smooth solutions) is employed
to convert (3.12) to:

⟨𝐯 , 𝜕𝐟𝜕𝐪⟩ =
𝜕ℎ𝑓
𝜕𝐪 . (3.13)

This is the condition encountered in e.g. [42] and [43] for an energy flux ℎ𝑓 to conserve a
given energy 𝑒 (or, more generally: entropy function) of the SWE.

Likewise, we need to find a flux ℎ𝑝 such that the product of 𝐯 and the pressure gradient
can be written in conservative form:

⟨𝐯 , 𝐣 𝜕𝑝𝜕𝑠 ⟩ =
𝜕ℎ𝑝
𝜕𝑠 . (3.14)

The difference between ℎ𝑓 and ℎ𝑝 lies in the fact that ℎ𝑓 is responsible for the spatially
conservative terms of the governing equations, whereas ℎ𝑝 takes the non-conservative
part into account. Perhaps surprisingly, we will show that these non-conservative terms
𝐣(𝜕𝑝/𝜕𝑠) can indeed be written in conservative form in the energy equation. An alternative
formulation of condition (3.14) is given by

𝜕
𝜕𝑠 (⟨𝐯 , 𝐣⟩𝑝)−𝑝

𝜕
𝜕𝑠 ⟨𝐯 , 𝐣⟩ =

𝜕ℎ𝑝
𝜕𝑠 . (3.15)

In order for the local energy to be conserved, there must exist a ℎ𝑝 (for the given 𝑒 and
resulting 𝐯) such that this condition is satisfied.

An important difference between this derivation and the derivation for the SWE as
found in e.g. [43] is the non-conservative pressure term. Although the two-layer SWE [1]
also features a non-conservative term, in the TFM the non-conservative term depends on
a variable for which there is no evolution equation (namely the pressure). This pressure
term is instead linked directly to the volume constraint (3.4) and volumetric flow constraint
(3.6) [107], which are not present in the SWE. For a system in conservative form without
source terms, (3.13) is the only condition. This condition is emphasized in literature (e.g.
[73]) as the condition for the existence of an entropy function. The derivation of energy
conservation for the conservative part of the TFM system thus matches the derivation of
an entropy condition for a conservative hyperbolic system.

In summary, the task is to find a set 𝑒, ℎ𝑓 , and ℎ𝑝 , which satisfy conditions (3.12)
and (3.14) for the current model with flux 𝐟 and pressure terms 𝐣(𝜕𝑝/𝜕𝑠). The alternative
conditions (3.13) and (3.15) yield results more directly and will therefore be used in the
following section. The result is the local energy conservation equation (3.8), and global
energy conservation then follows directly.
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3.3.2 Choice of energy and energy fluxes
We will show that the mechanical energy

𝑒 = 𝜌𝑈 𝑔𝑛𝐻𝑈 +𝜌𝐿𝑔𝑛𝐻𝐿 +
1
2
𝑞23
𝑞1

+ 1
2
𝑞24
𝑞2

(3.16)

= 𝜌𝑈 𝑔𝑛𝐻𝑈 +𝜌𝐿𝑔𝑛𝐻𝐿 +
1
2𝜌𝑈𝐴𝑈 𝑢2𝑈 + 1

2𝜌𝐿𝐴𝐿𝑢2𝐿,

is conserved by the TFM (in absence of source terms). Here 𝐻𝑈 = 𝐻𝑈 (𝐴𝑈 (𝑞1, 𝜌𝑈 )) rep-
resents the center of mass of the upper fluid multiplied by 𝐴𝑈 and 𝐻𝐿 = 𝐻𝐿(𝐴𝐿(𝑞2, 𝜌𝐿))
represents the center of mass of the lower fluid multiplied by 𝐴𝐿 (see Appendix A), so
that the first two terms can be recognized as the potential energy of the upper and lower
fluid, respectively. The third and fourth terms represent the kinetic energy of the upper
and lower fluid, respectively. Therefore, this energy 𝑒 has a clear physical interpretation.
Note that just as for the incompressible Navier-Stokes equations, the pressure does not
contribute to the energy.

The entropy variables are given by

𝐯 = [ 𝜕𝑒𝜕𝐪]
𝑇
=

⎡⎢⎢⎢⎢⎢⎢
⎣

− 1
2
𝑞23
𝑞21

+𝑔𝑛 d𝐻𝑈
d𝐴𝑈

− 1
2
𝑞24
𝑞22

+𝑔𝑛 d𝐻𝐿
d𝐴𝐿𝑞3

𝑞1𝑞4
𝑞2

⎤⎥⎥⎥⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
2
𝑞23
𝑞21

+𝑔𝑛(𝐻 −𝐻𝑈 )
− 1
2
𝑞24
𝑞22

+𝑔𝑛𝐻𝐿
𝑞3
𝑞1𝑞4
𝑞2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.17)

with 𝐻𝑈 = 𝐻𝑈 (𝐴𝑈 (𝑞1, 𝜌𝑈 )) and 𝐻𝐿 = 𝐻𝐿(𝐴𝐿(𝑞2, 𝜌𝐿)) representing the fluid layer thickness
of the upper and lower fluids, respectively (see Appendix A). It is important that in the
energy and energy flux terms concerning the upper fluid we use 𝐻𝑈 (𝐴𝑈 ), 𝐻𝑈 (𝐴𝑈 ), and
𝐻𝑈 (𝐴𝑈 ), while for the lower fluid we use 𝐻𝐿(𝐴𝐿), 𝐻𝐿(𝐴𝐿), and 𝐻𝐿(𝐴𝐿). It is possible to
use the volume constraint to change this functional dependence, but our choice leads to
an elegant form of the energy conservation conditions.

The task is to find ℎ𝑓 and ℎ𝑝 . We start with ℎ𝑝 : the pressure term needs to satisfy
(3.15). Straightforward evaluation gives

⟨𝐯 , 𝐣⟩ = 𝑞3
𝑞1

𝑞1
𝜌𝑈

+ 𝑞4
𝑞2

𝑞2
𝜌𝐿

= 𝑄,

with 𝑄 the volumetric flow rate given by (3.6). Because of the volumetric flow constraint
(3.6), the second term of (3.15) vanishes, so that the condition on the pressure gradient
evaluates to

𝜕
𝜕𝑠 (𝑄𝑝) =

𝜕ℎ𝑝
𝜕𝑠 ,

and (3.15) is satisfied with
ℎ𝑝 = 𝑄𝑝. (3.18)
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We note that 𝑝 is the pressure that enforces incompressibility – it does not include
a driving pressure gradient (which would appear as a source term in the TFM governing
equations). Therefore ℎ𝑝 is periodic in space in the case of periodic boundaries. In the case
of closed boundaries, 𝑄 must be zero, meaning that ℎ𝑝 = 0 throughout the domain. This
means that when integrating (3.8) over a closed or periodic domain, the terms involving
ℎ𝑝 vanish, and thus this definition for ℎ𝑝 is compatible with global energy conservation
as described by (3.9).

Note that alternatively, global energy conservation of the pressure terms could be
proved by integrating (3.14) over the domain, and equating it to the integral of the second
term on the left-hand side of (3.15). This equality can be seen as a parallel to a well-known
property of the incompressible Navier-Stokes equations, namely that, apart from the mi-
nus sign, the gradient operator applied to the pressure is the adjoint of the divergence op-
erator applied to the velocity field [123]. For both models, the final step to proving global
energy conservation of the pressure terms is substituting the incompressibility constraint
(here given by 𝜕𝑄/𝜕𝑠 = 0).

The next task is to find ℎ𝑓 . Based on the form of ℎ𝑓 for the SWE and condition (3.13),
we propose the following choice

ℎ𝑓 = 𝑔𝑛𝑞3 (𝐻 −𝐻𝑈 ) +𝑔𝑛𝑞4𝐻𝐿 +
1
2
𝑞33
𝑞21

+ 1
2
𝑞34
𝑞22

(3.19)

= 𝑔𝑛𝑞3 (𝐻 −𝐻𝑈 ) +𝑔𝑛𝑞4𝐻𝐿 +
1
2𝜌𝑈𝐴𝑈 𝑢3𝑈 + 1

2𝜌𝐿𝐴𝐿𝑢3𝐿,

which can be shown to satisfy condition (3.13) by computing:

[⟨𝐯 , 𝜕𝐟𝜕𝐪⟩]
𝑇
=

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

− 𝑞33
𝑞31

−𝑔𝑛 d𝐻𝑈
d𝐴𝑈

𝑞3
𝑞1

− 𝑞34
𝑞32

−𝑔𝑛 d𝐻𝐿
d𝐴𝐿

𝑞4
𝑞2

3
2
𝑞23
𝑞21

+𝑔𝑛 d𝐻𝑈
d𝐴𝑈

3
2
𝑞24
𝑞22

+𝑔𝑛 d𝐻𝐿
d𝐴𝐿

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

, [𝜕ℎ𝑓𝜕𝐪 ]
𝑇
=

⎡⎢⎢⎢⎢⎢⎢
⎣

− 𝑞33
𝑞31

− 𝑔𝑛
𝜌𝑈

d𝐻𝑈
d𝐴𝑈

𝑞3
− 𝑞34
𝑞32

+ 𝑔𝑛
𝜌𝐿

d𝐻𝐿
d𝐴𝐿

𝑞4
3
2
𝑞23
𝑞21

+𝑔𝑛 (𝐻 −𝐻𝑈 )
3
2
𝑞24
𝑞22

+𝑔𝑛𝐻𝐿

⎤⎥⎥⎥⎥⎥⎥
⎦

.

The last two entries in these vectors are equal because of relations (A.5), derived in Ap-
pendix A. The first two entries are equal due to the geometric relations (A.6), which we
repeat here in terms of the conserved variables 𝐪:

𝜌𝑈
𝑞1

d𝐻𝑈
d𝐴𝑈

= d𝐻𝑈
d𝐴𝑈

, 𝜌𝐿
𝑞2

d𝐻𝐿
d𝐴𝐿

= −d𝐻𝐿
d𝐴𝐿

. (3.20)

These relations follow directly from the definitions of these geometric quantities and hold
for arbitrary duct geometries. Note that, alternatively, condition (3.12) can be used (instead
of (3.13)), which leads to the following conditions:

𝜌𝑈
𝑞1

𝜕𝐻𝑈
𝜕𝑠 = 𝜕𝐻𝑈

𝜕𝑠 , 𝜌𝐿
𝑞2

𝜕𝐻𝐿
𝜕𝑠 = −𝜕𝐻𝐿

𝜕𝑠 , (3.21)
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which may also be shown to be satisfied directly via application of Leibniz’ rule to the
definitions of 𝐻𝑈 and 𝐻𝐿. These last two conditions will play an important role in the
discrete analysis in section 3.5.

In conclusion, we have proposed a novel set of 𝑒, ℎ𝑓 , and ℎ𝑝 for the TFM and have
shown that the local energy conservation equation (3.8) is satisfied.

3.3.3 Reformulation in terms of the entropy potential and
conditions on fluxes

Conditions (3.12) and (3.14), or their alternatives (3.13) and (3.15), were used in the previous
section to find a combination of 𝑒, ℎ𝑓 and ℎ𝑝 for the continuous TFM, given the fluxes 𝐟
from the governing equations. In section 3.5, we will instead aim to find discrete flux
functions, given discretized versions of 𝑒, ℎ𝑓 and ℎ𝑝 (that are inspired by their continuous
counterparts). Equation (3.12) is not a very useful formulation to find such numerical flux
functions, because it is a condition imposed on the jump in 𝐟 , rather than 𝐟 itself. Therefore,
equation (3.12) is reformulated using the concept of the entropy potential [42, 115].

The entropy potential is defined to be related to 𝐯, 𝐟 , and ℎ𝑓 in the following manner:

𝜓 ≔ ⟨𝐯 , 𝐟⟩ −ℎ𝑓 . (3.22)

With this definition, we can reformulate condition (3.12) using the product rule ( 𝜕𝜕𝑠 ⟨𝐯 , 𝐟⟩ =
⟨ 𝜕𝐯𝜕𝑠 , 𝐟⟩ + ⟨𝐯 ,

𝜕𝐟
𝜕𝑠 ⟩) as: 𝜕𝜓

𝜕𝑠 = ⟨𝜕𝐯𝜕𝑠 , 𝐟⟩. (3.23)

The entropy potential can be directly calculated from its definition (3.22) and is given
by:

𝜓 = ⟨𝐯 , 𝐟⟩ −ℎ𝑓 = −𝜌𝑈 𝑔𝑛𝐻𝑈
𝑞3
𝑞1

−𝜌𝐿𝑔𝑛𝐻𝐿
𝑞4
𝑞2

(3.24)

= −𝜌𝑈 𝑔𝑛𝐻𝑈 𝑢𝑈 −𝜌𝐿𝑔𝑛𝐻𝐿𝑢𝐿.
Because this entropy potential is based on an ℎ𝑓 that satisfies (3.12), (3.23) is satisfied by
construction. Nevertheless, we outline the details to convert (3.23) into conditions on the
individual numerical fluxes, since they will be exactly mimicked by our discrete analysis
in section 3.5. We first introduce the following notation for the fluxes, and split them into
the following components:

𝐟 =
⎡⎢⎢⎢
⎣

𝑓1(𝑞3)
𝑓2(𝑞4)

𝑓3,𝑎(𝑞1, 𝑞3) +𝑔𝑛𝑓3,𝑔(𝑞1)
𝑓4,𝑎(𝑞2, 𝑞4) +𝑔𝑛𝑓4,𝑔(𝑞2)

⎤⎥⎥⎥
⎦
. (3.25)

Here 𝑓3,𝑎 and 𝑓4,𝑎 are the momentum advection terms, and 𝑓3,𝑔 and 𝑓4,𝑔 are the level gra-
dient terms (divided by 𝑔𝑛). These fluxes and the definitions for 𝐯 (3.17) and 𝜓 (3.24) can
be substituted in (3.23). The resulting condition is first split into two conditions: one con-
dition proportional to 𝑔𝑛 , and one not proportional to 𝑔𝑛 . This is done on the basis that
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the mass and momentum advection terms do not depend on 𝑔𝑛 in the continuous case (see
(3.2)), and should not depend on 𝑔𝑛 in the discrete case. These two conditions are split
again on the basis that 𝑓1 and 𝑓3 should not depend on 𝑞2 and 𝑞4, and 𝑓2 and 𝑓4 should not
depend on 𝑞1 and 𝑞3. We obtain the following four conditions:

− 𝜕
𝜕𝑠 (

1
2
𝑞23
𝑞21

)𝑓1 +
𝜕
𝜕𝑠 (

𝑞3
𝑞1

)𝑓3,𝑎 = 0, (3.26a)

− 𝜕
𝜕𝑠 (

1
2
𝑞24
𝑞22

)𝑓2 +
𝜕
𝜕𝑠 (

𝑞4
𝑞2

)𝑓4,𝑎 = 0, (3.26b)

𝜕
𝜕𝑠 (𝑔𝑛(𝐻 −𝐻𝑈 ))𝑓1 +

𝜕
𝜕𝑠 (

𝑞3
𝑞1

)𝑔𝑛𝑓3,𝑔 = − 𝜕
𝜕𝑠 (𝜌𝑈 𝑔𝑛𝐻𝑈

𝑞3
𝑞1

) , (3.26c)

𝜕
𝜕𝑠 (𝑔𝑛𝐻𝐿)𝑓2 +

𝜕
𝜕𝑠 (

𝑞4
𝑞2

)𝑔𝑛𝑓4,𝑔 = − 𝜕
𝜕𝑠 (𝜌𝐿𝑔𝑛𝐻𝐿

𝑞4
𝑞2

) . (3.26d)

As mentioned, these equations are by construction satisfied by the flux vector (3.2).
One important remark is that after we reformulate in terms of 𝜓 , the geometric conditions
(3.21) encountered in section 3.3.2 still need to be satisfied in order for (3.26c) and (3.26d)
to hold.

3.3.4 Comparison of the energy and energy fluxes to those of other
models

Here we compare the expressions obtained for 𝑒 and ℎ𝑓 to results from literature for other
models, focusing on the case of a 2D channel geometry. The expression (3.16) for 𝑒 for the
channel geometry can be obtained by substitution of the channel-specific evaluations of
𝐻𝑈 and 𝐻𝐿 (Appendix A):

𝑒ch = 𝜌𝑈 𝑔𝑛𝐻𝑈 (𝐻 − 1
2𝐻𝑈 ) +

1
2𝜌𝐿𝑔𝑛𝐻

2𝐿 +
1
2𝜌𝑈 𝑢

2𝑈𝐻𝑈 + 1
2𝜌𝐿𝑢

2𝐿𝐻𝐿. (3.27)

For a single layer fluid, such as the single layer SWE, only the third and fifth terms remain,
and they are consistent with the SWE entropy function as discussed in [43] (without chan-
nel inclination).

To compare with two-layer SWE theory, we rewrite (3.27) using the volume constraint
(3.4) to obtain

𝑒AK = 1
2𝜌𝑈 𝑔𝑛𝐻

2𝑈 +𝜌𝑈 𝑔𝑛𝐻𝑈𝐻𝐿 +
1
2𝜌𝐿𝑔𝑛𝐻

2𝐿 +
1
2𝜌𝐿𝑢

2𝐿𝐻𝐿 +
1
2𝜌𝑈 𝑢

2𝑈𝐻𝑈 .

This is the expression presented by Abgrall and Karni (AK) [1] and Fjordholm [41] as an en-
tropy function for the two-layer SWE.The energy found in the present study can therefore
be seen as a generalization of the two-layer SWE energy to arbitrary duct geometries.

When comparing our energy flux ℎ𝑓 for the TFM to the one for the two-layer SWE, it
should be realized that the two-layer SWE can be obtained from the TFM by the choice
𝑝 = 𝜌𝑈 𝑔𝑛𝐻𝑈 . This means that the pressure flux ℎ𝑝 of the TFM needs to be added to ℎ𝑓 in
order to compare with the SWE expressions. In our notation, the two-layer SWE entropy
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flux given by [1] is

ℎAK = 𝜌𝑈 𝑔𝑛𝑢𝑈𝐻 2𝑈 +𝜌𝑈 𝑔𝑛 (𝑢𝑈 +𝑢𝐿)𝐻𝑈𝐻𝐿 +𝜌𝐿𝑔𝑛𝑢𝐿𝐻 2𝐿 +
1
2𝜌𝑈 𝑢

3𝑈𝐻𝑈 + 1
2𝜌𝐿𝑢

3𝐿𝐻𝐿.

Our expression for ℎ𝑓 for a 2D channel is given by

ℎ𝑓 ,ch = 𝜌𝑈 𝑔𝑛𝑢𝑈𝐻𝑈 (𝐻 −𝐻𝑈 ) +𝜌𝐿𝑔𝑛𝑢𝐿𝐻 2𝐿 +
1
2𝜌𝑈 𝑢

3𝑈𝐻𝑈 + 1
2𝜌𝐿𝑢

3𝐿𝐻𝐿.

Upon adding ℎ𝑝 = 𝑄𝑝 = 𝑄𝜌𝑈 𝑔𝑛𝐻𝑈 to ℎ𝑓 ,ch, and after some rewriting, we see that our TFM
energy flux is consistent with the two-layer SWE entropy flux:

ℎAK = ℎ𝑓 ,ch +ℎ𝑝 .
To conclude, our proposed energy (3.16) and energy fluxes (3.18) and (3.19) can be seen

as a generalization of the two-layer SWE energy and energy flux to arbitrary duct cross
sections.

3.4 Discretization of the governing equations
3.4.1 Semi-discrete model equations
The system of equations (3.1) is discretized using a finite volume method on a uniform
staggered grid, sketched in Figure 3.2. This discretization naturally conserves mass for
each fluid separately, and momentum for both fluids combined. The first two components
of 𝐪 (the phase masses) and the pressure are defined at the centers of 𝑁𝑝 pressure volumes,
which have a cell size of Δ𝑠 = 𝐿/𝑁𝑝 . The last two components of 𝐪 (the phase momenta)
are defined at the centers of 𝑁𝑢 velocity volumes.

pressure
cells

velocity
cells

𝑞1,𝑖−1 𝑞1,𝑖 𝑞1,𝑖+1

𝑞3,𝑖−3/2 𝑞3,𝑖−1/2 𝑞3,𝑖+1/2

𝑠 (𝑖 − 2)Δ𝑠
(𝑖 − 3

2 )Δ𝑠
(𝑖 − 1)Δ𝑠

(𝑖 − 1
2 )Δ𝑠

𝑖Δ𝑠
(𝑖 + 1

2 )Δ𝑠

Figure 3.2: Staggered grid layout.

On this staggered grid we define a local discrete vector of unknowns as follows:

𝐪𝑖(𝑡) ≔
⎡⎢⎢⎢
⎣

𝑞1,𝑖(𝑡)
𝑞2,𝑖(𝑡)

𝑞3,𝑖−1/2(𝑡)
𝑞4,𝑖−1/2(𝑡)

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

(𝜌𝑈𝐴𝑈Δ𝑠)𝑖(𝜌𝐿𝐴𝐿Δ𝑠)𝑖(𝜌𝑈𝐴𝑈 𝑢𝑈Δ𝑠)𝑖−1/2
(𝜌𝐿𝐴𝐿𝑢𝐿Δ𝑠)𝑖−1/2

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

𝜌𝑈𝐴𝑈 ,𝑖Δ𝑠
𝜌𝐿𝐴𝐿,𝑖Δ𝑠

𝜌𝑈𝐴𝑈 ,𝑖−1/2𝑢𝑈 ,𝑖−1/2Δ𝑠
𝜌𝐿𝐴𝐿,𝑖−1/2𝑢𝐿,𝑖−1/2Δ𝑠

⎤⎥⎥⎥
⎦
.



3.4 Discretization of the governing equations

3

41

The choice of using 𝑖 − 1/2 in the definition of 𝐪𝑖 instead of 𝑖 + 1/2 is arbitrary. Note that
𝑞1,𝑖(𝑡) ≈ 𝑞1(𝑠𝑖 , 𝑡) (and similar for the other entries); the notation is on purpose kept very
close to the notation of the continuous model, but can be distinguished due to the extra
index which the discrete variables carry. Another notable difference is that the cell sizes
are included in the discrete unknowns, so that they have units of mass and momentum.

The last equality in the above equation describes the relations of the discrete conser-
vative variables to the discrete primitive variables (cross-sections and velocities). Here we
have introduced the following notation for interpolation operators [42]:

𝑎𝑖−1/2 ≔
1
2 (𝑎𝑖−1 +𝑎𝑖) 𝑎𝑖 ≔

1
2 (𝑎𝑖−1/2 +𝑎𝑖+1/2) . (3.28)

The numerical scheme is implemented in terms of the conservative variables 𝑞1,𝑖 through
𝑞4,𝑖−1/2, but the primitive variables can be extracted in post-processing according to the
given relations.

The notation with 𝐪𝑖 as a discrete local vector of unknowns allows us to write the
discrete scheme in vector form as

d𝐪𝑖
d𝑡 + (𝐟𝑖+1/2 − 𝐟𝑖−1/2)+ 𝐣𝑖 (𝑝𝑖 −𝑝𝑖−1) = 𝟎. (3.29)

Here, we have defined 𝐟𝑖−1/2 and 𝐣𝑖 as

𝐟𝑖−1/2(𝐪𝑖−2, 𝐪𝑖−1, 𝐪𝑖) ≔
⎡⎢⎢⎢
⎣

𝑓1,𝑖−1/2(𝐪𝑖)
𝑓2,𝑖−1/2(𝐪𝑖)

𝑓3,𝑖−1(𝐪𝑖−2, 𝐪𝑖−1, 𝐪𝑖)
𝑓4,𝑖−1(𝐪𝑖−2, 𝐪𝑖−1, 𝐪𝑖)

⎤⎥⎥⎥
⎦
, and 𝐣𝑖(𝐪𝑖−1, 𝐪𝑖) ≔

⎡⎢⎢⎢
⎣

0
0

𝑗3,𝑖−1/2(𝐪𝑖−1, 𝐪𝑖)
𝑗4,𝑖−1/2(𝐪𝑖−1, 𝐪𝑖)

⎤⎥⎥⎥
⎦
.

The numerical fluxes and numerical pressure terms are left undefined in this section, be-
cause we will define them based on the requirement of energy conservation, in section 3.5.

The pressure terms are non-conservative and are not written as the difference between
an inflow and an outflow of the finite volume cell. However, with the staggered grid em-
ployed here, one can see that 𝑞3,𝑖−1/2 and 𝑞4,𝑖−1/2 are directly and naturally connected
to the pressure at the neighboring grid cells. Analogous to the incompressible (multi-
dimensional) single-phase Navier-Stokes equations (for which staggered grids are known
to lead to strong coupling), this pressure-velocity coupling is necessary to prevent checker-
board patterns, and would be much more difficult to achieve on a collocated grid.

The system is closed by the volume constraint (compare to (3.4)):
𝑞1,𝑖
𝜌𝑈Δ𝑠

+ 𝑞2,𝑖
𝜌𝐿Δ𝑠

= 𝐴, (3.30)

which implies the volumetric flow constraint (compare to (3.5))

𝑄𝑖+1/2 −𝑄𝑖−1/2 ≔
𝑞3,𝑖+1/2
𝜌𝑈Δ𝑠

− 𝑞3,𝑖−1/2
𝜌𝑈Δ𝑠

+ 𝑞4,𝑖+1/2
𝜌𝐿Δ𝑠

− 𝑞4,𝑖−1/2
𝜌𝐿Δ𝑠

= 0, (3.31)

so that 𝑄𝑖+1/2 = 𝑄𝑖−1/2 = 𝑄(𝑡), like in the continuous case. This step can only be made if we
choose 𝑓1,𝑖−1/2 = 𝑞3,𝑖−1/2/Δ𝑠 and 𝑓2,𝑖−1/2 = 𝑞4,𝑖−1/2/Δ𝑠, and this will be used as a condition
on the form of the numerical fluxes in section 3.5.4.
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Just as in the continuous case, these constraints are used to set up a Poisson equation
for the pressure. The semi-discrete momentum equations are first summed to obtain

1
Δ𝑠 𝐥

𝑇 𝐣𝑖 (𝑝𝑖 −𝑝𝑖−1) = − 1
Δ𝑠 𝐥

𝑇 (d𝐪𝑖
d𝑡 + (𝐟𝑖+1/2 − 𝐟𝑖−1/2)) , with 𝐥𝑇 = [0 0 1

𝜌𝑈
1
𝜌𝐿 ] .

Expanding and substituting the definition of 𝑄𝑖−1/2 yields

1
Δ𝑠 (

𝑗3,𝑖−1/2
𝜌𝑈

+ 𝑗4,𝑖−1/2
𝜌𝐿

)(𝑝𝑖 −𝑝𝑖−1) = −d𝑄𝑖−1/2
d𝑡 − 1

Δ𝑠 (
𝑓3,𝑖 −𝑓3,𝑖−1

𝜌𝑈
+ 𝑓4,𝑖 −𝑓4,𝑖−1

𝜌𝐿
) .

After taking the difference between this equation and the same equation for index 𝑖 + 1/2,
and applying (3.31), we obtain the discrete version of (3.7):

1
Δ𝑠2 [(

𝑗3,𝑖+1/2
𝜌𝑈

+ 𝑗4,𝑖+1/2
𝜌𝐿

)(𝑝𝑖+1 −𝑝𝑖)−(
𝑗3,𝑖−1/2
𝜌𝑈

+ 𝑗4,𝑖−1/2
𝜌𝐿

)(𝑝𝑖 −𝑝𝑖−1)]

= − 1
Δ𝑠2 (

𝑓3,𝑖+1 −2𝑓3,𝑖 +𝑓3,𝑖−1
𝜌𝑈

+ 𝑓4,𝑖+1 −2𝑓4,𝑖 +𝑓4,𝑖−1
𝜌𝐿

) . (3.32)

System (3.29) is discretized in time using the fourth-order semi-explicit Runge-Kutta
method described in [107]. At each stage of the Runge-Kutta time step, a predictor-correc-
tor algorithm is applied: the momentum equations are first solved without including the
pressure terms, the discrete Poisson equation is solved for the pressure using these inter-
mediate momenta, and the momenta are updated in a projection step using the calculated
pressure. This ensures that the volume and volumetric flow constraints are satisfied at
all stages. We solve (3.32) iteratively, using a preconditioned conjugate gradient method,
which is run until the relative residual falls below the tolerance (10−12), or until the max-
imum number of iterations is reached (50). The time integration method is fourth-order
accurate for all variables, and requires a restriction to the CFL-number based on the eigen-
values of the TFM.

3.4.2 Boundary conditions
In the case of periodic boundaries, the domain is divided into 𝑁𝑝 pressure volumes and
𝑁𝑢 = 𝑁𝑝 velocity volumes. There are no special boundary points: the scheme as laid out
in section 3.4.1 applies everywhere, looping around the domain.

For closed boundaries, there are 𝑁𝑝 interior pressure points and 𝑁𝑢 = 𝑁𝑝 − 1 interior
velocity points. The first interior pressure node is located at 𝑠 = Δ𝑠/2, the first interior
velocity node is located at 𝑠 = Δ𝑠, and similarly for the last nodes at the end of the domain
[107]. For both the pressure and velocity grids, there are boundary points in addition to
the interior points, one at each side of the domain. When calculating the discrete energy
on the velocity grid (see section 3.5.1), it is important to include the half-volumes between
the boundary points and the first and last interior points.

At the boundary points, the mass fluxes (𝜌𝑈𝐴𝑈 𝑢𝑈 and 𝜌𝐿𝐴𝐿𝑢𝐿) are specified, and 𝐴𝑈
and 𝐴𝐿 follow via an analysis of the characteristics corresponding to the incoming and
outgoing waves at the boundary. In the case of closed boundaries, as used in this work, the
mass fluxes are set to zero. Note that the characteristic analysis incorporates the volume
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constraint (3.30), and no boundary condition is needed for the pressure (the pressure at
the boundaries has no influence on the solution in the interior). For more details on the
implementation of the boundary conditions we refer to [107].

3.5 Energy-conserving spatial discretization of the TFM
3.5.1 Outline: conditions for discrete energy conservation
In the discrete case, just as in the continuous case, we want to satisfy a local and a global
energy equality. The use of a staggered grid instead of the commonly used collocated
grid (e.g. [42, 115]) makes it straightforward to obtain an energy-conserving discretiza-
tion of the non-conservative pressure term, but introduces new challenges in terms of the
definition of the discrete local energy, which is not unique anymore.

We choose to define the local energy at the velocity grid points, i.e. we choose 𝑒𝑖−1/2 =
𝑒(𝐪𝑖−1, 𝐪𝑖), and are aiming for a discrete version of (3.8):

d𝑒𝑖−1/2
d𝑡 + (ℎ𝑓 ,𝑖 −ℎ𝑓 ,𝑖−1)+(ℎ𝑝,𝑖 −ℎ𝑝,𝑖−1) = 0, (3.33)

with ℎ𝑓 ,𝑖 = ℎ𝑓 (𝐪𝑖−1, 𝐪𝑖) and ℎ𝑝,𝑖 = ℎ𝑝(𝑝𝑖) as the numerical energy fluxes. This choice means
that the potential energy terms and 𝑞1 and 𝑞2 in the kinetic energy terms need to be inter-
polated, but 𝑞3 and 𝑞4 do not require interpolation. With this choice, we obtain energy-
conserving expressions for 𝑓3,𝑖 and 𝑓4,𝑖 in a constructive manner (after choosing advanta-
geous expressions for 𝑓1,𝑖−1/2 and 𝑓2,𝑖−1/2). It is also possible to define the energy at the
pressure grid points, and obtain an energy-conserving discretization, but in that case it is
necessary to substitute trial solutions for 𝑓3,𝑖 and 𝑓4,𝑖 , and interpolation of the pressure is
required in the expression for ℎ𝑝,𝑖 (see the remark at the end of section 3.5.4). We would
like to emphasize that (3.33) is not being solved as an additional equation; instead it will
be shown to be a consequence of the discrete mass and momentum equations given in
section 3.4, if the numerical fluxes and 𝐣𝑖 are chosen appropriately.

If (3.33) holds, it can be summed over all finite volumes to yield

d𝐸ℎ
d𝑡 =

𝑁𝑢
∑
𝑖=1

d𝑒𝑖−1/2
d𝑡 = −

𝑁𝑢
∑
𝑖=1

[(ℎ𝑓 +ℎ𝑝)𝑖 −(ℎ𝑓 +ℎ𝑝)𝑖−1] = 0,

where the last equality should hold in the case of periodic or closed boundaries. Here we
have defined the global discrete energy as the discrete counterpart of (3.10):

𝐸ℎ(𝑡) ≔
𝑁𝑢
∑
𝑖=1

𝑒𝑖−1/2.

Like in the continuous case, the art is to find expressions for 𝑒𝑖−1/2, ℎ𝑓 ,𝑖 and ℎ𝑝,𝑖 such
that equation (3.33) is satisfied. In addition, the numerical flux 𝐟𝑖−1/2 needs to be con-
structed. We will outline the steps to obtain these quantities in a manner parallel to the
continuous derivation in section 3.3.

First, we postulate an energy

𝑒𝑖−1/2 = 𝑒𝑖−1/2 (𝐪𝑖−1, 𝐪𝑖) , (3.34)
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whichwill be based on the energy found for the continuous case. Note that the dependence
could be expanded to additional grid points if required, but wewill introduce an energy for
which this is not necessary. Second, we calculate the vectors of entropy variables, defined
as

𝐯𝑖−1/2,𝑖−1 ≔ [𝜕𝑒𝑖−1/2𝜕𝐪𝑖−1
]
𝑇
, 𝐯𝑖−1/2,𝑖 ≔ [𝜕𝑒𝑖−1/2𝜕𝐪𝑖

]
𝑇
.

Here the first index refers to the index of the energy, and the second index refers to the
conservative variables to which derivatives are taken.

For the energy given by (3.34), the time derivative can be expressed as

d𝑒𝑖−1/2
d𝑡 = ⟨𝐯𝑖−1/2,𝑖−1 ,

d𝐪𝑖−1
d𝑡 ⟩ + ⟨𝐯𝑖−1/2,𝑖 ,

d𝐪𝑖
d𝑡 ⟩, (3.35)

Here the brackets represent dot products over the vectors (at a certain grid point), just
as in the continuous case. The right-hand side of equation (3.35) follows by substituting
equation (3.29) for 𝑖 and 𝑖 − 1:
d𝑒𝑖−1/2
d𝑡 = ⟨𝐯𝑖−1/2,𝑖−1 ,J𝐟𝑖−1K⟩ + ⟨𝐯𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩J𝑝𝑖−3/2K+ ⟨𝐯𝑖−1/2,𝑖 ,J𝐟𝑖K⟩ + ⟨𝐯𝑖−1/2,𝑖 , 𝐣𝑖⟩J𝑝𝑖−1/2K,

(3.36)
where we have introduced the following notation for jump operators [42]:

J𝑎𝑖−1/2K ≔ 𝑎𝑖 −𝑎𝑖−1, J𝑎𝑖K ≔ 𝑎𝑖+1/2 −𝑎𝑖−1/2. (3.37)

Comparing with (3.33) we see that the energy fluxes ℎ𝑓 ,𝑖 and ℎ𝑝,𝑖 need to satisfy

⟨𝐯𝑖−1/2,𝑖−1 ,J𝐟𝑖−1K⟩ + ⟨𝐯𝑖−1/2,𝑖 ,J𝐟𝑖K⟩ = r
ℎ𝑓 ,𝑖−1/2

z
, (3.38)

⟨𝐯𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩J𝑝𝑖−3/2K+ ⟨𝐯𝑖−1/2,𝑖 , 𝐣𝑖⟩J𝑝𝑖−1/2K = Jℎ𝑝,𝑖−1/2K. (3.39)

These conditions are analogous to (3.12) and (3.14) for the continuous case, with discrete
jumps corresponding to derivatives with respect to 𝑠. Together, conditions (3.38) and (3.39)
guarantee that (3.36) can be written as (3.33), thus proving conservation of the discrete
local energy (3.34).

The challenge is to find the proper combination of discrete expressions for 𝑒𝑖−1/2, ℎ𝑓 ,𝑖 ,
ℎ𝑝,𝑖 , and 𝐟𝑖−1/2 which are consistent approximations to their continuous counterparts in
such a way that the local energy conservation equation is satisfied. This is a difficult
problem, since we have multiple degrees of freedom (𝑒𝑖−1/2, ℎ𝑓 ,𝑖 , ℎ𝑝,𝑖 , and 𝐟𝑖−1/2), and the
solution might not be unique. To simplify the construction, we will use the concept of
entropy potential introduced in section 3.3.3: after choosing a certain 𝑒𝑖−1/2 and 𝜓𝑖−1/2,
this yields straightforward conditions on the fluxes 𝐟𝑖−1/2 to be energy-conserving.

3.5.2 Choice of discrete energy and energy fluxes
In this section we propose an energy 𝑒𝑖−1/2, and verify that this energy is conserved by the
pressure terms of the discrete model (energy conservation for the flux terms is treated in
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section 3.5.3 and section 3.5.4). Recalling the continuous energy (3.16), we define a discrete
energy 𝑒𝑖−1/2 = 𝑒𝑖−1/2(𝐪𝑖−1, 𝐪𝑖):

𝑒𝑖−1/2 = 𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1/2Δ𝑠 +𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1/2Δ𝑠 +
1
2
𝑞23,𝑖−1/2
𝑞1,𝑖−1/2

+ 1
2
𝑞24,𝑖−1/2
𝑞2,𝑖−1/2

(3.40)

= 𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1/2Δ𝑠 +𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1/2Δ𝑠 +
𝜌𝑈
2 𝐴𝑈 ,𝑖−1/2𝑢2𝑈 ,𝑖−1/2Δ𝑠 +

𝜌𝐿
2 𝐴𝐿,𝑖−1/2𝑢2𝐿,𝑖−1/2Δ𝑠.

Other choices are possible because on a staggered grid interpolation is required, and the
interpolation may be carried out in various different ways³. Our choice (3.40) is one of the
most straightforward choices for the energy that is consistent with the continuous defini-
tion, when the energy is defined at the velocity grid points, and leads to an elegant form
of the energy-conserving discretization (see also the remark at the end of section 3.5.4).

We use identities given in Appendix A to calculate the 𝐯 vectors. They are given by

𝐯𝑖−1/2,𝑖−1 = [𝜕𝑒𝑖−1/2𝜕𝐪𝑖−1
]
𝑇
=

⎡⎢⎢⎢⎢⎢
⎣

− 1
4
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

+ 1
2𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖−1)

− 1
4
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

+ 1
2𝑔𝑛𝐻𝐿,𝑖−1

0
0

⎤⎥⎥⎥⎥⎥
⎦

, (3.41)

and

𝐯𝑖−1/2,𝑖 = [𝜕𝑒𝑖−1/2𝜕𝐪𝑖
]
𝑇
=

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

− 1
4
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

+ 1
2𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖)

− 1
4
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

+ 1
2𝑔𝑛𝐻𝐿,𝑖

𝑞3,𝑖−1/2
𝑞1,𝑖−1/2𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.42)

and their sum is consistent with (3.17).
The pressure terms in (3.36) need to satisfy condition (3.39), which can be rewritten to

obtain the discrete version of (3.15):r
ℎ𝑝,𝑖−1/2

z
= J⟨𝐯𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩𝑝𝑖−3/2K−(J⟨𝐯𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩K𝑝𝑖−3/2)

+ J⟨𝐯𝑖−1/2,𝑖 , 𝐣𝑖⟩𝑝𝑖−1/2K−(J⟨𝐯𝑖−1/2,𝑖 , 𝐣𝑖⟩K𝑝𝑖−1/2). (3.43)

On a staggered grid, it is straightforward to satisfy this condition by choosing for 𝐣𝑖

𝐣𝑖 =
1
Δ𝑠

⎡⎢⎢⎢⎢⎢
⎣

0
0

𝑞1,𝑖−1/2
𝜌𝑈𝑞2,𝑖−1/2
𝜌𝐿

⎤⎥⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

0
0

𝐴𝑈 ,𝑖−1/2
𝐴𝐿,𝑖−1/2

⎤⎥⎥⎥
⎦
, (3.44)

³In section 3.A we will show that the same results can be obtained with a global energy analysis, in which
interpolation of the local potential energy to the velocity grid points is not needed.
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since with this choice we have

⟨𝐯𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩ = 0,
and

⟨𝐯𝑖−1/2,𝑖 , 𝐣𝑖⟩ = (𝑞3,𝑖−1/2𝜌𝑈Δ𝑠
+ 𝑞4,𝑖−1/2

𝜌𝐿Δ𝑠
) = 𝑄𝑖−1/2.

Consequently, condition (3.43) can be written with the volumetric flow constraint (3.31)
as Jℎ𝑝,𝑖−1/2K = J𝑄𝑖−1/2𝑝𝑖−1/2K = J𝑄(𝑡)𝑝𝑖−1/2K, (3.45)
so that (3.43) (and (3.39)) is satisfied when ℎ𝑝,𝑖 is given by

ℎ𝑝,𝑖 = 𝑄(𝑡)𝑝𝑖 . (3.46)

Note that our constraint-consistent time integration method enforces that the volumetric
flow constraint is satisfied up to machine precision [107].

3.5.3 Reformulation in terms of the entropy potential and condi-
tions on numerical fluxes

Theobjective of finding energy-conserving numerical fluxes is better served by reformulat-
ing condition (3.38) in terms of the entropy potential, because this results in an alternative,
constructive, condition for finding energy-conserving fluxes. The fluxes are then based
on the entropy potential 𝜓𝑖−1/2 instead of the energy flux ℎ𝑓 ,𝑖 . Similar to section 3.3.3, we
rewrite the left-hand side of (3.38) as:

⟨𝐯𝑖−1/2,𝑖−1 ,J𝐟𝑖−1K⟩ + ⟨𝐯𝑖−1/2,𝑖 ,J𝐟𝑖K⟩ = q⟨𝐯𝑖−1/2,𝑖−1 , 𝐟𝑖−1⟩y+q⟨𝐯𝑖−1/2,𝑖 , 𝐟𝑖⟩y
− ⟨J𝐯𝑖−1/2,𝑖−1K , 𝐟𝑖−1⟩ − ⟨J𝐯𝑖−1/2,𝑖K , 𝐟𝑖⟩, (3.47)

which can be interpreted as a discrete version of the product rule ⟨𝐯 , 𝜕𝐟𝜕𝑠 ⟩ =
𝜕
𝜕𝑠 ⟨𝐯 , 𝐟⟩−⟨

𝜕𝐯
𝜕𝑠 , 𝐟⟩.

We have made use of the following definitions:

𝐯𝑖,𝑖−1/2 =
1
2 (𝐯𝑖−1/2,𝑖−1 +𝐯𝑖+1/2,𝑖) , 𝐯𝑖,𝑖+1/2 =

1
2 (𝐯𝑖−1/2,𝑖 +𝐯𝑖+1/2,𝑖+1) ,J𝐯𝑖,𝑖−1/2K = 𝐯𝑖+1/2,𝑖 −𝐯𝑖−1/2,𝑖−1, J𝐯𝑖,𝑖+1/2K = 𝐯𝑖+1/2,𝑖+1 −𝐯𝑖−1/2,𝑖 .

These definitions are such that we only interpolate or take jumps between 𝐯 vectors with
the same relative indices.

Instead of directly choosing 𝜓 , it is more natural to use the last terms in (3.47) and
define the jump in 𝜓 (similar to (3.23)) as

J𝜓𝑖K = ⟨J𝐯𝑖,𝑖−1/2K , 𝐟𝑖−1/2⟩ + ⟨J𝐯𝑖,𝑖+1/2K , 𝐟𝑖+1/2⟩, (3.48)

since this leads to the following ‘implied’ definition of 𝜓 :

J𝜓 𝑖−1/2K = J𝜓𝑖−1/2K = 1
2J𝜓𝑖−1K+ 1

2J𝜓𝑖K = q⟨𝐯𝑖−1/2,𝑖−1 , 𝐟𝑖−1⟩y+q⟨𝐯𝑖−1/2,𝑖 , 𝐟𝑖⟩y−r
ℎ𝑓 ,𝑖−1/2

z
,

(3.49)
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which is consistent with (3.22). The advantage of (3.48) over (3.38) is that we have a con-
dition on the flux itself, rather than on the jump in the flux. Once 𝑒𝑖−1/2 and 𝜓𝑖−1/2 have
been chosen and 𝐟𝑖−1/2 has been derived, ℎ𝑓 ,𝑖 can be determined from

ℎ𝑓 ,𝑖 = ⟨𝐯𝑖,𝑖−1/2 , 𝐟𝑖−1/2⟩ + ⟨𝐯𝑖,𝑖+1/2 , 𝐟𝑖+1/2⟩ −𝜓 𝑖 . (3.50)

We note that this expression is similar to the collocated grid setting, where one has
ℎ𝑓 ,𝑖−1/2 = ⟨𝐯𝑖−1/2 , 𝐟𝑖−1/2⟩ −𝜓 𝑖−1/2 [42]. The difference lies in a shift in indices (because our
energy is defined at 𝑖 − 1/2 instead of 𝑖), and in the way the term ⟨𝐯 , 𝐟⟩ is approximated.

We propose now the following discrete entropy potential for the equations:

𝜓𝑖−1/2(𝐪𝑖−1, 𝐪𝑖) = −𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1/2
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

−𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1/2
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

(3.51)

= −𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1/2𝑢𝑈 ,𝑖−1/2 −𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1/2𝑢𝐿,𝑖−1/2.
This is a straightforward discretization of (3.24). Given the expressions for 𝐯 ((3.41) and
(3.42)), condition (3.48) can now be evaluated to yield the numerical fluxes 𝐟𝑖−1/2. In
order to be able to derive from the (scalar) condition (3.48) multiple equations for the
individual numerical fluxes, we split 𝑓3,𝑖−1 and 𝑓4,𝑖−1 into an advective component (de-
noted by subscript 𝑎) and a level gradient (or gravity) component (denoted by subscript
𝑔): 𝑓3,𝑖−1 = 𝑓3,𝑖−1,𝑎 +𝑔𝑛𝑓3,𝑖−1,𝑔 and 𝑓4,𝑖−1 = 𝑓4,𝑖−1,𝑎 +𝑔𝑛𝑓4,𝑖−1,𝑔 .

As a consequence, condition (3.48) can be split into the following four separate condi-
tions by collecting terms featuring 𝑔𝑛 and those not featuring 𝑔𝑛 , and by using the func-
tional dependencies assumed for the fluxes:

−
uv1
2
𝑞23,𝑖
𝑞21,𝑖

}~𝑓 1,𝑖 +
t
𝑞3,𝑖
𝑞1,𝑖

|
𝑓3,𝑖,𝑎 = 0, (3.52a)

−
uv1
2
𝑞24,𝑖
𝑞22,𝑖

}~𝑓 2,𝑖 +
t
𝑞4,𝑖
𝑞2,𝑖

|
𝑓4,𝑖,𝑎 = 0, (3.52b)

(q𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖)
y𝑓1,𝑖)+

t
𝑞3,𝑖
𝑞1,𝑖

|
𝑔𝑛𝑓3,𝑖,𝑔 = −

t
𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖

𝑞3,𝑖
𝑞1,𝑖

|
, (3.52c)

(q𝑔𝑛𝐻𝐿,𝑖
y𝑓2,𝑖)+

t
𝑞4,𝑖
𝑞2,𝑖

|
𝑔𝑛𝑓4,𝑖,𝑔 = −

t
𝜌𝐿𝑔𝑛𝐻𝐿,𝑖

𝑞4,𝑖
𝑞2,𝑖

|
. (3.52d)

These conditions have been obtained analogously to their continuous equivalents (3.26).
In the continuous case, the fluxes were known and these conditions were satisfied by
construction. In the discrete case, these conditions will be used in the next section to
determine the numerical fluxes.

3.5.4 Derivation of energy-conserving numerical fluxes for the TFM
System (3.52) is a system of four equations for six unknowns. This leaves the mass fluxes
𝑓1,𝑖−1/2 and 𝑓2,𝑖−1/2 free to be chosen arbitrarily, with the expressions for 𝑓3,𝑖 and 𝑓4,𝑖 de-
pending on this choice. This observation has been made previously for the (isothermal)
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compressible Euler equations [62, 124], of which the advective terms have a similar math-
ematical form to those of the TFM. We take the following choice for 𝑓1,𝑖−1/2 and 𝑓2,𝑖−1/2:

𝑓1,𝑖−1/2 =
𝑞3,𝑖−1/2
Δ𝑠 and 𝑓2,𝑖−1/2 =

𝑞4,𝑖−1/2
Δ𝑠 , (3.53)

which is motivated by the fact that it requires no interpolation (so that the mass and mo-
mentum equations are directly coupled), and moreover is such that the discrete Poisson
equation (3.32) follows naturally from the discrete volumetric flow constraint (3.31) (which
is used in our time integration method [107]).

Substituting 𝑓1,𝑖−1/2 in (3.52a) and 𝑓2,𝑖−1/2 in (3.52b) yields directly

𝑓3,𝑖,𝑎 =
1
Δ𝑠 (

𝑞3,𝑖
𝑞1,𝑖

)𝑞3,𝑖 and 𝑓4,𝑖,𝑎 =
1
Δ𝑠 (

𝑞4,𝑖
𝑞2,𝑖

)𝑞4,𝑖 . (3.54)

To get the gravity component of 𝑓3,𝑖 and 𝑓4,𝑖 , substitution of 𝑓2,𝑖−1/2 in (3.52d) leads to

1
2

q𝐻𝐿,𝑖−1/2
y 𝑞4,𝑖−1/2

Δ𝑠 + 1
2

q𝐻𝐿,𝑖+1/2
y 𝑞4,𝑖+1/2

Δ𝑠 +
t
𝑞4,𝑖
𝑞2,𝑖

|
𝑓4,𝑖,𝑔

= 𝜌𝐿𝐻𝐿,𝑖−1/2
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

−𝜌𝐿𝐻𝐿,𝑖+1/2
𝑞4,𝑖+1/2
𝑞2,𝑖+1/2

.

After significant rewriting, this yields the following expression for the gravity component
of 𝑓4,𝑖 :

𝑓4,𝑖,𝑔 = −𝜌𝐿𝐻𝐿,𝑖 −[(𝜌𝐿

r
𝐻𝐿,𝑖

z
𝑞2,𝑖

+
q𝐻𝐿,𝑖

y
Δ𝑠 )𝑞4,𝑖]

t
𝑞4,𝑖
𝑞2,𝑖

|−1
, (3.55)

and a similar expression holds for 𝑓3,𝑖,𝑔 (but with a minus sign instead of the plus sign).
The first term on the right-hand side is easily recognized as the discrete counterpart

of −𝜌𝐿𝐻𝐿. In order for the discrete expression to be practical and match the continuous
expression, the second term must vanish, and we require the following conditions to be
satisfied:r

𝐻𝑈 ,𝑖−1/2
z
=
𝑞1,𝑖−1/2
𝜌𝑈Δ𝑠

q𝐻𝑈 ,𝑖−1/2
y , r

𝐻𝐿,𝑖−1/2
z
= −

𝑞2,𝑖−1/2
𝜌𝐿Δ𝑠

q𝐻𝐿,𝑖−1/2
y . (3.56)

In the continuous case a continuous version of these conditions, given by (3.21), is also
required, and these can be shown to be satisfied exactly viamanipulation of the continuous
derivatives. The same manipulation is not possible with discrete jumps, so that in the
discrete case these conditions are not satisfied in general, and the second term in (3.55)
does not generally vanish. Thismeans thatwe cannot obtain a practical energy-conserving
discretization for arbitrary geometries (at least not with the conventional staggered-grid
finite volume method that we have employed).
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Even though conditions (3.56) are not generally exactly satisfied in the discrete case,
we can show that they are approximately satisfied for arbitrary duct geometries, and that
they are exactly satisfied for specific geometries such as a channel. This can be shown by
evaluating both sides of (3.56) using Taylor series. We expand𝐻𝐿,𝑖−1 and𝐻𝐿,𝑖−1 into Taylor
series around 𝐴𝐿 = 𝐴𝐿,𝑖 , and expand 𝐴𝐿,𝑖−1 around 𝑠 = 𝑠𝑖 . These Taylor series are combined
to obtain expressions for

r
𝐻𝐿,𝑖−1/2

z
,
q𝐻𝐿,𝑖−1/2

y
, and

q𝐴𝐿,𝑖−1/2
y
. With these expressions

the left-hand side of (3.56) (for the lower fluid) evaluates to

r
𝐻𝐿,𝑖−1/2

z
= −(d𝐻𝐿

d𝐴𝐿
)
𝑖
(𝐴𝐿,𝑖−1 −𝐴𝐿,𝑖)−

1
2 (

d2𝐻𝐿
d𝐴2𝐿

)
𝑖
(𝐴𝐿,𝑖−1 −𝐴𝐿,𝑖)

2

− 1
6 (

d3𝐻𝐿
d𝐴3𝐿

)
𝑖
(𝐴𝐿,𝑖−1 −𝐴𝐿,𝑖)

3 +𝑂(Δ𝑠4), (3.57)

where (.)𝑖 indicates (.) evaluated at 𝐴𝐿,𝑖 . The right-hand side of (3.56) evaluates to

−
𝑞2,𝑖−1/2
𝜌𝐿Δ𝑠

q𝐻𝐿,𝑖−1/2
y = 1

2 (
d𝐻𝐿
d𝐴𝐿

)
𝑖
(𝐴2𝐿,𝑖−1 −𝐴2𝐿,𝑖)+

1
4 (

d2𝐻𝐿
d𝐴2𝐿

)
𝑖
(𝐴𝐿,𝑖−1 +𝐴𝐿,𝑖)(𝐴𝐿,𝑖−1 −𝐴𝐿,𝑖)

2

+ 1
12 (

d3𝐻𝐿
d𝐴3𝐿

)
𝑖
(𝐴𝐿,𝑖−1 +𝐴𝐿,𝑖)(𝐴𝐿,𝑖−1 −𝐴𝐿,𝑖)

3 +𝑂(Δ𝑠4). (3.58)

At this point we apply relation (A.6) from Appendix A to the discrete quantities used here:

(d𝐻𝐿
d𝐴𝐿

)
𝑖
= −𝐴𝐿,𝑖 (

d𝐻𝐿
d𝐴𝐿

)
𝑖
,

and from this we can derive

(d
2𝐻𝐿
d𝐴2𝐿

)
𝑖
= −(d𝐻𝐿

d𝐴𝐿
)
𝑖
−𝐴𝐿,𝑖 (

d2𝐻𝐿
d𝐴2𝐿

)
𝑖
, and (d

3𝐻𝐿
d𝐴3𝐿

)
𝑖
= −2(d

2𝐻𝐿
d𝐴2𝐿

)
𝑖
−𝐴𝐿,𝑖 (

d3𝐻𝐿
d𝐴3𝐿

)
𝑖
.

Substitution of these relations in (3.57), and comparison of the result to (3.58) yieldsr
𝐻𝐿,𝑖−1/2

z
= −

𝑞2,𝑖−1/2
𝜌𝐿Δ𝑠

q𝐻𝐿,𝑖−1/2
y+ 1

12 (
d2𝐻𝐿
d𝐴2𝐿

)
𝑖
(𝐴𝐿,𝑖−1 −𝐴𝐿,𝑖)

3 +𝑂(Δ𝑠4). (3.59)

This derivation can be carried out with similar results for the upper fluid.
These relations show that for arbitrary duct geometries, the geometric conditions (3.56)

are satisfied only approximately in the discrete case. This stands in contrast to the contin-
uous case, where the equivalent geometric conditions are satisfied exactly (for arbitrary
geometries).

Fortunately, for a 2D channel geometry d𝐻𝐿/d𝐴𝐿 = 1 and d2𝐻𝐿/d𝐴2𝐿 = 0, and all higher
order derivatives are zero, so in this case (3.56) is exactly satisfied. This means that the 2D
channel geometry is an important special case for which we obtain the following conser-
vative numerical fluxes:

𝑓3,𝑖,𝑔 = −𝜌𝑈𝐻𝑈 ,𝑖 and 𝑓4,𝑖,𝑔 = −𝜌𝐿𝐻𝐿,𝑖 . (3.60)
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These fluxes are energy-conserving for other geometries with d2𝐻𝐿/d𝐴2𝐿 = 0, but not for
geometries with curved sides, such as the pipe geometry.

The final collection of energy-conserving numerical fluxes is given by (3.53), (3.54),
and (3.60). Of these, (3.53) and (3.60) are locally exact, and (3.54) involves second order
accurate central interpolation. Together they form the numerical flux vector

𝐟𝑖−1/2 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

𝑞3,𝑖−1/2
Δ𝑠𝑞4,𝑖−1/2
Δ𝑠

1
Δ𝑠 (

𝑞3,𝑖−1
𝑞1,𝑖−1

)𝑞3,𝑖−1 −𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1

1
Δ𝑠 (

𝑞4,𝑖−1
𝑞2,𝑖−1

)𝑞4,𝑖−1 −𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢
⎣

𝜌𝑈𝐴𝑈 ,𝑖−1/2𝑢𝑈 ,𝑖−1/2
𝜌𝐿𝐴𝐿,𝑖−1/2𝑢𝐿,𝑖−1/2

𝜌𝑈 𝑢𝑈 ,𝑖−1(𝐴𝑈 ,𝑖−1𝑢𝑈 ,𝑖−1)−𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1
𝜌𝐿𝑢𝐿,𝑖−1(𝐴𝐿,𝑖−1𝑢𝐿,𝑖−1)−𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1

⎤⎥⎥⎥⎥
⎦

.

(3.61)
Here the flux is rendered in terms of primitive variables only for ease of interpretation; the
implementation of the numerical flux (and of the discrete energy) in the numerical code
is completely in terms of the conservative variables.

Remark 1. The difficulty to satisfy condition (3.56) for arbitrary cross-sectional geome-
tries is not dependent on the choice of 𝜓𝑖−1/2, nor is it due to the interpolation of the
potential energy to the velocity grid points (as needed on a staggered grid). This is shown
in section 3.A by applying a global energy analysis.

Remark 2. The proposed discrete energy (3.40) is a consistent approximation to (3.16)
which is conserved by the numerical fluxes given by (3.61). However, it is not unique. For
example, an alternative definition is

𝑒𝑖(𝐪𝑖−1, 𝐪𝑖 , 𝐪𝑖+1) = 𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖Δ𝑠 +𝜌𝐿𝑔𝑛𝐻𝐿,𝑖Δ𝑠 +
1
2(

𝑞23,𝑖
𝑞1,𝑖

)+ 1
2(

𝑞24,𝑖
𝑞2,𝑖

). (3.62)

In this formulation the energy is defined on the pressure grid, and the energy conservation
conditions and local energy conservation equation can be adapted to accommodate for
this. With a similar change in the entropy potential, it is again possible to derive a set
of energy-conserving numerical fluxes, which turn out to be the same as those given by
(3.61). As the issue of the geometric relations also persists with this choice, there seems
no clear advantage over our proposed formulation.

Remark 3. It is possible to show that, with our discretization of the advective terms, the
advective contribution to the global energy equation (given by a sum over the domain of
the left-hand side of (3.38), minus gravitational terms) can be written as

𝐮𝑇𝑈 ,ℎ𝐂𝑈 𝐮𝑈 ,ℎ +𝐮𝑇𝐿,ℎ𝐂𝐿𝐮𝐿,ℎ,

where 𝐮𝑈 ,ℎ = [𝑢𝑈 ,1/2…𝑢𝑈 ,𝑁𝑢−1/2]𝑇 and similar for 𝐮𝐿,ℎ, and with 𝐂𝑈 = 𝐂𝑈 (𝐟1,ℎ,𝐮𝑈 ,ℎ) and
𝐂𝐿 = 𝐂𝐿(𝐟2,ℎ,𝐮𝐿,ℎ) being skew-symmetric matrices. From this it can be shown that the
advective terms conserve global energy. In [122], this principle is used to derive a similar
discretization of the advective terms for the SWE.



3.6 Numerical experiments

3

51

3.6 Numerical experiments
We perform numerical experiments for a 2D channel geometry, with the goal of verifying
conservation of the discrete global energy, as discussed in section 3.5.1:

d𝐸ℎ
d𝑡 = 0.

The model for which we perform the experiments will not include source terms such as
wall friction and interface friction, or diffusion, since these would lead to dissipation of
energy in the continuous analysis. The test cases are chosen such that no discontinuities
appear, for which the continuous analysis is invalid, since this would also necessitate dis-
sipation of energy. Furthermore, the numerical experiments performed in this section will
all be in the ‘well-posed regime’ of the TFM, meaning that the initial conditions are chosen
such that the eigenvalues of the model are real, and remain so.

We use the discretization as outlined in section 3.4, with the numerical fluxes given
by (3.61). The vector 𝐣𝑖 of the pressure term is given by (3.44). We noted earlier that
the scheme is spatially exactly energy-conserving, but not temporally. However, we can
still obtain energy conservation by taking the time step sufficiently small. The difference
between the initial energy 𝐸0ℎ and the final energy 𝐸𝑁𝑡ℎ after 𝑁𝑡 time steps should then be
in the order of the machine precision, and we shall term this difference the ‘energy error’.

3.6.1 Gaussian perturbation in a periodic domain
We consider a test case with periodic boundaries, so that effectively we do not need to
take the boundaries into account. We introduce a perturbation in the hold-up 𝛼𝐿 = 𝐴𝐿/𝐴
of the form

𝛼𝐿(𝑠) = 𝛼𝐿,0 +Δ𝛼𝐿(𝑠), Δ𝛼𝐿(𝑠) = Δ𝛼𝐿 exp[−
1
2 (

𝑠 −𝐿/2
𝜎 )

2
] ,

with Δ𝛼𝐿 = 0.2 and 𝜎 = 𝐿/10, and 𝐿 the length of the domain. This produces a Gaussian
perturbation centered at the middle of the domain. The initial velocities are left at zero,
which ensures exact initial satisfaction of the volumetric flow constraint (3.6) (in fact, 𝑄 =
0).

We use parameters similar to those used in the Thorpe experiment [117], as described
by [77]. They are given by Table 3.1. The choice for a high upper fluid density is deliberate:
it ensures that all terms in the expression for 𝑒, (3.40), are significant. Additionally, at
large density ratios (i.e. low upper fluid density) the flow becomes more violent and the
formation of shocks becomes more likely, the treatment of which is outside the scope of
this chapter.

We employ 𝑁𝑝 = 𝑁𝑢 = 40 finite volumes with Δ𝑠 = 𝐿/𝑁𝑝 and let the simulations run
until 𝑡 = 30s, with Δ𝑡 = 0.001s. The perturbation splits symmetrically into a left-traveling
and a right-traveling wave, which travel through the periodic boundaries, to eventually
come together in the middle and reform the initial perturbation approximately. We show
the evolution of the hold-up and velocity in Figure 3.3, roughly up to the point that the
waves meet at the boundaries of the domain.
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Table 3.1: Parameters for the Gaussian perturbation test case.

Parameter Symbol Value Units

Lower fluid density 𝜌𝐿 1000 kgm−3
Upper fluid density 𝜌𝑈 780 kgm−3
Acceleration of gravity 𝑔 9.8 ms−2
Channel inclination 𝜙 0 degrees
Domain length 𝐿 1.83 m
Channel height 𝐻 0.03 m
Initial lower fluid hold-up 𝛼𝐿,0 0.5 −
Initial lower fluid velocity 𝑢𝐿,0 0 ms−1
Initial upper fluid velocity 𝑢𝑈 ,0 0 ms−1
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Figure 3.3: The initial evolution of the Gaussian perturbation, up to the point that the boundaries are met. Left:
lower fluid hold-up. Right: lower fluid velocity.

In this test case we have a significant exchange between kinetic and potential energy,
which can be seen in Figure 3.4 (left panel). The total energy is conserved up to machine
precision, as can be seen in the right panel of the figure. The mass of each phase and total
momentum are also conserved, and the volume constraint and volumetric flow constraint
are satisfied, up to machine precision (see also [107]). As time progresses, nonlinear ef-
fects start to play a role, leading to more irregular behavior of the potential and kinetic
energy as a function of time. The sum of the two stays exactly constant, confirming our
theoretical derivations, and showing that our newly proposed numerical fluxes for the
TFM lead indeed to an energy-conserving discretization method.

We give further evidence that the energy is conserved exactly by the spatial discretiza-
tion, and limited only by a temporal error, by plotting the convergence of the energy
error with refinement of the time step, and with refinement of the grid. The first plot in
Figure 3.5 shows a fourth order convergence rate with Δ𝑡 , in agreement with the fourth



3.6 Numerical experiments

3

53

0 10 20 30
t [s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

R
el

at
iv

e 
en

er
gy

 [J
]

E
h
0=6.8 100 J

total
potential
kinetic

0 10 20 30
t [s]

-1

-0.5

0

0.5

1

E
ne

rg
y 

er
ro

r 
[-

]

10-14

Figure 3.4: Conserved quantities for the Gaussian perturbation test case. Left: potential, kinetic and total energy
relative to their initial values. Right: (𝐸ℎ −𝐸0ℎ)/𝐸0ℎ.

order accuracy of the Runge-Kutta time integration method. The convergence continues
up to machine precision, which is reached around Δ𝑡 = 0.001s, as was used for the results
in Figure 3.4. The second plot in Figure 3.5 shows that when using a small enough time
step, the same (minimal) level of error is obtained, irrespective of spatial resolution.
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Figure 3.5: Convergence of the energy error (𝐸𝑁𝑡
ℎ −𝐸0ℎ)/𝐸0ℎ for the Gaussian perturbation test case. Left: constant

𝑁𝑝 = 40. Right: constant Δ𝑡 = 0.0001s.
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3.6.2 Sloshing in a closed tank
We now consider a test case with closed (solid-wall) boundaries, for which energy conser-
vation is expected to hold because the fluxes ℎ𝑓 and ℎ𝑝 involve multiplication with 𝑞3 and
𝑞4, which are zero at the boundaries. The test case features a closed rectangular tank in
which the two fluids are brought out of equilibrium, so that sloshing occurs. The param-
eters are identical to those of the previous test case, see Table 3.1, except that the initial
condition for the hold-up perturbation is different. It is given by

𝛼𝐿(𝑠) = 𝛼𝐿,0 +Δ𝛼𝐿(𝑠), Δ𝛼𝐿(𝑠) = Δ𝛼𝐿
𝑠 −𝐿/2
𝐿/2 ,

with Δ𝛼𝐿 = 0.2. This yields a straight slanted interface, with 𝛼𝐿 = 0.3 at the left boundary
and 𝛼𝐿 = 0.7 at the right boundary: see Figure 3.6.

This is not a typical sloshing case, since the TFM was designed to model long-wave-
length phenomena, and indeed we have taken 𝐿 ≫ 𝐻 . Therefore we are not able to ex-
plicitly capture typical sloshing phenomena such as wave breaking. However, the effect
of such small-scale phenomena on the averaged flow may be included in the model via
closure terms [55]. With accurate closure terms, the TFM can closely match DNS results,
as shown in [18]. This is not included here, as this would lead to dissipation of energy
and not allow us to show the energy-conserving properties of our proposed numerical
discretization.

Like in the first test case, initially the total energy of the system consists of only po-
tential energy. Under the influence of gravity (via the level gradient terms) the interface
starts to flatten, which is achieved via a right-running and a left-running wave, that em-
anate from the left and right boundary, respectively. Around 𝑡 = 7s the interface is almost
completely flat, and all potential energy has been converted into kinetic energy, and the
interface starts to slant (‘slosh’) again in the opposite direction. Figure 3.6 shows this be-
havior up to approximately the point that the lower fluid reaches its maximum height at
the left boundary. Note that the evolution of the hold-up fraction is not exactly symmet-
ric, amongst others because the wave speed in the ‘deep’ part is different from the wave
speed in the ‘shallow’ part. Also in this test case, the mass of each phase is conserved up
to machine precision, but there is a (physical) inflow of momentum at the boundaries, due
to the level gradient terms.

Figure 3.7 shows the exchange of potential and kinetic energy as a function of time.
Similar to the previous test case, exact energy conservation is achieved with our proposed
spatial discretization, if the time step is fine enough (here Δ𝑡 = 0.005s, and 𝑁𝑝 = 40). If the
time step is not fine enough, a (small) energy error is made, which converges with fourth
order upon time step refinement, as is shown in Figure 3.8. The ability to conserve en-
ergy in this closed system is an important step in order to obtain fidelity in the simulation
results. Non-energy-conserving schemes, e.g. schemes that dissipate energy, would intro-
duce artificial (numerical) damping of the sloshing movement and incur a loss in the liquid
height reached at the boundaries. In a way, the sloshing movement can be compared to a
moving pendulum [91], for which it is well-known that conservation of the total energy
(the Hamiltonian) is an important property that should be mimicked upon discretization
in order to achieve realistic long-time behavior.

Figure 3.9 shows results for a test case using the same parameters, but in a circular
pipe geometry, with a diameter corresponding to the height of the 2D channel (0.03m). A
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Figure 3.6: The initial evolution of the sloshing simulation, approximately up to the point that the lower fluid
reaches its maximum height at the left boundary. Left: lower fluid hold-up. Right: lower fluid velocity.
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ℎ −𝐸0ℎ)/𝐸0ℎ with time step, for the sloshing test case.

similar sloshing motion takes place, and the exchange of potential and kinetic energy is
similar to that shown in Figure 3.7 for the channel. However, for the pipe geometry, we
observe a spatial discretization error in the total energy, stemming from the extra terms
in (3.59). Though the energy error comes out positive at 𝑡 = 30s, the long-term trend is
towards dissipation. Fortunately, for this case with 𝑁𝑝 = 40 and Δ𝑡 = 0.005s, the energy
error incurred by our proposed discretization remains relatively small and the effect on
the solution is limited.
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Figure 3.9: Conserved quantities for the sloshing test case, but in a circular pipe geometry. Left: potential, kinetic
and total energy relative to their initial values. Right: (𝐸ℎ −𝐸0ℎ)/𝐸0ℎ.
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3.6.3 Traveling wave
Finally, we perform a test case with a traveling wave in a periodic domain. The flow is uni-
directional and stratified, with a velocity and density difference between the two fluids.
We consider a steady base state, upon which a small periodic perturbation is introduced,
of which we study the evolution in time. This case is similar to test cases examining the
Kelvin-Helmholtz instability, such as in [74, 107]. However, here the perturbation will be
stable since the flow is inviscid and in the (linearly) well-posed regime.

Most of the parameters are again identical to those given by Table 3.1, but the initial
conditions for the hold-up and the fluid velocities are different. We set 𝛼𝐿,0 = 0.4 and
𝑢𝐿,0 = 1. For 𝑢𝑈 we take 𝑢𝑈 ,0 = 1.187 (which is the value that would result in a steady flow
with wall and interface friction⁴).

In order to construct an initial perturbation that results in a traveling wave, we con-
duct a linear stability analysis of the TFM [74]. The analysis is conducted in terms of its
primitive variables in the form

𝐰𝑇 = [𝛼𝐿 𝑢𝐿 𝑢𝐺 𝑝] . (3.63)

As exact solutions we obtain waves of the form

Δ𝐰 = Re(Δ𝐰̂exp [𝑖 (𝜔𝑡 −𝑘𝑠)]) , (3.64)

with Δ𝐰̂ the amplitude of the perturbation in each variable. The relative amplitudes in
Δ𝐰̂ are such that Δ𝐰̂ is an eigenvector corresponding to one of two dispersion relations
𝜔(𝑘).

The initial perturbation is defined as (3.64), with 𝑡 = 0. We take a wavenumber of
𝑘 = 2𝜋/𝐿m−1 and calculate the corresponding angular frequencies, of which one is selected.
The chosen mode is

𝜔 = 3.982s−1.
Setting Δ𝛼𝐿 = 1 ⋅10−2, the amplitudes of the other variables are calculated so that Δ𝐰̂ is an
eigenvector corresponding to this mode:

(Δ𝐰̂)𝑇 = [1.00 ⋅ 10−2 3.99 ⋅ 10−3 4.51 ⋅ 10−3 −2.30] .
This ensures that the other mode is not present in the initial perturbation, so that we can
study the isolated behavior of one mode. A projection step is then performed in order to
make the initial condition satisfy the constraints (see section 3.4).

The initial condition is shown in Figure 3.10, along with its evolution in time, which
is computed up to 𝑡 = 30s. Setting the initial condition this way yields a wave traveling to
the right at velocity 𝜔/𝑘 = 1.16ms−1, which remains of approximately constant amplitude
since the flow is inviscid and in the well-posed regime, so that 𝜔 has no imaginary com-
ponent. The traveling wave can deform due to the nonlinear character of the governing
equations, which is neglected in the linear stability analysis. This is made apparent by the
snapshots of the solution shown in Figure 3.10, which are separated by an integer num-
ber of wave periods: at the time of the last snapshot the wave has traveled through the
domain 18 times. The solutions do not completely overlap and we see wave steepening
taking place.
⁴For this we take the Churchill friction model [28] with viscosities of 𝜇𝑈 = 1.5 ⋅ 10−3 Pas and 𝜇𝐿 = 1 ⋅ 10−3 Pas.
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Figure 3.10: The initial perturbation travels to the right with time. Consecutive snapshots are separated by a
time interval of 6 wave periods. Left: lower fluid hold-up. Right: lower fluid velocity.

Figure 3.11 shows the evolution of the energy. In this case, the exchange between
kinetic and potential energy is small relative to the total energy of the base state. This is
due to the fact that the wave is roughly constant in time, up to a displacement which does
not change the energy.

The total energy can again be seen to remain constant up to a high precision. Like
before, this is achieved by using a small time step (Δ𝑡 = 0.005s), with a modest spatial
resolution (𝑁𝑝 = 𝑁𝑢 = 40). Figure 3.12 shows how the energy converges with time step
refinement. The convergence rate is fourth order over awide range of time steps (matching
the order of the time integration method), demonstrating that also for this test case, the
spatial discretization conserves energy. While the solution moves away from the stable
traveling wave predicted by linear analysis, its energy remains constant with time.



3.6 Numerical experiments

3

59

0 10 20 30
t [s]

-1

-0.5

0

0.5

1

R
el

at
iv

e 
en

er
gy

 [J
]

10-5

E
h
0=3.6 101 J

total
potential
kinetic

0 10 20 30
t [s]

-4

-3

-2

-1

0

1

2

3

4

E
ne

rg
y 

er
ro

r 
[-

]

10-13

Figure 3.11: Conserved quantities for the traveling wave test case. Left: potential, kinetic and total energy
relative to their initial values. Right: (𝐸ℎ −𝐸0ℎ)/𝐸0ℎ.
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3.7 Conclusions
In this chapter, we have derived the result that the total mechanical energy (sum of ki-
netic and potential energy) is a secondary conserved quantity of the incompressible and
isothermal TFM. This result is in line with the well-known fact that multi-dimensional in-
compressible frictionless flow equations conserve mechanical energy. Our novel insight
is that this conservation statement still holds after averaging: the averaging procedure
used to obtain the 1D TFM does not interfere with the energy conservation property. The
approach was based on the formulation of entropy variables and an entropy potential, sim-
ilar to what is commonly done for the SWE, but with two main differences: (i) we have
included a non-conservative pressure term in our analysis, which is shown to be energy-
conserving, and (ii) we have obtained our results independent of the duct geometry, which
may be a 2D channel or a circular pipe, or any other closed cross-sectional duct shape.

The second novel result of this chapter is a set of numerical fluxes that conserve a dis-
crete form of the mechanical energy. A discretization on a staggered grid was proposed
in order to keep the energy conservation property of the non-conservative pressure terms
in a discrete sense. Although the use of a staggered grid implies that the choice of a dis-
crete energy and entropy potential is not unique, we were able to propose a combination
which is such that the discrete analysis is consistent with and analogous to the continuous
analysis. However, one important difference between the continuous and discrete cases
remains, namely in the analysis of the level gradient terms (for arbitrary geometries). A
geometric relation between the potential energy and the interface height is satisfied ex-
actly in the continuous case, but only approximately in the discrete case. Fortunately, for
the specific case of the 2D channel geometry, the condition is satisfied exactly, and the dis-
crete level gradient reduces to a form which parallels the continuous form perfectly. For
other geometries, such as the pipe, a small numerical energy error persists in the discrete
analysis.

Our theoretical derivations are supported by numerical experiments, which show that
the proposed energy is indeed exactly conserved by our new spatial discretization in both
periodic and closed domains. Building on previous work [107], the discretization also
conserves mass and momentum, has strong coupling between momentum and pressure,
and is constraint-consistent. In these experiments the temporal error was negligible (due
to a combination of high-order time integration and small time steps), but for future work
it is suggested to also make the time integration method energy-conserving [103].

Our energy-conserving formulation of the TFM provides a foundation for investigat-
ing the nonlinear stability of the model. For related models, the energy acts as a norm
or a convex entropy function of the solution, providing stability bounds, and it should be
investigated if the TFM energy has similar implications. While we have only considered
smooth solutions, in general cases discontinuities may appear, at which energy should be
dissipated [61]. Failure of a numerical scheme to do so leads to numerical oscillations. As
a first option, an energy-consistent discretization of the wall and interface friction, and
streamwise diffusion due to molecular and turbulent viscosity [46, 126], could be consid-
ered. Alternatively, a carefully chosen numerical diffusion operator could be added to the
scheme to obtain the required dissipation at shocks [24, 43].
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Appendix
3.A Global energy analysis
The main text has described a way to derive the local semi-discrete energy conservation
equation given by (3.33). In the case of periodic or closed boundaries, this can be inte-
grated in space to yield global energy conservation. In this section, we directly derive
the global energy conservation equation without the intermediate step of the local energy.
This allows us to skip the step of choosing an entropy potential, which means that the
derivation will contain less assumptions. On the other hand, the obtained conditions on
the numerical fluxes are not constructive, because they are conditions for the ‘jumps’ of the
numerical fluxes, rather than for a single numerical flux at one discrete point. Therefore,
the global analysis is not used as a replacement, but as a validation of the local analysis.

The scheme (3.29) described in section 3.4 for a certain pressure volume 𝑖 and velocity
volume 𝑖 − 1/2 can be extended to describe the evolution of the entire state vector 𝐪ℎ:

d𝐪ℎ
d𝑡 + 𝐟ℎ + 𝐣ℎ = 𝟎, (3.65)

where 𝐪ℎ = [𝑞1,1…𝑞1,𝑁 , 𝑞2,1…𝑞2,𝑁 , 𝑞3,1/2…𝑞3,𝑁−1/2, 𝑞4,1/2…𝑞4,𝑁−1/2]𝑇 , and similar expres-
sions for 𝐟ℎ and 𝐣ℎ. For simplicity we only discuss periodic boundary conditions, for which
𝑁𝑝 = 𝑁𝑢 = 𝑁 .

Similar to the local entropy variable 𝐯 we define the global entropy variable

𝐯ℎ ≔ [d𝐸ℎ
d𝐪ℎ

]
𝑇
.

Taking the inner product of 𝐯ℎ and (3.65), the first term yields

⟨𝐯ℎ ,
d𝐪ℎ
d𝑡 ⟩ = d𝐸ℎ

d𝑡 .

Thus, to obtain global discrete energy conservation, given by d𝐸ℎ
d𝑡 = 0, we need the follow-

ing conditions on 𝐟ℎ and 𝐣ℎ:
⟨𝐯ℎ , 𝐟ℎ⟩ = 0, (3.66)
⟨𝐯ℎ , 𝐣ℎ⟩ = 0. (3.67)

In order to evaluate 𝐯ℎ, we note that

𝜕𝐸ℎ
𝜕𝐪𝑖

= 𝜕𝑒𝑖−1/2
𝜕𝐪𝑖

+ 𝜕𝑒𝑖+1/2
𝜕𝐪𝑖

= 𝐯𝑖−1/2,𝑖 +𝐯𝑖+1/2,𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− 1
2(

𝑞23,𝑖
𝑞21,𝑖

)+𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖)

− 1
2(

𝑞24,𝑖
𝑞22,𝑖

)+𝑔𝑛𝐻𝐿,𝑖
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.68)
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and 𝐯ℎ follows by assembling this expression for all grid points (ordered by equation, like
𝐪ℎ). The pressure condition (3.67) then evaluates to

⟨𝐯ℎ , 𝐣ℎ⟩ =
𝑁
∑
𝑖=1

𝑄𝑖−1/2 (𝑝𝑖 −𝑝𝑖−1) =
𝑁
∑
𝑖=1

(𝑄𝑖+1/2 −𝑄𝑖−1/2)𝑝𝑖 = 0,

and is thus satisfied because 𝑄 is uniform in space.
The flux condition (3.66) evaluates to

⟨𝐯ℎ , 𝐟ℎ⟩ =
𝑁
∑
𝑖=1

(−12(
𝑞23,𝑖
𝑞21,𝑖

)+𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖))(𝑓1,𝑖+1/2 −𝑓1,𝑖−1/2)

+(−12(
𝑞24,𝑖
𝑞22,𝑖

)+𝑔𝑛𝐻𝐿,𝑖)(𝑓2,𝑖+1/2 −𝑓2,𝑖−1/2)+(
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

)(𝑓3,𝑖 −𝑓3,𝑖−1)+(
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

)(𝑓4,𝑖 −𝑓4,𝑖−1) .

We split this condition into two conditions: one proportional to 𝑔𝑛 and one not propor-
tional to 𝑔𝑛:

⟨𝐯ℎ , 𝐟ℎ⟩ = ⟨𝐯ℎ , 𝐟ℎ⟩𝑎 + ⟨𝐯ℎ , 𝐟ℎ⟩𝑔 .
The advective condition is given by

⟨𝐯ℎ , 𝐟ℎ⟩𝑎 =
𝑁
∑
𝑖=1

[− 1
2(

𝑞23,𝑖
𝑞21,𝑖

)(𝑓1,𝑖+1/2 −𝑓1,𝑖−1/2)−
1
2(

𝑞24,𝑖
𝑞22,𝑖

)(𝑓2,𝑖+1/2 −𝑓2,𝑖−1/2)

+(𝑞3,𝑖−1/2𝑞1,𝑖−1/2
)(𝑓3,𝑖,𝑎 −𝑓3,𝑖−1,𝑎)+(

𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

)(𝑓4,𝑖,𝑎 −𝑓4,𝑖−1,𝑎)].

Substituting (3.53) yields an equation that can be rewritten as

⟨𝐯ℎ , 𝐟ℎ⟩𝑎 =
𝑁
∑
𝑖=1

[12 (
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

𝑞3,𝑖−1/2
Δ𝑠 − 𝑞23,𝑖+1/2

𝑞21,𝑖+1/2
𝑞3,𝑖+1/2
Δ𝑠 )+ 1

2 (
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

𝑞4,𝑖−1/2
Δ𝑠 − 𝑞24,𝑖+1/2

𝑞22,𝑖+1/2
𝑞4,𝑖+1/2
Δ𝑠 )

+(𝑞3,𝑖+1/2𝑞1,𝑖+1/2
− 𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

)(𝑞3,𝑖𝑞1,𝑖
)
𝑞3,𝑖
Δ𝑠 +(𝑞3,𝑖−1/2𝑞1,𝑖−1/2

)(𝑓3,𝑖,𝑎 −𝑓3,𝑖−1,𝑎)

+(𝑞4,𝑖+1/2𝑞2,𝑖+1/2
− 𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

)(𝑞4,𝑖𝑞2,𝑖
)
𝑞4,𝑖
Δ𝑠 +(𝑞4,𝑖−1/2𝑞2,𝑖−1/2

)(𝑓4,𝑖,𝑎 −𝑓4,𝑖−1,𝑎)].

Here, the sum over the entries on the first lines evaluates to zero, since each term has a
matching term of opposite sign and index shifted by 1 (even the boundary terms, in case
of periodic boundaries). In order for this to also hold for the terms in the second and third
lines, we need to satisfy the condition

(𝑞3,𝑖+1/2𝑞1,𝑖+1/2
− 𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

)(𝑞3,𝑖𝑞1,𝑖
)
𝑞3,𝑖
Δ𝑠 +(𝑞3,𝑖−1/2𝑞1,𝑖−1/2

)𝑓3,𝑖,𝑎 = (𝑞3,𝑖+1/2𝑞1,𝑖+1/2
)𝑓3,𝑖,𝑎 ,
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and similar for 𝑓4,𝑖,𝑎 . These are indeed satisfied with our choice (3.54).
The condition proportional to 𝑔𝑛 , after substitution of (3.53), is given by

⟨𝐯ℎ , 𝐟ℎ⟩𝑔 =
𝑁
∑
𝑖=1

[𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖)(
𝑞3,𝑖+1/2
Δ𝑠 − 𝑞3,𝑖−1/2

Δ𝑠 )+𝑔𝑛𝐻𝐿,𝑖 (
𝑞4,𝑖+1/2
Δ𝑠 − 𝑞4,𝑖−1/2

Δ𝑠 )

+𝑔𝑛 (
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

)(𝑓3,𝑖,𝑔 −𝑓3,𝑖−1,𝑔)+𝑔𝑛 (
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

)(𝑓4,𝑖,𝑔 −𝑓4,𝑖−1,𝑔)],

and it can be rewritten as

⟨𝐯ℎ , 𝐟ℎ⟩𝑔 =
𝑁
∑
𝑖=1

[𝑔𝑛
Δ𝑠 (𝑓3,𝑖,𝑔 −𝑓3,𝑖−1,𝑔)− (𝐻 −𝐻𝑈 ,𝑖)𝑞1,𝑖−1/2

𝑞1,𝑖−1/2
𝑞3,𝑖−1/2
Δ𝑠 +𝑔𝑛 (𝐻 −𝐻𝑈 ,𝑖)

𝑞3,𝑖+1/2
Δ𝑠

+𝑔𝑛
Δ𝑠 (𝑓4,𝑖,𝑔 −𝑓4,𝑖−1,𝑔)−𝐻𝐿,𝑖𝑞2,𝑖−1/2

𝑞2,𝑖−1/2
𝑞4,𝑖−1/2
Δ𝑠 +𝑔𝑛𝐻𝐿,𝑖

𝑞4,𝑖+1/2
Δ𝑠 ].

Now, in order for this to be conservative, we need the first term in each line to be equal
but opposite in sign to the second term in each line (shifted in index by 1). This yields the
following conditions:

J𝑓3,𝑖−1/2,𝑔K = −
𝑞1,𝑖−1/2
Δ𝑠 J𝐻𝑈 ,𝑖−1/2K, J𝑓4,𝑖−1/2,𝑔K = 𝑞2,𝑖−1/2

Δ𝑠 J𝐻𝐿,𝑖−1/2K, (3.69)

which upon substitution of (3.60) reduce to the geometric conditions (3.56).
In conclusion, the results of the global discrete analysis are consistent with our local

discrete analysis. The additional insight from the global analysis is that the geometric
conditions (3.69) or (3.56) are independent of the choice of the entropy potential. Rather, they
follow directly from our assumed form (3.60) of the numerical fluxes (which can be seen
as a simplification of the full form (3.55), which was obtained using the entropy potential).
This confirms that the choice of entropy potential does not limit the results.

Remark 4. The global energy analysis can also be performed without requiring interpo-
lation of the potential energy to the velocity grid points, as needed in the definition of
𝑒𝑖−1/2 given by (3.40). Instead, one can directly define

𝐸ℎ =
𝑁𝑝
∑
𝑖=1

(𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖Δ𝑠 +𝜌𝐿𝑔𝑛𝐻𝐿,𝑖Δ𝑠)+
𝑁𝑢
∑
𝑖=1

(12
𝑞23,𝑖−1/2
𝑞1,𝑖−1/2

+ 1
2
𝑞24,𝑖−1/2
𝑞2,𝑖−1/2

).

It can be verified that this leads to the same 𝐯ℎ as given by (3.68), and consequently the
geometric condition (3.69) remains present.
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4
Energy-consistent formulation of
the pressure-free two-fluid model

Thepressure-free two-fluidmodel (PFTFM) is a recent reformulation of the one-dimensional
two-fluid model (TFM) for stratified incompressible flow in ducts (including pipes and
channels), in which the pressure is eliminated through intricate use of the volume con-
straint. The disadvantage of the PFTFM was that the volumetric flow rate had to be spec-
ified as an input, even though it is an unknown quantity in case of periodic boundary
conditions.
In this chapter, we derive an expression for the volumetric flow rate that is based on the
demand for energy (and momentum) conservation. This leads to PFTFM solutions that
match those of the TFM, justifying the validity and necessity of the derived choice of vol-
umetric flow rate. Furthermore, we extend an energy-conserving spatial discretization of
the TFM, in the form of a finite volume scheme, to the PFTFM.We propose a discretization
of the volumetric flow rate that yields discrete momentum and energy conservation. The
discretization is extended with an energy-conserving discretization of the source terms
related to gravity acting in the streamwise direction.
Our numerical experiments confirm that the discrete energy is conserved for different
problem settings, including sloshing in an inclined closed tank, and a traveling wave in
a periodic domain. The PFTFM solutions and the volumetric flow rates match the TFM
solutions, with reduced computation time, and with exact momentum and energy conser-
vation.

This chapter is based on the article “Energy-consistent formulation of the pressure-free two-fluid model”, pub-
lished in International Journal for Numerical Methods in Fluids, 95(5):869–898, 2023 [21].
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4.1 Introduction
The one-dimensional two-fluid model (TFM) is a cross-sectionally averaged model for two-
phase flow in ducts [127]. The term ‘duct’ is used generally to describe a closed conduit
with arbitrary cross-sectional shape, including for example cylindrical pipes and 2D chan-
nels. The TFM’s one-dimensional nature makes it useful for applications where the inter-
est is in cross-sectionally averaged quantities for very long ducts, for which the compu-
tational cost needs to be minimized. Important applications include oil and gas or CO2
transport through pipelines [4, 48] and nuclear reactor safety analysis [8].

We consider the incompressible form of the TFM, for (separated) stratified flow, assum-
ing a hydrostatic balance between the fluids [5]. One reason this model is of interest, is its
potential to dynamically simulate the transition from stratified flow to slug flow [60, 67].
This stands in contrast to for example the drift-fluxmodel, where the two velocities are not
modelled separately: instead a closure relation is introduced for their difference [39, 83].
The transition to slug flow can occur through hydrodynamic instabilities that arise natu-
rally in the TFM [6, 74, 76]. However, the physical instability of the model is connected
to a loss of hyperbolicity, an issue for which different interpretations and circumvention
strategies have been proposed [34, 35, 81, 97, 111].

This issue is shared with the two-layer shallow water equations (TLSWE), as described
for example by Chiapolino and Saurel [27]. Both models include one mass equation and
one momentum equation for each fluid (totalling four conservation equations). Whereas
the TLSWE describe open channel flow, the TFM describes flow in a duct that is closed at
the top. This introduces a constraint to the model, named the volume constraint, describ-
ing the demand that the two fluids must together fill the duct. While in the TLSWE the
pressure is completely determined by the ambient pressure and the hydrostatic pressure,
in the closed duct of the TFM the pressure can vary independently as a fifth variable, and
a Poisson equation for it follows from the volume constraint and the derived volumetric
flow constraint, which describes the incompressible nature of the flow. Furthermore, the
TFM describes flow in ducts with arbitrarily shaped cross-sections.

The constraints and the non-dynamic pressure variable complicate the numerical solu-
tion of the TFM, and its (nonlinear) stability analysis. The four equations of the TFM can
be combined into two to form the fixed flux model (FFM), by taking the sum of the mass
equations, and the difference of the momentum equations, which eliminates the pressure
[56, 76, 78, 92]. In the process, smoothness of the solution is assumed, and as a result the
model has incorrect jump conditions for shocks [2]. In addition, the volumetric flow rate
is often assumed to be constant in time, which excludes unsteady inflow boundary condi-
tions, andwhich is incorrect in case of periodic boundary conditions. Similar two-equation
models have been given by Keyfitz et al. [66] and Etrati et al. [36], and a comparable ap-
proach has been taken for a two-layer shallow water model with rigid-lid assumption [86],
which describes flow in a closed channel. A different two-equation two-fluid model was
derived by Jones and Prosperetti [64], in which the volumetric flow constraint is used to
eliminate both the pressure and the mass equations. Like the FFM, this model assumes
smoothness of the solution, and the volumetric flow rate needs to be prescribed.

In a recent article by Sanderse et al. [105], it was shown how a four-equation pressure-
free two-fluidmodel (PFTFM) can be derived, by eliminating the pressure using the volume
constraint, but otherwise leaving the model in its original conservative form. This model
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requires no constraints, exhibits the correct shock relations, and allows a time-dependent
volumetric flow rate.

An open issue with the PFTFM was that the volumetric flow rate needed to be pre-
scribed, although for periodic boundary conditions it is a priori not known what value to
take: it is a free parameter. Without an appropriate prescription for this free parameter,
the solutions of the TFM and the PFTFM, when starting from identical initial conditions,
will diverge in time [105], which means that the PFTFM solution will be incorrect. In this
work, the demand for energy conservation is used to find an appropriate expression for
the rate of change of the volumetric flow rate. Since it is known that the TFM solution
conserves energy (see chapter 3), replicating this property in the PFTFM naturally yields
a PFTFM solution consistent with that of the TFM.

Due to the manner in which the PFTFM is derived from the TFM, it is natural to ap-
ply mass- and momentum conserving discretizations of the TFM to the PFTFM (unlike
for two-equation models which are not formulated as mass and momentum conservation
equations per fluid). In the present chapter, wewill show that, starting from our previously
presented staggered grid energy-conserving discretization of the TFM (see chapter 3), an
energy-conserving semi-discrete form of the PFTFM can be derived. This includes an
expression for the rate of change of volumetric flow rate, as a function of the current so-
lution throughout the domain. This discretization can be compared to energy-conserving
discretizations of the shallowwater equations, on a staggered grid [122], or on a collocated
grid [41, 43]. These discretizations improve the stability of numerical solutions.

We extend the discretization with a streamwise potential energy conserving discretiza-
tion of the streamwise gravity source terms, to make the discretization more complete and
extend its applicability to more general cases. The discretization of these terms is similar
to an existing staggered-grid energy-conserving discretization of terms in the SWE that
describe the influence of a non-flat bottom topography [122]. However, in the SWE, the
bottom topography is added to a level domain, while in the TFM the spatial coordinate
follows the inclination of the duct.

This chapter is set up as follows. Section 2 introduces the TFM and the PFTFM, and
shows how the latter is derived from the former. It points out the step in the derivation
where, if the PFTFM’s free parameter is not set correctly, the models could diverge. In
section 3, we analyse the energy behavior of the continuous PFTFM, as a means to find
an expression for the free parameter, which removes the discrepancy between the TFM
and the PFTFM. Additionally, it is demonstrated that the streamwise gravity terms can be
included in an energy-conserving framework. Section 4 is the semi-discrete counterpart of
section 2, and derives the semi-discrete PFTFM from the semi-discrete energy-conserving
TFM, before discussing both models’ incorporation of the flow constraints. Section 5 uses
semi-discrete energy conservation as a guide to find a semi-discrete expression for the
free parameter, and introduces the energy-conserving discretization of the streamwise
gravity terms. Finally, in section 6, we present the results of numerical experiments, which
show that with our proposed expression for the free parameter, and with our proposed
discretization, the PFTFM solution matches that of the TFM perfectly.
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4.2 Formulation of the two-phase flow models
4.2.1 Introduction to the two-fluid model
The one-dimensional incompressible two-fluid model for stratified flow in channels and
pipes can be derived by setting up integral mass and momentum balances for two control
volumes: one spanning a section of the duct occupied by the upper fluid, and the other
spanning a section of the duct occupied by the lower fluid (see Figure 4.1). Taking the
limit in which the length of the control volumes goes to zero yields a set of equations
for upper and lower fluid cross-sections 𝐴𝑈 and 𝐴𝐿, and the cross-sectionally averaged
velocities 𝑢𝑈 and 𝑢𝐿 [59, 111]. These are functions of time 𝑡 and the axial coordinate
𝑠. In this derivation, a few assumptions are made; one of the most important being that
variations along the streamwise direction typically occur over distances larger than the
duct diameter, resulting in an assumption of hydrostatic balance in the normal direction
[56, 87].

ℎ 𝐻

𝑠𝜙

𝑢𝐿

𝑢𝑈

𝐻𝐿

𝐻𝑈

𝑔𝑛

𝑔𝑠

𝐴𝐿

𝐴𝑈

𝑃𝐿

𝑃𝑈
𝑃int

Figure 4.1: A schematic of stratified two-fluid flow in ducts (a circular pipe segment is shown as an example)
described by the one-dimensional TFM.

The cross-sectionally averaged equations can be written in terms of the conservative
variables 𝐪(𝑠, 𝑡) (see chapter 3):

𝜕𝐪
𝜕𝑡 +

𝜕𝐟(𝐪)
𝜕𝑠 + 𝐣(𝐪)𝜕𝑝𝜕𝑠 = 𝐜(𝐪), (4.1)

with
𝐪𝑇 = [𝑞1 𝑞2 𝑞3 𝑞4] = [𝜌𝑈𝐴𝑈 𝜌𝐿𝐴𝐿 𝜌𝑈 𝑢𝑈𝐴𝑈 𝜌𝐿𝑢𝐿𝐴𝐿] . (4.2)

The cross-sections aremultiplied by the upper and lower fluid densities, 𝜌𝑈 and 𝜌𝐿, in order
to obtain a mass per unit length, and the velocities are multiplied by the cross-sections and
densities to obtain a momentum per unit length. In (4.1), the fluxes are given by

𝐟(𝐪)𝑇 = [𝑓1(𝐪) 𝑓2(𝐪) 𝑓3(𝐪) 𝑓4(𝐪)] = [𝑞3 𝑞4 𝑞23
𝑞1
−𝜌𝑈 𝑔𝑛𝐻𝑈

𝑞24
𝑞2
−𝜌𝐿𝑔𝑛𝐻𝐿] .

Here 𝐻𝑈 = 𝐻𝑈 (𝐪) and 𝐻𝐿 = 𝐻𝐿(𝐪) are geometric terms which are measures for the po-
tential energy relative to the interface height, defined in Appendix A. The gravitational
acceleration in the normal direction is represented by 𝑔𝑛 = 𝑔 cos (𝜙), with 𝜙 the angle at
which the duct is inclined.
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Thepressure 𝑝 appearing in the equations is the pressure at the interface. It is preceded
by the vector 𝐣, which is given by

𝐣(𝐪)𝑇 = [0 0 𝑞1
𝜌𝑈

𝑞2
𝜌𝐿 ] .

Neglecting friction and surface tension, the source terms are given by

𝐜(𝐪)𝑇 = [𝑐1(𝐪) 𝑐2(𝐪) 𝑐3(𝐪) 𝑐4(𝐪)] = [0 0 − 𝑞1
𝜌𝑈

𝜕𝑝body
𝜕𝑠 −𝑔𝑠𝑞1 − 𝑞2

𝜌𝐿
𝜕𝑝body
𝜕𝑠 −𝑔𝑠𝑞2] .

Gravity in the streamwise direction is represented by 𝑔𝑠 = 𝑔 sin (𝜙) (see Figure 4.1), and a
driving pressure gradient 𝜕𝑝body/𝜕𝑠 may be imposed in case of periodic boundary condi-
tions.

The system of equations (4.1) is subject to the volume constraint

𝑞1
𝜌𝑈

+ 𝑞2
𝜌𝐿

= 𝐴, (4.3)

which through differentiation to 𝑡 and substitution of the mass conservation equations
can be converted into the volumetric flow constraint:

𝜕𝑄
𝜕𝑠 = 0, (4.4)

with
𝑄(𝐪) ≔ 𝑞3

𝜌𝑈
+ 𝑞4
𝜌𝐿

= 𝑢𝑈𝐴𝑈 +𝑢𝐿𝐴𝐿. (4.5)

Since 𝑄 = 𝑄(𝐪) and 𝐪 = 𝐪(𝑠, 𝑡), 𝑄 depends on 𝑡 through 𝐪 (but not on 𝑠 due to (4.4)). We
can use these constraints to set up an equation for the pressure. Typically, this equation
is obtained by summing the momentum equations as follows [107]:

𝐥𝑇 𝐣 𝜕𝑝𝜕𝑠 = −𝐥𝑇 (𝜕𝐪𝜕𝑡 +
𝜕𝐟
𝜕𝑠 − 𝐜) , with 𝐥𝑇 = [0 0 1

𝜌𝑈
1
𝜌𝐿 ] , (4.6)

and substituting (4.5) and using (4.4) to get

𝜕𝑝
𝜕𝑠 = − 1

𝐥𝑇 𝐣 (𝐥
𝑇 𝜕𝐟
𝜕𝑠 + 𝑄̇ − 𝐥𝑇 𝐜) , (4.7)

with
𝑄̇ ≔ d𝑄

d𝑡 = 𝜕𝑄
𝜕𝑡 = 1

𝜌𝑈
𝜕𝑞3
𝜕𝑡 + 1

𝜌𝐿
𝜕𝑞4
𝜕𝑡 . (4.8)

Finally, taking the derivative of (4.6) to 𝑠 and applying (4.4) gives a Poisson equation for
the pressure, which can be used instead of the volume constraint to close the model, acting
as the fifth equation of the TFM (in addition to (4.1)):

𝜕
𝜕𝑠 (𝐥

𝑇 𝐣 𝜕𝑝𝜕𝑠 ) = − 𝜕
𝜕𝑠 (𝐥

𝑇 𝜕𝐟
𝜕𝑠 − 𝐥

𝑇 𝐜) . (4.9)
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4.2.2 Pressure-free two-fluid model
The pressure-free two-fluid model (PFTFM) was introduced by Sanderse et al. [105]. It is a
form of the incompressible two-fluid model from which the pressure has been eliminated.
To this end, (4.7) is multiplied by 𝐣 and rewritten as

𝐣 𝜕𝑝𝜕𝑠 = −𝐁(𝜕𝐟𝜕𝑠 − 𝐜)−𝐤𝑄̇, (4.10)

with

𝐁(𝐪) = 𝐣𝐥𝑇
𝐥𝑇 𝐣 =

1
̂𝜌

⎡⎢⎢⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 𝜌𝐿

𝜌𝑈
𝑞1 𝑞1

0 0 𝑞2 𝜌𝑈
𝜌𝐿
𝑞2

⎤⎥⎥⎥⎥
⎦

, 𝐤(𝐪) = 𝐣
𝐥𝑇 𝐣 =

1
̂𝜌
⎡⎢⎢⎢
⎣

0
0

𝜌𝐿𝑞1
𝜌𝑈 𝑞2

⎤⎥⎥⎥
⎦
, (4.11)

̂𝜌(𝐪) = 𝜌2𝐿𝑞1 +𝜌2𝑈 𝑞2
𝜌𝑈 𝜌𝐿

= 𝜌𝑈 𝜌𝐿𝐥𝑇 𝐣.
Substitution of (4.10) in (4.1) then yields the pressure-free two-fluid model

𝜕𝐪′
𝜕𝑡 +𝐀(𝐪′)𝜕𝐟(𝐪

′)
𝜕𝑠 −𝐤(𝐪′)𝐾̇ (𝑡) = 𝐀(𝐪′)𝐜(𝐪′), with 𝐀(𝐪) = 𝐈−𝐁(𝐪). (4.12)

Here, the term 𝐤𝑄̇ (appearing in (4.10)) has been replaced by 𝐤𝐾̇ . This has been done
because in this model, 𝐾̇ = 𝐾̇(𝑡) is a free parameter that needs to be set. We cannot use the
local definition in terms of 𝜕𝐪′/𝜕𝑡 (given by (4.8)), since substituting this definition would
result in a singular system.¹ Instead, the rate of change of the volumetric flow rate needs
to be specified explicitly, as a function that is independent of 𝑠. This directly enforces
the volumetric flow constraint (see section 4.2.4), without need for the pressure and its
Poisson equation.

We have given 𝐪′ an apostrophe in order to distinguish the solution of the PFTFM from
the solution of the TFM, given by 𝐪. The transformation fromTFM to PFTFMwill normally
not change the solution (meaning that the original solution 𝐪(𝑠, 𝑡) will still satisfy the
transformed equations), unless 𝐾̇ (𝑡) is set such that it differs from the 𝑄̇(𝑡) corresponding
to 𝐪(𝑠, 𝑡). In this case, with both models starting from the same initial conditions 𝐪(𝑠, 𝑡0) =
𝐪′(𝑠, 𝑡0), the solutions to the TFM and PFTFMwill diverge over time so that 𝐪(𝑠, 𝑡) ≠ 𝐪′(𝑠, 𝑡).

The derivation described in this subsection relies on the existence of an 𝑠-independent
value for the volumetric flow rate, which is guaranteed by (4.4) for this one-dimensional
model. In multidimensional incompressible flow, the divergence-free constraint does not
determine a unique volumetric flow rate, so this method cannot be applied; see Lteif [79]
for a similar conclusion regarding the two-layer shallow water equations with a rigid lid.

4.2.3 Boundary conditions
Theboundary conditions are important to consider due to their relevance to the volumetric
flow rate. At the boundaries, 𝑞3 and 𝑞4 are set, and the remaining variables follow via
characteristic analysis [107]. This holds both for the TFM and the PFTFM.
¹To see this, note that this model can also be obtained by taking the product of 𝐀 and (4.1). 𝐀 is a projection
matrix satisfying𝐀2 = 𝐀, and it is singular. The term𝐀𝜕𝐪/𝜕𝑡 needs to be split in the following manner: 𝐀𝜕𝐪/𝜕𝑡 =
𝜕𝐪/𝜕𝑡 −𝐁𝜕𝐪/𝜕𝑡 = 𝜕𝐪′/𝜕𝑡 −𝐤𝐾̇ .
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Consider a domain bounded by 𝑠1 and 𝑠2. For a closed domain, the boundary conditions
are given by 𝑞3(𝑠1, 𝑡) = 0, 𝑞4(𝑠1, 𝑡) = 0, 𝑞3(𝑠2, 𝑡) = 0, and 𝑞4(𝑠2, 𝑡) = 0. This directly determines
𝑄 = 𝑄(𝐪) at the boundaries through (4.5), and through (4.4) this determines 𝑄 throughout
the domain.

For inflow boundary conditions, 𝑞3 and 𝑞4 at 𝑠1 and 𝑠2 may be (known) functions of
time. Therefore, 𝑄 may be a function of time (through 𝐪(𝑠, 𝑡)), but it is again fully deter-
mined by the boundary conditions. Through (4.4),𝑄 will be determined for the full domain,
also at an outflow boundary where 𝑞3 and 𝑞4 depend on the solution in the interior.

In case of periodic boundaries, the boundary conditions are 𝑞3(𝑠1, 𝑡) = 𝑞3(𝑠2, 𝑡) and
𝑞4(𝑠1, 𝑡) = 𝑞4(𝑠2, 𝑡). While this illustrates that𝑄 at 𝑠1 will be equal to𝑄 at 𝑠2, these boundary
conditions do not determine the actual value of 𝑄. As a result, 𝑄 can vary freely with time.
The degree to which it varies depends on the specifics of the initial conditions and the
parameter values. For the TFM, 𝑄 can be seen as a component of the solution, for which
the model equations must be solved.

4.2.4 The problem of setting the volumetric flow rate
For the PFTFM, it is necessary to set the (rate of change of the) volumetric flow rate as an
input to the system of equations through the free parameter 𝐾̇ = 𝐾̇(𝑡). This is the cost of
eliminating the pressure 𝑝 = 𝑝(𝑠, 𝑡) as a variable [105]. By taking the dot product of (4.12)
with 𝐥 and substituting

𝑞′3
𝜌𝑈

+ 𝑞′4
𝜌𝐿

= 𝑄(𝐪′) = 𝑄′,
we find that

𝑄̇′ = 𝐾̇ , (4.13)

which makes clear that the value we set for 𝐾 determines the actual volumetric flow
rate of the PFTFM solution. This holds throughout the domain, which directly implies
that the PFTFM solution satisfies the volumetric flow constraint (4.4), if the initial condi-
tions satisfy the volumetric flow constraint. Similarly, take the dot product of (4.12) with
[1/𝜌𝑈 1/𝜌𝐿 0 0] to find

𝜕𝐴′

𝜕𝑡 = −𝜕𝑄
′

𝜕𝑠 = 0,
with 𝐴 defined as a function of 𝐪′ by (4.3). If care is taken that the initial conditions satisfy
the constraints, this equation demonstrates that the volume constraint is also naturally
satisfied by the PFTFM.

Due to the discussion in section 4.2.3, for closed and inflow boundaries it is clear how
to set 𝐾̇ , but for periodic boundaries it is a priori unclear. In related models, the problem
of setting the volumetric flow rate for periodic domains is usually avoided by assuming
𝑄̇′ = 0 [56, 76]. The same assumption has been made (at a later stage in the derivation) by
Sanderse et al. [105], where in case of periodic boundaries the setting 𝐾̇ = 0 has been used.
However, this simplification yields differences between PFTFM and TFM solutions: we
have 𝐾̇ (𝑡) = 𝑄̇′(𝑡) ≠ 𝑄̇(𝑡) and 𝐪′(𝑠, 𝑡) ≠ 𝐪(𝑠, 𝑡). Considering the TFM to be the ground truth,
this renders PFTFM solutions incorrect. In this work we will introduce an expression
for 𝐾̇ based on the demand for momentum and energy conservation, that resolves this
discrepancy.
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4.3 New improvements based on analysis of the
continuous PFTFM

4.3.1 Energy conservation for the continuous model
As stated above, an expression for the free parameter 𝐾̇ can be determined based on the
demand for energy conservation. To this end, we will first give an outline of the steps
required to prove that the mechanical energy is a secondary conserved quantity of the
PFTFM, based on our proof of energy conservation for the regular two-fluid model, as
given in chapter 3. In general, the process involves defining an expression for the mechan-
ical energy, and (based on this expression) manipulating the governing equations of the
model to obtain a local energy conservation equation, from which global energy conser-
vation trivially follows.

Given an expression for the mechanical energy 𝑒(𝐪), we can define the vector of en-
tropy variables, following Fjordholm et al. [42], as

𝐯(𝐪) ≔ [ 𝜕𝑒𝜕𝐪]
𝑇
.

Taking the dot product of this energy with the governing equations given by (4.12) yields

⟨𝐯 , 𝜕𝐪𝜕𝑡 ⟩+ ⟨𝐯 , 𝐈
𝜕𝐟
𝜕𝑠 ⟩− ⟨𝐯 ,𝐁

𝜕𝐟
𝜕𝑠 ⟩− ⟨𝐯 ,𝐤𝐾̇⟩ + ⟨𝐯 ,𝐁𝐜⟩ = ⟨𝐯 ,𝐜⟩, (4.14)

wherewe have omitted the apostrophes, but emphasize that 𝐪 refers to the PFTFM solution.
The first term of this equation reduces to

⟨𝐯 , 𝜕𝐪𝜕𝑡 ⟩ = (𝜕𝑒(𝐪)𝜕𝐪 ) 𝜕𝐪𝜕𝑡 = 𝜕𝑒(𝐪)
𝜕𝑡 ,

which makes (4.14) an equation for 𝜕𝑒/𝜕𝑡 .
Now, if the remaining terms can be written in conservative form, meaning that they

can be written as the one-dimensional divergence of some yet to be defined energy fluxes
ℎ𝑓 and ℎ𝑝 (it will be determined in the current and the following subsection that this is
indeed possible for the proposed model):

⟨𝐯 , 𝜕𝐟𝜕𝑠 ⟩ =
𝜕ℎ𝑓
𝜕𝑠 , (4.15)

−⟨𝐯 ,𝐁⟩𝜕𝐟𝜕𝑠 − ⟨𝐯 ,𝐤⟩𝐾̇ + ⟨𝐯 ,𝐁⟩𝐜 = 𝜕ℎ𝑝
𝜕𝑠 , (4.16)

then (4.14) reduces to the local energy conservation equation

𝜕𝑒
𝜕𝑡 +

𝜕
𝜕𝑠 (ℎ𝑓 +ℎ𝑝) = ⟨𝐯 ,𝐜⟩, (4.17)

showing how the energy 𝑒(𝑠, 𝑡) at a specific point in space changes due to an inflow or
outflow, or due to source terms. Therefore, (4.15) and (4.16) are the conditions which need
to be verified in order to prove energy conservation for the PFTFM. In the case of periodic
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boundaries the difference between the energy flux at the left boundary and the energy
flux at the right boundary must be zero, and in case of closed boundaries the boundary
values of the energy fluxes must themselves be zero. Therefore, for both periodic and
closed boundaries, integrating (4.17) over the domain yields the global energy conserva-
tion equation

d𝐸
d𝑡 = −[ℎ𝑓 +ℎ𝑝]

𝑠2
𝑠1 +∫

𝑠2

𝑠1
⟨𝐯 ,𝐜⟩d𝑠 = ∫

𝑠2

𝑠1
⟨𝐯 ,𝐜⟩d𝑠, with 𝐸(𝑡) ≔ ∫

𝑠2

𝑠1
𝑒 d𝑠. (4.18)

Since the pressure-free two-fluid model is directly derived from the original two-fluid
model and describes the same physics, we expect that it conserves the same energy as the
original two-fluid model. This energy was presented in chapter 3 and is given by

𝑒(𝐪) = 𝜌𝑈 𝑔𝑛𝐻𝑈 +𝜌𝐿𝑔𝑛𝐻𝐿 +
1
2
𝑞23
𝑞1

+ 1
2
𝑞24
𝑞2

. (4.19)

Here 𝐻𝑈 = 𝐻𝑈 (𝐴𝑈 (𝑞1, 𝜌𝑈 )) and 𝐻𝐿 = 𝐻𝐿(𝐴𝐿(𝑞2, 𝜌𝐿)) are general geometric terms repre-
senting the centers of mass of the upper and lower fluids, respectively (see Appendix A).
From this energy, we can calculate the entropy variables as

𝐯(𝐪)𝑇 = [− 1
2
𝑞23
𝑞21

+𝑔𝑛 d𝐻𝑈
d𝐴𝑈

− 1
2
𝑞24
𝑞22

+𝑔𝑛 d𝐻𝐿
d𝐴𝐿

𝑞3
𝑞1

𝑞4
𝑞2
] .

It was already proven in chapter 3 that the flux terms of the TFM are energy-conserv-
ing, and the condition (4.15) takes entirely the same form for the PFTFM as for the TFM.
Therefore, we state that (4.15) holds with

ℎ𝑓 (𝐪) = 𝑔𝑛𝑞3
d𝐻𝑈
d𝐴𝑈

+𝑔𝑛𝑞4
d𝐻𝐿
d𝐴𝐿

+ 1
2
𝑞33
𝑞21

+ 1
2
𝑞34
𝑞22

. (4.20)

This can be proven by simply evaluating the left-hand side (LHS) of (4.15), applying prod-
uct and chain rules, and substituting geometric relations (A.7)². It is possible to substitute
(A.5) in (4.20), but we shall keep the current notation, in which the contributions from
both fluids take the same form. Note that each term in (4.20) contains a multiplication
with a velocity, so that ℎ𝑓 will be zero at closed boundaries, and there will indeed be no
contribution to the global energy balance (4.18) in this case.

4.3.2 Determining the PFTFM free parameter based on energy
conservation

The proof of energy conservation for the remaining terms in the PFTFM differs from the
proof of energy conservation for the pressure terms of the TFM, since condition (4.16)
differs from its TFM equivalent. Therefore, we reintroduce apostrophes to distinguish the
PFTFM solution from the TFM solution, which may differ in case 𝐾̇ is set incorrectly. This
difference in solutions also stands in the way of proving energy conservation, but it turns
out that these two issues can be resolved by a single approach. This approach is to set 𝐾̇
based on the demand for global energy conservation.

²In this derivation 𝑔𝑛 is assumed to be constant along 𝑠.
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TheLHS of (4.16) can be evaluated using ⟨𝐯(𝐪′) , 𝐣(𝐪′)⟩ = 𝑄′ and substituting definitions
(4.11), which yields

− ⟨𝐯(𝐪′) ,𝐁(𝐪′)⟩𝜕𝐟(𝐪
′)

𝜕𝑠 − ⟨𝐯(𝐪′) ,𝐤(𝐪′)⟩𝐾̇ + ⟨𝐯(𝐪′) ,𝐁(𝐪′)⟩𝐜(𝐪′)

= − 𝑄′

𝐥𝑇 𝐣(𝐪′) (𝐥
𝑇 𝜕𝐟(𝐪′)

𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪′)) . (4.21)

For closed and inflow boundary conditions, 𝑄̇′ is determined by the boundary conditions
in the same way for the PFTFM as for the TFM, so we have 𝐾̇ = 𝑄̇ and 𝐪′ = 𝐪, and resub-
stituting (4.7) in (4.21) and by extension in the LHS of (4.16) leads to the conclusion that
(4.16) holds with

ℎ𝑝 = 𝑄𝑝, (4.22)

matching the TFM. However, due to arguments given in section 4.2, for periodic boundary
conditions generally 𝐾̇ ≠ 𝑄̇ and 𝐪′ ≠ 𝐪, and (4.7) cannot be substituted, since it is valid only
for solutions of the TFM.

In general, the RHS of (4.21) can be integrated over the domain to yield the contribution
to the global energy balance (4.18):

d𝐸
d𝑡 = −[ℎ𝑓 ]

𝑠2
𝑠1 +∫

𝑠2

𝑠1

𝑄′

𝐥𝑇 𝐣(𝐪′) (𝐥
𝑇 𝜕𝐟(𝐪′)

𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪′)) d𝑠 +∫
𝑠2

𝑠1
⟨𝐯 ,𝐜⟩d𝑠, (4.23)

in which the advective and gravitational flux terms are encapsulated in the energy flux
ℎ𝑓 (this was discussed above) and are therefore energy-conserving, and the expected con-
tribution of the source terms will be examined in section 4.3.4. Our key insight now is
that (for periodic boundary conditions) 𝐾̇ can be chosen to make the pressure terms of
the model energy-conserving. To determine the value for 𝐾̇ , we demand that the pres-
sure terms are globally energy-conserving, meaning that they should not contribute to
the global energy balance:

∫
𝑠2

𝑠1
− 𝑄′

𝐥𝑇 𝐣(𝐪′) (𝐥
𝑇 𝜕𝐟(𝐪′)

𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪′)) d𝑠 = 0. (4.24)

Applying (4.4) leads to

𝐾̇ = −(∫
𝑠2

𝑠1

𝐥𝑇
𝐥𝑇 𝐣(𝐪′)

𝜕𝐟(𝐪′)
𝜕𝑠 d𝑠 −∫

𝑠2

𝑠1

𝐥𝑇
𝐥𝑇 𝐣(𝐪′) 𝐜(𝐪

′)d𝑠)/(∫
𝑠2

𝑠1

d𝑠
𝐥𝑇 𝐣(𝐪′)). (4.25)

This is the value 𝐾̇ should be set to in order to achieve global energy conservation, for
periodic boundary conditions, when 𝑄̇ is unknown. We note that a similar expression
was derived by Milewski et al. [86], for a two-layer shallow water model with a rigid lid,
but the approximation 𝐾̇ (𝑡) = 0 was made for the analysis and computations. We will use
the precise expression (4.25), meaning that 𝐾̇ is set as a function of the global solution at
time 𝑡 . With this choice, (4.23) reduces to (4.18). Using the proof that with this choice the
PFTFM is equivalent to the TFM (see section 4.3.3), (4.24) can be written as [𝑄𝑝]𝑠2𝑠1 = [ℎ𝑝]

𝑠2
𝑠1 .
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For the case of periodic boundaries, the new and improved PFTFM consists of (4.12)
supplemented by (4.25), making it a combined system of differential and integral equa-
tions. For other boundary conditions, the PFTFM consists of (4.12) supplemented by a
function 𝐾̇ = 𝐾̇(𝑡), which is determined by the (possibly time-dependent) boundary con-
ditions. These methods of setting 𝐾̇ lead to a volumetric flow rate matching that of the
original TFM solution: 𝐾̇ (𝑡) = 𝑄̇(𝑡) (see section 4.3.3). It can be proven that with the
changes made, and as long as consistent initial conditions are used, TFM solutions satisfy
the PFTFM model equations, and vice versa (see section 4.3.3). Therefore, the solutions to
the PFTFMmust be locally energy-conserving (with ℎ𝑝 = 𝑄𝑝) and momentum-conserving
(see section 4.A).

4.3.3 Equivalence of PFTFM and TFM solutions
Given a solution 𝐪′(𝑠, 𝑡), (4.25) provides a unique value for 𝐾̇ (𝑡) = 𝑄̇′(𝑡) in order to obtain a
progression of the solution in time that is globally energy-conserving. In the derivation of
the PFTFM from the TFM given in section 4.2.2, the solution is unchanged, up to the step of
setting the rate of change of volumetric flow rate as an explicit parameter 𝐾̇ (𝑡), instead of
leaving it as a part of the solution in the form 𝑄̇(𝜕𝐪′/𝜕𝑡) (given by (4.8)). This will change
the solution if 𝐾̇ ≠ 𝑄̇, but if 𝐾̇ = 𝑄̇, we change nothing in this step, and the transformation
fromTFM to PFTFM can be freely reversed. Since we have found the unique expression for
𝐾̇ = 𝑄̇′ that will progress the solution in an energy-conserving manner, and we know that
the TFM is energy-conserving and 𝑄̇ will progress the solution 𝐪 in an energy-conserving
manner, it follows that, with identical initial conditions 𝐪′(𝑠, 𝑡0) = 𝐪(𝑠, 𝑡0), we have 𝐾̇ (𝑡0) =
𝑄̇(𝑡0), and the progression of the solutions must be identical so that at all further times we
have 𝐪′(𝑠, 𝑡) = 𝐪(𝑠, 𝑡) and 𝐾̇ (𝑡) = 𝑄̇(𝑡).

The equivalence of solutions to the TFM and PFTFM can be verified by checking that
solutions to the TFM satisfy the PFTFM model equations, and vice versa. First consider
a solution 𝐪(𝑠, 𝑡), 𝑝(𝑠, 𝑡), 𝑄̇(𝜕𝐪/𝜕𝑡) = 𝑄̇(𝑡), which satisfies the TFM model equations (4.1)
and the volume constraint (4.3), and its derived constraints. To check if this solution also
satisfies the PFTFM model equations, we substitute 𝐪 in the PFTFM system (4.12), and
check if the following expression evaluates to zero:

𝜕𝐪
𝜕𝑡 + (𝐈−𝐁(𝐪))

𝜕𝐟(𝐪)
𝜕𝑠 −𝐤(𝐪)𝐾̇(𝑡) − (𝐈−𝐁(𝐪))𝐜(𝐪)

= 𝜕𝐪
𝜕𝑡 +

𝜕𝐟(𝐪)
𝜕𝑠 − 𝐜(𝐪)− 𝐣(𝐪)

𝐥𝑇 𝐣(𝐪) (𝐥
𝑇 𝜕𝐟(𝐪)

𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪)) (4.26)

Clearly, if the following substitution can be made:

− 𝐣(𝐪)
𝐥𝑇 𝐣(𝐪) (𝐥

𝑇 𝜕𝐟(𝐪)
𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪)) = 𝐣(𝐪)𝜕𝑝𝜕𝑠 , (4.27)

then (4.26) reduces to the original TFM equations (which 𝐪 and 𝑝 were defined to satisfy),
and therefore it evaluates to zero. For the TFM we know from (4.7) that (4.27) holds if 𝐾̇ is
replaced by 𝑄̇. In this case, it is trivial to set 𝐾̇ (𝑡) = 𝑄̇(𝑡), since we know 𝑄̇(𝑡) as a part of
the TFM solution. Therefore, the substitution given by (4.27) can be made, (4.26) reduces
to zero, and the TFM solution satisfies the PFTFM model equations.
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Now, we consider a solution 𝐪′(𝑠, 𝑡), 𝑄̇(𝜕𝐪′/𝑡) = 𝑄̇′(𝑡) = 𝐾̇(𝑡)which satisfies the PFTFM
model equations, and check if it satisfies the TFM model equations and its constraints.
Substituting this solution in the TFM system (4.1) requires an expression for the pressure,
so as a trial solution, we calculate the pressure based on (4.7) and the PFTFM solution. The
result is:

𝜕𝐪′
𝜕𝑡 + 𝜕𝐟(𝐪′)

𝜕𝑠 + 𝐣(𝐪′) 𝜕𝑝
′

𝜕𝑠 − 𝐜(𝐪′) = 𝜕𝐪′
𝜕𝑡 + 𝜕𝐟(𝐪′)

𝜕𝑠 − 𝐣(𝐪′)
𝐥𝑇 𝐣(𝐪′) (𝐥

𝑇 𝜕𝐟(𝐪′)
𝜕𝑠 + 𝑄̇′ − 𝐥𝑇 𝐜(𝐪′))−𝐜(𝐪′)

= 𝜕𝐪′
𝜕𝑡 + (𝐈−𝐁(𝐪′)) 𝜕𝐟(𝐪

′)
𝜕𝑠 −𝐤(𝐪′)𝐾̇ − (𝐈−𝐁(𝐪′))𝐜(𝐪′)

= 0, (4.28)

where we have used (4.13). This demonstrates that, using (4.7) to define the pressure gra-
dient as a function of the solution, the PFTFM solution satisfies the TFM model equations,
for any 𝐾̇ . However, this does not take into account the boundary conditions. For closed
or mass inflow boundaries, 𝐾̇ should agree with the inflow set at the boundaries. For
periodic boundary conditions, 𝑝′ should be periodic, meaning that

𝑝′(𝑠2) −𝑝′(𝑠1) = ∫
𝑠2

𝑠1

𝜕𝑝′
𝜕𝑠 d𝑠 = ∫

𝑠2

𝑠1
− 1
𝐥𝑇 𝐣(𝐪′) (𝐥

𝑇 𝜕𝐟(𝐪′)
𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪′)) d𝑠 = 0,

leading again to the demand that 𝐾̇ should be set by (4.25). The proof is completed by
referring back to section 4.2.4, where it has already been demonstrated that the PFTFM
satisfies the volume and volumetric flow constraints, as long as the initial conditions are
consistent.

To summarize, if 𝐾̇ is set by (4.25), and the initial conditions satisfy the constraints,
then any solution to the TFM satisfies the PFTFM, and any solution to the PFTFM satisfies
the TFM. Therefore, we can conclude that the two models yield equivalent solutions.

4.3.4 Conservative formulation of the streamwise gravity source
terms

A second addition to the PFTFM that we propose in this chapter is an energy-conserving
discretization of the source terms related to gravity in the streamwise direction. We first
need to show that the continuous model conserves streamwise potential energy, before
constructing a discretization to mimic this property (the latter will be discussed in sec-
tion 4.5.3). This addition extends upon the discretization presented in chapter 3 and can be
applied just as well to the TFM.The goal of this addition is to make the energy-conserving
discretization more complete and extend its applicability to more general cases (i.e. in-
clined flow).

The source terms can be split into different components, one of which is the streamwise
gravity term 𝐜𝑔 :

𝐜𝑇𝑔 = [0 0 −𝑔 sin (𝜙)𝑞1 −𝑔 sin (𝜙)𝑞2] .
The term 𝐜𝑔 can be incorporated in the energy-conserving formulation by adding a stream-
wise potential energy term to the energy (based on physical considerations):

𝑒new = 𝑒 + 𝑒𝑔 = 𝑒 +𝑔𝑦 (𝑞1 +𝑞2) ,



4.3 New improvements based on analysis of the continuous PFTFM

4

77

with
𝑦(𝑠) = 𝑦1 +∫

𝑠

𝑠1
sin(𝜙(𝑠′))d𝑠′, and

d𝑦
d𝑠 = sin(𝜙(𝑠)).

For this energy, the vector of entropy variables becomes

𝐯new = 𝐯+𝐯𝑔 , with 𝐯𝑇𝑔 = [𝑔𝑦(𝑠) 𝑔𝑦(𝑠) 0 0] .
If 𝑒new is to be conserved, in the absence of other source terms, a new expression for

ℎ𝑓 is required such that the following holds (compare to (4.15))³

⟨𝐯new , 𝜕𝐟𝜕𝑠 ⟩ − ⟨𝐯new , 𝐜𝑔⟩ =
𝜕ℎnew
𝜕𝑠 , (4.29)

Regarding (4.16), nothing is changed, since only the terms in 𝐯 that pertain to 𝑞1 and 𝑞2
are different than before, and (4.16) contains only terms pertaining to 𝑞3 and 𝑞4. If (4.29)
is satisfied, then the energy conservation equation becomes

𝜕𝑒new
𝜕𝑡 + 𝜕

𝜕𝑠 (ℎnew +ℎ𝑝) = ⟨𝐯new , 𝐜rem⟩, (4.30)

in which 𝐜rem is the remainder of the source terms; it contains all source terms except
for 𝐜𝑔 . This equation differs from (4.17) through the changed expressions for 𝑒 and ℎ𝑓
and a part of the source terms being removed from the right-hand side (RHS). It can be
integrated over the domain to yield

d𝐸
d𝑡 = −[ℎnew +ℎ𝑝]

𝑠2
𝑠1 +∫

𝑠2

𝑠1
⟨𝐯new , 𝐜rem⟩d𝑠. (4.31)

The extra terms on the LHS of (4.29), relative to (4.15), are given by

𝑔𝑦(𝑠)(𝜕𝑞3𝜕𝑠 + 𝜕𝑞4
𝜕𝑠 )+𝑔 sin(𝜙(𝑠))(𝑞3 +𝑞4) =

𝜕
𝜕𝑠 (𝑔𝑦(𝑠)(𝑞3 +𝑞4)) .

Therefore, (4.29) is satisfied with

ℎnew = ℎ𝑓 +ℎ𝑔 = ℎ𝑓 +𝑔𝑦(𝑠)(𝑞3 +𝑞4) , (4.32)

and (4.30) holds with 𝑒new and ℎnew.
The derived ℎnew is zero at closed boundaries, so that the boundary terms in (4.31)

disappear and the global energy remains constant. However, ℎnew is not periodic in the
case of periodic boundaries with different 𝑦(𝑠) at each boundary. The difference in 𝑦(𝑠)
between the boundaries makes the domain non-periodic. The change in energy resulting
from the difference between ℎnew(𝑠1) and ℎnew(𝑠2) can potentially be balanced by a driv-
ing pressure gradient, which appears as a source term in the global energy conservation
equation (4.31).

In conclusion, we have shown that the streamwise potential energy can be added to the
energy, so that the amended energy is conserved (with appropriate boundary conditions).
In contrast, remaining source terms such as the driving pressure gradient act as source
terms in the energy equation.
³Note that ℎnew is the new version of ℎ𝑓 (and not for example of ℎ𝑓 +ℎ𝑝 ). The notation has been changed with
respect to the original publication, in order to make it more consistent between the chapters of this thesis.
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4.4 Discretization of the two-phase flow models
4.4.1 Semi-discrete form of the two-fluid model
We have shown how the continuous PFTFM, derived from the continuous TFM, can be
adapted with an appropriate expression for the volumetric flow rate. This leads to solu-
tions matching the TFM, and energy conservation. We will now use these insights to ob-
tain a semi-discrete PFTFMwith the same properties, making use of the energy-conserving
discretization of the TFM given in chapter 3.

To this end we must first derive the semi-discrete PFTFM from the semi-discrete TFM,
mimicking the derivation of the continuous PFTFM from the continuous TFM in sec-
tion 4.2. We choose this route rather than directly discretizing the continuous PFTFM,
because the chosen route ensures that the energy-conserving discretization of the TFM is
applied to the PFTFM consistently (i.e. that the correct discretizations of 𝐁 and 𝐤 are ob-
tained). Such a consistent application of the TFM energy-conserving discretization to the
PFTFM will ensure energy conservation, since this makes the semi-discrete PFTFM a re-
formulation of the energy-conserving semi-discrete TFM, for which energy conservation
has already been demonstrated in chapter 3.

Therefore we first present the semi-discrete form of the TFM, as given in chapter 3.
We have a staggered grid with 𝑁𝑝 ‘pressure volumes’ and 𝑁𝑢 ‘velocity volumes’, shown
in Figure 4.2. Our semi-discrete vector of unknowns

𝐪𝑖(𝑡) ≔
⎡⎢⎢⎢
⎣

𝑞1,𝑖(𝑡)
𝑞2,𝑖(𝑡)

𝑞3,𝑖−1/2(𝑡)
𝑞4,𝑖−1/2(𝑡)

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

(𝜌𝑈𝐴𝑈Δ𝑠)𝑖(𝜌𝐿𝐴𝐿Δ𝑠)𝑖(𝜌𝑈𝐴𝑈 𝑢𝑈Δ𝑠)𝑖−1/2
(𝜌𝐿𝐴𝐿𝑢𝐿Δ𝑠)𝑖−1/2

⎤⎥⎥⎥
⎦

(4.33)

is based on its continuous equivalent (4.2), but includes an extra factor Δ𝑠 so that the
unknowns become quantities of mass or momentum. The quantities of mass are defined at
the pressure volumes and the quantities of momentum are defined at the velocity volumes.

pressure
cells

velocity
cells

𝑞1,1 𝑞1,2 𝑞1,3

𝑞3,1/2 𝑞3,3/2 𝑞3,5/2

𝑞1,1/2

𝑠 0
(1/2)Δ𝑠

Δ𝑠
(3/2)Δ𝑠

2Δ𝑠
(5/2)Δ𝑠

Figure 4.2: Staggered grid layout, with a left boundary.

With a line over the variable indicating interpolation:

𝑎𝑖−1/2 ≔
1
2 (𝑎𝑖−1 +𝑎𝑖) , 𝑎𝑖 ≔

1
2 (𝑎𝑖−1/2 +𝑎𝑖+1/2) ,
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and with brackets indicating a jump:

J𝑎𝑖−1/2K ≔ 𝑎𝑖 −𝑎𝑖−1, J𝑎𝑖K ≔ 𝑎𝑖+1/2 −𝑎𝑖−1/2,
the semi-discrete finite volume scheme can be written as

d𝐪𝑖
d𝑡 + J𝐟𝑖K+ 𝐣𝑖 J𝑝𝑖−1/2K = 𝐜𝑖Δ𝑠, (4.34)

with

𝐟𝑖−1/2(𝐪𝑖−2, 𝐪𝑖−1, 𝐪𝑖) =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

𝑞3,𝑖−1/2
Δ𝑠𝑞4,𝑖−1/2
Δ𝑠

1
Δ𝑠 (

𝑞3,𝑖−1
𝑞1,𝑖−1

)𝑞3,𝑖−1 −𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1

1
Δ𝑠 (

𝑞4,𝑖−1
𝑞2,𝑖−1

)𝑞4,𝑖−1 −𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

, (4.35)

𝐣𝑇𝑖 (𝐪𝑖−1, 𝐪𝑖) =
1
Δ𝑠 [0 0 𝑞1,𝑖−1/2

𝜌𝑈
𝑞2,𝑖−1/2
𝜌𝐿

] , (4.36)

𝐜𝑇𝑖 (𝐪𝑖−1, 𝐪𝑖) = [0 0 − 𝑞1,𝑖−1/2
𝜌𝑈Δ𝑠

𝜕𝑝body
𝜕𝑠 −𝑔 J𝑦𝑖−1/2K

Δ𝑠
𝑞1,𝑖−1/2
Δ𝑠 − 𝑞2,𝑖−1/2

𝜌𝐿Δ𝑠
𝜕𝑝body
𝜕𝑠 −𝑔 J𝑦𝑖−1/2K

Δ𝑠
𝑞2,𝑖−1/2
Δ𝑠 ] .
(4.37)

The volume constraint 𝑞1,𝑖
𝜌𝑈Δ𝑠

+ 𝑞2,𝑖
𝜌𝐿Δ𝑠

= 𝐴 (4.38)

closes the equations. Through differentiation to 𝑡 and substitution of the mass conserva-
tion equations (with fluxes given by (4.35)), it implies the volumetric flow constraint

J𝑄𝑖K = 0, (4.39)

with
𝑄𝑖−1/2(𝐪𝑖) ≔

𝑞3,𝑖−1/2
𝜌𝑈Δ𝑠

+ 𝑞4,𝑖−1/2
𝜌𝐿Δ𝑠

. (4.40)

Just as in the continuous case, this constraint can be used to formulate an equation for the
pressure. The discrete momentum equations can be summed as follows:

1
Δ𝑠 𝐥

𝑇 𝐣𝑖 J𝑝𝑖−1/2K = − 1
Δ𝑠 𝐥

𝑇 (d𝐪𝑖
d𝑡 + J𝐟𝑖K−𝐜𝑖Δ𝑠) , with 𝐥𝑇 = [0 0 1

𝜌𝑈
1
𝜌𝐿 ] . (4.41)

Substituting (4.40) yields an equation for the pressure that compares to (4.7):J𝑝𝑖−1/2K
Δ𝑠 = − 1

𝐥𝑇 𝐣𝑖
(𝐥𝑇 J𝐟𝑖K

Δ𝑠 + 𝑄̇𝑖−1/2 − 𝐥𝑇 𝐜𝑖) . (4.42)

Taking the difference of (4.42) with a shifted version of itself and applying (4.39) yields

1
Δ𝑠 [𝐥

𝑇 𝐣𝑖+1
J𝑝𝑖+1/2K

Δ𝑠 − 𝐥𝑇 𝐣𝑖
J𝑝𝑖−1/2K

Δ𝑠 ] = − 𝐥
𝑇

Δ𝑠 (
J𝐟𝑖+1K
Δ𝑠 − J𝐟𝑖K

Δ𝑠 )+ 𝐥
𝑇 J𝐜𝑖+1/2K

Δ𝑠 . (4.43)

This is the discrete version of (4.9).
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4.4.2 Semi-discrete form of the pressure-free two-fluid model
Having presented an energy-conserving discretization of the TFM and its constraints, we
can derive the pressure-free version of it, following the approach of section 4.2.2. Like in
section 4.2.2, we multiply (4.42) by 𝐣𝑖 to obtain

𝐣𝑖
J𝑝𝑖−1/2K

Δ𝑠 = −𝐁𝑖 (
J𝐟𝑖K
Δ𝑠 −𝐜𝑖)−𝐤𝑖𝑄̇𝑖−1/2, (4.44)

with

𝐁𝑖(𝐪𝑖−1, 𝐪𝑖) =
𝐣𝑖𝐥𝑇
𝐥𝑇 𝐣𝑖

= 1
̂𝜌𝑖−1/2Δ𝑠

⎡⎢⎢⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 𝜌𝐿

𝜌𝑈
𝑞1,𝑖−1/2 𝑞1,𝑖−1/2

0 0 𝑞2,𝑖−1/2
𝜌𝑈
𝜌𝐿
𝑞2,𝑖−1/2

⎤⎥⎥⎥⎥
⎦

, (4.45)

𝐤𝑖(𝐪𝑖−1, 𝐪𝑖) =
𝐣𝑖
𝐥𝑇 𝐣𝑖

= 1
̂𝜌𝑖−1/2Δ𝑠

⎡⎢⎢⎢
⎣

0
0

𝜌𝐿𝑞1,𝑖−1/2
𝜌𝑈 𝑞2,𝑖−1/2

⎤⎥⎥⎥
⎦
, (4.46)

̂𝜌𝑖−1/2(𝐪𝑖−1, 𝐪𝑖) =
𝜌2𝐿𝑞1,𝑖−1/2 +𝜌2𝑈 𝑞2,𝑖−1/2

𝜌𝑈 𝜌𝐿Δ𝑠
= 𝜌𝑈 𝜌𝐿𝐥𝑇 𝐣𝑖 .

Substitution of (4.44) in (4.34) then yields the semi-discrete pressure-free two-fluid
model

d𝐪′𝑖
d𝑡 +𝐀′𝑖 J𝐟′𝑖 K−𝐤′𝑖 𝐾̇Δ𝑠 = 𝐀′𝑖 𝐜′𝑖Δ𝑠, with 𝐀𝑖 = 𝐈−𝐁𝑖 , (4.47)

where the apostrophes denote (dependence on) the PFTFM solution as opposed to the TFM
solution (e.g. 𝐟′𝑖 = 𝐟𝑖(𝐪′𝑖−1, 𝐪′𝑖 )). Here 𝐾̇ must be set as an input to the model, as discussed
in section 4.2.2.

4.4.3 Boundary conditions
For periodic domains, in a sense there are no boundaries. The scheme (4.47) continuously
applies to all grid points, where it is understood that the left-most point of the domain and
the right-most point of the domain are neighbours. There are an equal number of pressure
volumes 𝑁𝑝 and velocity volumes 𝑁𝑢 .

For closed domains, if there are𝑁𝑝 pressure volumes, there are𝑁𝑢 = 𝑁𝑝 −1 full velocity
volumes. At each side of the domain, there is an additional boundary point, and there is
distance of Δ𝑠/2 between these points and the boundary of the closest velocity volume
(see Figure 4.2). At the boundary points, we prescribe the boundary conditions in weak
form. If the first interior pressure grid point is given an index of 1 and the last is given
an index of 𝑁𝑝 , this means that we prescribe d𝑞3,1/2/d𝑡 = 0, d𝑞4,1/2/d𝑡 = 0, d𝑞3,𝑁𝑝+1/2/d𝑡 = 0,
d𝑞4,𝑁𝑝+1/2/d𝑡 = 0 (the initial conditions should be prescribed such that 𝑞3,1/2 = 0, 𝑞4,1/2 =
0, 𝑞3,𝑁𝑝+1/2 = 0, 𝑞4,𝑁𝑝+1/2 = 0 for closed boundaries). The boundary values of d𝑞1,1/2/d𝑡 ,
d𝑞2,1/2/d𝑡 , d𝑞1,𝑁𝑝+1/2/d𝑡 , d𝑞2,𝑁𝑝+1/2/d𝑡 then follow via an analysis of the characteristics, as
explained by Sanderse and Veldman [107].
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In case of inflow boundaries, the treatment is generally the same as for closed bound-
aries, but the time derivatives of the momenta can be set to some predefined function of
time instead of zero (and similar for their initial values). The disadvantage of prescrib-
ing the boundary conditions in weak form as opposed to strong form is the introduction
of a time integration error at the boundaries. However, weak boundary conditions are
necessary for consistency with the prescription of the volumetric flow rate in weak form
(through the parameter 𝐾̇ ) [105].

4.4.4 Discrete aspects of enforcing the constraints
Regarding the connection between the volumetric flow rate and the boundary conditions,
the same arguments apply as in the continuous case. Through definition (4.40), the volu-
metric flow rate is determined by closed or inflow boundary conditions, but not by periodic
boundary conditions. Through (4.39) this is extended to the entire domain.

For the TFM, the volume constraint (4.38) and the volumetric flow constraint (4.39) are
enforced using a predictor-corrector algorithm involving the solution of the pressure Pois-
son equation (4.43), as a part of a semi-explicit Runge-Kutta method [107]. When running
the TFM (for the purpose of comparing results to the PFTFM), we will solve the (implicit)
pressure Poisson equation using a preconditioned conjugate gradient method. Satisfac-
tion of the volume constraint is in turn necessary for total momentum conservation, and
satisfaction of the volumetric flow constraint is necessary for energy conservation (see
chapter 3). Total mass conservation is a property of the finite volume scheme and does
not depend on the pressure Poisson equation.

For the PFTFM, just as in the continuous case, one can take the dot product of (4.47)
with (1/Δ𝑠)𝐥 and substitute (4.40) to find

𝑄̇′𝑖−1/2 = 𝐾̇ ,

and this holds for any index, which shows that the volumetric flow constraint (4.39) is
satisfied naturally by the PFTFM, as long as the initial condition satisfies the constraint.
Similarly, take the dot product of (4.47) with (1/Δ𝑠)[1/𝜌𝑈 1/𝜌𝐿 0 0] to find

d𝐴′𝑖
d𝑡 = − 1

Δ𝑠
q𝑄′𝑖

y = 0, with 𝐴′𝑖 = 𝐴′𝑈 ,𝑖 +𝐴′𝐿,𝑖 = 𝐴,

implying that the volume constraint is also naturally satisfied by the PFTFM, as long as
the initial conditions satisfy the constraints.

This shows how both models incorporate the volumetric flow constraint to determine
the volumetric flow rate throughout the domain. The downside of the TFM is that it re-
quires the solution of an extra equation (the pressure Poisson equation (4.43)), which adds
to the computation time. Additionally, it introduces a numerical error which reduces
the accuracy to which the constraints are satisfied, and as a result reduces the accuracy
to which momentum and energy are conserved. In contrast, the time integration of the
PFTFM can be performed in a fully explicit manner, and we will use a standard four-stage,
fourth-order Runge-Kutta method [23]. The downside of the PFTFM is that the volumet-
ric flow rate must be set explicitly through 𝐾̇ . This issue will be resolved for the discrete
model in the following section, analogously to the continuous model.
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4.5 Converting new improvements to the semi-discrete
setting

4.5.1 Energy conservation for the semi-discrete model
To find an appropriate semi-discrete expression for the volumetric flow rate, we will use
the demand for global energy conservation, as we have for the continuous model. There-
fore we must study energy conservation for the semi-discrete model. Just as for the con-
tinuous model, a local energy conservation equation can be derived from the equations
for mass and momentum conservation that constitute the model.

The derivation starts by defining the discrete mechanical energy 𝑒𝑖−1/2, fromwhich the
discrete vectors of entropy variables can be calculated:

𝐯𝑖−1/2,𝑖−1 ≔ [𝜕𝑒𝑖−1/2𝜕𝐪𝑖−1
]
𝑇
, 𝐯𝑖−1/2,𝑖 ≔ [𝜕𝑒𝑖−1/2𝜕𝐪𝑖

]
𝑇
.

Taking the sum of the dot products of 𝐯𝑖−1/2,𝑖−1 and 𝐯𝑖−1/2,𝑖 with the systems (4.47) for 𝐪𝑖−1
and 𝐪𝑖 , respectively, yields the local energy conservation equation (with ℎ𝑓 .𝑖 and ℎ𝑝,𝑖 as
energy fluxes)

d𝑒𝑖−1/2
d𝑡 + Jℎ𝑓 ,𝑖−1/2K+ Jℎ𝑝,𝑖−1/2K = ⟨𝐯𝑖−1/2,𝑖−1 , 𝐜𝑖−1Δ𝑠⟩+ ⟨𝐯𝑖−1/2,𝑖 , 𝐜𝑖Δ𝑠⟩, (4.48)

under the following conditions:

⟨𝐯𝑖−1/2,𝑖−1,J𝐟𝑖−1K⟩+ ⟨𝐯𝑖−1/2,𝑖 ,J𝐟𝑖K⟩ = r
ℎ𝑓 ,𝑖−1/2

z
, (4.49)

− ⟨𝐯𝑖−1/2,𝑖−1 ,𝐁𝑖−1⟩J𝐟𝑖−1K− ⟨𝐯𝑖−1/2,𝑖 ,𝐁𝑖⟩J𝐟𝑖K− ⟨𝐯𝑖−1/2,𝑖−1 ,𝐤𝑖−1⟩𝐾̇Δ𝑠
− ⟨𝐯𝑖−1/2,𝑖 ,𝐤𝑖⟩𝐾̇Δ𝑠 + ⟨𝐯𝑖−1/2,𝑖−1 ,𝐁𝑖−1⟩𝐜𝑖−1Δ𝑠 + ⟨𝐯𝑖−1/2,𝑖 ,𝐁𝑖⟩𝐜𝑖Δ𝑠 = Jℎ𝑝,𝑖−1/2K. (4.50)

This means that if the LHS of (4.49) and (4.50) can be written in conservative form, i.e.
as the difference between an ingoing and an outgoing flux for the grid point 𝑖 − 1/2, then
the scheme is energy-conserving. Therefore, (4.49) and (4.50) are the conditions for semi-
discrete local energy conservation for the PFTFM, and are the discrete analogues of (4.15)
and (4.16).

In case of periodic or closed boundaries, ‘integrating’ (summing) (4.48) over the domain
yields the global energy conservation equation

d𝐸ℎ
d𝑡 =

𝑁𝑢
∑
𝑖=1

[⟨𝐯𝑖−1/2,𝑖−1 , 𝐜𝑖−1Δ𝑠⟩+ ⟨𝐯𝑖−1/2,𝑖 , 𝐜𝑖Δ𝑠⟩] , with 𝐸ℎ(𝑡) ≔
𝑁𝑢
∑
𝑖=1

𝑒𝑖−1/2(𝑡).

Wenow consider a specific energy, and verify if the conditions for energy conservation
are satisfied. Since the semi-discrete pressure-free two-fluidmodel is directly derived from
the semi-discrete two-fluid model, it should conserve the same energy (if the volumetric
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flow rate is set correctly). The energy which was shown to be conserved by the TFM in
chapter 3 is given by

𝑒𝑖−1/2 = 𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1/2Δ𝑠 +𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1/2Δ𝑠 +
1
2
𝑞23,𝑖−1/2
𝑞1,𝑖−1/2

+ 1
2
𝑞24,𝑖−1/2
𝑞2,𝑖−1/2

.

From this definition, the entropy variables can be calculated as

𝐯𝑖−1/2,𝑖−1 =

⎡⎢⎢⎢⎢⎢
⎣

− 1
4
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝑈
d𝐴𝑈

)
𝑖−1

− 1
4
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝐿
d𝐴𝐿

)
𝑖−1

0
0

⎤⎥⎥⎥⎥⎥
⎦

, 𝐯𝑖−1/2,𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

− 1
4
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝑈
d𝐴𝑈

)
𝑖

− 1
4
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝐿
d𝐴𝐿

)
𝑖𝑞3,𝑖−1/2

𝑞1,𝑖−1/2𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

.

Condition (4.49) takes exactly the same form for the PFTFM as for the TFM, and does
not involve the pressure or the volumetric flow rate. Since our semi-discrete PFTFM was
derived from the energy-conserving semi-discrete TFM that was shown to satisfy this
condition (see chapter 3), and consequently uses the same expressions for the numerical
flux (given by (4.35)), it is clear that this condition will be satisfied for the PFTFM as well.
This can be verified via a direct evaluation of the LHS of (4.49), making use of a discrete
product rule and a discrete counterpart of (A.7).⁴ This will show that (4.49) holds with

ℎ𝑓 ,𝑖 = [𝑔𝑛(
d𝐻𝑈
d𝐴𝑈

)
𝑖

𝑞3,𝑖
Δ𝑠 ]+([(

𝑞3,𝑖
𝑞1,𝑖

)]
2

− 1
2(

𝑞23,𝑖
𝑞21,𝑖

))
𝑞3,𝑖
Δ𝑠 + 1

4𝜌𝑈 𝑔𝑛
t
𝑞3,𝑖
𝑞1,𝑖

r
𝐻𝑈 ,𝑖

z|

+[𝑔𝑛(
d𝐻𝐿
d𝐴𝐿

)
𝑖

𝑞4,𝑖
Δ𝑠 ]+([(

𝑞4,𝑖
𝑞2,𝑖

)]
2

− 1
2(

𝑞24,𝑖
𝑞22,𝑖

))
𝑞4,𝑖
Δ𝑠 + 1

4𝜌𝐿𝑔𝑛
t
𝑞4,𝑖
𝑞2,𝑖

r
𝐻𝐿,𝑖

z|
.

Since the last terms in each line vanish for Δ𝑠 → 0, this discrete definition of ℎ𝑓 is consis-
tent with the continuous definition given by (4.20). Condition (4.49) being satisfied proves
that the flux terms of the semi-discrete PFTFM are energy-conserving.

4.5.2 Determining the PFTFM free parameter based on energy
conservation

We now turn to condition (4.50), which needs to be satisfied for the ‘pressure terms’ of the
semi-discrete PFTFM to be energy-conserving. In contrast to condition (4.49), condition
(4.50) is unique to the PFTFM, and it hinges on a correct expression for 𝐾̇ . We again use
apostrophes to distinguish the PFTFM solution from the TFM solution, and to distinguish

⁴Unlike their continuous versions, the discrete geometric conditions are only satisfied exactly by geometries
with d2𝐻𝐿/d𝐴2𝐿 = 0 (for example the 2D channel geometry). For other geometries, such as the cylindrical pipe
geometry, these conditions are satisfied up to a numerical error of order (Δ𝑠)3 (see chapter 3).
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functions of the PFTFM solution from functions of the TFM solution. With 𝐣𝑖 defined by
(4.36), we obtain

⟨𝐯′𝑖−1/2,𝑖−1, 𝐣′𝑖−1⟩ = 0, ⟨𝐯′𝑖−1/2,𝑖 , 𝐣′𝑖⟩ = (𝑞
′3,𝑖−1/2
𝜌𝑈Δ𝑠

+ 𝑞′4,𝑖−1/2
𝜌𝐿Δ𝑠

) = 𝑄′𝑖−1/2.

Therefore, similar to (4.21), the LHS of (4.50) evaluates to

−𝑄
′𝑖−1/2
𝐥𝑇 𝐣′𝑖

(𝐥𝑇 J𝐟′𝑖 K+ 𝐾̇Δ𝑠 − 𝐥𝑇 𝐜′𝑖Δ𝑠) .
For boundary conditions for which the volumetric flow is known a priori (closed or inflow
boundaries), and 𝐾̇ is set accordingly so that 𝐾̇ = 𝑄̇, we can resubstitute the discrete pres-
sure equation (4.42) to show that (4.50) holds with ℎ𝑝,𝑖 = 𝑄′𝑝𝑖 , where we have used (4.39):
the volumetric flow rate must be constant with 𝑠 (and it is for the PFTFM, see section 4.4.4).

Just as for the continuous model, in case of periodic boundary conditions, 𝑄̇ is an a
priori unknown function of the solution. We again set 𝐾̇ such that the considered terms
conserve energy globally:

𝑁𝑢
∑
𝑖=1

−𝑄
′𝑖−1/2
𝐥𝑇 𝐣′𝑖

(𝐥𝑇 J𝐟′𝑖 K+ 𝐾̇Δ𝑠 − 𝐥𝑇 𝐜′𝑖Δ𝑠) = 0.

Using (4.39) again, this leads to

𝐾̇ = −(
𝑁𝑢
∑
𝑖=1

𝐥𝑇
𝐥𝑇 𝐣′𝑖

J𝐟′𝑖 K− 𝑁𝑢
∑
𝑖=1

𝐥𝑇
𝐥𝑇 𝐣′𝑖

𝐜′𝑖Δ𝑠)/(
𝑁𝑢
∑
𝑖=1

Δ𝑠
𝐥𝑇 𝐣′𝑖

). (4.51)

At each time step 𝐾̇ should be set to the current value of the RHS of this expression.
A standard explicit Runge-Kutta time integration method can be used, in which case 𝐾̇
should be calculated similarly at each stage. Setting the time derivative of the volumetric
flow rate as described here corresponds to the ‘option A’ time discretization from Sanderse
et al. [105].

The alternative is to set 𝐾 at each time step (‘option B’), requiring a specific and careful
adaptation of the Runge-Kutta method. This second option does not fit in our framework
of semi-discrete energy conservation, of which the purpose is to ensure that the spatial
discretization does not introduce an energy error. Therefore it is concerned only with how
the different terms in the model relate to each other instantaneously at any given moment
in time. In the semi-discrete model formulation only 𝐾̇ is present, as opposed to 𝐾 , and
therefore we can only impose conditions on 𝐾̇ .

The novel energy-conserving semi-discrete PFTFM consists of (4.47), with fluxes given
by (4.35), and with 𝐾̇ determined by (4.51) in case of periodic boundary conditions. For
other boundary conditions, 𝐾̇ is determined by the mass inflow set at the boundaries.
Standard time integration methods can be applied to the semi-discrete PFTFM; we use
a classic four-stage fourth-order Runge-Kutta method [23]. All the relations needed to
implement the model are summarized in section 4.C.
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With consistent initial conditions, the PFTFMwill naturally satisfy the constraints (see
section 4.4.4) and conserve momentum exactly with time (see section 4.B). Via the same ar-
guments as given for the continuous model in section 4.3, the solution to the semi-discrete
PFTFM will match that of the semi-discrete TFM, with 𝐾̇ = 𝑄̇. Between the fully discrete
models, a very small difference remains, due to the details of the constraint-consistent
time integration method of the TFM, involving a predictor-corrector algorithm and the
solution of the pressure Poisson equation (4.43), instead of a direct evaluation of (4.51).

4.5.3 Conservative discretization of the streamwise gravity source
terms

In section 4.3.4 it was shown that for the continuous model, the streamwise potential
energy can be included in the local energy conservation equation. Only a carefully chosen
discretizationwill replicate this property in the discrete setting. In this subsection, we shall
pose such a discretization and show that it conserves the streamwise potential energy
together with the normal potential energy and the kinetic energy.

We propose the following discretization for the streamwise gravity terms:

𝐜𝑇𝑔,𝑖 = [0 0 −𝑔 J𝑦𝑖−1/2K
Δ𝑠

𝑞1,𝑖−1/2
Δ𝑠 −𝑔 J𝑦𝑖−1/2K

Δ𝑠
𝑞2,𝑖−1/2
Δ𝑠 ] ,

implying that the channel inclination has been discretized as

[sin(𝜙)]𝑖−1/2 =
J𝑦𝑖−1/2K

Δ𝑠 .
The streamwise potential energy is added to the local energy, which becomes

𝑒new,𝑖−1/2 = 𝑒𝑖−1/2 +𝑔(𝑦𝑖−1/2 (𝑞1,𝑖−1/2 +𝑞2,𝑖−1/2)). (4.52)

Other discretizations for the source terms and the energy are conceivable, but we will
show that this particular set is energy-conserving, in conjunction with the discretization
of the core model that was shown to be energy-conserving in the previous subsection.

Our chosen discretization implies that 𝑦 is defined on the pressure grid, and sin(𝜙) is
defined on the velocity grid. This choice is natural since it implies that the streamwise
potential energy is defined on the pressure grid and is interpolated as a whole to the
velocity grid, which matches the treatment of the normal potential energy terms. This
is particularly useful at the boundaries in a non-periodic domain, where velocity half-
volumes are present which require this interpolation to proceed differently (see Figure 4.2).
The potential energy of these half-volumes is determined only from the nearest interior
grid point: 𝑒𝑝,1/2 = (1/2)𝑒𝑝,1 and 𝑒𝑝,𝑁𝑝+1/2 = (1/2)𝑒𝑝,𝑁𝑝 . Treating the boundaries this way
ensures that the act of interpolating the potential energy from the pressure to the velocity
grid does not change the global potential energy. The kinetic energy is calculated directly
from the boundary values without interpolation (masses and momenta are both available
here).

In the proof of energy conservation, condition (4.49) is amended to

⟨𝐯new,𝑖−1/2,𝑖−1,J𝐟𝑖−1K⟩+ ⟨𝐯new,𝑖−1/2,𝑖 ,J𝐟𝑖K⟩
− ⟨𝐯new,𝑖−1/2,𝑖−1 , 𝐜𝑔,𝑖−1Δ𝑠⟩− ⟨𝐯new,𝑖−1/2,𝑖 , 𝐜𝑔,𝑖Δ𝑠⟩ =

qℎnew,𝑖−1/2y . (4.53)
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The discrete condition on ℎ𝑝 , given by (4.50), remains unchanged. If the conditions are
satisfied, the energy conservation equation becomes

d𝑒new,𝑖−1/2
d𝑡 + Jℎnew,𝑖−1/2K+ Jℎ𝑝,𝑖−1/2K = ⟨𝐯new,𝑖−1/2,𝑖−1 , 𝐜rem,𝑖−1Δ𝑠⟩+ ⟨𝐯new,𝑖−1/2,𝑖 , 𝐜rem,𝑖Δ𝑠⟩,

(4.54)
in which 𝐜rem,𝑖 contains the remaining source terms. This equation can be integrated over
the domain to yield the new global energy conservation equation

d𝐸ℎ
d𝑡 =

𝑁𝑢
∑
𝑖=1

[⟨𝐯new,𝑖−1/2,𝑖−1 , 𝐜rem,𝑖−1Δ𝑠⟩+ ⟨𝐯new,𝑖−1/2,𝑖 , 𝐜rem,𝑖Δ𝑠⟩] ,

in which the streamwise gravity terms have been removed from the right-hand side.
For the energy given by (4.52), the entropy variables are

𝐯new,𝑖−1/2,𝑖−1 = 𝐯𝑖−1/2,𝑖−1 +𝐯𝑔,𝑖−1/2,𝑖−1 with 𝐯𝑇𝑔,𝑖−1/2,𝑖−1 = [ 12𝑔𝑦𝑖−1
1
2𝑔𝑦𝑖−1 0 0] ,

𝐯new,𝑖−1/2,𝑖 = 𝐯𝑖−1/2,𝑖 +𝐯𝑔,𝑖−1/2,𝑖 with 𝐯𝑇𝑔,𝑖−1/2,𝑖 = [ 12𝑔𝑦𝑖
1
2𝑔𝑦𝑖 0 0] .

Evaluating the LHS of (4.53) shows that there are only a few additional terms compared
to those that were already shown to be conservative in the previous subsection. It can be
shown that these additional terms can be written ass

(𝑔𝑦𝑖−1/2 (
𝑞3,𝑖−1/2
Δ𝑠 + 𝑞4,𝑖−1/2

Δ𝑠 ))
{
−

s1
4

s
𝑔 J𝑦𝑖−1/2K(𝑞3,𝑖−1/2Δ𝑠 + 𝑞4,𝑖−1/2

Δ𝑠 )
{{

.

Therefore (4.53) is satisfied with

ℎnew,𝑖 = ℎ𝑓 ,𝑖 +ℎ𝑔,𝑖 = ℎ𝑓 ,𝑖 +(𝑔𝑦𝑖 (
𝑞3,𝑖
Δ𝑠 + 𝑞4,𝑖

Δ𝑠 ))−
1
4

s
𝑔 J𝑦𝑖K(𝑞3,𝑖Δ𝑠 + 𝑞4,𝑖

Δ𝑠 )
{
,

which remains consistent with the continuous expression (4.32), and completes the amend-
ed local energy conservation equation (4.54).

In conclusion, we have shown that with a particular discretization of the source terms
related to streamwise gravity, and a particular definition of the discrete streamwise poten-
tial energy, it can be shown that this energy is conserved in conjunction with the normal
potential energy and the kinetic energy. Therefore, with this particular discretization, the
conservation properties of the continuous model (which were discussed in section 4.3)
apply to the semi-discrete model.

4.6 Numerical experiments
We conduct numerical experiments in order to confirm the properties of the proposed
discretization of the PFTFM. The first test case has periodic boundaries. It will be used
to test the new expression for 𝐾̇ and its implementation in a fully explicit Runge-Kutta
method. The test will demonstrate that the TFM and PFTFM solutions are now equivalent
up to a small numerical error. Additionally, it will show that with the proposed adaptation,
momentum and energy are conserved up to high precision.
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The second test case has closed boundaries and an inclined domain, and will be used
to test the proposed conservative discretization of the streamwise gravity terms. Both test
cases are chosen such that for the continuous model the global energy remains constant,
so that the discretization can be tested by verifying that

d𝐸ℎ
d𝑡 = 0.

The spatial discretization should conserve energy exactly, with a residual temporal error
that decreases as the time step is reduced. The non-dimensional energy error will be
defined as (𝐸ℎ −𝐸0ℎ)/𝐸0ℎ, with 𝐸0ℎ the energy of the initial condition.

The test cases are limited to the 2D channel geometry, since the discretization is not
exactly energy-conserving for the circular pipe geometry (see the footnote in section 4.5.1).
The parameters of the cases are chosen such that they avoid discontinuities, which would
require the addition of diffusion to the numerical scheme in order to mitigate oscillations.

The TFM with the hydrostatic pressure assumption, as given in section 4.2.1, is only
conditionally hyperbolic [6, 87]. This means that, for certain configurations of the flow
variables, the eigenvalues can become complex. As a result, a linear stability analysis
will show an unbounded growth rate for perturbations of vanishing wavelength, which is
unphysical, and can lead to a lack of convergence of numerical solutions [46, 74]. Since
the PFTFM has the same eigenvalues as the TFM [105], it retains this property. In the
test cases considered here, the region of state space where the model attains complex
eigenvalues is avoided by the choice of parameters and initial conditions. This implies
that the velocity difference between the lower and upper fluid is kept small (below the
inviscid Kelvin-Helmholtz stability criterion).

4.6.1 Traveling wave
This case is a modified version of a case featured in chapter 3. In this case, we initialize a
sine-shaped perturbation to two fluids in steady state stratified flow in a (level) periodic
domain. The parameters of the case are inspired by the Thorpe experiment [117], and are
given in Table 4.1.

Table 4.1: Parameters for the traveling wave test case.

Parameter Symbol Value Units
Lower fluid density 𝜌𝐿 1000 kgm−3
Upper fluid density 𝜌𝑈 780 kgm−3
Acceleration of gravity 𝑔 9.8 ms−2
Channel inclination 𝜙 0 degrees
Domain length 𝐿 1.83 m
Channel height 𝐻 0.03 m

The base state is defined by 𝛼𝐿,0 = 0.4, 𝑢𝐿,0 = 1ms−1, 𝑢𝑈 ,0 = 1.187ms−1, and 𝑝0 = 105Pa,
with 𝛼𝐿 = 𝐴𝐿/𝐴 being the ‘hold-up’. This set of parameters would result in a steady state
flow when including wall and interface friction.⁵ To this state, we add perturbations ac-
⁵Using the Churchill friction model [28] with viscosities of 𝜇𝑈 = 1.5 ⋅ 10−3 kgm−1 s−1 and 𝜇𝐿 = 1 ⋅ 10−3 kgm−1 s−1.
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cording to:

𝛼𝐿(𝑠) = 𝛼𝐿,0 +Δ𝛼𝐿 cos (𝑘𝑠), 𝑢𝑈 (𝑠) = 𝑢𝑈 ,0 +Δ𝑢̂𝑈 cos (𝑘𝑠),
𝑢𝐿(𝑠) = 𝑢𝐿,0 +Δ𝑢̂𝐿 cos (𝑘𝑠), 𝑝(𝑠) = 𝑝0 +Δ ̂𝑝 cos (𝑘𝑠),

with 𝑘 = 2𝜋/𝐿. In the absence of source terms, and for real values of⁶

𝜔
𝑘 =

𝜌𝐿𝑢𝐿
𝛼𝐿

+ 𝜌𝑈 𝑢𝑈
𝛼𝑈

± √( 𝜌𝐿𝛼𝐿 +
𝜌𝑈
𝛼𝑈

)(𝜌𝐿 −𝜌𝑈 )𝑔𝑛 𝐴
𝑃int

− 𝜌𝐿𝜌𝑈
𝛼𝐿𝛼𝑈

(𝑢𝑈 −𝑢𝐿)2
𝜌𝐿
𝛼𝐿

+ 𝜌𝑈
𝛼𝑈

, (4.55)

these perturbations give rise to exact solutions to the linearized model [74] of the form

𝛼𝐿(𝑠, 𝑡) = 𝛼𝐿,0 +Δ𝛼𝐿 cos (𝑘𝑠 −𝜔𝑡), 𝑢𝑈 (𝑠, 𝑡) = 𝑢𝑈 ,0 +Δ𝑢̂𝑈 cos (𝑘𝑠 −𝜔𝑡),
𝑢𝐿(𝑠, 𝑡) = 𝑢𝐿,0 +Δ𝑢̂𝐿 cos (𝑘𝑠 −𝜔𝑡), 𝑝(𝑠, 𝑡) = 𝑝0 +Δ ̂𝑝 cos (𝑘𝑠 −𝜔𝑡),

where the relative magnitudes of the perturbations are given by

Δ𝛼𝐿 = Δ𝛼𝐿, Δ𝑢̂𝑈 = −(𝜔/𝑘)−𝑢𝑈𝛼𝑈
Δ𝛼𝐿,

Δ𝑢̂𝐿 =
(𝜔/𝑘)−𝑢𝐿

𝛼𝐿
Δ𝛼𝐿, Δ ̂𝑝 = 𝜌𝐿(

[(𝜔/𝑘)−𝑢𝐿]2
𝛼𝐿

−𝑔𝑛
𝐴
𝑃int

)Δ𝛼𝐿

We set Δ𝛼𝐿 = 0.05 and calculate the remaining components of the perturbation according
to the expressions given above, selecting the value for 𝜔/𝑘 corresponding to the plus sign
in (4.55). A projection step is performed on this perturbed state, to yield a set of initial con-
ditions that satisfies the constraints. In the linear approximation, these initial conditions
lead to a single wave travelling to the right at constant amplitude. In the full nonlinear
model, the wave deforms over time, which can be seen by plotting the solution at integer
multiples of the wave period 𝐿𝑘/𝜔 (Figure 4.3).

Figure 4.4 shows the difference between the TFM and the PFTFM results for two com-
ponents of the global solution: the potential energy and the volumetric flow rate. The
results show that by setting 𝐾̇ as described in section 4.5.2, the correct volumetric flow
rate is obtained by the PFTFM, which matches that of the TFM (for reference, the initial
value of the volumetric flow rate is 𝑄0 = 3.3 ⋅ 10−2m2 s−1, and the variation in 𝑄 over the
course of the 30 second simulation is of order 10−7m2 s−1). The agreement in potential
energy is also excellent. This resolves the issue reported in Sanderse et al. [105], where
the authors observed an unjustified difference in volumetric flow rate between TFM and
PFTFM solutions, with an accompanying difference in local solutions. Having repaired
the volumetric flow rate, the simulations exhibit near machine precision agreement in lo-
cal solutions between TFM and PFTFM (not shown). This agreement is independent of
time step.

This near-identical solution is obtained at a significant reduction of computational
expense: the wall-clock time for the PFTFM is 232 seconds while for the TFM it is 733

⁶For the channel geometry, we substitute 𝐴 = 𝐻 and 𝑃int = 1.
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Figure 4.3: Solution to the traveling wave test case at different points in time, with 𝑁𝑝 = 40 and Δ𝑡 = 5 ⋅ 10−4 s.

seconds. This is roughly consistent with the results shown in Sanderse et al. [105], where
it was already concluded that the PFTFM saves computing time by not having to solve the
Poisson equation for the pressure. This conclusion proves to remain valid even though
in that work a direct solver was used for the pressure Poisson equation instead of the
iterative (conjugate gradient) solver used here.
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Figure 4.4: Comparison of solutions to the traveling wave test case obtained using the TFM and the PFTFM. Left:
potential energy difference 𝐸ℎ,𝑝,PFTFM −𝐸ℎ,𝑝,TFM. Right: volumetric flow rate difference 𝑄PFTFM −𝑄TFM.

The energy behavior is shown in Figure 4.5, for a simulation with a resolution of
𝑁𝑝 = 40 and a time step of Δ𝑡 = 5 ⋅ 10−4 s. The exact solution of the linearized model has
constant kinetic and potential energy since it is an unchanging travelling wave, but the
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computed solution shows a somewhat erratic exchange between kinetic energy and a po-
tential solution, at a period of a bit under four times the wave period. This exchange is
small relative to the base energy, around the level of the spatial numerical error. Despite
this irregular exchange, the total energy is conserved to great precision, confirming the
energy-conserving properties of our discretization. If 𝐾̇ is not set as described in sec-
tion 4.5.2, but is set incorrectly to 𝐾̇ = 0, this leads to a total energy error that is many
orders of magnitude larger than the error shown here.
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Figure 4.5: Conserved quantities for the traveling wave test case. Left: potential, kinetic and total energy relative
to their initial values. Right: (𝐸ℎ −𝐸0ℎ)/𝐸0ℎ.

It was discussed in section 4.4.4 that the absence of the Poisson equation for the pres-
sure in the formulation of the discrete PFTFM may lead to improved momentum and en-
ergy conservation when compared to the TFM. This is demonstrated in Figure 4.6, where
we show the conservation errors made by both models, varying the time step. Both mod-
els are solved with a resolution of 𝑁𝑝 = 40, and for the Poisson equation the TFM uses a
preconditioned conjugate gradient solver set to a tolerance at the order of machine preci-
sion (10−15), so that it converges to the smallest possible residual (within a maximum of 50
iteration steps). The error in momentum conservation is constant with time step for both
models, but is consistently larger for the TFM, and this can be ascribed to an increased
volume constraint error. Regarding the energy, both models initially converge to fourth
order with time step, but the PFTFM converges further, before also levelling off at a signif-
icantly smaller error than the TFM.This indicates that the remaining error in the pressure
Poisson solve forms a limiting factor to the accuracy of energy conservation for the TFM.

4.6.2 Sloshing in a closed tank
This is a modified version of a test case presented by Sanderse and Veldman [107]. In
this test case, a section of duct is bounded at the left and right ends by closed boundaries,
forming a closed tank. Two fluids, with the density of water and air, are initialized at rest
with a horizontal boundary between them. At 𝑡 = 0, the tank is set at an incline, causing
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by the PFTFM and TFM. Left: momentum error (𝑀ℎ −𝑀0

ℎ)/𝑀0
ℎ . Right: energy error (𝐸ℎ −𝐸0ℎ)/𝐸0ℎ.

the water to start flowing towards the lower end of the tank, pushing the air towards the
higher end.

This case tests the performance of our discretization of the source terms associated
with the streamwise gravity, which was given in section 4.5.3. Here it was shown that
with an appropriate discretization of these terms, and including the streamwise potential
energy in the energy definition, the streamwise gravity does not act as a source term in
the energy balance. Therefore, we expect to find spatially exact conservation of energy.

The parameters of this case are given in Table 4.2. The experiment differs from the
reference case [107] due to the absence of wall and interface friction, the reduction of the
inclination from 2 to 1 degrees, and the change of duct geometry from circular pipe to 2D
channel. The number of pressure cells taken for the discretization is 𝑁𝑝 = 80, just as in the
reference case [107].

Table 4.2: Parameters for the sloshing test case.

Parameter Symbol Value Units
Lower fluid density 𝜌𝐿 1000 kgm−3
Upper fluid density 𝜌𝑈 1.1614 kgm−3
Acceleration of gravity 𝑔 9.8 ms−2
Channel inclination 𝜙 1 degrees
Domain length 𝐿 1 m
Channel height 𝐻 0.1 m
Initial lower fluid hold-up 𝛼𝐿,0 0.5 −

Figure 4.7 shows the different components of the solution in a space-time plot. At the
start of the simulation, the results show waves in the hold-up emanating from both sides
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of the tank. From the right boundary, an expansion wave travels to the left, reducing the
hold-up. From the left boundary, a compression wave travels to the right. The expan-
sion wave is faster than the compression wave, reaching the left boundary around 𝑡 = 1.3,
while the compression wave reaches the right boundary at 𝑡 = 1.7. Figure 4.8 shows the
solution at the points in time when a wave front meets a boundary. The waves reflect at
the boundaries, and when they meet again the compression wave gains amplitude. This
repeats itself at future encounters between the two waves, building up towards a shock
wave.

The discontinuity which is being formed leads to the onset of numerical oscillations,
which can be observed starting around 𝑡 = 4s. The numerical oscillations may be elimi-
nated through the addition of physical (molecular and turbulent) viscosity [46], (grid-inde-
pendent) artificial diffusion [14, 56], or (grid-dependent) numerical viscosity [42]. This is
outside the scope of this chapter, since here we are interested in demonstrating the energy
conservation property of the discretization, which would be spoiled by adding viscosity.
Our discretization can serve as an energy-conserving basis to which energy-dissipating
terms may be added.

Figure 4.7: Solution to the sloshing test case shown in space and time, with 𝑁𝑝 = 80 and Δ𝑡 = 10−4 s.

Figure 4.9 shows that, with a small time step ofΔ𝑡 = 10−4 s, the total energy is conserved
up to machine precision while potential and kinetic energy are exchanged. The potential
energy includes the normal potential energy and the streamwise potential energy. It is due
to the streamwise potential energy present in the initial condition, which is converted into
kinetic energy, that motion is initiated. In these simulations there is no damping (except
for minute damping due to time integration error), so the fluids will continue sloshing for
as long as the simulation is run.

Figure 4.10 shows that the energy error converges to high precision with time step,
while remaining roughly constant with grid resolution. The convergence with respect to
time is approximately fourth order, corresponding to the order of the Runge-Kutta time
integration scheme. This demonstrates that the spatial discretization is exactly energy
conserving and that the remaining error is only temporal.
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Finally, we verify that the solution of the PFTFM matches the solution of the TFM.
Since the volumetric flow rate is known a priori (𝑄 = 0 and 𝑄̇ = 0), this is achieved without
difficulty. This is demonstrated in Figure 4.11 by comparing the potential and kinetic
energy obtained by the TFM and the PFTFM. The difference between the two models is
near the order of machine precision (and the same holds for the local solutions). Again the
PFTFM saves computing time by not having to solve the Poisson equation for the pressure:
the wall-clock time for the PFTFM is 208 seconds while for the TFM it is 665 seconds.
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Figure 4.11: Comparison of solutions to the sloshing test case obtained using the TFM and the PFTFM. Left:
potential energy difference 𝐸ℎ,𝑝,PFTFM −𝐸ℎ,𝑝,TFM. Right: kinetic energy difference 𝐸ℎ,𝑘,PFTFM −𝐸ℎ,𝑘,TFM.
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4.7 Conclusions
In this chapter, we have removed the discrepancy between the pressure-free two-fluid
model and the original two-fluid model from which it is derived. For periodic boundaries,
this requires setting the rate of change of the volumetric flow rate based on the demand of
global energy and momentum conservation. This change resolves the issues of disagree-
ment between PFTFM and TFM solutions and of energy conservation in a combined ap-
proach. Our approachmay inspire similar improvements to other pressure-eliminated ver-
sions of the TFM, such as the FFM. The PFTFM stands out from other pressure-eliminated
versions of the TFM in that mass, momentum, and energy conserving discretizations of the
TFM can be directly applied, and in the fact that it preserves the correct shock relations.

Additionally, the energy-conserving framework of chapter 3 was extended: the stream-
wise potential energy and its related source terms were included in the energy-conserving
formulation. The amended energy is conserved in inclined domains without friction. We
have presented an energy-conserving discretization of these source terms and their asso-
ciated energy, extending the energy conservation properties of the previously presented
discretization.

It was shown how a semi-discrete version of the PFTFM can be derived from the TFM,
directly demonstrating how the energy-conserving discretization of the TFM presented
in chapter 3 can be applied to the PFTFM. In the framework of this semi-discrete PFTFM,
a discrete equivalent of the new expression for the (rate of change of the) volumetric
flow rate was derived, based on the demand for discrete global energy conservation. This
addition completes the energy-conserving discretization of the PFTFM for the important
case of periodic boundary conditions. With the proposed discretization, the discrepancy
between PFTFM and TFM solutions, observed in numerical simulations in Sanderse et al.
[105], is removed for the discrete model.

The PFTFM modified and discretized as shown in this work conserves mass, momen-
tum, and energy, without needing to account for implicit constraints, making the time
integration fully explicit (standard explicit Runge-Kutta methods can be applied). Thus
solutions are obtained that are equivalent to solutions of the TFM (down to machine pre-
cision), at significantly reduced computational cost. Removing the error attributable to
the pressure Poisson solve in the TFM leads to slightly more precise conservation of mo-
mentum and energy for the PFTFM. A small temporal error remains present in the energy,
which may be resolved in future work by developing an energy-conserving time integra-
tion method for the PFTFM.

In their current form, the model and its discretization contain no numerical or physical
diffusion. This omission is necessary to achieve exact conservation of energy, but has the
effect that discontinuities cannot be correctly resolved. To resolve this, our model could
be extended with diffusion terms as found in e.g. Fullmer et al. [46], by including them
in the source term vector. These should be a strictly dissipative addition to the energy-
conserving discrete model, and should produce the dissipation required at discontinuities,
without excessive dissipation where the solution is smooth.

The elimination of constraints and of the non-conservative pressure terms brings the
model closer in mathematical form to related models such as the two-layer shallow water
equations (TLSWE). Like the TLSWE, the TFM is only conditionally hyperbolic. This can
be explained by the fact that both models describe the flow of two discrete fluids with a
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sharp interface, under hydrostatic balance. The PFTFM and the modifications we propose
in this chapter do not resolve the hyperbolicity issue. However, the PFTFM’s energy-
conserving formulation, and its increased mathematical similarity to the TLSWE, may
facilitate the application of techniques developed for dealing with complex eigenvalues
and instability for the TLSWE [16, 25].

Appendix
4.A Momentum conservation and the PFTFM free

parameter
We now show that expression (4.25) can also be derived by demanding conservation of
total (upper + lower fluid) momentum𝑚(𝐪) = 𝑞3+𝑞4. To obtain the evolution equation for
total momentum, (4.12) needs to be multiplied with 𝐳 = [0 0 1 1], instead of 𝐯 which
is used to obtain the evolution equation for the energy. Performing this multiplication
yields

𝜕𝑚(𝐪′)
𝜕𝑡 = −(⟨𝐳 , 𝜕𝐟(𝐪

′)
𝜕𝑠 ⟩ − ⟨𝐳 ,𝐁(𝐪′)⟩𝜕𝐟(𝐪

′)
𝜕𝑠 − ⟨𝐳 ,𝐤(𝐪′)⟩𝐾̇ + ⟨𝐳 ,𝐁(𝐪′)⟩𝐜(𝐪′))+ ⟨𝐳 ,𝐜(𝐪′)⟩

Substituting (4.11), ⟨𝐳 , 𝐣(𝐪′)⟩ = 𝐴 (assumed constant), and integrating over the domain leads
to

d𝑀′

d𝑡 = −∫
𝑠2

𝑠1

𝜕
𝜕𝑠 (𝑓3(𝐪

′) + 𝑓4(𝐪′)) d𝑠 +∫
𝑠2

𝑠1

𝐴
𝐥𝑇 𝐣(𝐪′) (𝐥

𝑇 𝜕𝐟(𝐪′)
𝜕𝑠 + 𝐾̇ − 𝐥𝑇 𝐜(𝐪′)) d𝑠

+∫
𝑠2

𝑠1
(𝑐3(𝐪′) + 𝑐4(𝐪′)) d𝑠, (4.56)

with 𝑀′ ≔ ∫
𝑠2

𝑠1
𝑚(𝐪′)d𝑠.

The first term on the RHS is in conservative form and is therefore zero for periodic bound-
ary conditions. The last term on the RHS is the expected contribution to the momentum
due to source terms. The second term gives the contribution from the pressure terms, and
is the equivalent of (4.24) for momentum. In case of periodic boundary conditions and
in absence of source terms, only this term remains, and it is easy to see that demanding
global momentum conservation leads to the previously derived expression (4.25), which
is such that 𝐾̇ = 𝑄̇.

However, for closed boundary conditions, the first term on the RHS of (4.56) is nonzero,
since, unlike ℎ𝑓 as given by (4.20), 𝑓3 and 𝑓4 are generally nonzero at closed boundaries
(due to the gravitational terms). Therefore, unlike energy, momentum should not be con-
served in case of closed boundaries, andmomentum conservation cannot be used to derive
an expression for 𝐾̇ . We have𝑄′ = 0 and therefore (4.24) is zero regardless of 𝐾̇ . Thismeans
that energy conservation also cannot be used to derive an expression for 𝐾̇ . Instead, 𝐾̇ is
simply determined by the boundary conditions as described in section 4.2.3, which triv-
ially leads to 𝐾̇ = 𝑄̇ (and the same holds for inflow boundaries). Therefore, for all boundary
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conditions, (4.7) can be resubstituted and the global momentum balance becomes

d𝑀
d𝑡 = −[𝑓3(𝐪)+ 𝑓4(𝐪)]

𝑠2
𝑠1 − [𝐴𝑝]

𝑠2
𝑠1 +∫

𝑠2

𝑠1
𝑐3(𝐪)+ 𝑐4(𝐪)d𝑠,

matching that of the TFM.

4.B Momentum conservation for the discrete PFTFM
Just as in the continuous case, it can be shown that our expression (4.51) for 𝐾̇ (applied
in the case of periodic boundary conditions) leads to total momentum conservation (in
addition to energy conservation). The semi-discrete equation for the conservation of lo-
cal momentum 𝑚′𝑖−1/2 = 𝑚(𝐪′𝑖 ) = 𝑞′3,𝑖−1/2(𝑡) + 𝑞′4,𝑖−1/2(𝑡) can be derived by taking the inner
product of 𝐳 = [0 0 1 1] and (4.47):

d𝑚′𝑖−1/2
d𝑡 = −(⟨𝐳 , q𝐟′𝑖 y⟩ − ⟨𝐳 ,𝐁′𝑖 ⟩q𝐟′𝑖 y− ⟨𝐳 ,𝐤′𝑖 ⟩𝐾̇Δ𝑠 + ⟨𝐳 ,𝐁′𝑖 ⟩𝐜′𝑖Δ𝑠)+ ⟨𝐳 ,𝐜′𝑖Δ𝑠⟩,

and the global momentum equation is derived by summing over the domain:

d𝑀 ′ℎ
d𝑡 = −

𝑁𝑢
∑
𝑖=1

q𝑓 ′3,𝑖−1/2 +𝑓 ′4,𝑖−1/2y+ 𝑁𝑢
∑
𝑖=1

𝐴
𝐥𝑇 𝐣′𝑖

(𝐥𝑇 J𝐟′𝑖 K+ 𝐾̇Δ𝑠 − 𝐥𝑇 𝐜′𝑖Δ𝑠)+ 𝑁𝑢
∑
𝑖=1

(𝑐′3,𝑖−1/2Δ𝑠 + 𝑐′4,𝑖−1/2Δ𝑠) ,

with 𝑀ℎ(𝑡) ≔
𝑁𝑢
∑
𝑖=1

𝑚𝑖−1/2(𝑡).

Here we have substituted ⟨𝐳 , 𝐣′𝑖 ⟩ = 𝐴𝑈 ,𝑖−1/2+𝐴𝐿,𝑖−1/2 = 𝐴, which means that the volume con-
straint (4.38) must remain satisfied, as it is for the PFTFM (see section 4.4.4). For periodic
boundary conditions, setting 𝐾̇ according to (4.51) leads to global momentum conserva-
tion, in absence of source terms. With 𝐾̇ = 𝑄̇, substituting (4.42) leads to

d𝑀ℎ
d𝑡 = −(𝑓3,𝑁𝑝+1/2 +𝑓4,𝑁𝑝+1/2 −𝑓3,1/2 −𝑓4,1/2)−(𝐴𝑝𝑁𝑝+1/2 −𝐴𝑝1/2)+

𝑁𝑢
∑
𝑖=1

(𝑐3,𝑖−1/2Δ𝑠 + 𝑐4,𝑖−1/2Δ𝑠) ,

which is a momentum balance matching that of the TFM.
In contrast to energy, total momentum is conserved regardless of the discretization of

the numerical fluxes, due to the nature of the finite volume scheme (just like total mass).
In addition, it is conserved by a simple forward Euler time discretization, and by extension
also by explicit Runge-Kutta methods. The proof for this is simple since 𝐳 contains only
constants, so that the following holds:

⟨𝐳 , d𝐪
d𝑡 ⟩ = ⟨𝐳 , 𝐪

𝑛+1𝑖 −𝐪𝑛𝑖
Δ𝑡 ⟩ = 𝑚𝑛+1𝑖−1/2 −𝑚𝑛𝑖−1/2

Δ𝑡 ,

with 𝑛 denoting the temporal index and Δ𝑡 the time step. For the energy, no such re-
lation holds, since 𝐯𝑖−1/2,𝑖−1 and 𝐯𝑖−1/2,𝑖 are functions of the solution, which vary with
time. Moreover, since the energy is not a quadratic function of the solution, standard
energy-conserving time integration methods such as implicit midpoint [52] are also not
energy-conserving.
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4.C Summary of the discrete model
We summarize all the relations needed to implement the energy-conserving PFTFM. The
basis of the model is (4.47), which describes the evolution of the variables (4.33), which
are defined on the staggered grid pictured in Figure 4.2. The matrices 𝐀𝑖 and 𝐁𝑖 and the
vector 𝐤𝑖 are defined by the vectors 𝐣𝑖 and 𝐥𝑇 according to (4.45) and (4.46), which are in
turn defined by (4.36) and (4.41). The fluxes 𝐟𝑖 are defined by (4.35), and the difference of
these fluxes should be taken: J𝐟𝑖K = 𝐟𝑖+1/2 − 𝐟𝑖−1/2.
The source term vector, including a driving pressure gradient and streamwise gravity, is
given by (4.37).

The PFTFM does not include constraints or an equation for the pressure. Instead it is
necessary to define the rate of change of the volumetric flow rate, 𝐾̇ . For closed boundaries,
this is simply 𝐾̇ = 0. For an inflow boundary, we have

𝐾̇ = 1
𝜌𝑈

d𝑞3,1/2
d𝑡 + 1

𝜌𝐿
d𝑞4,1/2
d𝑡 ,

where 𝑞3,1/2 and 𝑞4,1/2 are the (prescribed) left boundary values of 𝑞3 = 𝜌𝑈 𝑢𝑈𝐴𝑈 and 𝑞4 =
𝜌𝐿𝑢𝐿𝐴𝐿, respectively. For periodic boundaries, 𝐾̇ is given by (4.51).

For closed or inflow boundaries, the boundary values of d𝑞3/d𝑡 and d𝑞4/d𝑡 are pre-
scribed, and the boundary values of d𝑞1/d𝑡 and d𝑞2/d𝑡 follow from a characteristic bound-
ary treatment described in Sanderse and Veldman [107].

The system (4.47) describes the problem locally and should be used to compose the
global problem, over the whole domain. The resulting system, consisting of the semi-
discrete governing equations with the semi-discrete expression for 𝐾̇ , can be integrated
in time using standard explicit time integration methods. In this work, we use a classic
four-stage fourth-order Runge-Kutta method [23]. Further details on the time integration,
including how to prevent constraint drift, are given in Sanderse et al. [105].
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5
Energy-stable formulation of the

extended two-fluid model
In this chapter we present a complete framework for the energy-stable simulation of strati-
fied incompressible flow in channels, using the one-dimensional two-fluidmodel. Building
on earlier energy-conserving work on the basic two-fluid model, our new framework in-
cludes diffusion, friction, and surface tension. We show that surface tension can be added
in an energy-conserving manner, and that diffusion and friction have a strictly dissipative
effect on the energy.
We then propose spatial discretizations for these terms such that a semi-discrete model
is obtained that has the same conservation properties as the continuous model. Addition-
ally, we propose a new energy-stable advective flux scheme that is energy-conserving in
smooth regions of the flow and strictly dissipative where sharp gradients appear. This is
obtained by combining, using flux limiters, a previously developed energy-conserving ad-
vective flux with a novel first-order upwind scheme that is shown to be strictly dissipative.
The complete framework, with diffusion, surface tension, and a bounded energy, is linearly
stable to short wavelength perturbations, and exhibits nonlinear damping near shocks.
The model yields smoothly converging numerical solutions, even under conditions for
which the basic two-fluid model is ill-posed. With our explicit expressions for the dissi-
pation rates, we are able to attribute the nonlinear damping to the different dissipation
mechanisms, and compare their effects.

This chapter is based on the article “Energy-stable discretization of the one-dimensional two-fluid model”, pub-
lished in International Journal of Multiphase Flow, 174:104756, 2024 [22].
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5.1 Introduction
The one-dimensional two-fluid model (TFM) is a cross-sectionally averaged model for two-
phase flow in pipes and channels. Velocities and phase fractions are resolved only along
the main direction of flow, for each fluid separately. This yields an efficient model that is
useful when calculations are needed quickly, or when many calculations need to be made.
It is most commonly used for flow assurance in oil and gas or CO2 transport [4, 48], and for
safety analysis of steam-water flows in nuclear reactors [8]. In this chapter we consider
the incompressible and isothermal form of the TFM. Note that the one-dimensional model
discussed in this work, with averages taken over the portions of the pipe or channel cross
section occupied by each fluid, differs from multi-dimensional two-fluid models with a
local averaging, as described for example by Chahed et al. [26].

The TFM possesses the ability to dynamically simulate the Kelvin-Helmholtz instabil-
ity which arises at the interface between two fluids flowing at different velocities. This is
a valuable property since it is essential in predicting the transition from stratified flow to
slug flow, a type of flow which is typically unwanted due to the large loads it places on
the pipe [38]. However, for the basic TFM, when the difference between the two fluids’
velocities is large, the instability is unphysically severe. Linear stability analysis shows
an unbounded growth rate at short wavelengths, leading to the conclusion that the model
is ill-posed [34, 35, 87]. For the basic model, with only first-order terms, the results of
the linear stability analysis can be compared to those of a characteristic analysis: short
wavelength unbounded instability implies complex eigenvalues [96].

The stability issue is intertwined with a modeling issue. Due to the averaged one-
dimensional nature of the TFM, not all small-scale dynamics of the instability can be re-
solved, and there is uncertainty on how to model their effect on the averaged flow. The
TFM implicitly carries the long wavelength assumption, implying that the TFM can only
accurately model perturbations with a wavelength longer than the fluid depth [56, 87]. It
is precisely at the poorly modeled short wavelengths that the catastrophic instability takes
place.

The issue has led some researchers to use regularizing terms such as an artificial inter-
facial pressure force which completely eliminates the instability, for both long and short
wavelengths [9, 37, 75]. Others have proposed regularizing terms which only eliminate in-
stability below a desired cut-off wavelength, in the form of artificial diffusion, added both
to mass and momentum equations [14, 56]. Finally, researchers strive for stabilization
through the systematic inclusion of missing physics [35, 76]. One example is the introduc-
tion by Song and Ishii [110] of momentum flux parameters, which are intended to take
into account the effect of the non-uniformity of the velocity profile. Montini [87] showed
that these can extend the region of state space for which the TFM is well-posed, but un-
physically high parameter values are required to stabilize the model for all relevant flow
conditions. Other physical stabilizing effects, such as molecular or turbulent diffusion (in
axial direction) [44] and surface tension [96], specifically target the short scales.

Beyond the question of the growth of small perturbations, which is answered by lin-
ear stability analysis, lies the question of the growth of large perturbations, for which the
full nonlinear behavior of the model must be taken into account [76]. For related models,
namely the single-layer and two-layer shallow water equations, the mechanical energy
acts as an entropy function, and as a nonlinear bound on the solution [15, 42, 121]. An
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energy conservation equation can be derived from the governing (mass and momentum
conservation) equations, leading to the conclusion that energy is a secondary conserved
quantity of the model, following the terminology of Veldman [125]. Energy-conserving
discretization schemes, in which the energy conservation property of the continuous equa-
tions is retained, have been designed in order to prevent numerical instability [47, 122].
In chapter 3 we showed that the basic TFM satisfies an energy conservation equation like
the shallow water equations, and developed an energy-conserving finite volume scheme
which satisfies a semi-discrete energy conservation equation.

However, in the presence of shocks, the derivation of the energy conservation equa-
tion for the continuous model no longer holds, and energy needs to be dissipated [61].
Whereas for the compressible Euler equations the Rankine-Hugoniot relations prescribe
the conservation of energy in shocks, for models like the shallow water equations and the
isothermal TFM the Rankine-Hugoniot relations only involve conservation of mass and
momentum, since thesemodels do not solve an energy equation. Rather, the TFMmust sat-
isfy an energy inequality in the presence of shocks, much like the entropy inequality that
holds for the compressible Euler equations. Energy-conserving schemes without dissipa-
tionwill produce numerical oscillations in the presence of shocks. Therefore energy-stable
schemes are designed, by taking an energy-conserving scheme as a baseline, and adding
strictly dissipative terms, which can only cause a decrease of the energy [24, 43]. These
dissipative terms typically take the form of numerical diffusion which is proportional to
grid cell size, and preferably dissipate the minimum required amount of energy, and only
in the vicinity of shocks, where it is needed.

The TFM requires mechanisms both for dissipation in shocks, and for suppression of
the unbounded linear instability. Following the approach of Fullmer et al. [46], we achieve
these effects through the addition of axial (momentum) diffusion and surface tension. In
this work, we fit these effects, along with wall and interface friction, into our energy-
consistent framework (see chapter 3). Diffusion and friction are shown to be strictly dis-
sipative, surface tension is shown to be energy-conserving, and we present a spatial dis-
cretization of these terms that retains these properties. Importantly, we propose a novel
discretization of the advective flux that is energy stable, with numerical dissipation acting
near discontinuities in the solution.

The extended framework possesses bounded linear growth rates (with damping at
short wavelengths), and possesses a nonlinear bound on the energy. It possesses mul-
tiple mechanisms for dissipation, which can be quantified using explicit expressions for
the various dissipation rates. The energy-stable nature of the semi-discrete model, con-
sistent with its continuous counterpart, provides additional fidelity in the accuracy of the
numerical solution. The framework yields grid-converged numerical solutions, with well-
resolved shocks, for flow states for which the basic TFM is linearly ill-posed.

The analysis of the continuous model is given in section 5.2, starting with a review of
the basic model and its energy behavior, followed by the results for the extended model,
and then a detailed analysis of each term separately. In section 5.3, these steps are re-
peated for the semi-discrete model, with the addition of an analysis of the newly proposed
advective flux discretization, showing that it is energy stable. The stability of the TFM is
discussed in detail in section 5.4, in order to motivate the additions to the basic model.
In section 5.5, the energy and stability properties predicted by analysis are verified using
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numerical experiments. We test the capability to model a traveling wave, and a growing
wave which develops into a shock, and take a detailed look at the different components
of the dissipation near the shock. Our conclusions are given in section 5.6.

5.2 Energy conservation and the continuous TFM
5.2.1 Governing equations for the basic model
The one-dimensional two-fluid model (TFM) is a cross-sectionally averaged model for two-
phase flow in a closed conduit [59, 111]. The conduit can take different forms, such as a
pipe with a circular cross section, as depicted in Figure 5.1, a duct with a rectangular
cross section, or (more abstractly) a two-dimensional channel with a cross section of zero
width. In all cases, the model can be obtained by defining control volumes for the two
fluids separately, which are assumed to be stratified with a sharp interface between them,
and setting up integral mass and momentum balances for these control volumes. No en-
ergy balance is needed, since the flow is assumed to be isothermal [90]. Additionally, the
flow is assumed to be incompressible. The mass and momentum balances are divided by
their length Δ𝑠, the limit Δ𝑠 → 0 is taken, and the resulting equations are written in terms
of cross-sectionally averaged variables, which are functions only of the streamwise coor-
dinate 𝑠 and time 𝑡 . An important assumption made in this process is that the streamwise
length scale over which variations in the flow occur must be much larger than the normal
length scale over which variations occur; this is known as the long wavelength assump-
tion [56, 87]. The long wavelength assumption implies that along the normal direction the
flow is in hydrostatic balance.

ℎ 𝐻

𝑠𝜙

𝑢𝐿

𝑢𝑈

𝐻𝐿

𝐻𝑈

𝑔𝑛

𝑔𝑠

𝐴𝐿

𝐴𝑈

𝑃𝐿

𝑃𝑈
𝑃int

Figure 5.1: A schematic of stratified two-fluid flow in ducts (a circular pipe segment is shown as an example)
described by the one-dimensional TFM.

The model, in conservative form, is given by (see chapter 3):

𝜕𝐪
𝜕𝑡 +

𝜕𝐟(𝐪)
𝜕𝑠 + 𝐣(𝐪)𝜕𝑝𝜕𝑠 = 𝟎, (5.1)

with the conservative variables 𝐪(𝑠, 𝑡) representing a mass per unit length or momentum
per unit length:

𝐪𝑇 = [𝑞1 𝑞2 𝑞3 𝑞4] = [𝜌𝑈𝐴𝑈 𝜌𝐿𝐴𝐿 𝜌𝑈 𝑢𝑈𝐴𝑈 𝜌𝐿𝑢𝐿𝐴𝐿] .
The conservative variables can be written in terms of the primitive variables, namely the
cross-sections𝐴𝑈 and𝐴𝐿 (related to the heights𝐻𝑈 and𝐻𝐿) which are occupied by the up-
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per and lower fluids respectively, the densities 𝜌𝑈 and 𝜌𝐿 of each fluid, and the streamwise
(averaged) velocities 𝑢𝑈 and 𝑢𝐿. In (5.1), the fluxes are given by

𝐟(𝐪)𝑇 = [𝑓1(𝐪) 𝑓2(𝐪) 𝑓3(𝐪) 𝑓4(𝐪)] = [𝑞3 𝑞4 𝑞23
𝑞1
−𝜌𝑈 𝑔𝑛𝐻𝑈

𝑞24
𝑞2
−𝜌𝐿𝑔𝑛𝐻𝐿] .

Here 𝐻𝑈 = 𝐻𝑈 (𝐪) and 𝐻𝐿 = 𝐻𝐿(𝐪) are geometric quantities, defined in Appendix A, which
are part of the terms known as the level gradients, which describe the effect of the varia-
tion of the hydrostatic pressure along 𝑠. The symbol 𝑔𝑛 = 𝑔 cos (𝜙) represents the normal
component of gravity, 𝜙 being the pipe inclination angle.

The pressure 𝑝 appearing in the equations denotes the pressure at the interface be-
tween the two fluids. Its derivative is weighted by the vector 𝐣, which is given by

𝐣(𝐪)𝑇 = [0 0 𝑞1
𝜌𝑈

𝑞2
𝜌𝐿 ] .

Since the upper and lower fluid together fill the pipe with cross-section 𝐴, the system is
subject to the volume constraint 𝑞1

𝜌𝑈
+ 𝑞2
𝜌𝐿

= 𝐴,
which implies the volumetric flow constraint (see chapter 4)

𝜕𝑄
𝜕𝑠 = 0, with 𝑄(𝐪) = 𝑞3

𝜌𝑈
+ 𝑞4
𝜌𝐿

= 𝑢𝑈𝐴𝑈 +𝑢𝐿𝐴𝐿. (5.2)

5.2.2 Energy conservation for the basic model
In this subsection, we give a concise derivation of the energy equation of the basic TFM,
based on the work of chapter 3. The results given in this subsection are not novel, but
serve as a necessary basis for the extended energy analysis of later subsections.

The basic TFM has been shown to conserve the following mechanical energy:

𝑒𝑏(𝐪) = 𝜌𝑈 𝑔𝑛𝐻𝑈 +𝜌𝐿𝑔𝑛𝐻𝐿 +
1
2
𝑞23
𝑞1

+ 1
2
𝑞24
𝑞2

. (5.3)

Here 𝐻𝑈 = 𝐻𝑈 (𝐴𝑈 (𝑞1, 𝜌𝑈 )) and 𝐻𝐿 = 𝐻𝐿(𝐴𝐿(𝑞2, 𝜌𝐿)) are geometric terms representing the
centers of mass of the upper and lower fluids respectively (see Appendix A). Given a me-
chanical energy 𝑒𝑏(𝐪), we can define the following vector:

𝐯𝑏(𝐪)𝑇 ≔ [𝜕𝑒𝑏𝜕𝐪 ] = [− 1
2
𝑞23
𝑞21

+𝑔𝑛 d𝐻𝑈
d𝐴𝑈

− 1
2
𝑞24
𝑞22

+𝑔𝑛 d𝐻𝐿
d𝐴𝐿

𝑞3
𝑞1

𝑞4
𝑞2
] . (5.4)

Taking the dot product of this vector with the governing equations given by (5.1) yields

⟨𝐯𝑏 ,
𝜕𝐪
𝜕𝑡 ⟩ + ⟨𝐯𝑏 ,

𝜕𝐟
𝜕𝑠 ⟩ + ⟨𝐯𝑏 , 𝐣

𝜕𝑝
𝜕𝑠 ⟩ = 0. (5.5)

Using the geometric relations (A.7), the volumetric flow constraint (5.2), and assuming 𝑔𝑛
to be constant along 𝑠, it can be shown that these terms can be written in conservative
form (see chapter 3):

⟨𝐯𝑏 ,
𝜕𝐪
𝜕𝑡 ⟩ =

𝜕𝑒𝑏
𝜕𝑡 , ⟨𝐯𝑏 ,

𝜕𝐟
𝜕𝑠 ⟩ =

𝜕ℎ𝑓
𝜕𝑠 , ⟨𝐯𝑏 , 𝐣

𝜕𝑝
𝜕𝑠 ⟩ =

𝜕ℎ𝑝
𝜕𝑠 ,
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with

ℎ𝑓 = 𝑔𝑛𝑞3
d𝐻𝑈
d𝐴𝑈

+𝑔𝑛𝑞4
d𝐻𝐿
d𝐴𝐿

+ 1
2
𝑞33
𝑞21

+ 1
2
𝑞34
𝑞22

, (5.6)

and
ℎ𝑝 = 𝑄𝑝. (5.7)

In the upcoming energy analysis of the additional model terms, we will follow the same
structure, and use the insight that the dot product of 𝐯𝑏 with the additional model term
yields its contribution to the energy equation.

Since each term in (5.5) can be written in conservative form, it reduces to the local
energy conservation equation

𝜕𝑒𝑏
𝜕𝑡 + 𝜕ℎ𝑏

𝜕𝑠 = 0, (5.8)

with ℎ𝑏 = ℎ𝑓 + ℎ𝑝 , which describes how the energy 𝑒𝑏(𝑠, 𝑡) at a specific point in space
changes due to an inflow or outflow. In case of periodic or closed boundaries, integrating
this equation over a section of pipe yields the global energy conservation equation

d𝐸𝑏
d𝑡 = −[ℎ𝑏]𝑠2𝑠1 = 0, with 𝐸𝑏(𝑡) = ∫

𝑠2

𝑠1
𝑒𝑏 d𝑠. (5.9)

This shows that the mechanical energy is a secondary conserved quantity of the TFM (in
contrast to the primary conserved quantities of mass and momentum).

5.2.3 Energy equation for the extended model
Having set up the basic TFM and its energy conservation equation, we will extend it in
an energy-consistent manner, with three additions that make it linearly well-posed and
energy stable. We will show, in the following subsections, that friction and diffusion have
a strictly dissipative effect, while surface tension can be added in an energy-conserving
manner. Previously (in chapter 4), the energy-conserving nature of streamwise gravity
and the energy input due to a driving pressure gradient have been demonstrated.

The model, extended with all the additional terms, is given by

𝜕𝐪
𝜕𝑡 +

𝜕𝐟
𝜕𝑠 + 𝐣

𝜕𝑝
𝜕𝑠 = 𝜕𝐝

𝜕𝑠 + 𝐬+𝐜𝑔 +𝐜𝑓 +𝐜𝑝 (5.10)

with 𝜕𝐝/𝜕𝑠 representing diffusion, 𝐜𝑓 representing friction, and 𝐬 representing surface ten-
sion. The expressions for these terms will be given in (5.16), (5.20), and (5.25), respectively.
The extended model includes the following contributions from streamwise gravity, indi-
cated in Figure 5.1 with 𝑔𝑠 = 𝑔 sin (𝜙):

𝐜𝑇𝑔 = [0 0 −𝑔 sin (𝜙)𝑞1 −𝑔 sin (𝜙)𝑞2] ,
and from a constant driving pressure gradient, which can be applied in cases with periodic
boundary conditions in order to balance against streamwise gravity and friction:

𝐜𝑇𝑝 = [0 0 − 𝑞1
𝜌𝑈

𝜕𝑝body
𝜕𝑠 − 𝑞2

𝜌𝐿
𝜕𝑝body
𝜕𝑠 ] .
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The driving pressure gradient acts as a body force, and is independent of the variable
pressure 𝑝 which acts to make the flow satisfy the volume and volumetric flow constraints.

For the extended model given by (5.10), the following energy conservation equation
will be derived:

𝜕𝑒
𝜕𝑡 +

𝜕ℎ
𝜕𝑠 = −𝜖 + 𝑐𝑝 (5.11)

with

𝑒 = 𝑒𝑏 +𝑒𝑔 +𝑒𝜎 , (5.12)
ℎ = ℎ𝑏 +ℎ𝑔 +ℎ𝑑 +ℎ𝜎 , (5.13)

𝜖 = 𝜖𝑑 +𝜖𝑓 . (5.14)

Equation (5.11) is the first main novel result of this work. It shows that the mechanical
energy 𝑒, which consists of kinetic, potential, and surface energy, is locally conserved
except for the dissipating effects of diffusion and friction. The upcoming subsections will
give the expressions (5.18) for ℎ𝑑 , (5.19) for 𝜖𝑑 , (5.23) for 𝜖𝑓 , and (5.31) for 𝑒𝜎 and ℎ𝜎 .
Contributions from streamwise gravity are present in the energy and the energy flux (see
chapter 4):

𝑒𝑔 = 𝑔𝑦 (𝑞1 +𝑞2) , ℎ𝑔 = 𝑔𝑦 (𝑞3 +𝑞4) , with
d𝑦
d𝑠 = sin(𝜙(𝑠)),

while the driving pressure gradient adds a source term:

𝑐𝑝 = −𝑄 𝜕𝑝body
𝜕𝑠 ,

which is strictly positive in a flow which is aligned with its driving pressure gradient, e.g.
𝑄 > 0 and 𝜕𝑝body/𝜕𝑠 < 0. This term differs from the others in that it represents an externally
applied force, and therefore does not adhere to the strictly dissipative behavior of the flow
itself.

Upon integrating the local energy equation over a periodic domain, the conservative
term 𝜕ℎ/𝜕𝑠 in (5.11) vanishes. Besides conservative terms, the new energy equation has
an explicit sink term −𝜖 which remains present in the global energy equation:

d𝐸
d𝑡 = −Ɛ+𝐶𝑝 with 𝐸(𝑡) = ∫

𝑠2

𝑠1
𝑒 d𝑠, Ɛ = ∫

𝑠2

𝑠1
𝜖 d𝑠, (5.15)

𝐶𝑝 = ∫
𝑠2

𝑠1
𝑐𝑝 d𝑠 = −𝑄 𝜕𝑝body

𝜕𝑠 𝐿,

with 𝐿 = 𝑠2 − 𝑠1 the length of the domain. Disregarding the (optional) externally supplied
energy source, the energy-conserving basic model has been supplemented with a sink
term which will shown to be strictly negative, leading to the dissipation of energy, and an
energy-stable model.

Each addition to the model independently results in additional terms in the energy
equation. The combined result of all these additions was given here. In the following
subsections, the novel terms in (5.11) will be derived separately.
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5.2.4 Physical diffusion
Our first novel contribution in the continuous setting is that we show that adding viscous
diffusion terms to the TFM has a strictly dissipative effect, which can be quantified using
an expression for the dissipation rate. We refer to these viscous terms as “physical dif-
fusion” in contrast to the artificial diffusion of [14, 45, 56], and the numerical diffusion
which will be discussed in section 5.3. The physical diffusion terms naturally appear in
the derivation of the model, but are typically neglected due to the long wavelength as-
sumption, with the argument that the TFM cannot accurately resolve the scale at which
these terms act. However, they are important in bounding the linear instability of short
wavelength perturbations (see section 5.4), and in bounding nonlinear shocks through
dissipation (see section 5.5.4).

In the TFM, physical diffusion takes the form of the term 𝜕𝐝/𝜕𝐬 as included in (5.10),
with 𝐝 given by [46, 87]

𝐝𝑇 = [0 0 𝜈eff,𝑈 𝑞1 𝜕
𝜕𝑠

𝑞3
𝑞1

𝜈eff,𝐿𝑞2 𝜕
𝜕𝑠

𝑞4
𝑞2 ] . (5.16)

We use the effective viscosity model of Fullmer et al. [44], which combines the material
viscosity 𝜈𝑚 with a turbulent viscosity 𝜈𝑡 . This serves as a closure term for small scale
fluctuations that are not resolved by the model:

𝜈eff = 𝐶𝜖 (𝜈𝑚 +𝜈𝑡 ) ,
with 𝐶𝜖 an adjustment factor. The parameters 𝜈𝑡 and 𝐶𝜖 are empirical: they can be based
on fully resolved (higher dimensional) simulations, specific to a given test case. Physical
diffusion conserves momentum, since it can be written in conservative form.

We now consider the effect of physical diffusion on the energy. Unlike the addition of
streamwise gravity, the addition of diffusion does not change the energy definition. There
is a contribution of the extra terms to the left hand side (LHS) of the energy equation,
which is given by

−⟨𝐯𝑏 ,
𝜕𝐝
𝜕𝑠 ⟩,

with 𝐯𝑏 given by (5.4). Some manipulation yields (for smooth solutions)

− ⟨𝐯𝑏 ,
𝜕𝐝
𝜕𝑠 ⟩ = −𝑞3𝑞1

𝜕
𝜕𝑠 (𝜈eff,𝑈 𝑞1

𝜕
𝜕𝑠

𝑞3
𝑞1

)− 𝑞4
𝑞2

𝜕
𝜕𝑠 (𝜈eff,𝐿𝑞2

𝜕
𝜕𝑠

𝑞4
𝑞2

) = 𝜕ℎ𝑑
𝜕𝑠 + 𝜖𝑑 , (5.17)

with

ℎ𝑑 = −𝜈eff,𝑈 𝑞1
1
2
𝜕
𝜕𝑠

𝑞23
𝑞21

−𝜈eff,𝐿𝑞2
1
2
𝜕
𝜕𝑠

𝑞24
𝑞22

, (5.18)

𝜖𝑑 = 𝜈eff,𝑈 𝑞1 (
𝜕
𝜕𝑠

𝑞3
𝑞1

)
2
+𝜈eff,𝐿𝑞2 (

𝜕
𝜕𝑠

𝑞4
𝑞2

)
2
. (5.19)

The terms included in the energy flux ℎ𝑑 are energy-conserving, since they can be
written in conservative form. The remaining terms, collected in 𝜖𝑑 , are not conservative.
They are strictly positive, since 𝜈eff,𝑈 , 𝑞1, 𝜈eff,𝐿, and 𝑞2 must be positive, and the square
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of the differential terms must be positive. Therefore, when moved to the right hand side
(RHS), it becomes clear that −𝜖𝑑 is a strictly negative sink term. In conclusion, we have
proven analytically that physical diffusion leads to dissipation of the energy given by (5.12),
with dissipation rate 𝜖𝑑 .

5.2.5 Friction terms
Our second novel contribution in the continuous setting is that we prove that wall and
interface friction add a strictly dissipative sink term to the energy equation. The friction
term 𝐜𝑓 can be added to the model as in (5.10), with

𝐜𝑇𝑓 = [0 0 𝜏𝑈 𝑃𝑈 +𝜏int𝑃int 𝜏𝐿𝑃𝐿 −𝜏int𝑃int] . (5.20)

The wall stresses 𝜏𝑈 and 𝜏𝐿 represent the shear stresses acting at the pipe perimeters 𝑃𝑈
and 𝑃𝐿, that are in contact with the upper and lower fluids, respectively. The interface
stress 𝜏int represents the shear stress at the interface 𝑃int between the two fluids. The stress
terms in the model are the averaged effect of local stresses on the averaged flow, and in
order to express these in terms of the averaged variables, closure relations are required.
These typically take the following form [116]:

𝜏𝐿 = −12𝑓𝐿𝜌𝐿𝑢𝐿|𝑢𝐿|, 𝜏𝑈 = −12𝑓𝑈 𝜌𝑈 𝑢𝑈 |𝑢𝑈 |, 𝜏int = −12𝑓int𝜌𝑈 (𝑢𝑈 −𝑢𝐿) |𝑢𝑈 −𝑢𝐿|, (5.21)

in which 𝑓𝐿, 𝑓𝑈 , and 𝑓int are friction factors that require further closure relations, which
are functions of the solution 𝐪 (see section 5.A).

We now consider the effect of wall and interface friction on the energy. The contribu-
tion of the extra terms to the RHS of the energy equation is

+⟨𝐯𝑏 , 𝐜𝑓 ⟩,

with 𝐯𝑏 given by (5.4). Carrying out the multiplication, substituting (5.21), and some
rewriting yields

⟨𝐯𝑏 , 𝐜𝑓 ⟩ =
𝑞3
𝑞1

(𝜏𝑈 𝑃𝑈 +𝜏int𝑃int) +
𝑞4
𝑞2

(𝜏𝐿𝑃𝐿 −𝜏int𝑃int) = −𝜖𝑓 , (5.22)

with

𝜖𝑓 = 1
2𝑓𝑈 𝜌𝑈 (𝑞3𝑞1

)
2 |||
𝑞3
𝑞1

||| 𝑃𝑈 + 1
2𝑓𝐿𝜌𝐿 (

𝑞4
𝑞2

)
2 |||
𝑞4
𝑞2

||| 𝑃𝐿 +
1
2𝑓int𝜌𝑈 (𝑞3𝑞1

− 𝑞4
𝑞2

)
2 |||
𝑞3
𝑞1

− 𝑞4
𝑞2

||| 𝑃int.
(5.23)

Since 𝑓𝑈 , 𝑓𝐿, 𝑓int, 𝜌𝑈 , 𝜌𝐿, 𝑃𝑈 , 𝑃𝐿, and 𝑃int must be positive, and the rest of the terms are
either quadratic or absolute, all three terms in (5.23) must be positive. Therefore, −𝜖𝑓 will
act as a sink in the energy equation, which represents the dissipation of energy due to
friction. In conclusion, we have proven analytically that wall and interface friction have
a strictly dissipative effect on the energy given by (5.12).
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5.2.6 Surface tension
Our third novel contribution in the continuous setting is that we show that surface tension
can be added to the TFM in such a way that the total energy is conserved. Surface tension
is an important addition since it makes the model linearly well-posed (see section 5.4).
However, if surface tension were to be added in a non-conservative manner, it would spoil
the energy-stable nature of the model. Therefore, it is key to find an energy-conserving
form of the surface tension.

The effect of surface tension in the TFM is typically modeled through its effect on the
pressure. This effect is to introduce a discontinuity in the pressure at the interface. The
pressure difference is given by [87, 96]

Δ𝑝 = −𝜎𝜅 = 𝜎 𝜕
2𝐻𝐿
𝜕𝑠2 [1+(𝜕𝐻𝐿

𝜕𝑠 )
2
]
−3/2

, (5.24)

with 𝜎 the surface tension and 𝜅 the streamwise curvature of the interface, with the in-
terface assumed flat along the other direction. This is the Young-Laplace equation for the
TFM.

Similar to [46], we include the effect of this pressure difference through the term 𝐬 in
(5.10), with

𝐬𝑇 = [0 0 0 𝑞2
𝜌𝐿

𝜕Δ𝑝
𝜕𝑠 ] . (5.25)

This is a general way to write the surface tension. Typically in literature [6, 46, 87, 96], the
assumption (𝜕𝐻𝐿/𝜕𝑠)2 ≪ 1 will be made to approximate (5.24) as:

Δ𝑝 ≈ 𝜎 𝜕
2𝐻𝐿
𝜕𝑠2 ≈ 𝜎

𝑃int
𝜕2𝐴𝐿
𝜕𝑠2 . (5.26)

Note that for the specific case of a 2D channel geometry (𝑃int = 1, 𝐴𝐿 = 𝐻𝐿), the two ap-
proximations in (5.26) are equivalent.

We note that, unlike the basic model, surface tension of the form given by (5.25) is
not momentum-conserving, as it cannot be written in conservative form. This is caused
by the one-dimensional nature of the model and stands in contrast to higher-dimensional,
unaveraged models, where surface tension does conserve momentum [99].

Though (5.25) is not momentum-conserving, it can still be energy-conserving, and we
aim to find a set of expressions for Δ𝑝 and the surface energy such that the contribution
of surface tension to the energy conservation equation is of conservative form. Physically,
the surface tension is associated with an energy, proportional to the surface area, that is
conserved in combination with the mechanical energy [99]. The surface area in the one-
dimensional two-fluid model (see Figure 5.1) will depend on 𝜕𝐻𝐿/𝜕𝑠 = 𝑃−1int𝜕𝐴𝐿/𝜕𝑠, and 𝑃int.
Therefore, we introduce the following general form for the surface energy:

𝑒𝜎 = 𝑒𝜎 (𝑆int, 𝑃int), with 𝑆int =
𝜕𝐴𝐿
𝜕𝑠 , (5.27)

with the functional dependencies specified as

𝑞2 = 𝑞2(𝐴𝐿), 𝑃int = 𝑃int(𝐴𝐿), 𝑆int = 𝑆int(𝑠, 𝑡), 𝐴𝐿 = 𝐴𝐿(𝑠, 𝑡).
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The additional term on the LHS of the energy equation due to surface tension as given
by (5.25) is

−⟨𝐯𝑏 , 𝐬⟩ = −𝑞4𝜌𝐿
𝜕Δ𝑝
𝜕𝑠 .

In order for the model addition to be energy-conserving, the following condition must
hold:

− 𝑞4
𝜌𝐿

𝜕Δ𝑝
𝜕𝑠 = 𝜕ℎ𝜎

𝜕𝑠 + 𝜕𝑒𝜎
𝜕𝑡 , (5.28)

for in this case the addition to the energy equation will be of conservative form. We will
now derive a relation between Δ𝑝 and 𝑒𝜎 such that (5.28) holds.

The time derivative of the energy given by (5.27) is defined by

𝜕𝑒𝜎
𝜕𝑡 = 𝜕𝑒𝜎

𝜕𝑆int
𝜕𝑆int
𝜕𝑡 + 𝜕𝑒𝜎

𝜕𝑃int
𝜕𝑃int
𝜕𝑡 ,

and under the assumption of smooth solutions, and through substitution of the mass con-
servation equation for the lower fluid (the second equation of (5.1)), can be rewritten in
the following manner:

𝜕𝑒𝜎
𝜕𝑡 = 𝜕𝑒𝜎

𝜕𝑆int
𝜕
𝜕𝑠 (𝜌

−1𝐿
𝜕𝑞2
𝜕𝑡 )+ 𝜕𝑒𝜎

𝜕𝑃int
d𝑃int
d𝐴𝐿

𝜌−1𝐿
𝜕𝑞2
𝜕𝑡

= − 𝜕𝑒𝜎
𝜕𝑆int

𝜕
𝜕𝑠 (𝜌

−1𝐿
𝜕𝑞4
𝜕𝑠 )− 𝜕𝑒𝜎

𝜕𝑃int
d𝑃int
d𝐴𝐿

𝜌−1𝐿
𝜕𝑞4
𝜕𝑠

= −𝜕ℎ𝜎𝜕𝑠 − 𝑞4
𝜌𝐿

𝜕Δ𝑝
𝜕𝑠 ,

with

ℎ𝜎 = 1
𝜌𝐿

( 𝜕𝑒𝜎
𝜕𝑆int

𝜕𝑞4
𝜕𝑠 −𝑞4

𝜕
𝜕𝑠 (

𝜕𝑒𝜎
𝜕𝑆int

)+𝑞4
𝜕𝑒𝜎
𝜕𝑃int

d𝑃int
d𝐴𝐿

) ,

and

Δ𝑝 = 𝜕
𝜕𝑠 (

𝜕𝑒𝜎
𝜕𝑆int

)− 𝜕𝑒𝜎
𝜕𝑃int

d𝑃int
d𝐴𝐿

. (5.29)

For an energy of the general form (5.27), and a surface tension of the general form (5.25),
(5.29) is the relation between the specific forms of Δ𝑝 and 𝑒𝜎 , that needs to be satisfied in
order to achieve energy conservation.

We now must find a set of expressions for Δ𝑝 and 𝑒𝜎 , that – first – satisfies (5.29) and –
second – makes physical sense. The most straightforward way to do this is to propose an
energy based on physical considerations, substitute this in (5.29), and check if the resulting
expression for Δ𝑝 compares to our expectation, which is that it take a form similar to (5.24)
or (5.26). From a physical point of view, the energy should be given by 𝜎 times the surface
area, which can be expressed as

𝑒𝜎 (𝑆int, 𝑃int) = 𝜎𝑃int√1+(𝜕𝐻𝐿
𝜕𝑠 )

2
= 𝜎𝑃int√1+(𝑃−1int

𝜕𝐴𝐿
𝜕𝑠 )

2
= 𝜎𝑃int √1+(𝑃−1int𝑆int)

2.
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However, substituting this in (5.29) yields an expression for Δ𝑝 that does not relate to
(5.24) or (5.26), and therefore cannot be physically justified. Mimicking the conventional
approach of taking approximations such as (5.26), we take the second order Taylor expan-
sion of this energy around 𝑆int = 0:

𝑒𝜎 (𝑆int, 𝑃int) ≈ 𝜎 (𝑃int +
1
2𝑃

−1
int𝑆2int) .

Substituting this energy in (5.29) yields the following expression for Δ𝑝:

Δ𝑝int =
𝜎
𝑃int

𝜕𝑆int
𝜕𝑠 −𝜎 (1+ 1

2𝑃
−2
int𝑆2int)

d𝑃int
d𝐴𝐿

, (5.30)

of which the first term can be recognized in (5.26), but the second term cannot.
When the scope is reduced from arbitrary geometries to the specific case of the 2D

channel geometry, for which 𝑃int = 1 and 𝐴𝐿 = 𝐻𝐿, (5.30) does match (5.26) exactly. This
means that for the channel geometry, the combination

𝑒𝜎 = 𝜎 (1+ 1
2 (

𝜕𝐻𝐿
𝜕𝑠 )

2
), Δ𝑝 = 𝜎 𝜕

2𝐻𝐿
𝜕𝑠2 , with ℎ𝜎 = 𝜎

𝜌𝐿
(𝜕𝑞4𝜕𝑠

𝜕𝐻𝐿
𝜕𝑠 −𝑞4

𝜕2𝐻𝐿
𝜕𝑠2 ), (5.31)

is energy-conserving, and it can be justified physically, since 𝑒𝜎 is an approximation of 𝜎
times the surface area, and Δ𝑝 is an approximation of the Young-Laplace equation. This
expression for Δ𝑝 can be substituted in (5.25) to obtain an energy-conserving form of the
surface tension.

We have therefore found a form of the surface tension 𝐬, and an associated surface
energy 𝑒𝜎 , with which the basic model can be extended, while retaining its energy-con-
serving behavior. For the 2D channel geometry, this turned out to be equivalent to a
standard form, often used in literature.

5.3 Energy conservation and the semi-discrete TFM
5.3.1 Semi-discrete equations for the basic model
With the energy analysis for the continuous model complete, we will continue to propose
a discretization that inherits the energy properties of the three additions to the model on
the discrete level. In order to obtain the same conservation properties for the discrete
model as for the continuous model, the model must be discretized in a specific manner.
Therefore, the energy analysis guides the discretization. In this subsection, we will first
summarize the previously found energy-conserving discretization of the basic model (see
chapter 3), to which energy-consistent discretizations of the additional model terms will
be added.

We define the unknowns of the semi-discrete TFM on a staggered grid, depicted in
Figure 5.2, in the following manner:

𝐪𝑖(𝑡) ≔
⎡⎢⎢⎢
⎣

𝑞1,𝑖(𝑡)
𝑞2,𝑖(𝑡)

𝑞3,𝑖−1/2(𝑡)
𝑞4,𝑖−1/2(𝑡)

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

(𝜌𝑈𝐴𝑈Δ𝑠)𝑖(𝜌𝐿𝐴𝐿Δ𝑠)𝑖(𝜌𝑈𝐴𝑈 𝑢𝑈Δ𝑠)𝑖−1/2
(𝜌𝐿𝐴𝐿𝑢𝐿Δ𝑠)𝑖−1/2

⎤⎥⎥⎥
⎦
, (5.32)
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We introduce the following notation to denote central interpolation and jumps respec-
tively:

𝑎𝑖−1/2 ≔
1
2 (𝑎𝑖−1 +𝑎𝑖) , 𝑎𝑖 ≔

1
2 (𝑎𝑖−1/2 +𝑎𝑖+1/2) , (5.33)

J𝑎𝑖−1/2K ≔ 𝑎𝑖 −𝑎𝑖−1, J𝑎𝑖K ≔ 𝑎𝑖+1/2 −𝑎𝑖−1/2. (5.34)

The primitive variables can be extracted from (5.32) through the following relations:

𝐴𝑈 ,𝑖 =
𝑞1,𝑖
𝜌𝑈Δ𝑠

, 𝐴𝐿,𝑖 =
𝑞2,𝑖
𝜌𝐿Δ𝑠

, 𝑢𝑈 ,𝑖−1/2 =
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

, 𝑢𝐿,𝑖−1/2 =
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

. (5.35)

pressure
cells

velocity
cells

𝑞1,𝑖−1 𝑞1,𝑖 𝑞1,𝑖+1

𝑞3,𝑖−3/2 𝑞3,𝑖−1/2 𝑞3,𝑖+1/2

𝑠 (𝑖 − 2)Δ𝑠
(𝑖 − 3

2 )Δ𝑠
(𝑖 − 1)Δ𝑠

(𝑖 − 1
2 )Δ𝑠

𝑖Δ𝑠
(𝑖 + 1

2 )Δ𝑠

Figure 5.2: Staggered grid layout.

With this notation, the semi-discrete finite volume scheme can be written locally as

d𝐪𝑖
d𝑡 + J𝐟𝑖K+ 𝐣𝑖 J𝑝𝑖−1/2K = 𝟎, (5.36)

with

𝐟𝑖−1/2 ≔
⎡⎢⎢⎢
⎣

𝑓1,𝑖−1/2
𝑓2,𝑖−1/2
𝑓3,𝑖−1
𝑓4,𝑖−1

⎤⎥⎥⎥
⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

𝑞3,𝑖−1/2
Δ𝑠𝑞4,𝑖−1/2
Δ𝑠

( 𝑞3,𝑖−1
𝑞1,𝑖−1

) 𝑞3,𝑖−1
Δ𝑠 −𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1

( 𝑞4,𝑖−1
𝑞2,𝑖−1

) 𝑞4,𝑖−1
Δ𝑠 −𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

, and 𝐣𝑖 ≔
⎡⎢⎢⎢
⎣

𝑗1,𝑖
𝑗2,𝑖

𝑗3,𝑖−1/2
𝑗4,𝑖−1/2

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢⎢⎢
⎣

0
0

𝑞1,𝑖−1/2
𝜌𝑈Δ𝑠𝑞2,𝑖−1/2
𝜌𝐿Δ𝑠

⎤⎥⎥⎥⎥⎥
⎦

. (5.37)

The semi-discrete version of the volume constraint is given by
𝑞1,𝑖
𝜌𝑈Δ𝑠

+ 𝑞2,𝑖
𝜌𝐿Δ𝑠

= 𝐴,

which implies the volumetric flow constraint (see chapter 4)

J𝑄𝑖K = 0, with 𝑄𝑖−1/2(𝐪𝑖) ≔
𝑞3,𝑖−1/2
𝜌𝑈Δ𝑠

+ 𝑞4,𝑖−1/2
𝜌𝐿Δ𝑠

. (5.38)
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5.3.2 Energy conservation for the semi-discrete basic model
The basic TFM, discretized as given above, conserves the following discretized mechanical
energy:

𝑒𝑏,𝑖−1/2 = 𝜌𝑈 𝑔𝑛𝐻𝑈 ,𝑖−1/2Δ𝑠 +𝜌𝐿𝑔𝑛𝐻𝐿,𝑖−1/2Δ𝑠 +
1
2
𝑞23,𝑖−1/2
𝑞1,𝑖−1/2

+ 1
2
𝑞24,𝑖−1/2
𝑞2,𝑖−1/2

. (5.39)

This result was obtained in chapter 3. Here we will give a concise version of the proof.
This is needed as a basis for the extensions of the semi-discrete energy analysis which will
be made in the following subsections.

From the energy definition, the 𝐯𝑏 vectors can be calculated as

𝐯𝑏,𝑖−1/2,𝑖−1 ≔ [𝜕𝑒𝑏,𝑖−1/2𝜕𝐪𝑖−1
]
𝑇
=

⎡⎢⎢⎢⎢⎢
⎣

− 1
4
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝑈
d𝐴𝑈

)
𝑖−1

− 1
4
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝐿
d𝐴𝐿

)
𝑖−1

0
0

⎤⎥⎥⎥⎥⎥
⎦

,

𝐯𝑏,𝑖−1/2,𝑖 ≔ [𝜕𝑒𝑏,𝑖−1/2𝜕𝐪𝑖
]
𝑇
=

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

− 1
4
𝑞23,𝑖−1/2
𝑞21,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝑈
d𝐴𝑈

)
𝑖

− 1
4
𝑞24,𝑖−1/2
𝑞22,𝑖−1/2

+ 1
2𝑔𝑛 (

d𝐻𝐿
d𝐴𝐿

)
𝑖𝑞3,𝑖−1/2

𝑞1,𝑖−1/2𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

.

The sum of the dot products of 𝐯𝑏,𝑖−1/2,𝑖−1 and 𝐯𝑏,𝑖−1/2,𝑖 with equation (5.36) for 𝐪𝑖−1 and
𝐪𝑖 respectively is

⟨𝐯𝑏,𝑖−1/2,𝑖−1 ,
d𝐪𝑖−1
d𝑡 ⟩ + ⟨𝐯𝑏,𝑖−1/2,𝑖 ,

d𝐪𝑖
d𝑡 ⟩ + ⟨𝐯𝑏,𝑖−1/2,𝑖−1,J𝐟𝑖−1K⟩+ ⟨𝐯𝑏,𝑖−1/2,𝑖 ,J𝐟𝑖K⟩

+ ⟨𝐯𝑏,𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩J𝑝𝑖−3/2K+ ⟨𝐯𝑏,𝑖−1/2,𝑖 , 𝐣𝑖⟩J𝑝𝑖−1/2K = 0. (5.40)

Using the following definitions:

𝐯𝑏,𝑖,𝑖−1/2 =
1
2 (𝐯𝑏,𝑖−1/2,𝑖−1 +𝐯𝑏,𝑖+1/2,𝑖) , 𝐯𝑏,𝑖,𝑖+1/2 =

1
2 (𝐯𝑏,𝑖−1/2,𝑖 +𝐯𝑏,𝑖+1/2,𝑖+1) ,J𝐯𝑏,𝑖,𝑖−1/2K = 𝐯𝑏,𝑖+1/2,𝑖 −𝐯𝑏,𝑖−1/2,𝑖−1, J𝐯𝑏,𝑖,𝑖+1/2K = 𝐯𝑏,𝑖+1/2,𝑖+1 −𝐯𝑏,𝑖−1/2,𝑖 ,

and in addition discrete versions of the geometric relations (A.7)¹, the volumetric flow
constraint (5.38), and substituting our discretization given by (5.37), it can be shown that

¹These are only exactly satisfied by geometries with d2𝐻𝐿/d𝐴2𝐿 = 0 (for example the 2D channel geometry).
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the terms in (5.40) can be written in conservative form (see chapter 3):

⟨𝐯𝑏,𝑖−1/2,𝑖−1 ,
d𝐪𝑖−1
d𝑡 ⟩ + ⟨𝐯𝑏,𝑖−1/2,𝑖 ,

d𝐪𝑖
d𝑡 ⟩ =

d𝑒𝑏,𝑖−1/2
d𝑡 ,

⟨𝐯𝑏,𝑖−1/2,𝑖−1,J𝐟𝑖−1K⟩+ ⟨𝐯𝑏,𝑖−1/2,𝑖 ,J𝐟𝑖K⟩ = r
ℎ𝑓 ,𝑖−1/2

z
,

⟨𝐯𝑏,𝑖−1/2,𝑖−1 , 𝐣𝑖−1⟩J𝑝𝑖−3/2K+ ⟨𝐯𝑏,𝑖−1/2,𝑖 , 𝐣𝑖⟩J𝑝𝑖−1/2K = r
ℎ𝑝,𝑖−1/2

z
,

with ℎ𝑓 ,𝑖 a discrete version of (5.6)²:

ℎ𝑓 ,𝑖 = 𝑔𝑛 (
d𝐻𝑈
d𝐴𝑈

)
𝑖

𝑞3,𝑖
Δ𝑠 +𝑔𝑛 (

d𝐻𝐿
d𝐴𝐿

)
𝑖

𝑞4,𝑖
Δ𝑠 +([(𝑞3,𝑖𝑞1,𝑖

)]
2

− 1
2(

𝑞23,𝑖
𝑞21,𝑖

))
𝑞3,𝑖
Δ𝑠

+([(𝑞4,𝑖𝑞2,𝑖
)]

2

− 1
2(

𝑞24,𝑖
𝑞22,𝑖

))
𝑞4,𝑖
Δ𝑠 , (5.41)

and ℎ𝑝,𝑖 a discrete version of (5.7):

ℎ𝑝,𝑖 = 𝑄(𝑡)𝑝𝑖 . (5.42)

The energy analysis of the additional model terms, given in section 5.3.4 onward, will be
fit into the same structure. The sum of the dot products of 𝐯𝑏,𝑖−1/2,𝑖−1 and 𝐯𝑏,𝑖−1/2,𝑖 with
the additional model term will yield the resulting addition to the energy equation.

Since each term in (5.40) can be written in conservative form, it reduces to the local
energy conservation equation

d𝑒𝑏,𝑖−1/2
d𝑡 + Jℎ𝑏,𝑖−1/2K = 0, (5.43)

with ℎ𝑏,𝑖 = ℎ𝑓 ,𝑖 +ℎ𝑝,𝑖 . Like in the continuous case, this equation can be integrated over a
closed or periodic domain to yield

d𝐸̂𝑏
d𝑡 = 0, with 𝐸̂𝑏(𝑡) =

𝑁𝑢
∑
𝑖=1

𝑒𝑏,𝑖−1/2(𝑡),

which means that the discrete mechanical energy defined by (5.39) is a secondary con-
served quantity of the semi-discrete model described in section 5.3.1.

5.3.3 Energy equation for the semi-discrete extended model
Having introduced the energy-conserving discretization of the basic TFM and its energy
conservation equation, we will propose discretizations of the three additions to the basic
model, that retain the energy properties of their continuous counterparts, which were

²The given expression for ℎ𝑓 ,𝑖 is different from, but equivalent to, the expression given in chapter 4 (under the
current assumptions).
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derived in section 5.2. We will present discretizations of friction and diffusion that are
strictly dissipative, and a discretization of surface tension that conserves the discretized
energy, extended with a discrete version of the surface energy.

Additionally, we will present an upwind discretization of the advective terms that can
be shown to be strictly dissipative, in contrast to the energy-conserving discretization
of the advective terms given by (5.37). We will then propose to combine this upwind
advective flux with the energy-conserving advective flux (using flux limiters), to produce
a combined flux that is strictly dissipative, but less dissipative and less diffusive than the
purely upwind flux. The combined flux is energy stable, and adds numerical dissipation
onlywhere necessary: near strong gradients and discontinuities. Thismimics the behavior
of weak solutions to the (basic) continuous equations, which instead of the energy equality
of section 5.2.2 (that is only valid for smooth solutions), will satisfy an energy inequality.

The semi-discrete model, extended with all the additional terms, is given by

d𝐪𝑖
d𝑡 + J𝐟𝑖K+ 𝐣𝑖 J𝑝𝑖−1/2K = J𝐝𝑖K+𝐬𝑖Δ𝑠 +𝐜𝑔,𝑖Δ𝑠 +𝐜𝑓 ,𝑖Δ𝑠 +𝐜𝑝,𝑖Δ𝑠 (5.44)

with J𝐝𝑖K representing diffusion, 𝐜𝑓 ,𝑖 representing friction, and 𝐬𝑖 representing surface ten-
sion. The expressions for these terms will be given in (5.50), (5.54), and (5.56), respectively.
The extended semi-discrete model includes the following contributions from streamwise
gravity:

𝐜𝑇𝑔,𝑖 = [0 0 −𝑔 J𝑦𝑖−1/2K
Δ𝑠

𝑞1,𝑖−1/2
Δ𝑠 −𝑔 J𝑦𝑖−1/2K

Δ𝑠
𝑞2,𝑖−1/2
Δ𝑠 ] with

J𝑦𝑖−1/2K
Δ𝑠 = [sin(𝜙)]𝑖−1/2 ,

and from a constant driving pressure gradient:

𝐜𝑇𝑝,𝑖 = [0 0 − 𝑞1,𝑖−1/2
𝜌𝑈Δ𝑠

𝜕𝑝body
𝜕𝑠 − 𝑞2,𝑖−1/2

𝜌𝐿Δ𝑠
𝜕𝑝body
𝜕𝑠 ] .

The energy equation that follows from (5.44) reads

d𝑒𝑖−1/2
d𝑡 + Jℎ𝑖−1/2K+qℎ𝑛,𝑖−1/2y = −𝜖𝑖−1/2 −𝜖𝑛,𝑖−1/2 +𝑐𝑝,𝑖−1/2 (5.45)

with

𝑒𝑖−1/2 = 𝑒𝑏,𝑖−1/2 +𝑒𝑔,𝑖−1/2 +𝑒𝜎,𝑖−1/2, (5.46)
ℎ𝑖 = ℎ𝑏,𝑖 +ℎ𝑔,𝑖 +ℎ𝑑,𝑖 +ℎ𝜎,𝑖 , (5.47)
𝜖𝑖−1/2 = 𝜖𝑑,𝑖−1/2 +𝜖𝑓 ,𝑖−1/2. (5.48)

The upcoming subsections will give the expressions (5.52) for ℎ𝑑,𝑖 , (5.53) for 𝜖𝑑,𝑖−1/2, (5.55)
for 𝜖𝑓 ,𝑖−1/2, (5.59) for 𝑒𝜎,𝑖−1/2, and (5.60) for ℎ𝜎,𝑖 . The contributions from streamwise gravity
are given in chapter 4³

𝑒𝑔,𝑖−1/2 = 𝑔(𝑦𝑖−1/2 (𝑞1,𝑖−1/2 +𝑞2,𝑖−1/2)), ℎ𝑔,𝑖 = 𝑔𝑦𝑖(
𝑞3,𝑖
Δ𝑠 + 𝑞4,𝑖

Δ𝑠 ),
³The given expression for ℎ𝑔,𝑖 is different from, but equivalent to, the expression given in chapter 4.
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and the contribution of the driving pressure gradient is given by

𝑐𝑝,𝑖−1/2 = −𝑄𝑖−1/2
𝜕𝑝body
𝜕𝑠 Δ𝑠,

which is positive when the body force is aligned with the mean flow. These are all semi-
discrete counterparts of the continuous expressions given in section 5.2. The terms with
subscript 𝑛 are specific to the semi-discrete setting, and stem from the energy-stable com-
bined advective flux. The numerical energy flux ℎ𝑛,𝑖 will be given by (5.65) and the numer-
ical dissipation 𝜖𝑛,𝑖−1/2 will be given by (5.66).

Equation (5.45) is the second main novel result of this work, as it shows that we have
obtained a semi-discrete model with the same energy conservation properties as the con-
tinuous model. The model additions that were conservative in the continuous setting are
discretized in such a way that the energy-conserving behavior is retained, and the model
additions that were dissipative in the continuous setting are discretized in such a way
that the strictly dissipative behavior is retained. The local energy equation (5.45) can be
integrated over a periodic domain to yield the global energy equation⁴

d𝐸̂
d𝑡 = −Ɛ̂− Ɛ̂𝑛 +𝐶𝑝 with 𝐸̂(𝑡) =

𝑁𝑢
∑
𝑖=1

𝑒𝑖−1/2(𝑡), Ɛ̂ =
𝑁𝑢
∑
𝑖=1

𝜖𝑖−1/2(𝑡), (5.49)

Ɛ̂𝑛 =
𝑁𝑢
∑
𝑖=1

𝜖𝑛,𝑖−1/2(𝑡), 𝐶𝑝 =
𝑁𝑢
∑
𝑖=1

𝑐𝑝,𝑖−1/2(𝑡) = −𝑄(𝑡)𝜕𝑝body𝜕𝑠 𝐿.

This equation determines that the energy of the solution can never increase, except due
to an explicitly applied external force (through the source term 𝐶𝑝).

Therefore, the novel semi-discrete model is energy stable. It has physical and numeri-
cal dissipation rates (Ɛ̂ and Ɛ̂𝑛) that can be computed from the solution. These dissipation
rates can be integrated in time numerically to find the total dissipated energy due to the
different contributions. The total dissipated energy between two points in time should
match the difference in energy between these two points in time, as calculated through
an evaluation of 𝐸̂ at those two points in time.

Each term in the semi-discrete model independently results in corresponding terms in
the energy equation. The combined result for the complete extended model, discretized in
an energy-consistent manner, was given here. In the following subsections we will detail
the novel contributions separately.

5.3.4 Physical diffusion
Our first novel contribution in the semi-discrete setting is to propose a discretization of
the viscous diffusion terms and prove that it is strictly dissipative, just like its continuous
counterpart. The diffusion term that can be added to the RHS of (5.36) is [𝜕𝐝/𝜕𝑠]𝑖 Δ𝑠, in
which [𝜕𝐝/𝜕𝑠]𝑖 is the discrete version of 𝜕𝐝/𝜕𝑠, with 𝐝 given by (5.16). We propose the

⁴Note that there is a slight inconsistency between the notation used here and the notation used in earlier chapters.
In earlier chapters, 𝐸̂ is referred to as 𝐸ℎ.
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following straightforward central discretization, which yields the diffusion term in (5.44):

[𝜕𝐝𝜕𝑠 ]𝑖
= 1
Δ𝑠 J𝐝𝑖K = 1

Δ𝑠 (𝐝𝑖+1/2 −𝐝𝑖−1/2) ,

with

𝐝𝑖−1/2 ≔
⎡⎢⎢⎢
⎣

𝑑1,𝑖−1/2
𝑑2,𝑖−1/2
𝑑3,𝑖−1
𝑑4,𝑖−1

⎤⎥⎥⎥
⎦
=

⎡⎢⎢⎢⎢⎢
⎣

0
0

𝜈eff,𝑈 𝑞1,𝑖−1
(Δ𝑠)2

s
𝑞3,𝑖−1
𝑞1,𝑖−1

{
𝜈eff,𝐿 𝑞2,𝑖−1

(Δ𝑠)2
s
𝑞4,𝑖−1
𝑞2,𝑖−1

{
⎤⎥⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢
⎣

0
0

𝜌𝑈 𝜈eff,𝑈𝐴𝑈 ,𝑖−1
J𝑢𝑈 ,𝑖−1K

Δ𝑠
𝜌𝐿𝜈eff,𝐿𝐴𝐿,𝑖−1

J𝑢𝐿,𝑖−1K
Δ𝑠

⎤⎥⎥⎥⎥
⎦

. (5.50)

With diffusion, no extra term is added to the energy. The steps of the derivation of
section 5.3.2 can be simply repeated. With the proposed discretization, the only additional
terms in the energy equation (on the LHS) are

−⟨𝐯𝑏,𝑖−1/2,𝑖−1,J𝐝𝑖−1K⟩− ⟨𝐯𝑏,𝑖−1/2,𝑖 ,J𝐝𝑖K⟩
= −q⟨𝐯𝑏,𝑖−1/2,𝑖−1 ,𝐝𝑖−1⟩y−q⟨𝐯𝑏,𝑖−1/2,𝑖 ,𝐝𝑖⟩y+ ⟨J𝐯𝑏,𝑖−1/2,𝑖−1K ,𝐝𝑖−1⟩ + ⟨J𝐯𝑏,𝑖−1/2,𝑖K ,𝐝𝑖⟩
= −

uv𝜈eff,𝑈
𝑞1,𝑖−1/2
(Δ𝑠)2

(𝑞3,𝑖−1/2𝑞1,𝑖−1/2
)
t
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

|}~+(𝜈eff,𝑈
𝑞1,𝑖−1/2
(Δ𝑠)2

t
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

|2
)

−
uv𝜈eff,𝐿

𝑞2,𝑖−1/2
(Δ𝑠)2

(𝑞4,𝑖−1/2𝑞2,𝑖−1/2
)
t
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|}~+(𝜈eff,𝐿
𝑞2,𝑖−1/2
(Δ𝑠)2

t
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|2
)

= qℎ𝑑,𝑖−1/2y+𝜖𝑑,𝑖−1/2,
(5.51)

with

ℎ𝑑,𝑖 = −𝜈eff,𝑈
𝑞1,𝑖
(Δ𝑠)2

1
2

uv(𝑞3,𝑖𝑞1,𝑖
)
2}~−𝜈eff,𝐿

𝑞2,𝑖
(Δ𝑠)2

1
2

uv(𝑞4,𝑖𝑞2,𝑖
)
2}~ , (5.52)

𝜖𝑑,𝑖−1/2 = (𝜈eff,𝑈
𝑞1,𝑖−1/2
(Δ𝑠)2

t
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

|2
)+(𝜈eff,𝐿

𝑞2,𝑖−1/2
(Δ𝑠)2

t
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|2
). (5.53)

Here we have used a discrete product rule:

𝑎𝑖J𝑏𝑖K = J𝑎𝑖𝑏𝑖K−(J𝑎𝑖K𝑏𝑖),
and a discrete chain rule:

𝑎𝑖−1/2 J𝑎𝑖−1/2K = 1
2

q𝑎2𝑖−1/2y .
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These can be derived by substituting the definitions (5.33) and (5.34), and applying some
algebraic manipulation.

The result of (5.51) compares directly to the continuous result, given by (5.17). Like
the continuous result, it consists of a conservative part, and a strictly dissipative part.
The latter is due to 𝜖𝑑,𝑖−1/2 being strictly positive, and the minus sign that is added when
𝜖𝑑,𝑖−1/2 is moved to the RHS.Therefore, it has been proven that the proposed discretization
of the diffusion terms is strictly dissipative with respect to the energy given by (5.46).
Moreover, an explicit expression for the dissipation rate has been obtained, that can be
used to measure the dissipation taking place in a numerical simulation.

5.3.5 Friction terms
Our second novel contribution in the semi-discrete setting is to show that wall and inter-
face friction result in a strictly dissipative contribution to the semi-discrete energy equa-
tion. In (5.44), friction is included through the term 𝐜𝑓 ,𝑖Δ𝑠, in which 𝐜𝑓 ,𝑖 is the discrete
version of (5.20). With reference to the closure relations given in section 5.2.5, we assume
the following functional dependencies for the discrete friction terms:

𝜏𝐿,𝑖−1/2 ≔ 𝜏𝐿(𝑓𝐿,𝑖−1/2,𝑢𝐿,𝑖−1/2), 𝜏𝑈 ,𝑖−1/2 ≔ 𝜏𝑈 (𝑓𝑈 ,𝑖−1/2,𝑢𝑈 ,𝑖−1/2),
𝜏int,𝑖−1/2 ≔ 𝜏int(𝑓int,𝑖−1/2,𝑢𝑈 ,𝑖−1/2,𝑢𝐿,𝑖−1/2),

with primitive variables given by (5.35). Then we propose the following discretization of
the friction source terms:

𝐜𝑓 ,𝑖 =
⎡⎢⎢⎢
⎣

𝑐𝑓 ,1,𝑖
𝑐𝑓 ,2,𝑖

𝑐𝑓 ,3,𝑖−1/2
𝑐𝑓 ,4,𝑖−1/2

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

0
0

𝜏𝑈 ,𝑖−1/2𝑃𝑈 ,𝑖−1/2 +𝜏int,𝑖−1/2𝑃int,𝑖−1/2
𝜏𝐿,𝑖−1/2𝑃𝐿,𝑖−1/2 −𝜏int,𝑖−1/2𝑃int,𝑖−1/2

⎤⎥⎥⎥
⎦
. (5.54)

Like with diffusion, adding friction terms to the system does not change the energy
definition. Since the friction terms do not involve derivatives, the derivation of the con-
tribution to the energy equation is almost the same as in the continuous case. The only
modification to the energy equation is that the following terms are added to the RHS:
⟨𝐯𝑏,𝑖−1/2,𝑖−1 , 𝐜𝑓 ,𝑖−1Δ𝑠⟩+ ⟨𝐯𝑏,𝑖−1/2,𝑖 , 𝐜𝑓 ,𝑖Δ𝑠⟩

= 𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

(𝜏𝑈 ,𝑖−1/2𝑃𝑈 ,𝑖−1/2 +𝜏int,𝑖−1/2𝑃int,𝑖−1/2)Δ𝑠 +
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

(𝜏𝐿,𝑖−1/2𝑃𝐿,𝑖−1/2 −𝜏int,𝑖−1/2𝑃int,𝑖−1/2)Δ𝑠

= −𝜖𝑓 ,𝑖−1/2,
with

𝜖𝑓 ,𝑖−1/2 =
1
2𝑓𝑈 ,𝑖−1/2𝜌𝑈 (𝑞3,𝑖−1/2𝑞1,𝑖−1/2

)
2 ||||
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

|||| 𝑃𝑈 ,𝑖−1/2Δ𝑠 +
1
2𝑓𝐿,𝑖−1/2𝜌𝐿 (

𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

)
2 ||||
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|||| 𝑃𝐿,𝑖−1/2Δ𝑠

+ 1
2𝑓int,𝑖−1/2𝜌𝑈 (𝑞3,𝑖−1/2𝑞1,𝑖−1/2

− 𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

)
2 ||||
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

− 𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|||| 𝑃int,𝑖−1/2Δ𝑠. (5.55)

Since 𝑓𝑈 ,𝑖−1/2, 𝑓𝐿,𝑖−1/2, 𝑓int,𝑖−1/2, 𝜌𝑈 , 𝜌𝐿, 𝑃𝑈 ,𝑖−1/2, 𝑃𝐿,𝑖−1/2, and 𝑃int,𝑖−1/2 must be positive,
and the rest of the terms are either quadratic or absolute, 𝜖𝑓 ,𝑖−1/2 must always be positive.
Therefore, −𝜖𝑓 ,𝑖−1/2 will act as a sink in the energy equation.
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This result allows us, for the first time, to compare the dissipation due to wall and
interface friction with the dissipation due to axial diffusion. Both components of the dis-
sipation rate can be computed from the numerical solution, integrated numerically over
time, and compared to one another to determine which has dissipated the most energy.

5.3.6 Surface tension
Our third novel contribution in the semi-discrete setting is to propose a discretization of
the surface tension, and show that it is energy-conserving. This is key in maintaining the
energy-stable nature of the semi-discrete model, while contributing favorably to the linear
stability properties of the model; see section 5.4.

Surface tension is included in (5.44) through the term 𝐬𝑖Δ𝑠, in which 𝐬𝑖 is the discrete
version of (5.25). A general form of the surface tension, analogous to (5.25), is given by

𝐬𝑖 =
⎡⎢⎢⎢⎢
⎣

0
0
0

𝑞2,𝑖−1/2
𝜌𝐿Δ𝑠

1
Δ𝑠

r
[Δ𝑝]𝑖−1/2

z
⎤⎥⎥⎥⎥
⎦

. (5.56)

We restrict the analysis to the channel geometry, for which clear results were obtained
in the continuous analysis, and propose the following discretization of the pressure jump
given in (5.31):

[Δ𝑝int]𝑖 =
𝜎
Δ𝑠

tq𝐻𝐿,𝑖
y

Δ𝑠

|
. (5.57)

This constitutes a straightforward discretization of the conventional approximation of the
surface tension in the TFM.

With the proposed discretization, the extra terms on the LHS of the energy equation
can be written as

− ⟨𝐯𝑏,𝑖−1/2,𝑖−1 , 𝐬𝑖−1Δ𝑠⟩− ⟨𝐯𝑏,𝑖−1/2,𝑖 , 𝐬𝑖Δ𝑠⟩

= −𝑞4,𝑖−1/2𝜌𝐿Δ𝑠

t
𝜎
Δ𝑠

tq𝐻𝐿,𝑖−1/2
y

Δ𝑠

||

= − 𝜎
𝜌𝐿

t
(𝑞4,𝑖−1/2Δ𝑠 ) 1

Δ𝑠

tq𝐻𝐿,𝑖−1/2
y

Δ𝑠

||
+ 𝜎
𝜌𝐿

(
s𝑞4,𝑖−1/2

Δ𝑠
{ 1
Δ𝑠

tq𝐻𝐿,𝑖−1/2
y

Δ𝑠

|
)

= qℎ𝜎,𝑖−1/2y+ 𝜎
𝜌𝐿

s 1
Δ𝑠

d𝑞2,𝑖−1/2
d𝑡

{ q𝐻𝐿,𝑖−1/2
y

Δ𝑠

= qℎ𝜎,𝑖−1/2y+𝜎 d
d𝑡 (

q𝐻𝐿,𝑖−1/2
y

Δ𝑠 )q𝐻𝐿,𝑖−1/2
y

= qℎ𝜎,𝑖−1/2y+𝜎 d𝑒𝜎,𝑖−1/2d𝑡 , (5.58)
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in which, based on (5.31), we have chosen to define the surface energy as:

𝑒𝜎,𝑖−1/2 = 𝜎Δ𝑠(1+ 1
2 (

q𝐻𝐿,𝑖−1/2
y

Δ𝑠 )
2
), (5.59)

with an energy flux of

ℎ𝜎,𝑖 = 𝜎 1
Δ𝑠

s 𝑞4,𝑖
𝜌𝐿Δ𝑠

{
(
q𝐻𝐿,𝑖

y
Δ𝑠 )−𝜎( 𝑞4,𝑖

𝜌𝐿Δ𝑠
) 1
Δ𝑠

tq𝐻𝐿,𝑖
y

Δ𝑠

|
. (5.60)

In this derivation, we have used a discrete version of the product rule that can be derived
from (5.33) and (5.34):

J𝑎𝑖−1/2𝑏𝑖−1/2K = (J𝑎𝑖−1/2K𝑏𝑖−1/2)+𝑎𝑖−1/2J𝑏𝑖−1/2K,
and substituted the semi-discrete mass conservation equation for the lower fluid (the sec-
ond equation of (5.36)), specified to the 2D channel.

The derivation (5.58) shows that, for the surface tension discretization given by (5.56)
and (5.57), the contribution of surface tension to the semi-discrete energy equation can
be written in conservative form. This requires adding an extra term to the energy, which
must take a specific form that is tied to this discretization. We have succeeded in finding a
combination of [Δ𝑝int]𝑖 and 𝑒𝜎,𝑖−1/2 that is energy-conserving. These results hold for the
2D channel geometry.

Therefore, we have found a way to add surface tension to the semi-discrete model,
in such a way that it remains energy stable. Consistent with the physics of the flow, no
dissipation (or production) of energy will result from surface tension. All dissipation can
be attributed to effects that would physically be expected to yield dissipation: diffusion
and wall and interface friction.

5.3.7 Numerical diffusion
In addition to the energy-consistent discretizations of the extra terms in the continuous
model, a modification is needed to our discretization of the basic model, as given by (5.37).
In this subsection we will propose an upwind discretization of the advective terms in the
momentum equations, that can be shown to add a strictly dissipative term to the energy
equation, and is therefore energy stable.

This is required because our energy-conserving central advective flux, included in
(5.37), is sensitive to discontinuities. At discontinuities, the proofs of energy conserva-
tion for the continuous equations no longer hold, and the continuous equations should
dissipate energy [61]. However, our energy-conserving flux expressly forbids this. As a
result, when discontinuities appear in the solution, numerical oscillations are generated.
Adding physical diffusion mitigates the problem, but it acts at small scales, and in order
to incorporate its full effect, a high grid refinement is required.

Therefore, it is necessary to introduce some form of (strictly dissipative) numerical dif-
fusion. The adjective ‘numerical’ indicates that it should be grid-dependent: it is primarily
needed at coarse resolutions. Such diffusion can be provided by an upwind discretization
of the advective flux.
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Different upwind discretizations can be conceived, by taking different interpolations
and by upwinding different parts of the numerical flux, see e.g. [60, 67, 74]. Here we
present a newupwind discretization that is based on the conservative variables, and closely
resembles the energy-conserving flux of (5.37), with the exception that for the advecting
velocities we use an upwind interpolation, instead of a central interpolation:

𝑓3,𝑎,𝑖−1,𝑢 = (𝑞3𝑞1
)
up,𝑖−1

𝑞3,𝑖−1
Δ𝑠 = 𝜌𝑈 𝑢𝑈 ,up,𝑖−1(𝐴𝑈 ,𝑖−1𝑢𝑈 ,𝑖−1), (5.61a)

𝑓4,𝑎,𝑖−1,𝑢 = (𝑞4𝑞2
)
up,𝑖−1

𝑞4,𝑖−1
Δ𝑠 = 𝜌𝐿𝑢𝐿,up,𝑖−1(𝐴𝐿,𝑖−1𝑢𝐿,𝑖−1), (5.61b)

with

𝑢𝑈 ,up,𝑖−1 = {𝑢𝑈 ,𝑖−3/2, if 𝑞3,𝑖−1 > 0
𝑢𝑈 ,𝑖−1/2, otherwise

𝑢𝐿,up,𝑖−1 = {𝑢𝐿,𝑖−3/2, if 𝑞4,𝑖−1 > 0
𝑢𝐿,𝑖−1/2, otherwise

This upwind flux is atypical in its choice to have 𝑢𝑈 and 𝑢𝐿 as the upwinded variables
instead of 𝑞3 and 𝑞4, and in its choice to base the upwind directions on 𝑞3 and 𝑞4 instead
of 𝑢𝑈 and 𝑢𝐿. These choices are needed to prove the strictly dissipative property.

We only apply an upwind discretization to the advective terms of the momentum equa-
tions, and not to those of the mass equations. Themass equations are left unchanged, since
changing these would cause complications in three areas. First, changing the mass advec-
tive fluxes would interfere with the coupling between the mass and momentum equations.
Second, the discrete form of the volumetric flow constraint would be altered, since it is
derived through substitution of the mass equations in the volume constraint. Third, the
discrete energy analysis of the streamwise gravity and surface tension terms could be
invalidated or require significant modification, since it involves substitution of the mass
equations.

We now show that the contribution to the energy equation of these upwind fluxes can
be divided into a conservative part and a non-conservative part. To this end, the analysis of
section 5.3.2 is repeated, this time with (5.61) taking the place of the momentum advection
part of the fluxes given in (5.37). The contribution of the flux terms to (5.40) can then be
written as

⟨𝐯𝑏,𝑖−1/2,𝑖−1,J𝐟𝑖−1K⟩+ ⟨𝐯𝑏,𝑖−1/2,𝑖 ,J𝐟𝑖K⟩
= q⟨𝐯𝑏,𝑖−1/2,𝑖−1 , 𝐟𝑖−1⟩y+q⟨𝐯𝑏,𝑖−1/2,𝑖 , 𝐟𝑖⟩y− ⟨J𝐯𝑏,𝑖−1/2,𝑖−1K , 𝐟𝑖−1⟩ − ⟨J𝐯𝑏,𝑖−1/2,𝑖K , 𝐟𝑖⟩
=

r
ℎ𝑓 ,𝑖−1/2

z
+qℎ𝑢,𝑖−1/2y+𝜖𝑢,𝑖−1/2,

with ℎ𝑓 ,𝑖 given by (5.41), ℎ𝑢,𝑖 given by

ℎ𝑢,𝑖 = −(𝑞3,𝑖𝑞1,𝑖
)((𝑞3,𝑖𝑞1,𝑖

)−(𝑞3𝑞1
)
up,𝑖

)
𝑞3,𝑖
Δ𝑠 −(𝑞4,𝑖𝑞2,𝑖

)((𝑞4,𝑖𝑞2,𝑖
)−(𝑞4𝑞2

)
up,𝑖

)
𝑞4,𝑖
Δ𝑠 , (5.62)
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and 𝜖𝑢,𝑖−1/2 given by

𝜖𝑢,𝑖−1/2 = 𝜖𝑢,𝑈 ,𝑖−1/2 +𝜖𝑢,𝐿,𝑖−1/2 = (
t
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

|
((𝑞3,𝑖−1/2𝑞1,𝑖−1/2

)−(𝑞3𝑞1
)
up,𝑖−1/2

)
𝑞3,𝑖−1/2
Δ𝑠 )

+(
t
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|
((𝑞4,𝑖−1/2𝑞2,𝑖−1/2

)−(𝑞4𝑞2
)
up,𝑖−1/2

)
𝑞4,𝑖−1/2
Δ𝑠 ). (5.63)

We have split 𝜖𝑢,𝑖−1/2 into a part pertaining to the upper fluid (𝜖𝑢,𝑈 ,𝑖−1/2, first line) and a
part pertaining to the lower fluid (𝜖𝑢,𝐿,𝑖−1/2, second line).

This shows that the contribution of the upwind flux can be written as the contributionJℎ𝑓 ,𝑖−1/2K of the energy-conserving flux, plus some extra terms. Some of these terms are
completely between double brackets, meaning they are energy-conserving, and can be
included in the energy flux ℎ𝑢,𝑖 . The remaining terms will become source terms in the
energy equation.

We will now show that these source terms are strictly dissipative. It is sufficient to
only examine the terms pertaining to the upper fluid, since the terms pertaining to the
lower fluid have the same structure, so their analysis will yield similar results. The source
terms for the upper fluid can be rewritten in the following manner:

𝜖𝑢,𝑈 ,𝑖−1/2 =
1
2

t
𝑞3,𝑖−1
𝑞1,𝑖−1

| 𝑞3,𝑖−1
Δ𝑠 [(𝑞3,𝑖−1𝑞1,𝑖−1

)−(𝑞3𝑞1
)
up,𝑖−1

]+ 1
2

t
𝑞3,𝑖
𝑞1,𝑖

| 𝑞3,𝑖
Δ𝑠 [(𝑞3,𝑖𝑞1,𝑖

)−(𝑞3𝑞1
)
up,𝑖

] .

Now, we consider the case that 𝑞3,𝑖−1 > 0 and 𝑞3,𝑖 > 0, so that 𝑢𝑈 ,up,𝑖−1 = 𝑢𝑈 ,𝑖−3/2 and
𝑢𝑈 ,up,𝑖 = 𝑢𝑈 ,𝑖−1/2:

𝜖𝑢,𝑈 ,𝑖−1/2 =
1
2

t
𝑞3,𝑖−1
𝑞1,𝑖−1

| 𝑞3,𝑖−1
Δ𝑠 [(𝑞3,𝑖−1𝑞1,𝑖−1

)− 𝑞3,𝑖−3/2
𝑞1,𝑖−3/2

]+ 1
2

t
𝑞3,𝑖
𝑞1,𝑖

| 𝑞3,𝑖
Δ𝑠 [(𝑞3,𝑖𝑞1,𝑖

)− 𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

]

= 1
4

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|2 𝑞3,𝑖−1
Δ𝑠 + 1

4

t
𝑞3,𝑖
𝑞1,𝑖

|2 𝑞3,𝑖
Δ𝑠 .

Clearly, these terms must be positive, given that we have specified that 𝑞3,𝑖−1 > 0 and
𝑞3,𝑖 > 0.

Similarly, we consider the case that 𝑞3,𝑖−1 < 0 and 𝑞3,𝑖 < 0, so that 𝑢𝑈 ,up,𝑖−1 = 𝑢𝑈 ,𝑖−1/2
and 𝑢𝑈 ,up,𝑖 = 𝑢𝑈 ,𝑖+1/2:

𝜖𝑢,𝑈 ,𝑖−1/2 =
1
2

t
𝑞3,𝑖−1
𝑞1,𝑖−1

| 𝑞3,𝑖−1
Δ𝑠 [(𝑞3,𝑖−1𝑞1,𝑖−1

)− 𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

]+ 1
2

t
𝑞3,𝑖
𝑞1,𝑖

| 𝑞3,𝑖
Δ𝑠 [(𝑞3,𝑖𝑞1,𝑖

)− 𝑞3,𝑖+1/2
𝑞1,𝑖+1/2

]

= −14

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|2 𝑞3,𝑖−1
Δ𝑠 − 1

4

t
𝑞3,𝑖
𝑞1,𝑖

|2 𝑞3,𝑖
Δ𝑠 .
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Again, these termsmust be positive, given that we have specified that 𝑞3,𝑖−1 < 0 and 𝑞3,𝑖 < 0.
The third and fourth options (with differing signs between 𝑞3,𝑖−1 and 𝑞3,𝑖) are just simple
recombinations of these two results, so they too will be strictly positive. Move these terms
to the RHS, and they become strictly negative source terms. This means that our proposed
upwind discretization adds a strictly negative source term to the energy equation, which
acts to dissipate the energy given by (5.46).

Comparing this numerical dissipation term to the physical dissipation term given by
(5.53), we see that, among other differences, the numerical dissipation has an additional
factor Δ𝑠. It is proportional to the cell size and will decrease at a first order rate with
increasing grid resolution.

Note that alternative upwind fluxes, such as those used by [67, 74], do not yield contri-
butions to the energy equation that can be written as the sum of a conservative term and
a strictly negative dissipation term. In contrast, our new upwind advective numerical flux
does possess the property of energy stability. However, it may be more dissipative than
necessary, and for this reason we will combine it with the energy-conserving flux, in an
energy-stable manner.

5.3.8 Energy-stable combined advective flux
Our fifth and key novel contribution in the semi-discrete setting is that we combine the
strictly dissipative upwind advective flux with the energy-conserving central advective
flux, in such a way that the resulting advective flux is energy stable, but less dissipative
than a purely upwind discretization. The proposed combination possesses the best prop-
erties of both schemes.

Our energy-conserving advective fluxes were defined in (5.37) as

𝑓3,𝑎,𝑖−1,ec = (𝑞3,𝑖−1𝑞1,𝑖−1
)
𝑞3,𝑖−1
Δ𝑠 = 𝜌𝑈 𝑢𝑈 ,𝑖−1(𝐴𝑈 ,𝑖−1𝑢𝑈 ,𝑖−1),

𝑓4,𝑎,𝑖−1,ec = (𝑞4,𝑖−1𝑞2,𝑖−1
)
𝑞4,𝑖−1
Δ𝑠 = 𝜌𝐿𝑢𝐿,𝑖−1(𝐴𝐿,𝑖−1𝑢𝐿,𝑖−1).

Following the conventional manner of combining low-order and higher-order fluxes [118],
we propose the following combination of the energy-conserving fluxes and the upwind
fluxes given by (5.61), using flux limiters:

𝑓3,𝑎,𝑖−1 = (1−𝜙 (𝑟𝑈 ,𝑖−1))𝑓3,𝑎,𝑖−1,𝑢 +𝜙 (𝑟𝑈 ,𝑖−1)𝑓3,𝑎,𝑖−1,ec, (5.64a)
𝑓4,𝑎,𝑖−1 = (1−𝜙 (𝑟𝐿,𝑖−1))𝑓4,𝑎,𝑖−1,𝑢 +𝜙 (𝑟𝐿,𝑖−1)𝑓4,𝑎,𝑖−1,ec, (5.64b)

with 𝜙(𝑟𝑈 ,𝑖−1) and 𝜙(𝑟𝐿,𝑖−1) the limiter functions which determine the weighting between
the upwind flux and the energy-conserving flux. Here, the upwind flux is a low-order flux,
and the energy-conserving flux is a higher-order flux. The limiting coefficients depend on
the slope of the solution:

𝑟𝑈 ,𝑖−1 =
⎧⎪
⎨⎪⎩

𝑞3,𝑖−5/2−𝑞3,𝑖−3/2
𝑞3,𝑖−3/2−𝑞3,𝑖−1/2

, if 𝑢𝑈 ,𝑖−1 > 0
1, if 𝑢𝑈 ,𝑖−1 = 0
𝑞3,𝑖−1/2−𝑞3,𝑖+1/2
𝑞3,𝑖−3/2−𝑞3,𝑖−1/2

, if 𝑢𝑈 ,𝑖−1 < 0
𝑟𝐿,𝑖−1 =

⎧⎪
⎨⎪⎩

𝑞4,𝑖−5/2−𝑞4,𝑖−3/2
𝑞4,𝑖−3/2−𝑞4,𝑖−1/2

, if 𝑢𝐿,𝑖−1 > 0
1, if 𝑢𝐿,𝑖−1 = 0
𝑞4,𝑖−1/2−𝑞4,𝑖+1/2
𝑞4,𝑖−3/2−𝑞4,𝑖−1/2

, if 𝑢𝐿,𝑖−1 < 0
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These coefficients are fed to the limiter functions, for which many options exist. Here
we choose the minmod function:

𝜙(𝑟) =max [0,min (𝑟 ,1)] .
The minmod function will always yield a value between 0 and 1, which is an important
property that we need to show energy stability of the combined scheme. When the solu-
tion is smooth, 𝜙(𝑟) will be close to 1, and the energy-conserving flux will be used. When
the solution is less smooth, the upwind flux will be weighted more heavily. We note that
the minmod function could be exchanged for a less dissipative alternative, though most
conventional limiter functions are disqualified due to the requirement that the limiter func-
tion yield a value between 0 and 1.

The energy analysis of section 5.3.7 can be repeated for the fluxes given by (5.64), with
similar results. The contribution of the flux terms to (5.40) can be written as

⟨𝐯𝑏,𝑖−1/2,𝑖−1,J𝐟𝑖−1K⟩+ ⟨𝐯𝑏,𝑖−1/2,𝑖 ,J𝐟𝑖K⟩
= q⟨𝐯𝑏,𝑖−1/2,𝑖−1 , 𝐟𝑖−1⟩y+q⟨𝐯𝑏,𝑖−1/2,𝑖 , 𝐟𝑖⟩y− ⟨J𝐯𝑏,𝑖−1/2,𝑖−1K , 𝐟𝑖−1⟩ − ⟨J𝐯𝑏,𝑖−1/2,𝑖K , 𝐟𝑖⟩
=

r
ℎ𝑓 ,𝑖−1/2

z
+qℎ𝑛,𝑖−1/2y+𝜖𝑛,𝑖−1/2,

with ℎ𝑓 ,𝑖 given by (5.41), ℎ𝑛,𝑖 given by

ℎ𝑛,𝑖 = −(1−𝜙 (𝑟𝑈 ,𝑖))(
𝑞3,𝑖
𝑞1,𝑖

)((𝑞3,𝑖𝑞1,𝑖
)−(𝑞3𝑞1

)
up,𝑖

)
𝑞3,𝑖
Δ𝑠

−(1−𝜙 (𝑟𝐿,𝑖))(
𝑞4,𝑖
𝑞2,𝑖

)((𝑞4,𝑖𝑞2,𝑖
)−(𝑞4𝑞2

)
up,𝑖

)
𝑞4,𝑖
Δ𝑠 , (5.65)

and 𝜖𝑛,𝑖−1/2 given by

𝜖𝑛,𝑖−1/2 = ((1−𝜙 (𝑟𝑈 ,𝑖−1/2))
t
𝑞3,𝑖−1/2
𝑞1,𝑖−1/2

|
((𝑞3,𝑖−1/2𝑞1,𝑖−1/2

)−(𝑞3𝑞1
)
up,𝑖−1/2

)
𝑞3,𝑖−1/2
Δ𝑠 )

+((1−𝜙 (𝑟𝐿,𝑖−1/2))
t
𝑞4,𝑖−1/2
𝑞2,𝑖−1/2

|
((𝑞4,𝑖−1/2𝑞2,𝑖−1/2

)−(𝑞4𝑞2
)
up,𝑖−1/2

)
𝑞4,𝑖−1/2
Δ𝑠 ). (5.66)

Since with theminmod limiter function, the factors (1−𝜙 (𝑟𝑈 ,𝑖)) and (1−𝜙 (𝑟𝐿,𝑖)) have val-
ues between 0 and 1, this dissipation term has the same positivity property as the upwind
dissipation term given by (5.63).

Therefore, our novel advective numerical flux, formed by combining our upwind flux
and our energy-conserving flux, is energy stable. The new energy-stable flux will be less
dissipative than the pure upwind flux, since it uses the energy-conserving flux where
possible. Where the solution is smooth, the continuous equations conserve energy, and
our energy-stable flux replicates this property. Where the solution is discontinuous, the
energy-stable flux effectively adds numerical diffusion which dissipates energy.
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5.4 Stability
In this section, we discuss the stability of the basic and extended TFM. The stability of the
TFM is a topic that has received much attention since the discovery of the ill-posedness
issue by [81]. Here we focus on providing a detailedmotivation for our proposedmodel ad-
ditions of physical diffusion and surface tension. Together these effects produce a reliable
model that yields convergent solutions under flow conditions where the basic two-fluid
model fails. Friction plays a less important role in the model’s stability, but is an impor-
tant physical effect that an accurate model must include, and is included in the stability
analysis given here.

The basic two-fluid model, as described in section 5.2.1, is known to be conditionally
hyperbolic [87]. In the region of state space where the velocity difference is below the
inviscid Kelvin-Helmholtz (IKH) limit, the eigenvalues of the model are real, but outside
this region the eigenvalues of the model are complex [74]. Linear stability analysis (see
section 5.B) confirms the issue put forward by the characteristic analysis: within the hyper-
bolic region the model is stable, but in the non-hyperbolic region the (linear) growth rates
for small wavelength perturbations tend towards infinity. Therefore the model is said to
be (linearly) ill-posed: the common view is that this precludes meaningful solutions to the
continuous model, and prevents convergence of numerical solutions [60]. This prevents
the use of the basic model in its non-hyperbolic region.

Figure 5.3: A map of the linear stability of perturbations to steady states of the TFM with wall and interface
friction, using the basicmodelwithout diffusion and surface tension. The state space is divided into regionswhere
perturbations are damped, are unstable with a bounded growth rate, or are unstable with an unbounded growth
rate (ill-posed). The inviscid Kelvin-Helmholtz (IKH) and viscous Kelvin-Helmholtz (VKH) stability boundaries
are indicated. The symbol +marks the base state given by Table 5.2, and the symbol ∗marks the base state given
by Table 5.3.

Figure 5.3 is a stability map similar to those of [5, 6]. It maps the stability of steady
states of the TFM, where friction is balanced by a constant driving pressure gradient (act-
ing as a body force). The parameters are given in Table 5.1 and the geometry is that of a
2D channel. Given the lower fluid superficial velocity 𝑢𝐿𝛼𝐿 and the upper fluid superficial



5.4 Stability

5

125

velocity 𝑢𝑈 (1−𝛼𝐿), the hold-up 𝛼𝐿 = 𝐴𝐿/𝐴 and driving pressure gradient 𝜕𝑝body/𝜕𝑠 follow
from the demand for a fully developed steady state (derivatives to 𝑠 and 𝑡 must be zero).
For these steady states, the two dispersion relations 𝜔(𝜆) can be calculated according to
section 5.B. For a given perturbation wavelength 𝜆, we consider the dispersion relation for
which the imaginary component of 𝜔 is largest: this is the most unstable mode for this
wavelength. If for this most unstable mode Im(𝜔(𝜆)) < 0, the steady state is stable and
damping (to perturbations of wavelength 𝜆), if Im(𝜔(𝜆)) = 0 it is neutrally stable, and if
Im(𝜔(𝜆)) > 0 it is unstable. As long as Im(𝜔(𝜆)) is bounded as 𝜆→0, the state is well-posed.
If Im(𝜔(𝜆))→∞ for 𝜆 → 0, the state is labeled ‘ill-posed’.
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Figure 5.4: Imaginary component of the angular frequency 𝜔 for the most unstable mode, for the set of param-
eters given in Table 5.1, plotted as a function of wavelength 𝜆 = 2𝜋/𝑘. All models include wall and interface
friction. Left: base state given by Table 5.2, marked by the symbol + in the stability maps. Right: base state given
by Table 5.3, marked by the symbol ∗ in the stability maps.

Table 5.1: Parameters used for the linear stability analysis. These resemble the parameters of the Thorpe experi-
ment [117] as described in [46].

Parameter Symbol Value Units

Lower fluid density 𝜌𝐿 1000 kgm−3
Upper fluid density 𝜌𝑈 780 kgm−3
Acceleration of gravity 𝑔 9.81 ms−2
Channel inclination 𝜙 0 degrees
Channel height 𝐻 0.03 m
Lower fluid material viscosity 𝜈𝑚,𝐿 1.0 ⋅ 10−6 m2 s−1
Upper fluid material viscosity 𝜈𝑚,𝑈 1.9 ⋅ 10−6 m2 s−1
Lower fluid effective viscosity 𝜈eff,𝐿 1.13 ⋅ 10−4 m2 s−1
Upper fluid effective viscosity 𝜈eff,𝑈 1.21 ⋅ 10−4 m2 s−1
Surface tension 𝜎 0.04 kgms−2
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Table 5.2: Base state used for the linear stability analysis, corresponding to the left plot in Figure 5.4, and marked
with the symbol + in the stability maps.

Variable Symbol Value Units

Initial lower fluid hold-up 𝛼𝐿,0 0.4 −
Initial lower fluid velocity 𝑢𝐿,0 1 ms−1
Initial upper fluid velocity 𝑢𝑈 ,0 1.198 ms−1
Driving pressure gradient 𝜕𝑝body/𝜕𝑠 −204.2 kgm−2 s−2

Table 5.3: Base state used for the linear stability analysis, corresponding to the right plot in Figure 5.4, and
marked with the symbol ∗ in the stability maps.

Variable Symbol Value Units

Initial lower fluid hold-up 𝛼𝐿,0 0.2 −
Initial lower fluid velocity 𝑢𝐿,0 1 ms−1
Initial upper fluid velocity 𝑢𝑈 ,0 1.515 ms−1
Driving pressure gradient 𝜕𝑝body/𝜕𝑠 −268.4 kgm−2 s−2

For the basic model without diffusion and surface tension, stability is independent of
wavelength [64]: if long wavelengths are unstable then short wavelengths are also unsta-
ble (though with different growth rates). This can be seen in Figure 5.4 (similar to figure
3.2 in [76]), which shows the growth rate of the most unstable mode, for two different
steady states, and for different versions of the TFM. Therefore the stability map of the ba-
sic model in Figure 5.3 is independent of wavelength. It is divided into an ill-posed region
and a well-posed region. Without friction the whole well-posed region would be neutrally
stable. Friction divides the well-posed region of Figure 5.3 into a region with damping and
an unstable region (but with bounded growth rates). The stability boundary with friction
is referred to as the viscous Kelvin-Helmholtz (VKH) boundary, while the ill-posedness
boundary is referred to as the inviscid Kelvin-Helmholtz (IKH) boundary [5, 6].

Figure 5.5: Maps of the linear stability of short wavelength perturbations to steady states of the TFM, with wall
and interface friction, diffusion, and surface tension. The stability of perturbations with a specific wavelength
is shown. Left: 𝜆 = 0.1m. Middle: 𝜆 = 0.01m. Right: 𝜆 = 0.001m. The symbol + marks the base state given by
Table 5.2, and the symbol ∗ marks the base state given by Table 5.3.
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Adding physical diffusion and surface tension changes the dispersion relations, as can
be seen in Figure 5.4. Short wavelength perturbations are stabilized, while at long wave-
lengths, the dispersion relations are unchanged. The growth rate no longer tends to infin-
ity for short wavelengths, removing the ill-posedness issue. In case only diffusion is added,
the growth rate is bounded, but its value still increases rapidly at short wavelengths, which
causes short wavelength perturbations to dominate the solution. In a numerical model,
upon refining the grid, increasingly unstable scales are resolved, making it impossible to
reach convergence [56].

When both physical diffusion and surface tension are added to the model, as suggested
by Fullmer et al. [46], a cut-off wavelength is introduced below which perturbations are
damped, as can be seen in Figure 5.4 at approximately 𝜆𝑐 = 0.0174m. This removes the
unphysical short wavelength instabilities. Meanwhile, the long wavelength instabilities,
which are physical instabilities that are an integral part of the model, can still be resolved
dynamically. The removal of the severe short wavelength instabilities means that the
impediment to grid convergence is removed, and implies that theoretically all dynamics
could be resolved without refining past Δ𝑠 = 𝜆𝑐/2. The combination of physical diffusion
and surface tension is crucial to achieving the damping effect: with only surface tension
the short wavelengths are nearly neutrally stable, with only the shortest wavelengths be-
ing very weakly damped, due to the influence of friction.

The cut-off wavelength depends on the state and model parameters. As the difference
between the velocities of the two fluids is increased further into the region of instability be-
yond the IKH limit, the cut-off wavelength is decreased. This is apparent from comparing
the stability maps for different wavelengths in Figure 5.5. The marked states in the maps
are unstable (with bounded growth rates) to long wavelength perturbations, but stable for
short wavelengths, as shown in Figure 5.4. For each possible state there will always be a
cut-off wavelength below which damping takes place. Therefore, the extended model is
unconditionally well-posed.

Thismethod of regularization leaves intermediate scale perturbations intact that might
lie outside of the range of validity of the model dictated by the long-wavelength assump-
tion. An alternative option is to also damp these scales, by using artificial diffusion, added
to both the mass and momentum equations [14, 45, 56]. However, the fact that these scales
are not modeled to complete accuracy does not mean that it is more accurate to artificially
eliminate these perturbations. Our approach is to leave these perturbations intact, for as
far as they are not stabilized by physically motivated model components.

Depending on the state, the cut-off wavelength may become quite low and the instabil-
ity quite severe. For such an unstable state, the solution will be dominated by intermediate
scale instabilities, that lie above the cut-off wavelength, but are still of very short wave-
length. Practically, the grid resolution required to reach the cut-off wavelength may be
prohibitive. Therefore, in engineering applications, it may not be possible to resolve all
the dynamics of the model in a numerical simulation. This does not affect the linear well-
posedness: if the small scales are not resolved, they will cause no harm, and if they are
resolved, they will be regularized by diffusion and surface tension.

The longer scale instabilities that remain present in our extended model have bounded
growth rates, but would grow indefinitely, according to the linear stability analysis. In
reality, when the perturbations grow large, the assumptions made in the linearization
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of the model become invalid, and the behavior of the full model will depart from the
behavior of the linearized model. At this point, the nonlinear stability of the model must
be considered [76]. Nonlinear effects can bound perturbations that grow initially due to
linear instability. Typically, the unstable perturbations develop into shocks, whichmust be
bounded by a dissipative mechanism. In section 5.5.4 we show numerically that physical
diffusion plays a crucial role in the nonlinear damping of linear instabilities that develop
into shocks. At coarse grid resolutions, this role is taken over by numerical diffusion.

An analytical indication of a form of nonlinear stability, which the model should sat-
isfy even when it is linearly unstable, is given by the energy conservation property. The
extended local energy, given by (5.12), can be written in the following primitive form for
the 2D channel geometry:

𝑒ch =
1
2𝜌𝑈 𝑔𝑛𝐻

2𝑈 +𝜌𝑈 𝑔𝑛𝐻𝑈𝐻𝐿 +
1
2𝜌𝐿𝑔𝑛𝐻

2𝐿 +
1
2𝜌𝑈 𝑢

2𝑈𝐻𝑈 + 1
2𝜌𝐿𝑢

2𝐿𝐻𝐿

+𝜌𝑈 𝑔𝑦𝐻𝑈 +𝜌𝐿𝑔𝑦𝐻𝐿 +𝜎 (1+
1
2 (

𝜕𝐻𝐿
𝜕𝑠 )

2
). (5.67)

Since 𝐻𝑈 and 𝐻𝐿 must be positive, each term in this expression is positive. Therefore
the global energy equation (5.15) implies a bound on the velocities, the heights, and their
spatial derivatives. A numerical model that conserves (or strictly dissipates) this energy
can be expected to have solutions that are bounded in this way.

In conclusion, the extended model linearly damps short wavelength perturbations,
nonlinearly damps unstable long wavelength perturbations when they grow large, and
possesses an energy bound. These properties are achieved by adding only physically de-
rived terms to the basic model (physical diffusion, friction, and surface tension). The end
result is a reliable model that can be expected to handle difficult flow states, while still
resolving physical instabilities.

5.5 Numerical experiments
5.5.1 Introduction
In this section, the energy stability and well-posedness properties of our new framework
are demonstrated through three different numerical experiments. These were conducted
using a code based on the spatial discretizations given in section 5.3. The numerical ex-
periments consider a 2D channel geometry, for which the basic discretization described
in section 5.3.1 and the surface tension discretization described in section 5.3.6 are exactly
energy-conserving.

For the time integration we use the fourth order constraint-consistent Runge-Kutta
method described by Sanderse and Veldman [107]. This method is explicit for the mass and
momentum equations and implicit for the pressure, requiring the solution of a pressure
Poisson equation. It requires the mass and momentum equations to be coupled as has
been done by setting the fluxes in the mass equations according to (5.37).

First, in section 5.5.2 we consider a traveling wave solution to the basic TFM with-
out diffusion or surface tension. We show that our novel energy-stable advective flux
(described in section 5.3.8) yields smooth solutions without excessive numerical diffusion
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or numerical oscillations. We compare this flux to our original energy-conserving flux
(described in section 5.3.1) and to our strictly dissipative upwind flux (described in sec-
tion 5.3.7). Additionally, we compare these to a naive central scheme which is neither
energy-conserving nor strictly dissipative.

In section 5.5.3 we repeat the traveling wave case, but with surface tension added
according to section 5.3.6. We show that this addition is energy-conserving, as predicted
by the analysis.

Last, in section 5.5.4 we consider an unstable perturbation to a shear flow base state
that would be ill-posed for the basic TFM. We demonstrate that the complete new frame-
work with friction, diffusion, surface tension, and the energy-stable advective flux, is able
to obtain solutions that converge with increasing grid resolution, for this challenging test
case. We quantify the contributions of numerical diffusion, physical diffusion and friction
to the nonlinear damping by computing the dissipation, using our derived expressions for
the dissipation rates.

5.5.2 Traveling wave with the basic model and different schemes
We conduct a test case with a traveling wave, induced as a perturbation upon a uniform
base state, for the basic model without diffusion, friction, or surface tension. The base state
is given in Table 5.4, and the flow parameters are those of Table 5.1. The perturbation is
defined according to the analysis in section 5.B. It is the initial condition for the exact
solution to the linearized system, for one of the two modes 𝜔(𝑘). We set the wavelength
of the perturbation to 𝜆 = 0.1m, and select the wave mode 𝜔 = 39.89s−1 (the other option
is 𝜔 = 22.94s−1 and would yield a slower wave). The perturbation is then limited to the
range between 𝑠pert−𝜆/2 and 𝑠pert+𝜆/2, with 𝑠pert = 2𝜆+𝜆/4. Outside of this range the base
state is kept. The computational domain has length 𝐿 = 0.5 and has periodic boundaries.
A pressure projection step is performed on the complete initial condition, adjusting the
velocities to ensure that the volumetric flow constraint is satisfied (see [107]).

Table 5.4: Base state for the traveling wave case.

Variable Symbol Value Units

Initial lower fluid hold-up 𝛼𝐿,0 0.5 −
Initial lower fluid velocity 𝑢𝐿,0 0.5 ms−1
Initial upper fluid velocity 𝑢𝑈 ,0 0.5 ms−1

The exact solution of the linearized model is a wave traveling to the right without
deformation. The solution to the full nonlinear model, using the energy-stable advective
flux described in section 5.3.8, is shown in Figure 5.6. We show the hold-up 𝛼𝐿 = 𝐴𝐿/𝐴
and the upper fluid velocity 𝑢𝑈 . The wave travels to the right at constant velocity, with
little deformation. At 𝑡 = 3.15s and 𝑡 = 6.30s, the wave has traveled through the domain an
integer number of times (4 and 8 times respectively), and the wave can be compared to the
initial perturbation. In the middle of the wave, a slight steepening has taken place, tending
towards the formation of a discontinuity. At the edges, the wave has diffused slightly.

In Figure 5.7, we compare results for this test case, using different discretizations of
the advective flux in the momentum equations. We compare the energy-stable scheme
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Figure 5.6: Two components of the solution to the traveling wave case for the basic model, using the energy-
stable advective flux described in section 5.3.8, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s.

given by (5.64), the upwind scheme given by (5.61), the energy-conserving scheme given
in (5.37), and a naive central interpolation scheme in which the momentum advection
fluxes are given by

𝑓3,𝑎,𝑖−1,cen = [(𝑞3,𝑖−1𝑞1,𝑖−1
)]

2
𝑞1,𝑖−1
Δ𝑠 = 𝜌𝑈 (𝑢𝑈 ,𝑖−1)

2𝐴𝑈 ,𝑖−1,

𝑓4,𝑎,𝑖−1,cen = [(𝑞4,𝑖−1𝑞2,𝑖−1
)]

2
𝑞2,𝑖−1
Δ𝑠 = 𝜌𝐿 (𝑢𝐿,𝑖−1)

2𝐴𝐿,𝑖−1.

A high-resolution solution (Δ𝑠 = 1.25 ⋅ 10−4m and Δ𝑡 = 1.25 ⋅ 10−5 s), obtained using the
energy-stable scheme, is used as a reference. The results show that the central and energy-
conserving schemes produce numerical oscillations in the presence of strong gradients,
while the upwind scheme is excessively diffusive. The proposed energy-stable scheme
yields the most accurate solution, without numerical oscillations and with much less dif-
fusion than the upwind scheme.

This behavior can be understood from the perspective of the (global) energy, of which
Figure 5.7 shows the absolute and nondimensional difference with respect to the initial
condition. The energy-conserving scheme conserves energy up to a very small time in-
tegration error. The energy-stable and upwind schemes lose energy with respect to the
initial condition, while the central scheme gains energy (this is not visible since only the
absolute difference is plotted). The energy-stable scheme is less dissipative than the up-
wind scheme, which is reflected in its less diffused solution. Some dissipation is physically
necessary near strong gradients or discontinuities, and the lack of this in the central and
energy-conserving schemes can be understood to lead to numerical oscillations.
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Figure 5.7: Comparison of results of the traveling wave case for the basic model, using different advective flux
discretizations. In all cases, Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s. The reference is a high-resolution solution (Δ𝑠 = 1.25 ⋅
10−4m and Δ𝑡 = 1.25 ⋅ 10−5 s) obtained using the energy-stable scheme. Left: the solution for the hold-up at time
𝑡 = 6.3s. Right: the absolute difference between the energy as a function of time and the initial energy, divided
by the initial energy.

5.5.3 Traveling wave with surface tension
Adding surface tension to the basic model yields a model that is still energy-conserving,
but for themodified energy 𝑒 = 𝑒𝑏+𝑒𝑠 . We repeat the previous casewith thismodel. We test
the surface tension implementation described in section 5.3.6 with the energy-conserving
advective flux to show that the addition is energy-conserving. We also test the surface
tension implementation with the energy-stable flux and show that practically this yields
the best results.

The addition of surface tension results in a different angular frequency of 𝜔 = 40.19s−1,
for 𝜆 = 0.1m (the other mode is 𝜔 = 22.64s−1). The solution at various points in time is
shown in Figure 5.8. Due to the slightly increased wave speed, the snapshots at 𝑡 = 3.13s
and 6.25s are now the points at which the wave has traveled through the domain 4 and
8 times respectively. The addition of surface tension has a dispersive effect: the traveling
wave spreads out into smaller oscillations, which are not of numerical origin. This can be
determined from the fact that they do not vanish upon grid refinement.

Figure 5.9 shows energy and convergence results using the energy-conserving advec-
tive flux. Using the energy-conserving advective flux makes it possible to isolate the effect
of the surface tension implementation on the (global) energy. The figure shows how the
total energy remains constant in time. This confirms our theoretical analysis: the surface
tension implementation is indeed energy-conserving. The different components of the en-
ergy (potential, kinetic, and surface energy) are free to increase or decrease, exchanging
with one another. The magnitude of the exchange is small.

Figure 5.10 shows energy and convergence results using the energy-stable advective
flux. Using this flux, the total energy is not conserved, but decreases monotonically, as
discussed in section 5.5.2. A comparison between the right plots of Figure 5.9 and Fig-
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Figure 5.8: Two components of the solution to the traveling wave case for the basic model plus surface tension,
using the energy-stable advective flux, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s.
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Figure 5.9: Results for the traveling wave case with surface tension, using the energy-conserving advective flux.
Left: components of the energy of the solution, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s. Right: convergence of the
hold-up at time 𝑡 = 6.3s, with a constant ratio Δ𝑡/Δ𝑠 = 0.1s/m.
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ure 5.10 shows that this comes with the advantages of smoother convergence and absence
of numerical oscillations. Therefore the energy-stable flux is favored, in combination with
the energy-conserving surface tension discretization.
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Figure 5.10: Results for the traveling wave case with surface tension, using the energy-stable advective flux. Left:
components of the energy of the solution, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s. Right: convergence of the hold-up
at time 𝑡 = 6.3s, with a constant ratio Δ𝑡/Δ𝑠 = 0.1s/m.

5.5.4 Shock formation and dissipation in unstable region
In this test case we test our complete proposed framework, with all physical effects and
the energy-stable advective flux, on a challenging case involving the rapid growth of a
perturbation and development into a shock. The flow is in the region of state space where
the basic model is ill-posed: it is marked with the symbol ∗ in the stability maps of sec-
tion 5.4. However, with our extended model we are able to obtain good convergence and
a well-resolved shock.

This test case is inspired by a case from [46], which is in turn derived from [56]. The
boundaries are periodic, the flow parameters are given by Table 5.1, and the base state is
given by Table 5.3. This base state is altered by a single-period sinusoidal perturbation in
the hold-up (with wavelength 𝜆 = 0.1m and amplitude Δ𝛼𝐿 = 0.05), which determines the
initial conditions for 𝑞1 and 𝑞2. The velocities are not explicitly perturbed. Instead, a pres-
sure projection step is performed on the base state plus perturbed hold-up. The projection
step perturbs the velocities such that the volumetric flow constraint is satisfied, yielding
the initial conditions for 𝑞3 and 𝑞4. Two components of the resulting initial condition (ex-
pressed in primitive variables) can be seen in Figure 5.11, along with the evolution of the
wave in time. The main difference between this case and the case from [46] is that we add
wall and interface friction, so that all sources of dissipation are included in the numerical
experiment. The friction is balanced by a driving pressure gradient, with a (constant) value
given by Table 5.3, so that the base state is a steady state (see section 5.4). Without the
external forcing provided by a driving pressure gradient, the initial perturbation would
quickly die out.
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Figure 5.11: Initial condition, and solution over time, for two components of the solution to the unstable shock
formation case. Using the energy-stable advective flux, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s.
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Figure 5.12: Snapshot of two components of the solution to the unstable shock formation case, at time 𝑡 = 1.8s.
Using the energy-stable advective flux, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s. This figure shows how after the rapid
growth depicted in Figure 5.11, the shock breaks up into several roll waves that remain of limited amplitude.
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While the basic model possesses an unbounded short wave growth rate for these flow
conditions, the extended model damps short wavelength perturbations (see Figure 5.4).
The wavelength of the perturbation considered here is still unstable, and indeed the per-
turbation is observed to grow rapidly in Figure 5.11. Fortunately, as predicted by the
linear stability analysis, it grows at a finite rate, and is not dominated by extreme short
wavelength instabilities. Finally, after developing into a shock its growth is stopped by
nonlinear effects. After this point, secondary perturbations will start to grow, which will
continue traveling to the right, through the periodic boundary, to reappear on the left
side of the domain. The secondary perturbations also form discontinuities and remain
bounded in the same manner as the primary perturbation. Eventually, at much later time,
a sequence of roll waves is observed, as shown in Figure 5.12.

The global dissipation as a function of time is shown in Figure 5.13. Here the dissi-
pated energy is calculated using the expressions for the local dissipation – 𝜖𝑑,𝑖−1/2, 𝜖𝑓 ,𝑖−1/2,
𝜖𝑛,𝑖−1/2 – and the expression for energy production due to a driving pressure gradient –
𝑐𝑝,𝑖−1/2. These expressions are summed over the domain and integrated in time (numeri-
cally) according to (5.49), and their sum yields the total dissipated energy. Since the initial
base state is uniform, it has no (physical or numerical) diffusion, but it does have high
dissipation due to friction which is balanced by an energy input from the driving pressure
gradient. These base state dissipation and production terms have been subtracted so that
friction and the driving pressure gradient do not dominate the plot.

In the second plot of Figure 5.13, the instantaneous energy is calculated using the
expression for 𝑒𝑖−1/2, summed over the domain to yield the global energy. The left and
right plots of Figure 5.13 show the same decrease in total energy, confirming that the two
methods of calculation are consistent.

Figure 5.13 reveals exactly how nonlinear effects bound the amplitude of the shock.
The respective contributions of the physical and numerical diffusion to the nonlinear
damping can now be quantified, by examining their effect on the energy of the solution.
The figure shows that as the shock develops, the physical and numerical diffusion and
their resulting dissipation grow large, and decrease the energy of the solution. They act
to decrease the kinetic energy of the solution, allowing the potential and surface energy
to grow slightly. We note that a calculation of the local dissipation shows the dissipation
to be localized around the shock.

The dissipation due to friction also grows with time, but less dramatically, since it is
proportional to the size of the wave, not to its steepness. It has a smaller stabilizing effect.
Regarding the driving pressure gradient, the energy input remains roughly constant, since
it is not dependent on the perturbation but only on the volumetric flow rate, which is a
property of the complete flow. Its negative value at 𝑡 = 0.16s means that the energy input
is slightly lower than it was for the initial base state, since the volumetric flow rate has
decreased slightly, indicating that the flow has been slowed down slightly.

Figure 5.14 shows how the solution converges with grid resolution, confirming that
the extended model is well-posed, as discussed in section 5.4. Also shown in Figure 5.14
is the convergence of the dissipation, divided into its different components. As the grid is
refined, the small scales at which the physical diffusion acts are better resolved, allowing
the corresponding dissipation to grow and converge to its full physical effect. In contrast,
beyond a certain resolution before which the solution is relatively smooth, the numerical
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Figure 5.13: For the unstable shock formation case, this figure shows the dissipated energy (left) and the instanta-
neous energy (right), made non-dimensional by the total energy of the initial condition. Using the energy-stable
advective flux, with Δ𝑠 = 10−3m and Δ𝑡 = 10−4 s. The total dissipation is divided into contributions from physical
diffusion, numerical diffusion, wall and interface friction, and a production term due to an externally applied
driving pressure gradient.

dissipation decreases with grid resolution. Only at coarse resolutions, numerical dissi-
pation is needed to compensate for the lack of physical dissipation. Dissipation due to
friction only varies slightly with grid resolution, since it is not a small scale phenomenon.

Previous work has described how the linearly unstable wave is bounded by (nonlinear)
dissipation in the shock, due to numerical and physical diffusion [46]. However, up to now,
dissipation has remained an abstract concept for the TFM. Here we provide definitions for
the various components of the dissipation, and specify their effect on awell-defined energy.
Therefore, dissipation has become a concrete quantity that can be measured. This provides
a stronger basis for discussions of the nonlinear damping of unstable waves. We confirm
the conclusions of Fullmer et al. [46], who observe that with only numerical diffusion, the
solution fails to converge (with oscillations appearing at high resolutions), due to the lack
of numerical diffusion at high grid resolutions. We similarly observe (results not shown
here) that physical diffusion without numerical diffusion leads to a less clear convergence,
with coarse grid solutions being insufficiently diffused. With Figure 5.14 we have made
concrete that with a combination of numerical and physical diffusion, the dissipation in
the shock smoothly converges to a finite value, realizing a grid-independent bound on the
amplitude of the shock.
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Figure 5.14: For the unstable shock formation case, this figure shows the convergence with grid resolution, of
the solution at time 𝑡 = 0.16s. Using the energy-stable advective flux, with a constant ratio Δ𝑡/Δ𝑠 = 0.1s/m. Left:
hold-up fraction 𝛼𝐿 = 𝐴𝐿/𝐴. Right: dissipated energy, divided by the total energy of the initial condition.

5.6 Conclusions
This chapter has proposed a complete energy-stable framework – including diffusion, fric-
tion, surface tension, and an energy-stable advective flux scheme – for reliable simulations
with the one-dimensional two-fluid model (TFM). The chapter builds on our earlier work
on the energy-conserving basic TFM, which we have extended in an energy-consistent
manner. We have shown that for the channel geometry, surface tension can be added
to the model in an energy-conserving manner. The additions of friction and momentum
diffusion have been shown to be strictly dissipative. Therefore, these extensions yield an
energy-stable model.

Besides their implications for energy stability, the additions to the model also solve the
basic model’s issue of unbounded linear instability at short wavelengths: diffusion and sur-
face tension introduce a cut-off wavelength below which perturbations are damped. The
cut-off wavelength is shown to depend on the state: it decreases with increasing velocity
difference between the phases. Nevertheless, there exists a cut-off wavelength for any
state, rendering the model unconditionally well-posed. These cut-off wavelengths may be
shorter than the scales at which the TFM is usually employed, but it is these scales at which
the ill-posedness issue of the one-dimensional model resides and it is these scales which
need to be stabilized. Diffusion and surface tension offer a clearly physically motivated
way to do so. Precisely because diffusion and surface tension are physically motivated,
they fit well into our energy-stable framework.

The energy conservation and dissipation properties of the model have been proven
to carry over to the semi-discrete model, when the model and its energy are discretized
in a specific manner. The semi-discrete model with surface tension is exactly energy-
conserving, if the surface energy is added to the basic energy as an extra term. Diffusion
and friction add strictly dissipative terms to the local energy conservation equation, with
expressions for the dissipation rates that can be evaluated as functions of the local instan-
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taneous solution.
However, the key highlight of our semi-discrete model is a new discretization of the

advective terms, which combines a previously developed energy-conserving central dis-
cretization and a strictly dissipative upwind discretization. These discretizations are com-
bined using flux limiters. The novel combined advective flux is energy stable, and comes
with an explicit expression for the numerical dissipation rate, that can be evaluated dur-
ing a numerical simulation. It is designed to be energy-conserving where the solution
is smooth, and dissipative where the solution has strong gradients. This dissipation is
motivated by the fact that the energy conservation property of the continuous model
does not hold for discontinuous solutions: dissipation is required in this case. The novel
energy-stable flux retains the advantages in stability and physical fidelity of the original
energy-conserving flux, without the latter’s tendency to generate numerical oscillations
near discontinuities.

In numerical experiments, spatially exact energy conservation is demonstrated for the
basic model extended with surface tension, using the original energy-conserving flux. The
upwind and energy-stable advective fluxes are demonstrated to be strictly dissipative, as
opposed to a naive central discretization that is neither conservative nor strictly dissipa-
tive. The energy-stable scheme is shown to yield smooth solutions without numerical os-
cillations. It is much less diffusive than a first-order upwind scheme, and this is reflected in
the dissipation, which is lower for the energy-stable scheme than for the upwind scheme.

A challenging test of our complete framework is provided by the simulation of an
unstable wave in a region of state space where the basic model is linearly ill-posed. Our
proposed framework yields a convergent solution, confirming that it is well-posed. The
unstable perturbation develops into a shock, which is bounded by nonlinear dissipation.
The analytical results of this work enable a precise analysis of the dissipation and better
insight into the nonlinear damping taking place. The dissipation due to numerical and
physical diffusion are observed to grow as the wave steepens, with numerical dissipation
dominating at coarse resolutions and physical dissipation dominating at fine resolutions.
Together, numerical and physical diffusion yield a smoothly converging total dissipation,
and a smoothly converging solution.

In order to resolve the full effect of the physical diffusion and surface tension and reach
convergence, the grid needs to be refined to high resolutions that may be impractical in
engineering applications. When the additional computational expense associated with
high resolutions is unwanted, our model has the advantage that it can also be used at
coarse resolutions, where it provides solutions that are similar to the converged solutions,
except that sharp perturbations are diffused. The convergence plots show a monotonic
steepening of the waves, without spurious oscillations.

Though the semi-discrete computational model proposed in this chapter is by itself
no more computationally expensive than standard discretizations of the basic model, the
inclusion of surface tension does place an additional restriction on the time step set in the
explicit time integration method. For the basic model the time step only has to satisfy a
CFL condition, giving the time step a bound that scales linearly with grid resolution. The
addition of surface tension results in a higher order restriction, with an exponent between
1 and 2. Therefore, the addition of surface tension increases the computational effort re-
quired for the fully discrete computational model, particularly at higher grid resolutions.
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Appendix
5.A Friction closure relations
The wall and interface stresses of the two-fluid model are typically modeled in the follow-
ing manner [116]:

𝜏𝐿 = −12𝑓𝐿𝜌𝐿𝑢𝐿|𝑢𝐿|, 𝜏𝑈 = −12𝑓𝑈 𝜌𝑈 𝑢𝑈 |𝑢𝑈 |, 𝜏int = −12𝑓int𝜌𝑈 (𝑢𝑈 −𝑢𝐿) |𝑢𝑈 −𝑢𝐿|,

in which 𝑓𝐿, 𝑓𝑈 , and 𝑓int are the Fanning friction factors, which require further closure
relations. The friction factors depend on the Reynolds numbers

Re𝐿 =
|𝑢𝐿|𝐷𝐿
𝜈𝑚,𝐿

, Re𝑈 = |𝑢𝑈 |𝐷𝑈
𝜈𝑚,𝑈

,

with hydraulic diameters

𝐷𝐿 =
4𝐴𝐿
𝑃𝐿

, 𝐷𝑈 = 4𝐴𝑈
𝑃𝑈 +𝑃int

.

In this work we use the Taitel and Dukler friction model [5, 116]

𝑓𝐿 =
𝐶
Re𝑛𝐿

, 𝑓𝑈 = 𝐶
Re𝑛𝑈

, 𝑓int =max(𝑓𝑈 , 0.014) ,

with coefficients 𝐶 = 0.046 and 𝑛 = 0.2 (valid for turbulent flow).

5.B Linear stability analysis
We conduct a linear stability analysis of the (continuous) model, following [46, 74, 76].
The analysis starts by writing (5.10) in quasilinear matrix form, which can be done by
substituting the volume constraint and assuming the solution is smooth:

𝐀(𝐰)𝜕𝐰𝜕𝑡 +𝐁(𝐰)𝜕𝐰𝜕𝑠 +𝐄(𝐰)𝜕
2𝐰
𝜕𝑠2 +𝐆(𝐰)𝜕

3𝐰
𝜕𝑠3 = 𝐜(𝐰), (5.68)

with

𝐰 =
⎡⎢⎢⎢
⎣

𝑤1
𝑤2
𝑤3
𝑤4

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

𝐴𝐿
𝑢𝐿
𝑢𝑈
𝑝

⎤⎥⎥⎥
⎦
, 𝐀 =

⎡⎢⎢⎢
⎣

1 0 0 0
−1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥
⎦
,

𝐁 =
⎡⎢⎢⎢⎢⎢
⎣

𝑤2 𝑤1 0 0
−𝑤3 0 𝐴−𝑤1 0

− 𝑔𝑛
𝑤1

d𝐻𝐿
d𝐴𝐿

𝑤2 − 1
𝑤1

𝜕
𝜕𝑠 (𝜈eff,𝐿𝑤1) 0 1/𝜌𝐿

𝑔𝑛
𝐴−𝑤1

d𝐻𝑈
d𝐴𝑈

0 𝑤3 − 1
𝐴−𝑤1

𝜕
𝜕𝑠 (𝜈eff,𝑈 (𝐴−𝑤1)) 1/𝜌𝑈

⎤⎥⎥⎥⎥⎥
⎦

,
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𝐜 =
⎡⎢⎢⎢⎢
⎣

0
0

− 1
𝜌𝐿

𝜕𝑝body
𝜕𝑠 + 𝜏𝐿𝑃𝐿

𝜌𝐿𝑤1
− 𝜏int𝑃int

𝜌𝐿𝑤1
−𝑔𝑠

− 1
𝜌𝑈

𝜕𝑝body
𝜕𝑠 + 𝜏𝑈 𝑃𝑈

𝜌𝑈 (𝐴−𝑤1)
+ 𝜏int𝑃int

𝜌𝑈 (𝐴−𝑤1)
−𝑔𝑠

⎤⎥⎥⎥⎥
⎦

,

𝐄 =
⎡⎢⎢⎢
⎣

0 0 0 0
0 0 0 0

𝜎
𝜌𝐿

1
𝑃2
int

d𝑃int
d𝐴𝐿

𝜕𝑤1
𝜕𝑠 −𝜈eff,𝐿 0 0

0 0 −𝜈eff,𝑈 0

⎤⎥⎥⎥
⎦
, 𝐆 =

⎡⎢⎢⎢
⎣

0 0 0 0
0 0 0 0

− 𝜎
𝜌𝐿

1
𝑃int

0 0 0
0 0 0 0

⎤⎥⎥⎥
⎦
.

Here we have used the second expression in (5.26) for the surface tension, which can be
applied to both the 2D channel and the circular pipe geometries.

A general method for the linearization of systems of quasilinear partial differential
equations is given by Prosperetti and Tryggvason [95]. The general solution is decom-
posed into 𝐰 = 𝐰̄ +Δ𝐰 with Δ𝐰 a small disturbance (Δ𝐰 ≪ 𝐰̄), and 𝐰̄ a base state that
is itself also a solution to the equations. Additionally, we assume that the base state is a
uniform steady state (its derivatives to 𝑠 and to 𝑡 are zero). Then, neglecting terms that
are higher order in Δ𝐰, and subtracting the equation for the base state (which is satisfied
by definition), a system of the form (5.68) can be approximated by

𝐀(𝐰̄)𝜕Δ𝐰𝜕𝑡 +𝐁(𝐰̄)𝜕Δ𝐰𝜕𝑠 +𝐄(𝐰̄)𝜕
2Δ𝐰
𝜕𝑠2 +𝐆(𝐰̄)𝜕

3Δ𝐰
𝜕𝑠3 = 𝐃𝐶 (𝐰̄)Δ𝐰, (5.69)

with
𝐃𝐶 (𝐰̄) = 𝜕𝐜(𝐰̄)

𝜕𝐰̄ .
Here, 𝐃𝐶 is a Jacobian matrix. Due to the assumption of the uniform base state, and the
neglecting of higher order terms, the terms in 𝐁(𝐰̄) and 𝐄(𝐰̄) involving partial derivatives
to 𝑠 drop out.

We write Δ𝐰 as a Fourier series and substitute an arbitrary Fourier mode

Δ𝐰 = Δ𝐰̂exp [𝑖 (𝑘𝑠 −𝜔𝑡)] ,
with Δ𝐰̂ the amplitude, 𝑘 the wavenumber, and 𝜔 the angular frequency, into (5.69). This
yields the following linear system [46]:

[−𝜔𝐀(𝐰̄)+𝑘𝐁(𝐰̄)+ 𝑖𝐃(𝐰̄)+ 𝑖𝑘2𝐄(𝐰̄)−𝑘3𝐆(𝐰̄)]Δ𝐰̂ = 𝟎. (5.70)

For nontrivial solutions to exist, the determinant of the term between brackets must be
zero, and solving for this yields two dispersion relations 𝜔(𝑘).

The perturbation amplitudes Δ𝐰̂ corresponding to the found dispersion relations can
be found by substituting these in (5.70) and solving for Δ𝐰̂. This can be understood as,
for each dispersion relation, finding the null space of the term between brackets in (5.70),
whichwill consist of one vector. The associated phase angles can be calculated component-
wise:

𝜽 = arctan [Im(Δ𝐰̂)/Re(Δ𝐰̂)],
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where each component of 𝜽 has a range [−𝜋,𝜋] (use the four-quadrant inverse tangent).
This makes it possible to write the evolution in time of a perturbation as

Δ𝐰 =∑
𝑗
||Δ𝐰̂𝑗 ||eIm{𝜔𝑗 }𝑡 cos(𝑘𝑠 −Re {𝜔𝑗 } 𝑡 +𝜽𝑗) , (5.71)

where we take the sum over the different solutions for 𝜔 for a given 𝑘, and the associated
amplitude vectors. If a sinusoidal perturbation is initialized with a given wavenumber 𝑘,
and an amplitude vector exactly corresponding to one of the two angular frequencies 𝜔(𝑘),
then the sum in (5.71) can be left out and the perturbation will propagate as a single wave
with speed Re {𝜔} and growth rate Im {𝜔}. This holds exactly for the linearized system, but
solutions to the full nonlinear system will deviate from this solution over time.
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6
Conclusions and recommendations

This thesis has proposed computationally efficient, accurate, and nonlinearly stable nu-
merical models and methods for the simulation of waves and instabilities in two-phase
pipe flow. The one-dimensional incompressible two-fluid model (TFM) has been shown to
satisfy a mechanical energy conservation equation, which offers a new perspective on the
model’s dynamics and stability. Spatial discretizations have been derived which preserve
the energy behavior of the continuous model. The analysis and energy-consistent dis-
cretization have also been performed for a new pressure-free version of the TFM, with su-
perior computational efficiency and numerical accuracy. The end result is a robust compu-
tational model that yields smoothly converging solutions under difficult conditions, such
as the appearance of shocks and the existence of a large velocity difference between the
two fluids.

6.1 Conclusions
The basic TFM for horizontal stratified flow, without source terms, was shown in chapter 3
to conserve the sum of the kinetic and potential energy of both fluids. From the mass and
momentum conservation equations, a local conservation equation was derived for the
mechanical energy, stating that locally the energy can only change due to an imbalance
of the inflow and outflow of energy. In periodic or closed domains, this sums up to the
statement that the global energy must remain constant. It was thus shown that energy
is a secondary conserved quantity of the model, in addition to the primary conserved
quantities of mass and momentum.

The derivation of the local energy conservation equation was formulated in such a
way as to yield conditions for the momentum advection and level gradient flux terms to
be energy-conserving. These were used in the semi-discrete setting, along with the de-
mand that the mass advection fluxes yield a strong pressure-velocity coupling, to derive
energy-conserving numerical fluxes in a constructive manner. The thus obtained numeri-
cal advective fluxes are energy-conserving for general cross-sectional shapes such as the
circular pipe or the 2D channel. Generally energy-conserving expressions were also ob-
tained for the level gradient fluxes, but these have a division by zero issue, and only reduce
to a practical form for simple channel-like cross-sectional shapes. The pressure terms of
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the discrete model, which are in non-conservative form, are shown to naturally conserve
energy due to the use of a staggered grid. The staggered grid makes the choice of the
discrete energy non-unique. However, it has been verified through local and global anal-
ysis that taking a natural alternative interpolation does not change the conclusions of the
discrete energy analysis.

The energy analysis also naturally applies to the pressure-free two-fluidmodel (PFTFM),
which is a model variant that can be directly derived from the original TFM. However, if
an assumption is made that is inconsistent with the original model, this can invalidate the
energy analysis. In the PFTFM, and also in similar models such as the fixed-flux model
(FFM), there is a risk of making such an assumption, due to the need to explicitly set the
volumetric flow rate. In chapter 4, we derive an expression for the volumetric flow rate
such that the PFTFM retains the energy conservation property of the TFM. This is shown
to yield a pressure-free model that is equivalent to the original TFM: any solution to the
TFM also satisfies the PFTFM, and any solution to the PFTFM also satisfies the TFM.These
results are obtained in both the continuous and semi-discrete settings.

The advantage of the PFTFM over the TFM is that the implicit constraints are removed,
yielding a fully explicit model. In addition, our formulation of the PFTFM retains the
conservative form of the equations (as needed for correct shock relations), in contrast to
existing approaches in literature. The amended PFTFM offers the advantages of an explicit
model, while still being completely consistent with the original TFM. The explicit nature
of the model offers the concrete advantages of reduced computational cost and reduced
numerical error, due to the elimination of the numerically delicate Poisson equation for
the pressure.

The energy analysis of the basicmodel has been extendedwith several additional terms:
streamwise gravity, physical diffusion, wall and interface friction, and surface tension.
Physical diffusion and surface tension are short scale effects that are typically neglected
in the TFMwhich primarily models long scale one-dimensional flow, but are included here
for their important stabilizing influence. Each of the added terms has been shown to yield
either an energy-conserving or a strictly dissipative contribution to the local conservation
equation for the mechanical energy. A driving pressure gradient acts as an external source
of energy to the flow. Regarding surface tension, a generally energy-conserving form was
found, but this only reduced to a physically recognizable form for simple channel-like
cross-sectional shapes. The energy and the additional terms were discretized in such a
manner that the energy-conserving or energy-dissipating behavior of each term is retained
in the numerical model. The result is an energy-stable numerical model, with an upper
bound on the global energy.

Since each term in the expression for the energy is positive, the demand that the global
energy cannot increase constrains the solution. It therefore can be considered to act as a
nonlinear stability bound. The continuous equations naturally satisfy this bound, and the
discrete equations will satisfy this bound when the energy-stable discretization is used.
This bound still allows linear instability, and may allow significant variation of the solu-
tion: it is not as clear as the bound on the 𝐿2 norm of the solution for the Navier-Stokes
equations. Regarding linear stability, the higher order additions to the basic model cause
short wavelength perturbations to be damped, removing the linear ill-posedness. Longer
wavelength perturbations remain unstable, but with a bounded growth rate.
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Besides additional physical terms, numerical diffusion has been added to the model
through an energy-stable discretization of the advection terms in the momentum equa-
tions. This provides the required dissipation at non-smooth parts of the solution, when
physical diffusion is absent or not sufficiently resolved (due to a coarse grid). Without any
form of dissipation, numerical oscillations appear when the solution becomes discontin-
uous. With too much dissipation, as provided by a first order upwind discretization, the
solution is overly diffused. With the novel energy-stable advective flux, formed as a com-
bination of the energy-conserving advective flux and a strictly dissipative upwind flux, the
right amount of dissipation is provided, yielding sharp solutions without oscillations.

In numerical simulations, we demonstrate that the discrete global energy is exactly
conserved by the spatial discretization, with only a time integration error remaining. When
dissipative terms are added to the model, or the energy-stable advective flux is used, the
energy is shown to be strictly decreasing. With the results of the discrete energy analy-
sis, we can measure the dissipation taking place in a numerical simulation, as a function
of time and space. When unstable waves grow, they may form shocks, and we observe
that this leads to a sharp increase in dissipation, particularly the dissipation attributable
to physical and numerical diffusion. The shock is bounded by this dissipation, marking
an end to the growth predicted by the linear stability analysis. Our energy analysis has
yielded detailed insight into this nonlinear damping and the resulting nonlinear stability.

The final result is a robust computational model. It possesses a form of nonlinear
stability, and is free of the linear ill-posedness of the basic model. It resolves shocks with-
out spurious oscillations, and can handle highly unstable flow states. The model can be
employed at coarse resolutions, for which short wave instabilities will not be resolved,
or at fine resolutions, for which the model smoothly converges to a sharp solution. These
properties are achieved through physically motivated additions to the model, and through
enhancing the physical fidelity of the numerical model by making its energy conservation
properties consistent with the continuous model.

6.2 Recommendations
This thesis has set up a basic framework for energy-stable simulations with the one-di-
mensional two-fluid model. It has been demonstrated in chapter 5 that the framework can
be extended in a modular manner. Several extensions are still envisioned.

• The energy-stable framework of chapter 5 can naturally be applied to the PFTFM.
This requires repeating the derivations of chapter 4 with the extended model.

• For simple channel-like cross-sectional shapes, clear and practical energy-consistent
discretizations were obtained for all terms. But for a circular cross-sectional shape
(i.e. a pipe), the level gradient and surface tension terms require further work to find
energy-conserving discretizations that are both numerically robust and physically
sound. The constructive derivations given in this thesis offer the possibility to try
out different energy definitions and find the matching energy-conserving expres-
sion for the model term.

• In this thesis, we have focused on making the spatial discretization energy-conserv-
ing. Ideally, this would be supplemented by an energy-conserving time integration
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method. For the Navier-Stokes equations energy-conserving time integration can
be achieved for example by applying the implicit midpoint method [52]. This relies
on the fact that the energy is a simple quadratic function of the solution. For the
TFM, the energy is a complex nonlinear function of the solution, so that existing
time integration methods such as implicit midpoint will not be energy-conserving,
and a more complex method will be needed. It could perhaps be based on an energy-
conserving time integration method for the related two-layer shallow water equa-
tions [15].

• For the TFM, unlike for the incompressible Navier-Stokes equations, the energy is
not directly an 𝐿2 norm of the solution. It might be possible to rewrite the model
into a form with different dependent variables, such that the 𝐿2 norm of these vari-
ables constitutes the energy. This has been done for the compressible Navier-Stokes
equations, using so-called ‘square-root variables’ [101].

• An alternative approach to obtaining more rigorous nonlinear stability results is to
attempt to show that the energy is a convex entropy function of the TFM. For the
energy to be a convex entropy function, its Hessian with respect to the vector of
dependent variables must be symmetric positive definite. We can attempt to obtain
such a result by reformulating the energy and the model. For systems of hyper-
bolic conservation laws, the existence of a convex entropy function implies that the
system is symmetrizable, and is tied to the existence of a global stability estimate
[32, 85, 98, 114]. Initial work has been done to apply the theory of entropy stability
to the two-layer shallow water equations, which like the TFM is a non-conservative
system that may attain complex eigenvalues [15, 24].

• An important issue with applying the TFM to slug capturing is the handling of phase
disappearance, which takes place when one of the two fluids locally fills the pipe
or channel. Possible approaches include manipulating certain model terms so the
volume fractions are limited to a certain range (not allowing them to become zero)
[10], or explicitly truncating the volume fractions so they can not go below a certain
threshold value [3]. Alternatively, the volume fraction can be allowed to go below
the threshold value, upon which the model can be switched to a single phase flow
model locally [67]. In a phase disappearance algorithm, special attention needs to
be paid to retaining the conservation properties of the discrete model, which would
be lost by simple truncation of the volume fraction. In order to combine well with
the current work, a phase disappearance algorithm should not only conserve mass
and momentum, but also the mechanical energy of the isothermal TFM.

• A final desired extension is to make our energy-conserving discretization applicable
to non-uniform grids. This could improve computational efficiency, by allowing
coarse grids to be used where the flow is smooth, and fine grids where the flow
develops into shocks or slugs. In order to conserve energy on a non-uniform grid,
the interpolations used in our discretization will need to be generalized in a specific
manner, similar to the way it has been done for an energy-conserving discretization
of the shallow water equations [122].
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A
Geometric relations

We treat the model equations in a way that is general to arbitrary duct geometries, using
general geometric quantities which can be substituted for expressions that are specific
to certain duct cross-sectional shapes. The most important general geometric terms are
the 𝐻 -variables, of which we have three for each fluid: 𝐻𝑈 , 𝐻𝑈 , 𝐻𝑈 , 𝐻𝐿, 𝐻𝐿, 𝐻𝐿. We
use 𝐻 (implying something like a height) for each of these variables because they are
all functions only of 𝐴𝑈 and 𝐴𝐿 respectively, and these functions all depend only on the
cross-sectional duct shape. They are all distinct though, and the relations between these
geometric quantities (which hold for arbitrary geometries) are crucial to the results of this
work. This appendix will give these geometric relations.

The equations are written in terms of the cross-sectional areas occupied by each fluid,
which in general can be defined to be related to the interface height 𝐻𝐿 via

𝐴𝐿 = ∫
𝐻𝐿

0
𝑤(ℎ)dℎ, 𝐴𝑈 = ∫

𝐻

𝐻𝐿
𝑤(ℎ)dℎ, (A.1)

with ℎ the vertical coordinate, and𝑤(ℎ) the local duct width. Note that𝑤(𝐻𝐿) = 𝑃int, where
𝑃int is the (generalized) interface perimeter. The geometric quantities 𝐻𝐿 and 𝐻𝑈 which
appear in the governing equations of the two-fluid model, also have general definitions:

𝐻𝐿 ≔ ∫
𝐻𝐿

0
(ℎ−𝐻𝐿)𝑤(ℎ)dℎ, 𝐻𝑈 ≔ ∫

𝐻

𝐻𝐿
(ℎ−𝐻𝐿)𝑤(ℎ)dℎ. (A.2)

Besides 𝐻𝐿 and 𝐻𝑈 , the following geometric quantities are used in the energy definition:

𝐻𝐿 ≔ ∫
𝐻𝐿

0
ℎ𝑤(ℎ)dℎ = 𝐻𝐿 +𝐻𝐿𝐴𝐿, 𝐻𝑈 ≔ ∫

𝐻

𝐻𝐿
ℎ𝑤(ℎ)dℎ = 𝐻𝑈 + (𝐻 −𝐻𝑈 )𝐴𝑈 . (A.3)

In order to calculate derivatives of these quantities, we need to use the Leibniz integral
rule:

𝑑
𝑑𝑥 (∫

𝑏(𝑥)

𝑎(𝑥)
𝑓 (𝑥, 𝑡)𝑑𝑡) = 𝑓 (𝑥,𝑏(𝑥)) ⋅ 𝑑

𝑑𝑥 𝑏(𝑥)− 𝑓 (𝑥,𝑎(𝑥)) ⋅
𝑑
𝑑𝑥 𝑎(𝑥)+∫

𝑏(𝑥)

𝑎(𝑥)
𝜕
𝜕𝑥 𝑓 (𝑥, 𝑡)𝑑𝑡.
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This rule can be applied to (A.1), yielding

d𝐴𝐿
d𝐻𝐿

= d
d𝐻𝐿 ∫

𝐻𝐿

0
𝑤(ℎ)dℎ

= 𝑤(𝐻𝐿)
d𝐻𝐿
d𝐻𝐿

−𝑤(0) d0
d𝐻𝐿

+∫
𝐻𝐿

0
d𝑤(ℎ)
d𝐻𝐿

dℎ

= 𝑤(𝐻𝐿)
d𝐻𝐿
d𝐻𝐿

= 𝑃int,

d𝐴𝑈
d𝐻𝑈

= d
d𝐻𝑈 ∫

𝐻

𝐻𝐿
𝑤(ℎ)dℎ

= 𝑤(𝐻) d𝐻
d𝐻𝑈

−𝑤(𝐻𝐿)
d𝐻𝐿
d𝐻𝑈

+∫
𝐻

𝐻𝐿

d𝑤(ℎ)
d𝐻𝑈

dℎ

= −𝑤(𝐻𝐿)
d𝐻𝐿
d𝐻𝑈

= 𝑃int,

where we have taken d𝐻𝐿/d𝐻𝐿 = 1, d𝐻/d𝐻𝑈 = 0, and d𝐻𝐿/d𝐻𝑈 = −1, since 𝐻 = 𝐻𝐿 +𝐻𝑈
and 𝐻 is constant.

Applying the same technique to (A.2) and (A.3) yields

d𝐻𝐿
d𝐻𝐿

= −𝐴𝐿,
d𝐻𝑈
d𝐻𝑈

= 𝐴𝑈 ,

d𝐻𝐿
d𝐻𝐿

= 𝐻𝐿𝑃int,
d𝐻𝑈
d𝐻𝑈

= (𝐻 −𝐻𝑈 )𝑃int,

which leads to

d𝐻𝐿
d𝐴𝐿

= d𝐻𝐿
d𝐻𝐿

[d𝐴𝐿
d𝐻𝐿

]
−1

= − 𝐴𝐿
𝑃int

, d𝐻𝑈
d𝐴𝑈

= d𝐻𝑈
d𝐻𝑈

[d𝐴𝑈
d𝐻𝑈

]
−1

= 𝐴𝑈
𝑃int

, (A.4)

d𝐻𝐿
d𝐴𝐿

= d𝐻𝐿
d𝐻𝐿

[d𝐴𝐿
d𝐻𝐿

]
−1

= 𝐻𝐿,
d𝐻𝑈
d𝐴𝑈

= d𝐻𝑈
d𝐻𝑈

[d𝐴𝑈
d𝐻𝑈

]
−1

= 𝐻 −𝐻𝑈 . (A.5)

Since the mappings between𝐴𝐿 and𝐻𝐿 and between𝐴𝑈 and𝐻𝑈 are generally one-to-one,
(A.4) can alternatively be written as

d𝐻𝐿
d𝐴𝐿

= −𝐴𝐿
d𝐻𝐿
d𝐴𝐿

, d𝐻𝑈
d𝐴𝑈

= 𝐴𝑈
d𝐻𝑈
d𝐴𝑈

. (A.6)

A similar calculation, in which we assume that 𝐻 is constant with 𝑠, yields

𝜕𝐻𝐿
𝜕𝑠 = −𝐴𝐿

𝜕𝐻𝐿
𝜕𝑠 , 𝜕𝐻𝑈

𝜕𝑠 = −𝐴𝑈
𝜕(𝐻 −𝐻𝑈 )

𝜕𝑠 .
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Finally, comparison to (A.5) yields

𝜕𝐻𝐿
𝜕𝑠 = −𝐴𝐿

𝜕
𝜕𝑠 (

d𝐻𝐿
d𝐴𝐿

), 𝜕𝐻𝑈
𝜕𝑠 = −𝐴𝑈

𝜕
𝜕𝑠 (

d𝐻𝑈
d𝐴𝑈

), (A.7)

and these geometric relations are critical to deriving the local energy conservation equa-
tion.

Two geometries of particular interest are the 2D channel and the circular pipe. For a 2D
channel geometry, 𝑤(ℎ) = 1, and the following substitutions can be made in the equations:

𝐴𝐿 = 𝐻𝐿, 𝐴𝑈 = 𝐻𝑈 ,
𝑃𝐿 = 1, 𝑃𝑈 = 1,
𝐴 = 𝐻 , 𝑃int = 1.

For a pipe geometry we have, as in [2],

𝐻𝐿 = 𝑅(1− cos (𝜃)), 𝐻𝑈 = 𝑅(1+ cos (𝜃)),
𝑃𝐿 = 2𝑅𝜃, 𝑃𝑈 = 2𝑅(𝜋 −𝜃),
𝐴 = 𝜋𝑅2, 𝑃int = 2𝑅 sin (𝜃),
𝐴𝐿 = 𝑅2 (𝜃 − 1

2 sin (2𝜃)) , 𝐴𝑈 = 𝑅2 (𝜋 −𝜃 + 1
2 sin (2𝜃)) .

𝐴𝐿

𝐴𝑈

𝑃𝐿

𝑃𝑈

𝐻𝐿

𝑅
𝜃
𝑃int/2

Figure A.1: A schematic of a circular pipe cross-section.

In Figure A.1 we show how the wetted angle 𝜃 is defined for the pipe geometry. If
𝛼 = 𝐴𝐿/𝐴, then 𝜋𝛼 = 𝜃 − 1

2 sin (2𝜃), and this equation must be solved iteratively in order to
obtain 𝜃 from 𝐴𝐿, so that the remaining geometric quantities can be calculated. Alterna-
tively, the following approximation can be used [12]:

𝜃 ≈ 𝜋𝛼 +(3𝜋2 )
1/3

(1−2𝛼 +𝛼1/3 − (1−𝛼)1/3)− 1
200𝛼(1−𝛼)(1−2𝛼)[1+4(𝛼

2 + (1−𝛼)2)] .
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The general geometric quantities 𝐻𝐿 and 𝐻𝑈 can also be evaluated for specific geome-
tries. For a 2D channel geometry, (A.2) evaluates to

𝐻𝐿 = −12𝐻
2𝐿 , 𝐻𝑈 = 1

2𝐻
2𝑈 ,

where we have substituted 𝐻𝐿 = 𝐻 −𝐻𝑈 . For the pipe geometry, we make the transforma-
tion ℎ = 𝑅 (1− cos (𝜃 ∗)), with 𝜃 ∗ the integration variable, to get [106]

𝐻𝐿 = [(𝑅 −𝐻𝐿)𝐴𝐿 −
1
12𝑃

3
int] , 𝐻𝑈 = −[(𝑅 −𝐻𝑈 )𝐴𝑈 − 1

12𝑃
3
int] .

Thegeneral geometric quantities that appear in the energy definition also have specific
forms for different geometries. For the channel geometry, the general expressions (A.3)
evaluate to

𝐻𝐿 =
1
2𝐻

2𝐿 , 𝐻𝑈 = 1
2𝐻

2𝑈 +𝐻𝑈𝐻𝐿.

For the pipe geometry the results are

𝐻𝐿 = [𝑅𝐴𝐿 −
1
12𝑃

3
int] , 𝐻𝑈 = [𝑅𝐴𝑈 + 1

12𝑃
3
int] .
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