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Abstract.

BACKGROUND: X-ray imaging is widely used for the non-destructive detection of defects in industrial

products on a conveyor belt. In-line detection requires highly accurate, robust, and fast algorithms. Deep

Convolutional Neural Networks (DCNNs) satisfy these requirements when a large amount of labeled data is

available. To overcome the challenge of collecting these data, different methods of X-ray image generation

are considered.

OBJECTIVE: Depending on the desired degree of similarity to real data, different physical effects should

either be simulated or can be ignored. X-ray scattering is known to be computationally expensive to simulate,

and this effect can greatly affect the accuracy of a generated X-ray image. We aim to quantitatively evaluate

the effect of scattering on defect detection.

METHODS: Monte-Carlo simulation is used to generate X-ray scattering distribution. DCNNs are trained

on the data with and without scattering and applied to the same test datasets. Probability of Detection (POD)

curves are computed to compare their performance, characterized by the size of the smallest detectable defect.

RESULTS: We apply the methodology to a model problem of defect detection in cylinders. When trained

on data without scattering, DCNNs reliably detect defects larger than 1.3 mm, and using data with scattering

improves performance by less than 5%. If the analysis is performed on the cases with large scattering-to-

primary ratio (1 < SPR < 5), the difference in performance could reach 15% (approx. 0.4 mm).

CONCLUSION: Excluding the scattering signal from the training data has the largest effect on the smallest
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detectable defects, and the difference decreases for larger defects. The scattering-to-primary ratio has a

significant effect on detection performance and the required accuracy of data generation.

Keywords: X-ray imaging, X-ray data generation, X-ray scattering, Deep learning, In-line inspection

1 Introduction

X-ray imaging is used as a non-destructive testing technique suitable for objects of different shapes made of different

materials [1, 2]. We focus on the task of defect detection: a product may contain an undesirable structure (an

object made of different material or a void) that should be detected by an inspection system. Depending on the task,

detection may only require indicating that a defect is present, or locating it and specifying its size and other properties.

Examples of defects in this context include spallation in metal alloys, blowholes in castings, razors in airplane baggage,

bones in fish fillets, etc. Due to differences in density and chemical structure, defects affect an X-ray image (later

referred to as a projection) of the product. Their presence can be detected by analyzing the projection with an

algorithm or a human expert (Fig. 1). A projection can be acquired in tens of milliseconds, making X-ray imaging

an in-line inspection technique. While individual projections can be inspected by a human expert, high throughput

of data requires a fast and accurate defect detection algorithm. The main challenge in analyzing X-ray projections is

the overlap between features of the object located at different depths. This complicated task is conventionally solved

by human experts relying on application-specific knowledge.

Product 
containing defect

Acquired projection 
(X-ray image)

Output of the 
image analysis method

Defect is here

Figure 1: General scheme of defect detection via X-ray imaging. An X-ray acquisition system is used to make a
projection of the product of interest. Defects affect projection intensity even if they are inside the product, and can
be detected by analyzing the projection.

In recent years, deep learning methods, such as Deep Convolutional Neural Networks (DCNNs), have been success-

fully applied in many areas of industrial product inspection [3, 4, 5]. Deep learning algorithms assume that the image

processing task can be solved by a function with a large number of parameters. The values of these parameters are

found by optimizing the result of the function for a large set of projections (referred to as training data). Compared

to conventional image processing algorithms, DCNNs provide higher accuracy at the expense of interpretability. The

high predictive power of DCNNs stems from their ability to generalize image patterns present in the training dataset.

Such datasets, with a few exceptions [6], are not available for X-ray defect detection. To overcome this barrier, experts

from various fields have tried to simulate X-ray data using computational methods [7, 8]. Depending on the desired

degree of similarity to real data, the methods range from ray-tracing to Monte-Carlo simulation of each individual
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X-ray photon.

The computational cost of the simulation algorithm for X-ray imaging comes from the models of X-ray interaction

with objects and the detector. Most methods do not estimate the effect of X-ray photon scattering, since it significantly

increases the computational complexity of the problem [9]. Instead, only primary radiation - photons that pass through

the object without scattering - is simulated. If the training data are generated using only the primary X-ray signal,

the DCNN will miss the influence of scattered photons that are present in the real test data. Hence, a decrease in

accuracy is possible. Due to the low interpretability of DCNNs, it is impossible to predict in advance how a change

in the training data would affect performance on a wide range of test cases. Balancing the computational cost of the

data generation approach and the resulting DCNN performance requires an accurate and robust metric of detection

accuracy.

The Probability of Detection (POD) method [10] was introduced in non-destructive testing and evaluation to

analyze the reliability of inspection techniques. Recently it has been applied to X-ray radiography and CT [11, 12].

POD analysis originally addressed the problem of determining the smallest defect size that can be found with an

inspection system under specified measurement conditions. The introduction of Probability stems from the existence

of many possible products with the same defect size, and only in a fraction of them the inspection is successful (e.g.

due to the location of the defect). The POD curves aim to estimate these fractions by statistical analysis of the

inspection results on the test dataset. The POD method can be applied to any inspection technique including deep

learning methods. While the POD curves do not analyze the influence of the training set on the DCNN, they connect

the performance of the networks to the application requirements.

We present a methodology that quantitatively evaluates the effect of X-ray scattering in the training data on the

accuracy of DCNNs for defect detection in X-ray projections. To demonstrate its application, we perform compu-

tational experiments on a model problem consisting of the detection of a cavity inside a cylindrical object. Using

a Monte-Carlo simulation algorithm, we generate two versions of the same training data that include and exclude

scattered X-ray photons. These data are used to train two DCCNs. We use POD curves to evaluate the correlation

between network accuracy and test projection properties. This allows us to separate the influence of training and

test data properties and to highlight conditions under which simulation of scattering is crucial. We discuss how this

methodology can be applied to other industrial problems and which task properties significantly influence the results.

2 Related work

2.1 Deep learning in real-time defect detection

The problem of defect detection can take different forms depending on the desired output of the algorithm. Classifica-

tion returns a single label corresponding to the type of defect present in the projection (e.g., steel defects [13]). Object

detection returns bounding boxes for each defect and labels corresponding to their types (commonly used in baggage

inspection [14] and quality control of metal details, such as aluminum castings [15]). Segmentation provides a set of
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pixel masks: each pixel of the projection is labeled if a defect is present there (e.g. spallation in aircraft engines [16]).

There is a difference between semantic (one mask for all defects of the same type) and instance (different defects of

the same type are separated) segmentation. This is not relevant for our model problem, where there is only a single

defect.

In contrast to color photographs, there is a lack of publicly available X-ray projections of industrial products

for training and benchmarking DCNNs. A notable exception is GDX-ray [6] - a dataset containing projections of

welds, castings, baggage, and natural objects. Data for a specific defect detection problem have to either be acquired

manually or generated computationally. There are two main approaches to data generation: transforming real-world

projections with image-to-image methods and simulating X-ray imaging. Image-to-image algorithms can be used to

add defects to existing images of objects without defects [17]. Generative Adversarial Networks (GANs) can also be

used to create new data similar to the real data [18] or to perform style transfer from one imaging modality to another

[19].

2.2 Simulation of X-ray imaging and the effect of scattering

Simulation of X-ray imaging requires knowledge of the experimental setup and the 3D structure of the studied object.

There are two categories of simulation algorithms: probabilistic and deterministic. The probabilistic approach uses

Monte-Carlo (MC) methods to imitate the stochastic nature of real X-ray interactions with matter, and can produce

highly accurate results. The particle physics toolkit GEANT4 [20] is used as a gold standard to verify other algorithms.

The GEANT4-based software GATE is often used to simulate different modalities of medical imaging (PET, SPECT,

CT) and dosimetry [21]. The main drawback of these methods is the computational cost. The generated projections

contain stochastic noise that can only be reduced by simulating a large number of X-ray photons. The deterministic

approach uses ray-tracing algorithms to compute projections faster by using a simplified model of X-ray interactions.

aRTist [7] (Analytical RT Inspection Simulation Tool) was developed as a fast simulation software to generate realistic

X-ray projections based on the mesh model of the object. A similar approach was proposed for baggage inspection

[8] using GPU-based ray-tracing. It was later shown [9] that X-ray scattering can also be simulated with additional

computational cost.

Simulation of X-ray photon scattering is missing from many probabilistic algorithms. When it is implemented, it

increases the computational cost by orders of magnitude [9]. A faster alternative is to approximate the distribution of

scattered photons; in particular using convolutions [22, 23]. Convolution kernels can be extracted from Monte-Carlo

simulations or from experimental measurements. However, these methods are limited by the difficulty of finding a

small number of kernel parameters that work for various objects. Deep learning scattering estimation [24] has been

proposed as an alternative to kernel-based methods, but it requires a larger amount of data with known scattering

patterns.

If the scattering effect is not reduced experimentally or compensated algorithmically, the projection quality may

be compromised [25]. This problem is thoroughly studied in radiology, where scattering can reduce the contrast

4



in projections, making them unsuitable for diagnostic purposes [26]. The amount of scattered radiation is usually

measured by calculating the scattering-to-primary ratio (SPR). The ratio depends on the field of view, the air gap

between the patient and the detector, and X-ray energy [27]. SPR can be reduced by hardware techniques, such as

anti-scatter grids. There are several metrics that quantify the change in SPR: Contrast Improvement Factor (CIF),

Bucky Factor (increase in absorbed dose), and change in signal difference to noise ratio SdNR [28].

Many important insights can be found in radiology articles on the connection between scattering, image quality,

and quality for diagnostic purposes. The effect of scattering on some image properties, such as the point spread

function, can be calculated [29]. Using clinical trials, it is possible to infer the effect of image properties such as

noise power spectrum, resolution, and point spread function on image quality for diagnostic purposes [30, 31]. To our

knowledge, there have been no studies correlating the presence of scattering with a decrease in diagnostic accuracy

that would allow a quantitative evaluation of the impact of anti-scatter techniques.

3 Methods

We formulate the defect detection task as a segmentation problem. The goal is to compute a labeled image y ∈ Y,

where each pixel has a label according to its classification, from the measured X-ray projection x ∈ X ⊂ Rm. The set

of possible labels {0, ..., k} corresponds to the defect types and depends on the particular detection task. An algorithm

performing defect detection is described as

fϕ : X → Y, (1)

where ϕ are the parameters of the algorithm. Supervised deep learning considers hypothesis functions fϕ ∈ H

with a high-dimensional parameter space and determines ϕ by solving the optimization problem.

ϕ = argmin
ϕ

Ntrain∑
i=1

l(fϕ(xi), yi), (xi, yi) ∈ Strain, (2)

where Strain = {(xi, yi)}Ntrain
i=1 is a training dataset consisting of projections and correct predictions (ground-

truth) and l is a loss function. By including and excluding the scattering signal, we create two projections xMC
i

and xR
i that correspond to the same object and have the same ground-truth yi. Consequently, these two types of

projections form two versions of the training dataset SMC
train and SR

train. Since these sets are not equal, they lead to

the different solutions ϕMC and ϕR of the optimization problem.

Due to the low interpretability of deep learning methods, the accuracy of fϕ is usually characterized by applying

the function to the test set Stest = {(xi, yi)}Ntest
i=1 . With an accuracy metric h : Y × Y → R, the accuracy of the

function with parameters ϕ is characterized by the sequence

Aϕ = {h(fϕ(xi), yi)}Ntest
i=1 (3)
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We propose to analyze Aϕ using POD curves, which can be determined by computing the regression between the

accuracy Aϕ
i for each object and the vector of corresponding properties of the object and projection ti (vector of

independent variables). A simple example of the object property correlated with the detection accuracy is the defect

size (later referred to as si), and the corresponding vector ti = ( 1 si ) We assume that with a sufficiently good choice

of properties, ti is correlated with the probability of detection - the probability P that the value of Aϕ
i exceeds the

threshold Athr. The regression is computed using a generalized linear model according to the equation

g(P (Aϕ
i > Athr)) = tiβββ, (4)

where g : R → R is a link function (defining the shape of the POD curve) and βββ is a vector of regression coefficients.

Then βββ can be used to characterize the performance of the algorithm with parameters ϕ in a data-driven way. For a

desired accuracy Athr achievable with probability Pgood, a set of constraints for t can be computed with a confidence

interval given by the regression uncertainty. By comparing the thresholds of t we determine whether the difference

between ϕMC and ϕR is significant with respect to the object properties. Consequently, this answers the question

whether SMC
train can be replaced by SR

train without losing detection accuracy.

We test this methodology on generated data following the approach formulated in our previous paper [32] (Fig.

2). The data are generated based on a collection of 3D volumes that define the physical properties of the objects

independent of the imaging method. Two algorithms (including and excluding scattering) are used to transform the

volumes into projections xMC
i and xR

i by simulating X-ray imaging. These projections are combined into datasets

SMC
train and SR

train to train DCNNs fϕMC and fϕR . Both networks are tested on the same dataset SMC
test . The POD

analysis is performed to find a correlation between Aϕ and defect size. Thus, we can compare the smallest defect size

detectable with ϕMC and ϕR and conclude if the difference is statistically significant.

3.1 Object modeling

Studying the influence of scattering imposes several constraints on the data generation approach. In our methodology,

we want to avoid cases where a DCNN fails to detect a defect because it was not exposed to a certain morphology during

training. This problem is well-known in deep learning as Out-of-Distribution performance [33, 34]. For example, if a

network was trained to detect defects in large objects, it might fail on a test projection with a small object, regardless

of scattering. The objects used for the training and test sets should have the same distribution over X , and as many

objects as possible should be in both sets. In real-world applications, test objects are measured experimentally, while

training objects are created digitally. Thus, it is difficult to guarantee that the distributions of training and test

objects match.

We address these limitations by choosing to work with a model problem. Each 3D volume is created by combining

a small number of objects according to a parameterizable algorithm. Training and test sets of volumes are created

with different random sequences of parameters, each parameter having the same distribution for both sets. We assume

that a large enough number of volumes is generated, so that the training and test datasets have similar distributions
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Figure 2: Application-driven approach to evaluate the difference between simulation with and without scattering.
First, a large number of 3D volumes is generated by combining different variations of object and defect geometry. Two
forward projection methods are used to transform the 3D volumes into X-ray projections. Each dataset containing a
variety of projections is used to train a DCNN. They are applied to the same collection of test data with scattering.
The performance of the DCNNs is evaluated using POD curves.

over X . We check this assumption qualitatively by visual inspection of the detection performance, but a detailed

evaluation is beyond the scope of this paper. In addition to the geometry, the volume is characterized by the material

properties. To consider a variety of scattering patterns, we repeat the experiments with the same geometry and

different material compositions.

The model problem we use in this study is the detection of cavities in cylinders. The object is a homogeneous

cylinder parameterized by radius and height. The defect is an ellipsoidal void inside the cylinder. It is defined by

ellipsoidal axes, height, and distance from the rotational axis of the cylinder. Materials of the cylinder are chosen from

the common materials of industrial products: PMMA (type of plastic, synthetic polymer (C5O2H8)n), aluminum,

and iron.
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3.2 Data generation

To ensure that the scattering distribution in the generated data is accurate and similar to real measurements, we use

Monte-Carlo simulation as implemented in the GATE framework [21]. An accurate Monte-Carlo simulation requires

a detailed knowledge of the experimental setup: X-ray source, studied object, and detector. However, not all of these

are crucial for an accurate scattering simulation. The most important properties are the energy spectrum of the

emitted X-ray photons, the attenuation curves of the materials present in the object, and an accurate description of

the object geometry (defined as a voxelized volume, a mesh, or a collection of simple shapes). GATE simulates each

emitted photon individually and records its coordinates if it is registered by the detector.

If the simulation considers only X-ray absorption, the number of photons detected in a pixel p is given by

Iabsp (E) = I0(E) exp

(
−
∫
lp

µ(E, x)dx

)
, (5)

where µ(E, x) is a 3D distribution of the object’s attenuation coefficient for the X-ray energy E, lp is the trajectory

from the X-ray source to the pixel p. The acquired X-ray projection xR is computed by summing the photons of all

energies and correcting for the flatfield (the projection acquired without the object)

xR
p = − log

∫
E
Iabsp (E)dE∫

E
I0(E)dE

. (6)

This formulation does not include the effect of the detector gain [35]. When X-ray scattering is simulated, the

number of photons detected Ip is Iabsp + Iscatp . The number of scattered photons Iscatp is not defined by the trajectory

lp. Instead, each voxel of the object v contributes to the amount of scattering according to the equation

dIscatpv (E′) =
1

σv(E)

dσ(θpv, E)

dΩ
Iv(E)dΩpv, (7)

where dσ
dΩ

is the differential scattering cross-section, σv(E) is the total cross-section for all scattering from the voxel

v, θpv is the scattering angle, Iv(E) is the energy spectrum of the photons in the voxel, and dΩpv is the solid angle

corresponding to p seen from v [36]. Differential cross-sections of Rayleigh and Compton scattering as a function of

scattering angle and energy are known. Simulation of scattering makes the signal in a pixel dependent not only on a

single trajectory but on the entire object. Furthermore, multiple scattering is possible, and Iv(E) includes photons

scattered from other parts of the object. With a sufficiently large number of simulated photons, Monte-Carlo methods

consider many possible scattering trajectories and compute the total number of scattered photons Iscat. Similar to

Eq. 6, raw measurements should be flatfield corrected to compute the projection with scattering

xMC
p = − log

∫
E

[
Iabsp (E) + Iscatp (E)

]
dE∫

E
I0(E)dE

. (8)

The model problem simplifies the definition of object geometry and material composition. The object geometry is

defined as a mixture of a cylinder and an ellipsoid which are the basic object shapes for GATE. While any object can
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be simulated based on its polygonal mesh, the computational cost of photon tracking increases with object complexity.

Limiting object geometry to basic shapes accelerates the simulation. The attenuation properties are automatically

calculated for a given chemical formula. We compute the X-ray source spectrum with an empirical model of an X-ray

tube (implemented in xpecgen [37]), which provides an energy spectrum depending on the voltage. Several voltage

values are chosen for each material, since the scattering distribution depends strongly on both properties.

An image produced by a Monte-Carlo simulation is inherently noisy due to the limited number of generated

photons. It can be shown that the number of registered photons follows Poisson distribution [35] (Compound Poisson

for energy-integrating detectors). Noise in real X-ray projections is additionally influenced by other factors, such as

noise in the detector electronics [38], focal spot size, and scintillator blur [39]. We choose to perform a simulation

with a perfect detector that registers every photon reaching it (technically implemented as a sufficiently thick layer

of a heavy material). Simulation of a realistic detector is possible with Monte-Carlo methods but is beyond the scope

of this study. Such modeling would require detailed knowledge of a real detector, which is often lacking in industrial

tasks.

The output of GATE includes the coordinates where each X-ray photon was detected and how many times it

scattered before detection. After matching the coordinates with different pixels of the detector, a total distribution

of primary photons of all energies Iabs (Fig. 3a) and a distribution of scattered photons Iscat (Fig. 3b) integrated

over energy and all possible scattering centers can be calculated. The distribution of SPR is defined as Iscat

Iabs (Fig.

3c). Following Eq. 6 and 8, distributions of detected photons are converted into pre-processed projections with and

without the scattering signal (Figs. 3e and 3d).

3.3 DCNN Training

We train segmentation DCNNs to perform defect detection. This approach not only detects the presence of the defect

but also provides its location on the projection. The training process requires input data (previously described xR

and xMC) and the ground-truth with defect locations. To construct the ground-truth, the Radon transform is applied

to 3D volumes. The result of this Radon transform is a 2D distribution of material length along the ray from the

source to the detector. This image is used to outline the location of the defect and compute its geometric properties.

The DCNN trained on projections that include scattered photons is referred to as the network trained on MC data.

The one trained on data without the scattering signal is referred to as the network trained on Radon data.

DCNN training as an optimization problem for network weights ϕ is affected by random factors (initialization,

GPU computation). The performance of a single network is not sufficient to draw conclusions about the influence of

training data. Therefore, each training is repeated multiple times to have multiple instances ϕ of the same DCNN.

The performance of the instances is then averaged to determine the performance of the DCNN.

The DCNN architecture determines the structure of the weights ϕ and has a significant effect on the performance.

Before selecting an architecture for a majority of the experiments, we performed one analysis with multiple state-of-

the-art segmentation architectures (the results are given in the Appendix). It was observed that different architectures
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Figure 3: Different distributions of the X-ray signal that are computed with a Monte-Carlo algorithm: distribution
of primary photons registered by the detector (a), distribution of scattered photons (b), scattering-to-primary ratio
(c), projection image without scattering after pre-processing (d), projection image with scattering (e).

with commonly used metaparameters converge to a similar level of accuracy. Thus, the influence of scattering could

be studied for one architecture, and similar results are expected for others.

We choose the Mixed-Scale Dense Convolutional Neural Network (MSD) [40] for a majority of experiments. This

architecture is an alternative to classical convolutional neural networks with scaling, and is aimed towards easy

training and reusability. The MSD network consists of multiple layers with the same set of operations (convolution,

summation and activation). All layers produce feature maps of the same dimensions and are connected to each other

(dense connections). Dilated convolutions are used to capture image features at different scales (mixed scale). Due

to dense connections and a small number of parameters (compared to other popular architectures such as UNet), an

MSD network can be trained quickly and provide accurate segmentations. All networks share the same architecture

parameters: a depth of 1, a width of 30, dilations in the range from 1 to 10, 1 input channel, and 2 output channels.

The total number of weights is close to 5000. We have tested the performance with different values of width and

dilations and have not observed a noticeable improvement compared to the standard parameters. The optimization

of weights is done by ADAM optimizer with a learning rate of 10−3. Network training and testing is done in PyTorch

framework with MSD implementation from [41].
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3.4 Performance evaluation

Many metrics h can be applied to evaluate the similarity between the output of the segmentation DCNN and the

ground-truth. We use the F1 score, which can be calculated according to the equation

F1 =
2TP

2TP + FP + FN
(9)

where TP (True Positive) is the number of defect pixels that were correctly segmented, FP (False Positive) is the

number of pixels that were incorrectly marked as corresponding to the defect, and FN (False Negative) is the number

of defect pixels that were missed by a segmentation algorithm.

Fig. 4a illustrates that F1 varies significantly between different test cases with different defect sizes. By size, we

refer to the largest intersection between the defect and the primary X-ray trajectories (the largest thickness). This

is not the only way to characterize the defect. For example, its area or perimeter can also be used to represent size.

These properties are often correlated because expected defects have similar shapes. Following the POD methodology,

we convert the segmentation accuracy into a binary variable by the defining segmentation as successful if F1 > 50%.

In Fig. 4b, the projections are divided into groups by defect size binning and a fraction of successful segmentations

is computed for each bin. Segmentation accuracy improves as the defect size increases.

The properties of the POD curve are determined by computing the regression according to Eq.4, where t is a

constant and the defect size. The link function g defines the shape of the POD curve and reflects the dependence

between the probability of successful segmentation and the defect size. The probability is close to zero for small

defects, one for large defects, and there is a transition in between. The generalized linear model in this case is

represented by the equation

g(P (F1 > 50%)) = ln
P (F1 > 50%)

1− P (F1 > 50%)
= a+ bs, (10)

where a and b are the fit parameters. Their values are computed by solving an optimization problem of maximizing

likelihood of getting the observed detectability outcomes for the test set with known values of defect size. The logit

function g(x) = ln x
1−x

can be replaced by other functions such as log-log, complementary log-log, probit, etc. An

example of a POD curve is shown in Fig. 4c (computed using the statsmodels package [42]).

The parameters a and b describe the performance of the algorithm fϕ. To conclude whether two algorithms have

the same performance in this context, the values of a and b should be compared, taking into account the uncertainty

interval. In POD analysis, it is common to approach this problem in a task-driven way and compute the value of s

leading to a fixed level of good detection probability (usually 90%) according to the equation

s90 =
g(90%)− a

b
(11)

This value s90 describes the size of the smallest detectable defect. Due to regression uncertainty, the true value

of s90 lies in a region around the computed value. Thus, if two sets of parameters ϕR and ϕMC have different values
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Figure 4: Example of a POD curve and its relation to accuracy for a single projection: (a) the correlation between
F1 score and defect size for all projections in the test set, (b) a histogram computed after binning the defect size
indicating that the fraction of projections with F1 > 50% increases with defect size, (c) the POD curve representing
a probability of F1 > 50% with the smallest detectable defect s90 and its higher bound highlighted.

of s90, there is a probability that the true value is the same in both cases, and the difference is only caused by the fit

uncertainty. We address this problem by computing an upper bound for s90 which is referred to as s90/95. The true

value of s90 is less than s90/95 with 95% probability. Therefore, if the computed value of s90 for ϕR is less than s90/95

for ϕMC , the difference in performance is statistically significant. Otherwise, it can be explained by the fit uncertainty

with less than 95% probability.

The accuracy of segmentation is expected to depend on many projection properties. In particular, the defect

location and surrounding object features are also used in POD analysis [43]. When the POD curve is computed,

the performance for a particular value of defect size is averaged over different objects, different defect locations and

their shapes. More projection properties could be included in a multivariate POD curve to produce a more detailed

description of detection performance. We use a multivariate fit to study the influence of SPR on detection. The

corresponding generalized linear model is given by the equation
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g(P (F1 > 50%)) = a+ bs+ cSPR. (12)

3.5 Implementation details

The geometric properties of the objects for the training and test sets are generated in advance and kept the same for

all materials and voltages. We generate 1250 objects for the training set (1000 for training, 250 for validation) and

1000 objects for the test set. The radius of the cylinder ranges from 1 to 25 mm and the height varies from 20 to

55 mm. Ellipsoidal cavities are generated as deformed spheres: first, a radius is chosen to be in the range from 0.1 mm

to 1 mm, and then the ratio between each axis and this radius is in the range from 0.7 to 1.3. A cavity can be placed at

any distance from the axis of rotation. The acquisition geometry remains the same for all datasets. The source-object

distance (SOD) is 200 mm and the source-detector distance (SDD) is 300 mm, resulting in a magnification factor of

1.5. The detector plane is a 75× 82.5 mm2 rectangle with a pixel size of 0.3 mm. Thus, the generated projections

have a size of 250 × 275 px2. One projection contains MC simulations of 109 emitted photons. Examples of these

projections are shown in Fig. 5.
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Figure 5: Examples of projections corresponding to different generated volumes.

Different material compositions and voltages are used to explore a variety of scattering distributions. In practice,

heavier materials are inspected at higher voltages. Otherwise, only a small fraction of the X-ray radiation penetrates

the object, resulting in a high noise level. The combination of material and voltage can be characterized by the value

of HVL (Half-Value Layer) - the thickness of the object at which the intensity of X-ray entering it is reduced by half.

PMMA is simulated at 90 kV (HVL = 27.8 mm) and 150 kV (HVL = 31.7 mm). Aluminum is simulated at 90 kV

(HVL = 4.28 mm), 150 kV (HVL = 6.25 mm) and 300 kV (HVL = 17.9 mm). Iron is simulated at 300 kV (HVL =

3.85 mm) and 450 kV (HVL = 4.6 mm). Fig. 6 shows different scattering distributions for the same object depending

on material and voltage. The number of scattered photons (not necessarily SPR) increases with higher voltage and

lower atomic number. Furthermore, there is a qualitative change in the spatial properties: for materials with low

atomic number scattering is more uniform, and for heavier materials it follows the shape of the object. This can be

explained by different ratios of Rayleigh and Compton scattering and probabilities of further absorption in the object

for scattered photons.
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Figure 6: Comparison of scattering distributions for the same object made of different materials and inspected with
different tube voltages: (a) PMMA at 90 kV, (b) aluminum at 90 kV, (c) aluminum at 300 kV, (d) iron at 300 kV.
For the same voltage, the number of scattered photons is higher for materials with lower atomic numbers. For the
same material, the amount of scattering is higher for higher voltage. Iron objects have a different scattering pattern
with more photons near the edges.

4 Results

4.1 Comparison of DCNN performance

For each combination of material and voltage, two DCNNs with the same architecture are trained on data without

scattering (Radon data) and with scattering (MC data), 10 instances each. Averaging the segmentation accuracy of

the DCNN on the test dataset does not lead to a good performance estimate due to the high variance. For example,

in the case of iron at 450 kV, the network trained on Radon data has a segmentation accuracy of 43% ± 40% on

the test dataset, while the network trained on MC data achieves 44% ± 40%. A high variance is observed for each

dataset, making a direct comparison of the DCNNs impossible.

For a detailed analysis of the performance, POD curves are computed for both DCNNs for each voltage and

material combination. Fig. 7a shows a pair of POD curves for PMMA at 90 kV with no difference in performance

between the networks trained on Radon and MC data. The POD curve for the Radon data network lies within the

95% confidence interval of the MC POD curve, making the difference between them statistically insignificant. The

opposite case is shown for iron at 450 kV (Fig. 7c) where higher POD values for the network trained on Radon data

lie below the confidence interval for the network trained on MC data (in particular, s90). Hence, there is a statistically

significant difference between the training sets, and MC data lead to better performance. Nevertheless, the difference

between s90 is only 5% for iron at 450 kV and smaller for other datasets (e.g. for aluminum at 150 kV as shown in

Fig. 7b). Furthermore, for defects larger than s90, the average segmentation accuracy is 82%±16% for the network

trained on MC data and 82%±18% for the network trained on Radon data. Although the variance is smaller than for

the whole dataset, the performance of the two networks is still effectively the same.

The values of s90 for both networks in all cases are shown in Table 1. In most cases (except for iron at 450 kV)

the difference in the smallest segmentable defect between the networks is less than the confidence interval. This serves

as an upper estimate for the possible performance difference. Depending on the material and voltage, the relative

difference in s90 is between 0% and 3% and is unlikely to exceed 5% even if the fit coefficients are not precisely
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(c) Iron, 450kV
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Figure 7: Comparison of POD curves for different datasets: (a) PMMA at 90 kV, (b) aluminum at 150 kV, (c) iron
at 450 kV. The difference between training on projections with and without scattering is negligible for PMMA. It
becomes larger for aluminum but within a 95% confidence interval. For iron at 450 kV, the network trained on MC
data performs better than the network trained on Radon data considering the confidence interval.

determined.

Material, kV MC data net, s90 [mm] MC data net, s90/95 [mm] Radon data net, s90 [mm] s90 difference
PMMA, 90 kV 1.24 1.29 1.24 0%
PMMA, 150 kV 1.31 1.36 1.31 0.2%
Al, 90 kV 1.39 1.46 1.42 1.9%
Al, 150 kV 1.26 1.32 1.29 2.4%
Al, 300 kV 1.17 1.22 1.18 0.8%
Iron, 300 kV 1.59 1.68 1.62 1.7%
Iron, 450 kV 1.44 1.51 1.51 5.0%

Table 1: Smallest detectable defect size for different materials and training datasets.

4.2 Influence of scattering-to-primary ratio

The negligible difference in the performance of the networks trained on Radon and MC data raises the question

of biases in the test data and projection properties that influence segmentation. For each dataset, we perform a

multivariate POD fit according to Eq. 12 to evaluate the influence of SPR at the defect location (averaged over a

region containing the defect). After determining the POD coefficients, the value of SPR can be fixed at a certain level

to obtain POD for that amount of scattering signal (Fig. 8 for PMMA, aluminum, and iron).

Several observations can be made after splitting the dataset based on the SPR value. First, as the SPR increases,

the difference between the networks trained on Radon and MC data also increases. This can be determined either by

performing a multivariate fit or by making a univariate fit for a subset of the test data (with a sufficiently high SPR).

Second, the values of s90 increase as the SPR rises. Third, different datasets have different distributions of SPR. For

15



0.0 0.5 1.0 1.5 2.0 2.5
Defect size, mm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Pr

ob
ab

ilit
y 

of
 F

1>
50

%

(a) PMMA, 90kV

MC | SPR = 0.0
Radon | SPR = 0.0

0.0 0.5 1.0 1.5 2.0 2.5
Defect size, mm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pr
ob

ab
ilit

y 
of

 F
1>

50
%

(b) Al, 150kV

MC | SPR = 0.0
Radon | SPR = 0.0
MC | SPR = 0.5
Radon | SPR = 0.5

0.0 0.5 1.0 1.5 2.0 2.5
Defect size, mm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pr
ob

ab
ilit

y 
of

 F
1>

50
%

(c) Fe, 450kV

MC | SPR = 0.0
Radon | SPR = 0.0
MC | SPR = 0.5
Radon | SPR = 0.5
MC | SPR = 1.0
Radon | SPR = 1.0

Figure 8: Comparison of multivariate POD curves computed at different values of SPR for different datasets: PMMA
at 90 kV (a), aluminum at 150 kV (b), and iron at 450 kV (c). Increasing the SPR results in a larger difference between
the POD curves of the networks trained on Radon and MC data. Pairs of POD curves are plotted for SPR values of
0., 0.5, and 1.0 if such projections are present in the dataset (the largest SPR for PMMA is 0.16, for aluminum it is
0.55).

example, aluminum at 150 kV has 500 objects with SPR < 0.1 while iron at 450 kV has 400 such objects. Hence,

even if there is no difference between the networks trained on Radon and MC data for low SPR in both cases, the

overall POD curve is more affected for aluminum because such cases are more common.

It is important to note that the POD curves only show a correlation between the DCNN accuracy and the different

properties of the projection. Furthermore, the value of SPR at the defect location is correlated with other properties

such as attenuation rate as shown in Fig. 9. The attenuation rate µ in a pixel is calculated as − log I
I0

where I0 is

the total number of photons emitted in the direction of the pixel and I is the number of photons registered (including

scattered radiation). The noise in the MC simulation follows a Poisson distribution and depends on I. Regions with

high SPR often have high µ, leading to high relative noise levels. This correlation may explain the increase in s90 for

a higher SPR.

In Table 2 we compare the s90 values in each dataset at the minimum and maximum SPR levels (the minimum is

close to 0 in each case). With the sole exception of PMMA at 90 kV (where it can be explained by fit uncertainty),

higher SPR leads to a greater difference in performance between the networks trained on Radon and MC data. The

geometric structure of the test dataset leads to a large number (approximately 40-50%) of cases with low SPR, mostly

due to the small size of the object. In these cases, there is little difference between training on data with and without

scattering. Consequently, the performance on the whole test dataset becomes more similar, even if in other cases the

MC network has a smaller s90.
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Figure 9: Correlation between projection properties at the defect location (SPR and attenuation rate) for different
datasets (markers are colored with red for iron, blue for aluminum, and green for PMMA). SPR increases with
attenuation rate, and the dependency may be similar for datasets with different materials and voltages.

Material, kV Max SPR
At SPR = 0 At Max SPR
MC, s90 Radon, s90 MC, s90 Radon, s90

PMMA, 90 kV 0.16 1.11 1.12 1.59 1.57
PMMA, 150 kV 0.14 1.22 1.19 1.57 1.63
Al, 90 kV 0.77 1.00 0.97 2.38 2.51
Al, 150 kV 0.55 0.96 0.96 1.99 2.09
Al, 300 kV 0.33 1.07 1.07 1.47 1.50
Fe, 300 kV 5.26 1.02 1.03 5.84 6.06
Fe, 450 kV 2.29 1.05 1.04 3.02 3.44

Table 2: Difference in s90 for minimal and maximal SPR values

5 Discussion

We presented a methodology that evaluates the difference between training data for DCNNs using a model problem as

an example. This methodology can be applied to various defect detection tasks, as individual parts of the methodology

can be replaced to better fit a particular problem. The main requirement is the ability to completely remove the

X-ray scattering signal for a set of data. It is then possible to compare the dataset containing the scattering signal

with the dataset without scattering. For a particular detection task, one should specify an algorithm to perform the

task and assemble the test dataset for performance evaluation. POD analysis is one of many possible ways to evaluate

the accuracy of the algorithm. As a more general form of linear regression, POO curves provide a robust technique

that can be applied to a wide range of problems without extensive expert knowledge. Depending on the task, a more

accurate model relating the DCNN performance to object properties may be suggested.

17



In the presented model problem, both training and test data are generated using a Monte-Carlo algorithm.

This approach provides an easy way to obtain two versions of the same data that differ only in the presence of

scattering. Alternatively, the same result can be achieved using the real data and either software or hardware

scattering reduction techniques to obtain projections without the scattering signal. The main disadvantage of using

experimental data is that the scattering would only be approximately removed, whereas Monte-Carlo simulation can

ensure that no scattering is present in the data. The analysis made on simulated data is not necessarily applicable to

real measurements, but Monte-Carlo algorithms have been validated to be sufficiently accurate for medical purposes

[44, 45]. While MC methods can be applied to any problem, objects with complicated morphology and high variance

present a computational challenge to the proposed methodology. The computational cost of a single photon simulation

depends on the geometric representation and might increase by orders of magnitude for a detailed polygonal mesh.

Thus, optimizing the level of detail in a model is crucial for real-world applications. Furthermore, high variability

leads to a large number of objects that have to be simulated to produce a representative training set.

Accurate MC simulation requires extensive knowledge of the modeled X-ray system to account for all possible

experimental effects. Our model problem does not represent a specific setup, and a number of simplifications has

been made. We have not included detector noise in the MC data, although it could be implemented as an image

post-processing. According to the calibration of our X-ray system at 90 kV [46], 109 simulated photons correspond

approximately to a high exposure of 1 s at 45 W of tube power. In this case, the Poisson noise component simulated

by MC methods is the main source of noise, and the electronic noise of our detector could be ignored. Furthermore, we

have not observed significant changes in the analysis due to noise correlations present in real projections. We expect

that detector noise could be neglected in similar high exposure cases and become significant in low dose studies. Our

MC simulation includes only an X-ray source, object, and detector, and does not contain additional objects that may

be in the field of view in industrial applications, such as object holders, conveyor belts, and radiation shielding. These

objects could contribute to the scattering signal, especially backscatter, which is not present in our simulation.

We performed defect detection using the MSD architecture for a segmentation DCNN. In the appendix, we

show that similar results can be achieved with other DCNN architectures, including DeepLabv3, UNet++, and

FPN. Changing metaparameters, such as the number of layers and dilation sequences, may slightly improve the

performance for a particular training dataset. Choosing the architecture and fine-tuning the metaparameters are

necessary to achieve the best possible performance. Since our goal was to study the effect of scattering, we stopped

changing the metaparameters after reaching an accuracy level that could not be easily improved. We have tried to

train a classification network instead of segmentation, but the results were inferior. Such a difference in performance

can be explained by the absence of the defect mask in the training data, which complicates the learning process.

We have chosen the MSD architecture due to the relatively small number of weights (compared to other popular

architectures such as UNet), the possibility to train an accurate model without a large amount of training data,

and a history of successful application to X-ray tasks. Comparison with other DCNN architectures shows that a

small number of weights does not significantly reduce accuracy. It is important to note that vision transformers [47]

currently outperform DCNNs in standard computer vision tasks (e.g. ImageNet classification), although the novel
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CNN architectures might compete with transformers [48]. We used DCNNs due to their successful application to

industrial problems and the large number of available implementations. Furthrermore, it is not clear whether vision

transformers could outperform DCNNs without large datasets.

When using the difference between POD curves as a metric of performance difference, it is important to note that

many POD curves with different feature vectors could be computed for the same network. In preliminary experiments

we included object thickness at the defect location and defect distance to the center as parameters in the POD

fit. Defect size was chosen as the main POD argument due to a major influence on segmentation accuracy and

interpretability. Other variables could be added to Eq. 12, but the conclusion about the impact of SPR remains the

same. Another important assumption is that the chosen training dataset covers all possible combinations of object

and defect. Thus, an incorrect segmentation is caused by the input properties and not by encountering a previously

unknown defect type or unusual location. Providing sufficient coverage is easier for manufactured objects with known

shapes (e.g. castings), and more complicated when both the object and the defect have a large variety in morphology.

The threshold of 50% F1 score to convert network accuracy into a binary variable is chosen arbitrarily. If increased,

it will shift the POD curves to the right with respect to the defect size.

While the presented results are only valid for a selected problem, they illustrate the benefits of using a POD-

based methodology. A significant difference in accuracy was only present for a small subset of test projections, and

this effect was not visible for other metrics due to variance. Furthermore, POD curves address the concept of the

smallest detectable defect, which helps to evaluate whether a system is useful for a particular real-world application.

We expect a similar effect of scattering on inspection performance for other problems. If a defect is too small, the

contrast in X-ray attenuation is less than the noise level, and the inclusion of scattering does not significantly affect

the detection process. If a defect is too large, the contrast would be larger than a variance in the signal due to

scattering. Consequently, the biggest influence of the scattering signal should be seen for barely detectable defects

when the contrast is similar to the noise level.

It is important to note that any defect detection problem has a number of system properties that affect the noise

level and SPR and, consequently, the effect of excluding the scattering signal from the training data. The distance

between the object and the detector (known in radiology as the air gap) has a significant effect on SPR values because

scattered photons may not reach the detector. Furthermore, a smaller field of view and small objects can reduce the

effect of the scattering signal. A longer exposure time decreases the noise level and s90, so the effect of scattering as

additional noise might become more significant.

6 Conclusion

The practical application of data generation techniques for defect detection in industrial products requires a balance

between the computational cost of data generation and the resulting accuracy of the algorithm. We have proposed

a methodology to quantitatively evaluate the effect of simulating X-ray scattering on data generation for training

DCNNs. The POD curves have been used to study the network performance in detail by correlating it with the
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properties of the test projections. Using a Monte-Carlo simulation algorithm, we have ensured that the difference

between the DCNNs was caused only by the presence of the scattering signal. Our performance analysis was suc-

cessfully applied to the various test cases. The POD curves have shown under which test conditions the difference

between DCNNs is significant and when it is negligible. In particular, we have shown how the scattering-to-primary

ratio affects the network accuracy and the influence of the data generation approach. The presented methodology can

be used to decide if the defect detection performance is sufficient for a particular task and what level of accuracy in

data generation is necessary to achieve that performance.

Code and Data availability

The code for Monte-Carlo simulations can be found on Github: https://github.com/vandriiashen/mc-scattering.

The training and testing data were generated using this code. Sequences of parameters used for volume generation

are included in the repository. Scripts for DCNN training and POD computation are available at https://github.

com/vandriiashen/pod-xray-images.

Appendix: Different DCNN architectures

For the dataset of iron at 450 kV we have trained DCNNs with different state-of-the-art architectures using the

Segmentation Models package [49]. We have tried UNet++, FPN (Feature Pyramid Network), and DeepLabv3+ as

semantic segmentation architectures, and EfficientNet, MobileNet, and ResNet (not included in the results because

the performance was significantly worse) as encoders. The accuracy of each network on the test dataset was evaluated

with POD curves in the same way as for MSD (Fig. 10a). The networks have similar performance, the difference in

s90 between the best and the worst model is around 10%. The difference between training on Radon and MC data

can be evaluated for other network architectures, and the effect is similar to MSD. For example, Fig. 10b is made

with the same data as Fig. 7c, but the network architecture is DeepLabv3+ instead of MSD.

The similarity in network performance indicates that the difficulty of segmentation in the model problem stems

from the image and noise properties and not from deep learning. This supports the assumption that the generated

projections have enough variety to train a DCNN.
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Figure 10: Comparison of POD curves for the DCNNs with different architectures tested on the iron dataset at
450 kV. DeepLabv3+ outperforms other architectures tested, MSD achieves one of the highest accuracy levels despite
having the least number of parameters. The difference in s90 is around 10% when comparing the best and the worst
model (a). Comparison of the networks trained on MC and Radon data when the network uses the DeepLabv3+
architecture with the EfficientNetB0 encoder. The decrease in s90 is similar to MSD (b).
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