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Abstract
A set function can be extended to the unit cube in various ways; the correlation gap
measures the ratio between two natural extensions. This quantity has been identified
as the performance guarantee in a range of approximation algorithms and mechanism
design settings. It is known that the correlation gap of amonotone submodular function
is at least 1 − 1/e, and this is tight for simple matroid rank functions. We initiate a
fine-grained study of the correlation gap of matroid rank functions. In particular, we
present an improved lower bound on the correlation gap as parametrized by the rank
and girth of the matroid. We also show that for any matroid, the correlation gap
of its weighted rank function is minimized under uniform weights. Such improved
lower bounds have direct applications for submodular maximization under matroid
constraints, mechanism design, and contention resolution schemes.

1 Introduction

Acontinuous function h : [0, 1]E → R+ is an extension of a set function f : 2E → R+
if for every x ∈ [0, 1]E , h(x) = Eλ[ f (S)] where λ is a probability distribution over
2E with marginals x , i.e.

∑
S:i∈S λS = xi for all i ∈ E . Note that this in particular
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implies f (S) = h(χS) for every S ⊆ E , where χS denotes the 0-1 indicator vector of
S.

Two natural extensions are the following. The first one corresponds to sampling
each i ∈ E independently with probability xi , i.e., λS =∏

i∈S xi
∏

i /∈S(1− xi ). Thus,

F(x) =
∑

S⊆E

f (S)
∏

i∈S

xi

∏

i /∈S

(1− xi ). (1)

This is known as the multilinear extension in the context of submodular optimiza-
tion, see [8]. The second extension corresponds to the probability distribution with
maximum expectation:

f̂ (x) = max

⎧
⎨

⎩

∑

S⊆E

λS f (S) :
∑

S⊆E :i∈S

λS = xi ∀i ∈ E ,
∑

S⊆E

λS = 1 , λ ≥ 0

⎫
⎬

⎭
. (2)

Equivalently, f̂ (x) is the upper part of the convex hull of the graph of f ; we call it the
concave extension following the terminology of discrete convex analysis [26].

Agrawal et al. [2] introduced the correlation gap as the worst case ratio

CG( f ) := inf
x∈[0,1]E

F(x)

f̂ (x)
, (3)

with the convention 0/0 = 1. It captures the maximum gain achievable by allowing
correlations as opposed to independently sampling the variables. This ratio plays a
fundamental role in stochastic optimization [2, 31], mechanism design [6, 22, 42],
prophet inequalities [11, 17, 35], and a variety of submodular optimization problems
[3, 12].

The focus of this paper is on weighted matroid rank functions. For a matroidM =
(E, I) and aweight vectorw ∈ RE+, the correspondingweighted matroid rank function
is given by

rw(S) := max{w(T ) : T ⊆ S, T ∈ I}. (4)

It is monotone nondecreasing and submodular. Recall that a function f : 2E → R+ is
monotone if f (X) ≤ f (Y ) for all X ⊆ Y ⊆ E , and submodular if f (X) + f (Y ) ≥
f (X ∩ Y ) + f (X ∪ Y ) for all X , Y ⊆ E .

1.1 The role of correlation gap

The correlation gap of a weighted matroid rank function has been identified as the
performance guarantee in a range of approximation algorithms and mechanism design
settings. In what follows, we give an overview of three main applications where the
correlation gap shows up as a critical parameter.
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On the correlation gap of matroids

1.1.1 Monotone submodular maximization

Let f : 2E → R+ be a monotone submodular function, and let (E,J ) be a matroid
with independent sets J . We consider the problem of maximizing f subject to a
matroid constraint,

max
S∈J

f (S). (5)

For uniform matroids (i.e., cardinality constraints), a classical result by Fisher et al.
[30] showed a (1−1/e)-approximation guarantee for the greedy algorithm.Moreover,
this factor cannot be improved if we are only allowed polynomially many calls to the
value oracle of f (see Nemhauser and Wolsey [29]).

The factor (1 − 1/e) being the natural target for (5), Calinescu et al. [8] obtained
it for the special case when f is a sum of weighted matroid rank functions. The
journal version of the same paper [9] (see also [41]), shows a (1−1/e)-approximation
for arbitrary monotone submodular functions, achieving the best possible general
guarantee for (5).

These algorithms proceed in two steps. Let

P(r) :=
{

x ∈ RE+ | x(S) ≤ r(S) ∀S ⊆ E
}

(6)

denote the independent set polytope, where r is the rank function of the matroid
(E,J ). When clear from the context, we use the shorthand P .

In the first step, the goal is to find a (1 − 1/e)-approximation algorithm for the
relaxation

max
x∈P

F(x). (7)

Let x∗ be the solution obtained in the first step. In the second step, they use pipage
rounding to find an integer solution X ∈ J with f (X) ≥ F(x∗).

Thus, approximation loss only happens in the first step. To solve this non-concave
maximization problem, [8] introduced another relaxation f̃ (x) such that F(x) ≤
f̃ (x) ≤ f̂ (x) for all x ∈ [0, 1]E , and showed that maxx∈P f̃ (x) can be formulated as
an LP. The (1 − 1/e)-approximation to (7) is obtained by solving this LP optimally.
Subsequently, Shioura [37] showed that when f is a sum of monotone M�-concave
functions, the analogous convex program can also be solved optimally. M�-concave
functions form a special class of submodular functions, and are a central concept in
discrete convex analysis (seeMurota’s monograph [25]). They are also known as gross
substitutes functions and play an important role in mathematical economics [21, 23,
24, 32]. We remark that every weighted matroid rank function is M�-concave.

The (1− 1/e)-approximation for arbitrary monotone submodular f in [9, 41] uses
a different approach: instead of using another relaxation, they perform a continuous
greedy algorithm directly on F(x). Improved approximationswere subsequently given
for submodular functions with bounded curvature; we discuss these results in Sect. 1.4.

Concave coverageproblems Let us focus onShioura’s [37] specialization of problem
(5), i.e., f =∑m

i=1 fi where each fi ismonotone M�-concave. A basic example of this
model is themaximum coverage problem. Givenm subsets Ei ⊆ E , the corresponding
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coverage function is defined as f (S) = |{i ∈ [m] : Ei ∩ S �= ∅}|. Note that this is
a special case of a sum of weighted matroid rank functions: f (S) = ∑m

i=1 fi (S)

where fi (S) is the rank function of a rank-1 uniform matroid with support Ei . Even
for maximization under a cardinality constraint, there is no better than (1 − 1/e)-
approximation for this problem unless P = N P (see Feige [18]).

Recently, tight approximations have been established for another special case when
the function values fi (S) are determined by the cardinality of the set S and the sup-
port of Ei . Barman et al. [4] studied the maximum concave coverage problem: given
a monotone concave function ϕ : Z+ → R+ and weights w ∈ Rm+, the submodular
function is defined as f (S) = ∑m

i=1 wiϕ(|S ∩ Ei |).1 The maximum coverage prob-
lem corresponds to ϕ(x) = min{1, x}; on the other extreme, for ϕ(x) = x we get the
trivial problem f (S) =∑

j∈S |{i ∈ [m] : j ∈ Ei }|. In [4], they present a tight approx-
imation guarantee for maximizing such an objective subject to a matroid constraint,
parametrized by the Poisson curvature of the function ϕ.

This extends previousworkbyBarmanet al. [5]which consideredϕ(x) = min{�, x}
(for � > 1),motivated by the list decoding problem in coding theory. It also generalizes
the work by Dudycz et al. [16] which considered geometrically dominated concave
functions ϕ, motivated by approval voting rules such as Thiele rules, proportional
approval voting, and p-geometric rules. In both cases, the obtained approximation
guarantees improve over the 1− 1/e factor.

In Sect. 3, we make the simple observation that the algorithm of Calinescu et al. [8]
and Shioura [37] actually has an approximation ratio of mini∈[m] CG( fi ). For techni-
cal reasons, we assume that all the fi ’s are rational-valued; the relevant complexity
parameter μ( f ) is defined in Sect. 2.

Proposition 1.1 Let f1, f2, . . . , fm : 2E → R be monotone M�-concave functions,
and let f =∑m

i=1 fi . Then, a minm
i=1 CG( fi )-approximation algorithm for (5) can be

obtained in time polynomial in |E |, m and μ( f ).

We also prove that the Poisson curvature of ϕ is essentially the correlation gap of
the functions ϕ(|S ∩ Ei |). Hence, the approximation guarantees in [4, 5, 16] are in
fact correlation gap bounds, and they can be derived from Proposition 1.1 via a single
unified algorithm, i.e., the one by Calinescu et al. [8] and Shioura [37]. In particular,
the result of Barman et al. [5] which concerned ϕ(x) = min{�, x} (for � > 1) boils
down to the analysis of uniform matroid correlation gaps.

1.1.2 Sequential posted price mechanisms

Following Yan [42], consider a seller with a set of identical services (or goods), and
a set E of agents where each agent is only interested in one service (unit demand).
Agent i ∈ E has a private valuation vi if they get a service and 0 otherwise, where each
vi is drawn independently from a known distribution Fi over [0, L] for large L ∈ R+
with positive smooth density function. The seller can offer the service only to certain

1 We note that such functions are exactly the one-dimensional monotone M�-concave functions fi : Z+ →
R+.
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subsets of the agents simultaneously; this is captured by a matroid (E, I) where the
independent sets represent feasible allocations of the services to the agents.

A mechanism uses an allocation rule x : RE+ → {0, 1}E to choose the winning set
of agents based on the reported valuations v ∈ RE+ of the agents, and uses a payment
rule p : RE+ → RE+ to charge the agents.

Myerson’smechanism [7, 28] guarantees the optimal revenue, but is highly intricate
and there has been significant interest in simplermechanisms such as sequential posted
price mechanisms proposed by Chawla et al. [10].

For a given ordering of agents and a price pi for each agent i , a sequential posted-
price mechanism (SPM) initializes the allocated set A to be ∅, and for all agents i in
the order, does the following: if serving i is feasible, i.e., A ∪ {i} ∈ I, then it offers to
serve agent i at the pre-determined price pi , and adds i to A if agent i accepts.

Thus, the seller makes take-it-or-leave-it price offers to agents one by one. This
type of mechanism is easy to run for the sellers, limits agents’ strategic behaviour, and
keeps the information elicited from agents at a minimum level. Simplicity comes at a
cost as it does not deliver optimal revenue, but as it turns out, this cost can be lower
bounded by the correlation gap of the underlying matroid (E, I).

Theorem 1.2 ([42, Theorem 3.1]) If the correlation gap of the weighted rank function
is at least β for no matter what nonnegative weights, then the expected revenue of
greedy-SPM is a β-approximation to that of Myerson’s optimal mechanism.

Similarly, the same paper [42] shows that a greedy-SPM mechanism recovers a
constant factor of theVCGmechanism [13, 20, 40] that maximizes the optimal welfare
instead of revenue. The factor here is also the correlation gap of the (weighted) rank
function of the underlying matroid. The analysis of greedy-SPM in both revenue and
welfare maximization settings is tight. For details we refer to [42].

1.1.3 Contention resolution schemes

Chekuri et al. [12] introduced contention resolution (CR) schemes as a tool for max-
imizing a general submodular function f (not necessarily monotone) under various
types of constraints. For simplicity, let us illustrate it for a single matroid constraint,
i.e. (5) without the monotonicity assumption on f . It consists of first approximately
solving the continuous problem (7). After obtaining an approximately optimal solution
x ∈ P to (7), it is rounded to an integral and feasible solution— i.e. an independent set
in J — without losing too much in the objective value. At a high level, given a frac-
tional point x ∈ P , a CR scheme first generates a random set R(x) by independently
including each element i with probability xi . Then, it removes some elements of R(x)

to obtain a feasible solution. We say that a CR scheme is c-balanced if, conditioned
on i ∈ R(x), the element i is contained in the final independent set with probability
at least c; see [12] for a formal definition. A c-balanced scheme delivers an integer
solution with expected cost at least cF(x). Thus, the goal is to design c-balanced CR
schemes with the highest possible value of c.

There is a tight relationship between CR schemes and the correlation gap. Namely,
the correlation gap of the weighted rank function of (E,J ) is equal to the maximum
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c such that a c-balanced CR scheme exists [12, Theorem 4.6]. We would like to point
out that the correlation gap here concerns the matroid in the constraint, unlike in
Proposition 1.1 where the correlation gap concerns the objective function.

The benefit of CR schemes is that we can obtain good guarantees for submodular
function maximization under an intersection of different (downward-closed) con-
straints, including multiple matroid constrains, knapsack constraints, matching etc.
Moreover, in this case the CR scheme can be simply obtained by combining the CR
schemes for individual constraints.2

1.2 Our results

Motivated by the significance of correlation gap in algorithmic applications, we study
the correlation gap of weighted matroid rank functions. It is well-known that CG( f ) ≥
1− 1/e for every monotone submodular function f [8]. Moreover, the extreme case
1−1/e is already achieved by the rank function of a rank-1 uniformmatroid as |E | →
∞. More generally, the rank function of a rank-� uniform matroid has correlation gap
1 − e−���/�! ≥ 1 − 1/e [5, 42]. Other than for uniform matroids, we are not aware
of any previous work that gave better than 1 − 1/e bounds on the correlation gap of
specific matroids.

First, we show that among all weighted rank functions of a matroid, the smallest
correlation gap is realized by its (unweighted) rank function.

Theorem 1.3 For any matroid M = (E, I) with rank function r = r1,

inf
w∈RE+

CG(rw) = CG(r).

For the purpose of lower bounding CG(rw), Theorem 1.3 allows us to ignore the
weights w and just focus on the matroid M. As an application, to bound the approx-
imation ratio of sequential posted-price mechanisms as in Theorem 1.2, it suffices to
focus on the underlying matroid.

We remark thatM can be assumed to be connected, that is, it cannot be written as
a direct sum of at least two nonempty matroids. Otherwise, r = ∑k

i=1 ri for matroid
rank functions ri with disjoint supports. It follows that the concave and multilinear
extensions of r can be written as r̂ =∑k

i=1 r̂i and R =∑k
i=1 Ri respectively. Hence,

CG(r) ≥ mini∈[k] CG(ri ) by the mediant inequality. As the reverse inequality holds
trivially, we have CG(r) = mini∈[k] CG(ri ). For example, the correlation gap of a
partitionmatroid is equal to the smallest correlation gap of its parts (uniformmatroids).

Proposition 1.4 Let M be a matroid with rank function r . If M = M1 ⊕ · · · ⊕Mk

where each Mi is a matroid with rank function ri , then CG(r) = mini∈[k] CG(ri ).

Our goal is to identify the parameters of a matroid which govern its correlation gap.
A natural candidate is the rank r(E). However, as pointed out by Yan [42], there exist

2 We note however that CR schemes are not optimal for rounding (7): for this particular case, pipage or
swap rounding finds a feasible integer solution of value F(x), without any loss.
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Fig. 1 Our correlation gap bound as a function of the rank ρ, and as a function of the girth γ separately

matroids with arbitrarily high rank whose correlation gap is still 1−1/e, e.g., partition
matroids with rank-1 parts. The 1 − e−���/�! bound for uniform matroids [5, 42] is
suggestive of girth as another potential candidate. Recall that the girth of a matroid
is the smallest size of a dependent set. On its own, a large girth does not guarantee
improved correlation gap bounds: we show that for any γ ∈ N, there exist matroids
with girth γ whose correlation gaps are arbitrarily close to 1− 1/e (Proposition 6.2).

It turns out that the correlation gap heavily depends on the relative values of the
rank and girth of the matroid. Our second result is an improved lower bound on the
correlation gap as a function of these two parameters.

Theorem 1.5 LetM = (E, I) be a loopless matroid with rank function r , rank r(E) =
ρ, and girth γ . Then,

CG(r) ≥ 1− 1

e
+ e−ρ

ρ

⎛

⎝
γ−2∑

i=0

(γ − 1− i)

[(
ρ

i

)

(e − 1)i − ρi

i !
]
⎞

⎠ ≥ 1− 1

e
.

Furthermore, the last inequality is strict whenever γ > 2.

Figure1 illustrates the behaviour of the expression in Theorem 1.5. For any fixed
girth γ , it is monotone decreasing in ρ (Lemma 5.12). On the other hand, for any
fixed rank ρ, it is monotone increasing in γ (Lemma A.1). In Sect. 6, we also give
complementing albeit non-tight upper bounds that behave similarly with respect to
these parameters. When ρ = γ − 1, our lower bound simplifies to 1− e−ρρρ/ρ!, i.e.,
the correlation gap of a rank-ρ uniform matroid (Proposition 3.5).

The rank and girth have meaningful interpretations in the aforementioned applica-
tions. For instance, consider the problem of maximizing a sum of weighted matroid
rank functions

∑m
i=1 fi under a matroid constraint (E,J ). For every i ∈ [m], letMi

be the matroid of fi . In game-theoretic contexts, each fi usually represents the utility
function of agent i . Thus, our goal is to select a bundle of items S ∈ J whichmaximizes
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the total welfare. If Mi has girth γ and rank ρ, this means that agent i is interested
in γ − 1 ≤ k ≤ ρ items with positive weights. The special case ρ = γ − 1 (uniform
matroids) has already found applications in list decoding [5] and approval voting [16].
On the other hand, for sequential posted-price mechanisms, if the underlying matroid
M has girth γ and rank ρ, this means that the seller can service γ −1 ≤ k ≤ ρ agents
simultaneously.

To the best of our knowledge, our results give the first improvement over the
(1 − 1/e) bound on the correlation gap of general matroids. We hope that our paper
will motivate further studies into more refined correlation gap bounds, exploring the
dependence on furthermatroid parameters, aswell as obtaining tight bounds for special
matroid classes.

1.3 Our techniques

We now give a high-level overview of the proofs of Theorems 1.3 and 1.5.

Weighted rank functions The first step in proving both Theorems 1.3 and 1.5 is
to deduce structural properties of the points which realize the correlation gap. In
Theorem 4.3, we show that such a point x can be found in the independent set polytope
P . This implies that r̂w(x) = w�x for any weights w ∈ RE+. Moreover, we deduce
that x(E) must be integral.

To prove Theorem 1.3, we fix a matroid M and derive a contradiction for a non-
uniform weighting. More precisely, we consider a weighting w ∈ RE+ and a point
x∗ ∈ [0, 1]E which give a smaller ratio Rw(x∗)/r̂w(x∗) < CG(r). By the above, we
can use the simpler form Rw(x∗)/r̂w(x∗) = Rw(x∗)/w�x∗. We pick w such that it
has the smallest number of different values. If the number of distinct values is at least
2, then we derive a contradiction by showing that a better solution can be obtained
by increasing the weights in a carefully chosen value class until they coincide with
the next smallest value. The greedy maximization property of matroids is essential for
this argument.

Uniform matroids Before outlining our proof of Theorem 1.5, let us revisit the
correlation gap of uniform matroids. Let M = (E, I) be a uniform matroid on n
elements with rank ρ = r(E). If ρ = 1, then it is easy to verify that the symmetric
point x = (1/n) ·1 realizes the correlation gap 1−1/e. Since x lies in the independent
set polytope, we have r̂(x) = 1�x = 1. If one samples each i ∈ E with probability
1/n, the probability of selecting at least one element is R(x) = 1− (1− 1/n)n . Thus,
CG(r) = 1− (1− 1/n)n , which converges to 1− 1/e as n → ∞. More generally, for
ρ ≥ 1, Yan [42] showed that the symmetric point x = (ρ/n) · 1 similarly realizes the
correlation gap 1− e−ρρρ/ρ!.

Poisson clock analysis To obtain the (1 − 1/e) lower bound on the correlation gap
of a monotone submodular function, Calinescu et al. [8] introduced an elegant prob-
abilistic analysis. Instead of sampling each i ∈ E with probability xi , they consider
n independent Poisson clocks of rate xi that are active during the time interval [0, 1].
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Every clock may send at most one signal from a Poisson process. Let Q(t) be the set
of elements whose signal was sent between time 0 and t ; the output is Q(1). It is easy
to see that E[ f (Q(1))] ≤ F(x).

In [8], they show that the derivative ofE[ f (Q(t))] can be lower bounded as f ∗(x)−
E[ f (Q(t))] for every t ∈ [0, 1], where

f ∗(x) := min
S⊆E

(

f (S) +
∑

i∈E

fS(i)xi

)

(8)

is an extension of f such that f ∗ ≥ f̂ . Here, fS(i) := f (S∪{i})− f (S) is themarginal
gain of adding element i to set S. The boundE[ f (Q(1))] ≥ (1−1/e) f ∗(x) is obtained
by solving a differential inequality. Thus, F(x) ≥ E[ f (Q(1))] ≥ (1− 1/e) f ∗(x) ≥
(1− 1/e) f̂ (x) follows.

A two stage approach If f is a matroid rank function, then we have f ∗ = f̂ (see
Theorem 2.2). Still, the factor (1 − 1/e) in the analysis cannot be improved: for an
integer x ∈ P , we lose a factor (1− 1/e) due to E[ f (Q(1))] = (1− 1/e)F(x), even
though the extensions coincide: F(x) = f̂ (x).

Our analysis in Sect. 5 proceeds in two stages. Let M = (E, I) be a matroid with
rankρ and girth γ . The basic idea is that up to sets of size γ −1, ourmatroid ‘looks like’
a uniform matroid. Since the correlation gap of uniform matroids is well-understood,
we first extract a uniform matroid of rank γ − 1 from our matroid, and then analyze
the contribution from the remaining part separately. More precisely, we decompose
the rank function as r = g + h, where g(S) = min{|S|, �} is the rank function of
a uniform matroid of rank � = γ − 1. Note that the residual function h := f − g
is not submodular in general, as h(S) = 0 for all |S| ≤ �. We will lower bound
the multilinear extensions G(x) and H(x) separately. As g is the rank function of a
uniform matroid, we can lower bound G(x) as above by showing that the minimum
is achieved at a symmetric point, i.e., xi = x(E)/n for all i ∈ E .

Bounding H(x) is based on a Poisson clock analysis as in [8], but is significantly
more involved. Due to the monotonicity of h, directly applying the result in [8] would
yield E[h(Q(1)] ≥ (1 − 1/e)h∗(x). However, h∗(x) = 0 whenever M is loopless
(� ≥ 1), as h(∅) = 0 and h({i}) = 0 for all i ∈ E . So, the argument of [8] directly
only leads to the trivial E[h(Q(1))] ≥ 0. Nevertheless, one can still show that the
derivative of the conditional expectation E[h(Q(t))||Q(t)| ≥ �] is at least r∗(x) −
� − E[h(Q(t))||Q(t)| ≥ �]. Let T ≥ 0 be the earliest time such that |Q(T )| ≥ �,
which we call the activation time of Q. Then, solving a similar differential inequality
produces E[h(Q(1))|T = t] ≥ (1− e−(1−t))(r∗(x) − �) for all t ≤ 1.

To lower bound E[h(Q(1))], it is left to take the expectation over all possible
activation times T ∈ [0, 1]. Let h̄(x) = (r∗(x) − �)

∫ 1
0 fT (t)(1 − e−(1−t))dt be the

resulting expression, where fT denotes the probability density function of T .We prove
that h̄(x) is concave in each direction ei − e j for i, j ∈ E . This allows us to round
x to an integer x ′ ∈ [0, 1]E such that x ′(E) = x(E) and h̄(x ′) ≤ h̄(x); recall that
x(E) ∈ Z by Theorem 4.3. After substantial simplification of h̄(x ′), we arrive at the
formula in Theorem 1.5, except that ρ is replaced by x(E). So, the rounding procedure
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effectively shifts the dependency of the lower bound from the value of x to the value
of x(E). Since x(E) ≤ ρ by Theorem 4.3, the final step is to prove that the formula
in Theorem 1.5 is monotone decreasing in ρ. This is shown in Lemma 5.12 using
the relationship between the Poisson distribution and the incomplete gamma function.
Additionally, in Lemma 5.11 we show that the obtained lower bound is always strictly
greater than 1− 1/e when � > 1.

1.4 Further related work

In the context of submodular maximization (5), Proposition 1.1 allows for improved
approximation bounds if f =∑m

i=1 fi , where the fi ’s are M�-concave functions.
A different approach to give fine-grained approximation guarantees for (5) is via

curvature notions; this is applicable to any submodular function and does not require
the form f =∑m

i=1 fi . A well-studied measure is the total curvature of the submod-
ular function, namely, c( f ) = 1−mini∈E ( f (E) − f (E\{i}))/ f ({i}). Monotonicity
and submodularity guarantee c( f ) ∈ [0, 1]; the best case c( f ) = 0 corresponds to
additive (modular) functions. For cardinality constraints, such a bound was given by
Conforti and Cornuéjols [14], strengthened and extended to matroid constraints by
Sviridenko et al. [39].

However, there are important cases of submodular functions where the total curva-
ture bound is not tight. For a nondecreasing concave univariate function ϕ : Z+ → R+
with ϕ(0) = 0, f (S) = ϕ(|S|) is a submodular function. Exact maximization over
matroid constraints is straightforward for such a function, yet the total curvature can
be 1. This is a simple example of an M�-concave function; submodular function max-
imization can be done in polynomial time for all such functions (see Proposition 2.5).

Motivated by this, Soma and Yoshida [38] proposed the following generalization
of total curvature: assume our monotone submodular function can be decomposed as
f = g+h, where g is monotone submodular and h is M�-concave. They define the h-
curvature as γh( f ) = 1−minS⊆E h(S)/ f (S), and provide approximation guarantees
in terms of γh( f ). If this is close to 0, then the function can be well-approximated by
an M�-concave function. The usual notion of total curvature arises by restricting h to
additive (modular) functions.

A common thread in [38] and our approach is to exploit special properties of M�-
concave functions for submodular maximization. However, there does not appear to
be any direct implication between them.

Paper organization In Sect. 2, we recall the definitions of matroids, M�-concave
functions, submodular functions, related paremeters, and some classical results that we
will use in our proofs. In Sect. 3.1, we recall Shioura’s algorithm for maximizing a sum
of M�-concave functions under a matroid constraint, and observe that the performance
of this algorithm is bounded by the correlation gap of the input functions. Then, in
Sect. 3.2, we explain how the results on concave coverage problems [4, 5, 16] can be
derived using the aforementioned algorithm, and that the Poisson curvature bound is
essentially equal to the correlation gap of the same functions.
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The rest of the paper is devoted to showing our two main results. In Sect. 4, we
prove Theorem 1.3 and show that the minimizer of the correlation gap can always be
found in the independent set polytope of the matroid. Then, we prove Theorem 1.5 in
Sect. 5. Finally, we give upper-bounds on the correlation gap of a matroid with rank ρ

and girth γ in Sect. 6. Several lemmas and proofs are deferred to the appendix.

2 Preliminaries

We denote Z+ and R+ as the set of nonnegative integers and nonnegative reals respec-
tively. For n, k ∈ Z+,

(n
k

) = n!
k!(n−k)! if n ≥ k, and 0 otherwise. For a set S and

i ∈ S, j /∈ S, we use the shorthand S − i = S\{i}, S + j = S ∪ { j}, and
S − i + j = (S\{i}) ∪ { j}. For x ∈ RE and S ⊆ E , we write x(S) = ∑

i∈S xi .
For a set function f , the marginal gain of adding an element i to a set S is denoted as
fS(i) = f (S + i) − f (S).
All set functions in the paper will be given by value oracles; our running time

bounds will be polynomial in the number of oracle calls and arithmetic operations.
We further assume that all set functions are rational valued, and for f : 2E → Q,
we let μ( f ) denote an upper bound on the encoding length of any value f (S). That
is, for any S ⊆ E , the oracle returns f (S) = p/q represented by p, q ∈ Z such that
�log2 |p|� + �log2 |q|� ≤ μ( f ).

Matroids For a detailed introduction to matroids, we refer the reader to Oxley’s book
[34] or Schrijver’s book [36]. A matroidM = (E, I) is given by a downward closed
family of independent sets I ⊆ 2E over a ground set E . We require that I �= ∅, and
the following axiom:

∀X , Y ∈ I with |X | < |Y | : ∃ j ∈ Y \ X : X + j ∈ I . (9)

A basis is an inclusion-wise maximal independent set. Let B ⊆ I be the set of bases.
The above axiom implies that all bases are of the same size, called the rank of M.

The rank function r : 2E → Z+ is defined as r(S) = max{|T | : T ⊆ S, T ∈
I}. This is a monotone submodular function. A circuit is an inclusion-wise minimal
dependent set. The size of a smallest circuit is called the girth of M.

Recall the independent set polytope defined in (6).

Theorem 2.1 (Edmonds, [36, Theorem 40.2]) For a matroid M = (E, I) with rank
function r , P(r) defined in (6) is the convex hull of the incidence vectors of the inde-
pendent sets in I.

We also recall another classical result by Edmonds on intersecting the independent
set polytope by a box.

Theorem 2.2 (Edmonds, [36, Theorem 40.3]) Let r : 2E → Z+ be a matroid rank
function and x ∈ R+. Then,

max{y(E) : y ∈ P(r), y ≤ x} = min{r(S) + x(E\S) : S ⊆ E} .
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M�-concave functions A set function f : 2E → R ∪ {−∞} is M�-concave if

∀X , Y ⊆ with |X | < |Y | :
f (X) + f (Y ) ≤ max

j∈Y\X
{ f (X + j) + f (Y − j)} (10a)

∀X , Y ⊆ E with |X | = |Y | and ∀i ∈ X \ Y :
f (X) + f (Y ) ≤ max

j∈Y\X
{ f (X − i + j) + f (Y + i − j)}. (10b)

We refer the reader to Murota’s monography [25] for a comprehensive treatment of
M�-concave functions. These functions can be defined more generally on the integer
lattice Zn . In this paper, we restrict our attention to M�-concave set functions, also
known as valuated generalized matroids. These are closely related to valuatedmatroids
introduced by Dress and Wenzel [15]. The definitions above are from [19, 27] and are
equivalent to the standard definition in [25].

The definition can be seen as a generalization of the matroid independence axiom
(9). Given a matroid M = (E, I), the indicator function f defined as f (S) = 0
if S ∈ I and f (S) = −∞ is M�-concave. More generally, given a weight vector
w ∈ RE+, the weighted matroid rank function as defined in (4) is M�-concave. These
functions form a nontrivial subclass of submodular functions [21, 24].

Proposition 2.3 ([25, Theorem 6.19]) Every M�-concave function is submodular.

We recall that submodular functions can be minimized in polynomial time, but
submodular maximization is NP-complete. However, it is polynomial time solvable
for M�-concave functions; in fact, they can be maximized using the greedy algorithm.

Proposition 2.4 ([15]) If f : 2E → R ∪ {−∞} is an M�-concave function, then for
every vector z ∈ RE , maxS⊆E f (S) − z(S) can be computed in strongly polynomial
time.

Recall the concave extension f̂ (x) defined in (2). It is NP-complete to evaluate
this function for general submodular functions. However, for M�-concave functions,
it can be efficiently computed. To see this, we formulate the dual LP, and notice that
separation corresponds to maximizing f (S) − z(S).

min z�x + α

s.t. z(T ) + α ≥ f (S) ∀S ⊆ E .
(11)

Proposition 2.5 If f : 2E → R ∪ {−∞} is an M�-concave function, then for every
point x ∈ [0, 1]E , f̂ (x) can be computed in time polynomial in |E | and μ( f ).

Wenote that the existence of a concave extension satisfying desirable combinatorial
properties is equivalent to the function being M�-concave, see [25, Theorem 6.43].
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Probability distributions Let Bin(n, p) denote the binomial distributionwith param-
eters n and p, and let Poi(λ) denote the Poisson distribution with parameter λ. Recall
that Pr(Poi(λ) = k) = e−λλk/k! for any k ∈ Z+.

Definition 2.6 Given random variables X and Y , we say that X is at least Y in the
concave order if for every concave function ϕ : R → R, we have E[ϕ(X)] ≥ E[ϕ(Y )]
whenever the expectations exist. It is denoted as X ≥cv Y .

In particular, we will use the following relation between the binomial and Poisson
distributions:

Lemma 2.7 ([5, Lemma 2.1]) For any n ∈ N and p ∈ [0, 1], we have Bin(n, p) ≥cv

Poi(np).

2.1 Properties of themultilinear extension

Let f : 2E → R+ be an arbitrary set function, and F : [0, 1]E → R+ be its
multilinear extension. We will use the following well known properties, see e.g. [9].

Proposition 2.8 For any x ∈ [0, 1]E and i ∈ E, the function φ(t) := F(x + tei ) is
linear.

Proposition 2.9 If f is monotone, then F(x) ≥ F(y) for all x ≥ y.

Proposition 2.10 If f is submodular, then for any x ∈ [0, 1]E and i, j ∈ E, the
function φ(t) := F(x + t(ei − e j )) is convex.

Proposition 2.11 For any y ∈ [0, 1]E , the gradient of F at y is given by

∇F(y)i = ∂ F

∂xi
(y) = E[ f (Y + i)] − E[ f (Y )],

where Y is the random set obtained by selecting each element j ∈ E\{i} independently
with probability y j . Consequently, ∇F(y) ≥ 0 if f is nondecreasing.

Proposition 2.12 For any z ∈ [0, 1]E , the Hessian of F at z is given by

H(z)i j = ∂2F

∂xi∂x j
(z)

=
{
E[ f (Z + i + j)] − E[ f (Z + i)] − E[ f (Z + j)] + E[ f (Z)] if i �= j,

0 if i = j,

where Z is the random set obtained by selecting each element k ∈ E\{i, j} indepen-
dently with probability zk . Consequently, H(z) ≤ 0 if f is submodular.
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3 Correlation gap bounds for monotone submodular maximization

In this section, we focus on the special case of (5) considered by Shioura [37], in
which f =∑m

j=1 f j where every f j : 2E → R is a monotone M�-concave function.
As mentioned in the introduction, a more specialized version of this problem was con-
sidered by Calinescu et al. [8], in which every f j is a weighted matroid rank function.
We first show that the pipage rounding algorithm of Shioura [37] and Calinescu et al.
[8] achieves an approximation ratio of mini∈[m] CG( f j ) ≥ 1− 1/e (Proposition 1.1).
Then, we demonstrate how the approximation results for various concave coverage
problems [4, 5, 16] are implied by Proposition 1.1 by analyzing the correlation gap of
the constituent function f j ’s.

3.1 Proof of Proposition 1.1

Let us define f̃ : [0, 1]E → R+ as the sum of the concave extensions.

f̃ (x) :=
m∑

j=1

f̂ j (x). (12)

Note that f̃ (x) ≤ f̂ (x); however, this inequality may be strict. Shioura’s algorithm
[37] starts by solving

max
x∈P

f̃ (x) (13)

This is a convex optimization problem, and is also a relaxation of (5), noting that for
any S ⊆ E , f̃ (χS) = f (S).

The number of constraints in P is exponential, but can be efficiently separated
over. The objective function f̃ (x) can be evaluated by solving m exponential-size
linear programs. Shioura showed that (13) can be solved using the ellipsoid method
by implementing a subgradient oracle. The algorithm returns an exact solution in time
polynomial in n, m, and the complexity parameter μ( f ), assuming the functions are
rational-valued.

Given an optimal solution x∗ to (13), the pipage rounding technique first introduced
by Ageev and Sviridenko [1] can be used to obtain a set S ∈ I with f (S) ≥ F(x∗).
Hence,we obtain anα-approximation for (5) as long aswe can show F(x∗) ≥ α f̃ (x∗).
The proof of Proposition 1.1 is complete by the following lemma.

Lemma 3.1 Let α := minm
j=1 CG( f j ). Then, for every x ∈ [0, 1]E , F(x) ≥ α f̃ (x).

Proof. Let Fj be the multilinear extension of f j . Note that F(x) = ∑m
j=1 Fj (x). By

the definition of the correlation gap,

F(x) =
m∑

j=1

Fj (x) ≥ α

m∑

j=1

f̂ j (x) = α f̃ (x) .
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3.2 Concave coverage problems

We now discuss the concave coverage model in Barman et al. [4], and show that the
Poisson curvature studied in this paper can be interpreted as a correlation gap bound.
Further, in Proposition 3.5, we show that the tight bounds in [5] for the maximum
multicoverage problems coincide with the correlation gap bound in Theorem 1.5 for
uniform matroids, i.e., γ = ρ + 1.

Let M = (E,J ) be a matroid, and let ϕ : Z+ → R+ be a normalized non-
decreasing concave function, i.e., ϕ(0) = 0, ϕ(1) = 1, ϕ(i + 1) ≥ ϕ(i) and
ϕ(i + 1) − ϕ(i) ≥ ϕ(i + 2) − ϕ(i + 1) for all i ∈ Z+. For every j ∈ [m], we
are given a subset E j ⊆ E , a weight w j ∈ R+, and a function f j : 2E → R+ defined
by f j (S) := ϕ(|S ∩ E j |). In the ϕ-MaxCoverage problem, the goal is to maximize
f (S) := ∑m

j=1 w j f j (S) subject to S ∈ J . Barman et al. [4] gave an approxima-
tion algorithm for this problem, whose approximation factor is the so-called Poisson
concavity ratio of ϕ, defined as

αϕ := inf
λ∈R+

E[ϕ(Poi(λ))]
ϕ̂(E[Poi(λ)]) = inf

λ∈R+

E[ϕ(Poi(λ))]
ϕ̂(λ)

.

Here, ϕ̂ : R+ → R+ is the concave extension of ϕ, i.e. ϕ̂(λ) = ϕ(�λ�) + (ϕ(�λ� +
1) − ϕ(�λ�))(λ − �λ�).

In this subsection, we show that the correlation gap of each f j is at least the
Poisson concavity ratio of ϕ. To this end, fix a j ∈ [m]. The following lemma relates
the concave extensions of f j and ϕ; the proof of this and the next lemma are given in
the Appendix.

Lemma 3.2 For any x ∈ [0, 1]E , we have f̂ j (x) = ϕ̂(x(E j ))

Thenext lemmashows that themultilinear extension Fj isminimized at ‘symmetric’
points.

Lemma 3.3 For any x ∈ [0, 1]E , let x̄ ∈ [0, 1]E be the vector given by

x̄i :=
{ x(E j )

|E j | , if i ∈ E j

xi , otherwise.
.

Then, Fj (x) ≥ Fj (x̄).

We show that the Poisson concavity ratio is a lower bound on the correlation gap:

Proposition 3.4 We have CG( f j ) ≥ αϕ .

Proof. Let n j = |E j |. For any point x ∈ [0, 1]E , let λ = x(E j ). Define the vector
x̄ ∈ [0, 1]E as x̄i := λ/n j if i ∈ E j , and x̄i := xi otherwise. According to Lemmas
2.7 and 3.3,

Fj (x) ≥ Fj (x̄) =
n j∑

k=0

ϕ(k)

(
n j

k

)(
λ

n j

)k (

1− λ

n j

)n j−k
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= E

[

ϕ

(

Bin

(

n j ,
λ

n j

))]

≥ E [ϕ(Poi(λ))] . (14)

Moreover, we have f̂ j (x) = ϕ̂(λ) by Lemma 3.2. Hence, Fj (x)/ f̂ j (x) ≥
E [ϕ(Poi(λ))] /ϕ̂(λ).

We remark that the inequality in Proposition 3.4 is asymptotically tight. For any
λ ≥ 0, if we choose x = (λ/n j ) · 1, then the first inequality in (14) is tight. On the
other hand, the second inequality in (14) is asymptotically tight as n j → ∞.

When f j is the rank function of a rank-� uniform matroid, [5] gave a tight

approximation ratio 1 − e−���

�! . We show that this coincides with the lower bound
in Theorem 1.5. The proof is given in the Appendix.

Proposition 3.5 For every � ∈ N, we have

1− 1

e
+ e−�

�

(
�−1∑

i=0

(� − i)

[(
�

i

)

(e − 1)i − �i

i !
])

= 1− e−���

�! .

4 Locating the correlation gap

In this section, given a weighted matroid rank function rw, we locate a point x∗ ∈
[0, 1]E on which the correlation gap CG(rw) is realized, and derive some structural
properties. Using this, we prove Theorem 1.3, which states that the smallest correlation
gap over all possible weightings is attained by uniform weights.

We remark that the existence of x∗ is a priori not clear as the correlation gap
is defined using an infimum. In Appendix C, we prove that the correlation gap is
always attained for a nonnegative monotone submodular function (Theorem C.1).
Interestingly, neither the monotonicity nor submodularity assumption can be dropped.
We provide examples of such functions in Appendix C.

It will be helpful to work with a more convenient characterization of the concave
extension of rw. Recall the definition of r̂w in (2) and its dual form (11). We first show
that the equalities in (2) can be relaxed to inequalities for any monotone submodular
function.

Lemma 4.1 For any monotone submodular function f : 2E → R and x ∈ [0, 1]E , its
concave extension f̂ (x) can be equivalently written as

max

⎧
⎨

⎩

∑

S⊆E

λS f (S) :
∑

S⊆E :i∈S

λS ≤ xi ∀i ∈ E ,
∑

S⊆E

λS = 1 , λ ≥ 0

⎫
⎬

⎭
. (15)

Proof. Clearly, the optimal value of (15) is at least f̂ (x). Take an optimal solution λ

to (15) such that δ(λ) := ∑
i∈E

(
xi −∑

S⊆E :i∈S λS
)
is minimal. If δ = 0, then λ is

also feasible to (2), proving the claim. Assume that δ > 0, and take any i ∈ E for
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which xi >
∑

S⊆E :i∈S λS . Since xi ≤ 1 and
∑

S⊆E λS = 1, there exists a set T ⊆ E
with λT > 0 and i /∈ T .

Let us modify this solution to λ′ defined as λ′T+i = λT+i + ε, λ′T = λT − ε, and
λ′S = λS otherwise. For small enough ε > 0, λ′ is also a feasible solution to (15) with
δ(λ′) < δ(λ). Moreover, λ′ is also optimal, since

∑
S⊆E λ′S f (S) ≥ ∑

S⊆E λS f (S)

by the monotonicity of f . This contradicts the choice of λ; consequently, δ(λ) = 0
must hold and the claim follows.

Lemma 4.2 Let M = (E, I) be a matroid with rank function r and weights w ∈ RE+.
For any x ∈ [0, 1]E ,

r̂w(x) = max{w�y : y ∈ P(r), y ≤ x} .

Proof. Consider an optimal solution λ to the LP in (15) for f = rw with
∑

S⊆E λS|S|
minimal. We claim that every S ⊆ E with λS > 0 must be independent. Indeed, recall
that rw(S) = w(T ) for some independent set T ⊆ S. If S /∈ I, then we can simply
replace S in the combination by this set T . The solution remains feasible with the
same objective value, but smaller

∑
S⊆E λS|S|.

Consequently, we may assume that rw(S) = w(S) for every S ∈ supp(λ). Letting
yi =∑

S⊆E : i∈S λi , the objective of (15) can be written as

∑

S⊆E

λSrw(S) = w�y .

Note that y ≤ x and y ∈ P(r), since y can be written as a convex combination
of incidence vectors of independent sets. Hence, (15) for f = rw is equivalent to
maximizing w�y over y ∈ P(r), y ≤ x , proving the statement.

Next, we show that there exists a point x∗ in the independent set polytope P(r)

on which the correlation gap CG(rw) is realized. Furthermore, such a point x∗ can be
chosen such that supp(x∗) is a tight set with respect to x∗, i.e., x∗(E) = r(supp(x∗)).

Theorem 4.3 Let M = (E, I) be a matroid with rank function r . For any weights
w ∈ RE+, there exists a point x∗ ∈ P(r) such that x∗(E) = r(supp(x∗)) and

CG(rw) = Rw(x∗)
r̂w(x∗)

= Rw(x∗)
w�x∗

.

Proof. By TheoremC.1, a minimizer of Rw(x)/r̂w(x) in [0, 1]E exists. First, we prove
that it can be found in the independent set polytope P(r). Take a minimizer x /∈ P(r).
By Lemma 4.2, r̂w(x) = w�y for some y ∈ P(r), y ≤ x . Clearly, r̂w(y) = w�y.
By Proposition 2.9, we have Rw(y) ≤ Rw(x). This proves that Rw(x)/r̂w(x) ≥
Rw(y)/r̂w(y), thus, equality must hold and y is also a minimizer of the ratio.

For the rest of the proof, consider a minimizer x ∈ P(r). Note that Rw(x)/r̂w(x) =
Rw(x)/w�x . Among such minimizers, let us pick x such that supp(x) is minimal.
The proof is complete by showing that x(S) = r(S) for S := supp(x).
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For a contradiction, assume x(S) < r(S). We claim that there exists a j ∈ S such
that x + εχ j ∈ P(r) for some ε > 0. If no such j exists, then there exists a set Tj for
each j ∈ S such that j ∈ Tj , and x(Tj ) = r(Tj ). For any j, k ∈ S, we can uncross
Tj and Tk

x(Tj ∪Tk)+ x(Tj ∩Tk) = x(Tj )+ x(Tk) = r(Tj )+r(Tk) ≥ r(Tj ∪Tk)+r(Tj ∩Tk)

to deduce that x(Tj ∪ Tk) = r(Tj ∪ Tk) and x(Tj ∩ Tk) = r(Tj ∩ Tk). Repeating
this operation yields x(T ) = r(T ) for T = ∪ j∈STj . Clearly, S ⊆ T . But this implies
x(S) = r(S) since x(S) = x(T ) and r(S) ≤ r(T ). Thus, there exists a j ∈ S such
that x + εχ j ∈ P(r) for some ε > 0.

For γ ∈ [0, 1], let xγ be the vector obtained from x by replacing x j with γ . Let
� = max{γ : xγ ∈ P(r)}. By the choice of j , x j < �.

According to Proposition 2.8, h(γ ) := Rw(xγ ) is a linear function in γ ; we can
write h(γ ) = a + bγ for a, b ∈ R+. For γ ∈ [0, �], xγ ∈ P(r), and therefore
r̂(xγ ) = w�xγ ; this is also a linear function and can be written as r̂(xγ ) = c + dγ ,
where c =∑

i �= j wi xi and d = w j . Hence, for γ ∈ [0, �], we can write

Rw(xγ )

r̂w(xγ )
= a + bγ

c + dγ
.

It is easy to see that if a/c < b/d, then the unique minimizer of this ratio is γ = 0;
if a/c > b/d, then the unique minimizer is γ = �. Both these cases contradict the
optimal choice of x . Hence, we must have a/c = b/d, in which case the ratio is
constant on γ ∈ [0, �]. Therefore, x0 is also a minimizer. This is a contradiction to
the minimal choice of supp(x).

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3 For a contradiction, assume there exists a weight vector w ≥ 0
and a point x∗ ∈ [0, 1]E such that Rw(x∗)/r̂w(x∗) < CG(r). According to Theo-
rem 4.3, we can assume x∗ ∈ P(r) and thus r̂w(x∗) = w�x∗.

Let w1 > w2 > · · · > wk ≥ 0 denote the distinct values of w. For each i ∈ [k],
let Ei ⊆ E denote the set of elements with weight wi . Clearly, k ≥ 2 as otherwise
Rw(x∗)/r̂w(x∗) = w1R(x∗)/w1x∗(E) = R(x∗)/x∗(E) ≥ CG(r). Let us pick a
counterexample with k minimal.

First, we claim that x∗(Ei ) > 0 for all i ∈ [k]. Indeed, if x∗(Ei ) = 0, then x∗e = 0
for all e ∈ Ei . So, for every e ∈ Ei , we can modify we ← w j where j �= i without
changing the value of Rw(x∗)/r̂w(x∗). However, this contradicts the minimal choice
of k. By the same argument, we also have wk > 0.

Let X be a random set obtained by sampling every element e ∈ E independently
with probability x∗e . Let IX ⊆ X denote a maximum weight independent subset of
X . Recall the well-known property of matroids that a maximum weight independent
set can be selected greedily in decreasing order of the weights we. We fix an arbitrary
tie-breaking rule inside each set Ei .

123



On the correlation gap of matroids

The correlation gap of rw is given by

Rw(x∗)
r̂w(x∗)

=
∑

S⊆E Pr(X = S)rw(S)

w�x∗
=
∑

e∈E we Pr(e ∈ IX )
∑

e∈E wex∗e
=
∑k

i=1 wi ∑
e∈Ei

Pr(e ∈ IX )
∑k

i=1 wi x∗(Ei )
.

Consider the set

J := argmin
i∈[k]

wi ∑
e∈Ei

Pr(e ∈ IX )

wi x∗(Ei )
.

We claim that J \ {1} �= ∅. Suppose that J = {1} for a contradiction. Define the point
x ′ ∈ P(r) as x ′e := x∗e if e ∈ E1, and x ′e := 0 otherwise. Then, we get a contradiction
from

CG(r) ≤ R(x ′)
r̂(x ′)

= w1∑
e∈E1

Pr(e ∈ IX )

w1x∗(E1)
<

∑k
i=1 wi ∑

e∈Ei
Pr(e ∈ IX )

∑k
i=1 wi x∗(Ei )

= Rw(x∗)
r̂w(x∗)

.

The first equality holds because for each element e ∈ E1, Pr(e ∈ IX ) only depends on
x∗E1

= x ′E1
. This is by the greedy choice of IX : elements in E1 are selected regardless

of X \ E1. The strict inequality is due to J = {1}, k ≥ 2 and x∗(Ei ), w
i > 0 for all

i ∈ [k].
Now, pick any index j ∈ J \ {1}. Then,

w j ∑
e∈E j

Pr(e ∈ IX )

w j x∗(E j )
≤
∑

i �= j wi ∑
e∈Ei

Pr(e ∈ IX )
∑

i �= j wi x∗(Ei )
.

So,we can increasew j tow j−1 without increasing the correlation gap. That is, defining
w̄ ∈ RE+ as w̄e := w j−1 if e ∈ E j and w̄e := we otherwise, we get

Rw(x∗)
r̂w(x∗)

≥
w j−1∑

e∈E j
Pr(e ∈ IX ) +∑

i �= j wi ∑
e∈Ei

Pr(e ∈ IX )

w j−1x∗(E j ) +∑
i �= j wi x∗(Ei )

=
∑

e∈E w̄e Pr(e ∈ IX )
∑

e∈E w̄ex∗e
=
∑

S⊆E Pr(X = S)rw̄(S)

w̄�x∗
= Rw̄(x∗)

r̂w̄(x∗)
.

The second equality holds because for every S ⊆ E , IS remains a maximum-weight
independent set with the new weights w̄. This again contradicts the minimal choice
of k.

5 The correlation gap bound for matroids

This section is dedicated to the proof of Theorem 1.5. For the matroid M = (E, I),
let r denote the rank function, ρ = r(E) the rank, and γ the girth. We have γ > 1
since the matroid is assumed to be loopless.
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According to Theorem 4.3, there exists a point x∗ ∈ P(r) and a set S ⊆ E such that
x∗(S) = r(S), x∗(E\S) = 0, and CG(r) = R(x∗)/r(x∗). For notational convenience,
let us define

� := γ − 1 , λ := x∗(E) = x∗(S) = r(S).

Note that if λ < �, then S is independent. As x∗(S) = r(S) = |S| and x∗ ≤ 1, we
have x∗i = 1 for all i ∈ S. In this case, it follows that x∗ is integral and R(x∗) = r̂(x∗),
so the correlation gap is 1. Henceforth, we will assume that λ ≥ �.

In this section, we analyze the multilinear extension of r . Let g : 2E → Z+ be
the rank function of a uniform matroid of rank � over ground set E , and define the
function h := r − g. Clearly, r = g + h. By linearity of expectation, the multilinear
extension of r can be written as

R(x) = E[r(S)] = E[g(S) + h(S)] = E[g(S)] + E[h(S)] = G(x) + H(x), (16)

where G and H are the multilinear extensions of g and h respectively. To lower bound
R(x∗), we will lower bound G(x∗) and H(x∗) separately.

5.1 Lower bounding G(x∗)

Observe that G is a symmetric polynomial because g is the rank function of a uniform
matroid. As g is submodular, Proposition 2.10 indicates that G is convex along ei −e j

for all i, j ∈ E . The next lemma is an easy consequence of these two properties. We
have already proven it in a more general form in Lemma 3.3.

Lemma 5.1 For any x ∈ [0, 1]E , we have G(x) ≥ G((x(E)/n) · 1).

By Lemma 5.1, we have

G(x∗) ≥ G

(
λ

n
· 1
)

=
n∑

k=0

min{k, �}
(

n

k

)(
λ

n

)k (

1− λ

n

)n−k
= E

[

min

{

Bin

(

n,
λ

n

)

, �

}]

.

(17)
In other words, we can lower bound G(x∗) by the expected value of Bin(n, λ/n)

truncated at �. We now use Lemma 2.7 on the concave order of the binomial and
Poisson distributions to obtain

E

[

min

{

Bin

(

n,
λ

n

)

, �

}]

≥ E [min {Poi(λ), �}] =
∞∑

k=0

min{k, �}λ
ke−λ

k! . (18)

Using Pr(Poi(λ) ≥ j) =∑∞
k= j

λk e−λ

k! , this amounts to

123



On the correlation gap of matroids

G(x∗) ≥
�∑

j=1

Pr(Poi(λ) ≥ j) =
�∑

j=1

⎛

⎝1−
j−1∑

k=0

λke−λ

k!

⎞

⎠

= � −
�−1∑

k=0

(� − k)
λke−λ

k! . (19)

5.2 Lower bounding H(x∗)

Next, we turn to the extension H . We first describe the general setup, which is to incre-
mentally build a set Q(1) as follows. For each element i ∈ E , we put a Poisson clock
of rate x∗i on it. We initialize with Q(0) = ∅, and start all the clocks simultaneously
at time t = 0. For t ∈ [0, 1], if the clock on an element rings at time t , we add that
element to our current set. This process is terminated at time t = 1. This gives rise to
the time-dependent set-valued random variable Q such that, for t ∈ [0, 1], Q(t) is the
random variable for the set at time t . This process can also be viewed as a continuous-
time Markov chain, where the state space is the power set 2E . From a set/state S, the
possible transitions are to those sets S′ where S ⊂ S′ and |S′| = |S| + 1. Note that
the Markov property is satisfied because both the holding time and transitions only
depend on the current state Q(t).

Due to the independence of the Poisson clocks, for every set S ⊆ E , we have

Pr[Q(1) = S] =
∏

i∈S

Pr[i ∈ Q(1)]
∏

i /∈S

Pr[i /∈ Q(1)] =
∏

i∈S

(1− e−x∗i )
∏

i /∈S

e−x∗i .

Since h is monotone and x∗i ≥ 1− e−x∗i for all i ∈ E , Proposition 2.9 gives

H(x∗) ≥ H(1− e−x∗) = E[h(Q(1))]. (20)

So, it suffices to lower bound E[h(Q(1))].
Let t ∈ [0, 1) and consider an infinitesimally small interval [t, t + dt]. For every

element i ∈ E , the number of times its clock rings is a Poisson random variable with
rate x∗i dt . Hence, the probability that an element i is added to our set during this
interval is

Pr(Poi(x∗i dt) ≥ 1) = 1− e−x∗i dt = 1− (1− x∗i dt + O(dt2)) = x∗i dt + O(dt2),

where the second equality follows from Taylor’s theorem. Observe that the probability
of adding two or more elements during this interval is also O(dt2). Since dt is very
small, we can effectively neglect all O(dt2) terms. Conditioning on the event Q(t) =
S, the expected increase of h(Q(t)) (up to O(dt2) terms) is

E[h(Q(t + dt)) − h(Q(t))|Q(t) = S] =
∑

i∈E

hS(i)x∗i dt .
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From the definition of h, for each element i ∈ E , we have hS(i) = rS(i) if |S| ≥ �,
and hS(i) = 0 otherwise. This motivates the following definition.

Definition 5.2 We say that Q is activated at time t ′ if |Q(t)| < � for all t < t ′ and
|Q(t)| ≥ � for all t ≥ t ′. We call t ′ the activation time of Q.

We denote the random variable for the activation time of Q by T .

For a fixed t ′ ∈ R+, if we further condition on the event T = t ′, the expected
increase of h(Q(t)) (up to O(dt2) terms) is

E[h(Q(t + dt)) − h(Q(t))|Q(t) = S ∧ T = t ′] =
∑

i∈E

rS(i)x∗i dt (21)

for all t ≥ t ′ and S ⊆ E where |S| ≥ �. For such a set S, we have

h(S) +
∑

i∈E

rS(i)x∗i = r(S) − � +
∑

i∈E

rS(i)x∗i ≥ r∗(x∗) − �

= r̂(x∗) − � = 1�x∗ − � = λ − �.

The inequality follows from the definition of r∗ in (8). The second equality is by
Theorem 2.2, while the third equality is by Lemma 4.2 because x∗ ∈ P(r). Hence,
(21) becomes

E[h(Q(t + dt)) − h(Q(t))|Q(t) = S ∧ T = t ′] ≥ (λ − � − h(S))dt

Dividing by dt and taking expectation over S, we obtain for all t ≥ t ′,

1

dt
E[h(Q(t + dt)) − h(Q(t))|T = t ′] ≥ λ − � − E[h(Q(t))|T = t ′]. (22)

Let φ(t) := E[h(Q(t))|T = t ′]. Then, (22) can be written as dφ
dt ≥ λ − � − φ(t).

To solve this differential inequality, let ψ(t) := etφ(t) and consider dψ
dt = et (

dφ
dt +

φ(t)) ≥ et (λ − �). Since ψ(t ′) = φ(t ′) = 0, we get

ψ(t) =
∫ t

t ′
dψ

ds
ds ≥

∫ t

t ′
es(λ − �)ds = (et − et ′)(λ − �)

for all t ≥ t ′. It follows thatE[h(Q(t))|T = t ′] = φ(t) = e−tψ(t) ≥ (1−et ′−t )(λ−�)

for all t ≥ t ′. In particular, at time t = 1, we have E[h(Q(1))|T = t ′] ≥ (1 −
e−(1−t ′))(λ − �) for all t ′ ≤ 1. Let fT denote the probability density function of T .
By the law of total expectation,

E[h(Q(1))] = ET [E[h(Q(1))|T = t]] =
∫ ∞

0
fT (t)E[h(Q(1))|T = t]dt

=
∫ 1

0
fT (t)E[h(Q(1))|T = t]dt
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≥ (λ − �)

∫ 1

0
fT (t)(1− e−(1−t))dt . (23)

Now, the cumulative distribution function of T is given by

Pr(T ≤ t) = 1−
∑

S⊆E :
|S|<�

∏

i∈S

(1− e−x∗i t )
∏

i /∈S

e−x∗i t

= 1−
∑

S⊆E :
|S|<�

∑

T⊆S

(−1)|T |e−x∗(T∪(E\S))t

= 1−
∑

S⊆E

∑

T⊆S:
|T |+|E\S|<�

(−1)|T |e−x∗(S)t (S ← T ∪ (E \ S))

= 1−
∑

S⊆E

|S|+�−n−1∑

k=0

(−1)k
(|S|

k

)

e−x∗(S)t (|T | ≤ � − (n − |S|) − 1)

= 1−
∑

S⊆E

(−1)|S|+�−n−1
( |S| − 1

|S| + � − n − 1

)

e−x∗(S)t (Claim B.1)

= 1−
∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

e−x∗(S)t .

Differentiating with respect to t yields the probability density function of T

fT (t) = d

dt
Pr(T ≤ t) =

∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

x∗(S)e−x∗(S)t .

Note that
(|S|−1

n−�

)
> 0 if and only if |S| ≥ n + 1− �. Plugging this back into (23) gives

us

E[h(Q(1))] ≥ (λ − �)
∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

x∗(S)

∫ 1

0
e−x∗(S)t − e−1−(x∗(S)−1)t dt

= (λ − �)
∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)(

1− e−1 − e−1 − e−x∗(S)

x∗(S) − 1

)

, (24)

where the equality is due to

x∗(S)

∫ 1

0
e−x∗(S)t − e−1−(x∗(S)−1)t dt = x∗(S)

[

− e−x∗(S)t

x∗(S)
+ e−1−(x∗(S)−1)t

x∗(S) − 1

]1

0

=
[

−e−x∗(S)t +
(

1+ 1

x∗(S) − 1

)

e−1−(x∗(S)−1)t
]1

0
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= −e−x∗(S) + 1+
(

1+ 1

x∗(S) − 1

)(
e−x∗(S) − e−1

)

= 1− e−1 − e−1 − e−x∗(S)

x∗(S) − 1
.

Observe that (24) is well-defined because whenever x∗(S) = 1, L’Hôpital’s rule
gives us

e−1 − e−x∗(S)

x∗(S) − 1
= lim

t→1

e−1 − e−t

t − 1
= lim

t→1

e−t

1
= e−1.

Since � > 0 (asM has no loops), Claim B.2 allows us to extract the first part of (24)
as

∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

(1− e−1) = (1− e−1)

n∑

k=0

(−1)k+�−n−1
(

n

k

)(
k − 1

n − �

)

= 1− e−1.

Pulling out a factor −1 from the remaining term, (24) becomes

E[h(Q(1)] ≥ (λ − �)

⎡

⎣1− e−1 + e−1
∑

S⊆E

(−1)|S|+�−n
(|S| − 1

n − �

)
1− e−(x∗(S)−1)

x∗(S) − 1

⎤

⎦ .

(25)

5.2.1 Rounding x∗ to an integer point

Consider the function ρ : R+ → R+ defined by

ρ(t) := 1− e−t

t
.

and the last part of (25)

ψ(x) :=
∑

S⊆E

(−1)|S|+�−n
(|S| − 1

n − �

)
1− e−(x(S)−1)

x(S) − 1
=

∑

S⊆E

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ(x(S)−1). (26)

as a function on [0, 1]n . The next observation is well-known, and underpins the pipage
rounding technique by Ageev and Sviridenko [1]. For the sake of completeness, we
include a proof in the appendix.

Observation 5.3 Let f : [0, 1]n → R be a function such that for any x ∈ [0, 1]n and
i, j ∈ [n],

f x
i j (t) := f (x + t(ei − e j ))

is a concave function on the domain {t ∈ [−1, 1]: x + t(ei − e j ) ∈ [0, 1]n}. Then,
for any y ∈ [0, 1]n where 1�y ∈ Z, there exists an integral z ∈ {0, 1}n such that
f (y) ≥ f (z) and 1�y = 1�z.
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We would like to round x∗ to a binary vector using Observation 5.3. Hence, we
need to prove concavity of ψ along the directions ei − e j . Taking the second partial
derivatives of (26) yields

∂2ψ

∂xi∂x j
(x) =

∑

S⊆E :
i, j∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(x(S) − 1). (27)

The following claim provides a closed-form expression for all the derivatives of ρ,
and highlights the alternating behaviour of their signs.

Claim 5.4 For any k ∈ Z+, the kth derivative of ρ is given by

ρ(k)(t) = (−1)kk!
(
1− e−t ∑k

i=0 t i/i !
tk+1

)

.

Consequently, if k is even, then ρ(k)(t) > 0 for all t ≥ 0. Otherwise, ρ(k)(t) < 0 for
all t ≥ 0.

For the proof of concavity, we need the following notion of finite difference.

Definition 5.5 Given a functionφ : R → R and a scalar x ∈ R+, the forward difference
of φ(t) is

�x [φ](t) := φ(t + x) − φ(t).

More generally, for a vector (x1, . . . , xn) = (x1, x̃) ∈ Rn+, the nth-order forward
difference of φ(t) is

�x [φ](t) := �x1[�x̃ [φ]](t) = �x1[�x2 [· · ·�xn [φ] · · · ]](t).

Claim 5.6 For any function φ : R → R and vector x ∈ Rn+, we have

�x [φ](t) =
∑

S⊆[n]
(−1)n−|S|φ(t + x(S)). (28)

Therefore, in the definition of �x , the order in which the forward difference oper-
ators {�xi : i ∈ [n]} are applied does not matter. The next claim relates the signs of
φ(n) and �x [φ].

Claim 5.7 Let φ : R → R be an n-times differentiable function. For any x ∈ Rn+ and
t ∈ R, if φ(n)(s) ≥ 0 for all t ≤ s ≤ t + 1�x, then �x [φ](t) ≥ 0.

We are now ready to show concavity.

Lemma 5.8 The function ψ(x) is concave along the direction ea −eb for all a, b ∈ E.
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Proof. Fix a, b ∈ E and consider the function φ(t) := ψ(x + t(ea − eb)), obtained
by restricting ψ along the direction ea − eb. By substituting y := x + t(ea − eb) and
applying the chain rule, the second derivative of φ(t) is given by

φ′′(t) = d

dt

⎛

⎝
∑

i∈E

∂ψ

∂ yi

dyi

dt

⎞

⎠

= d

dt

(
∂ψ

∂ ya
− ∂ψ

∂ yb

)

=
∑

i∈E

(
∂2ψ

∂ ya∂ yi
− ∂2ψ

∂ yb∂ yi

)
dyi

dt
= ∂2ψ

∂ y2a
+ ∂2ψ

∂ y2b
− 2

∂2ψ

∂ ya∂ yb
.

By (27), this is equal to

φ′′(t) =
∑

S⊆E :
a∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(y(S) − 1)

+
∑

S⊆E :
b∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(y(S) − 1)

− 2
∑

S⊆E :
a,b∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(y(S) − 1)

=
∑

S⊆E :
a∈S,b/∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(y(S) − 1)

+
∑

S⊆E :
a /∈S,b∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(y(S) − 1).

We show that each of the two sums above is nonpositive. Let us consider the first
sum; the second sum follows by symmetry. In the first sum, every set S ⊆ E\b where
a ∈ S has an associated factor

(|S|−1
n−�

)
. It can be interpreted as the number of subsets

in S \ a of size n − �. By charging the term associated with S to these subsets, we can
rewrite the first sum as

∑

S⊆E :
a∈S,b/∈S

(−1)|S|+�−n
(|S| − 1

n − �

)

ρ′′(y(S) − 1)

=
∑

C⊆E\{a,b}:
|C|=n−�

∑

D⊆E\(C∪{a,b})
(−1)|D|+1ρ′′(y(C ∪ D ∪ a) − 1).

Hence, for a fixed set C ⊆ E\{a, b} with |C | = n − �, it suffices to show that

∑

D⊆E\(C∪{a,b})
(−1)|D|+1ρ′′(α + y(D)) (29)
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is nonpositive, where we denote α := y(C ∪ a) − 1. Note that α ≥ 0 because

y(C ∪ a) = y(E) − y(E\(C ∪ a)) ≥ λ − |E\(C ∪ a)| = λ − (n − (n − � + 1)) = λ − � + 1 ≥ 1,

where the first inequality is due to y(E) = x(E) = λ and y ≤ 1. Since |E \ (C ∪
{a, b})| = n−(n−�+2) = �−2, we can express (29) as the following (�−2)th-order
forward difference

(−1)1−�
∑

D⊆E\(C∪{a,b})
(−1)�−2−|D|ρ′′(α + y(D))

(28)= (−1)1−��yE\(C∪{a,b})[ρ′′](α). (30)

Recall that ρ(k)(t) > 0 for all t ≥ 0 if k is even, and ρ(k)(t) < 0 for all t ≥
0 if k is odd by Claim 5.4. As y ∈ R�−2+ and α ≥ 0, applying Claim 5.7 yields
�yE\(C∪{a,b})[ρ′′](α) ≥ 0 if � is even, and �yE\(C∪{a,b})[ρ′′](α) ≤ 0 if � is odd. In both
cases, (30) is nonpositive.

Lemma 5.8 allows us to round x∗ according to Observation 5.3. In particular, there
exists an integral vector x ′ ∈ {0, 1}n such that ψ(x∗) ≥ ψ(x ′) and x∗(E) = x ′(E) =
λ. Note that x ′ has exactly λ ones and n −λ zeroes; recall that λ ∈ Z by Theorem 4.3.
Let T be the set of elements i ∈ E where x ′i = 1. Then,

ψ(x ′) (26)=
∑

S⊆E

(−1)|S|+�−n
(|S| − 1

n − �

)
1− e−(x ′(S)−1)

x ′(S) − 1

=
∑

S⊆E

(−1)|S|+�−n
(|S| − 1

n − �

)
1− e−(|S∩T |−1)

|S ∩ T | − 1
. (31)

5.2.2 Simplifications for an integer point

In (31), every term in the sum only depends on the cardinality of S and S ∩ T , instead
of the actual set S. This allows us to rearrange the sum based on |S ∩ T | ranging from
0 to |T | = λ, and |S\T | ranging from 0 to |E \ T | = n − λ:

ψ(x ′) =
λ∑

i=0

n−λ∑

j=0

(
λ

i

)(
n − λ

j

)

(−1)i+ j+�−n
(

i + j − 1

n − �

)
1− e−(i−1)

i − 1

=
λ∑

i=0

(
λ

i

)
1− e−(i−1)

i − 1

n−λ∑

j=0

(−1)i+ j+�−n
(

n − λ

j

)(
i + j − 1

n − �

)

=
λ∑

i=0

(
λ

λ − i

)
1− e−(λ−i−1)

λ − i − 1

n−λ∑

j=0

(−1)�−i− j
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×
(

n − λ

n − λ − j

)(
n − i − j − 1

n − �

)

. ( i←λ−i
j←n−λ− j)

Recall that, by our convention, a binomial coefficient is zero if the upper part is
smaller than the lower part. So, by the last binomial coefficient above, we may restrict
to n−� ≤ n− i − j −1 ≤ n− i −1, which is equivalent to i ≤ �−1 and j ≤ �−1− i .
This yields

ψ(x ′) =
�−1∑

i=0

(
λ

i

)
1− e−(λ−i−1)

λ − i − 1

�−1−i∑

j=0

(−1)�−i− j
(

n − λ

j

)(
n − i − j − 1

� − i − j − 1

)

.

Note that we introduced additional terms to the inner sum if n − λ < � − 1 − i ,
but they are all 0 due to the binomial coefficients

(n−λ
j

)
. Applying Claim B.4 with

j ← �− 1− i , k ← λ− 1− i , n ← n − 1− i to the inner sum gives (−1)�−i
(
λ−i−1
�−i−1

)
,

leading to

ψ(x ′) =
�−1∑

i=0

(−1)�−i
(

λ

i

)(
λ − i − 1

� − i − 1

)
1− e−(λ−i−1)

λ − i − 1
. (32)

Observe that (25) evaluates to 0 if λ = �. So, we may now assume that λ > �. This
allows us to apply the simple reformulation 1

λ−i−1

(
λ−i−1
�−i−1

) = 1
λ−i−1

(λ−i−1)!
(�−i−1)!(λ−�)! =

(λ−i−2)!
(�−i−1)!(λ−�−1)!

1
λ−�

= 1
λ−�

(
λ−i−2
�−i−1

)
to obtain

ψ(x ′) = 1

λ − �

�−1∑

i=0

(−1)�−i
(

λ

i

)(
λ − i − 2

� − i − 1

)(
1− e−(λ−i−1)

)
. (33)

Applying Claim B.6 with j ← � − 1 and n ← λ to
∑�−1

i=0 (−1)i
(
λ
i

)(
λ−i−2
�−i−1

)
gives

(−1)�−1�, resulting in

ψ(x ′) = 1

λ − �

(

−� −
�−1∑

i=0

(−1)�−i
(

λ

i

)(
λ − i − 2

� − i − 1

)

e−(λ−i−1)

)

= 1

λ − �

(

−� + e−λ+1
�−1∑

i=0

(−1)�−i−1
(

λ

i

)(
λ − i − 2

� − i − 1

)

ei

)

.

(34)

5.2.3 Further simplifications

To simplify the expression in (34), we consider the sum as a function of x for x = e.
More precisely, given integral parameters λ, � > 0, we define the functionwλ,� : R →
R as

wλ,�(x) :=
�−1∑

i=0

(−1)�−1−i
(

λ

i

)(
λ − 2− i

� − 1− i

)

xi .
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Note that wλ,� is a polynomial on R.

Claim 5.9 For any integers λ > �, we have wλ,�(1) = � and w′
λ,�(x) = λwλ−1,�−1(x).

In particular, w
(i)
λ,�(1) = λ!

(λ−i)! (� − i).

By Taylor’s Theorem and Claim 5.9, we get

wλ,�(x) =
�−1∑

i=0

w
(i)
λ,�

(1)

i ! (x − 1)i =
�−1∑

i=0

λ!
i !(λ − i)! (� − i)(x − 1)i =

�−1∑

i=0

(
λ

i

)

(� − i)(x − 1)i .

Plugging this back into (34) gives us

ψ(x ′) = 1

λ − �

(
−� + e−λ+1wλ,�(e)

)
= 1

λ − �

⎛

⎝−� + e−λ+1
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i

⎞

⎠ .

(35)

Therefore, the multilinear extension of h at x∗ is lower bounded by

H(x∗) ≥ E[h(Q(1))] (by (20))

≥ (λ − �)
[
1− e−1 + e−1ψ(x∗)

]
(by (25))

≥ (λ − �)
[
1− e−1 + e−1ψ(x ′)

]
(by Observation 5.3 and Lemma 5.8)

= (λ − �)

[

1− e−1 + e−1

λ − �

(

−� + e−λ+1
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i

)]

(by (35))

= (λ − �)(1− e−1) − �e−1 + e−λ
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i

= λ − � − λe−1 + e−λ
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i . (36)

5.3 Putting everything together

We are finally ready to lower bound the correlation gap of the matroid rank function
r . Recall that we assumed that λ > � in the previous subsection. Combining the lower
bounds in (19) and (36) gives us

CG(r) = R(x∗)
r̂(x∗)

= G(x∗) + H(x∗)
1�x∗

≥ 1

λ

[

� −
�−1∑

i=0

(� − i)
λi e−λ

i ! + λ − � − λe−1 + e−λ
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i

]
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= 1− e−1 + e−λ

λ

�−1∑

i=0

(� − i)

[(
λ

i

)

(e − 1)i − λi

i !
]

(37)

On the other hand, if λ = �, then h = 0. In this case, we obtain

CG(r) = R(x∗)
r̂(x∗) = G(x∗) + H(x∗)

1�x∗ = G(x∗)
�

(19)≥ 1−
�−1∑

k=0

(

1− k

�

)
�ke−�

k! = 1− ��−1e−�

(� − 1)! ,

which also agrees with (37) by Proposition 3.5.
To better understand the sum in (37), consider the function φ

ξ
λ : [λ] → R defined

as

φ
ξ
λ(i) := ξ

(
λ

i

)

(e − 1)i − λi

i ! , (38)

with parameters ξ ∈ R+ and λ ∈ N. The next claim illustrates the behaviour of φ
ξ
λ

when ξ > 1/(e − 1).

Claim 5.10 Given parameters ξ > 1
e−1 and λ ∈ N, the function φ

ξ
λ satisfies the

following properties:

(a) If 1 ≤ i ≤ ( e−2
e−1 )λ + 1, then φ

ξ
λ(i) > 0.

(b) If φ
ξ
λ(i) ≤ 0, then φ

ξ
λ(i + 1) < 0.

Applying Claim 5.10 with ξ = 1 allows us to show that the bound in Theorem 1.5
is strictly greater than 1− 1/e.

Lemma 5.11 For every λ, � ∈ N such that λ ≥ �, we have

�−1∑

i=0

(� − i)

[(
λ

i

)

(e − 1)i − λi

i !
]

> 0.

5.4 Monotonicity

To complete the proof of Theorem 1.5, recall that λ ≤ ρ. Hence, we need to show that
the expression in (37) is monotone decreasing in λ. We derive a stronger statement,
noting that the bound is g(λ, �)/λ.

Lemma 5.12 For any fixed � ∈ N, the expression

g(λ, �) := e−λ
�−1∑

i=0

(� − i)

[(
λ

i

)

(e − 1)i − λi

i !
]

,

is monotone decreasing in λ.

We will use the following properties of the Poisson distribution. Their proofs are
given in the Appendix. For k ∈ Z+ and x > 0, let us denote
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On the correlation gap of matroids

θk(x) := Pr(Poi(x) ≤ k) = e−x
k∑

i=0

xi

i ! . (39)

Claim 5.13 For any fixed k ∈ Z+, θk(x) is monotone decreasing with derivative

θ ′k(x) = − e−x xk

k! . Furthermore, θk(x) is convex on the interval (k,∞).

Claim 5.14 For every λ ∈ N, we have θλ+1(λ + 1) ≤ θλ(λ).

With these tools we are ready to prove monotonicity.

Proof of Lemma 5.12 We first prove the cases � ∈ {1, 2, 3} separately:

g(λ, 1) = 0 , g(λ, 2) = e−λλ(e − 2) , g(λ, 3) = e−λ

2

[
e(e − 2)λ2 − (e − 3)2λ

]
.

Their derivatives are given by

g′(λ, 2) = e−λ(−λ + 1)(e − 2) ,

g′(λ, 3) = e−λ

2

[
−e(e − 2)λ2 + ((e − 3)2 + 2e(e − 2))λ − (e − 3)2

]
.

It is easy to check that g′(λ, 2) < 0 for λ ≥ 2, and g′(λ, 3) < 0 for λ ≥ 3. Henceforth,
we will assume that � ≥ 4.

The inequality g(λ + 1, �) < g(λ, �) can be reformulated as

�−1∑

i=0

(� − i)

[(
λ + 1

i

)

(e − 1)i − (λ + 1)i

i !

]

< e
�−1∑

i=0

(� − i)

[(
λ

i

)

(e − 1)i − λi

i !

]

⇐⇒

�−1∑

i=0

(� − i)

[

e
λi

i ! − (λ + 1)i

i !

]

< e
�−1∑

i=0

(� − i)

(
λ

i

)

(e − 1)i −
�−1∑

i=0

(� − i)

(
λ + 1

i

)

(e − 1)i .

(40)

For the RHS, using
(
λ+1

i

) = (
λ
i

)+ (
λ

i−1

)
, we get

�−1∑

i=0

(� − i)

(
λ

i

)

(e − 1)i+1 −
�−1∑

i=1

(� − i)

(
λ

i − 1

)

(e − 1)i

=
�−1∑

i=0

(� − i)

(
λ

i

)

(e − 1)i+1 −
�−2∑

i=0

(� − i − 1)

(
λ

i

)

(e − 1)i+1

=
�−1∑

i=0

(
λ

i

)

(e − 1)i+1

Using the definition of θi (λ) from (39), the LHS equals

eλ+1
�−1∑

i=0

θi (λ) − θi (λ + 1)

123



E. Husić et al.

For every i = 0, . . . , � − 1, we have λ > i . Therefore, using the convexity and
derivative of θi (x) from Claim 5.13 leads to

θi (λ) − θi (λ + 1) ≤ θ ′i (λ)(λ − (λ + 1)) = e−λλi

i ! .

Hence, (40) follows by showing

0 <

�−1∑

i=0

(
λ

i

)

(e − 1)i+1 − eλi

i ! . (41)

For the sake of brevity, we denote

ϕλ(i) =
(

λ

i

)

(e − 1)i+1 − eλi

i ! .

Then, our goal is to show that
∑�−1

i=0 ϕλ(i) > 0.

Observing that ϕλ(i) = e
(

e−1
e

(
λ
i

)
(e − 1)i − λi

i !
)
, we will apply Claim 5.10 with

ξ = e−1
e > 1

e−1 . Consider the following two cases:

Case 1: ϕλ(�− 1) ≥ 0. In this case, ϕλ(i) ≥ 0 for all 0 < i < � by Claim 5.10 (b).
Since λ ≥ � ≥ 4,

�−1∑

i=0

ϕλ(i) = ϕλ(0) + ϕλ(1) + ϕλ(2) +
�−1∑

i=3

ϕλ(i)

= −1+ λ((e − 1)2 − e) + λ

2

[
λ((e − 1)3 − e) − (e − 1)3

]

+
�−1∑

i=3

ϕλ(i) >

�−1∑

i=3

ϕλ(i) ≥ 0.

Case 2: ϕλ(�− 1) < 0. In this case, ϕλ(i) < 0 for all � ≤ i ≤ λ by Claim 5.10 (b).
Thus,

�−1∑

i=0

ϕλ(i) >

λ∑

i=0

ϕλ(i) = (e − 1)
λ∑

i=0

(
λ

i

)

(e − 1)i −
λ∑

i=0

eλi

i ! = (e − 1)eλ − e
λ∑

i=0

λi

i !

= eλ+1
(

1− 1

e
− θλ(λ)

)
Clm. 5.14≥ eλ+1

(

1− 1

e
− θ4(4)

)

> 0.

The second inequality holds due to Claim 5.14 together with the assumption λ ≥
� ≥ 4, whereas the last inequality follows from 1− 1/e − Pr(Poi(4) ≤ 4) > 0.
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6 Upper bounds on the correlation gap

Let r be the rank function of a matroid M with rank ρ and girth γ . Recall that for

uniformmatroids (γ = ρ+1), the lower bound in Theorem 1.5 simplifies to 1− e−ρρρ

ρ! ,
and in this case it is tight. We now give simple upper bounds on CG(r) in terms of
ρ and γ . We start with the simple observation that the correlation gap of a uniform
rank-(γ − 1) matroid gives such an upper bound.

Observation 6.1 For every ρ, � ∈ N where ρ ≥ �, there exists a matroid M = (E, I)

with rank ρ and girth � + 1 whose correlation gap is arbitrarily close to 1− e−���

�! .

Proof. LetM1 be a rank-� uniform matroid on n > � elements with rank function r1.
LetM2 be a freematroid onρ−� elementswith rank function r2. Consider thematroid
M = M1 ⊕M2 with rank function r . Note that M has rank ρ and girth � + 1. By

Proposition 1.4, CG(r) = min{CG(r1), CG(r2)}. It is known that CG(r1) → 1− e−���

�!
as n → ∞ [5, Lemma2.2]. So, it is left to show thatCG(r2) = 1. For any x ∈ [0, 1]ρ−�,
we have R2(x) = 1�x . Moreover, r̂2(x) = 1�x by Lemma 4.2.

We now give an asymptotically better, albeit still non-tight upper bound.

Proposition 6.2 For every ρ, � ∈ N where ρ ≥ �, there exists a matroid M = (E, I)

with rank ρ and girth � + 1 whose correlation gap is at most 1− 1
e + �

eρ .

Proof. Let k := ρ − �. For some n ∈ N, n > �, let the ground set be E = E0 � E1 �
· · · � Ek , where |E0| = �n and |Ei | = n for all i ∈ [k]. Our matroidM is constructed
as the union of two matroids Mu and Mp. The first matroid Mu = (E, Iu) is the
uniform matroid of rank � on ground set E . The second matroid Mp = (E, I p) is
the partition matroid on ground set E , where each Ei is a part of rank 1 for all i ≥ 1;
every element of E0 is a loop in this matroid.

Matroid union is a well known matroid operation where every independent set of
the union matroid is the union of two independent sets from each of the two matroids.
We can write the rank function of M as (see e.g., [36, Corollary 42.1a]):

r(S) =
k∑

i=1

min{1, |Ei ∩ S|} +min

{

�, |E0 ∩ S| +
k∑

i=1

max{0, |Ei ∩ S| − 1}
}

.

Note that the rank of the matroid is r(E) = �+k = ρ, and the girth is γ = �+1, since
every γ element set is indepedent, but any γ + 1 element subset of E0 is dependent.

Let us now fix F ⊆ E0, |F | = �, and define x as xi = 1 if i ∈ F , xi = 0 if
i ∈ E0\F , and xi = 1/n if i ∈ E \ E0. It is easy to verify that x ∈ P(r) as it can be
written as a convex combination of n bases. Thus, r̂(x) = x(E) = � + k = ρ.

Let us now compute the multilinear extension R(x). Let X ⊆ E be a random
set sampled independently according to the probabilities xi . We have F ⊆ X with
probability 1. From the above rank function expression, we get

r(X) = � +
k∑

i=1

min{1, |Ei ∩ X |} .
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Therefore,

R(x) = E [r(X)] = �+
k∑

i=1

Pr[|Ei∩X | ≥ 1] = �+k

(

1−
(

1− 1

n

)n)

→ ρ−ρ − γ

e
,

as n → ∞. From here, we see that

lim
n→∞

R(x)

r̂(x)
= 1− 1

e
+ γ

eρ
.

7 Conclusion

In this paper, we derived new bounds on the correlation gap of (weighted) matroid
rank functions, and we gave an overview of several of its applications.We first showed
that for a given matroid, the correlation gap of its weighted rank function is minimized
under uniformweights. Then, we gave an improved lower bound on the correlation gap
of (unweighted) matroid rank functions over 1− 1/e, parameterized by the rank and
girth of the matroid. Our work is motivated by the important role of correlation gap in
constrained monotone submodular maximization, sequential posted-price mechanism
and contention resolution schemes. We also observed that the algorithms of Barman
et al. [4, 5] for concave coverage problems fall under the pipage rounding framework
of Calinescu et al. [8] and Shioura [37]. In particular, their work can be interpreted
as bounding the correlation gap of specific weighted matroid rank functions and M�-
concave functions.

By Observation 6.1 and Proposition 6.2, the correlation gap of a matroid rank
function is upper bounded by

min

{

1− e−(γ−1)(γ − 1)γ−1

(γ − 1)! , 1− 1

e
+ γ − 1

eρ

}

,

where ρ is the rank and γ is the girth of the matroid. The difference between this upper
bound and the lower bound given in Theorem 1.5motivates a further analysis to reduce
this gap. Another direction for future work is to explore other matroid parameters for
quantifying the the correlation gap. This could be motivated by tighter bounds on the
correlation gap for special matroid classes. Finally, it remains to open to which extent
our analysis can bemodified to give new insights also for other (classes of) submodular
functions.

A Omitted proofs

Lemma A.1 For any fixed ρ ∈ N, the expression

123
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ζ(ρ, γ ) :=
γ−2∑

i=0

(γ − 1− i)

[(
ρ

i

)

(e − 1)i − ρi

i !
]

,

is monotone increasing in γ for γ ≤ ρ + 1.

Proof. The inequality ζ(ρ, γ ) < ζ(ρ, γ + 1) can be reformulated as

γ−2∑

i=0

(γ − 1− i)

[(
ρ

i

)

(e − 1)i − ρi

i !
]

<

γ−1∑

i=0

(γ − i)

[(
ρ

i

)

(e − 1)i − ρi

i !
]

⇐⇒
γ−1∑

i=0

[(
ρ

i

)

(e − 1)i − ρi

i !
]

> 0.

If every term in the sum above is positive, then we are done. Otherwise, we apply
Claim 5.10 for ξ = 1. In particular, since there exists a nonpositive term, by
Claim 5.10 (b) we get

γ−1∑

i=0

[(
ρ

i

)

(e − 1)i − ρi

i !
]

≥
ρ∑

i=0

[(
ρ

i

)

(e − 1)i − ρi

i !
]

= (e − 1+ 1)ρ −
ρ∑

i=0

ρi

i ! = eρ −
ρ∑

i=0

ρi

i ! > 0.

Lemma 3.2 For any x ∈ [0, 1]E , we have f̂ j (x) = ϕ̂(x(E j ))

Proof. Fix an x ∈ [0, 1]E . Let λ = x(E j ) and β = ϕ(�λ� + 1) − ϕ(�λ�). Based on
the LP formulation of f̂ j , it suffices to show that (z, α) := (βχE j , ϕ(�λ�) − β �λ�)
is an optimal solution to (11). Note that z�x + α = ϕ(�λ�) + β(λ − �λ�) = ϕ̂(λ).
Feasibility is straightforward because for any T ⊆ E , we have

z(T ) + α = βχ�
E j

χT + ϕ(�λ�) − β �λ� = ϕ(�λ�) + β(|T ∩ E j | − �λ�) ≥ ϕ(|T ∩ E j |) = f j (T ),

where the inequality follows from the concavity of ϕ̂, and the fact that β is a super-
gradient of ϕ̂ at �λ�. Observe that the inequality is tight if |T ∩ E j | ∈ {�λ� , �λ + 1�}.
To show optimality, we consider the dual LP (2). By complementary slackness, it is
left to prove that x be can be written as a convex combination of the indicator vectors
of these sets. Define the polytope

P := {y ∈ [0, 1]E : �λ� ≤ y(E j ) ≤ �λ� + 1}.

It is easy to see that the vertices of P are precisely the aforementioned indicator
vectors. Since x ∈ P , it lies in their convex hull.
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Lemma 3.3 For any x ∈ [0, 1]E , let x̄ ∈ [0, 1]E be the vector given by

x̄i :=
{ x(E j )

|E j | , if i ∈ E j

xi , otherwise.
.

Then, Fj (x) ≥ Fj (x̄).

Proof. Fix an x ∈ [0, 1]E , and let x̄ ∈ [0, 1]E be the vector as defined above. Let
y∗ ∈ argminy∈[0,1]E {Fj (y) : y(E j ) = x(E j )} such that ‖y∗ − x̄‖1 is minimized.
It suffices to prove that y∗ = x̄ . Note that y∗i = x̄i for all i /∈ E j because these
coordinates do not affect the value of Fj .

For the purpose of contradiction, suppose that there exist a, b ∈ E j such that
y∗a < x̄a and y∗b > x̄b. Let φ(t) := Fj (y∗ + t(ea − eb)) be the function obtained by
restricting Fj along the direction ea − eb at y∗. Since f j is submodular, φ is convex
by Proposition 2.10. Moreover, φ(0) = φ(y∗b − y∗a ) because Fj becomes a symmetric
polynomial after fixing the coordinates in E \ E j . It follows that φ(t) ≤ φ(0) =
Fj (y∗) for all 0 ≤ t ≤ y∗b − y∗a . Thus, if we pick t = min{x̄a − y∗a , y∗b − x̄b}, then
‖y∗ + t(ea − eb) − x̄‖1 < ‖y∗ − x̄‖1, which is a contradiction.

Proposition 3.5 For every � ∈ N, we have

1− 1

e
+ e−�

�

(
�−1∑

i=0

(� − i)

[(
�

i

)

(e − 1)i − �i

i !
])

= 1− e−���

�! .

Proof. First, observe that

�−1∑

i=0

(� − i)

(
�

i

)

(e − 1)i = �

�−1∑

i=0

(
�

i

)

(e − 1)i −
�−1∑

i=1

�!
(i − 1)!(� − i)! (e − 1)i

= �

(
�−1∑

i=0

(
� − 1

i

)

(e − 1)i +
�−1∑

i=1

(
� − 1

i − 1

)

(e − 1)i −
�−1∑

i=1

(
� − 1

i − 1

)

(e − 1)i

)

= �e�−1.

Similarly, we have

�−1∑

i=0

(� − i)
�i

i ! = �

�−1∑

i=0

�i

i ! −
�−1∑

i=1

�i

(i − 1)! = �

(
�−1∑

i=0

�i

i ! −
�−2∑

i=0

�i

i !

)

= ��

(� − 1)! .

Putting them together yields

1− e−1 + e−�

�

(
�−1∑

i=0

(� − i)

[(
�

i

)

(e − 1)i − �i

i !
])

= 1− e−1 + e−�

�

(

�e�−1 − ��

(� − 1)!
)

= 1− e−���

�!
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as desired.

Observation 5.3 Let f : [0, 1]n → R be a function such that for any x ∈ [0, 1]n and
i, j ∈ [n],

f x
i j (t) := f (x + t(ei − e j ))

is a concave function on the domain {t ∈ [−1, 1]: x + t(ei − e j ) ∈ [0, 1]n}. Then,
for any y ∈ [0, 1]n where 1�y ∈ Z, there exists an integral z ∈ {0, 1}n such that
f (y) ≥ f (z) and 1�y = 1�z.

Proof. We proceed by strong induction on the number k of non-integral coordinates
in y. The base case k = 0 is trivial by picking z = y. Suppose that there exists an
� ∈ Z+ such that the statement is true for all k ∈ {0, 2, 3, . . . , �}. Consider the case
k = � + 1. Note that k �= 1 because 1�y ∈ Z. Let i, j ∈ [n] be distinct indices
such that yi , y j ∈ (0, 1). Since f y

i j is concave, for all t ≥ 0 or for all t ≤ 0, we have

f y
i j (t) ≤ f y

i j (0). Let ε
′ = min{1− yi , y j } and ε′′ = min{yi , 1− y j }, along with their

corresponding points y′ = y + ε′(ei − e j ) and y′′ = y − ε′′(ei − e j ). Then,

min{ f (y′), f (y′′)} = min{ f y
i j (ε

′), f y
i j (−ε′′)} ≤ f y

i j (0) = f (y).

Let k′ and k′′ be the number of non-integral coordinates in y′ and y′′ respectively.
Note that k′, k′′ �= 1 because 1�y′ = 1�y′′ = 1�y ∈ Z. Since k′, k′′ ≤ �, by the
inductive hypothesis there exist integral z′, z′′ ∈ {0, 1}n such that f (z′) ≤ f (y′) and
f (z′′) ≤ f (y′′). Thus, our desired z ∈ {0, 1}n can be chosen as

z = argmin
x∈{z′,z′′}

f (x).

Claim 5.4 For any k ∈ Z+, the kth derivative of ρ is given by

ρ(k)(t) = (−1)kk!
(
1− e−t ∑k

i=0 t i/i !
tk+1

)

.

Consequently, if k is even, then ρ(k)(t) > 0 for all t ≥ 0. Otherwise, ρ(k)(t) < 0 for
all t ≥ 0.

Proof. We prove the first part by induction on k ≥ 0. The base case k = 0 is clear.
For the inductive step,

ρ(k+1)(t) = (−1)kk! ·
(

e−t ∑k
i=0 t i /i ! − e−t ∑k−1

i=0 t i /i !
)

tk+1 −
(
1− e−t ∑k

i=0 t i /i !
)

(k + 1)tk

t2k+2

= (−1)kk! ·
e−t tk+1/k! −

(
1− e−t ∑k

i=0 t i /i !
)

(k + 1)

tk+2

= (−1)k (k + 1)! · e−t tk+1/(k + 1)! − 1+ e−t ∑k
i=0 t i /i !

tk+2
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= (−1)(k+1)(k + 1)! · 1− e−t ∑k+1
i=0 t i /i !

tk+2

as required. For the second part, note that at t = 0, applying L’Hôpital’s rule yields

ρ(k)(0) = lim
t→0

(−1)kk!
(

e−t ∑k
i=0 t i/i ! − e−t ∑k−1

i=0 t i/i !
(k + 1)tk

)

= lim
t→0

(−1)kk!
(

e−t t k/k!
(k + 1)tk

)

= (−1)k

k + 1
.

Hence, ρ(k)(0) > 0 if k is even, and ρ(k)(0) < 0 if k is odd. Now, let us rewrite ρ(k)(t)
as

ρ(k)(t) = (−1)k k!e−t

t k+1

(

et −
k∑

i=0

1

i ! t
i

)

.

By the Maclaurin series of et , for all t > 0, we have ρ(k)(t) > 0 if k is even, and
ρ(k)(t) < 0 if k is odd.

Claim 5.6 For any function φ : R → R and vector x ∈ Rn+, we have

�x [φ](t) =
∑

S⊆[n]
(−1)n−|S|φ(t + x(S)). (28)

Proof. The claim follows by induction on n. For n = 1, the formula simplifies to
�x [φ](t) = (−1)1−1φ(t + x) − (−1)1−0φ(t) which holds by definition.

So let n > 1 and (x1, . . . , xn) = (x̃, xn) ∈ Rn+. Using the induction hypothesis and
linearity of the difference operator, we get

�n
x [φ](t) = �x̃ [�xn [φ]](t) =

∑

S⊆[n−1]
(−1)n−1−|S| (φ(t + xn) − φ(t))

=
∑

S⊆[n−1]
(−1)n−|S|−1φ(t + x̃(S) + xn) +

∑

S⊆[n−1]
(−1)n−|S|φ(t + x̃(S)).

This is a partitionof the sum in (28) into those sets containingn and those not containing
n.

Claim 5.7 Let φ : R → R be an n-times differentiable function. For any x ∈ Rn+ and
t ∈ R, if φ(n)(s) ≥ 0 for all t ≤ s ≤ t + 1�x, then �x [φ](t) ≥ 0.

Proof. We proceed by induction on n ≥ 1. The base case n = 1 is clear as

0 ≤
∫ t+x

t
φ(1)(s)ds = φ(t + x) − φ(t) = �x [φ](t).

For the inductive step, let x ∈ Rn+, y ∈ R+, and assume that φ(n+1)(s) ≥ 0 for all t ≤
s ≤ t +1�x + y. Applying the inductive hypothesis to φ(1), we have�x [φ(1)](s) ≥ 0
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for all t ≤ s ≤ t + y. Using the linearity of the derivative applied to the representation
(28), we obtain

0 ≤
∫ t+y

t
�x [φ(1)](s)ds

(28)=
∫ t+y

t

(
d

ds
�x [φ](s)

)

ds

= �x [φ](t + y) − �x [φ](t) = �y[�x [φ]](t) = �(x,y)[φ](t)

as desired.

Claim 5.9 For any integers λ > �, we have wλ,�(1) = � and w′
λ,�(x) = λwλ−1,�−1(x).

In particular, w
(i)
λ,�(1) = λ!

(λ−i)! (� − i).

Proof. The first property follows from Claim B.6. For the second property,

w′
λ,�(x) =

�−1∑

i=1

(−1)�−1−i λ!
(i − 1)!(λ − i)!

(
λ − 2− i

� − 1− i

)

xi−1

= λ

�−1∑

i=1

(−1)�−2−(i−1)
(

λ − 1

i − 1

)(
(λ − 1) − 2− (i − 1)

(� − 1) − 1− (i − 1)

)

xi−1

= λ

�−2∑

i=0

(−1)�−2−i
(

λ − 1

i

)(
(λ − 1) − 2− i

(� − 1) − 1− i

)

xi = λwλ−1,�−1(x).

The formula for the derivatives follows by induction.

Claim 5.10 Given parameters ξ > 1
e−1 and λ ∈ N, the function φ

ξ
λ satisfies the

following properties:

(a) If 1 ≤ i ≤ ( e−2
e−1 )λ + 1, then φ

ξ
λ(i) > 0.

(b) If φ
ξ
λ(i) ≤ 0, then φ

ξ
λ(i + 1) < 0.

Proof. Fix parameters ξ > 1
e−1 and λ ∈ N. For i ∈ [λ], we can write

φ
ξ
λ(i) = ξ

(
λ

i

)

(e − 1)i − λi

i ! = 1

i !

⎛

⎝ξ

i−1∏

j=0

((e − 1)(λ − j)) − λi

⎞

⎠

= λ

i !

⎛

⎝ξ(e − 1)
i−1∏

j=1

((e − 1)(λ − j)) − λi−1

⎞

⎠ .

To prove the first statement, note that

i ≤
(

e − 2

e − 1

)

λ + 1 ⇐⇒ λ ≤ (e − 1)(λ − i + 1).
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Hence, λ ≤ (e − 1)(λ − j) for all j ∈ [i − 1]. As we also have ξ(e − 1) > 1, it
follows that φ

ξ
λ(i) > 0. Next, we prove the second statement. Since φ

ξ
λ(i) ≤ 0, we

obtain λ > (e − 1)(λ − i + 1) by the first statement. Therefore,

φ
ξ
λ(i + 1) = λ

(i + 1)!

⎛

⎝ξ(e − 1)
i∏

j=1

((e − 1)(λ − j)) − λi

⎞

⎠

= λ2

(i + 1)!

⎛

⎝ξ(e − 1)
(e − 1)(λ − i)

λ

i−1∏

j=1

((e − 1)(λ − j)) − λi−1

⎞

⎠

<
λ2

(i + 1)! · φ
ξ
λ(i) ≤ 0.

Lemma 5.11 For every λ, � ∈ N such that λ ≥ �, we have

�−1∑

i=0

(� − i)

[(
λ

i

)

(e − 1)i − λi

i !
]

> 0.

Proof. We fix λ and apply Claim 5.10 with ξ = 1. If λ
λ−�

< e− 1, then all summands
are positive and we are done.

Otherwise, if there is a k ≤ λ such that φξ
λ(k) ≤ 0, then we get for k < j ≤ λ

j∑

i=0

φ1
λ(i) ≥

λ∑

i=0

φ1
λ(i) =

λ∑

i=0

[(
λ

i

)

(e − 1)i − λi

i !
]

= (e − 1+ 1)λ −
λ∑

i=0

λi

i !

= eλ −
λ∑

i=0

λi

i ! > 0.

In particular, this entails

�−1∑

i=0

(� − i)

[(
λ

i

)

(e − 1)i − λi

i !
]

=
�−1∑

i=0

(� − i)φ1
λ(i) =

�−1∑

j=0

j∑

i=0

φ1
λ(i) > 0,

which concludes the proof.

Claim 5.13 For any fixed k ∈ Z+, θk(x) is monotone decreasing with derivative

θ ′k(x) = − e−x xk

k! . Furthermore, θk(x) is convex on the interval (k,∞).

Proof. Using d
dx

(
e−x xi

i !
)
= −e−x xi

i ! + e−x xi−1

(i−1)! , the derivative of θk(x) is

θ ′k(x) = −e−x
k∑

i=0

xi

i ! + e−x
k∑

i=1

xi−1

(i − 1)! = −e−x xk

k! ,
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which is negative for all x > 0. The second derivative of θk(x) is θ ′′k (x) = e−x if
k = 0, and

θ ′′k (x) = e−x xk−1

(k − 1)!
( x

k
− 1

)

if k ≥ 1. In both cases, θ ′′k (x) > 0 when x > k.

Claim 5.14 For every λ ∈ N, we have θλ+1(λ + 1) ≤ θλ(λ).

Proof. Let � : R++ × R+ → R+ be the upper incomplete gamma function (see [33,
§8]), i.e.

�(s, x) =
∫ ∞

x
t s−1e−t dt .

We will use the property

1

(s − 1)!�(s, x) = 1

(s − 1)!
∫ ∞

x
t s−1e−t dt = e−x

s−1∑

i=0

xi

i ! , (42)

which holds for s ∈ N and follows by iterated integration by parts.

To show the nonnegativity of θλ(λ) − θλ+1(λ + 1), recall the definition (39)

θλ(λ) − θλ+1(λ + 1) = e−λ
λ∑

i=0

λi

i ! − e−(λ+1)
λ∑

i=0

(λ + 1)i

i ! − e−(λ+1)(λ + 1)λ

λ! .

Applying (42) to the two sums yields

θλ(λ) − θλ+1(λ + 1) = 1

λ!�(λ + 1, λ) − 1

λ!�(λ + 1, λ + 1) − e−(λ+1)(λ + 1)λ

λ!
= 1

λ!
(∫ ∞

λ

tλe−t dt −
∫ ∞

λ+1
tλe−t dt − e−(λ+1)(λ + 1)λ

)

= 1

λ!
(∫ λ+1

λ

tλe−t dt − e−(λ+1)(λ + 1)λ
)

.

The integrand is monotone decreasing in the interval (λ, λ+ 1] because d
dt

(
tλe−t

) =
(λtλ−1 − tλ)e−t < 0 for all t > λ. Hence, we can lower bound the integral by the
value of the integrand at t = λ + 1

θλ(λ) − θλ+1(λ + 1) ≥ 1

λ!
(
(λ + 1)λe−(λ+1) − e−(λ+1)(λ + 1)λ

)
= 0.
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B Identities for alternating sums of binomial coefficients

Claim B.1 For any 0 ≤ � ≤ n, we have

�∑

k=0

(−1)k
(

n

k

)

= (−1)�
(

n − 1

�

)

.

Proof. We proceed by induction on �. The base case � = 0 is trivial. For the inductive
step, let � ≥ 1. Then,

�∑

k=0

(−1)k
(

n

k

)

= (−1)�
(

n

�

)

+
�−1∑

k=0

(−1)k
(

n

k

)

= (−1)�
(

n

�

)

+ (−1)�−1
(

n − 1

� − 1

)

= (−1)�
((

n − 1

� − 1

)

+
(

n − 1

�

))

+ (−1)�−1
(

n − 1

� − 1

)

= (−1)�
(

n − 1

�

)

.

Claim B.2 For any 0 ≤ j < n, we have

n∑

k=0

(−1)k−1− j
(

n

k

)(
k − 1

j

)

= 1.

Proof. We proceed by induction on n − j ≥ 1. For the base case n − j = 1, we have

n∑

k=0

(−1)k−1− j
(

n

k

)(
k − 1

j

)

= (−1)n−1−(n−1)
(

n

n

)(
n − 1

n − 1

)

= 1.

For the inductive step, assume that n − j > 1. Then,

n∑

k=0

(−1)k−1− j
(

n

k

)(
k − 1

j

)

=
n∑

k=0

(−1)k−1− j
((

n − 1

k − 1

)

+
(

n − 1

k

))(
k − 1

j

)

=
n−1∑

k=0

(−1)k− j
(

n − 1

k

)(
k

j

)

+
n−1∑

k=0

(−1)k−1− j
(

n − 1

k

)(
k − 1

j

)

=
n−1− j∑

i=0

(−1)i
(

n − 1

i + j

)(
i + j

j

)

+
n−1∑

k=0

(−1)k−1− j
(

n − 1

k

)(
k − 1

j

)

=
(

n − 1

j

) n−1− j∑

i=0

(−1)i
(

n − 1− j

i

)

+
n−1∑

k=0

(−1)k−1− j
(

n − 1

k

)(
k − 1

j

)

=
n−1∑

k=0

(−1)k−1− j
(

n − 1

k

)(
k − 1

j

)

= 1.
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The second last equality is due to n − 1 − j > 0, while the last equality is by the
inductive hypothesis.

Claim B.3 For any 0 < j ≤ n, we have

j∑

i=0

(−1)i
(

n

i

)(
n − i

j − i

)

= 0.

Proof. Using
(n

i

)(n−i
j−i

) = n!
i !(n−i)!

(n−i)!
( j−i)!(n− j)! = n!

i !
j !
j !

1
( j−i)!(n− j)! =

(n
j

)( j
i

)
, we get

j∑

i=0

(−1)i
(

n

i

)(
n − i

j − i

)

=
j∑

i=0

(−1)i
(

n

j

)(
j

i

)

=
(

n

j

)

(1− 1) j = 0.

Claim B.4 For any 0 ≤ j ≤ k ≤ n, we have

j∑

i=0

(−1)i
(

n − k

i

)(
n − i

j − i

)

=
(

k

j

)

Proof. Let {A, B} be a partition of [n] such that |A| = k and |B| = n − k. In the sum,
every set S ⊆ [n] of size j is counted

∑|S∩B|
i=0 (−1)i

(|S∩B|
i

)
times. If |S ∩ B| = 0, then

S is counted once. Otherwise, it is counted 0 times. Thus, every set S ⊆ A of size j
is counted once.

Claim B.5 For any 0 ≤ j ≤ n − 1, we have

j∑

i=0

(−1)i
(

n

i

)(
n − 1− i

j − i

)

= (−1) j .

Proof. We proceed by induction on j ≥ 0. The base case j = 0 is clear as

(−1)0
(

n

0

)(
n − 1

0

)

= 1.

For the inductive step, assume that j > 0. Then,

j∑

i=0

(−1)i
(

n

i

)(
n − 1− i

j − i

)

=
j∑

i=0

(−1)i
(

n

i

)((
n − i

j − i

)

−
(

n − 1− i

j − 1− i

))

= −
j∑

i=0

(−1)i
(

n

i

)(
n − 1− i

j − 1− i

)

(Claim B.3)
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= −
j−1∑

i=0

(−1)i
(

n

i

)(
n − 1− i

j − 1− i

)

= (−1) j .

(Inductive hypothesis)

Claim B.6 For any 0 ≤ j ≤ n − 2, we have

j∑

i=0

(−1)i
(

n

i

)(
n − 2− i

j − i

)

= (−1) j ( j + 1).

Proof. We proceed by induction on j ≥ 0. The base case j = 0 is clear as

(−1)0
(

n

0

)(
n − 2

0

)

= 1.

For the inductive step, assume that j > 0. Then,

j∑

i=0

(−1)i
(

n

i

)(
n − 2− i

j − i

)

=
j∑

i=0

(−1)i
(

n

i

)((
n − 1− i

j − i

)

−
(

n − 2− i

j − 1− i

))

= (−1) j −
j∑

i=0

(−1)i
(

n

i

)(
n − 2− i

j − 1− i

)

(Claim B.5)

= (−1) j −
j−1∑

i=0

(−1)i
(

n

i

)(
n − 2− i

j − 1− i

)

= (−1) j − (−1) j−1 j = (−1) j (1+ j).
(Inductive hypothesis)

C Attainment of the correlation gap

In this section, we address the issue of attainment of the correlation gap. The following
theorem shows that the correlation gap is always attained for a nonnegative monotone
submodular function.

Theorem C.1 For any monotone submodular function f : 2E → R+, there exists a
point x∗ ∈ [0, 1]E such that CG( f ) = F(x∗)/ f̂ (x∗).
Proof. Since [0, 1]E is compact, by Weierstrass Theorem it suffices to prove that the
function φ : [0, 1]E → R+ defined by

φ(x) :=
{

F(x)/ f̂ (x) if f̂ (x) �= 0,

1, otherwise.

123



On the correlation gap of matroids

is continuous. As F and f̂ are both continuous, we only need to check the zeroes of
f̂ . Let x ∈ [0, 1]E such that f̂ (x) = 0. Then, F(x) = 0 because 0 ≤ F ≤ f̂ . Note
that f (supp(x)) = 0 because f is nonnegative. By the monotonicity of f , we also get
f (S) = 0 for all S ⊆ supp(x).
Recall the dual form (11) of f̂ (x). We first show that the solution (z∗, α∗) given by

z∗i := f ({i}) for all i ∈ E and α∗ := 0 is optimal. By submodularity, we have

z∗(S) + α∗ =
∑

i∈S

f ({i}) ≥ f (S)

for all S ⊆ E , which proves feasibility. Its objective value is

(z∗)�x + α∗ =
∑

i∈supp(x)

f ({i})xi = 0 = f̂ (x),

so it is optimal. Observe that the linear function (z∗)�y = (z∗)�(y − x) is the first-
order Taylor approximation of F at x . Indeed, letting X denote the random set obtained
by picking each element j ∈ E \ {i} independently with probability x j , by Proposi-
tion 2.11 the first-order Taylor approximation of F at x is

F(x) + ∇F(x)�(y − x) =
∑

i∈E

E[ f (X + i) − f (X)](yi − xi )

=
∑

i∈E

E[ f (X + i)](yi − xi )

=
∑

i∈E

f ({i})(yi − xi ) = (z∗)�(y − x).

The penultimate equality holds because f ({i}) ≤ f (S + i) for all S ⊆ supp(x) by
monotonicity, while the reverse inequality is given by submodularity and f (S) = 0
for all S ⊆ supp(x).

Claim C.2 For every optimal solution (z, α) to the dual form (11) of f̂ (x) and y ∈
[0, 1]E , we have

(z∗)�y ≤ z�y + α.

Proof. Let us partition E into the following 3 sets

I0 := {i ∈ E : xi = 0} I f := {i ∈ E : 0 < xi < 1} I1 := {i ∈ E : xi = 1}.

Fix an optimal solution (z, α) to (11). Since f̂ (x) = z�x + α = 0 and f̂ ≥ 0, we
deduce that zi ≥ 0 for all i ∈ I0, zi = 0 for all i ∈ I f , and zi ≤ 0 for all i ∈ I1. It
suffices to show that zi ≥ z∗i for all i ∈ I0. This would imply that for any y ∈ [0, 1]E ,

z�y + α = z�(y − x) =
∑

i∈I0

zi yi +
∑

i∈I1

zi (yi − 1) ≥
∑

i∈I0

zi yi ≥
∑

i∈I0

z∗i yi = (z∗)�y.
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For the purpose of contradiction, let j ∈ I0 with z j < z∗j . Then,

f̂ (χsupp(x)+ j ) ≤ z�(χsupp(x)+ j ) + α = z�(χsupp(x)+ j − x)

= z j < z∗j = f ({ j}) ≤ f (supp(x) + j).

The first inequality is due to the feasibility of (z, α), whereas the last inequality uses
the monotonicity of f . However, this contradicts the fact that f̂ is an extension of
f .

Since f̂ is piecewise affine, the claim above shows that f̂ (y) = (z∗)�y when y is
sufficiently close to x . As F is 2-times continuously differentiable, Taylor’s Theorem
tells us that for every y, we have

F(y) = (z∗)�y + 1

2
(y − x)�H(cy)(y − x),

where H(cy) is the Hessian of F evaluated at some cy ∈ [x, y]. Combining these two
facts yields

lim
y→x :

f̂ (y) �=0

F(y)

f̂ (y)
= lim

y→x :
(z∗)�y �=0

(z∗)�y + 1
2 (y − x)�H(cy)(y − x)

(z∗)�y

= 1+ 1

2
lim

y→x :
(z∗)�y �=0

(y − x)�H(cy)(y − x)

(z∗)�y
. (43)

It is left to prove that the second term on the RHS of (43) converges to 0. By Propo-
sition 2.12,

H(cy)i j = ∂2F

∂xi∂x j
(cy) = E[ f (Cy + i + j)− f (Cy + i)− f (Cy + j)+ f (Cy)] ≤ 0,

where Cy is the random set obtained by picking each element k ∈ E\{i, j} inde-
pendently with probability (cy)k . Moreover, if f ({i}) = 0 for some i ∈ E , then
f (S + i) − f (S) = 0 for all S ⊆ E by monotonicity and submodularity. It follows
that H(cy)i j = H(cy) j i = 0 for all j ∈ E if z∗i = 0. Since z∗i = 0 for all i ∈ supp(x),
letting N := E\supp(x), we have

0 ≥ (y − x)�H(cy)(y − x)

(z∗)�y
= y�N H(cy)N ,N yN

(z∗N )�yN

≥
∑

i∈N :z∗i yi >0

yi
∑

j∈N H(cy)i j y j

z∗i yi
≥

∑

i∈N :z∗i yi >0

∑
j∈N H(cy)i j y j

z∗i
. (44)

The first inequality is due to f̂ (y) ≤ (z∗)�y for all y ∈ [0, 1]E , whereas the second
inequality is by H ≤ 0 and y, z∗ ≥ 0. As y → x , the RHS of (44) converges
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to 0 because xN = 0 and the Hessian is bounded, i.e., H(cy) ≤ 2max f for all
cy ∈ [0, 1]E . Thus, by the squeeze theorem, the RHS of (43) converges to 0 as
desired.

The next two propositions show that neither the monotonicity nor submodularity
assumption can be dropped without affecting the attainment of the correlation gap.

Proposition C.3 There exists a monotone function whose correlation gap is not
attained.

Proof. Fix ε ∈ (0, 1/2). Consider the function f : 2[2] → R+ defined by f (∅) = 0,
f ({1}) = f ({2}) = ε, and f ({1, 2}) = 1. Clearly, f is monotone but not submodular.
The multilinear extension of f is

F(x) = ε(x1(1− x2) + x2(1− x1)) + x1x2 = εx1 + εx2 + (1− 2ε)x1x2.

By (11), the concave extension of f is

f̂ (x) =
{

εx1 + (1− ε)x2 if x1 ≥ x2,

(1− ε)x1 + εx2 if x1 ≤ x2.

On the line L := {α1 : 0 ≤ α ≤ 1} ⊆ [0, 1]2, the ratio

F(α1)

f̂ (α1)
= 2εα + (1− 2ε)α2

α
= 2ε + (1− 2ε)α

converges to 2ε < 1 as α → 0. However, F(0)/ f̂ (0) = 0/0 = 1. To show that CG( f )

is not attained, it suffices to prove that F(x)/ f̂ (x) > 2ε for all x ∈ [0, 1]2 \ L . In fact,
it is enough to prove that for any α1 ∈ L and β ∈ R,

F(α1)

f̂ (α1)
≤ F(α1+ β(χ1 − χ2))

f̂ (α1+ β(χ1 − χ2))
. (45)

Fix a point α1 ∈ L , and define the function φ(β) as the RHS of (45). Note that
φ(β) = φ(−β) because F and f̂ are symmetric. So, we may assume that β ≥ 0
without loss of generality. We also have β ≤ min(α, 1− α) ≤ 1/2. Then,

φ(β) = 2εα + (1− 2ε)(α2 − β2)

α − (1− 2ε)β
.

It is left to show that φ′(β) ≥ 0. Differentiating yields

(α − (1− 2ε)β)2φ′(β) = −2(1− 2ε)β(α − (1− 2ε)β) + (1− 2ε)(2εα + (1− 2ε)(α2 − β2))

= −2αβ(1− 2ε) + (1− 2ε)2(α2 + β2) + 2εα(1− 2ε)

≥ −2αβ(1− 2ε) + (1− 2ε)2(α2 + β2) + 4εαβ(1− 2ε)
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= (1− 2ε)2(α − β)2 ≥ 0.

The first inequality is due to β ≤ 1/2, while the last inequality follows from
β ≤ α.

Proposition C.4 There exists a submodular function whose correlation gap is not
attained.

Proof. Fix ε ∈ (0, 1/2). Consider the function g : 2[2] → R+ defined by g(∅) =
ε, g({1}) = 0, g({2}) = 1, and g({1, 2}) = ε. Clearly, g is submodular but not
monotone. Let ψ : [0, 1]E → [0, 1]E be the 90◦-clockwise rotation map about the
point (1/2, 1/2), i.e., ψ(x) := (x2, 1 − x1). We claim that G(x) = F(ψ(x)) and
ĝ(x) = f̂ (ψ(x)) for all x ∈ [0, 1]E , where f is the function defined in the proof of
Proposition C.3. Indeed,

F(ψ(x)) = ε(x2x1 + (1− x1)(1− x2)) + x2(1− x1) = G(x).

By (11), the concave extension of g is

ĝ(x) =
{

(ε − 1)x1 + εx2 + 1− ε if x1 + x2 ≥ 1,

−εx1 + (1− ε)x2 + ε if x1 + x2 ≤ 1,

which also agrees with

f̂ (ψ(x)) =
{

εx2 + (1− ε)(1− x1) if x1 + x2 ≥ 1,

(1− ε)x2 + ε(1− x1) if x1 + x2 ≤ 1.

Since φ is onto, it follows that CG( f ) = CG(g). Thus, CG(g) is not attained by
Proposition C.3.

Acknowledgements This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement nos. 757481–
ScaleOpt and 805241–QIP). Part of this workwas donewhile ZKK,GL andLAVparticipated in theDiscrete
Optimization Trimester Program at the Hausdorff Institute for Mathematics in Bonn in 2021.

Declarations

Conflict of interest The authors have no Conflict of interest to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


On the correlation gap of matroids

References

1. Ageev, A.A., Sviridenko, M.: Pipage rounding: a new method of constructing algorithms with proven
performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

2. Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Price of correlations in stochastic optimization. Oper. Res.
60(1), 150–162 (2012)

3. Asadpour, A., Niazadeh, R., Saberi, A., Shameli, A.: Sequential submodular maximization and appli-
cations to ranking an assortment of products. In: EC ’22: The 23rd ACM Conference on Economics
and Computation, pp. 817 (2022)

4. Barman, S., Fawzi, O., Fermé, P.: Tight approximation guarantees for concave coverage problems. In:
38th International Symposium on Theoretical Aspects of Computer Science (STACS), volume 187 of
LIPIcs, pp. 9:1–9:17 (2021)

5. Barman, S., Fawzi, O., Ghoshal, S., Gürpinar, E.: Tight approximation bounds for maximum multi-
coverage. Math. Program. 192(1), 443–476 (2022)

6. Bhalgat, A., Chakraborty, T., Khanna, S.: Mechanism design for a risk averse seller. In: International
Workshop on Internet and Network Economics, pp. 198–211. Springer (2012)

7. Bulow, J., Roberts, J.: The simple economics of optimal auctions. J. Polit. Econ. 97(5), 1060–1090
(1989)
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