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Abstract. In this survey we consider polynomial optimization problems, asking to minimize

a polynomial function over a compact semialgebraic set, defined by polynomial inequalities.
This models a great variety of (in general, nonlinear nonconvex) optimization problems.

Various hierarchies of (lower and upper) bounds have been introduced, having the remarkable

property that they converge asymptotically to the global minimum. These bounds exploit
algebraic representations of positive polynomials in terms of sums of squares and can be

computed using semidefinite optimization. Our focus lies in the performance analysis of

these hierarchies of bounds, namely, in how far the bounds are from the global minimum
as the degrees of the sums of squares they involve tend to infinity. We present the main

state-of-the-art results and offer a gentle introductory overview over the various techniques
that have been recently developed to establish them, stemming from the theory of orthogonal

polynomials, approximation theory, Fourier analysis, and more.

1. Introduction

This survey offers a gentle introduction and overview over the design and performance analysis
of approximation hierarchies for polynomial optimization. In this section we will first introduce
polynomial optimization, and its use for modeling hard optimization problems arising within
a broad range of fields and application domains. After that we will explain how to design
hierarchies of approximations using sums of squares of polynomials as a tractable surrogate
for polynomial nonnegativity, and how sums of squares of polynomials can be modeled using
semidefinite optimization.

1.1. Polynomial Optimization. Throughout we use the following notation. We let R[x] =
R[x1, . . . , xn] denote the ring of n-variate real polynomials in the variables x = (x1, . . . , xn). For
a multi-index α ∈ Nn, we let xα = xα1

1 · · ·xαn
n denote the associated monomial, whose degree

is |α| := ∥α∥1 = α1 + . . . + αn. We let Nn
d denote the set of sequences α ∈ Nn with |α| ≤ d.

Any polynomial f ∈ R[x] can be expressed in the monomial basis as f =
∑

α fαx
α for some

coefficients fα ∈ R. Here, the sum is finite and the largest value of |α| for which fα ̸= 0 is the
degree of f , denoted deg(f). For an integer d ≥ 0, we let R[x]d denote the set of polynomials
with degree at most d. It is a vector space, with [x]d = {xα : α ∈ Nn

d} as its standard monomial
basis. As we will see later, it is sometimes convenient to use other polynomial bases, that are
orthogonal with respect to some inner product induced by a selected measure on the space Rn.

The general setting of polynomial optimization is as follows. We are given polynomials
f, g1, . . . , gm ∈ R[x] and the goal is to find the minimum value that f takes on the feasible region
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2 CONVERGENCE RATES OF SUMS OF SQUARES HIERARCHIES

defined by the polynomials gj . In other words, the goal is to solve the following optimization
problem.

The polynomial optimization problem

fmin = min{f(x) : g1(x) ≥ 0, . . . , gm(x) ≥ 0}
= min{f(x) : x ∈ X},

(1)

after setting
X = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (2)

We also sometimes use the notation fmin,X for the minimum value of (1) and the notation
Se(g) for the set in (2).

Such a set X is known as a basic closed semialgebraic set. Typical instances include the unit
sphere Sn−1, the standard simplex ∆n, the unit ball Bn, the box [−1, 1]n or [0, 1]n, and the
binary cube {±1}n or {0, 1}n, where

Sn−1 = {x ∈ Rn : ∥x∥ = 1}, Bn = {x ∈ Rn : ∥x∥ ≤ 1},

∆n =
{
x ∈ Rn : xi ≥ 0 (i ∈ [n]),

n∑
i=1

xi = 1
}
,

and ∥x∥2 =
∑n

i=1 x
2
i denotes the squared Euclidean norm. Throughout we assume X is compact.

So, problem (1) always has a global minimizer.
The polynomial optimization problem (1) contains linear programming as a (very) special

case, when all polynomials f, g1, . . . , gm are linear (i.e., of degree at most 1). In this case,
efficient optimization algorithms exist (see, e.g., Roos et al. [56]). But, it also models a much
broader range of problems, which are generally nonlinear and nonconvex. This includes well-
known NP-hard problems, already when restricting to seemingly simple feasible regions X in
(2), such as the simplex, the box, or the sphere as we illustrate on some examples in the next
section.

Polynomial optimization has received growing research interest in the past decades, when
it was realized that algebraic and geometric properties of polynomials could be exploited to
design dedicated methods, able to capture the global minimum, in contrast to general nonlinear
optimization methods where one can often only gain information about local minima. In a
nutshell, this research direction builds on combining real algebraic geometry results (about
sums of squares of polynomials) and functional analytical results (about moments of measures)
with semidefinite optimization. It roots in foundational works, in particular, by Shor [59],
Nesterov [42], Lasserre [31], Parrilo [47, 48]. The field has substantially grown1 and has a broad
literature. We mention some books and overviews that can serve as introduction to the topic
and give further references to many applications and additional aspects that are not mentioned
in the present paper; in particular, by Lasserre [32, 34], Laurent [37], Blekherman, Parrilo,
Thomas [8], Henrion, Korda, Lasserre [16], Magron, Wang [40], Nie [45].

The present paper will focus on the performance analysis of various hierarchies of bounds
that have been introduced for the polynomial optimization problem (1), based on using tailored

1This is witnessed, e.g., by the fact that it has received its own Mathematics Subject Classification number

90C23.
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sums of squares representations for positive polynomials. We will recall the definition of these
hierarchies of (upper and lower) bounds and discuss the main state-of-the-art results that have
been shown in recent years about their quantitative convergence properties (these are not covered
in the literature mentioned above). We focus on offering a gentle overview of the main techniques
that are needed to prove these quantitative results.

1.2. Examples and Applications. We begin with mentioning a few instances of the polyno-
mial optimization problem (1) that capture well-known hard combinatorial optimization prob-
lems.

Consider a graph G = (V,E), where V = [n] = {1, . . . , n} is the set of vertices and the
pairs in E ⊆ V × V correspond to the edges of G. A set I ⊆ V is said to be independent
(or stable) if it contains no edge and a fundamental combinatorial problem is determining the
largest cardinality of an independent set, denoted α(G), a well-known NP-hard problem (see
Garey, Johnson [15]). Interestingly, this problem admits several equivalent reformulations as
instances of polynomial optimization over the boolean cube, the box, the simplex, the sphere,
respectively:

α(G) = max
{∑

i∈V

xi : xixj = 0 for {i, j} ∈ E, x2
i = xi for i ∈ V

}
,

α(G) = max
{∑

i∈V

xi −
∑

{i,j}∈E

xixj : x ∈ [0, 1]n
}
,

1

α(G)
= min

{
xT(I + AG)x : x ∈ Rn

+,
∑
i∈V

xi = 1
}
,

1

α(G)
= min

{
(x◦2)T(I + AG)x◦2 : x ∈ Rn,

∑
i∈V

x2
i = 1

}
,

where we set x◦2 = (x2
1, . . . , x

2
n)T and AG is the adjacency matrix of graph G. An additional

reformulation is in terms of linear optimization over copositive matrices:

α(G) = min{λ : λ(I + AG) − J is copositive},

where J denotes the all-ones matrix. We refer to de Klerk, Pasechnik [24] for details about the
above formulations.

Another fundamental combinatorial problem is the maximum cut problem, asking for the
largest cardinality of a cut in a graph G = (V,E), denoted as mc(G), that can be formulated as
any of the following polynomial optimization problems:

mc(G) = max
{ ∑

{i,j}∈E

1

2
(1 − xixj) : x ∈ {±1}n

}
,

mc(G) = max
{1

4
xTLGx : x ∈ [−1, 1]n

}
,

where LG = D−AG is the Laplacian matrix, with D the diagonal matrix having the degrees of
the vertices as diagonal entries.

A fundamental question in analysis that can be formulated in terms of polynomial optimiza-
tion is testing whether an n-variate polynomial f is convex. Indeed, f is convex if and only if its

Hessian matrix Hf (x) =
(

∂2f
∂xi∂xj

(x)
)n

i,j=1
is positive semidefinite at any x ∈ Rn or, equivalently,

if the 2n-variate polynomial F (x,y) = yTHf (x)y is nonnegative over Rn × Rn (i.e., its global
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Figure 1. (a) on the left: the Motzkin polynomial (3); (b) on the right: the
optimal degree 16 sum-of-squares polynomial σ in program (14).

minimum is 0). It has been shown by Ahmadi et al. [1] that testing whether a quartic polyno-
mial is convex is an NP-hard problem. This implies hardness of testing global nonnegativity of
a quartic polynomial.

So, the above examples show that computing the global minimum of a polynomial over
simple regions such as the simplex, the sphere, the box, the full space, or the boolean box, are
computationally hard already when restricting to small degree (at most 4). Another notable
application which can be cast as instance of polynomial optimization problem involving only
quadratic polynomials, is the optimal power flow problem in energy (see, e.g., Zohrizadeh et al.
[70]). Polynomial optimization has a broad modeling power and permits to capture problems
from various areas, such as probablity, mathematical finance, control, game theory, for which
we refer to the exposition by Lasserre [32].

1.3. Nonnegative Polynomials and Sums of Squares. A polynomial f ∈ R[x]2d is called a
sum of squares (abbreviated as sos) if it can be written as a sum of squares of other polynomials,

i.e., f =
∑k

j=1 q
2
j for some qj ∈ R[x] and k ≥ 1. Then, each qj has degree at most d and can be

assumed to be homogeneous if f is homogeneous. We let Σ denote the set of sums of squares of
polynomials and set Σ2d = Σ ∩ R[x]2d. We may use the notation Σ[x] to stress which variables
are used.

Let P denote the set of polynomials f that are globally nonnegative (i.e., f(x) ≥ 0 for all
x ∈ Rn), and P(X) the set of polynomials that are nonnegative over a given set X ⊆ Rn.

Clearly, every sum of squares of polynomials is globally nonnegative, i.e., the inclusion Σ ⊆ P
holds. As is well-known, this inclusion is in general strict. By a result of Hilbert [17] we know that
any globally nonnegative n-variate polynomial with degree 2d is a sum of squares of polynomials
only in the following three cases: n = 1 (univariate), d = 1 (quadratic), and the exceptional
case (n = 2, d = 2) (i.e., quartic in two variables).
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A nonnegative polynomial that is not sos

The first explicit example of a nonnegative polynomial that is not sos was found by Motzkin
in 1967, it is bivariate with degree 6 and reads

f(x, y) = x4y2 + x2y4 − 3x2y2 + 1. (3)

It is depicted in Figure 1(a). To see global nonnegativity one may use the arithmetic-
geometric mean inequality, and use ‘brute force’ to show f is not sos (write f as a sum of
squares of polynomials and compare coefficients). Also the Robinson polynomial

f(x, y, z) = x6 + y6 + z6 − x2y2(x2 + y2) − x2z2(x2 + z2) − y2z2(y2 + z2) + 3x2y2z2 (4)

is globally nonnegative but not sos. We refer to Reznick [55] and Powers [50] (and references
therein) for a nice historic discussion and many more examples.

At the 1900 International Congress of Mathematicians in Paris Hilbert asked whether every
nonnegative polynomial can be written as a sum of squares of rational functions (known as
Hilbert’s seventeenth problem). This question was settled in the affirmative by Artin [2], a result
that started the flourishing field of real algebraic geometry (see, e.g., Prestel and Delzell [52],
Marshall [39]). A landmark result is the Positivstellensatz2 by Krivine [29] and Stengle [68]
that a.o. characterizes the polynomials that are nonnegative on a semialgebraic set X as in
(2). To cite this result we need the notion of preordering T (g) generated by the polynomials
g = {g1, . . . , gm} entering the algebraic description of the set X:

T (g) =
{ ∑

J⊆[m]

σJ

∏
j∈J

gj : σJ ∈ Σ for J ⊆ [m]
}

(5)

(setting g∅ = 1). Clearly, T (g) ⊆ P(X). Krivine-Stengle show that a polynomial f ∈ R[x] is
nonnegative on X if and only if p1f = f2k + p2 for some polynomials p1, p2 ∈ T (g) and some
integer k ∈ N. This leads to a sos-type decomposition of f as f = f2k/p1 + p2/p1, thus ‘with a
denominator’.

Simpler sos-type decompositions have been shown later under more restrictive assumptions,
typically assuming strict positivity of f . In particular, Reznick [54] shows a sharper result for
homogeneous polynomials: If f is homogeneous and satisfies f(x) > 0 for all x ∈ Rn \ {0}, then
there exists an integer r ≥ 0 such that (

∑n
i=1 x

2
i )rf(x) ∈ Σ.

When the set X is compact, Schmüdgen [66] shows membership in the preordering under
strict positivity:

Schmüdgen’s Positivstellensatz

If X is compact and f is strictly positive on X, then f ∈ T (g).

2The terminology of Positivtsellensatz refers to Hilbert’s celebrated Nullstellenzatz that characterizes the

polynomials vanishing at a given complex variety.



6 CONVERGENCE RATES OF SUMS OF SQUARES HIERARCHIES

Under the Archimedean condition, Putinar [53] shows membership in the quadratic module
Q(g), which is defined as

Q(g) =
{ m∑

j=0

σjgj : σj ∈ Σ for j ∈ {0, 1, . . . ,m}
}

(6)

(setting g0 = 1). So, Q(g) ⊆ T (g) ⊆ P(X). The advantage of the quadratic module Q(g) over
the preordering T (g) is that it involves less terms: m + 1 sos polynomials for Q(g), instead of
2m for T (g).

The Archimedean condition asks that R −
∑n

i=1 x
2
i ∈ Q(g) for some R > 0 and can be seen

as an algebraic certificate of compactness. It is a property of the algebraic description of X
rather than X itself. It is, however, easy to satisfy, simply by adding the inequality of a ball
containing X to its description. The Archimedean condition holds for most sets X of interest
in applications such as the sphere, box, simplex, etc.

Putinar’s Positivstellensatz

If Q(g) is Archimedean and f is strictly positive on X, then f ∈ Q(g).

So, sums of squares belong to a classical topic in real algebraic geometry, with a rich history
going back to early work by Hilbert. It is only recently that their relevance to optimization
has been fully appreciated, starting with ground works by Shor [59], Nesterov [42], Lasserre
[31], and Parrilo [47, 48]. A key ingredient for this link to optimization is the fact that sums of
squares can be modeled using semidefinite programs, which makes them amenable to numerical
algorithms. Next, we explain how to model sos polynomials using semidefinite programming,
and thereafter how to use sos polynomials to define hierarchies of (lower and upper) bounds for
the original polynomial optimization problem (1).

1.4. Sums of Squares and Semidefinite Optimization. We begin with a quick recap on
semidefinite optimization, and refer, e.g., to de Klerk [18] for a detailed treatment. A semidefinite
program (in primal form) reads

p∗ = sup{⟨C,X⟩ : ⟨Aj , X⟩ = bj (j ∈ [m]), X ∈ SN
+ }. (7)

Here, C,A1, . . . , Am ∈ SN are symmetric N × N matrices and b ∈ Rm – these are the data
of the problem – and X ∈ SN

+ is the matrix variable, required to be symmetric and positive

semidefinite (also written as X ⪰ 0). So, the program (7) is a linear program over the cone SN
+

of positive semidefinite matrices. Its dual program reads

d∗ = inf
{ m∑

j=1

bjyj :

m∑
j=1

yjAj − C ∈ SN
+

}
. (8)

Weak duality holds: p∗ ≤ d∗, and strong duality p∗ = d∗ holds under some Slater-type condi-
tions. Semidefinite programs contain linear programs as a special case (when all data matrices
C,Aj are diagonal). The crucial fact is that semidefinite programs can be solved efficiently up
to any given precision, under some assumptions (like knowing a small ball inside the feasible
region of (7) and a ball enclosing it).

As we now see, sums of squares can be modeled with semidefinite programs. As a warm-up
observe that a quadratic form f = xTMx is a sum of squares precisely when the matrix M
is positive semidefinite. Consider now a polynomial f =

∑
α∈Nn

2d
fαx

α of even degree 2d for
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which we wish to decide whether f ∈ Σ. Assume f ∈ Σ, i.e., f = q21 + · · · + q2k for some
polynomials qj . Then, each qj ∈ R[x]d can be written in the monomial basis as qj = [x]Tdaj ,
where aj = ((aj)β)β∈Nn

d
is the vector of coefficients of the polynomial qj in the monomial basis

[x]d. Thus, we obtain

f =

k∑
j=1

q2j =

m∑
j=1

[x]Tdaja
T
j [x]d = [x]d

( k∑
j=1

aja
T
j

)
[x]d = [x]TdQ[x]d,

setting Q :=
∑k

j=1 aja
T
j . By construction the matrix Q is positive semidefinite and, by equating

coefficients at both sides of the above polynomial identity, we arrive at the following character-
ization.

Modeling sums of squares with semidefinite programs

A polynomial f =
∑

α∈Nn
2d
fαx

α ∈ R[x]2d is a sum of squares of polynomials if and only if

the following semidefinite program has a feasible solution:

Q ∈ SNd
+ ,

∑
β,γ∈Nn

d :β+γ=α

Qβ,γ = fα for all α ∈ Nn
2d, (9)

where the matrix variable Q is indexed by Nn
d and Nd = |Nn

d | =
(
n+d
d

)
.

Note that the choice of the monomial basis is not important in the above derivation, it would
work mutatis mutandis using any other polynomial basis of the polynomial space (this fact will
be used in Section 2.2).

Now that we know how to express sos polynomials using semidefinite programs we can also
express polynomials in Q(g)2r, the quadratic module truncated at a given degree 2r, defined by

Q(g)2r =
{ m∑

j=0

σjgj : σj ∈ Σ,deg(σjgj) ≤ 2r for j = 0, 1, . . . ,m
}
, (10)

or in the truncated preordering T (g)2r defined by

T (g)2r =
{ ∑

J⊆[m]

σJ

∏
jıJ

gj : σJ ∈ Σ,deg
(
σJ

∏
j∈J

gj

)
≤ 2r for J ⊆ [m]

}
. (11)

For this, set dj = ⌈deg(gj)/2⌉, so that polynomials in the truncated quadratic module Q(g)2r
can be modeled as

∑m
j=0 gj [x]Tr−dj

Qj [x]r−dj for some positive semidefinite matrices Qj ∈ SNdj

(for j = 0, , . . . ,m). In other words, membership in the truncated quadratic module can be
modeled as a semidefinite program. The same holds of course for membership in the truncated
preordering.

We now have all tools in hands to define the hierarchies of upper bounds and lower bounds
for the polynomial optimization problem (1).

1.5. Upper Bounds. To define upper bounds on fmin the starting point is to observe that
problem (1) can be reformulated as a linear optimization problem over the set M(X) of positive
Borel measures supported within the set X:

fmin = min
{∫

X

f(x)dν(x) : ν ∈ M(X),

∫
X

dν(x) = 1
}
. (12)
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The argument is simple: On the one hand,
∫
X
fdν ≥ fmin since ν is a probability measure on

X. On the other hand, the Dirac delta ν = δx∗ at a global minimizer x∗ of f in X provides a
feasible solution to (12) with value f(x∗) = fmin.

Let is now fix a (reference) measure µ ∈ M(X) whose support is equal to X. The next step
is that one can restrict the optimization in (12) to the measures ν that have a sos density with
respect to this given measure µ:

fmin = min
{∫

X

f(x)σ(x)dµ(x) : σ ∈ Σ,

∫
X

σ(x)dµ(x) = 1
}

(13)

(Lasserre [33]). Intuitively, this relies on the fact that the Dirac delta δx∗ can be well approx-
imated by sos polynomials. The upper bounds on fmin are then obtained by restricting the
optimization to sos polynomials of a given degree.

The upper bounds on fmin

For any r ∈ N, define the parameter

ub(f,X, µ)r = min
{∫

X

f(x)σ(x)dµ(x) : σ ∈ Σ2r,

∫
X

σ(x)dµ(x) = 1
}
. (14)

We have fmin ≤ ub(f,X, µ)r+1 ≤ ub(f,X, µ)r.

As an illustration, we show in Figure 1(a) the Motzkin polynomial and in (b) the optimal sos
density σ for program (14) at order 2r = 16 (which approximates well the sum of Dirac functions
at the four minimizers (±1,±1)).

So, the parameter (14) depends on the choice of the reference measure µ on X and it can
be computed via a semidefinite program (in fact, as an eigenvalue problem as we see in Section
2.2). In view of (13), the bounds ub(f,X, µ)r converge asymptotically to fmin as r → ∞. We
return to these bounds in Section 2, where we will discuss in detail the convergence rate of the
error range ub(f,X, µ)r − fmin as the relaxation order r grows.

For now, we summarize in Table 1 the known results about this convergence rate for various
classes of compact sets X (and reference measures µ). As we see there, one can show a conver-
gence rate in O(1/r2) (up to a log2(r) factor) for a large class of compact sets. For instance,
one can show a rate in O(log2(r)/r2) for any convex body X, and in O(1/r2) when X is ‘round’,
which means that there are tangent inner and outer balls at any point on its boundary. The
convergence rate in O(1/r2) is essentially optimal, as can be seen for the case X = [−1, 1] (due
to the explicit link to extremal roots of orthogonal polynomials, see relation (23) in Section 2.3),
or for the case X = Sn−1 (due to a link to cubature rules, see Section 1.7).

1.6. Lower Bounds. To define lower bounds on fmin the starting point is to observe that the
minimum value taken by the polynomial f over the set X is equal to the largest scalar λ for
which the polynomial f − λ is nonnegative over X:

fmin = sup{λ : λ ∈ R, f(x) − λ ≥ 0 for all x ∈ X}. (15)

Now, we obtain bounds by replacing the positivity condition by membership in either the trun-
cated quadratic module Q(g)2r or preordering T (g)2r (see (10), (11)).
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X (compact) error measure µ reference

Geometric assumption O(1/
√
r) Lebesgue de Klerk, Laurent, Sun [25]

Convex body O(1/r) Lebesgue de Klerk, Laurent [19]

Semialgebraic O(log2(r)/r2) Lebesgue Slot, Laurent [62]

with dense interior,

convex body

Sn−1 O(1/r) uniform Doherty, Wehner [10]

Sn−1 O(1/r2) uniform de Klerk, Laurent [22]

[−1, 1]n O(1/r2)
∏

i(1− xi)
λdx (λ = − 1

2
) de Klerk, Laurent [21]

[−1, 1]n O(1/r2)
∏

i(1− xi)
λdx (λ ≥ − 1

2
) Slot, Laurent [63]

‘Round’ convex body O(1/r2) Lebesgue Slot, Laurent [63]

Bn O(1/r2) (1− ∥x∥2)λdx (λ ≥ 0) Slot, Laurent[63]

∆n O(1/r2) Lebesgue Slot, Laurent [63]

Table 1. Overview of known results on the asymptotic error ub(f,X, µ)r−fmin

of Lasserre’s hierarchy of upper bounds.

The lower bounds on fmin

For any integer r ≥ deg(f)/2, define the parameters

lb(f,Q(g))r = sup{λ : λ ∈ R, f − λ ∈ Q(g)2r}, (16)

lb(f, T (g))r = sup{λ : λ ∈ R, f − λ ∈ T (g)2r}. (17)

By definition, we have lb(f,Q(g))r ≤ lb(f, T (g))r for all r. Furthermore, we have
lb(f,Q(g))r ≤ lb(f,Q(g))r+1 ≤ fmin, and lb(f, T (g))r ≤ lb(f, T (g))r+1 ≤ fmin.

As an application of the earlier mentioned Positivstellensätze of Putinar and Schmüdgen, if
Q(g) is Archimedean (resp., X is compact), then the bounds lb(f,Q(g))r (resp., lb(f, T (g))r)
converge to fmin as r → ∞ (Lasserre [31]). We return to these bounds in Section 3, where we will
discuss their asymptotic convergence rates as the relaxation order r grows. We summarize the
main known results in Table 2 below. As we see, the results depend on the algebraic structure
of the semialgebraic set X.

1.7. Link to Cubature Rules. A natural approach to design upper bounds on the minimum
value of f over X is by minimizing f over a well-chosen finite set of points Xr ⊆ X. For example,
for a set X ⊆ [0, 1]n, one may take for Xr the set of rational points in X that have a given
denominator r ≥ 1. This clearly gives a hierarchy of upper bounds that converge asymptotically
to fmin when the denominator r grows. For the simplex X = ∆n, we have |Xr| =

(
n+r
r

)
,

thus polynomial in n for any fixed r. In fact, the parameters fmin,Xr lead to a polynomial-time
approximation scheme with convergence rate minx∈Xr f(x)−fmin = O(1/r) (de Klerk, Laurent,
Parrilo [23]). However, for the hypercube X = [0, 1]n, we have |Xr| = (r + 1)n, which is thus
exponential in the dimension n. We refer to Martinez et al. [41] for related work for well-chosen
finite meshes on X. Let us mention the following simple link to cubature rules.
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X (compact) error certificate reference

Archimedean O(1/ log(r)c) Q(g) Nie, Schweighofer [46]

Archimedean O(1/rc) Q(g) Baldi, Mourrain [4], Baldi et al. [5]

General O(1/rc) T (g) Schweighofer [67]

[−1, 1]n O(1/r) Q(g) Baldi, Slot [6]

Sn−1 O(1/r2)⋆ Q(g) (= T (g)) Fang, Fawzi [13]

Bn O(1/r2) Q(g) (= T (g)) Slot [60]

∆n O(1/r2) T (g) Slot [60]

[−1, 1]n O(1/r2) T (g) Laurent, Slot [38]

Table 2. Overview of known results on the asymptotic error fmin − lb(f,X)r
of Lasserre’s hierarchies of lower bounds. (⋆The result on the sphere Sn−1 holds
only for homogeneous polynomials f .)

Let µ ∈ M(X) with support X. Assume that Xr = {x(i) : i ∈ [N ]} ⊆ X, together with
positive weights w = (wi)i∈[N ], provides a positive cubature rule for (X, µ) that is exact at

degree deg(f) + 2r. That is, for any polynomial p with deg(p) ≤ deg(f) + 2r we have
∫
X
pdµ =∑N

i=1 wip(x(i)). Then, one easily sees that

ub(f,X, µ)r ≥ min
x∈Xr

f(x) = fmin,Xr ≥ fmin,X.

Sometimes, this permits to show tightness of the convergence rate for the upper bounds ub(f,X, µ)r
from information about cubature rules. This is done, e.g., for the sphere X = Sn−1 (equipped
with the uniform Haar measure) by de Klerk, Laurent [22], who show ub(f,X, µ)r − fmin =
Ω(1/r2) for linear f .

2. Performance Analysis of the Upper Bounds

Recall the set up: X ⊆ Rn is a compact set and µ is a reference measure supported by X.
Consider the bilinear form ⟨·, ·⟩µ on R[x] induced by µ, defined by

⟨p, q⟩µ =

∫
X

p(x)q(x)dµ(x) for p, q ∈ R[x]. (18)

If X has a nonempty interior, then this defines an inner product on R[x]. Otherwise, if X has
an empty interior (e.g., X = Sn−1 is the unit sphere), then this defines an inner product on
the space MR (X) of polynomials on X. Let Bµ = {Pα : α ∈ Nn} be an orthonormal basis of
MR (X) with respect to this inner product, with the property that the set

Bµ,d = {Pα : α ∈ Nn
d}, sometimes also denoted as the vector [Pα]d, (19)

is a basis of MR (X)d (the set of polynomials that agree on X with a degree d polynomial) for
each d ∈ N.

Our objective here is to give a (rough) overview of the main ideas used to show the results
in Table 1, where rates in O(1/r2) and in O(log2(r)/r2) are presented.

The starting point for showing a O(r2) rate is establishing an eigenvalue reformulation for
the parameter ub(f,X, µ)r (Section 2.2) and a link to extremal roots of orthogonal polynomials
in the univariate case (Section 2.3). In addition, one uses some simple ‘tricks’ to reduce the
analysis to (at most) quadratic polynomials and to simpler sets and measures (Section 2.1).
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To show the (slightly weaker) rate O(log2(r)/r2) for much more general sets X one again
follows a univariate strategy, now reducing the search in problem (14) to sos polynomials σ(x) =
s(f(x)), where s is a univariate sos polynomial (see Section 2.4).

2.1. Some Useful Tricks for the Analysis. We group here some simple facts, useful for the
analysis of the upper bounds.

Lemma 1 (de Klerk, Laurent, Sun [25]). Let f, g ∈ R[x] satisfy (i) f(x) ≤ g(x) for all x ∈ X,
and (ii) f and g take the same minimum value on X, i.e., fmin,X = gmin,X. Then, for any
r ∈ N, we have ub(f,X, µ)r − fmin,X ≤ ub(g,X, µ)r − gmin,X.

Using Taylor’s expansion, one can see that any polynomial f admits an upper estimator g on
X that satisfies the assumptions (i), (ii) of Lemma 1 and that is (linear or) quadratic.

The next lemma permits to reduce the analysis for a pair (X, w), where X is equipped with

the absolutely continuous measure w(x)dx, to a possibly simpler pair (X̂, ŵ), where X ⊆ X̂ and
w ≤ ŵ ‘look the same’ around a minimizer.

Lemma 2 (Slot, Laurent [63]). Let X ⊆ X̂ be compact sets, where X (resp., X̂) is equipped
with an absolutely continuous measure w(x)dx (resp., ŵ(x)dx). Let x∗ ∈ X be a minimizer of
f in X. Assume the following conditions hold:

(i): X, X̂ are ‘locally similar’ at x∗: X ∩Bn(x∗, ϵ) = X̂ ∩Bn(x∗, ϵ) for some ϵ > 0 (with
Bn(x∗, ϵ) the ball centered at x∗ with radius ϵ).

(ii): w(x) ≤ ŵ(x) for all x ∈ int(X).
(iii): w, ŵ are ‘locally comparable’ at x∗: C · ŵ(x) ≤ w(x) for x ∈ int(K) ∩Bn(x∗, ϵ) for

some ϵ > 0 and C > 0.

Then, there exists a (linear or) quadratic polynomial g such that f(x) ≤ g(x) for all x ∈ X̂,

fmin,X = gmin,X, and ub(f,X, w)r − fmin,X ≤ 2
C (ub(g, X̂, ŵ)r − gmin,X̂).

The up-shot of these two lemmas can be summarized as follows.

Recipe for analyzing the upper bounds

It suffices to analyze the convergence rate of the range ub(f,X, µ)r − fmin for (linear or)
quadratic f and ‘simple’ sets X (like the box [−1, 1]n or the ball Bn).

2.2. Reformulation as an Eigenvalue Problem. We begin with giving an eigenvalue refor-
mulation for the parameter ub(f,X, µ)r from (14). For this, we express the polynomial σ ∈ Σ2r

entering the definition of the parameter ub(f,X, µ)r using the orthonormal basis Bµ,r, ordered
as the vector [Pα]r (as in (19)). So, we can write σ = ⟨Q, [Pα]r[Pα]Tr ⟩, where Q is the matrix
variable (indexed by Bµ,r). Then, we have

∫
X
fσdµ = ⟨Q,Mµ,r(f)⟩ and

∫
X
σdµ = Tr(Q), after

defining the matrix

Mµ,r(f) =
(∫

X

fPαPβdµ
)
α,β∈Nn

r

.

In this way we arrive at the following eigenvalue reformulation:

ub(f,X, µ)r = min{⟨Mµ,r(f), Q⟩ : Q ⪰ 0, Tr(Q) = 1} = λmin(Mµ,r(f)), (20)

showing that the parameter ub(f,X, µ)r is equal to the smallest eigenvalue of the matrix
Mµ,r(f). Some remarks are in order here: this computation relies on the matrix Mµ,r(f),
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which in turn requires to be able to integrate a polynomial on the set X w.r.t. the measure µ.
Thus, for practical computation one needs to restrict to some relatively easy sets equipped with
well-understood measures.

Estimating this smallest eigenvalue remains a difficult problem in general. However, there is
a situation where it is very well-understood: in the univariate case for the interval X = [−1, 1]
equipped with a ‘nice’ measure. We first consider this case, which will form the basis for
understanding the general multivariate case.

2.3. Univariate Case: Links to Roots of Orthogonal Polynomials. Here, we consider
the univariate case n = 1 and the interval X = [−1, 1] equipped with a measure µ supported
on [−1, 1]. Consider as above the orthonormal basis Bµ = {Pk : k ≥ 0} of R[x] w.r.t. the inner
product ⟨·, ·⟩µ. Then, the polynomials Pk satisfy the well-known 3-term recurrence: there exist
scalars ak, bk (k ≥ 0) such that

xPk = ak−1Pk−1 + bkPk + akPk+1 for k ≥ 0 (setting a−1 = 0). (21)

Observe that for the polynomial f = x, the matrix Mµ,r(x) =
( ∫ 1

−1
xPiPjdµ

)r
i,j=0

(also known as

the Jacobi matrix) is tri-diagonal and its eigenvalues are the roots of the degree r+1 orthogonal
polynomial Pr+1. In particular,

λmin(Mµ,r(x)) = smallest root of the orthogonal polynomial Pr+1 (w.r.t. µ). (22)

We refer, e.g., to Dunkl and Xu [12] for background on orthogonal polynomials.
From now on, we will assume that the reference measure µ is of Jacobi-type.

Jacobi-type measures on [−1, 1]

The Jacobi-type measure is dµ(x) = (1 − x)λ(1 + x)λ
′
dx, where λ, λ′ > −1; the associated

orthogonal polynomials are known as the Jacobi polynomials.
The case when λ = λ′ = −1/2 is of special interest; then, the 3-term recurrence (21) reads
xPk = (Pk−1 + Pk+1)/2 and the associated orthogonal polynomials are the Chebychev
polynomials.
The reason for restricting to Jacobi-type measures is that the behaviour of the extremal
roots of their associated orthogonal polynomials is well-understood: The smallest root of
Pr is −1 + Θ(1/r2) (Dimitrov, Nikolov [9], Driver, Jordaan [11]).

As observed earlier, it suffices to analyze the upper bounds for linear or quadratic f .
For linear f = x, since the smallest root of Pr+1 is −1+Θ(1/r2), by combining with relations

(20) and (22), we directly obtain the error analysis

ub(x, [−1, 1], µ)r − fmin = λmin(Mµ,r(x)) + 1 = Θ
( 1

r2

)
(23)

(from de Klerk, Laurent [21]).
We now consider the case when f is quadratic. We distinguish two cases, depending whether f

has a minimizer in the boundary or in the interior of [−1, 1]. In the former case, f admits a linear
upper estimator; then we can apply Lemma 1 and use (23) to conclude that ub(f, [−1, 1], µ)r −
fmin = O(1/r2).

So, assume now f = x2 + cx with a ∈ (−2, 2), so that f attains its minimum value in (−1, 1).
Then, one needs to estimate the smallest eigenvalue of the matrix Mµ,r(f), a difficult task in
general. Indeed, Mµ,r(f) is a 5-diagonal matrix, with its entries depending on the parameters
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ak, bk in the 3-term recurrence (21) and the parameter c in the definition of f . Estimating this
smallest eigenvalue is, however, easier in the Chebyshev case.

In the case when the measure µ is of Chebyshev-type, i.e., dµ = (1 − x2)−1/2dx, the matrix
Mµ,r(f) is ‘almost’ a circulant matrix: After modifying its first two rows and columns it can
be made a circulant matrix, whose eigenvalues can be explicitly computed. Combining with an
interlacing argument, one can show again that ub(f, [−1, 1], µ)r−fmin = O(1/r2) (de Klerk and
Laurent [21]). Combining this with using Lemma 2 one can show the same result for a general
measure µ with weight (1 − x2)λ when λ ≥ −1/2 (Slot and Laurent [63]).

In summary, we have ub(f, [−1, 1], µ)r − fmin = O(1/r2) for any polynomial f , in the case
when [−1, 1] is equipped with a measure µ with Jacobi weight (1 − x2)λ and λ ≥ −1/2. This
error estimate in O(1/r2) extends then to the box [−1, 1]n, equipped with a product of such
measures.

Similarly, to establish the rate O(1/r2) for the other sets in Table 1, one uses the result (23)
for the univariate case, combined with the results of Lemmas 1 and 2 (see Slot, Laurent [63] for
the ball, simplex, and round convex bodies), and possibly some ‘integration trick’ (see de Klerk,
Laurent [22] for the sphere).

2.4. Another Analysis Technique using Needle Polynomials. At this point there remains
to explain how to show the (slightly weaker) rate O(log2(r)/r2) presented in Table 1 for general
compact sets X like semialgebraic sets (with dense interior) and convex bodies. For this the
key idea is again to follow a univariate approach, as explained by Slot, Laurent [62]. Instead of
searching over all (multivariate) sos polynomials σ ∈ R[x] in program (14), the idea is to restrict
the search to univariate sos polynomials s ∈ R[x] and then set σ(x) = s(f(x)). In this way one
arrives at the following (weaker) bounds (introduced by Lasserre [35]):

ub#(f,X, µ)r = min
{∫

X

f(x)s(f(x))dµ(x) : s ∈ R[x]2r sos,

∫
X

s(f(x))dµ(x) = 1
}

= min
{∫

f(X)

xs(x)df#µ(x) : s ∈ R[x]2r sos,

∫
f(X)

s(x)df#µ(x) = 1
}
,

(24)

where f#µ denotes the univariate measure obtained by taking the push-forward of µ by f . Then,
we have ub(f,X, µ)rd ≤ ub#(f,X, µ)r if d = deg(f).

In view of relations (20) and (22), the analysis of the bounds ub#(f,X, µ)r relies on the
smallest roots of the orthogonal polynomials w.r.t. the push-forward measure f#µ. However,
these orthogonal polynomials are not well understood in general, so another approach is needed.
Up to translation one may assume that fmin = 0. Then, the idea is to find a univariate sos
polynomial s that approximates well the Dirac delta at the origin. For this, one can employ the
so-called needle polynomials (from Kroó [30]) that are widely used in the literature of approxi-
mation theory. We refer to Slot, Laurent [62] for the technical details and extension to compact
sets satisfying a suitable geometric assumption.

3. Performance Analysis of the Lower Bounds

We turn now to the lower bounds. Let X = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} be as in (2).
We assume that the quadratic module Q(g) is Archimedean. Recall that this implies that, for
any f , the bounds lb(f,Q(g))r and lb(f, T (g))r converge to fmin as r → ∞ by Putinar’s and
Schmüdgen’s Positivstellensätze, respectively. In this section, we outline the main ideas used to
obtain the convergence rates presented in Table 2. For ease of writing, we will use the letter C
to refer to either Q(g) or T (g). A useful observation is the following.
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Observation 1. Let f ∈ R[x]. Then, for any ϵ > 0 and r ∈ N, we have

fmin − lb(f, C)r ≤ ϵ ⇐⇒ f − fmin + ϵ ∈ C2r.

Thus, in order to prove convergence rates for Lasserre’s hierarchies of lower bounds, it suffices
to find low-degree sos-representations of f−fmin+ϵ. In what follows, we discuss two methods of
obtaining such representations. We give particular attention to the so-called polynomial kernel
method in Section 3.1 below, as it reveals an interesting connection between the analysis of the
lower bounds and the upper bounds discussed in Section 2.

Throughout this section, we set d = deg(f), which should be thought of as being fixed, while
the relaxation order r will grow.

3.1. Analysis via the Polynomial Kernel Method. The polynomial kernel method (PKM)
has been successful for proving strong convergence rates for optimization over certain distin-
guished sets X, including X = Sn−1, Bn,∆n, [−1, 1]n. It was initially described3 in the special
case X = Sn−1 by Fang, Fawzi [13], who use it to show a convergence rate in O(1/r2) in that
setting. It was later applied by Laurent, Slot [38] and Slot [60], to prove rates in O(1/r2) for
optimization over [−1, 1]n and ∆n, Bn, respectively. The latter work by Slot [60] is the first to
describe the technique in full generality, and we follow its exposition here.

Suppose we were able to construct a linear operator K : R[x] → R[x] with the following three
properties:

K(1) = 1, (P1)

Kp ∈ C2r for all p ∈ P(X), (P2)

max
x∈X

|K−1f(x) − f(x)| ≤ ϵ. (P3)

Then, we claim that (f−fmin)+ϵ ∈ C2r (which shows that fmin−lb(f, C)r ≤ ϵ by Observation 1).
Indeed, by (P3), we have K−1f(x) ≥ f(x) − ϵ ≥ fmin − ϵ on X. Using (P1), we obtain
K−1(f − fmin + ϵ) = K−1f − fmin + ϵ ∈ P(X). By (P2), we may then conclude that

f − fmin + ϵ = K
[
K−1

(
f − fmin + ϵ

)]
∈ C2r.

3.1.1. Constructing Linear Operators. It remains to construct operators K that enjoy these
special properties. For this, we rely on the theory of (polynomial) reproducing kernels. Let µ
be a (sufficiently nice) measure supported on X. Then, any polynomial K ∈ R[x,y] induces a
linear operator K on R[x] via convolution:

Kp(x) :=

∫
X

K(x,y)p(y)dµ(y) (p ∈ R[x]). (25)

The goal is to choose K in such a way that K satisfies (P1)-(P3). For (P2), it suffices to choose
K so that the polynomial x 7→ K(x,y) lies in C2r for all fixed y ∈ X. This is a consequence of
Tchakaloff’s Theorem, which allows us to write the integral (25) as (positively weighted) finite
sum over a cubature rule (see Laurent, Slot [38]). To establish (P1) and (P3), it turns out
that it is enough to control the eigenvalues of K. The eigenvalues of K can be related to the
polynomial K directly if we make the assumption that it is of the form

K(x,y) =
∑

∥α∥1≤2r

λαPα(x)Pα(y) (λα ∈ R), (26)

3Earlier, weaker analyses of the lower bounds on Sn−1 due to Reznick [54] and Doherty, Wehner [10] already

relied on the PKM implicitly.
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where {Pα : α ∈ Nn} is an orthonormal basis of R[x] w.r.t. µ, ordered so that deg(Pα) = ∥α∥1
for all α. Indeed, by orthonormality, the eigenvalues of K are then given by the coefficients λα

in (26). If we set λα = 1 for all α, the resulting polynomial is called the reproducing kernel for
R[X]2r w.r.t. µ. Its associated operator K acts as the identity on R[x]2r. It thus satisfies (P1)
and (P3) (for ϵ = 0). However, it does not have an sos-representation in general, and so it does
not satisfy (P2). The idea is to perturb the reproducing kernel slightly, choosing λα ≈ 1 (for all
|α| ≤ d), in such a way that all three properties hold. The following lemma makes the relation
between the λα and properties (P1), (P3) precise.

Lemma 3. Let K be as in (26), with λ0 = 1 and λα ∈ (1/2, 1] for all ∥α∥1 ≤ d. Then, its
associated linear operator K satisfies (P1), and

max
x∈X

|K−1f(x) − f(x)| ≤ γ ·
∑
|α|≤d

(1 − λα) · (fmax − fmin).

for some constant γ > 0 depending only on X and d (but not on f).

The inequality in Lemma 3 above can be improved in certain special cases (such as X = Sn−1).
In particular, the constant γ can be bounded nontrivially, but this is beyond the scope of this
survey.

3.1.2. A Connection to the Upper Bounds. In general, it is not obvious how to choose the λα

such that (P2) holds. However, for the aforementioned special choices of X, one can rely on
special structure of the reproducing kernel to make this problem tractable. For instance, in the
original application of the PKM by Fang, Fawzi [13] for the sphere Sn−1, the classical Funk-Hecke
formula tells us that, for any k ∈ N,∑

∥α∥1=k

Pα(x)Pα(y) = Gk(x · y) (x,y ∈ Sn−1),

where Gk is the Gegenbauer polynomial of degree k. These are the (univariate) orthogonal

polynomials on the interval [−1, 1] w.r.t to weight w(t) = (1 − t2)
n−3
2 . Assuming that the λα

in (26) depend only on |α|, the polynomial K then equals

K(x,y) =

2r∑
k=0

λkGk(x · y).

Write q(t) :=
∑2r

k=0 λkGk(t). Note that if q ∈ Σ[t]2r is a (univariate) sum of squares, then
K(x,y) lies in the quadratic module of the sphere for fixed y ∈ Sn−1, and so K will satisfy
(P2). In light of Lemma 3, we thus wish to select the λk so that λ0 = 1 (P1); q ∈ Σ[t]2r (P2);

and
∑d

k=1(1 − λk) is as small as possible (P3). Remarkably, the optimal selection of the λk

corresponds to a particular instance of Lasserre’s upper bounds. This correspondence allows
us to transport the analysis of these bounds in Section 2 to our present setting. Indeed, by
orthogonality, and after choosing the right normalization of the Gegenbauer polynomials Gk, we

have that λk =
∫ 1

−1
Gk(t)q(t)w(t)dt. Now set g(t) = d−

∑d
k=0 Gk(t). Then, we have that∫ 1

−1

g(t)q(t)w(t)dt =

d∑
k=1

(1 − λk).
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Thus, choosing the λk optimally reduces to solving the optimization problem

opt := inf
q∈Σ[t]2r

{∫ 1

−1

d∑
k=1

g(t)q(t)w(t)dt︸ ︷︷ ︸∑d
k=1(1−λk)

:

∫ 1

−1

q(t)w(t)dt︸ ︷︷ ︸
λ0

= 1

}
.

We recognize this as the program (14) that defines the upper bound ub(g, [−1, 1])r for the
minimization of g on [−1, 1]. As gmin = 0 (attained at t = 1), we may conclude that opt =
O(1/r2), and a convergence rate of the lower bounds on Sn−1 of the same order follows. We
refer to Fang, Fawzi [13] (and the exposition in Slot [61]) for details.

For X ∈ {Bn,∆n}, one has (more complicated) analogs of the Funk-Hecke formula. This
allows one to establish a correspondence between upper and lower bounds similar to the above.
For X = [−1, 1]n, there is no such formula. However, the reproducing kernel has a product
structure in that case, which can be exploited to obtain representations of K in the truncated
preordering. We refer to Slot [60, 61] and Laurent, Slot [38] for details.

Recipe for analyzing the lower bounds (I): Polynomial kernel method

Convergence rates for Lasserre’s hierarchy of lower bounds may be obtained from sum-of-
squares representations of (perturbed) reproducing kernels on X. For distinguished semi-
algebraic sets X, such representations can be found via the hierarchy of upper bounds.

3.2. Analysis via Algebro-Geometric Reduction. We now discuss a technique employed
first by Schweighofer [67], Nie, Schweighofer [46] and later by Baldi, Mourrain [4] and Baldi et
al. [5], to prove convergence rates for Lasserre’s lower bounds on general (compact, Archimedean)
semialgebraic sets X = Se(g) (as in (2)). With respect to the polynomial kernel method, this
technique yields weaker guarantees, but it does not rely on special structure of the set X. We
follow the exposition of Baldi, Mourrain [4].

Suppose that, for a given polynomial f , we wish to show that f − fmin + ϵ ∈ Q(g)2r for some
small ϵ > 0. The idea is to embed the (potentially complicated) set X in a simple semialgebraic
set Y = Se(h) ⊇ Se(g) = X. For instance, Y might be a (scaled) ball, simplex or box. Following
Baldi, Mourrain [4], let us fix Se(h) = [−1, 1]n for concreteness. Using specialized results on
the convergence of Lasserre’s hiearchy on [−1, 1]n (e.g., those obtained via the PKM), we know
that, for some ϵ = O(1/r2),

f − fmin,Y + ϵ ∈ T (h)2r. (27)

This fact is not immediately useful to us, for two reasons. First, we wish to obtain a representa-
tion in Q(g), not T (h). Second, the minimum fmin,Y of f on Y might be (much) smaller than
fmin = fmin,X. The first issue is resolved by proving an inclusion T (h)2r ⊆ Q(g)2r+ℓ. Note that
the existence of such an inclusion is not surprising, as Y ⊇ X, and thus P(X) ⊇ P(Y). Nonethe-
less, careful arguments are needed to control the additional degree term ℓ, but we do not discuss
these here. The second issue is more serious. It is resolved as follows: Suppose we were able to
construct a regularizing polynomial q ∈ Q(g)ℓ′ with the property that fmin,X ≤ (f − q)min,Y.

Then, setting f̃ = f − q, we could apply (27) to f̃ , and use the inclusion of T (h) in Q(g) to
obtain, for some ϵ̃ = O(1/r2),

f̃ − f̃min,Y + ϵ̃ ∈ T (h)2r ⊆ Q(g)2r+ℓ.
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Using the identity f − fmin,X + ϵ̃ = (f̃ − f̃min,Y + ϵ̃) + q + f̃min,Y − fmin,X, combined with

f̃min,Y ≥ fmin,X and q ∈ Q(g)ℓ′ , this gives us the representation

f − fmin,X + ϵ̃ ∈ Q(g)max{2r+ℓ, ℓ′}.

Note that ϵ̃ depends on the degree of q, which may be substantially larger than d. Therefore,
ϵ̃ ≫ ϵ in general. In addition to the extra degree terms ℓ, ℓ′, this is what explains the weaker
rates obtained from this technique compared to the PKM.

3.2.1. Construction of the Regularizing Polynomial. It remains to construct the polynomial q ∈
Q(g) described above. As mentioned, this construction has a large impact on the quality of the
resulting convergence guarantees. In fact, it is arguably the construction of q that sets apart
the results of Nie, Schweighofer [46] and Baldi et al. [4, 5], leading to stronger rates in the latter
works. We give a sketch of the construction in Baldi, Mourrain [4].

Recall that after setting f̃ = f − q, we want that f̃min,Y ≥ fmin,X. Thus, we wish that
q ≪ 0 on Y \ X, and q ≈ 0 on X (as q ∈ Q(g), we know that q ≥ 0 on X). Without loss of
generality, assume that the polynomials gj defining X satisfy −1 ≤ gj(x) ≤ 1 for all x ∈ Y
and j ∈ [m]. The idea is to first construct a univariate sum-of-squares polynomial h ∈ Σ[t],
with the property that, for some small η > 0, we have h(t) ≈ 0 for t ∈ [η, 1] and h(x) ≈ 1 for
t ∈ [−1,−η]. This can be done via Chebyshev approximation, see Baldi, Mourrain [4, Section
2.3]. Then, we set q(x) = M ·

∑m
j=1 gj(x)h(gj(x)), with M > 0. Note that q ∈ Q(g) by

definition. Note further that, for x ̸∈ X sufficiently far from the boundary bd(X), at least
one gj(x) < −η, whence gi(x)h(gi(x)) ≪ 0, whereas for x ∈ X sufficiently far from bd(X), all
gj(X) ∈ [η, 1], whence q(x) ≈ 0. It remains to analyze the situation for x close to bd(X), where
(some of the) constraints gj(x) are close to 0. There, a careful comparison of the gradients ∇f
of f and ∇gj of the constraints gj is required to finish the argument. This comparison involves
the so-called  Lojasiewicz-constant of g, which appears in the exponent of the final convergence
rate. See Baldi, Mourrain [4] for details.

Recipe for analyzing the lower bounds (II): Algebro-geometric reduction

Convergence rates for Lasserre’s hierarchy of lower bounds on general semialgebraic sets
may be derived from rates on special sets (such as the simplex or hypercube), through
delicate algebraic and geometric arguments.

3.3. Extensions. We end this section with some recent extensions of the techniques described
above.

3.3.1. Algebro-geometric reduction for the hypercube. Baldi and Slot [6] use a variation of the
reduction technique described above to prove convergence rates in O(1/r) for the Putinar-type
lower bounds on [−1, 1]n, based on the quadratic module (recall that Laurent, Slot [38] only
show rates for the stronger Schmüdgen-type bounds, based on the preordering). This extension
shows that the algebro-geometric method can also be useful for analyses on specific, rather than
general sets X. The main difference w.r.t. the above is that the ‘simple’ set Y ⊇ [−1, 1]n used
in Baldi, Slot [6] depends on f, r (while it was static before). In fact, somewhat remarkably,
Y = Se(h) = [1 − η, 1 + η]n is itself just a scaled hypercube, with η = η(f, r) > 0. The
use of a dynamic Y eliminates the need for the regularizing polynomial q, permitting to prove
stronger rates than those in Baldi et al. [4, 5] (which would give a rate in O(1/ 10

√
r) in this
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setting). On the other hand, proving an inclusion T (h) ⊆ Q(g) with proper degree bounds is
more complicated. See Baldi, Slot [6] for details.

3.3.2. Sparse polynomial optimization. As we have seen in Section 1.4, the semidefinite programs
used to model Lasserre’s hierarchies in n variables at degree r involve matrices of size Nr =

(
n+r
r

)
.

These SDPs are thus intractable already for moderately large values of n. To address this
issue, variants of Lasserre’s hierarchy of lower bounds that exploit sparsity of the underlying
polynomial optimization problem have been proposed in the literature, see Magron et al. [40]
for an overview. A recent work by Korda et al. [28] extends both of the techniques discussed in
Section 3 to this setting, yielding a performance analysis for the sparse bounds. Furthermore,
the convergence rates achieved there are stronger than those of Section 3 for sufficiently sparse
POPs (relative to the size of the resulting SDPs).

3.3.3. Generalized moment problems. Polynomial optimization is a special case of the generalized
problem of moments (GPM), which asks to minimize a linear function over the cone of positive
Borel measures on Rn under some linear conditions on the moments. Lasserre’s approximation
hierarchies naturally extend to the GPM, see Lasserre [32], de Klerk, Laurent [20]. Convergence
rates for these extended hierarchies have been established, especially in the context of dynamical
systems, optimal control and volume estimation, by Korda et al. [26, 27] and Schlosser et
al. [57, 58]. The analyses in the latter two recent works rely directly on (a combination of)
existing convergence results for polynomial optimization discussed above.

4. Discussion

Tightness of the performance analysis. As we have seen, the convergence rates for the hierarchy
of upper bounds presented in Section 2 are essentially tight (up to log-factors). For the lower
bounds, the situation is much less clear. The literature on ‘worst-case’ examples for the lower
bounds is mostly qualitative in nature, see, e.g., Scheiderer [65], Powers, Scheiderer [51]. On
the quantitative side, Baldi and Slot [6] recently showed that the Putinar-type lower bounds on
X = [−1, 1]n converge at a rate no better than Ω(1/r8). Note that this negative result is still
rather far away from the best-known positive result in that setting, which is in O(1/r). It is an
interesting research direction to prove negative results on the convergence of the lower bounds
that either match the positive results more closely; or apply to more general X; or apply to the
Schmüdgen-type bounds.

Exponential convergence under local optimality conditions. A common feature of the convergence
rates in Table 2 is that they are subexponential, in particular no better than O(1/rc) for some
constant c > 0 depending on the set X and the type of certificate. In light of the negative
results mentioned above, these are likely ‘optimal’ (up to improving the exponent c). On the
other hand, Bach and Rudi [3] show an exponential convergence rate for the Schmüdgen-type
bounds on X = [−1, 1]n, which holds under an additional assumption on the objective function
f . Roughly speaking, f should have a (strictly) positive definite Hessian at its global minimizer
x∗ ∈ [−1, 1]n, see Bach, Rudi [3] for details.4 Under this assumption, f − fmin can be written
as a sum of squares of smooth functions (not necessarily polynomials). In turn, these smooth
functions can be approximated by polynomials via (truncated) expansion in the Fourier basis,
leading to a sum-of-squares representation of f − fmin. The exponential convergence rate for

4Note that this assumption holds generically. Under a similar assumption, Nie [44] showed earlier that the
hierarchy of lower bounds has finite convergence for general X = Se(g), i.e., f − fmin belongs to Q(g)r for some

r ∈ N. However, his result gives no quantitative information on r.
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Lasserre’s lower bounds then follows from the fact that the Fourier coefficients of a smooth
function decay exponentially quickly. As the approach of Bach and Rudi relies primarily on
Fourier analysis, it seem likely that it could be extended to other distinguished X, such as
X = Sn−1. More unclear is whether it could also be used to prove guarantees for general
semialgebraic sets X, which we believe is an interesting open question.

Optimization over finite semialgebraic sets. In this survey, we have focused on the setting where
X ⊆ Rn is an infinite set. Sum-of-squares hierarchies have been extensively studied for opti-
mization over finite semialgebraic X as well, particularly for (subsets of) the boolean hypercube:
X ⊆ {−1, 1}n (or X ⊆ {0, 1}n). A key difference in the finite setting is that the hierarchies
always converge in a finite number of steps (under a minor condition on the description of X),
see Nie [43]. In fact, they converge in Θ(n) steps for a semialgebraic subset of the boolean cube,
see Laurent [36], Fawzi et al. [14]. For this reason, asymptotic analysis as r → ∞ does not
make sense. Rather, one often fixes the level r ∈ N of the hierarchy, and lets the number of
variables n tend to infinity. There is a large literature on this regime in the theoretical computer
science community, see, e.g., Barak, Steurer [7] and references therein. One could also consider
a ‘hybrid’ regime, where r = c · n for some constant c > 0 and n, r → ∞ simultaneously. In this
regime, the polynomial kernel method (see Section 3.1) yields error guarantees for the upper
and lower bounds on X = {−1, 1}n, see Slot, Laurent [64] for details.

References

[1] A. A. Ahmadi, A. Olshevsky, P. A. Parrilo, and J. N. Tsitsiklis, NP-hardness of deciding convexity of quartic
polynomials and related problems, Mathematical Programming, 137(1-2) (2013) 453–476.
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[66] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets, Math. Ann. 289(2), 203–206, 1991.
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