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Abstract
We study a Markov decision problem in which the state space is the set of finite marked point patterns in the plane, the 
actions represent thinnings, the reward is proportional to the mark sum which is discounted over time, and the transitions are 
governed by a birth-death-growth process. We show that thinning points with large marks maximises the discounted total 
expected reward when births follow a Poisson process and marks grow logistically. Explicit values for the thinning threshold 
and the discounted total expected reward over finite and infinite horizons are also provided. When the points are required to 
respect a hard core distance, upper and lower bounds on the discounted total expected reward are derived.
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1 Introduction

A realisation of a marked spatial point process is a finite list 
of locations in some compact subset of the plane together 
with real-valued or categorical marks attached to it (Chiu 
et al. 2013). Examples include earthquakes labelled by time 
of occurrence and magnitude, cells labelled by geometric 
marks (roundness, size etc) or atom locations in crystals 
labelled by their type.

In forestry, modelling and inference in terms of point 
processes marked by species label or diameter at breast 
height has a long history. The seminal monograph by Matérn 
(1986), a revision and extension of his earlier licentiate and 
PhD theses from 1947 and 1960, respectively, has been par-
ticularly influential. In this book, a class of isotropic spatial 
covariance functions and various models for marked point 
processes—including some based on mark-dependent thin-
ning—that now bear Matérn’s name were introduced. From 
an applied point of view, the sampling errors of line and 
area surveys were investigated. Others have looked at, for 

example, the characterisation of the amount of clustering/
inhibition between trees (Loosmore and Ford 2006), at test-
ing biodiversity axioms (Wiegand et al. 2020; De Jongh and 
Van Lieshout 2022), as well as at the modelling of hierarchi-
cal dependence and growth (Renshaw et al. 2009). Recent 
years have witnessed a growing interest in more complicated 
mark spaces such as function spaces (Ghorbani et al. 2021). 
An overview of the state of the art can be found in the dis-
cussion paper by Eckardt and Moradi (2024).

This paper is motivated by timber harvesting (Pretzch 
2009) where the objective is to design a policy that max-
imises the profit or, equivalenty, the volume of timber over 
time. The classical strategy is to use discretised stand based 
growth tables and dynamic programming (Rönnqvist 2003). 
Optimisation of point process based policies has been rarer 
due to ‘a lack of models and to difficulties in selecting trees 
to be removed’ (Pukkala and Miina 1998) and tend to be 
simulation based (Fransson et al. 2020; Pukkala et al. 2015; 
Renshaw and Särkkä 2001; Renshaw et al. 2009).

A theory for optimal decision making using spatial point 
process models has been developed in other fields, for exam-
ple in mobile network optimisation. However, the role of the 
point process tends to be auxiliary in that it is used to model 
the spatial distribution of users, base stations and so on, 
from which coverage probabilities and other performance 
characteristics of the network can be calculated (Baccelli 
and Blaszczyszyn 2009; Lee et al. 2020; Lu et al. 2021; 
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Khloussy et al. 2015). Spatial point process models are also 
convenient in multi-target tracking (Van Lieshout 2008) and 
their void probabilities or divergence measures can form the 
basis for observer trajectory optimisation (Beard et al. 2017).

Our focus of interest is to assume that policies are defined 
directly on the marked point process in terms of a mark-
dependent thinning (Matérn 1986; Myllimäki 2009). Such 
policies are well-known in forestry. German thinning, for 
instance, is supposed to enhance natural selection by felling 
a fraction of those trees whose diameter at breast height is 
smaller than some threshold; French thinning (also known as 
thinning from above) is similar, except that a fraction of trees 
with large rather than small sizes is removed to stimulate for-
est rejuvenation. In either case, picking a policy amounts to 
choosing the threshold. Simulations in Fransson et al. (2020) 
and Pukkala et al. (2015) suggest that French thinning might 
be the better strategy.

The plan is as follows. Section 2 reviews basic concepts 
from Markov decision theory and marked point processes. 
In Sect. 3, we give a formal definition of a decision pro-
cess in which the actions consist of deleting a subset of the 
current points and the reward is proportional to the marks. 
The stochastic process that governs the dynamics is a birth-
and-death process with independent deaths and a Poisson 
process of births; the marks grow logistically. We calculate 
the discounted total expected reward function over finite and 
infinite horizons and derive an optimal policy. In Sect. 4, we 
move on to allow interaction between the points and replace 
the Poisson birth process by one in which no point is allowed 
to come too close to another point. In this setting, we provide 
upper and lower bounds on the discounted total expected 
reward function over finite and infinite horizons. To not 
interrupt the flow of arguments, technical proofs are deferred 
to Sect. 6. Section 5.1 returns to the motivating example of 
timber harvesting and compares optimal French thinning to 
sub-optimal German thinning. In Sect. 5.2 the tightness of 
the bounds on the reward function is investigated by means 
of simulated examples. We conclude by mentioning some 
topics for further research.

2  Preliminaries and notation

2.1  Markov decision theory

A Markov decision process (Bertsekas 1995; Feinberg and 
Schwartz 2002; Puterman 1994) is defined as follows. Write 
X  for the state space that contains all states that the process can 
be in. When the system is in state x ∈ X  , the decision maker 
can take an action in some set A(x) that may depend on the 
state x. If action a ∈ A(x) is chosen, a direct reward r(x, a) is 
earned and a probability mass function p(⋅|x, a) on X  governs 
the next state of the process. The fact that only the current state 

and action matter rather than the entire past history justifies 
the epithet ‘Markov’.

A policy Φ = (�i)
∞
i=0

 is a procedure for the selection of an 
action at each decision time i ∈ ℕ0 = {0, 1, 2,…} . Such a pol-
icy could be random or deterministic, and in principle take into 
account the entire history of the process. A policy is said to be 
stationary if its members �i ≡ � do not depend on the time i.

Let (Xi, Yi) denote the stochastic process of states Xi and 
actions Yi with i = 0, 1,… . Write �Φ for the expectation 
operator when the transitions are driven by policy Φ and let 
0 ≤ 𝛼 < 1 be a discount factor. Then an optimal policy max-
imises the �-discounted total expected reward

Note that the value of a reward r decreases over time: r is 
only worth 𝛼ir < r after i time units. If the reward function 
is bounded, then (1) is well-defined.

When the state and action spaces are both finite, by Puter-
man (1994, Theorem 5.5.3b) it suffices to consider only 
Markov policies for which the actions chosen depend only on 
the current state and not on the past history. Furthermore, by 
Puterman (1994, Theorem 6.2.10), one may restrict oneself 
even further to the class of Markov policies that are deter-
ministic and stationary. Note that such policies can be fully 
described by Φ = (�,�,…) for some mapping � ∶ X → A 
that assigns an action �(x) ∈ A(x) to the current state x. The 
maximal �-discounted total expected reward can be found 
by policy iteration [e.g. Puterman (1994, Theorem 6.4.2)] or 
value iteration, also known as successive approximation or 
dynamic programming (Puterman 1994, Section 6.3). Policy 
iteration is based on successive improvement of the policy. If 
the current policy is Φ = (�,�,…) , calculate its ‘value’ func-
tion v by solving the system of equations

Any solution Φ̃ = (�̃�, �̃�,…) to

then yields an improved policy. This procedure is repeated 
until no further improvement is possible. Dynamic program-
ming targets (1) directly. Specifically, if the current value 
function is v, find an improved ṽ as follows:

(1)vΦ
�
(x) = �

Φ

[
∞∑
i=0

�ir(Xi, Yi)|X0 = x

]
.

v(x) − �
∑
y∈X

v(y)p(y|x,�(x)) = r(x,�(x)), x ∈ X.

�̃�(x) = argmax
a∈A(x)

{
r(x, a) + 𝛼

∑
y∈X

v(y)p(y|x, a)
}

, x ∈ X,

ṽ(x) = max
a∈A(x)

{
r(x, a) + 𝛼

∑
y∈X

v(y)p(y|x, a)
}

, x ∈ X.
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The iteration stops when the improvement ||v − ṽ|| is smaller 
than a user-defined precision threshold.

When the cardinality of the state or action space is infi-
nite, policy iteration is not guaranteed to converge in a finite 
number of steps [e.g. Puterman (1994, Section 6.4) or Bert-
sekas and Shreve (1978, p. 64)]. The dynamic programming 
approach on the other hand is amenable to generalisation to 
more general state and action spaces, and will form the basis 
for our exploration in the next sections.

2.2  Marked point processes

A point process on a compact set W ⊂ ℝ
d is defined as a 

measurable mapping from some probability space into the 
set of boundedly finite integer-valued measures equipped 
with the Borel �-algebra of the weak topology. A point pro-
cess is simple if it almost surely does not contain multiple 
points in the sense that the measures assign mass 0 or 1 
to sets consisting of a single point. In this case the meas-
ures may be identified with their support and realisations 
of the point process take the form x = {w1,… ,wn} ⊂ W 
for n ∈ ℕ0 . For further details, we refer to (Daley and Vere-
Jones 2008, Chapter 9.1).

A finite marked point process X (Daley and Vere-Jones 
2003, Definition 6.4.1) with points in a compact set W ⊂ ℝ

d 
and marks in a complete separable metric space L is a point 
process on the product space W × L such that the number of 
points in W × L is finite. When the ground process obtained 
from X upon disregarding the marks is simple, realisations 
are of the form {(w1,m1),… , (wn,mn)} for wi ∈ W  , mi ∈ L 
( i = 1,… , n ) and n ∈ ℕ0 . In this case, we shall say that X 
itself is simple.

The intensity measure Λ of X is defined on product sets 
A = B × C in the Borel product �-algebra on W × L by

the expected number of points in B with marks in C, and can 
be extended to general Borel sets through linear combina-
tions and monotone limits. More generally, for any measur-
able function f ≥ 0 on W × L , and assuming that X is simple,

Here the left-hand side is taken to be infinite if and 
only if the right-hand side is. This identity is known as 
the Campbell–Mecke formula (Daley and Vere-Jones 
2008, Section 9.5).

To close this section, we recall the definition of an inde-
pendently marked Poisson process. Let � ∶ W → [0,∞) be a 
measurable, integrable function and � a probability measure 
on L. Then, N, the total number of marked points is Poisson 

Λ(A) = �X(A) = �X(B × C),

(2)�

[ ∑
(w,m)∈X

f (w,m)

]
= ∫W×L

f (w,m) dΛ(w,m).

distributed with rate parameter ∫
W
�(w)dw and given N, the 

locations of the marked points in W are independent and 
scattered according to a probability density proportional 
to � , the marks are independent and distributed according 
to � . This point process is simple (Daley and Vere-Jones 
2003, Section 5.4).

3  Marked Poisson process model 
with logistic growth

3.1  Definition of the model

Let the state space X  consist of finite simple marked point 
patterns on a compact set W ⊂ ℝ

2 with marks in L = [0,K] 
for some K > 0 (cf. Sect. 2.2). When at time i ∈ ℕ0 , the pro-
cess is in state x , a thinning action is carried out, resulting in 
a new state a that consists of all retained points a ⊂ x . Thus, 
in the notation and framework of Sect. 2.1, the action space 
A(x) is finite and contains all subsets of x . Define a reward 
function r(x, a) by

Thus, the reward is proportional to the sum of the marks 
of all removed points. When R > 0 , the reward r(⋅, ⋅) takes 
non-negative values. Moreover, since the mark content in 
an ℝ+-marked point process is a random variable by Daley 
and Vere-Jones (2003, Proposition 6.4.V), r is well-defined.

Upon taking action a in state x , the dynamics that lead 
to the next state are modelled as a birth-death-growth pro-
cess. Specifically, the marks of the retained points (x,m) ∈ a 
grow according to the well-known logistic model that was 
proposed around 1840 by Verhulst and Quetelet (Richards 
1959). In this model, when the mark at time 0 is m > 0 , the 
mark at time n ∈ ℕ0 is

By convention, g(n)(0) = 0 . The parameter 𝜆 > 0 governs the 
rate of growth and K ≥ m ≥ 0 is an upper bound on the size. 
In combination with independent births and deaths, the next 
state is defined by the following dynamics:

• delete x ⧵ a;
• independently of other points, let each (xi,mi) ∈ a die 

with probability pd ∈ (0, 1) (natural deaths) and other-
wise grow to (xi, g(1)(mi)) as in (4);

• add a Poisson process on W with intensity function 
� ∶ W → ℝ

+ and mark its points independently accord-
ing to a probability measure � on [0, K].

(3)r(x, a) = R
∑

(x,m)∈x⧵a

m, x ∈ X, a ⊂ x.

(4)
g(n)(m) =

K

1 +
(

K

m
− 1

)
e−�n

.
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Write (Xi, Yi)
∞
i=0

 for the sequence of successive states Xi and 
actions Yi . A randomised policy Φ = (�i)

∞
i=0

 is a sequence 
of conditional probability kernels �i(⋅|X0 , Y0,… , Xi−1 , 
Yi−1 , Xi) on A to generate Yi based on the history of the 
process such that �i(A(xi)|x0, a0,… , xi) = 1 . If the policy 
is Markov and deterministic, Yi is simply a function of 
Xi , and one may write Yi = �i(Xi) . Recalling the defini-
tions of the action spaces and of the reward function, for 
0 ≤ 𝛼 < 1 , the infinite horizon �-discounted total expected 
reward function (1) under policy Φ = (�i)

∞
i=0

 with initial 
state X0 = x reads

The following lemma shows that the model just described 
is well-defined.

Lemma 1 The infinite horizon �-discounted total expected 
reward function vΦ

�
(x) , x ∈ X  , defined in (5) is finite for all 

0 ≤ 𝛼 < 1 , all R > 0 and all policies Φ.

Proof Pick x ∈ X  and write n(x) < ∞ for its cardinality. 
Since the growth function (4) is bounded by K,

For i > 0 , Xi is the union of survivors from x , survivors 
from subsequent generations starting with X1 ⧵ X0 up to 
Xi−1 ⧵ Xi−2 and points born in the time since the last deci-
sion. Therefore, recalling the birth and death dynamics,

Hence,

For all pd ∈ (0, 1) , the first series in the right-hand side con-
verges to 1∕(1 − �(1 − pd)) . Since

for all pd ∈ (0, 1) and � is integrable, vΦ
�
(x) is finite.   ◻

(5)vΦ
�
(x) = �

Φ

[
∞∑
i=0

�i

(
R

∑
(x,m)∈Xi⧵Yi

m

)
∣ X0 = x

]
.

�
Φ

[ ∑
(x,m)∈X0⧵Y0

m ∣ X0 = x

]
≤ Kn(x).

�
Φ

[ ∑
(x,m)∈Xi⧵Yi

m|X0 = x

]
≤ Kn(x)(1 − pd)

i

+ K �W

�(w)dw

i−1∑
k=0

(1 − pd)
k.

vΦ
�
(x) ≤ RKn(x)

∞∑
i=0

�i(1 − pd)
i

+ RK �W

�(w)dw

∞∑
i=1

�i

i−1∑
k=0

(1 − pd)
k.

∞∑
i=1

𝛼i

i−1∑
k=0

(1 − pd)
k =

∞∑
i=1

𝛼i
1 − (1 − pd)

i

pd
≤ 1

pd

∞∑
i=1

𝛼i < ∞

The reward function r itself is not bounded, so the (N) 
regime of Bertsekas and Shreve (1978, Chapter 9) applies.

3.2  Optimal policy and reward

Our objective in this section is to find the best policy in the 
sense that it maximises the total expected reward, discounted 
for elapsed time.

Formally, the optimal �-discounted total expected reward 
v∗
�
(x) is defined as the supremum of vΦ

�
(x) over all poli-

cies, including randomised ones. By Bertsekas and Shreve 
(1978, Proposition 9.1), the supremum in the definition of 
v∗
�
(x) may be taken over the class of Markov policies, and, 

by Bertsekas and Shreve (1978, Proposition 9.8), satisfies 
the equation

where X is distributed according to the one step birth-death-
growth dynamics from state x under action a . Observe that 
the optimality equations (6) are not sufficient conditions for 
v∗
�
 . Nevertheless, v∗

�
(x) can be calculated as the limit of a 

dynamic programming algorithm. Set v0(x) = 0 for all x ∈ X  
and set n = 1 . Define, for every x ∈ X ,

Then set n = n + 1 and repeat. This algorithm converges to 
v∗
�
(x) as n → ∞ by Bertsekas and Shreve (1978, Proposi-

tion 9.14) but, in general, is of little help in constructing an 
optimal policy, let alone a stationary one. Given a station-
ary policy Φ = (�,�,…) , a necessary and sufficient condi-
tion for it to be optimal according to Bertsekas and Shreve 
(1978, Proposition 9.13) is that

For our model, the dynamic programming algorithm does 
suggest an optimal deterministic and stationary Markov 
policy.

Theorem 1 Consider the Markov decision process with state 
space X  , action spaces A(x) = {y ∈ X ∶ y ⊂ x} , x ∈ X  , 
reward function (3) with R > 0 , and birth-death-growth 
dynamics based on independent deaths with probability 
pd ∈ (0, 1) , a Poisson birth process with measurable, inte-
grable intensity function � ∶ W → ℝ

+ marked independently 
according to probability measure � on [0, K] for K > 0 and 
logistic growth function (4). Then, for 0 ≤ 𝛼 < 1,

(6)

v∗
𝛼
(x) = max

a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
v∗
𝛼
(X) ∣ x, a

]}
, x ∈ X,

vn(x) = max
a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
vn−1(X) ∣ x, a

]}
.

(7)vΦ
𝛼
(x) = max

a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
vΦ
𝛼
(X)|x, a]

}
.
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where

Furthermore, the optimal �-discounted total expected reward 
corresponds to a stationary policy that removes all points 
with a mark that is at least

under the convention that 0∕0 = 0.

We close this section with three remarks. Firstly, for 
� = 1 , the total expected reward v∗

1
(x) is infinite. Secondly, 

in the proof of Theorem 1 in Sect. 6, we derive an optimal 
policy and corresponding �-discounted total expected reward 
for finite time horizons too. Finally, note that the suprema in 
s(m) and d∗

�
 are attained.

4  Hard core models with logistic growth

In this section, we refine the Poisson model of the previ-
ous section to the case where births are governed by a hard 
core process whose realisations are not allowed to contain 
a pair of points {x1, x2} ⊂ W  such that ||x1 − x2|| ≤ K . For 
the motivating example from forestry in which the marks 
correspond to the diameter at breast height, the condition 
ensures that all trees can grow to their maximal size.

As in Sect. 3.1, when at time i ∈ ℕ0 the process is in state 
x , a thinning action is carried out, resulting in a new state a 
that consists of all retained points. The reward function (3) 
also remains unchanged.

The dynamics are modified in such a way that the hard 
core is respected. Thus, let the process be in some state x 
satisfying the hard core constraint and suppose that action 
a is taken. The next state is then governed by the following 
birth-death-growth process:

• delete x ⧵ a;
• independently of other points, let each (xi,mi) ∈ a 

die with probability pd ∈ (0, 1) and otherwise grow 
to (xi, g(mi)) for some bounded, continuous function 
g ∶ [0,K] → [0,K] satisfying m ≤ g(m) for m ∈ [0,K];

• add a hard core process on W with hard core dis-
tance K and measurable, integrable intensity function 

(8)

v∗
�
(x) =

R�

1 − � ∫W ∫
K

0

s(m) �(w)dwd�(m) + R
∑

(x,m)∈x

s(m),

s(m) = sup
n∈ℕ0

⎧
⎪⎨⎪⎩

K�n(1 − pd)
n

1 +
�

K

m
− 1

�
e−�n

⎫
⎪⎬⎪⎭
, m ∈ [0,K].

d∗
�
= sup

n∈ℕ0

{
K

1 − e−n�

(
�n(1 − pd)

n − e−n�
)}

� ∶ W → ℝ
+ ; mark its points independently according 

to a probability measure � on [0, K] and remove all 
points that fall within distance K to a point in a.

In this framework, the reward function is bounded since 
the hard core condition implies an upper bound on the 
number of points that can be alive at any time. We are 
therefore in the (D) regime of Bertsekas and Shreve 
(1978, Chapter 9).

As before, define v∗
�
(x) as the supremum of (5) over all 

policies Φ . By Bertsekas and Shreve (1978, Proposition 9.1) 
it suffices to consider Markov policies only, and v∗

�
(x) is the 

limit of the dynamic programming algorithm (Bertsekas 
and Shreve 1978, Proposition 9.14). The optimality condi-
tion (7) applies. Moreover, since the action sets are finite, 
Corollary 9.17.1 in Bertsekas and Shreve (1978) guarantees 
the existence of an optimal deterministic stationary policy. 
An explicit expression seems hard to obtain. However, the 
following bounds on the finite horizon discounted total 
expected reward function are available.

Theorem 2 Consider the Markov decision process with state 
space X  , action spaces A(x) = {y ∈ X ∶ y ⊂ x} , x ∈ X  , 
reward function (3) with R > 0 , and birth-death-growth 
dynamics described above. Write g(n) for the n-fold compo-
sition of the growth function g.

For � ∈ [0, 1) and x ∈ X  containing no pair of K-close 
points, initialise v0(x) = 0 . Define, for n ∈ ℕ,

where X is distributed according to the one step birth-
death-growth dynamics from x under action a . Then 
ṽn(x) ≤ vn(x) ≤ v̂n(x) where

with s̃0 = ŝ0 = 0 and, for n ∈ ℕ,

and, writing b(x, K) for the closed ball centred at x with 
radius K,

vn(x) = max
a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
vn−1(X) ∣ x, a

]}
,

ṽn(x) =R
∑

(x,m)∈x

s̃n(x,m)

+ R

n−1∑
k=1

𝛼k ∫W ∫
K

0

s̃n−k(w,m) 𝛽(w)dwd𝜈(m)

v̂n(x) =R
∑

(x,m)∈x

ŝn(m)

+ R

n−1∑
k=1

𝛼k ∫W ∫
K

0

ŝn−k(m) 𝛽(w)dwd𝜈(m)

ŝn(m) = max
{
m, 𝛼(1 − pd)g

(1)(m), … , 𝛼n−1(1 − pd)
n−1g(n−1)(m)

}
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The proof of Theorem 2 carries over to the case that 
g and ŝn are space-dependent, in other words, g(x, m), 
ŝn(x,m) are functions of locations and marks. When the 
growth function is logistic,

Over an infinite time horizon, the optimal �-discounted total 
expected reward is bounded by ṽ and v̂ which have the same 
functional forms as ṽn and v̂n in Theorem 2 for s̃ and ŝ given 
in the following result. The bounds coincide if � = 0.

Corollary 1 The functions ŝn and s̃n defined in Theorem 2 
take values in [0, K] and increase monotonically to

and, for x ∈ W  and m ∈ [0,K],

s̃n(x,m) = max{m, 𝛼(1 − pd)g
(1)(m)

− 𝛼K ∫b(x,K)∩W

𝛽(w)dw, … ,

𝛼n−1(1 − pd)
n−1g(n−1)(m)

− 𝛼K ∫b(x,K)∩W

𝛽(w)dw

n−2∑
i=0

𝛼i(1 − pd)
i}.

s̃n(x,m) = max
i=0,…,n−1

⎧
⎪⎨⎪⎩

K𝛼i(1 − pd)
i

1 +
�

K

m
− 1

�
e−𝜆i

−𝛼K

�
1 − 𝛼i(1 − pd)

i

1 − 𝛼(1 − pd)

�
∫b(x,K)∩W

𝛽(w)dw

�
;

ŝn(m) = max
i=0,…,n−1

⎧
⎪⎨⎪⎩

K𝛼i(1 − pd)
i

1 +
�

K

m
− 1

�
e−𝜆i

⎫
⎪⎬⎪⎭
.

ŝ(m) = sup
n∈ℕ0

{
𝛼n(1 − pd)

ng(n)(m)
}
, m ∈ [0,K],

as n → ∞.

5  Examples

5.1  A comparison between French and German 
thinning

Let us return to the motivating example in which the marks 
represent the diameter at breast height of a tree and the 
reward is the value of the timber harvest. Suppose that the 
dynamics are those outlined in Sect. 3. Then, according to 
Theorem 1, the optimal policy is a French thinning, that is, 
to fell all trees whose diameter is at least as large as some 
threshold value.

An alternative approach is that of German thinning or 
thinning from below in which small rather than large trees 
are being harvested. Using the fact that trees can only grow 
bigger, so that any tree is felled upon first appearance if at 
all, it is not hard to see that the �-discounted total expected 
reward function is of the form (8) with

where d is the threshold for harvesting. Thus, it is best to cut 
all trees immediately, that is, to set d = K.

To evaluate what is lost compared to the the optimal 
policy, the right panel of Fig. 1 shows the finite horizon �
-discounted total expected reward as a function of the time 
horizon for French and for German thinning. The initial pat-
tern x , shown in the left panel of Fig. 1, was a sample from 
a Poisson process with intensity � = 5 on W = [0, 5]2 . For 

s̃(x,m) = sup
n∈ℕ0

{
𝛼n(1 − pd)

ng(n)(m)

−𝛼K ∫b(x,K)∩W

𝛽(w)dw

n−1∑
i=0

𝛼i(1 − pd)
i

}

s(m) = m 1{m ≤ d},

Fig. 1  Left panel: sample x 
from a Poisson process with 
intensity � = 5.0 on [0, 5]2 
marked independently accord-
ing to a Beta distribution on 
[0, 0.1] with shape parameters 
�1 = 2.0 and �2 = 20.0 . Right 
panel: graphs of the finite hori-
zon �-discounted total expected 
reward v

n
(x) against n for the 

birth-death-growth dynamics of 
Sect. 5 under the optimal policy 
(solid line) and under German 
thinning at threshold level K 
(dotted line)
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the mark dynamics, we used a logistic growth function with 
� = 2 and maximal size K = 0.1 ; the initial marks were sam-
pled from a Beta distribution on [0, 0.1] with shape param-
eters �1 = 2 and �2 = 20 . The death rate was pd = 0.05 , the 
discount factor � = 0.9 and the reward parameter R = 1 . Tak-
ing a time horizon up to n = 50 , the solid line in the right 
panel represents the �-discounted total expected reward (10) 
under the optimal policy that at each decision epoch fells all 
trees whose diameter at breast height is at least

the dotted line is the graph of

corresponding to the greedy German thinning. Note that 
the latter is by far the inferior policy. Its discounted total 
expected reward tends to 11.4 compared to 76.5 for the opti-
mal policy.

5.2  Tightness of bounds for hard core models

The key idea in the proof of Theorem 2, given in full in 
Sect. 6, is to bound integrals of the form

from below by

and from above by

to obtain, respectively, the lower and upper bounds ṽn(x) and 
v̂n(x) on the finite horizon discounted total expected reward 
function. One would expect the tightness to depend on the 
amount of overlap in balls around the points of the process. 
When the intensity function is small, there tend to be few 
points that are spread out well. On the other hand, when � 
gets larger, more points will be located closer together which 
may affect the accuracy of the approximation.

To back up this conjecture, we calculated v̂n(x) and ṽn(x) 
in two regimes, a dense one and a sparse one. For specificity, 
we considered the stationary case with 𝛽 > 0 constant. For 
the inital pattern x , a sample from a Strauss process (Kelly 
and Ripley 1976) on W = [0, 5]2 with interaction parameter 

dn =max

{
0,K

�(1 − pd) − e−�

1 − e−�
, … , K

�n−1(1 − pd)
n−1 − e−(n−1)�

1 − e−(n−1)�

}

=0 × 1{n = 1} + 0.083 × 1{n ≥ 2}, n = 1, 2,… , 50,

vn(x) = R
∑

(x,m)∈x

m +
�1RK�|W|
�1 + �2

� − �n

1 − �
, n = 1, 2,… , 50,

∫W×[0,K]

sn(w, l)1{w ∉ ∪(x,m)∈�(x)b(x,K)}�(w)dwd�(l)

∫W×[0,K]

sn(w, l)�(w)dwd�(l) − K
∑

(x,m)∈�(x)

Λ(b(x,K))

∫W×[0,K]

sn(w, l)�(w)dwd�(l)

set to zero was chosen. The activity parameter was set to 
give the required intensity: � = 1.0 in the sparse regime and 
� = 4.3 in the dense regime. For the mark dynamics, we 
used a logistic growth function with � = 2 and maximal size 
K = 0.1 ; the initial marks were sampled from a Beta distri-
bution on [0, K] with shape parameters �1 = 2 and �2 = 20 . 
The death rate was set to pd = 0.05 . Finally, we used dis-
count factor � = 0.9 and reward parameter R = 1.

The results are plotted in Fig. 2. The left panels show the 
pattern x . In the right panels, the solid lines are the graphs 
of v̂n(x) as a function of n, the dotted lines show ṽn(x) plot-
ted against n. Integrals were estimated by the Monte Carlo 
method with 1,  000 samples. In the sparse regime, the 
approximation is quite good, for the denser regime, the gap 
between the two graphs is quite wide except for very small 
n. In both cases, the dynamic programming algorithm con-
verges rapidly.

6  Proofs

Proof of Theorem 1 After initialising v0(x) = 0 for all x ∈ X  , 
clearly the optimal expected reward after one action is 
v1(x) = R

∑
(x,m)∈x m, which is attained for action a = � , or, 

in other words, by removing all points with mark greater 
than or equal to d1 = 0 . The proof proceeds by induction. 
Set, for n ∈ ℕ,

and suppose that the optimal �-discounted total expected 
reward vn(x) over n actions is attained by removing all points 
whose mark is greater than or equal to dn and is given by

where, for 1 ≤ k ≤ n,

Now, for n + 1 , the optimal finite horizon �-discounted total 
expected reward is

where X is distributed according to the one step birth-death-
growth dynamics from x under action a . By the induction 

(9)

dn = max

{
0,K

�(1 − pd) − e−�

1 − e−�
, … , K

�n−1(1 − pd)
n−1 − e−(n−1)�

1 − e−(n−1)�

}

(10)
vn(x) = R

n−1∑
k=1

�k ∫W ∫
K

0

sn−k(m) �(w)dwd�(m)

+ R
∑

(x,m)∈x

sn(m),

sk(m) = max
{
m, �

(
1 − pd

)
g(1)(m), … , �k−1

(
1 − pd

)k−1
g(k−1)(m)

}
.

vn+1(x) = max
a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
vn(X) ∣ x, a

]}
,
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assumption, the discounted expectation ��
[
vn(X) ∣ x, a

]
 is 

the sum of

and contributions from the points in a that survive as well 
as from points born in the interval between decisions n and 
n + 1 . These contributions are, respectively,

and, using the Campbell–Mecke formula (2),

The optimal action is to assign a point (x,m) ∈ x to x ⧵ a 
if and only if m ≥ �(1 − pd)sn(g

(1)(m)). By the induction 
assumption and (4), this is the case if and only if

�R

n−1∑
k=1

�k ∫W ∫
K

0

sn−k(m) �(w)dwd�(m)

= R

n∑
k=2

�k ∫W ∫
K

0

sn+1−k(m) �(w)dwd�(m)

�R
∑

(x,m)∈a

(
1 − pd

)
sn(g

(1)(m))

�R∫W ∫
K

0

sn(m) �(w)dwd�(m).

for all integers 1 ≤ k ≤ n . Consequently, dn+1 has the 
required form. For this allocation rule, the reward is 
max

{
m, �

(
1 − pd

)
sn(g

(1)(m))
}
= sn+1(m) and the induction 

step is complete.
Next, let n go to infinity and fix m ∈ [0,K] . Note that 

s(m) is finite for all pd ∈ (0, 1) and 0 ≤ 𝛼 < 1 . Additionally, 
limn→∞ sn(m) = s(m) . Thus, for any x ∈ X ,

as n → ∞ . Furthermore,

because of dominated convergence applied to the doubly 
indexed sequence ak,n defined by 1{k ≤ n − 1}�k ∫ sn−k d�. 
In conclusion, by Bertsekas and Shreve (1978), Propo-
sition  9.14), for each x ∈ X  , limn→∞ vn(x) = v∗

�
(x) , the 

(11)m ≥ �k(1 − pd)
kg(k)(m) ⇔ m ≥ K

�k(1 − pd)
k − e−k�

1 − e−k�

R
∑

(x,m)∈x

sn(m) → R
∑

(x,m)∈x

s(m)

n−1∑
k=1

�k ∫
K

0

sn−k(m) d�(m) →

∞∑
k=1

�k ∫
K

0

s(m) d�(m), n → ∞,

Fig. 2  Left panels: samples 
x from a Strauss hard core 
process with intensity � = 1.0 
(top) and � = 4.3 (bottom) on 
[0, 5]2 . Right panels: graphs 
of v̂

n
(x) (solid lines) and ṽ

n
(x) 

(dotted lines) against n for the 
birth-death-growth dynamics of 
Sect. 5
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optimal �-discounted total expected reward, and v∗
�
(x) has 

the claimed form.
To complete the proof, we need to show that v∗

�
(x) is 

attained by the stationary deterministic policy Φ that retains 
all points with mark smaller than d∗

�
 . Denote its infinite hori-

zon �-discounted total expected reward by

and focus on the contributions of each generation 
of points. A point (x,m) ∈ x , the initial generation, 
yields a reward R �n(1 − pd)

ng(n)(m) precisely when 
g(n−1)(m) ≥ g(n−2))(m) ≥ ⋯ ≥ m are less than d∗

�
 but 

g(n)(m) ≥ d∗
�
 with obvious modification for n = 0 . Since, as 

in (11), g(n)(m) ≥ d∗
�
 if and only if

for all k ∈ ℕ0 , we conclude that every point of x contributes 
R s(m) . The points that are born in the time before the next 
decision (generation 1) yield the same total expected reward, 
but this is discounted by � due to the later birth date. Simi-
larly, the total expected reward of points belonging to the 
second generation is discounted by �2 , and so on. Tallying 
up, the �-discounted total expected reward of generations 
k = 1, 2,… is

on application of the Campbell–Mecke formula. Finally add 
the contribution from the initial generation to conclude that 
the threshold d∗

�
 defines an optimal policy. Condition (7) is 

readily verified.

Proof of Theorem  2 The proof proceeds by induc-
tion. For n = 0 , evidently ṽ0 ≤ v0 ≤ v̂0 . Assume that 
ṽk(x) ≤ vk(x) ≤ v̂k(x) for all k ≤ n and all x ∈ X  satisfying 
the hard core condition and that ṽk , v̂k have the required 
form. Since

and vn(X) ≥ ṽn(X) , let us consider the expectation of ṽn(X) 
under the hard core birth-death-growth dynamics when 
action a is taken in state x . By the definition of ṽn and 
distinguishing between surviving and new-born points, 
�
[
ṽn(X) ∣ x, a

]
 reads

vd
∗

�
(x) = �

Φ

[
R

∞∑
i=0

�i
∑

(x,m)∈Xi⧵Yi

m ∣ X0 = x

]

g(n)(m) ≥ �k(1 − pd)
kg(n+k)(m)

R

∞∑
k=1

�k ∫W ∫
K

0

s(m) �(w)dwd�(m)

(12)vn+1(x) = max
a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
vn(X) ∣ x, a

]}

where the symbol UK(a) signifies the union of closed balls 
with radius K around the points in a . The calculation of the 
last term above relies on the Campbell–Mecke formula (2). 
Now, the integral in the last line above can be written as

and is bounded from below by

where the induction assumption is invoked for the inequality 
s̃n ≤ K . Next, return to (12). The induction assumption and 
the bound on �

[
ṽn(X) ∣ x, a

]
 imply that

which in turn is greater than or equal to

The action that assigns (x, m) to x ⧵ a if and only if

optimises the right hand side and, with

R�

[ ∑
(x,m)∈X

s̃n(x,m) ∣ x, a

]

+ R

n−1∑
k=1

𝛼k ∫W ∫
K

0

s̃n−k(w,m) 𝛽(w)dwd𝜈(m)

= R
∑

(x,m)∈a

(
1 − pd

)
s̃n(x, g

(1)(m))

+ R

n−1∑
k=1

𝛼k ∫W ∫
K

0

s̃n−k(w,m) 𝛽(w)dwd𝜈(m)

+ R∫W ∫
K

0

s̃n(w,m) 1{w ∉ UK(a)} 𝛽(w)dwd𝜈(m),

R∫W ∫
K

0

s̃n(w,m) 𝛽(w)dwd𝜈(m)

− R∫W ∫
K

0

s̃n(w,m) 1{w ∈ UK(a} 𝛽(w)dwd𝜈(m)

(13)

R∫W ∫
K

0

s̃n(w,m) 𝛽(w)dwd𝜈(m)

− RK
∑

(x,m)∈a
∫W ∫

K

0

1{w ∈ b(x,K)} 𝛽(w)dwd𝜈(l)

vn+1(x) ≥ max
a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼�
[
ṽn(X) ∣ x, a

]}
,

max
a⊂x

{
R

∑
(x,m)∈x⧵a

m + 𝛼R
∑

(x,m)∈a

[
(1 − pd)s̃n(x, g

(1)(m))

−K ∫b(x,K)∩W

𝛽(w)dw

]}

+ R

n∑
k=1

𝛼k ∫W ∫
K

0

s̃n+1−k(w,m)𝛽(w)dwd𝜈(m).

m ≥ 𝛼

[(
1 − pd

)
s̃n(x, g

(1)(m)) − K �b(x,K)∩W

𝛽(w)dw

]
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one sees that

an observation that completes the induction argument and 
therefore the proof of the lower bound.

For the upper bound vn ≤ v̂n , use a similar induction argu-
ment based on ŝn but with (13) replaced by the upper bound

  ◻

7  Conclusion

In this paper we considered optimal policies for Markov 
decision problems inspired by forest harvesting. We proved 
that French thinning is optimal when births follow a Poisson 
process and marks grow logistically. When the points are 
required to respect a hard core distance, we derived upper 
and lower bounds on the discounted total expected reward 
function for general birth-death-growth dynamics.

In future, it would be of interest to study configuration-
dependent asymmetric birth and growth models (Van 
Lieshout 2008, 2009; Renshaw et al. 2009). Indeed, in a for-
estry setting, the growth of well-established, large trees may 
hardly be hampered by the emergence of saplings close by, 
while it would be harder for young and small trees to flourish 
near large ones. Moreover, the natural environment, such as 
the availability of nutrients, might play a role. Finally, refine-
ments of the action space that allow for different thresholds 
in different mark strata could be investigated.
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s̃n+1(x,m) = max
{
m, 𝛼

(
1 − pd

)
s̃n(x, g

(1)(m))

−𝛼K ∫b(x,K)∩W

𝛽(w)dw

}
,

vn+1(x) ≥ ṽn+1(x)

= R
∑

(x,m)∈x

s̃n+1(x,m)

+ R

n∑
k=1

𝛼k �W �
K

0

s̃n+1−k(w,m) 𝛽(w)dwd𝜈(m),

R∫W ∫
K

0

ŝn(m) 𝛽(w)dwd𝜈(m).
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