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Quantitative 3D structural analysis of small
colloidal assemblies under native conditions
by liquid-cell fast electron tomography
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Electron tomography has become a commonly used tool to investigate the
three-dimensional (3D) structure of nanomaterials, including colloidal nano-
particle assemblies. However, electron microscopy is typically done under
high-vacuum conditions, requiring sample preparation for assemblies
obtained by wet colloid chemistrymethods. This involves solvent evaporation
and deposition on a solid support, which consistently alters the nanoparticle
organization. Here, we suggest using electron tomography to study nano-
particle assemblies in their original colloidal liquid environment. To address
the challenges related to electron tomography in liquid, we devise a method
that combines fast data acquisition in a commercial liquid-cell with a dedicated
alignment and reconstruction workflow. We present the advantages of this
methodology in accurately characterizing two different systems. 3D recon-
structions of assemblies comprising polystyrene-capped Au nanoparticles
encapsulated in polymeric shells reveal less compact and more distorted
configurations for experiments performed in a liquid medium compared to
their dried counterparts. A similar expansion can be observed in quantitative
analysis of the surface-to-surface distances of self-assembled Au nanorods in
water rather than in a vacuum, in agreement with bulk measurements. This
study, therefore, emphasizes the importance of developing high-resolution
characterization tools that preserve the native environment of colloidal
nanostructures.

The most characteristic feature of nanomaterials is the stark depen-
dence of their properties on the size and shape of the nanostructured
material. However, manipulation of the properties of nanomaterials
can also be achieved by tuning interparticle distance and relative
orientation1. In this context, a wide variety of techniques have been
devised toward obtaining nanostructured materials with well-defined
dimensions and interparticle arrangements. Although top-down
methods, such as e-beam lithography, can be used to design

nanostructures with high precision, these are typically limited to two
dimensions (2D). On the other hand, bottom-up strategies based on
colloid science can be employed to obtain 2D or 3D assemblies com-
prising combinations of (equal or dissimilar) nanosized particles, with
distinct properties determined by the size, shape, and arrangement of
the constituting elements2,3. The formation and behavior of such
assemblies are governed by interaction forces between nanoparticles
(NPs), typically mediated by surface charge, ligands, and the solvent.
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As such, colloids have long been used as model systems for investi-
gating fundamental phenomena in soft condensed matter, such as
nucleation andphase transitions. In the context of nanoscalematerials,
assemblies additionally play a key role in shaping functional (meta)
materials at various scales.

Therefore, understanding the formation mechanisms and
structure-determined properties of colloidal assemblies requires
quantitative 3D structural characterization, including measurements
of interparticle distances and packing4–6. Although bulk scattering
methods have often been employed with great success and high pre-
cision, they can only provide average information over a huge number
of individualparticles or clusters thereof. Accurate and comprehensive
information can be obtained by studying individual nanostructures in
3D, for which electron tomography (ET) in scanning transmission
electron microscopy (STEM) has become an essential tool7–10. Apart
from providing detailed reconstruction images (or movies), recent
improvements have been made to ET, both related to the acquisition
and to the reconstruction process, which, e.g., enable us to extract the
positions of individual nanoparticles, even in very large and/or dense
nanoassemblies, wheremissingwedge and streaking artifacts are likely
to hinder relevant features11,12.

However, all these investigations have been performed under dry
room-temperature (RT) conditions in a TEM, including ultra-high
vacuum. Samples for ET are therefore typically prepared by drop-
casting the colloidal dispersion on a TEM grid. A problem that has
often been overlooked during this process is related to the presence of
soft materials within colloidal assemblies, such as ligands and
polymers13. As a result, the drying process may result in deformations
of the assemblies, either by evaporation of the remaining solvent or by
contact with the support (grid), thereby altering their original 3D
configuration14. To mitigate this effect, cryogenic electron tomo-
graphy and freeze-drying stand as the ideal techniques for investigat-
ing these soft components in the required static state for tomography
by freezing the sample structure. However, the experimental envir-
onment can still lead to subtle changes in the 3D structures11,15–17. It is
therefore important to develop 3D characterization approaches based
on ET that enable the investigation of colloidal assemblies in their
natural environments, such as water or a different solvent.

Recent advancements in liquid-cell electron microscopy have
yielded insights into nanomaterial dynamics and structure in liquid
environments18–20. Initial attempts utilized amorphous silicon nitride
(SixNy) microfluidic chambers as liquid cells (LCs), but the holders
based on such chambers often have a limited tilt range (restricted to
± 30°). For ET, where a sufficient angular sampling is desired, such a
limited tilt range can cause missing wedge artifacts, compromising
reconstruction accuracy. Additionally, the presence of the liquid layer
and relatively thick SixNy windows frequently reduces the signal-to-
noise ratio (SNR) in the tilt-series projection images, especially at
higher angles where the total effective thickness increases. To address
these limitations, carbon membranes and/or graphene liquid cells
(GLCs) have been employed to enhance SNR, while allowing the study
of nanomaterial growth, self-assembly, and dynamics21,22. Using the 3D
structure identification of nanoparticles by GLC electron microscopy
methodology (SINGLE), Park et al. demonstrated that the 3D structures
of NPs inGLC canbe characterizedbyobserving their translational and
rotational motions in a liquid environment23. Using advanced recon-
struction algorithms, the structural disparities between individual NPs
could be discerned, even at the atomic scale24. However, the spatial
constraints of the GLC (commonly up to 100 nm) make the single-
particle method sub-optimal for 3D characterization of significantly
larger colloidal assemblies25,26.

We present herein a state-of-the-art liquid-phase (LP) fast electron
tomography workflow to characterize 3D structures of colloidal
assemblies in their native environments. This approach applies fast
electron tomography27–29, a recently proposed technique to

significantly reduce the acquisition time for ET tilt series, using a
commercially available LC chip without continuous flow, allowing the
self-assemblies studied to remain in a condition as static as possible.
To overcome experimental challenges such as limited tilt range, image
distortion, environmental background noise, and potential intra-LC
sample movement, advanced image processing techniques and a
dedicated reconstruction algorithmareproposed30,31, aswell as the use
of a prototype LC-chip (Tomochip) that allows a higher tilt angle. To
illustrate the importance of 3D characterization by LP fast electron
tomography, we investigated the structure of colloidal clusters com-
prising hydrophobic Au NPs surrounded by a block-copolymer shell
that provides colloidal stability in water. Our analyses reveal subtle
structural differenceswhen comparing colloidal clusters studied in the
liquid phase and in vacuum (i.e., dried state). As a further demon-
stration of the importance of characterizing nanoassemblies in their
native environment, we studied bilayer assemblies of cetyl-
trimethylammonium bromide (CTAB)-stabilized Au nanorods (NRs) in
water, revealing surface-to-surface distances in agreement with lit-
erature values32. These in-situ 3D measurements are in contrast to
observations of NR assemblies characterized in a dried state, for which
significantly smaller distances were determined. Our results therefore
illustrate the importance of performing 3D characterization of NP
assemblies in a liquid environment. Based on such enhancements, a
more comprehensive and accurate 3D analysis of colloidal assemblies
in their native conditions becomes possible.

Results
Challenges in the 3D investigation of small assemblies by ET
As a model system for colloidal assemblies, we followed our previous
work33, in which the self-assembly of polystyrene (PS)-capped Au NPs
was induced by adding water to a dispersion of the hydrophobic Au-PS
NPs in tetrahydrofuran (THF), and subsequently stabilizing the
obtained NP clusters by further addition of a thiolated polystyrene-b-
poly(acrylic acid) (PS-b-PAA) block copolymer. Whereas the PS block
interdigitates with the PS ligands on Au NPs, the PAA block allows
redispersion of the protected hydrophilic assemblies in water. It should
be noted that, aiming to enhance the interdigitation of PS chains
between the NPs inside the cluster, slight heating was applied to help
expel the remaining THF. Therefore, the NP clusters redispersed in
water are expected to be compact and allow minimum internal
dynamics. However, this hypothesis could not be tested by standard ET
in vacuum because sample preparation would lead to the complete
evaporation of any remaining solvent. This effect is likely to increase PS
chain interdigitation, thereby further reducing interparticle distance.
As a result, our reported tomography reconstructions typically showed
a highly regular organization of Au NPs, with interparticle distances
regulated by the dimension (molecular weight) of the PS ligands34.

For high-angle annular dark-field (HAADF)-STEM tomography
experiments, we prepared colloidal clusters made of 12 nm Au NPs,
with an overall average cluster diameter of 80 nm (Fig. 1a; synthesis
details areprovided in theMethods section).Wefirst applied dryRTET
in vacuum to Au@PS clusters. For dry RT ET, selected clusters com-
prising 4, 5, or 6 NPs, and encapsulated within polymer shells, were
thoroughly dried on a TEM grid and imaged in vacuum. We noted that
the colloidal clusters settled onto the TEM grid upon drying, which
resulted in a slightly deformed or flattened structure, evident from 2D
TEMprojections at high tilt angles (Fig. 1b, c). The 2D projections from
the tilt series suggest Au NP stacking into polyhedral structures, e.g.,
tetrahedra for clusters with 4 NPs (Fig. 1b, c and Supplementary
Movie 1). Our analysis also showed a 2–3 nm reduction in the overall
size of the colloidal clusters post dry RT ET experiments (Fig. 1d, e;
Supplementary Fig. 1a–i), suggesting that the electron beam has a
significant impact on the structure, in turn posing additional chal-
lenges when attempting to obtain accurate 3D reconstructions using
dry RT methods (see Methods section).
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Tomitigate electronbeamdamageduring tilt series acquisition,we
employed the fast electron tomography method (see Methods section
for more details). To visualize both the Au NPs and the distribution of
the polymer shell, we used a sufficiently high electron dose, while
ensuring that the structure of the self-assembled cluster remained
unaltered (Supplementary Fig. 2a–c). In the fast ET approach, focusing
and tracking are executed concurrently while the sample is con-
tinuously tilted27,29. We devised advanced image processing and align-
ment techniques, coupled with a reconstruction algorithm, to address
distortions from continuous tilting and the challenges of a low electron
dose. Further details are provided in the Methods section. The 3D
reconstructions of colloidal clusters comprising 4, 5, and 6 Au NPs
distinctly showcased tetrahedral, trigonal bipyramidal, and octahedral
arrangements (Fig. 1f and Supplementary Movie 2). Upon conducting
fast electron tomography with a low dose of 0.46 e− Å−2 per frame, the
polymer shell was not visible. However, after increasing the dose to 2.31
e− Å−2 allowed for the visualization of the shell. Although the overall
interparticle distance of the colloidal clusters remained consistent,
flattening of the polymeric shell was observed (Fig. 1f and Supplemen-
tary Movie 2). It is therefore likely that the capillary forces exerted
during sample drying affected the polymeric shell structures, again
posing challenges for precise 3D reconstruction. Consequently, these
findings underscore the need to investigate the 3D arrangement of Au
NPs in colloidal clusters in their native environment.

Drawing inspiration from the SINGLE methodology23,24, we aimed
to achieve 3D reconstruction by tracking the Brownian motion of NP
clusters in a liquid phase. Given the spatial constraints within the GLC,
we housed the colloidal cluster dispersion in the SixNy chamber of a
commercial liquid TEM holder (see Methods section). After initiating
flow within the commercial LC TEM holder, we attempted to capture
the dynamics of the colloidal clusters. Contrary to the expected
translationalmotion due to liquid flow, the colloidal clusters exhibited
only a minimal degree of rotation within the LC chamber, irrespective
of the flow rate. As a result, the acquired angular samplings were
inadequate for tomographic reconstruction. Additionally, we noted

partial aggregation, whichmay be attributed to the degradation of the
protective polymer shell under electron beam exposure (Supplemen-
tary Fig. 3a–c; Supplementary Movie 3). In summary, the reliability of
tomographic reconstructions for colloidal clusters in a liquid setting is
compromised by challenges related to limited angular projections and
electron beam-induced damage. We therefore developed an opti-
mized workflow for the acquisition, alignment, and reconstruction of
accurate 3D representations of colloidal NP clusters, which we present
in the following sections.

Fast tilt series acquisition in liquid phase
To increase the angular sampling during the collection of 2D projec-
tion images and thereby minimize electron beam-induced structural
damage in a liquid environment, we performed fast electron tomo-
graphy in a LC. We employed a commercial monolithic LC (K-Kit from
BioMA-TEK) containerwith awindowgap of 0.5 μm(Fig. 2a). The K-Kit
LC can be mounted onto a standard single-tilt holder (Fig. 2b). When
watching the assemblies in water over different time frames, transla-
tion and rotation are observed, suggesting minimal impact from
external factors such as capillary or electrostatic forces (Supplemen-
tary Fig. 4a–e; Supplementary Movie 4). In comparison to commer-
cially available LCs with a limited inclination angular range (usually not
more than ± 30°), our setup reaches a slightly extended total tilt range
of approximately 90° (i.e., ± 45° from the central axis as shown in
Fig. 2c). An additional challenge is to avoid the well-known radiolysis
effects, resulting from the interaction of the electron beam with the
aqueous environment35. Radiolysis can generate strong reducing and
oxidizing agents such as hydroxyl radicals and hydrated electrons,
which at higher doses can even promote the formation of NPs from
solvated species36. The electron doses per frame along the fast tomo-
graphy methodology acquisition (Fig. 2d) were set as 0.46 e− Å−2 and
2.31 e− Å−2 for liquid and vacuum conditions, respectively. Due to the
reduced beam current employed to preserve the sample integrity and
the limited tilting range in liquid, the total electron dose of LP fast
electron tomography was lower by one order of magnitude, with
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Fig. 1 | Challenges in 3D characterization of colloidal clusters by electron
tomography. a HAADF-STEM image showing an overview of Au@PS colloidal
clusters in vacuum, where the polymer shell can be observed as a grey shadow
around the bright NPs.b, cHAADF-STEM images acquired at high tilt angle of ± 70°
respectively where the flattening effect of a colloidal cluster is highlighted by light
blue dashed lines. d, e 2D HAADF-STEM images of a colloidal cluster before and
after dry RT electron tomography tilt series acquisition, where the yellow double-

head dashed arrows indicate the volume change. See also Supplementary Movie 1.
f 3D reconstructions of colloidal clusters containing 4, 5, and 6 Au NPs via fast
electron tomography in vacuum. The stackings of Au NPs within the polymeric
shells resemble a tetrahedron, a trigonal bipyramid, and an octahedron, respec-
tively. See also SupplementaryMovie 2. Note that a Gaussian blur smooth filter was
applied to panel b and c to enhance the signal-to-noise ratio of the raw image.
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values of 71 e−Å−2 and 787 e−Å−2 for tilt series acquisition in liquid and in
vacuum, respectively (Fig. 2e). Since the PS-b-PAA, used to encapsulate
the assemblies, is highly sensitive to the potential radiolysis product
resulting from the electronbeam interactionwithwater, weperformed
control experiments to evaluate the stability of the assemblies at dif-
ferent electron doses (Supplementary Fig. 5a–k). No significant chan-
ges in the interparticle distances between Au NPs within the colloidal
clusters were observed after fast tilt series acquisition (Supplementary
Fig. 6a–f).

Optimization of LP tilt series denoising and alignment
Mechanical movements of the goniometer during fast tilt series
acquisition can lead to scanning distortions like streaking artifacts in
the final 3D reconstruction, a phenomenon particularly evident in
STEMmode28. Factors such as low-dose imaging, inherent distortions,
solvent presence, and the relatively thick SixNy window of the LC can
adversely affect the SNR of the raw tilt series (Fig. 2f and Supplemen-
tary Movie 5).

In response to these challenges, we applied a dedicated image
processing and alignment approach (Fig. 2f–i; see Methods section
for details). We began with a self-supervised denoising technique uti-
lizing convolutional autoencoders (CAE)37 (Fig. 2g; Supplementary
Figs. 7, 8a–i). This technique exploits the inherent sequential patterns

present in tilt series images, which essentially are multiple repre-
sentations of the object of interest from different angles. By utilizing
this redundancy, the method effectively improves the SNR while
retaining crucial structural details (Supplementary Fig. 9a–i). Follow-
ing denoising, our iterative workflow consists of three stages to refine
the tilt series. In the first stage, robust principal component analysis
(RPCA)38 (Fig. 2h; Supplementary Fig. 10a–d) was applied to detect and
eliminate distortions from the tilt series. At its core, RPCAdecomposes
the tilt series into two distinctmatrices: a low-rankmatrix and a sparse
matrix. The low-rank matrix encapsulates the dominant, consistent
features of the data, representing the underlying structure of the
material. In contrast, the sparse matrix pinpoints irregularities or dis-
tortions, often arising from various sources during data acquisition. By
isolating these anomalies, RPCA enhances the fidelity of the tilt series,
facilitating improved registration, alignment, and 3D reconstruction.
Next, we registered the tilt series projections using the iterative closest
point (ICP)method, as depicted in Fig. 2h39. The ICPmethod stands out
from dry RT algorithms due to its iterative approach, to minimize the
difference between two clouds of points (computed from given tilt
series and their low-rank RPCA component), making it particularly
adept at handling the HAADF-STEM images. This iterative refinement
ensures that even minor shifts or rotations that occur during image
acquisition are accounted for. The final stage of each iteration focuses
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Fig. 2 | Liquid-phase fast electron tomography. a Schematic illustration of a K-Kit
LC used for experimental investigations, highlighting the LC dimensions. b-c
Optical micrographs of a K-Kit LC loaded on a single-tilt tomography holder, with,
b) 0° and c) 45° tilting view, respectively. d The LP fast electron tomography tilt
series acquisition method continuously tilts the sample while recording projection
images of the sample. e Comparison of time and electron dose required for
acquiring a complete tilt series using fast electron tomography in liquid and
vacuum and dry RT electron tomography in vacuum. f-i Fast electron tomography
tilt series pre-processing workflow. f Representation of the raw tilt series stack with
a sample image from the raw stack displayed. g Illustration of the self-supervised

denoising usingCAE. E represents the encoderCNN (convolutional neural network)
architecture andD represents the decoder CNN. A sample image from the denoised
stack is displayed, demonstrating the effectiveness of the autoencoder denoising
compared to the original one. h Schematic overview of the iterative process
undertaken: refining the tilt series using RPCA, followed by rigid registration using
the ICP method (T represents the rigid transformation operator), and then tilt-axis
alignment via FBP (θ represents the amount of angular shift required to correct the
tilt alignment.). i The final processed stack, which is refined, aligned, and denoised,
with a representative image displayed for clarity.
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on aligning the tilt axis for the tilt series. Accurate tilt-axis alignment is
crucial because it ensures that the 3D reconstruction accurately
represents the original structure without introducing artifacts. Mis-
alignment can lead to distortions in the reconstructed volume, com-
promising the integrity of the analysis. This step involves comparing
the tilt series to forward projections from an initial 3D reconstruction
obtainedusingfiltered backprojection (FBP), as shown inFig. 2h40. The
effectiveness of this step stems from its ability to iteratively refine the
alignment by leveraging the consistency in forward projections,
ensuring that each subsequent iteration brings the tilt series closer to
the true structural representation. This three-step procedure is repe-
ated until sufficient convergence is obtained. At each iteration, the
alignment of the tilt series images with their respective RPCA com-
ponents is progressively refined, ensuring peak registration and
alignment by the fifth cycle (Supplementary Fig. 11). The outcome is a
finely aligned tilt series, as illustrated in Fig. 2i and Supplementary
Movie 6.

Advanced 3D reconstruction algorithm for LP fast ET
After pre-processing to mitigate distortions, misalignments, and noise,
as mentioned above, the challenge of the missing wedge due to a lim-
ited angular range needs to be addressed. Therefore, we devised an
advanced 3D reconstruction algorithm. While dry RT reconstruction
algorithms, such as the simultaneous iterative reconstruction technique
(SIRT)41, maximum-likelihood expectation-maximization (ML-EM)42,
and total-variation minimization (TVM)43, fall short in addressing all
these challenges (Supplementary Fig. 12a–l), the discrete algebraic
reconstruction technique (DART)30 has beenwidely adopted in electron
tomography.DARTcapitalizes on thepremise thatmaterials are distinct
and maintain constant intensity. Building on this foundation, we intro-
duced an enhanced algorithm: compressed sensing DART (CS-DART).
CS-DART, an evolution of the standard DART, introduces additional
refinements by integrating compressed-sensing principles, thereby
enhancing its ability to reconstruct images with greater accuracy,
especially in scenarios with limited data, such as the missing wedge
challenge in LP fast electron tomography. This method incorporates
prior knowledge about shape smoothness, as detailed in the Methods
section. Colloidal clusters, made up of Au NPs and polymeric shells,

exhibit two distinct grey values in line with the DART reconstruction
criteria. We hypothesize that these components exhibit smooth geo-
metries, which play a crucial role in reducing the remaining noise and
alignment errors during reconstruction (Supplementary Figs. 13a–i,
14a–f). Once the 3D reconstruction with CS-DART is complete, we
quantify the structural characteristics of theNP-formedpolyhedrausing
quantitative descriptors such as interparticle distance, surface area,
volume, and regularity index (Reg. index; see Methods section for
details).

Quantitative 3D analysis for colloidal clusters in LP
Our study primarily focused on the 3D arrangement of Au NPs within
polymeric shells. Specifically, we observed that clusters containing 4,
5, and 6 Au NPs predominantly formed tetrahedral, trigonal bipyr-
amidal, and octahedral structures, respectively (Fig. 3a–c; Supple-
mentary Movies 7–9). However, reconstructing the polymeric shells
proved challenging due to the low Z-contrast arising from the water
layer and the SixNymembrane of the LC chip. The presence of water in
the LC is confirmed by the imaging contrast and formation of gas
bubbles when parking the electron beamat a specific location near the
NP cluster (Supplementary Fig. 15a–c).

To delve deeper into the structural nuances influenced by the
environment, we compared the polyhedral structures obtained from
fast electron tomography reconstructions in both vacuum and liquid
settings.The radar charts in Fig. 3d–f visually contrast four quantitative
descriptors (mean interparticle distance, volume, surface area, and
regularity index) for the polyhedra formed in vacuum versus liquid
across three assemblies (N = 4, 5, 6) (Table 1; Supplementary
Movies 7–9). Our quantitative analysis revealed that in a liquid envir-
onment, the average interparticle distance for clusters containing 4, 5,
and 6 Au NPs was expanded by 13%, 10%, and 15%, respectively, com-
pared to their vacuum counterparts. Similarly, the surface area and
volume of these polyhedra in liquid were larger by varying percen-
tages, indicating amorespacious arrangementof theAuNPswithin the
polymeric shells in liquid.

To further understand the structural regularity, we introduce a
regularity index, quantifying the similarity between an experimentally
assembled 3D cluster formed by the Au NPs in different environments
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Fig. 3 | Quantitative structural comparison between 3D reconstructions of
colloidal clusters with different numbers of particles, implemented in liquid
and vacuum conditions. a–c Polyhedra (in blue) computed from the centroid
positions of the Au NPs (in dashed yellow pseudo-spheres) obtained through CS-
DART reconstructions of three clusters containing a N = 4, b N = 5, and c N = 6 Au
NPs in a liquid environment. d–e Quantitative normalized structural comparison

between polyhedra formed by the stacking of Au NP obtained from fast electron
tomography in vacuum (depicted in orange) and liquid (depicted in blue), including
mean interparticle distance (Mean ID), surface area, volume, and regularity index
for d N = 4, e N = 5, and f N = 6, respectively. The values are provided in Table 1.
Importantly, the Au NPs demonstrated a notable tendency to adopt regular but
more condensed configurations when observed in a vacuum environment.
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and an idealized, regular polyhedron (Table 1). In a vacuum condition,
the arrangement of Au NPs more closely resembles regular and com-
pact polyhedra than in a liquid environment (Fig. 3d–f). This suggests
that capillary forces acting on the polymeric shells during drying
compress the Au NPs into regular configurations. On the other hand,
these forces are not uniform in all directions, and tension by the
support can result in the cluster’s symmetry deviating from that of
ideal polyhedra. This contribution from the support can be observed
as the number of particles increases, showing a more pronounced 3D
structural disparity between clusters in vacuum and liquid. The poly-
hedron with the least number of Au NPs studied (N = 4) clearly shows
this effect, being the only case where the regularity index in liquid is
higher than that in the dried state. In addition, the tetrahedron has the
highest packing fraction and, thus, the least free volume among the
studied polyhedra. As the number of AuNPs increases, they likely have
increasedmobility within the polymeric shell when dispersed in water.
This disparity in structures between the liquid phase and vacuum is
likely attributed to the presence of remaining solvent (THF) within the
clusters when still in the liquid phase, which is removed during drying
in vacuum, additionally leading to deformation of the polymeric shell
by capillary forces during the same drying process prior to ET. These
results were further validated by cryogenic electron tomography
(Supplementary Fig. 16a–f and Supplementary Table 1), which is con-
sidered as the standard technique for investigating softmaterials in 3D
by TEM44,45. The cryogenic results indicate a slight expansion of the
polyhedra shape compared to the results obtained in vacuum, but less
pronounced in comparison to the results obtained in a liquid envir-
onment. Thus, in this case, the liquid-phase results are more likely to
represent a realistic configuration of the assemblies in their native
environment.

In conclusion, our findings emphasize the significant influence of
the experimental environment on the structural characterization of
colloidal clusters. We advocate for electron tomography in a liquid
environment as it avoids capillary forces, offering a more authentic
and representative 3D structural characterization.

Characterizing bilayer assemblies of Au NRs in liquid phase
Apart from colloidal assemblies, NPs are often organized on solid
substrates. A well-known example is the organization of Au NRs for
exploiting their unique (and anisotropic) localized surface plasmon
resonance (LSPR) properties, e.g., in sensing based on surface-
enhanced Raman scattering (SERS)46. It has been shown that the for-
mation of ordered Au NR multilayers can lead to highly efficient SERS
substrates47,48. However, the excitation of individual versus collective
LSPR modes in Au NR assemblies not only depends on their degree of
organization but also (and very strongly) on the interparticle distances
within the assembly. Again, the usual practice involves TEM or SEM
(rarely ET) ondry samples in a vacuum,which is likely to affectboth the
structure and the interparticle distance. In this context, we decided to
investigate bilayers of self-assembled CTAB-coated single crystalline
Au NRs. For measurements in liquid, we used a Tomochip, i.e., a
modified LC chip based on the monolithic K-Kit LC design49,50.
Although this LC has a smaller window gap of 100 nm, it allows
achieving a significantly larger tilt range (up to a maximum of ± 70°;

Supplementary Fig. 17a–c). This configuration not only ensures a
thinner liquid layer but also improves the SNR and angular coverage
for tilt series in liquid conditions, minimizing the increase of the
effective thickness at higher angles. We additionally dropcasted a
dispersion of the same AuNRs on a TEMgrid and dried it for structural
analysis in a vacuum.

We conducted fast electron tomography experiments in both
vacuumand liquid environments, examining self-assembledbilayers of
Au NRs, either dried on a TEM grid or encapsulated within the
Tomochip (Fig. 4a, b; Supplementary Movie 10). Au NRs tend to stack
together both on a TEM grid in vacuum (Fig. 4a) and in a Tomochip
(Fig. 4b). To verify the presence of liquid inside the Tomochip, we
parked the electron beam on the SixNy membrane near an Au NR
(Supplementary Fig. 18a–b).Weobserved the formation of gasbubbles
due to water splitting under illumination (Supplementary Fig. 18c),
proving the presence of liquid inside the Tomochip. The improved
angular coverage and SNR facilitated the use of the dry RT ML-EM
algorithm42 to achieve precise 3D reconstructions in both settings.
These reconstructions allowed us to observe well-defined rod shapes
for all Au NRs in either environment, organized in an AB-stacking
pattern (Fig. 4c–f; Supplementary Movie 10). To further understand
the environmental influence on Au NR stacking, we focused on the
central region of the assemblies and measured the diameter of the Au
NRs from 2D projections of the tilt series in vacuum and liquid, sepa-
rately, ensuring our analysis was not affected by edge distortions, as
well as for the appreciated difference on Au NR diameter in both
assemblies due to some polydispersity in the sample (Supplementary
Fig. 19a–b). We then calculated the surface-to-surface distance by
subtracting the radii of the Au NRs from the distance between their
centers of mass (Supplementary Fig. 19c–d, Supplementary Table 2).
This mode of examination highlighted clear differences in surface-to-
surface distances of both settings: 2–4 nm in vacuum versus 6–8 nm in
liquid (Fig. 4e–f). The length of a fully stretched CTAB molecule is
around 2.2 nm51. The surface-to-surface distance in a liquid environ-
ment corresponds to almost four times the length of a CTABmolecule,
where the two adjacent rods are expected to share a layer of
counterions52. We remark that, although the expected CTAB layer
thickness on Au NRs has been characterized as approximately
3.2 nm32,53, its precise structure—whether interdigitated bilayer or iso-
lated micelles—is still under debate, in particular considering the
influence of the experimental environment54. In contrast to the obser-
vation in a liquid environment, the shorter surface-to-surface distance
between NRs measured in a vacuum indicates compression of the
CTAB ligands. This is likely due to plastic deformation from capillary
forces during sample drying, high-vacuum conditions, or a combina-
tion of both. Our results highlight how LP fast electron tomography
preserves the 3D structures of self-assembled Au NRs, avoiding dis-
tortions from capillary forces, in contrast with previous reports.

Discussion
In this work, we have developed a methodology to characterize col-
loidal assemblies in 3D, in their native liquid environment. We
addressed technical challenges, predominantly associated with com-
mercial LCs, such as self-rotation and restricted tilt range. This was

Table 1 | Characteristics of Au NP-formed polyhedra in vacuum versus liquid conditions

N Mean ID (nm) SA (103 nm2) Volume (103 nm3) Reg. index

Vacuum Liquid Vacuum Liquid Vacuum Liquid Vacuum Liquid

4 26.51 29.96 ( + 13%) 1.31 1.54 ( + 15%) 2.42 3.07 ( + 21%) 7.27 6.56 ( − 10%)

5 29.21 32.16 ( + 10%) 2.17 2.41 ( + 10%) 6.23 6.79 ( + 8%) 5.56 11.46 ( + 52%)

6 28.88 33.33 ( + 15%) 2.66 3.18 ( + 16%) 9.96 12.29 ( + 19%) 3.44 16.63 ( + 79%)

The table presentsmetrics, such as themean interparticle distance (Mean ID), surface area (SA), volume, and regularity index (Reg. index) of the polyhedrons derived fromCS-DART reconstructions,
highlighting the influence of imaging conditions on the reconstructed structures. The Reg. index indicates the degree of regularity in the arrangement of the AuNPs, with a smaller value suggesting
the arrangement is closer to a regular polyhedron. Due to the structural diversity of the samples, the datasets are limited to only one per N number.
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achieved through the use of dedicated image processing algorithms,
along with the development of the dedicated CS-DART 3D recon-
struction algorithm. Moreover, we demonstrated that designing spe-
cialized LC devices specifically for ET can effectively mitigate the
constraints of a limited tilt range. This approach has the potential to
reduce the computational load required for precise data analysis and
characterization. We successfully applied our approach to explore the
3D structural characterization of Au@PS colloidal clusters in their
native liquid environment, contrasting these findings with structures
observed in vacuum.Notably, we identified that capillary forces during
the drying phase in vacuum conditions induced structural compres-
sion, leading to amore compact arrangement of AuNPs.Conversely, in
liquid conditions, theNPs adopted amore expansivepolyhedral shape.
These structural variations can significantly influence the assemblies’
optoelectronic properties. Furthermore, we adapted our technique to
study CTAB-stabilized Au NRs in bilayer self-assembly using a specia-
lized Tomochip for 3D liquid characterization. In a vacuum, the
surface-to-surface distances of these bilayers are shorter, indicative of
capillary effects. Yet, in a liquid setting, these distances align with both
bulk measurements and theoretical predictions, emphasizing the
importance of the experimental environment in electron microscopy
studies.

Our study underscores the importance of analyzing colloidal
assemblies in conditions that closely resemble their natural or
application-specific environments. Analyzing them in non-native
settings can introduce structural changes, potentially affecting our
understanding of the assemblies’ true nature and properties. This
information is crucial when adjusting these assemblies, especially in
areas where specific changes, such as plasmonic effects, are desired.
Moreover, we expect that our methodology can be applied to study

the structure of a broad range of colloidal assemblies, giving insight
into the structure formation mechanisms and structure-property
relations of nanomaterials. While we have achieved notable progress,
refining the structural analysis of colloidal assemblies remains
an ongoing effort. Upcoming advancements, such as improved
Tomochips and low-dose TEM techniques55,56, aim to boost both
precision and range in characterizations, proving essential for
studying diverse assemblies, from varied sizes to those with low
atomic numbers.

Methods
Chemicals
Gold (III) chloride hydrate (HAuCl4, ≥99.9%), hexadecyl-
trimethylammonium bromide (CTAB, ≥99%), cetyltrimethylammonium
chloride solution (CTAC, 25 wt.% in H2O), sodium borohydride (NaBH4,
≥96%), L-ascorbic acid (AA, ≥99%), silver nitrate (AgNO3, ≥99%), sodium
oleate (NaOL, ≥99%), hydrochloric acid (HCl, 37%) and tetrahydrofuran
(THF, ≥99%) were purchased from Sigma-Aldrich, Merck. Thiol-
terminated polystyrene (PS509-SH, Mw 53 kg mol-1) and polystyrene-b-
poly(acrylic acid) (PS403-b-PAA62) were purchased from Polymer
Source. All chemicals were used without further purification. Milli-Q
water (resistivity 18.2MΩ cm at 25 °C) was used in all experiments. All
glassware was washed with aqua regia, rinsed with Milli-Q water, and
dried before use.

Preparation of Au@PS colloidal clusters
Gold seeds (≈1.5 nm diameter) were prepared by fast reduction of
HAuCl4 (5mL, 0.25mM)with freshly prepared NaBH4 (0.3mL, 10mM)
in aqueous CTAB solution (100 mM), under vigorous stirring57. The
solution color changed from yellow to brownish yellow and the seed

a Vacuum b Liquid
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Fig. 4 | Quantitative structural comparison of Au NR bilayer assemblies in
vacuum and liquid-phase. 2D HAADF-STEM images of self-assembled Au NR
superlattices measured in a vacuum and b liquid. c,d 3D reconstructions and e,f
orthogonal views of superlattices assembled from two layers of Au NRs in c,e
vacuum (orange) and d,f liquid (blue). Insets of panels e and f: zoomed-in views of

two adjacent AuNRs, showing the disparity between surface-to-surface distances in
vacuum and in liquid environment. Surface-to-surface distances were calculated by
subtracting the actual radii of each rod from the distance between the centers of
mass (Supplementary Fig. 19 and Supplementary Table 2). Note that the transpar-
ency of the 3D renderings was increased for visual clarity.
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solution was aged at 27 °C for 30 min before use, to promote the
decomposition of NaBH4. The seed was used for the growth of gold
nanospheres and nanorods. An aliquot of gold seed solution (0.6 mL)
was added under vigorous stirring to a growth solution containing
CTAC (100mL, 100mM), HAuCl4 (0.36 mL, 50 mM), and AA (0.36mL,
100 mM). The mixture was left undisturbed for 12 h at 25 °C. Upon
synthesis, the solution containing 12 nm Au NPs was centrifuged
(10593× g, 2 h) to remove excess of CTAC and ascorbic acid, and finally
redispersed inwater to afinal gold concentration of 5mM.The average
diameter determined from TEM images was 12 ± 1 nm. To replace the
cationic surfactant with a hydrophobic polymer, thiolated polystyrene
(PS-SH) was used. The colloidal dispersion containing 12 nm Au NPs
(2 mL, 5 mM) was added dropwise under sonication to a dispersion of
PS-SH (1 molecule of PS-SH per nm2 of Au surface) in THF (20mL). The
solution was left for 15 min in an ultrasonic bath. To ensure ligand
exchange, the resultingmixturewas left undisturbed for 12 h, and then
centrifuged twice (8370× g, 30 min). The particles were finally dis-
persed inTHF to afinal gold concentration of 2.5mM.The clusteringof
PS-functionalized Au NPs was carried out according to ref. 33. An ali-
quot ofwater (0.8mL)was addeddropwise to the PS-functionalizedAu
NPs in THF (3.2mL) undermagnetic stirring. The final concentration of
metallic gold in the mixture was 0.25 mM. The solution was left
undisturbed for 5 min, and then a solution of PS403-b-PAA62 in THF
(0.4 mL, 6mg mL−1) was added dropwise under magnetic stirring.
Subsequently, the water content was increased up to 35 wt.%, followed
by increasing the temperature up to 70 °C, which was maintained for
30 min. The clusters dispersion was centrifuged twice (9449× g,
30 min) and redispersed in water.

Synthesis of Au NRs
Au NRs were prepared through the seeded growth method, based on
the reduction ofHAuCl4 onCTAB-stabilized gold seeds in the presence
of silver ions58. To prepare the growth solution, 1.8 g of CTAB and
0.25 g of NaOLwere dissolved in 100mLof warmMilli-Qwater (50 °C).
Once sodiumoleate was completely dissolved, themixture was cooled
down to 30 °C and AgNO3 (4.8 mL, 4 mM) was added under stirring.
Themixturewas kept at 30 °C for 15min afterwhichHAuCl4was added
(0.5 mL, 100 mM) under vigorous stirring. The mixture became col-
ourless after 20 min at 30 °C and then HCl (0.42 mL, 37%) was intro-
duced. After 15 min of stirring, AA (0.25 mL, 64 mM) was added, and
the solutionwas vigorously stirred for 30 s. Finally, a certain volume of
seed solution (0.16mL, 0.25mM)was injected into the growth solution
under vigorous stirring for 5 min, and then the mixed solution was left
undisturbed at 30 °C for 12 h. An aliquotof theAuNRdispersion (2mL)
was centrifuged twice (8370× g, 30 min) to remove excess reactants,
and then redispersed in a dilute CTAB aqueous solution (0.25 mL,
0.2mM). The length andwidth of the obtainedNRswere 67 ± 2 nmand
19 ± 1 nm, respectively.

Electron microscopy sample preparation and measurements
For a typical sample preparation for dry RT and fast electron tomo-
graphy measurement in vacuum, 2 μL of colloidal dispersion was
dropcast on a Quantifoil (2/2, 200 mesh) copper grid and dried under
ambient conditions. For a liquid-cell fast electron tomography
experiment on Au@PS colloidal assemblies, 2 μL of the colloidal dis-
persion was loaded into a K-Kit LC with a window gap of 0.5 μmunder
capillary forces, followedby being sealedwithwater-resistant glue. For
a typical experiment on the Au NRs bilayer assemblies, the dispersion
was loaded in a similar manner but using a Tomochip 0.1 μm
window gap.

Fast electron tomography in vacuum and liquid
All tilt series were obtained from a “cubed” aberration-corrected
Thermo Fisher Titan microscope at room temperature with an accel-
eration voltage of 200 kV. A Fischione model 2020 single tilt holder
was used for the fast acquisition of the tilt series both in vacuum and
liquid. For fast electron tomography tilt series acquisitions in vacuum,
a tilt range of ± 72° and ± 74° was applied for colloidal clusters (N = 4,
5, and 6) and self-assembled Au NRs, respectively. For fast electron
tomography tilt series acquisitions in liquid, a tilt range from − 48° to
46°, − 48° to 44°, − 46° to 46°, and − 56° to 58° was applied for
colloidal clusters of N = 4, 5, and 6, and self-assembled Au NRs,
respectively. The use of Tomochips is preferred due to the more
extensive angular sampling, which drastically reduces missing wedge
artifacts.WhereasK-Kit LCshave awide rangeofwindowgapsbetween
0.1 and 5 μm, Tomochips are currently limited to the 100–200 nm
range. The choice between K-Kit LCs or Tomochips for a liquid
tomography experiment therefore mainly depends on the size of the
specimen. In addition, the physicochemical properties of the sample
must be considered because sample loading is based on the capillary
action exerted by the liquid when carrying the sample into the cell. In
this study, Au NRs were loaded into 100 nm gap Tomochips; however,
AuNPcolloidal clusters couldonly be loaded into 500nmgapK-Kit LC.
The total dose for each casewas calculated bymultiplying the dose per
frame by the number of frames. Table 2 summarizes the experimental
conditions from each of the tilt series acquired in this study.

Electron beamdamage comparison on colloidal assemblies: fast
versus dry room-temperature acquisition methodologies
To better understand the impact of electron beam exposure on col-
loidal assemblies, we compared different acquisition methodologies,
specifically fast versus conventional methods. Supplementary Fig. 1a–i
presents HAADF-STEM images of polymeric assemblies with different
structuresN=4, 5, 6, before and after both acquisition approaches. It is
interesting to note the difference in the size of the assemblies post-
acquisition. Whereas the fast acquisition method seems to preserve
the original size with minimal alterations after a cumulative dose of

Table 2 | Summary of vacuum and liquid-cell fast electron tomography experimental conditions

* Sample Min. angle Max. angle Total tilt-series
frames

Current (pA) Dwell
time (μs)

Pixel
size (pm)

Dose per frame
(e− Å−2)

Total dose
(e− Å−2)

Vacuum τ N = 4 − 72° 72° 341 40 1 1040 2.31 787

τ N = 5 − 72° 72° 341 40 1 1040 2.31 787

τ N = 6 − 72° 72° 341 40 1 1040 2.31 787

τ AuNRs − 74° 74° 242 50 1 736 5.76 1394

Liquid κ N = 4 − 46° 46° 154 2 0.5 367 0.46 71

κ N = 5 − 48° 44° 156 2 0.5 367 0.46 72

κ N = 6 − 46° 46° 154 2 0.5 367 0.46 71

θ AuNRs − 56° 58° 163 5 0.5 367 1.16 189

* Experimental setup: τ : tomography holder; κ : K-Kit LC with windows gap of 500 nm and SixNy thickness of 30 nm; θ : Tomochip with windows gap of 100 nm and SixNy thickness of 30 nm.
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787 e− Å−2, the conventional methodology, on the other hand,
demonstrates evident shrinkage, by 2–3 nm on average after a cumu-
lative dose of 12070 e− Å−2. These findings confirm the importance of
carefully selecting acquisition methods, depending on the sensitivity
of the samples under investigation28.

Dynamic behavior of colloidal assemblies underflow in a liquid-
phase TEM holder
To gain a deeper understanding of colloidal assembly dynamics,
especially under flow conditions, we employed a liquid-phase TEM
holder (Stream fromDENSsolutions) to capture the real-time behavior
of these assemblies. As observed in the subsequent HAADF-STEM
image series (Supplementary Fig. 3a–c), distinct colloidal clusters
demonstrated significant translational and rotational motion over
time. Examples of the dynamic behavior are indicated by the dashed
yellow circle. However, a critical observation was the occurrence of
electron beam damage after 33 s of exposure. This phenomenon
resulted in unintended aggregation of the colloidal clusters. A more
detailed visual representation is presented in Supplementary Movie 3.

Cryogenic electron tomography
Au NP colloidal clusters were additionally investigated under cryo-
genic conditions. 3 μL of the solution was applied on a hydrophilic
Quantifoil TEM grid. To obtain a thin vitreous ice layer, the excess of
solutionwasblotted for 2 swithfilter paper and zero force applied, and
immediately plunged into liquid ethane in a FEI Vitrobot system. The
specimen wasmaintained at a temperature of approximately − 196 °C
using a Fischione Model 2550 Cryo Transfer holder. Tilt series were
obtained from the same “cubed” aberration-corrected Thermo Fisher
Titan microscope operating at 200 kV. Fast electron tomography
acquisition was performed with a tilt range of ± 69°.

Tilt-series processing
Denoising tilt-series images with convolutional autoencoders.
Imaging nanoparticles in liquid environments, especially under low-
dose conditionswithwater surrounding the particles, often introduces
significant noise. This noise candegrade the quality and accuracy of tilt
series images. Recognizing that these images represent the same
object from different angles, we can exploit inherent patterns for
denoising. To enhance the SNR of these images, we employed a self-
supervised denoising mechanism using CAE37. CAEs, specialized
architectures in unsupervised machine learning, are designed to
reconstruct their input data and consist of an encoder, which com-
presses the input into a latent representation, and a decoder, which
reconstructs the input from this latent space. For our application, the
CAE is specifically tailored to serve as a denoising tool, trained to
generate noise-free images from their noisy counterparts. The math-
ematical representation of the denoising autoencoder is:

Encoder: z = EλðyÞ, ð1Þ

Decoder: y0 =DγðzÞ, ð2Þ

Loss function: Lðλ, γÞ= �
X

i

yi logðy0iÞ+ ð1� yiÞ logð1� y0iÞ, ð3Þ

where y 2 Rn denotes the noisy input image, Eλ represents the enco-
der function parameterized by λ, Dγ is the decoder function para-
meterized by γ, and L is the negative log likelihood, tailored to be
robust against Poisson noise. Our CAE architecture was implemented
using the PyTorch library as shown in Supplementary Fig. 7. Training
was conducted over 50 epochs with a batch size of 32, using the Adam
optimizer with a learning rate of 10−4. By harnessing the patterns pre-
sent in sequential tilt series images, the CAE effectively reconstructs

noise-free versions. This approach not only increases the SNR but also
preserves the crucial structural details inherent to the images. In a
comparative analysis against traditional denoising techniques, such as
Gaussian smoothing, our methodology showcased a superiority in
both noise attenuation and preservation of structural intricacies (see
Supplementary Fig. 9).

Refining tilt series using robust principal component analysis. High-
quality tilt series images are crucial for accurate 3D reconstructions.
However, the intricacies of fast image acquisition can introduce dis-
tortions and anomalies that compromise subsequent analyses. While
denoising techniques, such as the CAE we employed, are effective in
enhancing the SNR, they primarily target random noise. Systematic
distortions, outliers, or structured anomalies, which can arise due to
various factors in the imaging process,may still persist post-denoising.
These structured anomalies can have a pronounced impact on the
accuracy of 3D reconstructions. To specifically address and rectify
these structured distortions, we further refined our tilt series using
RPCA38. RPCA, an enhaced extension of classical principal component
analysis (PCA), offers a robust approach to data decomposition.
Whereas PCA assumes the observed data is a mix of low-rank com-
ponents and Gaussian noise, RPCA decomposes a data matrix Y 2
Rn×a (with a being number of images) into a low-rankmatrix L 2 Rn×a

and a sparse matrix S 2 Rn×a:

minimize
L,S

k Lk* + λ k Sk1 subject to L + S =Y : ð4Þ

Here, ∥ ⋅ ∥* denotes the nuclear norm, approximating the rankof L. ∥ ⋅ ∥1
is the ℓ1 norm, a convex approximation for the count of non-zero
elements in S. For our implementation, we utilized the augmented
Lagrange multiplier method for optimization, a popular approach for
RPCA. The algorithm was run for a maximum of 100 iterations with a
convergence criterion set at 10−4. The parameter λ was empirically set
at 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxða,nÞ

p
, where a and n are the dimensions of Y, ensuring a

balance between the low-rank and sparse components. Applying RPCA
to the tilt series allows us to discern the primary patterns within the
series, highlighting important structures and relationships between
individual images. We then establish a threshold based on a specific
percentile of the distribution of projection scores from RPCA. Images
deviating significantly from this threshold are considered outliers with
potential distortions. These outliers are excluded from the tilt series,
ensuring a refined dataset ready for further processing.

Image alignment using iterative closest point method. Accurate 3D
reconstructions from tilt series critically depend on the precise align-
ment of the tilt series images. Given that particles can rotate in the
liquid during acquisition, it is imperative to account for both transla-
tional and rotational misalignments. Merely using only cross-
correlation to register shifts is insufficient, because it predominantly
addresses translational misalignments. Therefore, a more compre-
hensive approach, like rigid registration, becomes indispensable to
ensure that each image in the series is aligned to a reference (in this
case, we use low-rank component L obtained from RPCA). The ICP
method offers a robust solution for this challenge39. Originally
designed for 3D point cloud alignments, ICP’s iterative approach is
well-suited for tilt series image registration. At each iteration, the
algorithm identifies pairs of closest points between two images. These
points are derived from prominent features within the images,
extracted using speeded-up robust features (SURF). The optimal
transformation (rotation and translation) is then calculated to mini-
mize the distance between these point pairs. This transformation
progressively aligns the images. The iterations continue until the
algorithm converges to a minimal distance between corresponding
points in the datasets or until a predefined number of iterations
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(typically set to 100) is reached. The mathematical objective of ICP is:

minimize
R,t

X

i

k pi � ðRqi + tÞk2, ð5Þ

whereR 2 R2× 2 is the rotationmatrix, t 2 R2 is the translation vector,
and pi 2 R2 and qi 2 R2 are the corresponding points from the two
images being aligned. For the optimization, we employed the proximal
gradient algorithm, which is adept at handling non-linear least squares
problems. We introduced constraints on the shifts and rotations to
ensure physically meaningful alignments. These constraints were set
based on prior knowledge of the maximum possible misalignments
during the imaging process. Rigid registration, as facilitated by ICP, is
essential because it compensates for anyminor shifts or rotations that
might occur during image acquisition. This ensures that the images are
consistently oriented and overlaid with precision, which is funda-
mental for generating coherent and accurate 3D reconstructions.

Alignment of tilt axis using filtered back projection. Tilt-axis align-
ment is a critical step for accurate 3D reconstruction from electron
tomography tilt series. Evenminormisalignments can lead to artifacts,
diminishing the fidelity of the reconstructed 3D structures. Therefore,
achievingprecise tilt-axis alignment is imperative for obtaining reliable
3D reconstructions. To facilitate this, we employed the FBP method.
FBP effectively reconstructs an object from its projections by utilizing
the Radon transform and its inverse, generating a rapid volume
reconstruction. For the tilt-axis alignment, our approach begins with
creating forward projections from the 3D model obtained via FBP.
These projections are then quantitatively compared with the original
tilt series images. The comparison employs a similarity metric, speci-
fically the structured similarity index measure (SSIM), to identify any
misalignments. Identifying discrepancies between the FBP-generated
projections and the original tilt series is crucial. These discrepancies
indicate the extent and nature of misalignments. To rectify these
misalignments, we use an algorithmic refinement process40. In each
iteration of this process, the tilt-axis orientation is adjusted based on
the observed discrepancies from the preceding iteration. This iterative
refinement employs a gradient descent optimization strategy, sys-
tematically reducing the discrepancy metric to reach an optimal
alignment. The number of iterations for convergence is typically
around 10, but this can vary depending on the initial degree of mis-
alignment and the quality of the tilt images. Upon convergence, the tilt
axis is accurately aligned.

Iterative workflow. In the pre-processing of electron tomography tilt
series, adopting an iterative workflow is essential due to the complex
nature of image acquisition and the possibility of sample movements
during the process. Our methodology encompasses three funda-
mental steps: distortion correction using RPCA, image alignment
through the ICP algorithm, and precise tilt-axis alignment. The accu-
racy of each step is critical because it significantly affects the sub-
sequent stages. Initially, the RPCA method identifies and corrects
distortions, producing a more accurate tilt series for the next phase.
Subsequently, the ICP algorithm aligns the images, and this alignment
is further refined through tilt-axis adjustment. This sequenceof steps is
repeated across five iterations for optimal results. The decision to limit
the process to five iterations stems from empirical observations.
Specifically, wemonitor a similaritymetric that compares the tilt series
with the low-rank component L (referenced in Supplementary Fig. 11).
As the iterations proceed, this metric generally shows improvement,
signaling better alignment and registration quality. However, after the
fifth iteration, we observe a plateau in this metric, implying that
additional iterations would yield minimal further improvements. This
plateau indicates the point where the balance between computational

effort and alignment quality is optimized, thereby justifying the choice
of five iterations in our process.

Advanced reconstruction method from tilt series
To ensure consistency and avoid potential bias, the tilt series in
vacuum and liquid was processed using the methodology outlined
above. This involved denoising, alignment, and distortion removal.
Notably, given the broad tilting angular range of 140° achieved in
vacuum, the ML-EM algorithm implemented using the ASTRA
Toolbox59 was employed for reconstruction. Subsequent 3D visuali-
zations were rendered using Amira 5.4.0.

In the context of electron tomography, particularly for samples
imaged in liquid, challenges arise due to the restricted tilting range,
often limited to about 90°. This limitation poses significant challenges
even for reconstruction algorithms like DART30. DART can struggle
with incomplete datasets, as a limited tilt range often fails to provide
comprehensive angular coverage, leading to ambiguities and potential
inaccuracies in the reconstructed 3D volume. To address these chal-
lenges, we have developed the CS-DART. This improved algorithm
enhances the dry RT DART by incorporating a shape smoothness
prior knowledge. The key innovation in CS-DART lies in its use of level-
set methods for material discretization, representing material inten-
sities through a combination of level-set functions. By integrating
smoothness into thematerial surfaces and leveraging a discrete cosine
transform(DCT)basis for regularizing the reconstructionproblem,CS-
DART effectively overcomes the limitations posed by incomplete
angular coverage. The mathematical formulation of CS-DART is as
follows:

minimize
α

k WxðϕðαÞÞ � yk22, subject to k αk1 ≤ τ, ð6Þ

where W is the tomographic operator that discretizes the Radon
transform, α are the DCT coefficients of the object under reconstruc-
tion, y is the acquired, processed tilt series, n the number of voxels,
and τ the regularization parameter. Here, we have modeled the
intensity of the object as:

xðϕÞ= csoftHðϕ� csoftÞ+ chardHðϕ� chardÞ, ϕ=Ψα, ð7Þ

where csoft and chard are the intensities of soft (polymeric) and hard (Au
NPs) material, H is the Heaviside function ensuring the imposition of
discreteness, ϕ is the discretized level-set function, and Ψ is a DCT
basis. This condensed approach forms the basis of our method, which
we have termed the CS-DART. CS-DART utilizes the DCT basis to
efficiently compress shape information in level-set functions, allowing
for effective handling of large datasets by focusing on key shape
features. This approach not only enhances reconstruction accuracy
but also significantly reduces computational complexity, as the
number of functions in the basis is much lower than the voxel count.
By capturing the essential features of the sample and minimizing
redundancy, CS-DART streamlines the reconstruction of complex
structures from incomplete datasets. The optimization problem is
solved iteratively via the well-known fast iterative shrinkage-
thresholding algorithm60. This method efficiently accommodates the
non-differentiability introduced by the ℓ1-norm in our objective
function. Additionally, we use an approximation of the Heaviside
function to compute the gradient of the loss function61. In each
iteration, the DCT coefficients,α, are updated based on the gradient of
the data fidelity term62. Moreover, the Radon transform was
implemented using ASTRA Toolbox59. CS-DART algorithm accurately
reconstructs heterogeneous structures from incomplete datasets,
making it particularly beneficial for analyzing these colloidal assem-
blies under limited tilt ranges.

We remark that our reconstruction algorithm recreates the mor-
phology of the assembly while overcoming the challenges posed by
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missing wedge artifacts and noise. A comparison of the 3D recon-
structions obtained using our proposed method and dry RT recon-
struction methods is presented in Supplementary Figs. 13a–i, 14a–f.
Our results underline the enhanced performance and accuracy of the
proposedCS-DARTmethod, especially in preserving thefine structural
details of the colloidal assemblies.

Due to enhanced angular sampling and improved SNR realized by
Tomochip (130° angular range), bilayer assemblies of Au NRs were
reconstructed using ML-EM algorithm implemented in ASTRA
Toolbox59.

Quantitative indicators
Regarding 3D tomographic imaging of colloidal assemblies of Au NPs
within a polymeric shell, surface area, volume, and regularity index
serve as vital metrics for characterizing assembly structures. By ana-
lyzing the polyhedron formed by the assembled Au NPs inside the
polymeric shell, these metrics are calculated.

The surface areameasures the combined area of the polyhedron’s
faces, providing insight into the extent of surface interactions between
NPs and the polymeric shell, which can influence the stability of the
colloidal assembly. To calculate surface area, the areas of all the
polyhedron’s faces are summed up:

S=
X

Ai, ð8Þ

where Ai is the area of the ith face of the polyhedron.
The volume quantifies the space enclosed by the polyhedron

formedby theAuNPs. Thismetric offers information about the density
and packing of the NPs within the polymeric shell, which can affect the
assembly’smechanical, optical, andelectronic properties.Wecalculate
the volume (V) by dividing the polyhedron into smaller parts, such as
tetrahedrons or cubes, and summing their volumes:

V =
X

Vi, ð9Þ

where Vi is the volume of the ith tetrahedron or cube.
The regularity index measures the polyhedron’s regularity. This

metric provides information about the degree of order and symmetry
in the assembly, which can influence the physical and chemical prop-
erties of the colloidal assembly.We calculate the regularity index (R) by
comparing the polyhedron to a regular polyhedron with the same
number of faces and vertices and measuring the deviation from the
regular shape in termsof the angles and lengths of the edges and faces:

R =
P

iððθi � θrÞ2 + ðli � lrÞ2Þ=nP
iðd2

i =nÞ
, ð10Þ

where θi and θr are the angles of the ith and regular faces of the poly-
hedron, li and lr are the lengths of the ith and regular edges of the
polyhedron, di is the distance of the ith vertex from the center of the
polyhedron, and n is the number of faces of the polyhedron. For
reference, the ideal or ‘regular’ polyhedron considered has identical
face and vertex counts as the Au NP-formed polyhedron. The closer
the value of R is to zero, the more regular or symmetric the
polyhedron. A lower regularity index indicates a structure closely
resembling an ideal polyhedron, suggesting high order and symmetry.
Conversely, a higher regularity index points to irregularity.

Determining Au NRs assembly surface-to-surface distances
To understand the assembly patterns of Au NRs, we examined the
surface-to-surface distances under both dry and liquid conditions. As
evident from the HAADF-STEM projection images (Supplementary
Fig. 1a–b), distinct assembly configurations were observed for both
vacuum and liquid environments. These images not only allowed us to
visualize the assembly patterns but also facilitated accurate

identification andmeasurement of individual rod diameters. To obtain
accurate measurements, we took an orthogonal projection from the
3D reconstruction that was directly facing the rods. Using MATLAB’s
‘imfindcircles’ function,wepinpointed the center anddiameter of each
rod. With this data, we calculated the surface-to-surface distance
between rods by measuring the direct distance between their centers
and adjusting for their size. The surface-to-surface distance between
the different rods (R, G, B) was tabulated and compared under dry and
liquid conditions, as detailed in Supplementary Table 2. The table
showcases variations in the distances between the rods under the two
conditions, providing essential insights into the role of the environ-
ment on the self-assembly behavior of NPs.

Data availability
The data generated and analyzed during the current study, including
3D reconstructions and quantitative indicators for the colloidal
assemblies, are available from Zenodo63 and from the corresponding
authors upon request.

Code availability
The codes used in this study, including the CS-DART reconstruction
algorithm and quantitative analysis scripts, are available from
Zenodo64 and from the corresponding authors upon request.
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