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missing wedge artifacts and noise. A comparison of the 3D recon-
structions obtained using our proposed method and dry RT recon-
struction methods is presented in Supplementary Figs. 13a–i, 14a–f.
Our results underline the enhanced performance and accuracy of the
proposed CS-DART method, especially in preserving the fine structural
details of the colloidal assemblies.

Due to enhanced angular sampling and improved SNR realized by
Tomochip (130° angular range), bilayer assemblies of Au NRs were
reconstructed using ML-EM algorithm implemented in ASTRA
Toolbox59.

Quantitative indicators
Regarding 3D tomographic imaging of colloidal assemblies of Au NPs
within a polymeric shell, surface area, volume, and regularity index
serve as vital metrics for characterizing assembly structures. By ana-
lyzing the polyhedron formed by the assembled Au NPs inside the
polymeric shell, these metrics are calculated.

The surface area measures the combined area of the polyhedron’s
faces, providing insight into the extent of surface interactions between
NPs and the polymeric shell, which can influence the stability of the
colloidal assembly. To calculate surface area, the areas of all the
polyhedron’s faces are summed up:

S =
X

Ai, ð8Þ

where Ai is the area of the ith face of the polyhedron.
The volume quantifies the space enclosed by the polyhedron

formed by the Au NPs. This metric offers information about the density
and packing of the NPs within the polymeric shell, which can affect the
assembly’s mechanical, optical, and electronic properties. We calculate
the volume (V) by dividing the polyhedron into smaller parts, such as
tetrahedrons or cubes, and summing their volumes:

V =
X

Vi, ð9Þ

where Vi is the volume of the ith tetrahedron or cube.
The regularity index measures the polyhedron’s regularity. This

metric provides information about the degree of order and symmetry
in the assembly, which can influence the physical and chemical prop-
erties of the colloidal assembly. We calculate the regularity index (R) by
comparing the polyhedron to a regular polyhedron with the same
number of faces and vertices and measuring the deviation from the
regular shape in terms of the angles and lengths of the edges and faces:

R =
P

iððθi � θrÞ2 + ðli � lrÞ2Þ=n
P

iðd2
i =nÞ

, ð10Þ

where θi and θr are the angles of the ith and regular faces of the poly-
hedron, li and lr are the lengths of the ith and regular edges of the
polyhedron, di is the distance of the ith vertex from the center of the
polyhedron, and n is the number of faces of the polyhedron. For
reference, the ideal or ‘regular’ polyhedron considered has identical
face and vertex counts as the Au NP-formed polyhedron. The closer
the value of R is to zero, the more regular or symmetric the
polyhedron. A lower regularity index indicates a structure closely
resembling an ideal polyhedron, suggesting high order and symmetry.
Conversely, a higher regularity index points to irregularity.

Determining Au NRs assembly surface-to-surface distances
To understand the assembly patterns of Au NRs, we examined the
surface-to-surface distances under both dry and liquid conditions. As
evident from the HAADF-STEM projection images (Supplementary
Fig. 1a–b), distinct assembly configurations were observed for both
vacuum and liquid environments. These images not only allowed us to
visualize the assembly patterns but also facilitated accurate

identification and measurement of individual rod diameters. To obtain
accurate measurements, we took an orthogonal projection from the
3D reconstruction that was directly facing the rods. Using MATLAB’s
‘imfindcircles’ function, we pinpointed the center and diameter of each
rod. With this data, we calculated the surface-to-surface distance
between rods by measuring the direct distance between their centers
and adjusting for their size. The surface-to-surface distance between
the different rods (R, G, B) was tabulated and compared under dry and
liquid conditions, as detailed in Supplementary Table 2. The table
showcases variations in the distances between the rods under the two
conditions, providing essential insights into the role of the environ-
ment on the self-assembly behavior of NPs.

Data availability
The data generated and analyzed during the current study, including
3D reconstructions and quantitative indicators for the colloidal
assemblies, are available from Zenodo63 and from the corresponding
authors upon request.

Code availability
The codes used in this study, including the CS-DART reconstruction
algorithm and quantitative analysis scripts, are available from
Zenodo64 and from the corresponding authors upon request.
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