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A B S T R A C T

The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic
network with the smallest possible number of reticulation nodes. This problem is computationally hard and
previous solutions are limited to small and/or severely restricted data sets, for example, a set of binary trees with
the same taxon set or only two non-binary trees with non-equal taxon sets. Building on our previous work on
binary trees, we present FHyNCH, the first algorithmic framework to heuristically solve the Hybridization
problem for large sets of multifurcating trees whose sets of taxa may differ. Our heuristics combine the cherry-
picking technique, recently proposed to solve the same problem for binary trees, with two carefully designed
machine-learning models. We demonstrate that our methods are practical and produce qualitatively good so-
lutions through experiments on both synthetic and real data sets.

1. Introduction

Until recently, the evolutionary history of a set of species was nor-
mally modeled as a rooted phylogenetic tree. However, the greater
availability of molecular data is encouraging a paradigm shift to mul-
tilocus approaches for phylogenetic inference, which often leads to
discovering relationships among the species that deviate from the simple
model of a tree (Huson et al., 2010; Nakhleh, 2010; Bapteste et al.,
2013). Indeed, the phylogenetic trees inferred from different loci of the
genomes often have conflicting branching patterns, due to evolutionary
events like recombination, hybrid speciation, introgression or lateral
gene transfer (Randal Linder and Rieseberg, 2004; Mallet, 2005; Boto,
2010; Mallet et al., 2016). In the presence of such events, evolution is
more accurately represented by a rooted phylogenetic network, which
extends the tree model and allows representing multi-parental inheri-
tance of genetic material as reticulation nodes (Randal Linder et al.,
2004; Mallet et al., 2016).

A crucial problem is then to infer a single phylogenetic network from
a set of conflicting trees built from different loci of the genomes in a data
set. A commonly used criterion to estimate such a network, which is

reasonable when discordance between trees is believed to be caused by
multi-parent inheritance, is parsimony (Huson et al., 2010): the goal is
then to construct a network that simultaneously explains all ancestral
relationships encoded by the trees with the fewest number of reticula-
tion nodes. This problem is known in the literature by the name of HY-
BRIDIZATION and has been extensively studied.

HYBRIDIZATION has been shown to be NP-hard even for two binary input
trees (Bordewich and Semple, 2007). Most of the solutions proposed in
the literature are limited to inputs consisting of only two binary trees
with identical leaf sets. A few methods exist that waive some of these
assumptions: some admit inputs consisting of several binary trees with
identical (van Iersel et al., 2022) or largely overlapping (Bernardini
et al., 2022; Bernardini et al., 2023) leaf sets; others are able to process a
pair of multifurcating (i.e. nonbinary) trees with overlapping, but not
identical, leaf sets (Huson and Linz, 2018) or several multifurcating trees
with identical leaf sets (Yufeng, 2010; Mirzaei and Yufeng, 2015).

However, to the best of our knowledge, there currently exist no so-
lutions to HYBRIDIZATION for several multifurcating trees with different
leaf sets, although realistic phylogenetic trees in biological studies are
usually multifurcating and hardly contain exactly the same taxa. This
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work aims to fill this gap: we propose FHyNCH1 (Finding Hybridization
Networks via Cherry-picking Heuristics), a heuristic framework to find
feasible (and qualitatively good) solutions to HYBRIDIZATION for a large
number of multifurcating phylogenetic trees with overlapping, but not
identical, leaf sets. Our methods combine the technique of cherry picking,
first introduced in (Linz and Semple, 2019), with a machine-learning
model to guide the search in the solution space.

The high-level scheme and the theoretical foundations of the
methods we propose are the same as in (Bernardini et al., 2022): how-
ever, the approach of Bernardini et al. (2022) is restricted to binary
trees, while most practical data sets consist of multifurcating trees. A
straightforward adaptation to multifurcating trees would lead to a time-
consuming algorithm that would be impractical for large instances (see
Section 2.3.2). In contrast with previous methods, our new heuristics
employ two machine-learning classifiers that are used sequentially at
every iteration. The main novelty resides in the design and use of the
first classifier, whose crucial role is to reduce the solution space at every
iteration. Furthermore, making the new machine-learned heuristics
applicable to multifurcating trees with missing leaves required new,
nontrivial techniques to generate training data: see Section 2.3.4.

Two things are important to notice at this point. First, since networks
are not uniquely determined by the trees they contain (Pardi and Scor-
navacca, 2015), there may exist a large number of different optimal
solutions, and our algorithm does not attempt to enumerate them all: in
fact, how to summarize all equally good networks is still an open
practical problem (Huson and Scornavacca, 2012; Huber et al., 2021). In
particular, no method to solve HYBRIDIZATION (whose goal is just to
minimize the number of reticulations) can guarantee to reconstruct a
specific network: all networks that display the input trees with the
minimum possible number of reticulation nodes are optimal solutions.
The network outputted by any algorithm that solves HYBRIDIZATION,
including ours, should thus be interpreted as a possible (parsimonious)
evolutionary history which is consistent with all the input trees.

Second, our heuristics output networks from the broad orchard class,
which contains all and only the networks that can be obtained from a
tree by adding horizontal arcs (van Iersel et al., 2022). Such horizontal
arcs can model lateral gene transfer (LGT) events, but also many net-
works with reticulation nodes modelling (for example) hybridization
events are in the class of orchard networks. On the other hand, our
methods are not suitable to be applied in the presence of incomplete
lineage sorting.

The rest of the paper is organized as follows. In Section 1.1 we
discuss related work; in Section 2.1 we introduce notation and basic
notions; in Section 2.2 we summarize the cherry-picking framework for
HYBRIDIZATION, which lies at the heart of our solutions; in Section 2.3 we
describe FHyNCH-MultiML, our main algorithmic scheme based on ma-
chine learning; in Section 3 we present our experimental results; finally,
in Section 4 we give conclusions and future directions.

1.1. Related work

Several methods have been proposed in the literature to solve HY-
BRIDIZATION for two binary trees with equal leaf sets, both exactly
(Bordewich and Semple, 2007; Albrecht et al., 2012) and heuristically
(Park et al., 2010; Park et al., 2012). The first practical methods to solve
HYBRIDIZATION to optimality for more than two binary trees with equal leaf
sets were PIRNC (Yufeng, 2010) and Hybroscale (Albrecht, 2015), which
were able to process a small number of input trees (up to 5) that could be
combined into a network with a relatively small number of reticulations.
More recently, heuristic methods have been proposed to process larger
sets of binary trees with identical taxa (Mirzaei and Yufeng, 2015; Zhang
et al., 2023).

The introduction of the so-called cherry-picking sequences
(Humphries et al., 2013; Linz and Semple, 2019) was a game changer in
the area: this theoretical framework allowed the design of the first
methods capable of processing instances of up to 100 binary trees with
identical leaf sets to optimality (van Iersel et al., 2022; Borst et al.,
2022), albeit with restrictions on the class of the output network and its
number of reticulations.

To the best of our knowledge, only two methods have been proposed
to solve HYBRIDIZATION for multifurcating trees, both limited to inputs
consisting of only two trees: a simple FPT algorithm for trees with
identical leaf set (Piovesan and Kelk, 2012) and the Autumn algorithm,
which allows differences between the leaf sets (Huson and Linz, 2018).

The potential of machine learning in phylogenetic studies has not
been extensively explored yet. A few methods have been proposed for
phylogenetic tree inference (Abadi et al., 2020; Azouri et al., 2021; Zhu
and Cai, 2021; Kulikov et al., 2023; Smith and Hahn, 2023; Azouri et al.,
2023), testing evolutionary hypotheses (Kumar and Sharma, 2021), and
distance imputation (Bhattacharjee and Bayzid, 2020); finally, in pre-
vious work by the authors of this paper, machine learning techniques
have been combined with cherry picking to solve HYBRIDIZATION for
multiple binary trees with largely overlapping leaf sets (Bernardini et al.,
2022; Bernardini et al., 2023).

2. Methods

2.1. Definitions and notation

A rooted phylogenetic network N on a set of taxa X is a rooted directed
acyclic graph such that the nodes other than the root are either (i) tree
nodes, with in-degree 1 and out-degree greater than 1, or (ii) re-
ticulations, with in-degree greater than 1 and out-degree 1, or (iii) leaves,
with in-degree 1 and out-degree 0. The leaves of N are bi-univocally
labelled by X, and we identify the leaves with their labels. The edges
ofNmay be assigned a nonnegative branch length. We denote by [1, n] the
set of integers {1,2,…,n}. Throughout this paper, we will often drop the
terms “rooted” and “phylogenetic”, as all the networks we consider are
rooted phylogenetic networks.

We denote the reticulation number of a network N by r(N), which can
be obtained using the following formula: r(N) =
∑

v∈Vmax(0, d− (v) − 1), where V is the set of nodes of N and d− (v) is the
in-degree of a node v. A network T with r(T) = 0 is a phylogenetic tree.

We denote by N a set of networks and by T a set of trees. An ordered
pair of leaves (x,y), x ∕= y, is a cherry in a network if x and y share the
same parent. Note that cherries (x, y) and (y, x) correspond to the same
nodes and edges of the tree; the reason why they are considered two
distinct cherries is motivated by the definition of the cherry-picking
operation given below. An ordered pair (x, y) is a reticulated cherry if
the parent of x, denoted by p(x), is a reticulation, and the parent of y is a
tree node that is one of the parents of p(x) (see Fig. 1 (b)). Note that, in
contrast with cherries, if (x, y) is a reticulated cherry then (y, x) is not,
because the reticulation is constrained to be the parent of the first
element of the pair. A pair of leaves is reducible if it is either a cherry or a
reticulated cherry. Note that trees may have cherries but no reticulated
cherries.

Suppressing a node vwith a single parent p(v) and a single child c(v) is
defined as replacing the arcs (p(v), v) and (v, c(v)) by a single arc (p(v),
c(v)) and deleting v. If the network has branch lengths, the length of the
new edge is ℓ(p(v),c(v)) = ℓ(p(v),v) + ℓ(v,c(v)). Reducing (or picking) a
cherry (x, y) in a network N (or in a tree) is the action of deleting x and
suppressing any resulting indegree-1 outdegree-1 nodes. A reticulated
cherry (x, y) is reduced (picked) by deleting the edge (p(y), p(x)) and
suppressing any indegree-1 outdegree-1 nodes. See Fig. 1. Reducing a
non-reducible pair does not affectN. In all cases, the resulting network is
denoted by N(x,y): we say that (x, y) affects N if (x, y) is reducible in N, i.
e., N ∕= N(x,y).1 Pronounced as ‘finch’. Finches are birds that love cherries and are notori-

ously known for picking cherries from trees in orchards.
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Any sequence S = (x1, y1),…, (xn, yn) of ordered leaf pairs, with xi ∕=

yi for all i, is a partial cherry-picking sequence; S is a cherry-picking sequence
(CPS) if in addition, for each i < n, yi ∈

{
xi+1,…,xn,yn

}
. Given a network

N and a (partial) CPS S, we denote by NS the network obtained by
reducing in N each element of S, in order. We let S∘(x, y) denote the
sequence obtained by appending pair (x, y) at the end of S. We say that a
CPS S fully reduces a networkN ifNS is just a root with a single leaf; S is of
minimum length for N if all pairs of S affect the network.

N is an orchard network (ON) if there exists a CPS that fully reduces it.
If a CPS fully reduces all networks in a set N , we say that it fully reduces
N . In this paper, we will consider CPSs which fully reduce a set of trees
T ;  |T | denotes the number of trees in T .

2.1.1. The hybridization problem
The main problem considered in this paper is the following: given a

set of phylogenetic trees on overlapping (but not necessarily equal) sets
of taxa, infer a single network with the fewest number of reticulations
that summarizes all the input trees. Definition 1 formalizes the concept
of summarizing a set of trees: we seek a network where each of the input
trees is displayed (see Fig. 2 for an example).

Definition 1. LetN be a network on a set of taxa X and let T be a tree on
a set of taxa X́ ⊆ X. Then, T is displayed in N if T can be obtained from N
by applying a sequence of the following operations in any order:

a) Contract an edge (u, v) to a single nodew: all parents of u and v except
u become parents of w and all children of u and v except v become
children of w.

b) Delete an edge: if the head of the edge is a leaf, delete the leaf node as
well.

c) Suppress a node with in- and out-degree 1.

We now formally define the key problem of this work, called HY-
BRIDIZATION (Baroni et al., 2005).

Input: A set T = {T1,T2,…,Tt} of phylogenetic trees on sets of taxa
X1,X2,…,Xt, respectively.

Output: A binary phylogenetic network N on the set of taxa X =
⋃t

i=1Xi

which displays all the trees in T with the smallest possible
number of reticulations.

Note that the input trees are not required to be binary nor to have

identical leaf sets: a tree Ti ∈ T on a set of taxa Xi is said to have missing
leaves if Xi⊊X. The input trees may or may not have branch lengths.
Branch lengths do not play any role in HYBRIDIZATION, as the requirements
to be satisfied by a solution only affect its topological structure (and for
this reason, output networks do not have branch lengths); however,
when branch lengths are part of the input, our methods use them as
features to train and guide the decisions of the underlying machine-
learning model.

2.2. Solving hybridization via cherry picking

Our methods fall in the Cherry-Picking Heuristic (CPH) framework,
first introduced in Bernardini et al. (2022) to find feasible solutions to
HYBRIDIZATION for binary input trees. In this section, we recall the main
characteristics of the CPH framework; we refer the reader to Bernardini
et al. (2022, Section 3) for a complete discussion.

The CPH framework relies on the following results given in Janssen
and Murakami (2021): (i) if a minimum-length CPS that fully reduces a
binary orchard network N on a set of taxa X also fully reduces a tree T (or
another network, not necessarily binary) on a set of taxa X́ ⊆ X, then T is
displayed in N; and (ii), any CPS S can be processed in reverse order to
reconstruct a unique binary orchard network for which S is a minimum-
length CPS.

The main idea underlying CPH is thus to construct a CPS that fully
reduces the input set of trees T and then to process this sequence in
reverse order to obtain a network N, which is guaranteed to be a feasible
solution to HYBRIDIZATION by means of result (i). Any algorithm in the CPH
framework constructs a CPS S in an incremental way (starting from an
empty sequence) by repeating the following steps until all the input trees
are fully reduced:

1. Choose a pair of leaves (x, y) that is reducible in at least one tree (i.e.
a cherry of the tree set).

2. Reduce (x, y) in all trees.
3. Append (x, y) to S.

Once the input trees are fully reduced, the obtained sequence S is
processed in reverse order to construct the output network N (after a last
technical step to make sure S is a CPS and not just a partial sequence, see
(Bernardini et al., 2022, Section 3.1) for details) using the dedicated
method from Janssen and Murakami (2021). Since the latter method
outputs binary networks, so do all algorithms in the CPH framework.
Note that this is not a significant restriction because whenever there
exists a multifurcating network displaying T , there also exists a binary
network displaying T with the same reticulation number. The following
lemma links the number of reticulations of N with the length of the CPS
from which it is reconstructed.

Lemma 1. ((van Iersel et al., 2021)) Let S be a CPS on a set of taxa X.
The number of reticulations of the network N reconstructed from S is
r(N) = |S| − |X| + 1.

The formula of Lemma 1 implies that the shorter the cherry-picking
sequence constructed by the algorithm, the fewer the reticulations of the

Fig. 1. The leaf pair (x, y) is picked in two different networks. In (a) (x, y) is a cherry, and in (b) (x, y) is a reticulated cherry, as well as (x,w). Note that in (b) the
parent of x and the parent of y are suppressed after picking (x, y).

Fig. 2. Example of a multifurcating tree T that is displayed in the binary
network N via the following operations: edge e1 is deleted, then the parents of x
and w are suppressed, and finally edge e4 is contracted.

G. Bernardini et al.
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output network. The algorithms in the CPH framework differ from one to
another for the criterion with which a reducible pair is chosen at each
iteration: the goal of this study is to find a criterion that produces as
short as possible sequences for input multifurcating trees with missing
leaves.

Before discussing our new methods, we recall a simple, but rather
effective algorithm in the CPH framework introduced in Bernardini et al.
(2022) that can be easily modified to be applied to multifurcating input
trees with missing leaves. In the rest of this paper, we will call FHyNCH-
TrivialRand the adaptation of this strategy to multifurcating trees with
missing leaves. We need the following definition (see Fig. 3 for an
example).

Definition 2. An ordered leaf pair (x, y) is a trivial cherry (or trivial
pair) of T if it is reducible in all T ∈ T that contain both x and y, and
there is at least one tree in which it is reducible.

It has been empirically shown in Bernardini et al. (2022) that picking
trivial cherries (when they exist) produces good results in terms of the
number of reticulations of the output network. The criterion used by
FHyNCH-TrivialRand to pick a pair at each iteration is thus to choose a
trivial cherry if there is any; and to choose a pair uniformly at random
among the cherries of the current tree set if no trivial cherry exists.

This randomized algorithm is so simple and fast that several runs on
the same input can be computed in a reasonable time so as to select the
best output as a final result: in our experiments, we will compare our
new methods against this strategy.

2.3. A machine-learned algorithm for hybridization

A machine-learning model in the CPH framework for solving HY-
BRIDIZATION on binary input trees was first proposed in Bernardini et al.
(2022): although in theory this method is applicable in the presence of
missing leaves (i.e. to input trees with different sets of taxa), the authors
experimentally showed that the quality of the results rapidly degrades
for increasing percentage of missing leaves. In principle, the model of
Bernardini et al. (2022) could be straightforwardly adapted to work on
multifurcating trees; however, its time complexity would get much
worse, resulting in a slow algorithm that does not handle well the dif-
ferences among the sets of taxa.

In this section, we propose a new, different machine-learning model
specifically designed for multifurcating input trees with missing leaves.

2.3.1. Theoretical background
The theoretical foundations on which our new methods rely are the

same as for the model of Bernardini et al. (2022). We report here a high-
level description of this theoretical background and refer the reader to
Bernardini et al. (2022, Section 3.3) for details and proofs.

The main idea is the following. Let OPT(T ) denote the set of net-
works that display the input trees T with the minimum possible retic-
ulation number (note that, in general, OPT(T ) contains more than one
network (Pardi and Scornavacca, 2015)). Ideally, we aim at finding a
CPS fully reducing T that is also a minimum-length CPS that fully re-
duces some network of OPT(T ). This is because any method in the CPH
framework outputs a network for which the produced CPS is a

minimum-length sequence.
Our goal is to design a machine-learned oracle to predict, at each

iteration of the method, which pairs of T are reducible in some optimal
network. Using this prediction, at every iteration the algorithm chooses
a pair that most probably leads to an optimal solution.

2.3.2. Machine-learning models
To predict whether a given cherry of the tree set is a reducible pair in

some optimal network N for T , we train two random forest classifiers:
one using features that carry information on the leaves of the trees,
another using features about their cherries. The main novelty of this
approach compared to those proposed in Bernardini et al. (2023) is in
the design and use of the first classifier, whose crucial role is to reduce
the solution space at every iteration: without its introduction, the
method would be infeasible for non-binary input data sets of practical
size. This is because it may require computing features for a quadratic
number of cherries at every iteration, in contrast with the binary case, in
which the number of cherries is always linear in the number of taxa. The
accuracy of the simple random forest models for our problem was so
good that we did not find any advantage in applying deep learning
instead.

In the first classifier, a data point is a pair (F1, c1), where F1 is an
array containing 8 features, listed in Table 1, of a leaf x, and c1 is a bi-
nary label modelling whether or not x belongs to a reducible pair (either
a cherry or a reticulated cherry) of the unknown target optimal network
N. The second classifier is similar to the one proposed in Bernardini et al.
(2022): here, a data point is a pair (F2, c2), where F2 is an array con-
taining 21 features, listed in Table 2, of a cherry (y,z), and c2 is a binary
label modelling whether or not (y, z) is a reducible pair of N. The two
classifiers receive in input the arrays of features, learn the association
between F1 and c1 and between F2 and c2, respectively, and output a
label for each data point together with a confidence score modelling the
probability that the predicted label is correct.

The general scheme of our strategy is as follows. First, the algorithm
computes the array F1 of features for each x ∈ X, thus creating a data
point for the first classifier for each leaf of the initial tree set, and ini-
tializes an empty cherry-picking sequence S. It then repeats the
following steps until all the trees are fully reduced.

1. Select a subset C of k leaves from the current tree set, based on the
predictions of the first classifier.

2. Compute F2 for each cherry in the current tree set that contains one
leaf from C, thus creating data points for the second classifier only for
this subset of cherries.

3. Choose a cherry (x, y) based on the predictions of the second clas-
sifier, append it to S, and reduce (x, y) in all trees.

4. Update F1 for all the data points for the first classifier.

We name this algorithmic scheme FHyNCH-MultiML. The constant k⩾
1 determining the size of the subset of leaves selected in Step 1 at each

Fig. 3. Example of a tree set with a trivial cherry (x,y): in trees T1 and T2, x and
y form a cherry, and x is not in T3. In contrast, (x, z) is not a trivial cherry: it is a
cherry in T1, but both x and z are in T2 without forming a cherry.

Table 1
Features of a leaf x for the first classifier.

Num Feature name Description

1 Leaf pickable Ratio of trees in which x is part of a cherry
2 Leaf in tree Ratio of trees that contain leaf x
3 Siblings avg. Avg over trees with x of ratios “num. of siblings of x/

number of leaves in tree”
4 Siblings std. Standard deviation of “num. of siblings of x/number of

leaves in tree”

Features measured by distance (d) and topology (t)
5b,t Leaf depth x

avg.
Avg over the trees that contain x of ratios “depth of x/leaf-
depth of the tree”

6b,t Leaf depth x
std.

Standard deviation of “depth of x/leaf-depth of the tree”

G. Bernardini et al.
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iteration is a parameter of the algorithm: in Section 3.1 we report ex-
periments about the impact of k on the running time and the quality of
the results of our algorithm. The simplest way to implement Step 1 is to
select the k leaves that are predicted by the first classifier to be part of a
reducible pair of an optimal network with the highest probability; other
possible strategies are supported by our method, e.g., to fix a threshold
λ ∈ (0, 1) and to select the k leaves uniformly at random among the ones
whose probability to be part of a reducible pair of an optimal network is
at least λ. A similar argument can be made for the choice of the cherry in
Step 3.

The number of data points for the first classifier is always bounded by
|X|, the number of taxa. The array F1 of features is efficiently updated in
Step 4 at each iteration for each data point, that is, for each leaf of the
current tree set. In contrast, arrays F2 are computed from scratch in Step
2 at every iteration because the subset of cherries for which a data point
is created changes across different iterations (it depends on the leaves
chosen at Step 1).

The main role of the first classifier is in fact to reduce the number of
cherries for which F2 must be computed: this is needed because the total
number of cherries in the tree set could be superlinear (up to quadratic
in the number |X| of taxa), which could make it impractical to compute
F2 for every cherry at every iteration. Using the first classifier before-
hand guarantees that F2 must be computed only for a linear number O (k|
X|) of cherries at each iteration, resulting in a much faster and more
practical algorithm.

Features 5–6 for the first classifier and 6–13 for the second classifier
can be computed for both branch lengths and unweighted branches. We
refer to these two options as branch distance and topological distance,
respectively. The branch depth (resp. topological depth) of a node u in a
tree T is the total branch length (resp. the total number of edges) on the
path from the root to u; the leaf-depth of T is the maximum depth of any
leaf of T; the depth of a cherry (x, y) is the depth of the common parent of
x and y; and the cherry-depth of T is the maximum depth of any cherry of
T. The leaf distance between x and y is the total length of the path from
the parent of x to the lowest common ancestor of x and y, denoted by

LCA(x,y), plus the total length of the path from the parent of y to LCA(x,
y). In particular, the leaf distance between the leaves of a cherry is zero
as their LCA is their common parent. All of the above quantities can be
defined both using branch distance and topological distance.

2.3.3. Tree expansion
We now briefly describe a heuristic improvement to our methods,

called tree expansion, that was already introduced in Bernardini et al.
(2022) for binary trees, and can be applied as-is to multifurcating trees.
Tree expansion is applied whenever a trivial cherry (x, y) is chosen to be
reduced at some iteration. By Definition 2, each tree T in the current tree
set belongs to one of the following classes with respect to the trivial
cherry (x,y): (i), (x, y) is a cherry of T; (ii), neither x nor y are leaves of T;
(iii), T has leaf y but not x; and (iv), T has leaf x but not y.

Without tree expansion, after reducing (x, y) in the tree set, leaf x is
removed from the trees in class (i), but not from the trees in class (iv),
thus it still may be present in the tree set. The goal of tree expansion is to
make x disappear from the whole tree set, as this empirically reduces the
length of the produced sequence and thus the number of reticulations in
the output network. Tree expansion consists of the following operation:

Rule 1. (Tree expansion) Before reducing a trivial cherry (x, y) in the
tree set, add leaf y to form a cherry with x in all the trees in class (iv).

After tree expansion, picking (x, y) will make x disappear from the
set. Another way of viewing this operation is as a relabeling of x by y in all
the trees in class (iv). It was proved in Bernardini et al. (2022, Lemma 6)
that this move does not affect the feasibility of the output: in other
words, the network produced using tree expansion still displays the
input set of trees. The same proof applies to the case of multifurcating
trees.

Example 1. To illustrate the workings of FHyNCH-MultiML, we applied
it to two phylogenetic trees for the Lamprologini tribe (one representing
the mitochondrial phylogeny, the other the nuclear phylogeny), studied
in Koblmüller et al. (2007). The same data were later used to test the
Autumn algorithm (Huson and Linz, 2018). In Huson and Linz (2018),
the phylogenetic trees were preprocessed to contract edges that had a
bootstrap support of 50% or less. We applied FHyNCH-MultiML to these
preprocessed trees, after deleting a few species that were misspelt in one
of the two trees of Huson and Linz (2018) and were mistakenly
considered two different species in the two phylogenies2. Note that
removing these species does not affect the number of reticulations
needed because each of the variants was in only one of the trees in Huson
and Linz (2018). The trees are multifurcating and have different taxa
sets.

The input trees and the network outputted by FHyNCH-MultiML are
shown in Fig. 4. Notably, although FHyNCH-MultiML is a heuristic spe-
cifically designed for multiple trees, in this case, it returns a network
with the same number of reticulations as in the output of the exact
Autumn algorithm (Huson and Linz, 2018), thus an optimal result. We
also observe that the Autumn algorithm has several practical advan-
tages: it returns multiple optimal networks and it returns nonbinary
networks. In comparison, the networks produced by FHyNCH-MultiML

could be more resolved than necessary to display the input trees.
Let us now have a closer look at the first iterations of FHyNCH-Mul-

tiML. The two input trees contain several trivial cherries: e.g.
(Hybrid1.2, Neolamprologus_calliurus) is a cherry in the mitochondrial
tree, and the label ‘Hybrid1.2’ does not appear in the nuclear tree, thus
the cherry is trivial as per Definition 2; another trivial pair is (Telma-
tochromis_vittatus, Julidochromis_ornatus), which is a cherry both in

Table 2
Features of a cherry (x, y) for the second classifier. These features are the same as
those for the classifier used in Bernardini et al., 2022; however, the latter clas-
sified cherries into four classes instead of only two.

Num Feature
name

Description

1 Cherry in
tree

Ratio of trees that contain cherry (x,y)

2 New
cherries

Number of new cherries of T after picking cherry (x,y)

3 Before/
after

Ratio of the number of cherries of T before/after picking
cherry (x,y)

4 Trivial Ratio of trees with both leaves x and y that contain cherry (x,
y)

5 Leaves in
tree

Ratio of trees that contain both leaves x and y

Features measured by distance (d) and topology (t)
6b,t Tree depth Avg over trees with (x, y) of ratios “cherry-depth of the tree/

max cherry-depth over all trees”
7b,t Cherry

depth
Avg over trees with (x, y) of ratios “depth of (x, y) /cherry-
depth of the tree”

8b,t Leaf
distance

Avg over trees with x and y of ratios “x-y leaf distance/
cherry-depth of the tree”

9b,t Leaf depth
x

Avg over trees with x and y of ratios “depth of x/cherry-
depth of the tree”

10b,t Leaf depth
y

Avg over trees with x and y of ratios “depth of y/cherry-depth
of the tree”

11b,t LCA
distance

Avg over trees with x and y of ratios “x-LCA(x, y) distance/y-
LCA(x, y) distance”

12b,t Depth x/y Avg over trees with x and y of ratios “depth of x/depth of y”
13b,t LCA depth Avg over trees with (x, y) of ratios “depth of LCA(x,

y)/cherry-depth of the tree”

2 E.g., Neolamprologus wauthioni is mistakenly spelt as Naolamprologus wau-
thioni in the mitochondrial tree used in Huson and Linz (2018); the two names
(correct and misspelt) labelled two different leaves of the output networks.
Similar typos occurred for another two species.

G. Bernardini et al.
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the mitochondrial and in the nuclear tree; and many more (16 in total).
The first iterations are devoted to picking all such trivial cherries, which
are also cherries of the output network of Fig. 4 (c). After picking all the
initial trivial cherries, the two input trees were reduced to the two trees
shown in Fig. 5.

At this point, the first classifier computed the features of Table 1 for
all the 15 leaves remained in the trees of Fig. 5 and returned ‘Lep-
idiolamprologus_sp_meeli-boulengeri’ (abbreviated as ‘Lep_sp_meeli-
boule’ in the rest of the example) as the top-scoring leaf, with a score of
0.98. This leaf formed a cherry with ‘Lepidiolamprologus_attenuatus’ in
the Mitochondrial tree (abbreviated as ‘Lep_att’) and with ‘Lep-
idiolamprologus_meeli’ (‘Lep_meeli’) in the nuclear tree. The second
classifier thus computed the features of Table 2 for the four cherries
(Lep_sp_meeli-boule, Lep_att), (Lep_att, Lep_sp_meeli-boule), (Lep_-
sp_meeli-boule, Lep_meeli), (Lep_meeli,Lep_sp_meeli-boule), and
returned (Lep_sp_meeli-boule, Lep_att) as the top-scoring. This cherry
was thus picked from the mitochondrial tree.

After this iteration, the cherry (Lep_sp_meeli-boule, Lep_meeli)
became trivial (as ‘Lep_sp_meeli-boule’ was no longer present in the
mitochondrial tree) and was thus picked from the nuclear tree. In the
end, FHyNCH-MultiML produced a cherry-picking sequence of length 36;

since the total number of taxa labelling the input trees was 33, the
output reticulation number was 4.

2.3.4. Obtaining training data
Generating data to train our classifiers is nontrivial because of the

lack, in general, of ground truth: no existing algorithm is able to find an
optimal solution – let alone all optimal solutions – for sufficiently large
instances. We thus rely on the following procedure. We first generate a
binary network N on a set of taxa X using the LGT (lateral gene transfer)
network generator of Pons et al. (2019) and extract the set T̃ of all trees
that are displayed inN and have the whole X as leaf set. We then contract
and delete some edges (see Definition 1) from each of these trees using
the following criteria. We set up two thresholds Ml,Me ∈ (0,1); for each
tree T ∈ T̃ , we choose a value pT

l ∈ (0,Ml) and a value pT
e ∈ (0,Me)

uniformly at random, contract each edge of T with probability pT
e and

delete each leaf (by deleting the edge that connects it to its parent) with
probability pT

l .
The thresholds Ml and Me thus model the maximum probability with

which a leaf is deleted and an edge is contracted, respectively, in any of

the trees of T̃ ; and we apply these operations with a different

Fig. 4. Mitochondrial (a) and nuclear (b) phylogenies for the Lamprologini tribe, preprocessed as in Huson and Linz, 2018. The network outputted by FHyNCH-
MultiML (c) has the optimal number of 4 reticulations.

G. Bernardini et al.
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probability for each tree. The resulting tree set T consists of multi-
furcating trees (as a result of edge contractions) with missing leaves (as a
result of leaf deletions).

Once we have generated the set T , we create a data point for the first
classifier for each leaf of T , labelling it according to whether it is in a
reducible pair of N or not; and similarly, we create a data point for the
second classifier for each cherry of T , labelling it according to whether
it is reducible in N or not. We then iteratively choose a reducible pair
from N, reduce it both in N and in T , and update the data points and
labels of each classifier. We terminate this procedure when N is fully
reduced.

We remark that N is not necessarily an optimal network for the
generated trees (Pardi and Scornavacca, 2015). However, its number
r(N) of reticulations provides an upper-bound estimate of the number of
reticulations of an unknown optimal network, and in Section 3.1 we will
use r(N) as a reference value to evaluate the quality of our results for the
synthetically generated data sets.

3. Results

The code of all our heuristics and for generating data is written in
Python and is available at https://github.com/estherjulien/
FHyNCH. All experiments ran on a computing cluster with an AMD
Genoa 9654 CPU, of which 16 cores were used. We conducted experi-
ments on both synthetic and real data. Scikit-learn (Pedregosa et al.,
2011) with default settings was used for the random forest model.

3.1. Synthetic data

Similar to the training data, we generated each of the synthetic
datasets by first growing a binary network N on a set of taxa X using the
LGT network generator of Pons et al. (2019), extracting some of the trees

that are displayed in N and have the whole X as leaf set, and finally
deleting some leaves and contracting some edges from each of the
extracted trees as described in Section 2.3.4.

We generated several instances for different combinations of the
following parameters: the number R ∈ {10,20,30} of reticulations of
the generating network N; the number L ∈ {20,50,100} of leaves of the
generating network N (i.e. the size of the set of taxa X); the number |T |

∈ {20,50, 100} of trees extracted from N; and the thresholds Ml,Me ∈ {

0, 0.1,0.2} for leaf and edge deletion, respectively (see Section 2.3.4).
For each combination of the parameters R, L,Ml andMewe generated 20
networks for each value of |T | ∈ {20,50, 100} and as many instances
for HYBRIDIZATION. The 60 instances generated for a specific combination
of values for L,R,Ml,Me constitute an instance group.

We run all our experiments setting the parameter k = 1, as the
experiment summarized in Fig. 6 indicates that larger values of k in-
crease the running time of the algorithm without improving the quality
of the results.

Since no exact method can be applied to these instances, we
compared FHyNCH-MultiML with FHyNCH-TrivialRand, a randomized
heuristic proposed in Bernardini et al. (2022) (and here briefly sum-
marized in Section 2.2) that can be straightforwardly modified to be
applied to nonbinary trees with missing leaves. For each instance I, we
ran FHyNCH-MultiML once, while FHyNCH-TrivialRand was run min{x(I)
, 1000} times, where x(I) is the number of runs that can be executed in
the same time as one run of FHyNCH-MultiML on the same instance; we
then selected the best output over all such runs, and considered this
value the result of FHyNCH-TrivialRand for instance I.

To evaluate the quality of the methods, within each instance group
we used the number R of reticulations of the generating networks as a
reference value and divided the number of reticulations output by each
method by this value. The results are summarized in Fig. 7.

It is immediately apparent that the results of FHyNCH-TrivialRand

rapidly degrade for increasing instance size and increasing percentages
of missing leaves and multifurcating nodes in the input trees, while the
performance of FHyNCH-MultiML is muchmore stable. Moreover, for the
same number of leaves in the generating network N (parameter L) the
results of both methods become worse for increasing number of re-
ticulations of N (parameter R), the deterioration being much more
marked for FHyNCH-TrivialRand than for FHyNCH-MultiML.

With few exceptions (including e.g. the instance group with L = 20,
R = 10, Ml = Me = 0.2), the performance of FHyNCH-MultiML and
FHyNCH-TrivialRand on the smaller instances (L = 20) do not seem to be
significantly different, although both the median and the variance of the
results of FHyNCH-MultiML are consistently smaller than those of
FHyNCH-TrivialRand. In all the other instance groups, FHyNCH-MultiML

substantially outperforms FHyNCH-TrivialRand, the difference being
more pronounced in groups with higher percentages of missing leaves
and contracted edges.

Unlike what happens for FHyNCH-TrivialRand, the quality of the re-
sults of FHyNCH-MultiML is only marginally affected by increasing
percentages of contracted edges, and it is also mildly affected by
increasing percentages of missing leaves. For example, the median for
the results of FHyNCH-MultiML in the instance group with L = 100,R =

30 and no contracted edges nor missing leaves is 1.47, the results for
75% of the instances being within a factor 1.7 from the reference value;
these values become 1.78 and 2.18, respectively, in the instance group
with L = 100,R = 30, no missing leaves and Me = 0.2. Increasing the
percentage of missing leaves, the median of the results of FHyNCH-
MultiML within the group with L = 100,R = 30,Ml = Me = 0.2 is 2.85,
the results for 75% of the instances being within a factor of 3.71 from the
reference.

In comparison, for the same instance groups the results of FHyNCH-
TrivialRand are as follows: in the group with L = 100,R = 30, no missing
leaves nor contracted edges, the median is 4.02, the results for 50% of
the instances being within a factor in the range of 3.2 to 5.01 from the
reference value; in the group with L = 100,R = 30, no missing leaves

Fig. 5. The trees of Fig. 4 after reducing all their trivial cherries.

G. Bernardini et al.
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and Me = 0.2, the median is 7.13, the results for 50% of the instances
being within a factor in the range of 5.52 to 9.43 from the reference
value; and finally, in the group with L = 100,R = 30 andMe = Ml = 0.2
the median is 8.82, the results for 50% of the instances being within a
factor in the range of 5.98 to 11.56 from the reference value.

The poor performance of FHyNCH-TrivialRand on instances consisting
of trees with many leaves, especially when they are nonbinary, is due to
its randomized nature: the more the leaves, the more the cherries in the

tree set, thus the smaller the probability of picking a good pair at every
iteration. When the trees are nonbinary, the number of cherries in-
creases even more, making the issue more serious; and the same holds
for missing leaves - when a leaf is missing from a tree, this may originate
a cherry that would not have been there in the complete tree. In contrast,
the more leaves in the trees the more data are available for the machine-
learned models to make good decisions.

In the next section, we show that this trend is conserved when the

Fig. 6. Results (left) and running time in seconds (right) for synthetic instances with L = 100,R = 30, |T | ∈ {20, 50,100},Me = 0 and Ml ∈ {0,0.2} for varying k ∈

{1,2, 5, 10} (k is the number of leaves chosen in Step 1 of FHyNCH-MultiML: see Section 2.3.2).

Fig. 7. Synthetic instance results for different values of Ml, Me, L, and R. The reference reticulation number value per instance is the network the trees were
extracted from.
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two methods are applied to real datasets: when the instances are small
enough, FHyNCH-TrivialRand often outperforms FHyNCH-MultiML, while
on larger instances the results of FHyNCH-MultiML are significantly
better.

3.2. Real data

Evaluating the performance of FHyNCH-MultiML on real data is a
nontrivial task because, since no exact method exists for solving HY-
BRIDIZATION for more than two multifurcating trees with missing leaves,
we do not have a baseline to compare against. We thus adopted two
different strategies depending on the instance size.

For small enough instances, consisting of up to 6 trees, we apply a
procedure - described in the paragraph devoted to small instances - to
make the trees binary and with equal leaf sets, to be able to apply the
exact TreeChild method from van Iersel et al. (2022) and use its result as
a reference value. Although this is not necessarily the true optimum,
both because by making the trees binary and adding missing leaves we
could introduce spurious constraints that might originate unnecessary
reticulations and because TreeChild is exact only for a special class of
networks, this value is expected to be reasonably close to the real
optimum.

Larger instances cannot be processed by TreeChild nor other exact
methods, thus we simply compared the performance of FHyNCH-Mul-

tiML and FHyNCH-TrivialRand and reported the relative error of one
compared to the other, i.e. the difference between the two results
divided by the best (thus the smallest) one. More details will be provided
in the paragraph devoted to large instances.

Data sets We extracted several instances of HYBRIDIZATION from the
publicly available data set used in Beiko (2011), consisting of phyloge-
netic trees for 159,905 distinct homologous gene sets from 1173
sequenced bacterial and archaeal genomes. The trees are multifurcating
and have missing leaves.

For different sizes of the tree set |T | ∈ {2,4,6,10,20,30,40,50,60},
we extracted instances. For each instance, we also fixed an approximate
number of leaves L ∈ {10,20,50,100,150} and the maximum fraction
of missing leaves (from the union of leaves from all trees in the set)Ml ∈

{0.1,0.2,0.3}.
To generate an instance, we sampled one tree at a time from the full

data set uniformly at random, and depending on whether it was
consistent with the fixed values for parameters L and Ml we added it to
the instance or discarded it and sampled another tree, until we reached
the predetermined number |T | of trees.

More in detail, for every sampled tree T we checked whether the
number of its leaves was between (1 − Ml)L and L, whether the union of
its leaves and the leaves of the trees already selected for that instance
was of size at most L and the difference between the leaf set of T and such
union was at most 100 ⋅ Ml%. If an instance could not be completed

within a timeframe of 10 min, we aborted the search and started
generating a new instance with the same parameters from scratch. We
aimed at generating 10 instances for each combination of parameters
|T |, L and Ml, however, for some combinations we did not find enough
trees with the desired properties to generate as many instances. Table 3
reports the number of distinct instances that we were able to extract
from the data set for each parameter combination. We consider small the
instances with |T | ∈ {2,4,6} and large the rest.

3.2.1. Experiments on small instances
We assess the performance of FHyNCH-MultiML against FHyNCH-

TrivialRand on small instances using a baseline obtained by applying
TreeChild (available at https://github.com/nzeh/tree_child_code) to a
modified version of the same instance. The modification is needed
because TreeChild can only be applied to a tree set of binary trees with
the same leaf sets. To generate these modified instances, the first step is
to add as many missing leaves as possible as follows.

Let T = {T1,T2,…,Tn} be the set of input trees and let R be the set of
cherries of T . For each Ti and each leaf ℓ missing from Ti, we compute
the set Rℓ

i = {(ℓ, y
)
∈ R

⃒
⃒ y ∈ Ti

}
of cherries of T such that one element

is ℓ and the other is a label present in Ti. We then find the cherry (ℓ, z)
∈ Rℓ

i that occurs the most in T (ties are broken randomly), add ℓ as
another child of the parent of z in Ti and remove ℓ from Mi. If after
applying this procedure for all missing leaves of Ti some leaves are still
missing, we add them randomly.

In an effort to minimize the bias introduced in the results because of
this randomized step, we generated 10 different modified instances for
each of the original instances, ran TreeChild on each of them and used the
result for the best of these modified instances as a reference value for the
original instance. Before doing so, however, we make all the trees of all
the modified instances binary by using the dedicated method that can be
found in the TreeChild repository https://github.com/nzeh/tree_child_c
ode.

We remark that the trees of the modified instances display those of
the original instances by construction (they can be obtained reverting
the procedure, i.e contracting edges and deleting leaves) thus the solu-
tions obtained by applying TreeChild to the modified instances are al-
ways feasible for the original ones, although we cannot guarantee their
optimality.

For each of the original instances I, we thus ran FHyNCH-MultiML

once, selected the best of the min{1000, x(I)} runs of FHyNCH-Trivial-

Rand (recall that x(I) denotes the number of runs of FHyNCH-TrivialRand

that can be completed in the time required for a single run of FHyNCH-
MultiML) and divided these results by the best value returned by Tree-

Child among the 10 modified instances obtained from I. We summarize
the results in Fig. 8.

From the experiments on synthetic data, it was already clear that the
performance of FHyNCH-TrivialRand is close to that of FHyNCH-MultiML

Table 3
Number of instances extracted from the Bacterial and Archaeal Genomes data set, for different combinations of parameters |T |,L, and Ml.

G. Bernardini et al.
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on small enough instances. The smallest instances of the synthetic data
set, which consist of 20, 50, or 100 trees with 20 leaves each, are much
larger than the small instances of the real data set, which consist of only
2, 4, or 6 trees each: for the latter, the good performance of FHyNCH-
TrivialRand becomes more pronounced, its results being always compa-
rable or better than those of FHyNCH-MultiML. This is because when the
size of the leaf sets and the number of trees are not too large, multiple
runs of FHyNCH-TrivialRand can explore a significant part of the solution
space and thus return a good enough solution.

Running time Table 5 reports the average and standard deviation of
the running times of FHyNCH-MultiML and TreeChild for each of the

small instance groups of Table 3. Following van Iersel et al. (2022), we
imposed a time limit of 2 h for the execution of TreeChild. We used 16
cores to run TreeChild and only 1 core to run FHyNCH-MultiML, which is
single-threaded. Note that for the smallest instances consisting of 2 trees
with L⩽20 or 4 trees with L = 10 TreeChild is on average faster than
FHyNCH-MultiML.

However, the opposite becomes true as soon as the number of trees
and leaves are increased: already for instances of 6 trees with L = 10,
TreeChild is slower than FHyNCH-MultiML on average by one or two
orders of magnitude; and it is slower by three orders of magnitude or
exceeds the time limit for instances with at least 4 trees with L⩾20 or just

Table 4
Number of (modified) small instances extracted from the Bacterial and Archaeal Genomes data set TreeChild was able to solve within a time limit of 2 h using 16 cores.

Fig. 8. Results for the small instances extracted from the Bacterial and Archaeal Genomes data set for different values of Ml. The reference value for each instance is
the best output of TreeChild among the corresponding 10 modified instances described in Section 3.2.1. We do not show results for instances for which TreeChild could
not provide a solution within 2 h, using 16 cores, for any of the modified instances, which was the case for at least one instance within 31 out of 40 small instance
groups (see Table 4 and compare it with Table 3). Parameters L and |T | are as described in Section 3.2.1; I denotes the number of instances that TreeChild was able to
solve for each instance group. Values of the ratio results/reference smaller than 1 indicate that TreeChild did not return the true optimum for some instances because
of the (unavoidable) artificial constraint introduced in the modified instances.

Table 5
Running times of FHyNCH-MultiML (MML) and TreeChild (TC) for the small instance groups. The first value in each pair is the average time in seconds within the group,
the second value is the standard deviation. For each instance group, the average time required by the fastest method is highlighted in bold. A dash indicates an empty
instance group; “> t.l.” means that the time limit of 2 h was exceeded. Only 1 core was used to run FHyNCH-MultiML on each instance; 16 cores were used to run
TreeChild on each instance.
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2 trees with L⩾50. FHyNCH-MultiML requires, on average, less than a
minute for all these instance groups.

3.2.2. Experiments on large instances
In contrast with the small instances, no exact methods could solve

any of the larger instances, not even when made binary and with equal
leaf sets. It is thus not possible to compute any reference value for these
instances. We thus simply compare the performance of FHyNCH-MultiML

against FHyNCH-TrivialRand computing their relative errors, defined as
follows. Let rML(I) and rTR(I) be the number of reticulations output by
FHyNCH-MultiML and FHyNCH-TrivialRand, respectively, for the same
instance I, and letm =min{rML(I),rTR(I)}. The relative error of FHyNCH-
MultiML against FHyNCH-TrivialRand for instance I is given by rML(I)− m

m ;
likewise, the relative error of FHyNCH-TrivialRand against FHyNCH-
MultiML is rTR(I)− m

m . The relative error of one method against the other is
0 whenever the method is the best-performing one. We computed these
values for each instance, averaged them over all instances within each
instance group, and rescaled them to express them as a percentage. The
results are shown in Table 6.

Note that when the mean relative error is 0.0 for some method in
some instance group, by definition, that method is the best-performing
one for all the instances within the group. It is thus immediately
evident that FHyNCH-MultiML is systematically the best method for any
instance with a number of leaves L⩾100 and any number of trees and
missing leaves. For these instance groups, the mean relative error for
FHyNCH-TrivialRand ranged between 12.2% and 33.5%.

Once again confirming the behavior observed for synthetic data,
FHyNCH-TrivialRand performs the best on small instances, its results
getting worse with increasing values of parameters L and |T |. In
particular, FHyNCH-TrivialRand is the best-performing method, on
average, for all instance groups with |T | = 10 and L⩽50. Increasing L
and |T |, FHyNCH-MultiML outperforms FHyNCH-TrivialRand in more
andmore instance groups: in particular, it is the best-performing method
for all groups with L⩾20 and |T |⩾50, and it is the best one for 7 out of 9
instance groups with L = 20 and |T | ∈ {20,30,40}.

Running time In Table 7, we report the average running time of
FHyNCH-MultiML within each of the large instance groups of Table 3.
Noticeably, the average running time for the group with the largest in-
stances (60 trees with up to 100 leaves and 30%missing leaves) is under
15 min.

4. Conclusions

We presented FHyNCH-MultiML, the first heuristic scheme specif-
ically designed to solve the hybridization problem for large sets of

multifurcating phylogenetic trees with missing leaves. FHyNCH-MultiML

combines the use of two suitably designed machine-learning models
with the technique of cherry-picking.

Experiments on synthetically generated data sets suggest that the
results obtained with our method are qualitatively good, given the
hardness of the problem: the number of reticulations in the generated
networks is always within a small constant factor from the number of
reticulations of the network the trees were sampled from. These results
are particularly impressive in the case of large inputs consisting of 100
multifurcating trees on a set of 100 taxa with missing leaves. Although it
is hard to evaluate the performance of the method on real data because
of the lack of reference values (since, before this work, no method
existed for this problem) we show that on large enough instances
FHyNCH-MultiML is systematically better than repeating a randomized
heuristic many times and choosing the best solution.

This work shows the potential for combining machine learning with
cherry picking for phylogenetic reconstruction. The major advantage of
this approach is its versatility. Indeed, the method presented here can be
applied to an arbitrary phylogenetic tree data set. This is an important
step forward in the field of phylogenetic networks since all previous
methods were limited to restricted types of data. Hence, an important
next step is to train the model on very large amounts of data to further
improve its performance. Also, the use of more complex machine
learning models, such as graph neural networks, could be investigated.
In addition, although our method uses branch lengths of input trees
within the algorithm to predict which cherries to pick, it does not yet use
them to predict the branch lengths of the output network. Finally, in this
paper, we have only evaluated the method in terms of the number of
reticulations of the constructed network. In future work, it is important

Table 6
Results for the experiments on the large instances extracted from the Bacterial and Archaeal Genomes data set. FHyNCH-MultiML and FHyNCH-TrivialRand are denoted by
MML and TR, respectively; the results in columns labeledMML report the mean relative error (in %) of the results of FHyNCH-MultiML against FHyNCH-TrivialRand; and
symmetrically for the columns labeled TR. We highlight in bold the smallest of the two errors for each instance group, identifying the best-performing method for each
group. Dashes denote empty instance groups (see also Table 3).

Table 7
Running times for the large instances extracted from the Bacterial and Archaeal
Genomes data set. For each instance group, we give the average running time in
seconds. Dashes indicate empty instance groups.

L Ml 10 trees 20 trees 30 trees 40 trees 50 trees 60 trees

10 0.1 7.5 9.6 9.6 12.4 18.0 17.0
0.2 3.2 5.9 7.7 12.7 21.2 16.6
0.3 3.5 5.0 9.3 12.6 18.6 16.1

20 0.1 11.2 24.3 39.8 64.5 79.8 124.4
0.2 9.7 19.1 32.2 57.8 69.0 106.9
0.3 9.4 21.1 27.1 49.2 57.5 75.6

50 0.3 23.0 - - - - -
100 0.1 75.6 200.4 348.2 458.6 - -

0.2 79.5 195.4 346.5 511.4 683.8 856.7
0.3 76.6 185.4 329.7 481.6 661.8 833.3

150 0.3 106.9 - - - - -

G. Bernardini et al.



Molecular Phylogenetics and Evolution 199 (2024) 108137

12

to analyze how close the constructed networks are to the original
simulated network, topologically, for example using tail-moves (Janssen
et al., 2018) with edge-insertions/deletions.
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