
Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 305-319

On the Notion of Strong Typing

Maarten M. Fokkinga

Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands

The usefulness of strong typing is formalized in the following way. Strong
typing is a syntactic means to restrict the class of programs so that a pleasant
semantic property holds. More precisely, a semantic equivalence of strongly
typed programs is proved independent of the representation used to implement
abstract entities like numbers, truth values and predefined ones.

Thus a formal content is given to phrases like "typing prevents to employ
unintended properties of representations" and "semantically types are
redundant".

1. Introduction

It seems widely accepted that so-called strong typing has some
undeniable benefits. E.g. the ALGOL 68 designers claim that" ALGOL 68 has
been designed in such a way that most syntactic errors and many others can
be detected easily before they lead to calamitous results" [19, Section
0.1.3]. Undoubtly it is its mode discipline which plays a major role in this
error detection (see [6, 8]). Indeed, "one often pays a price for [the absence
of a type system] in the time taken to find rather inscrutable bugs - anyone
who mistakenly applies CDR to an atom in LISP, and finds himself
absurdly adding a property list to an integer, will know the symptoms"
[11 l.

It is therefore not surprising that the following requirement is included in
STEELMAN [2]:

"3A. Strong Typing. The language shall be strongly typed. The type
of each variable, array, record, expression, function and parameter
shall be determinable during translation".

But STEELMAN neither provides a formal definition of strong typing, nor

305

306 M.M. Fokkinga

does it give any semantic property aimed at in requiring strong typing. So
how could one prove that ADA meets the requirements or desiderata?

In this paper we investigate what formally the usefulness of strong typing
might be. To this end we view typing as a purely syntactic way of restricting
the class of programs so that a pleasant semantic property holds for that
class, and we thus formalize the interplay between the syntactic typing and
the semantic properties of programs. This view is in accordance with [13]
and [12], and seems consistent with practical implementations of strongly
typed languages. Nevertheless one mostly finds types motivated in a setting
where semantic entities (like retracts [16] and [3], downward closed
directed c.p.o.'s [11] and so on) are assigned to types.

Our paper might be viewed as a continuation of [15] and [3]. They both
present a theorem which we call the Correspondence Theorem. Informally
this theorem asserts that there is a relation, called correspondence, which
relates for any strongly typed program the values denoted under different
implementations. However, both assign a semantics to types. We are glad
to improve their results in that we show types to be semantically redundant.
Moreover we prove a nicer theorem (Theorem 3 .10) which asserts that a
semantic equivalence of programs is independent of the implementation.

The formalization and proofs are carried out in the framework of the
typed J-notation. We define two expressions equivalent with respect to
some type t if their values, when used according to t, are the same function
- or constant.

The remainder of the paper is organized as follows. In Section 2, we
formally define syntactic concepts of the language, and define some
axioms which are to characterize the semantics. In Section 3, the formaliz
ation of the usefulness of strong typing is presented. Thereafter, in Section
4, we give a specific semantics of the language, satisfying the axioms; that
section only serves to provide a concrete example. Finally we conclude with
Section 5, discussing the results obtained.

2. The Language

We choose a simple language to illustrate the essential ideas. Obviously,
then, the language has to have a construct where type checking is involved,
say function application or assignment. Moreover the language has to have
a construct for user controlled creation of new values; were this not the case

On the notion of strong typing 307

there would be no problems at all, because one must of course assume that
all 'predefined' values behave well. In view of its simple semantics we are
led to consider the A-notation; A-abstraction is the construct to create new
values.

Definition 2.1 (Expressions and Types). Let X be a countably infinite set
of normal identifiers and let Z be a set of type identifiers. Throughout the
paper we let x and y vary over X and z over Z. Specific elements of X are
e.g.

zero, one, succ, pred, true, false, ...

and specific elements of Z are

int, boo!,

The set T of types is defined thus

t::=zlU-t').

The set E of expressions is defined thus

e ::=xi (AX: t. e) I e(e').

Throughout the paper we let e vary over E and t over T; we sometimes
suffix them with digits, primes and letters f, a and b (for function,
argument and body). According to common usage we omit parentheses
when they are clear from the context; in particular the scope of A extends as
far as possible, and -> associates to the right, so that tl ->t2->t3 =
tl->(t2->t3).

Notice that there are no constants like 0, 1, 2, ... ; predefined identifiers
like zero, one, two, ... (or even zero and succ alone) should enable the
programmer to use numbers. Other interesting predefined identifiers may
be the so-called fixed point operators, fixpointu of type ((!-> t')->
(t->t'))->(t->t'), to enable recursive definitions.

Syntactic sugar might be added to make the language more practical.
E.g. non-recursive definitions can be introduced as an abbreviation:

let x: t=e' in e
and

e where x: t = e'

308 M.M. Fokkinga

abbreviate (Ax: t. e)(e'). Also conditional expressions can be introduced:

if e then e 1 else e2

where both el and e2 have type t, abbreviates

cond1(e)(Ax: null. e l)(Ax: null. e2)

where cond1 has type bool--+(null--+t)-->(null-->t)-->t. All this is well known,
see e.g. [17].

We now define what expressions are well typed. The formal term used is
strong typing. Informally it means that for each application the type of the
argument must match the parameter type of the function. In our simple
language two types match iff they are equal; in a more elaborate language a
less trivial relation may hold.

The type of identifiers depends on the context in which they occur. We
model that context by a so-called syntactic environment. Formally, the set
S of syntactic environments is the set of partial functions X-> T. Through
out the paper we lets vary over S. For each s we assume that there exists an
identifier x which has not yet a type associated with it; we say that new(x, s)
holds in that case. In view of the infinity of X this is no strong requirement.

As usual the suffix [p+-q] denotes updating of a function; in particular

s[x+- t] (x') = if x = x' then t else s(x').

This notation will also be used for semantic environments r, to be intro
duced below.

Definition 2.2 (Strong Typing). The relations I- e: t ("e has type tins") is
the smallest relation satisfying

(a) if s(x) = t, thens 1- x: t;
(b) if s[x+-ta] 1- eb: tb, thens 1- (AX: ta. eb) : (ta--> tb);
(c) if for some ta, st-ef: ta-->tb and st-ea: ta, then st- ef(ea): tb.
We say e is strongly typed in s if for some t, s 1- e: t.

Now we turn to the semantics of the language. Let Vbe the set of values
which serve as meanings for expressions, and let R = X--> V be the set of
semantic environments giving the meaning of the predefined identifiers.
(Throughout we let v and w vary over Vand rover R.) The meaning of an
expression e is then given by M(e, r), where Me Ex R--> V is the so-called
meaning function (a partial function).

On the notion of strong typing 309

Usually the meaning of expressions are taken to be some abstract
entities, like numbers, truth values or functions. Accordingly the domain
of numbers is associated with the type identifier int, the domain of truth
values is associated to boo!, and - sometimes mathematically quite
sophisticated - functional domains are associated to types t--+ t'. Actually,
however, expressions yield bit patterns, or the like, which in some way or
another represent those abstract entities. And accordingly, from the bit
pattern alone, say concrete value, one can not tell whether it is meant as a
number, truth value or function. It is indeed quite possible to execute a bit
pattern meant as a number as if it represents a function. Thus semantically
types do not enter the picture.

Admittedly, mostly the abstract entities are of interest. But the interpre
tation of the concrete values cannot be the task of the language designer,
i.e. is not incorporated into M. Even if M would produce numbers, then
still these numbers represent some more abstract entities like year of birth,
salary and so on. The interpretation is really outside the grip of M, and is
left to the individual programmer and creator of the standard environ
ment.

Consequently the value denoted by an expression is possibly untyped.
We will however not burden the reader/programmer with details of the
value space V, but instead specify the meaning of expressions by the
axioms which we need in the proofs below.

Definition 2.3 (Axioms for M). For strongly typed expressions the
meaning function satisfies the following axioms.

(a) M(x, r) = r(x);
(b) if v=M(ea,r), then M((,lx: ta. eb)(ea),r)=M(eb,r[x+--v]);
(c) ifynot freeine, thenM((,lx: ta. e)(ea),r) =M((Ji,y: ta. e[xly])(ea),r);
(d) if v = M(e', r) and x does not occur free in the scope of some Ji, within

e, then M(e[x/e'],r)=M(e,r[x+--v]).

Above, and in the sequel, we use the postfix [x/e'] to denote substitution
of e' for x - taking care to rename bound identifiers in order to avoid clash
of names.

Notice that M(Ji,x: t. e, r) need not be a function. All we require is that it
can be used as a function in the sense of axioms (b) and (c). Indeed, the M
given in Section 4 will yield some code of a function, so that e.g.
M(,lx: t. e, r) differs from M(Ji,y: ! . e[x/y], r). Actually in Section 4 we take

310 M.M. Fokkinga

Vto be a set of untyped values, so that any value may be used in any way,
and M even satisfies the axioms for not strongly typed expressions.

In the sequel we will use the following abbreviations.
(1) 'v(w)' abbreviates M(x(y),r[x+-v,y+-w]), and is thus a concise way

of expressing that v is to be used as a function with argument w.
(2) el =,e2 abbreviates M(el,r)=M(e2,r); el and e2 yield the same

value in r.

3. Formalizing the Usefulness of Strong Typing

We will first introduce the syntactic concept of primitive expressions.
These denote what one might call predefined values and they are used to
state assumptions on alternative representations for the same set of
abstract entities. Secondly we define the semantic relation of correspon
dence and some properties of it. The correspondence relation is used in the
proof of Theorem 3.10 which expresses our view on the usefulness of
strong typing.

Suppose that the standard environment r provides via zero: int and
succ: int-+int an implementation for numbers. Of course, the concrete
value denoted by zero is not the number zero, but merely represents it in
some way or another. We may also consider an alternative implementation
f. Surely r(zero) and f(zero) need not be equal, although they both
represent the same abstract entity. E.g. the expressions

zero, succ(zero), succ(succ(zero)), ...

constitute the - unknown - representation of numbers. And if e.g.
pred: int-+ int is also present, then

pred(zero), pred(succ(zero)), succ(pred(zero)), ...

might also contribute to the representation. However note that abstractions
like AX: int. x or AX: int. zero do not contribute to the representation of
abstract entities as far as determined by the environment. Thus we are led
to the following definition to get some grip on the representations of
abstract entities.

Definition 3.1 (Primitive expressions). For any s the set P of primitive
expressions consists of all strongly typed expressions p generable by

On the notion of strong typing 311

P ::=x jp(p).

In the sequel p varies over P.

It will turn out that, for fixed s and r, the primitive expressions of type z
constitute all expressible 'z-values'. Thus they play the role usually played
by constants. However we do not restrict the types of the given function
identifiers to first order; a function identifier mk-int:((t-+ t)-+ int) may
occur in the primitive expressions and so contribute to the values repre
senting 'int's.

Given two environments r and f, we wish to define a correspondence
relation - 1 on Vx V, relating those values which wrt r resp f represent the
same abstract entity. As one concrete value may represent a variety of
abstract entities (e.g. 001 may represent both the number one and the truth
value true, and many more), we need to indicate with respect to what
interpretation the correspondence is to be understood. The type t serves
that purpose. Of course we want M(p, r) -zM(p, f) for p of elementary type
z; thus the relation also depends on s.

Definition 3.2 (Correspondence). For any s, r, f and t the relation s,r,ff-
v - 1 v (''v and v represent the same abstract entity") is defined by induction
on t as follows:

(a) t = z: s, r, fr- M(p, r)-zM(p, f) for any p withs f- p: z;
(b) t=ta-+tb: s,r,ef--V-1V iff for all w, W with s,r,ff--W-1aW, also

S, r, fr- 'V(W) '-lb 'V(W) '.

We cannot expect to derive any interesting property for the corres
pondence relation unless we assume consistency between the two environ
ments. In particular the following predicate Correct- (s, r, f) is reasonable.

Definition 3.3 (Correct-). Correct- (s, r, f) holds iff for all x, t with
Sf--X:t

s, r, f r-M(x, r)- 1M(x, f).

The following lemma shows that a seemingly stronger requirement for
Correct- (s, r, f) actually already follows from the given definition.

Lemma 3.4. Let s, r, f satisfy Correct - (s, r, f). Then, for any p, t with

312 M.M. Fokkinga

sf--p: t,

s, r, f f--M(p, r) ~ 1M(p, f).

Proof. By induction on the structure of p.

The following lemma is needed to prove the Stability of Correspondence
Lemma below, which in turn is needed in the Correspondence Theorem
following it. Both lemmata are of a rather technical nature. They show that
updating of s, r, f to s[x+-- t], r[x+--v], f[x+--v] under certain circumstances
does not change the relation ~ 1.

Lemma 3.5. Lets, r, f satisfy Correct~ (s, r, i'); let w, w, ty satisfy s, r, i'f-
w ~ 1y w; let y be new ins, i.e. new(y,s). Then for any p, t withs' f--p: t,

s, r, i' f-- M(p, r') ~ 1M(p, f')

wheres'= s[y+--ty], r' = r[y+--w], f' = f[y+--w].

Proof. By induction on the structure of p.

Lemma 3.6 (Stability of Correspondence). Lets, r, i' satisfy Correct~
(s,r,f); let w, w, ty satisfy s,r,ff--w~ 1y w; let y be new ins, new(y,s). Then
for any v, v, t

s,r,i'f--v~ 1v iff s',r',f'f--v~ 1v

wheres'=s[y+--ty], r'=r[y+--w], f'=f[y+--w].

Proof. By induction on the structure oft.
Case t=z, ⇒. Assume s,r,i'f--V~zV. By definition, for some p with

sf-p: z, v = M(p, r) and v = M(p, i'). Because new(y, s), y does not occur
free in p, hence v = M(p, r') and v = M(p, f') and s' f-- p : z. So by definition
s', r', i'' f- V ~z v.

Case t=z, <=. Apply Lemma 3.5.
Case t= ta-+tb. Use the definition of correspondence and the induction

hypotheses for both ta and tb.

Theorem 3. 7 (Correspondence). Lets, r, f satisfy Correct~ (s, r, f). Then
for any e, t with sf-- e: t

s, r, f f--M(e, r) ~ 1M(e, f).

On the notion of strong typing

Proof. By induction on the structure of e.
Case e = x. Immediate from the assumption.
Case e = ef(ea). Straightforward by induction.

313

Case e =).x:ta. eb. Then for some tb, t = ta-+ tb and s[x+-ta] 1- eb:tb.
Now let w, w be arbitrary satisfying s, r, f I- w-10 w. One may easily verify
that 'M(e, r)(w)'= 'M(Jx: ta. eb, r)(w)' =M(eb[x/y], r[y+-w]) where y is
chosen such that new(y,s). Setting s'=s[y+-ta], r'=r[y+-w] and f'=
f[y+-w], we can show Correct- (s', r',f') from the Stability of Corres
pondence Lemma. Hence we may apply the induction hypothesis and find

s', r', f' 1-M(eb[xly], r')- 1b M(eb[x/y], f').

As above M(eb[xly],f') = 'M(e, f)(w) ', so that

s', r', f' 1- 'M(e, r)(w)' - 1b 'M(e, f)(w)'.

Using once more the Stability of Correspondence Lemma we find

s, r, fl- 'M(e, r)(w)' - 1b 'M(e, f)(w) '.

We conclude therefore s, r, f 1-M(e, r)- 1M(e, f).

Reynolds [15] and Donahue [3] give more or less this theorem as the
effect strong typing has on the semantics of expressions. One may interpret
the theorem that an implementor of the predefined values, accessible via
the predefined identifiers, may freely switch from one representation r to
another f, provided Correct- (s, r, f), without essentially affecting the value
denoted by an expression: the two values do correspond and therefore do
represent the same abstract entity; in particular if the expression has a non
composite type we know that the two values M(e, r) and M(e, f) arise from
the same primitive expression.

Yet we feel a bit unhappy with this result; it involves too much hand
waving to convince an unwilling listener of the importance. Fortunately
there is a more appealing semantic property of strongly typed expressions.
Switching from one representation to another does not affect the meaning
of expressions in the sense that semantic equivalence is unaffected.
Semantic equivalence need be defined precisely, because there are several
reasonable choices, which in general do not coincide (see e.g. [1]). We
choose the one in which two expressions e and e' are said equivalent with
respect to a type t1-+ t2-+ • • •-+ tn-+ z if there is no context of the form
[···](el)(e2)···(en) with el:tl, ... ,en:tn which discriminates between e

314 M.M. Fokkinga

and e'; i.e. e(e1)(e2) ••• (en) and e'(el)(e2) •·· (en) yield the same value.
Formally, we define this notion by induction on t.

Definition 3.8 (Equivalence). For any s, r, el, e2 we define s,n-el ==1e2
("el and e2 are equivalent wrt t") as follows.

(a) for t=z: s,n-el ==ze2 if el =,e2;
(b) for t=ta+-tb: s,n-el == 1e2 if for all e with s1-e: ta, s,r1-el(e):::::1b

e2(e).

Notice that s,rl-e1==1e2 in itself does not require that sl-e1,e2:t.
Hence it makes sense to consider the question whether any e 1 and e2 are
equivalent. In particular we may consider expressions which are not
strongly typed, but are weakly typed according to [3]. Some simple
examples are treated after Theorem 3.10.

An alternative notion of equivalence is the following. Two expressions
el and e2 are said equivalent wrt type t if there is no strongly typed context
C[• • ·] with a hole of type t and as a whole of type z, for some z, such that
C[el] and C[e2] have different values; cf. [IO]. Our Theorem 3.10 fails for
this notion because of possible pathological values for higher order
function identifiers. We might exclude such values by suitable assumptions
about r, but we will not pursue this alternative here.

We can of course not expect to prove that equivalence is independent of
the environment, unless we assume some consistency requirements between
the environments under consideration. In particular the following
predicate Correct== (s, r, f) seems reasonable.

Definition 3.9 (Correct=). Correct= (s, r, f) holds iff for all pl, p2, z with
sl-pl,p2: z

s,rl-pl=zp2 iff s,fl-plc:::zp2.

Theorem 3.10 (Representational Independence of Equivalence). Lets, r, f
satisfy Correct- (s, r, f) and Correct= (s, r, f). Then for any e 1, e2, t with
s1-e1,e2: t

Proof. By induction on t.

On the notion of strong typing 315

Case t=z, =>. Froms,n-el :::::ze2 we find el =re2 (1)

From s,r,f1--M(el,r)-zM(el,f) (by the Correspondence Theorem) and
similarly for e2, we find by the Correspondence Definition

forsomepl withs1--pl:z, el=rPl andpl=,el,

for some p2 with s 1--p2: z, e2 =, p2 and p2 =; e2.

Hence by (1) pl =, p2, so s, r 1--p 1 ==-z p2, so by Correct=:::. (s, r,f) also s,f 1-
pl =zp2, so pl =,p2 and hence el =,e2, i.e. s,f 1--el ==:ze2.

Case t = z, <=. Similar.
Case t = ta-> tb. Easy by induction.

It is not difficult to construct counter examples to the conclusion of the
theorem in case the condition s 1-- el, e2: t is not met. E.g. consider the
syntactic environment with zero: int and true,false: boo!. Now let the
representation of booleans be a subset of the representation of the integers.
In particular choose r and f such that

r(zero) = r(true) * r(false),

f(zero) = f(false)-:f.= f(true).
Clearly

s, f 1-- zero :t::- 1 true for all noncomposite t E Z,
but yet

s, r 1-- zero ==- 1 true for all t.

Donahue [3] defines a notion of weak typing so that e =(AX: boo!. x)(zero)

is weakly typed and has type boo!. Again we find s, r 1-- e==-boot true but
s, f 1-- e *boot true. Thus relaxing the requirements 1-- e 1, e2: tin the theorem
to "el and e2 must be weakly typed, with type t say, ins" invalidates the
conclusion.

4. A concrete semantics for the language

This section only serves to show that untyped values and coinciding
representations are quite reasonable. We will work out the set V and
function M, without any sophisticated mathematical constructions as
commonly used in the field of denotational semantics, cf. [3, 9, 15, 16].

316 M.M. Fokkinga

Our starting point is that values are untyped, like bit patterns, and that
each value may be used in any way. This is just the opposite of Definition
2.1.1.2.c of the ALGOL 68 Report [19], and of the postulation by [5]. For
ease of presentation we choose a set V which suits our purpose very well.

Definition 4.1 (The value space V). Let C be a fixed set of constants,
disjoint from X. The set U of pseudo-values is defined by BNF:

u ::=x I (AX. u) I u(u') I c.

The set V of values is defined thus

V = { u E U I no x EX occurs free in u}.

Throughout v and w vary over V; specific elements of C are
c0,c1, ... ,S,P,

Values may be thought to model states of a machine. Possible state
transitions are modelled by transformation or reduction rules. A com
pleted transformation of some initial state v into a final state is called the
elaboration of v. We choose here a deterministic transformation in
applicative order ('call by value'), cf. the SECD machine of [7].

Definition 4.2 (Transformation rules and Elaboration). The deterministic
transformation v➔ w is defined thus:

(a) if v➔ v', then v(w)➔ v'(w);

(b) if Vv'. v~v' and w➔ w', then v(w)➔ v(w');

(c) if Vw'. w~w', then (.h. v)(w)➔ v[xlw];

(d) for each c E C there is a fixed set of rules

c(vl)(v2) •·· (vn)➔ w

which respects the deterministic applicative order.
The elaboration elab E v➔ V (a partial function) is given by

elab(v) = w if v-!..... wand Vw'. w~w'.

In the above framework "fatal errors during elaboration" may be
modelled by nontermination. To this end let error EC with error➔error.

Abstract entities like natural numbers N or truth values may be repre
sented in Vin a variety of ways, as shown in the next example.

On the notion of strong typing 317

Example 4.3 (Representations of natural numbers). One way is to let
c0, c 1, c2, ... E C and to represent n EN by the obvious constant, say en.

Further, let S, PE C represent the successor and predecessor function. The
following rules are needed: for all n

Alternatively, we may represent n by

(AX. Ay. xn(y)) =AX. Ay. x(x(• • • x(y) • • •)),

and the successor by AX. AY.).z. y(x(y)(z)) and the predecessor either by

PE C with P(h. Ay. xn+ 1(y))->).x. Ay. xn(y)

or by
AZ. (z(AX. Ay. y((AX. Ay. AZ. y(x(y)(z)))(x(Ax. Ay. x)))

(x(AX. Ay. x)))(Az. z(Ax. Ay. y)(Ax. Ay. y)))(AX. Ay. y),

from [17]. There are various other representations with constant-free
values, and which have a lower elaboration complexity (see [14)).

In particular the last representation in the above example shows that
values are untyped. Ax. Ay. y represents the number zero, but it may be
applied to any value. In fact it also represents any function f EA-> B-> B
with

f(a) = identity function on B.

Finally we define M. The role of types is to single out the strongly typed
expressions, i.e., those for which Theorems 3. 7 and 3 .10 hold. Semanti
cally "types are redundant."

Definition 4.4 (The meaning function M). The compilation - EE-> U is
defined thus (it throws away all types):

(a) X=X,

(b) (AX: t. e) =(AX. e),
(c) e(e') = e(e').
The meaning function MEE x R-> V is defined

M(e, r) = elab(e[x/r(x), for each x free in el).

318 M.M. Fokkinga

It should be easy to verify the axioms assumed in Definition 2.3, and to
construct suitable values for the identifiersfixpoint1, 1, and cond1 mentioned
in Section 2.

5. Conclusion

We have shown that strong typing may be viewed as a purely syntactic
means to restrict the class of expressions so that a nice semantic property
holds. This view is consistent with practice where types are semantically
(i.e. during run-time) redundant and values are really untyped.

The explicit formulation of the usefulness of strong typing makes it
possible to discuss formally whether strong typing is desirable, provides a
clear goal to aim at in the design of a type system, and enables a formal
proof that a language, which claims to be strongly typed, satisfies that
property. Thus we have a framework to discuss the type systems of [15], of
ALGOL 68 and of modern languages with highly advanced type systems like
LAWINE [18].

For example, [15] extends the A-notation with a facility to pass types as a
parameter. It presents no problems at all to extend our definitions,
theorems and proofs to cover that extension too, see [4]. On the other hand
the decision in ALGOL 68 that struct(real re, im) and struct(real rho,phi) are
not equivalent seems irrelevant to maintain the representational indepen
dence of equivalence. Here, we think the ALGOL 68 designers have
(mis)used the concept of strong typing in order to achieve in this particular
case and in an ad-hoc way that those modes are more or less primitive. A
facility to declare a type primitive, as in [15], would provide a more general
solution, with no need to break the full structural equivalence of modes.

Of course, before we can make precise the above claims, further investi
gation is needed to extend the concepts of this paper to other language
features. The introduction of cartesian product and discriminated union,
and of variables and assignment, seems to be straightforward. More
attention is needed for subtypes. And recursively defined types are
problematic. E.g. the definitions cannot easily be adapted for the type
z = z-> z. However, we conjecture that adaptations are possible for
reducing types [1] like

f ct= jct x int-> int

On the notion of strong typing 319

which may be used to define the factorial function in the following way.

J :Jct= Ag :Jct, i: int. if i = 0 then 1 else i *g(g, i- 1);

J act: int- int= Ai: int. J(j, i).

Acknowledgement

I am grateful to Joost Engelfriet for stimulating and helpful discussions.
He has also pointed out a serious error in earlier versions of this paper.

References

[!] E. Astesiano and G. Costa, Languages with reducing reflexive types, in: J.W. de Bakker
and J. van Leeuwen (Eds.), Automata Languages and Programming, Lecture Notes in
Computer Science, Vol. 85 (Springer, Berlin, 1980) pp. 38-50.

[2] Department of Defense (U.S.A.), Requirements for high order computer programming
languages (197 8).

[3] J. Donahue, On the semantics of "data type", Siam J. Comput. 8 (4) (1979) 546-560.
[4] M.M. Fokkinga, in preparation.
[5] C.A.R. Hoare, Notes on data structuring, in: 0.-J. Dahl, E.W. Dijkstra and C.A.R.

Hoare (Eds.), Structured Programming (Academic Press, London, 1972).

[6] C.H.A. Koster, The mode-system in ALGOL 68, in: S.A. Shuman (Ed.), New Directions
in Algorithmic Languages 1975 (!RIA, 78150 Le Chesnay, 1975) pp. 99-114.

[7] P.J. Landin, The mechanical evaluation of expressions, Comput. J. 6 (1964) 308-320.

[8] L. Meertens, Mode and meaning, in: S.A. Shuman (Ed.), New Directions in Algorithmic
Languages 1975 (IRIA, 78150 Le Chesnay, 1975) pp. 125-138.

[9] R.E. Milne and C. Strachey, A Theory of Programming Language Semantics (Chapman
& Hall, London, 1976).

[10] R. Milner, Fully abstract models of typed A-calculi, Theor. Comput. Sci. 4 (1977) 1-22.

[11] R. Milner, A theory of type polymorphism in programming, J. Com put. System Sci. 17
(3) (1978) 348-375.

[12] J.H. Morris, Types are not sets, in: Proc. ACM Symp. on Principles of Programming
Languages, Boston, IL (1973) pp. 120-124.

[13] J .H. Morris, Towards more flexible type systems, in: B. Robinet (Ed.), Proc. Program
ming Symposium, Lecture Notes in Computer Science, Vol. 19 (Springer, Berlin, 1974)
pp. 377-384.

[14] W.J. van der Poe!, C.C. Schaap and G. van der Mey, New arithmetical operators in the
theory of combinators, lndag. Math. 42 (1980) 3.

[15] J.C. Reynolds, Towards a theory of type structure, in: Proc. Programming Symposium,
Lecture Notes in Computer Science Vol. l 9 (Springer, Berlin, 1974) pp. 408-425.

320

(16] D. Scott, Data types as lattices, SIAM J. Comput. 5 (3) (1976) 522-587.
[17] J.E. Stoy, Denotational Semantics - The Scott-Strachey Approach to Programming

Language Theory (MIT Press, Cambridge, MA, 1977).
[18] S.D. Swierstra, Lawine, an experiment in language and machine design, Doctoral Thesis

(Twente University of Technology, The Netherlands, 1981).
[19] A. van Wijngaarden et al., Revised report on the algorithmic language ALGOL 68, Acta

Informat. 5 (1975) Fasc 1-3.

