
Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 167-184

Issues in the Design of a Beginners' Programming
Language

Lambert Meertens

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Some problems are related that have been encountered in the design of a
programming language for beginners. The solutions were sometimes unex­
pected, and required doing away with preconceptions. The use of systematic
methods has been of some help.

1. Introduction

Of the commonly available algorithmic languages, some are definitely
better suited to convey the algorithmic thoughts of the programmer than
others. Whatever the preferred point of view, be it structured program­
ming, provability of correctness or the expressibility of abstraction, some
languages stand out for their excellence, some for their abomination.

The latter should not worry us for languages in disuse. It should, for
languages used widely. The relatively abominable FORTRAN, though far
from dead, seems on its way out. Reasonable alternatives for FORTRAN

exist. That absolute champion, BASIC, however, is steadily marching on.
Moreover, BASIC has it attractive points, from the viewpoint of the casual,
non-professional user.

An attempt is under way to redress that situation, by issuing a rival
language, provisionally referred to as 'B' (no relation to the precursor of
C; the 'B' is only a language-name name referring to the yet unknown
language name). For a language to beat a rival, more is involved than
language issues. The example of FORTRAN more than goes to show this
point. This paper will be restricted, however, to linguistic points. It is not
intended as an introduction to B, but as an exposition of some of the
choices and problems encountered in the process of designing an algor­
ithmic language. The attempt has been to base the solutions, in a rational
way, on the design objectives.

167

168 L. Meertens

Bis designed as the limit of a sequence: B0 , Bi, The most recent ap­
proximation, B2, is the joint effort of Robert Dewar of the Courant Insti­
tute of Mathematical Sciences, New York University, Leo Geurts of the
Mathematical Centre, and the author. Contributions have been made by
Peter King of the University of Manitoba, Jack Schwartz of the Courant
Institute, and Dick Grune and Paul Klint of the Mathematical Centre. The
responsibility for the opinions expressed is solely that of the author.

2. The Design Objectives for B

The idea underlying the design objectives for B are: beat the enemy at its
strong points. The same idea has governed the design of ELAN [5]. There is
one important difference: ELAN aims primarily at the 'market' of
(introductory) education in computer science, whereas B aims first of all at
personal computing. The latter has not always been the case. The first
approximation of B (see [3]) was designed when personal computing was in
its infancy. Although the design objectives themselves have remained the
same, their impact on the design has changed quite drastically.

The design objectives for B are:
- simplicity;
- suitability for conversational use;
- inclusion of structured-programming tools.

These objectives are elaborated upon in [3]. The change referred to
above is mostly concerned with the objective of simplicity. In [3], this is
interpreted as simplicity not only for the user, but also for the
implementer. It is stated that "B should be implementable on small mini­
computers".

The latter reflects our awareness, at the time, of the onset and future
importance of personal computing. At the same time, it reveals a lack of
perception of the torrent of hardware evolution. Tomorrow's hand-held
computers are yesterday's main-frames. Designing a language to run
smoothly on eight bit SK machines is designing for the past. In designing
B2, it was decided to ignore implementation issues completely. Not that we
do not care about implementation complexity; for the time being we have
merely disregarded the feelings of prospective implementers and concen­
trated on the happiness of the user. Once sufficient implementation experi­
ence is available, it may be decided to revise features that pose undue

Beginners' programming language 169

implementation problems in exchange for little or no gain in language
appeal. The impact of ALGOL 68R on the revision of ALGOL 68 reveals that
this may even help to improve the language from the user's point of view.

3. The Types of B2

In B0 and B1, the types were INT, REAL. STRING and 'RANGE' types
(similar to the scalar types of PASCAL), and ARRAYs of scalar elements
indexed by a compound of RANGE values (but without the PASCAL
restriction of compile-time fixed bounds). The type system had not really
been given much thought, and was the first thing tackled again in the
design of B2.

The type system of B2 has been designed in a new way that is, in itself, of
interest. If a sufficiently powerful collection of types is available (where
'type' includes type constructors as 'array'), any desired type (e.g., deque,
or ternary tree) can be 'simulated' or implemented by the user. The type
could also be added as a 'standard' type to the language. This may increase
the ease of use of the language. Not all types, however, are equally helpful
in this respect. Moreover, the language is made more complex, and
possibly much so. A type system is competitive only if it is better than each
other type system in at least one respect (ease of use, simplicity).

So we compiled a list of candidate types (including, e.g., bag, deque,
enumerated types, map, multi-valued map, queue, sequence, set, stack and
tree), constructed various schemes for implementing these types in terms of
other types, and assigned numerical values for (relative) algorithmic
importance and learning complexity of each type and for implementation
complexity of each scheme. The values took into account, of course, that
the user we have in mind is not a computer scientist. This made it possible,
with the assistance of a program, to weed out the non-competitive type
systems from the rather large powerset of the candidate types. The result­
ing list of competitive systems was quite small, and it was easy, using old­
fashioned human taste, to settle on one for use in B2 .

If B1 might be called ALGOL 60 in BASIC-like disguise (the abstract of [3]
reads: "FORTRAN: ALGOL 60 = PL/I :ALGOL 68 =BASIC:?"), B2 came out
like SETL [1] in sheep's clothing. The result is that the types of B2 are
'number', 'text', 'compound', 'list' and 'table'.

Numbers come in two kinds, 'exact' (i.e., rational) and 'approximate'

170 L. Meertens

(i.e., floating point). The distinction is made at run time. This choice
attempts to combine the following desiderata:

(a) The user must be allowed control over quantities that should not be
subject to rounding errors. (The choice for rational numbers, rather than
integers, is mainly a nicety. But there is some obvious advantage in having,
e.g., 1.25, represent an exact number.)

(b) The user should have no need to worry about the distinction if it is
not important. (E.g., adding exact and approximate numbers is allowed.)

(c) The language has strong typing.
(d) Coercions, i.e., automatic implicit type conversions, are deemed

undesirable.
(e} Approximateness propagates upwards in evaluating arithmetic ex­

pressions.
(This list is not really exhaustive. It implies, among others, the presup­

position that there should be some built-in treatment of approximate
numbers.)

The approach taken satisfies these five desiderata almost perfectly.
Almost ... ; in conformance with Murphy's Eighth Law, there is one ugly
snag. If xis approximate, xix does not equal 1. For approximateness pro­
pagates, and the approximate number xix cannot be equal to the exact
number 1. It is, presumably, equal to the approximate number -1.

In fact, no proper solution satisfying the desiderata (a) through (e)
exists. As soon as one of these is lifted, a full solution becomes possible.
The fact that 1 does not equal ~1 is a violation of (b): sometimes the user
does have to worry. We choose this solution because we felt that the user
should be careful anyway when comparing approximate numbers and has
no business to expect exact answers. Moreover, it is still possible to define
the comparison 1 = ~ 1 to succeed, even though the values are not 'identi­
cal'. The solution of allowing one coercion, from exact to approximate
numbers (and coercions in its wake on composite values), is still under con­
sideration.

Texts are quite ordinary strings. (The term 'text', instead of the esoteric
'string', was taken from [5] .) No character values are provided; a text of
length one will do. Two subtext operators are available. If the value oft is
the sequence of characters c1, ... ,cm then the expression t@p, with
ls ps n + 1, stands for cP' ... , cn and the value oft J q, with O sq sn, is
c1, ... , Cq. A common combination will be t@p J q. If t I q't@(q + 1) is
defined c·• is concatenation), its value is t.

Beginners' programming language 171

These subtext operators may also be applied to text variables in target
('l.h.s.') positions. The replacing text need not have the same length as the
text replaced.

Compounds (tuples) are like structured values ('records'), but without
tags for selecting the fields. If, e.g., u and v are variables, then u,v may be
used in a target position. This allows decomposition of compounds.

Lists exist for values of any type (e.g., list of list of text). A list is simply
a multi-set, or bag. In an algorithmic context, given the choice between sets
and multi-sets, the latter are more useful. Having both is unnecessarily
complex, and even a potential source of confusion. Since we do not expect
the user to be familiar with the concept of a multi-set, the semantics are
explained in terms of ordered lists. A consequence is that a total ordering
has to be defined on the values of any given type. This can be done in a
reasonably natural way.

Tables are like SETL maps: generalized arrays whose domain is variable
and not necessarily a range of consecutive values. In contrast to SETL,

tables are a genuine type, not a syntactic sugaring for interpreting a set of
pairs as a map. In particular, a table cannot be a 'multi-valued' map.

Originally, there were many restrictions in this type system. For
example, the elements of a compound, list or table could only be numbers
or texts. Table keys (indices) were numbers, texts or compounds.
Especially the compounds had a special status. Although we thought we
had good reasons for these restrictions (at the time the decision to ignore
the ease of implementation had not been fully mentally digested), one by
one better reasons appeared to relax these constraints. At first, the
relaxations tended to make the complexity worse, until we took the step
that, in hindsight, seems so obvious: the type system was made completely
orthogonal: tables may be indexed with tables, and so on. (This decision
nevertheless required reworking most of the provisional language defini­
tion.)

As the type system stands now, we are quite pleased by it. The types
appear in some way to span together the space of needs, as was the purpose
of the exercise. A carefully tamed 'free' type was at some time included,
but abandoned later on.

4. Command Syntax

Commands (statements) in B are rather wordy. Each command begins

172 L. Meertens

with a keyword, and keywords are also used to separate the parameters of a
command. For example, the following is an assignment command:

PUTa+1INa.

The philosophy behind this approach is given in [3]. An obvious draw­
back of verbose syntax is that the user has to key in so many symbols.
However, as is already stated in [3], the language is embedded in a system
that is dedicated to B. In particular, the editor knows the syntax of B. If
this is combined with screen-editing facilities, it is possible to reduce the
number of key strokes drastically. As soon as the editor knows (or maybe
guesses) that a PUT command is intended, it may already display the IN
and position the cursor at the first parameter.

In [4] it is remarked that the keyword approach makes it possible to have
user-defined commands. This option has indeed been chosen for B2 . Such
command definitions take the role of procedures. For example, the user
may define

HOW'TO INCR x: PUT x+1 IN x

and next use this INCR command as though it had been part of the
language all of the time.

Since programs are entered through a B-dedicated editor, it is realistic to
consider program lay-out as an integral part of the syntax. In particular,
indentation is used to indicate grouping of commands. Although this was
already so in [3], it took us quite some time to disengage ourselves
completely from the idea that programs are prepared on one system and
parsed by a second one that need not trust its input. The fact that there is
no distinction between editor and parser means that no special delimiters
like BEGIN and END are needed. That BEGIN was superfluous, we had
already realized; but this was true anyway. But for quite some time, we
required END lines, as in

FOR p IN feasible:
IF pin cand:

REMOVE p FROM cand
INSERT p IN chosen

END IF
END FOR
RETURN chosen, cand.

Beginners' programming language 173

But the lines with END are pure noise. Once one gets used to it, the
following is much more legible:

FOR p IN feasible:
IF pin cand:

REMOVE p FROM cand
INSERT p IN chosen

RETURN chosen, cand.

5. Strong Typing without Declarations

It has been clear from the beginning that B should have strong typing.
Not for efficiency reasons, but to aid the user in spotting silly errors as
soon as possible. It seemed to us that this calls for declarations revealing
the type of identifiers. (The FORTRAN 57 solution of restricting the choice
of identifiers for a given type is unacceptable, as is the addition of special
symbols as in BASIC.)

One of the attractive features of BASIC is the lack of declarations.
Therefore, without really believing in it, we have searched for a system that
allows strong typing without declarations. (The advantage of declarations
that they provide a redundancy protecting against typos can be taken over
by checks against the use of uninitialized variables and warnings for
assignment to dead variables.) In some languages with strong typing, it is
essential that the type of identifiers is revealed through a declaration. For
ALGOL 68, e.g., the value yielded by

(amode block= ("abc", "def");
2 upb block

)

is 3 if amode is [,] char, but I if amode is [, ,] char. But this is clearly a
peculiarity. In almost all cases one can reconstruct the types from the con­
text in which identifiers are used.

This has led us to finding a system for B2 in which it is always possible to
reconstruct the type of identifiers from the context. This statement should
be slightly weakened in two respects.

The first is that it may be possible to assign types to the identifiers con­
sistently in more than one way. This happens, for example, in

174 L. Meertens

PUT{} IN x
IF x= {}: WRITE 'yes'.

Here x could be an empty list of numbers, but it could equally well be an
empty list of texts or anything else, or, in fact, an empty table (assuming x
is not used otherwise). In such cases the net effect is always the same for
each type assignment, so we do not care. It also happens in

PUT a IN a,

if no other assignments to a are made. But then a is not initialized, which is
illegal by itself (and is checked statically).

The second is that commands defined with HOW'TO may be truly
generic. The definition

HOW'TO SWAP a AND b: PUT b, a IN a, b

will work for any type, as long as the two parameters have the same type.
So no type can be assigned to a and b. Instead, the requirement is that if
HOW'TOs are expanded as macros to an arbitrary depth, consistent type
assignment remains possible. This raises some hard questions, and unde­
cidability is lurking around the corner [2, 6]. Nevertheless, for B2 this
appears to be decidable without undue restrictions. Only after the last
sentence was written down, did the author become aware of the work on
type polymorphism by Milner [10]. Although this is described for an ap­
plicative language, it appears equally applicable for a language as B. In
fact, the situation is simpler there, since the items carrying a polymorphic
type are not treated as values in B.

There is one point where an unconventional step had to be taken to
uphold the system. If a value comes into being through an operation on
other values, it is sufficient if the result type is only dependent on the
operand types, which is the case in B2 . We may thus concentrate on the
spots where values appear directly. This can happen in two ways.

One is through a constant denotation (literal). This is no problem, since
constants in B2 immediately reveal their types, with one exception: for
empty lists or tables. This case has been treated above.

The other case is when a value is obtained through interactive input.
There is no a priori way to determine the type. Therefore, it is required that
the READ command reveal the type of the (expected) input. A first attempt
required the presence of a 'type specifier', where the size of the syntax for

Beginners' programming language 175

specifiers turned out not unsubstantial. This was not very satisfying; it
meant the user had to learn a lot of (relatively weird) syntax for this one
purpose. Luckily, we found another solution, made possible by the fact
that for each value an explicit notation can be given. The type is now
specified by providing a 'sample': an expression of the same type. So one
has to write, e.g.,

READ n, v EG 0, { "}

if n is a number variable and v is a list of texts. (The constant {} will not
do in this case.)

6. Formulas

Just like 'procedure calls' and 'commands' are unified in B2, so are
'function calls' and 'formulas'. A new operator or function is introduced
by a YIELD unit:

YIELD fac n:
PUT 1 IN f
FOR i IN {1 .. n}: PUT f*i IN f
RETURN f.

The compound mechanism gives a natural way to introduce more para­
meters:

YIELD abs (x, y): RETURN sqrt(X*X+Y*YI.

The parentheses are only required since the formal parameter is an explicit
compound; the definition might also have run:

YIELD abs z:
PUT z IN x, y

RETURN sqrt(X*X+Y*V),

These two definitions are functionally completely equivalent.
For some reason or other, the priorities of operators are a trouble spot in

algorithmic languages. An extreme solution as in APL is not attractive; the
more so since B2 is not really expression-oriented. Anyway, it is unaccept­
able if2*n + 1 really means 2*(n + 1) (although it certainly helps in making
the users feel they belong to an esoteric cult). The MABEL solution of re-

176 L. Meertens

quiring parentheses as soon as several operators are involved [7], combines
the virtues of simplicity and error resistance. Still, it seems a bit harsh to
require parenthesizing of 2*m*n.

The solution that has been adopted for B2 is to require parenthesizing
whenever the priorities are not established by standing convention and
might matter. This is achieved by not assigning simple priorities to
operators, but a priority interval instead. This interval represents a 'fuzzy'
priority. If the precedence decision is independent of the choice of
priorities from the intervals, the expression is acceptable. Otherwise,
parentheses must be inserted. User-defined operators are always assigned
the maximal interval.

Acceptable expressions are, e.g., m *n/d + c + 1, a - b + 1 and 2*sqrt x.
Unacceptable are a/2*b, a/2/b and sqrt 2*X, to give just a few examples.
Of course, the editor warns the user on the spot that parentheses must
resolve the ambiguity.

It was a bit surprising that such a simple device as priority intervals could
be tuned to give such reasonable results.

7. Generators

Lists are only useful if there is some easy way to step through them.
Originally, there were two ways for stepping through a list, one (OVER
alist) in the normal, and one (REVO alist) in reversed order (word play in­
tended). The second form followed an idea from [9], and was connected to
the scalar type requirement for table domains in B0 . Once this requirement
is relaxed, the convenience of the additional form no longer justifies the
extra complexity.

The keyword OVER was changed to IN for B2. For example, the
command

FOR i IN a: INSERT i IN b

merges list a into b. This was done after it had already been decided to
allow quantified tests: the test

SOME i IN a HAS i<O

succeeds if a contains a negative element (and sets i to stand for the value
of the first such element, if any). Instead of SOME, also EACH and NO
are allowed.

Beginners' programming language 177

In B0, the domain of a table had to be defined as a RANGE type in order
to create the table. With a dynamic domain, this no longer applies. But
there should be some way for the user to go through a table domain. As a
first attempt, a domain operator was introduced: keys t (during some time
written []t) gives the list of keys i such that t[i] is defined. So we could
write:

FOR i IN keys t:

Switching to a seemingly unrelated topic, we wanted some simple but
powerful mechanism for text parsing. A first attempt was a 'FITS test' of
the form

with e a text expression, V; variables and t; tests. (The keyword FITS keeps
appearing and disappearing in the design of B, each time with a different
meaning.) The whole test succeeds if an assignment of texts to Vi, ... , vn is
possible, such that e = v 1 A ••• Av n and all of the tests t; succeed. If several
successful assignments were possible, the lexicographically first one would
be returned.

Now this would have filled an appreciable part of the syntax for one
specialized capability. Moreover, it was unlike anything else in the
language. Then we realized that we almost had the capability already there,
right under our hands. For the semantics were exactly those of

SOME V1, ... ,vn IN??? HAS lt1 AND ···AND tnl,

provided some suitable expression for the ??? could be substituted. This
expression should be a list of all compounds s1, ... , Sn such that
e=s1A· • •Asn. A provisional notation for this list was e/n (e divided inn
parts). This raises the problem that the type of e/n is dynamically
dependent on n, which is incompatible with strong typing. If the form were
only allowed in this context, the problem would disappear; in fact, the n is
then redundant, since there are exactly n bound variables.

This triggered the solution adopted now. It is illustrated by the following
example:

WHILE SOME h, s, t PARSING sent HAS s= ',':
INSERT h IN words
PUT t IN sent.

178 L. Meertens

If sent contains a comma, the parsing will be found that positions s at the
first comma (so h will not contain a comma). If sent does not con­
tain a comma, the test fails. If sent originally held the text
'hickory,dickory,dock', the effect is that of

INSERT 'hickory' IN words
INSERT 'dickory' IN words
PUT 'dock' IN sent.

This is the most complicated feature in B2; it is, however, quite powerful.
Its semantics can be explained in already familiar terms. At the same time,
it takes away the nagging problem that a simple command as

PUT 'memory is becoming cheap' /24 IN m

threatens to blow up even gigabyte systems.
When OVER and REVO were originally introduced, and when they were

replaced by IN, we did not think of the construction as a generator. With
PARSING, we clearly have a generator. It is quite natural then to have a
generator INDEXING to go through all keys of a table. For example,

PUT0 IN s
FOR i INDEXING t: PUT s+ t[i] IN s

sums the elements of t.
Such a decision may seem simple. But it has many ramifications. One is

that the function keys should be abolished. Inspection of programs shows
that in practice it is never used in a command like

PUT keys t IN kt.

But the function is used in other ways, such as

PUT min keys t IN mt,

which finds the smallest key in the domain of t. The meaningful test

i in keys t

would also have to be replaced by some new notation. Instead, it was
decide to leave keys alone, not to introduce INDEXING, but to generalize
FOR ... IN ... to iterate also over the characters of a text and the elements
of a table. Summing the elements of a table may thus be written:

Beginners' programming language 179

PUTO IN s
FOR e IN t: PUT s+e IN t.

The same generalization applies, of course, to SOME ... IN ... , but also
to all functions and tests previously only defined on lists (such as min and
in).

8. The final composition

As has been clear from the exposition, composing a language is not
merely a matter of putting ingredients together and stirring till the result is
a smooth paste. It would be helpful to language designers, if some top­
down design method existed for algorithmic languages. If such a method
exists, it has escaped our attention. The requirement for applying a method
as 'separation of concerns' is that the relevant concerns be separable. The
whole experience of language design points in a different direction: ap­
parently innocent minor decisions may quite unexpectedly work major
havoc in seemingly unrelated corners. A well-composed language is one in
which the 'features', although orthogonal, lend themselves to easy com­
bination in many natural modes of expressing algorithmic thought. This
means that the whole language is a tightly knit fabric, threatened by loose
ends.

The best aid to systematic language design, until now, is the paradigm of
orthogonality, that derives its name from the title of Van Wijngaarden's
[14), but whose essence can already be found in his [13). Experience shows
that its application requires skill, if not expertise. It is interesting to see that
the evolution of B has been in the direction of more orthogonality, mainly
by virtue of the quest for simplicity.

For part of the work in designing B2, a new systematic approach has
been used: the method described in Section 3 to select the type system. This
method is more widely applicable; it can be used, e.g., to find a proper
system of string operations from a large set of candidates. Work is in pro­
gress to apply another systematic method for the final polishing of the
whole language.

The idea has been used before by the author in a composition exercise of
a different nature: composing a string quartet with traditional harmony
[8]. The same idea is applicable here. In its bare essence, it boils down to

180 L. Meertens

considering all combinations of all alternatives for the microscopic design
decisions. For each combination, a check list is inspected of potential unac­
ceptable or undesirable consequences. For each transgression, a fine is
imposed. The combination that collects the minimal total fine, comes out
as the winner.

The method is, of course, NP-complete. In practice, however, it is
expected to be feasible with the aid of some heuristics, since many design
decisions form relatively independent small clusters. Still, this computa­
tional complexity is indicative of how hard it is to design a language. The
example of the five reasonable desiderata for the numbers, only four of
which could be satisfied simultaneously, is just one example of the
problems a language designer may run across.

It would be misleading to call such methods 'language design by com­
puter'. The real skill goes into identifying the decisions, weighing the
importance and merits of various approaches, and identifying harmful
combinations. Only a dumb, but hard, part of the work is left to brute
force. It is expected that the first-time 'winner' will mainly serve to show
deficiencies in the input to the program, and that several iterations will be
needed to come up with a nice product. Indeed, the exercise may point out
directions we have overlooked. If anything, the method requires that
human prejudice is made explicit. The algorithm itself is, like Justice,
blind-folded.

References

[I] R.B.K. Dewar, The SETL programming language, Courant Institute of Mathematical
Sciences, New York University (1980).

[2] N. Gehani, Generic procedures: an implementation and an undecidability result,
Comput. Languages 5 (1980) 155-161.

[3] L.J.M. Geurts and L.G.L.T. Meertens, Designing a beginners' programming language,
in: S.A. Schuman (Ed.), New Directions in Programming Languages 1975 (IRIA,
Roquencourt, 1976) pp. 1-18.

[4] L.J.M. Geurts and L.G.L.T. Meertens, Keyword grammars, in: J. Andre and J.-P.
Baniitre (Eds.), Implementation and Design of Algorithmic Languages (IRIA, Rocquen­
court, 1978) pp. 1-12.

[5] G. Hommel, J. Jackel, S. Jiihnichen, K. Kleine, W. Koch and K. Koster, ELAN - Sprach­
beschreibung (Akademische Verlagsgesellschaft, Wiesbaden, 1979).

[6] H. Langmaack, On correct procedure parameter transmission in higher programming
languages, Acta Inform. 2 (1973) 110-142.

Beginners' programming language 181

[7] P.R. King, MABEL manual, University of Manitoba (1978).
[8] L.G.L. T. Meertens, The imitation of musical styles by a computer, in: Information Pro­

cessing 68, Proc. of IFIP Congress 1968, Vol. 1 (North-Holland Pub!. Co., Amsterdam,
1968) pp. xxv-xxvi.

[9] L.G.L.T. Mode and meaning, in: S.A. Schuman (Ed.), New Directions in Programming
Languages 1975 (IRIA, Roquencourt, 1976) pp. 125-138.

[JO] L.G.L.T. Meertens, Preliminary draft proposal for the B programming language,
Mathematical Centre, Amsterdam (May 1981).

[11] R. Milner, A theory of type polymorphism in programming, J. Com put. System Sci. 17
(1978) 348-375.

[12] K. Tracton, 57 Practical Programs and Games in Basic (Tab Books, Blue Ridge Summit,
1978).

[13] A. van Wijngaarden, Generalized ALGOL, in: Symbolic Languages in Data Processing,
Proc. of an ICC Symp. (Gordon and Breach, New York, 1962) pp. 409-419; also in: R.
Goodman (Ed.), Annual Review in Automatic Programming, Vol. 3 (Pergamon Press,
Oxford, 1963) pp. 17-26.

[14] A. van Wijngaarden, Orthogonal design and description of a formal language, Report
MR 76, Mathematical Centre, Amsterdam (1965).

Appendix A: a B0 and a B2 Program for the Sieve of Eratosthenes

The following B0 program is copied from [3].

BEGIN
CONST n IS 1999
RANGE sievesize FROM 2 TO n
RANGE primality HAS prime, nonprime
ARRAY (sievesize) a TYPE primality
FOR i OVER sievesize PUT prime IN a(il
VAR k TYPE int, kmult TYPE sievesize
PUT 2 IN k
WHILE k*k FITS kmult

BEGIN
VAR k1 TYPE sievesize
IF k FITS k1, a(k1) = prime DO sieve
PUT k+1 IN k
END

sieve:
BEGIN
PUT nonprime IN a(kmult)

182 L.Meertens

WHILE km ult+ k FITS kmult PUT nonprime IN a(kmult)
END

FOR i OVER sievesize
IF a(i) = prime

BEGIN
NEWLINE
PRINTi
END

END

This problem was certainly not selected in [3] to show the cluminess of
B0. The algorithmic thought is captured more easily, though, in B2:

HOW'TO SIEVE n:
PUT {2 .. n}, 2 IN primes, k
WHILE k*k<=n:

PUT k•k IN kmult
WHILE kmult<=n:

IF kmult in primes: REMOVE kmult FROM primes
PUT km ult+ k IN km ult

PUT k min primes IN k
WRITE primes

SIEVE 1999

Note that this program is algorithmically slightly different from the B0

program given above. The formula k min primes yields the smallest
element of the list primes exceeding k.

Appendix B: a BASIC and a B2 Program for Tabulating a Recurrent
Sequence

The following program is copied from [12]. It has been selected because
for this problem none of the 'strong' points of B2, such as manipulation of
lists, apply. For purposes of fair comparison, non-keywords have been
rendered in lower case.

10 REM This program computes a table of Fibonacci
numbers

20 PRINT 'Enter first term'

Beginners' programming language

30 INPUT a
40 PRINT 'Enter second term'
50 INPUT b
60 PRINT 'Maximum number of terms ='

70 INPUT n
80 PRINT
90 PRINT 'Table of Fibonacci numbers'

100 PRINT 'Term no.','Fibonacci number'
110 LET k= 1
120 PRINT k,a
130 LET k=2
140 PRINT k,b
150 LET k = k + 1
160 LET q =a+ b
170 PRINT k,q
180 LET a= b
190 LET b= q
200 IF k>= n THEN 220
210 GOTO 150
220 PRINT 'Maximum numbers of terms reached'
230 PRINT
240 PRINT 'Type 1 to continue, 0 to stop'
250 INPUT/
260 IF I= 1 THEN 280
270 STOP
280 PRINT
290 GOTO 20
300 END

183

The following B2 program is not an exact transliteration; it contains an
obvious improvement that might also be applied to the BASIC version. As
to the question if this is fair in making a comparison, it should be con­
sidered that part of the thesis motivating the development of B is that BASIC

invites clumsy programming.

HOW'TO TABULATE'FIBONACCl'NUMBERS:
PUT 'yes' IN cont
WHILE cont\ 1 = 'y':

WRITE / 'Enter first term: '

184 L. Meertens

READ a EG 0
WRITE / 'Enter second term: •
READ b EG 0
WRITE / 'Maximum number of terms='
READ n EG 0
WRITE / / 'Table of Fibonacci numbers'
WRITE / 'Term no. Fibonacci number'
FOR k IN { 1 .. n}:

WRITE/ k> >5, a> >15
PUT k+1, b, a+b IN k, a, b

WRITE / 'Maximum number of terms reached'
WRITE/ 'Do you want another table?'
READ cont EG "

This program shows some 'formatting': the formula x > > n yields a text
of length n representing the value of x, right adjusted (left-padded with
blanks).

