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Some problems are related that have been encountered in the design of a 
programming language for beginners. The solutions were sometimes unex­
pected, and required doing away with preconceptions. The use of systematic 
methods has been of some help. 

1. Introduction 

Of the commonly available algorithmic languages, some are definitely 
better suited to convey the algorithmic thoughts of the programmer than 
others. Whatever the preferred point of view, be it structured program­
ming, provability of correctness or the expressibility of abstraction, some 
languages stand out for their excellence, some for their abomination. 

The latter should not worry us for languages in disuse. It should, for 
languages used widely. The relatively abominable FORTRAN, though far 
from dead, seems on its way out. Reasonable alternatives for FORTRAN 

exist. That absolute champion, BASIC, however, is steadily marching on. 
Moreover, BASIC has it attractive points, from the viewpoint of the casual, 
non-professional user. 

An attempt is under way to redress that situation, by issuing a rival 
language, provisionally referred to as 'B' (no relation to the precursor of 
C; the 'B' is only a language-name name referring to the yet unknown 
language name). For a language to beat a rival, more is involved than 
language issues. The example of FORTRAN more than goes to show this 
point. This paper will be restricted, however, to linguistic points. It is not 
intended as an introduction to B, but as an exposition of some of the 
choices and problems encountered in the process of designing an algor­
ithmic language. The attempt has been to base the solutions, in a rational 
way, on the design objectives. 
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Bis designed as the limit of a sequence: B0 , Bi, .... The most recent ap­
proximation, B2, is the joint effort of Robert Dewar of the Courant Insti­
tute of Mathematical Sciences, New York University, Leo Geurts of the 
Mathematical Centre, and the author. Contributions have been made by 
Peter King of the University of Manitoba, Jack Schwartz of the Courant 
Institute, and Dick Grune and Paul Klint of the Mathematical Centre. The 
responsibility for the opinions expressed is solely that of the author. 

2. The Design Objectives for B 

The idea underlying the design objectives for B are: beat the enemy at its 
strong points. The same idea has governed the design of ELAN [5]. There is 
one important difference: ELAN aims primarily at the 'market' of 
(introductory) education in computer science, whereas B aims first of all at 
personal computing. The latter has not always been the case. The first 
approximation of B (see [3]) was designed when personal computing was in 
its infancy. Although the design objectives themselves have remained the 
same, their impact on the design has changed quite drastically. 

The design objectives for B are: 
- simplicity; 
- suitability for conversational use; 
- inclusion of structured-programming tools. 

These objectives are elaborated upon in [3]. The change referred to 
above is mostly concerned with the objective of simplicity. In [3], this is 
interpreted as simplicity not only for the user, but also for the 
implementer. It is stated that "B should be implementable on small mini­
computers". 

The latter reflects our awareness, at the time, of the onset and future 
importance of personal computing. At the same time, it reveals a lack of 
perception of the torrent of hardware evolution. Tomorrow's hand-held 
computers are yesterday's main-frames. Designing a language to run 
smoothly on eight bit SK machines is designing for the past. In designing 
B2, it was decided to ignore implementation issues completely. Not that we 
do not care about implementation complexity; for the time being we have 
merely disregarded the feelings of prospective implementers and concen­
trated on the happiness of the user. Once sufficient implementation experi­
ence is available, it may be decided to revise features that pose undue 
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implementation problems in exchange for little or no gain in language 
appeal. The impact of ALGOL 68R on the revision of ALGOL 68 reveals that 
this may even help to improve the language from the user's point of view. 

3. The Types of B2 

In B0 and B1, the types were INT, REAL. STRING and 'RANGE' types 
(similar to the scalar types of PASCAL), and ARRAYs of scalar elements 
indexed by a compound of RANGE values (but without the PASCAL 
restriction of compile-time fixed bounds). The type system had not really 
been given much thought, and was the first thing tackled again in the 
design of B2. 

The type system of B2 has been designed in a new way that is, in itself, of 
interest. If a sufficiently powerful collection of types is available (where 
'type' includes type constructors as 'array'), any desired type (e.g., deque, 
or ternary tree) can be 'simulated' or implemented by the user. The type 
could also be added as a 'standard' type to the language. This may increase 
the ease of use of the language. Not all types, however, are equally helpful 
in this respect. Moreover, the language is made more complex, and 
possibly much so. A type system is competitive only if it is better than each 
other type system in at least one respect (ease of use, simplicity). 

So we compiled a list of candidate types (including, e.g., bag, deque, 
enumerated types, map, multi-valued map, queue, sequence, set, stack and 
tree), constructed various schemes for implementing these types in terms of 
other types, and assigned numerical values for (relative) algorithmic 
importance and learning complexity of each type and for implementation 
complexity of each scheme. The values took into account, of course, that 
the user we have in mind is not a computer scientist. This made it possible, 
with the assistance of a program, to weed out the non-competitive type 
systems from the rather large powerset of the candidate types. The result­
ing list of competitive systems was quite small, and it was easy, using old­
fashioned human taste, to settle on one for use in B2 . 

If B1 might be called ALGOL 60 in BASIC-like disguise (the abstract of [3] 
reads: "FORTRAN: ALGOL 60 = PL/I :ALGOL 68 =BASIC:?"), B2 came out 
like SETL [1] in sheep's clothing. The result is that the types of B2 are 
'number', 'text', 'compound', 'list' and 'table'. 

Numbers come in two kinds, 'exact' (i.e., rational) and 'approximate' 
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(i.e., floating point). The distinction is made at run time. This choice 
attempts to combine the following desiderata: 

(a) The user must be allowed control over quantities that should not be 
subject to rounding errors. (The choice for rational numbers, rather than 
integers, is mainly a nicety. But there is some obvious advantage in having, 
e.g., 1.25, represent an exact number.) 

(b) The user should have no need to worry about the distinction if it is 
not important. (E.g., adding exact and approximate numbers is allowed.) 

(c) The language has strong typing. 
(d) Coercions, i.e., automatic implicit type conversions, are deemed 

undesirable. 
(e} Approximateness propagates upwards in evaluating arithmetic ex­

pressions. 
(This list is not really exhaustive. It implies, among others, the presup­

position that there should be some built-in treatment of approximate 
numbers.) 

The approach taken satisfies these five desiderata almost perfectly. 
Almost ... ; in conformance with Murphy's Eighth Law, there is one ugly 
snag. If xis approximate, xix does not equal 1. For approximateness pro­
pagates, and the approximate number xix cannot be equal to the exact 
number 1. It is, presumably, equal to the approximate number -1. 

In fact, no proper solution satisfying the desiderata (a) through (e) 
exists. As soon as one of these is lifted, a full solution becomes possible. 
The fact that 1 does not equal ~1 is a violation of (b): sometimes the user 
does have to worry. We choose this solution because we felt that the user 
should be careful anyway when comparing approximate numbers and has 
no business to expect exact answers. Moreover, it is still possible to define 
the comparison 1 = ~ 1 to succeed, even though the values are not 'identi­
cal'. The solution of allowing one coercion, from exact to approximate 
numbers (and coercions in its wake on composite values), is still under con­
sideration. 

Texts are quite ordinary strings. (The term 'text', instead of the esoteric 
'string', was taken from [5] .) No character values are provided; a text of 
length one will do. Two subtext operators are available. If the value oft is 
the sequence of characters c1, ... ,cm then the expression t@p, with 
ls ps n + 1, stands for cP' ... , cn and the value oft J q, with O sq sn, is 
c1, ... , Cq. A common combination will be t@p J q. If t I q't@(q + 1) is 
defined c·• is concatenation), its value is t. 
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These subtext operators may also be applied to text variables in target 
('l.h.s.') positions. The replacing text need not have the same length as the 
text replaced. 

Compounds (tuples) are like structured values ('records'), but without 
tags for selecting the fields. If, e.g., u and v are variables, then u,v may be 
used in a target position. This allows decomposition of compounds. 

Lists exist for values of any type (e.g., list of list of text). A list is simply 
a multi-set, or bag. In an algorithmic context, given the choice between sets 
and multi-sets, the latter are more useful. Having both is unnecessarily 
complex, and even a potential source of confusion. Since we do not expect 
the user to be familiar with the concept of a multi-set, the semantics are 
explained in terms of ordered lists. A consequence is that a total ordering 
has to be defined on the values of any given type. This can be done in a 
reasonably natural way. 

Tables are like SETL maps: generalized arrays whose domain is variable 
and not necessarily a range of consecutive values. In contrast to SETL, 

tables are a genuine type, not a syntactic sugaring for interpreting a set of 
pairs as a map. In particular, a table cannot be a 'multi-valued' map. 

Originally, there were many restrictions in this type system. For 
example, the elements of a compound, list or table could only be numbers 
or texts. Table keys (indices) were numbers, texts or compounds. 
Especially the compounds had a special status. Although we thought we 
had good reasons for these restrictions (at the time the decision to ignore 
the ease of implementation had not been fully mentally digested), one by 
one better reasons appeared to relax these constraints. At first, the 
relaxations tended to make the complexity worse, until we took the step 
that, in hindsight, seems so obvious: the type system was made completely 
orthogonal: tables may be indexed with tables, and so on. (This decision 
nevertheless required reworking most of the provisional language defini­
tion.) 

As the type system stands now, we are quite pleased by it. The types 
appear in some way to span together the space of needs, as was the purpose 
of the exercise. A carefully tamed 'free' type was at some time included, 
but abandoned later on. 

4. Command Syntax 

Commands (statements) in B are rather wordy. Each command begins 
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with a keyword, and keywords are also used to separate the parameters of a 
command. For example, the following is an assignment command: 

PUTa+1INa. 

The philosophy behind this approach is given in [3]. An obvious draw­
back of verbose syntax is that the user has to key in so many symbols. 
However, as is already stated in [3], the language is embedded in a system 
that is dedicated to B. In particular, the editor knows the syntax of B. If 
this is combined with screen-editing facilities, it is possible to reduce the 
number of key strokes drastically. As soon as the editor knows (or maybe 
guesses) that a PUT command is intended, it may already display the IN 
and position the cursor at the first parameter. 

In [4] it is remarked that the keyword approach makes it possible to have 
user-defined commands. This option has indeed been chosen for B2 . Such 
command definitions take the role of procedures. For example, the user 
may define 

HOW'TO INCR x: PUT x+1 IN x 

and next use this INCR command as though it had been part of the 
language all of the time. 

Since programs are entered through a B-dedicated editor, it is realistic to 
consider program lay-out as an integral part of the syntax. In particular, 
indentation is used to indicate grouping of commands. Although this was 
already so in [3], it took us quite some time to disengage ourselves 
completely from the idea that programs are prepared on one system and 
parsed by a second one that need not trust its input. The fact that there is 
no distinction between editor and parser means that no special delimiters 
like BEGIN and END are needed. That BEGIN was superfluous, we had 
already realized; but this was true anyway. But for quite some time, we 
required END lines, as in 

FOR p IN feasible: 
IF pin cand: 

REMOVE p FROM cand 
INSERT p IN chosen 

END IF 
END FOR 
RETURN chosen, cand. 
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But the lines with END are pure noise. Once one gets used to it, the 
following is much more legible: 

FOR p IN feasible: 
IF pin cand: 

REMOVE p FROM cand 
INSERT p IN chosen 

RETURN chosen, cand. 

5. Strong Typing without Declarations 

It has been clear from the beginning that B should have strong typing. 
Not for efficiency reasons, but to aid the user in spotting silly errors as 
soon as possible. It seemed to us that this calls for declarations revealing 
the type of identifiers. (The FORTRAN 57 solution of restricting the choice 
of identifiers for a given type is unacceptable, as is the addition of special 
symbols as in BASIC.) 

One of the attractive features of BASIC is the lack of declarations. 
Therefore, without really believing in it, we have searched for a system that 
allows strong typing without declarations. (The advantage of declarations 
that they provide a redundancy protecting against typos can be taken over 
by checks against the use of uninitialized variables and warnings for 
assignment to dead variables.) In some languages with strong typing, it is 
essential that the type of identifiers is revealed through a declaration. For 
ALGOL 68, e.g., the value yielded by 

(amode block= ( "abc", "def"); 
2 upb block 

) 

is 3 if amode is [ , ] char, but I if amode is [ , , ] char. But this is clearly a 
peculiarity. In almost all cases one can reconstruct the types from the con­
text in which identifiers are used. 

This has led us to finding a system for B2 in which it is always possible to 
reconstruct the type of identifiers from the context. This statement should 
be slightly weakened in two respects. 

The first is that it may be possible to assign types to the identifiers con­
sistently in more than one way. This happens, for example, in 
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PUT{} IN x 
IF x= {}: WRITE 'yes'. 

Here x could be an empty list of numbers, but it could equally well be an 
empty list of texts or anything else, or, in fact, an empty table (assuming x 
is not used otherwise). In such cases the net effect is always the same for 
each type assignment, so we do not care. It also happens in 

PUT a IN a, 

if no other assignments to a are made. But then a is not initialized, which is 
illegal by itself (and is checked statically). 

The second is that commands defined with HOW'TO may be truly 
generic. The definition 

HOW'TO SWAP a AND b: PUT b, a IN a, b 

will work for any type, as long as the two parameters have the same type. 
So no type can be assigned to a and b. Instead, the requirement is that if 
HOW'TOs are expanded as macros to an arbitrary depth, consistent type 
assignment remains possible. This raises some hard questions, and unde­
cidability is lurking around the corner [2, 6]. Nevertheless, for B2 this 
appears to be decidable without undue restrictions. Only after the last 
sentence was written down, did the author become aware of the work on 
type polymorphism by Milner [10]. Although this is described for an ap­
plicative language, it appears equally applicable for a language as B. In 
fact, the situation is simpler there, since the items carrying a polymorphic 
type are not treated as values in B. 

There is one point where an unconventional step had to be taken to 
uphold the system. If a value comes into being through an operation on 
other values, it is sufficient if the result type is only dependent on the 
operand types, which is the case in B2 . We may thus concentrate on the 
spots where values appear directly. This can happen in two ways. 

One is through a constant denotation (literal). This is no problem, since 
constants in B2 immediately reveal their types, with one exception: for 
empty lists or tables. This case has been treated above. 

The other case is when a value is obtained through interactive input. 
There is no a priori way to determine the type. Therefore, it is required that 
the READ command reveal the type of the (expected) input. A first attempt 
required the presence of a 'type specifier', where the size of the syntax for 
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specifiers turned out not unsubstantial. This was not very satisfying; it 
meant the user had to learn a lot of (relatively weird) syntax for this one 
purpose. Luckily, we found another solution, made possible by the fact 
that for each value an explicit notation can be given. The type is now 
specified by providing a 'sample': an expression of the same type. So one 
has to write, e.g., 

READ n, v EG 0, { "} 

if n is a number variable and v is a list of texts. (The constant {} will not 
do in this case.) 

6. Formulas 

Just like 'procedure calls' and 'commands' are unified in B2, so are 
'function calls' and 'formulas'. A new operator or function is introduced 
by a YIELD unit: 

YIELD fac n: 
PUT 1 IN f 
FOR i IN {1 .. n}: PUT f*i IN f 
RETURN f. 

The compound mechanism gives a natural way to introduce more para­
meters: 

YIELD abs (x, y): RETURN sqrt(X*X+Y*YI. 

The parentheses are only required since the formal parameter is an explicit 
compound; the definition might also have run: 

YIELD abs z: 
PUT z IN x, y 

RETURN sqrt(X*X+Y*V), 

These two definitions are functionally completely equivalent. 
For some reason or other, the priorities of operators are a trouble spot in 

algorithmic languages. An extreme solution as in APL is not attractive; the 
more so since B2 is not really expression-oriented. Anyway, it is unaccept­
able if2*n + 1 really means 2*(n + 1) (although it certainly helps in making 
the users feel they belong to an esoteric cult). The MABEL solution of re-
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quiring parentheses as soon as several operators are involved [7], combines 
the virtues of simplicity and error resistance. Still, it seems a bit harsh to 
require parenthesizing of 2*m*n. 

The solution that has been adopted for B2 is to require parenthesizing 
whenever the priorities are not established by standing convention and 
might matter. This is achieved by not assigning simple priorities to 
operators, but a priority interval instead. This interval represents a 'fuzzy' 
priority. If the precedence decision is independent of the choice of 
priorities from the intervals, the expression is acceptable. Otherwise, 
parentheses must be inserted. User-defined operators are always assigned 
the maximal interval. 

Acceptable expressions are, e.g., m *n/d + c + 1, a - b + 1 and 2*sqrt x. 
Unacceptable are a/2*b, a/2/b and sqrt 2*X, to give just a few examples. 
Of course, the editor warns the user on the spot that parentheses must 
resolve the ambiguity. 

It was a bit surprising that such a simple device as priority intervals could 
be tuned to give such reasonable results. 

7. Generators 

Lists are only useful if there is some easy way to step through them. 
Originally, there were two ways for stepping through a list, one (OVER 
alist) in the normal, and one (REVO alist) in reversed order (word play in­
tended). The second form followed an idea from [9], and was connected to 
the scalar type requirement for table domains in B0 . Once this requirement 
is relaxed, the convenience of the additional form no longer justifies the 
extra complexity. 

The keyword OVER was changed to IN for B2. For example, the 
command 

FOR i IN a: INSERT i IN b 

merges list a into b. This was done after it had already been decided to 
allow quantified tests: the test 

SOME i IN a HAS i<O 

succeeds if a contains a negative element (and sets i to stand for the value 
of the first such element, if any). Instead of SOME, also EACH and NO 
are allowed. 
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In B0, the domain of a table had to be defined as a RANGE type in order 
to create the table. With a dynamic domain, this no longer applies. But 
there should be some way for the user to go through a table domain. As a 
first attempt, a domain operator was introduced: keys t (during some time 
written []t) gives the list of keys i such that t[i] is defined. So we could 
write: 

FOR i IN keys t: .... 

Switching to a seemingly unrelated topic, we wanted some simple but 
powerful mechanism for text parsing. A first attempt was a 'FITS test' of 
the form 

with e a text expression, V; variables and t; tests. (The keyword FITS keeps 
appearing and disappearing in the design of B, each time with a different 
meaning.) The whole test succeeds if an assignment of texts to Vi, ... , vn is 
possible, such that e = v 1 A ••• Av n and all of the tests t; succeed. If several 
successful assignments were possible, the lexicographically first one would 
be returned. 

Now this would have filled an appreciable part of the syntax for one 
specialized capability. Moreover, it was unlike anything else in the 
language. Then we realized that we almost had the capability already there, 
right under our hands. For the semantics were exactly those of 

SOME V1, ... ,vn IN??? HAS lt1 AND ···AND tnl, 

provided some suitable expression for the ??? could be substituted. This 
expression should be a list of all compounds s1, ... , Sn such that 
e=s1A· • •Asn. A provisional notation for this list was e/n (e divided inn 
parts). This raises the problem that the type of e/n is dynamically 
dependent on n, which is incompatible with strong typing. If the form were 
only allowed in this context, the problem would disappear; in fact, the n is 
then redundant, since there are exactly n bound variables. 

This triggered the solution adopted now. It is illustrated by the following 
example: 

WHILE SOME h, s, t PARSING sent HAS s= ',': 
INSERT h IN words 
PUT t IN sent. 
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If sent contains a comma, the parsing will be found that positions s at the 
first comma (so h will not contain a comma). If sent does not con­
tain a comma, the test fails. If sent originally held the text 
'hickory,dickory,dock', the effect is that of 

INSERT 'hickory' IN words 
INSERT 'dickory' IN words 
PUT 'dock' IN sent. 

This is the most complicated feature in B2; it is, however, quite powerful. 
Its semantics can be explained in already familiar terms. At the same time, 
it takes away the nagging problem that a simple command as 

PUT 'memory is becoming cheap' /24 IN m 

threatens to blow up even gigabyte systems. 
When OVER and REVO were originally introduced, and when they were 

replaced by IN, we did not think of the construction as a generator. With 
PARSING, we clearly have a generator. It is quite natural then to have a 
generator INDEXING to go through all keys of a table. For example, 

PUT0 IN s 
FOR i INDEXING t: PUT s+ t[i] IN s 

sums the elements of t. 
Such a decision may seem simple. But it has many ramifications. One is 

that the function keys should be abolished. Inspection of programs shows 
that in practice it is never used in a command like 

PUT keys t IN kt. 

But the function is used in other ways, such as 

PUT min keys t IN mt, 

which finds the smallest key in the domain of t. The meaningful test 

i in keys t 

would also have to be replaced by some new notation. Instead, it was 
decide to leave keys alone, not to introduce INDEXING, but to generalize 
FOR ... IN ... to iterate also over the characters of a text and the elements 
of a table. Summing the elements of a table may thus be written: 
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PUTO IN s 
FOR e IN t: PUT s+e IN t. 

The same generalization applies, of course, to SOME ... IN ... , but also 
to all functions and tests previously only defined on lists (such as min and 
in). 

8. The final composition 

As has been clear from the exposition, composing a language is not 
merely a matter of putting ingredients together and stirring till the result is 
a smooth paste. It would be helpful to language designers, if some top­
down design method existed for algorithmic languages. If such a method 
exists, it has escaped our attention. The requirement for applying a method 
as 'separation of concerns' is that the relevant concerns be separable. The 
whole experience of language design points in a different direction: ap­
parently innocent minor decisions may quite unexpectedly work major 
havoc in seemingly unrelated corners. A well-composed language is one in 
which the 'features', although orthogonal, lend themselves to easy com­
bination in many natural modes of expressing algorithmic thought. This 
means that the whole language is a tightly knit fabric, threatened by loose 
ends. 

The best aid to systematic language design, until now, is the paradigm of 
orthogonality, that derives its name from the title of Van Wijngaarden's 
[14), but whose essence can already be found in his [13). Experience shows 
that its application requires skill, if not expertise. It is interesting to see that 
the evolution of B has been in the direction of more orthogonality, mainly 
by virtue of the quest for simplicity. 

For part of the work in designing B2, a new systematic approach has 
been used: the method described in Section 3 to select the type system. This 
method is more widely applicable; it can be used, e.g., to find a proper 
system of string operations from a large set of candidates. Work is in pro­
gress to apply another systematic method for the final polishing of the 
whole language. 

The idea has been used before by the author in a composition exercise of 
a different nature: composing a string quartet with traditional harmony 
[8]. The same idea is applicable here. In its bare essence, it boils down to 
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considering all combinations of all alternatives for the microscopic design 
decisions. For each combination, a check list is inspected of potential unac­
ceptable or undesirable consequences. For each transgression, a fine is 
imposed. The combination that collects the minimal total fine, comes out 
as the winner. 

The method is, of course, NP-complete. In practice, however, it is 
expected to be feasible with the aid of some heuristics, since many design 
decisions form relatively independent small clusters. Still, this computa­
tional complexity is indicative of how hard it is to design a language. The 
example of the five reasonable desiderata for the numbers, only four of 
which could be satisfied simultaneously, is just one example of the 
problems a language designer may run across. 

It would be misleading to call such methods 'language design by com­
puter'. The real skill goes into identifying the decisions, weighing the 
importance and merits of various approaches, and identifying harmful 
combinations. Only a dumb, but hard, part of the work is left to brute 
force. It is expected that the first-time 'winner' will mainly serve to show 
deficiencies in the input to the program, and that several iterations will be 
needed to come up with a nice product. Indeed, the exercise may point out 
directions we have overlooked. If anything, the method requires that 
human prejudice is made explicit. The algorithm itself is, like Justice, 
blind-folded. 
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Appendix A: a B0 and a B2 Program for the Sieve of Eratosthenes 

The following B0 program is copied from [3]. 

BEGIN 
CONST n IS 1999 
RANGE sievesize FROM 2 TO n 
RANGE primality HAS prime, nonprime 
ARRAY (sievesize) a TYPE primality 
FOR i OVER sievesize PUT prime IN a(il 
VAR k TYPE int, kmult TYPE sievesize 
PUT 2 IN k 
WHILE k*k FITS kmult 

BEGIN 
VAR k1 TYPE sievesize 
IF k FITS k1, a(k1) = prime DO sieve 
PUT k+1 IN k 
END 

sieve: 
BEGIN 
PUT nonprime IN a(kmult) 
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WHILE km ult+ k FITS kmult PUT nonprime IN a(kmult) 
END 

FOR i OVER sievesize 
IF a(i) = prime 

BEGIN 
NEWLINE 
PRINTi 
END 

END 

This problem was certainly not selected in [3] to show the cluminess of 
B0. The algorithmic thought is captured more easily, though, in B2: 

HOW'TO SIEVE n: 
PUT {2 .. n}, 2 IN primes, k 
WHILE k*k<=n: 

PUT k•k IN kmult 
WHILE kmult<=n: 

IF kmult in primes: REMOVE kmult FROM primes 
PUT km ult+ k IN km ult 

PUT k min primes IN k 
WRITE primes 

SIEVE 1999 

Note that this program is algorithmically slightly different from the B0 

program given above. The formula k min primes yields the smallest 
element of the list primes exceeding k. 

Appendix B: a BASIC and a B2 Program for Tabulating a Recurrent 
Sequence 

The following program is copied from [12]. It has been selected because 
for this problem none of the 'strong' points of B2, such as manipulation of 
lists, apply. For purposes of fair comparison, non-keywords have been 
rendered in lower case. 

10 REM This program computes a table of Fibonacci 
numbers 

20 PRINT 'Enter first term' 
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30 INPUT a 
40 PRINT 'Enter second term' 
50 INPUT b 
60 PRINT 'Maximum number of terms =' 

70 INPUT n 
80 PRINT 
90 PRINT 'Table of Fibonacci numbers' 

100 PRINT 'Term no.','Fibonacci number' 
110 LET k= 1 
120 PRINT k,a 
130 LET k=2 
140 PRINT k,b 
150 LET k = k + 1 
160 LET q =a+ b 
170 PRINT k,q 
180 LET a= b 
190 LET b= q 
200 IF k>= n THEN 220 
210 GOTO 150 
220 PRINT 'Maximum numbers of terms reached' 
230 PRINT 
240 PRINT 'Type 1 to continue, 0 to stop' 
250 INPUT/ 
260 IF I= 1 THEN 280 
270 STOP 
280 PRINT 
290 GOTO 20 
300 END 
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The following B2 program is not an exact transliteration; it contains an 
obvious improvement that might also be applied to the BASIC version. As 
to the question if this is fair in making a comparison, it should be con­
sidered that part of the thesis motivating the development of B is that BASIC 

invites clumsy programming. 

HOW'TO TABULATE'FIBONACCl'NUMBERS: 
PUT 'yes' IN cont 
WHILE cont\ 1 = 'y': 

WRITE / 'Enter first term: ' 
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READ a EG 0 
WRITE / 'Enter second term: • 
READ b EG 0 
WRITE / 'Maximum number of terms=' 
READ n EG 0 
WRITE / / 'Table of Fibonacci numbers' 
WRITE / 'Term no. Fibonacci number' 
FOR k IN { 1 .. n}: 

WRITE/ k> >5, a> >15 
PUT k+1, b, a+b IN k, a, b 

WRITE / 'Maximum number of terms reached' 
WRITE/ 'Do you want another table?' 
READ cont EG " 

This program shows some 'formatting': the formula x > > n yields a text 
of length n representing the value of x, right adjusted (left-padded with 
blanks). 




