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Formal Language Definitions Can Be Made Practical 
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If some formal method is used to define a programming language, the 
problem arises that individuals with different backgrounds and intentions have 
to learn a notation and definition method they are unfamiliar with. The 
various uses of formal definitions are summarized in this paper and an 
improved method for operational language definitions is presented. This 
method aims at language descriptions that are understandable and useful for 
both designer, implementor and user of a defined language. The method has 
been used in the definition of the SUMMER programming language. Various 
examples of that definition are given and the method as a whole is assessed. 

The metalanguage of a formal definition must not become a language 
known to only the priests of the cult. Tempering science with magic is a sure 
way to return to the Dark Ages." [6] 

1. The Problem 

Programming languages are being designed using pre-scientific methods. 
Of course, there is no substitute for experience, taste, style and intuition 
but a scientific design methodology to support them is lacking. Methods 
for describing programming languages are somewhat more developed, but 
most definitions are either ambiguous and inaccurate, or excessively 
formal and unreadable. In general, a language definition method should: 

(1) help the language designer by giving insight in the language he or she 
is designing and by exposing interactions that might exist between language 
features. The definition should at the same time be a pilot implementation 
of the defined language or it should at least be convertible into one. It is 
assumed here, that design and definition can best be carried out simul­
taneously. 

(2) help the language implementor by providing him with an unam-
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biguous and complete definition that is capable of "executing" small 
programs in cases where the implementor is in doubt about the meaning of 
a particular language feature. 

(3) help the user by providing him with a precise definition in a language 
he is not too unfamiliar with. 

These three goals impose different and to a certain extent contradictory 
requirements on the definition method to be used. In particular, it seems 
difficult to combine precision and readability in one method, since a 
precise definition has to use some formalism to which the reader has to be 
initiated and such a definition will have a tendency to become long and 
unreadable. This paper reports on an experiment with a language definition 
method that may be considered as a first step in satisfying the above 
requirements. 

The defined language is SUMMER [3, 4] an object-oriented string pro­
cessing language. The definition method is similar in spirit to the SECD 
method [5], i.e. it is an operational language definition method which uses 
recursive functions and syntactic recognition functions to define a finite 
state machine that associates semantic actions with all constructs in the 
grammar of the language. In the method presented in this paper readability 
has been considerably enhanced by using a few imperative constructs and 
by introducing a very concise notation for parsing and decomposing the 
source-text of programs in the defined language. SUMMER, extended with 
such parsing and decomposing operations, is used as defining language. 
The definition is hence circular (see Sections 2.1 and 3). 

A complete description of the definition method can be found in [4]. The 
next section gives only a birds-eye view of the description method and 
shows some illustrative examples from the SUMMER definition. In Section 3 
the method as a whole and its application to SUMMER are assessed. 

2. The Method 

2.1. Introduction 

An evaluation process or interpreter (with the name "eval") will be 
defined that takes an arbitrary source text ("the source program") as input 
and either computes the result of the execution of that program (if it is a 
legal program in the defined language) or detects a syntactic or semantic 
error. The evaluation process operates directly on the text of the source 
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program and the process as a whole may be viewed as performing a series 
of string transformations on that text. During this process a global 
environment may be inspected or updated. An environment is a mapping 
from identifiers in the source program to their actual values during the 
evaluation process. Environments are used to describe concepts such as 
variables, assignment and scope rules. 

A fundamental question arises here: in which language do we write the 
definition? Several choices can be made, such as the formalism used in 
denotational semantics ([1], this boils down to mathematical notation for 
recursive functions and domains) or the Vienna Definition Language ([8], a 
programming language designed for the manipulation of trees). This is not 
the right place to discuss the merits of these formalisms, but none has the 
desired combination of properties as described in the previous paragraph. 
Instead of designing yet another definition language, the defined language 
itself (this is SUMMER in the examples given in this paper) will be used as 
definition language. This choice has the obvious disadvantage that the 
definition is circular, but it has the practical advantage that readers who 
have only a moderate familiarity with the defined language will be able to 
read the definition without great difficulty. An extensive discussion of 
circular language definitions can be found in [7]. It should be emphasized 
that there is no fundamental reason to make the definition circular. The 
definition method described here would also work if, for example, ALGOL 

68 was used as defining language. In any case, it is essential that the 
defining language has powerful string operations and allows the creation of 
data structures (of dynamically determined sizes). This requirement makes, 
for example, PASCAL less suited as defining language. Choosing SUMMER 

as defining language gave us the opportunity to investigate the suitability 
of that language in the area of language definition (see Section 3). 

In the following sections the definition method and an example of its 
application (in the SUMMER definition) are described simultaneously. In 
Section 2.2 some aspects of the use of SUMMER as a metalanguage are 
described. The definition method can be subdivided in the definition of 
semantic domains (Section 2.3) and of the evaluation process (Section 2.4). 
Some more detailed examples from the SUMMER definition are given in 
Section 2.5. 

2.2. SUMMER as metalanguage 

This paragraph focuses on some aspects of SUMMER that are used in the 
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formal definition. Most of these constructs have some similarity with 
constructs in, for instance, PASCAL and are assumed to be self-explanatory. 
Only less obvious constructs that are essential for the understanding of the 
definition are mentioned here. 

SUMMER is an object-oriented language with pointer semantics. This 
means that an object can be modified by assignment and that such modifi­
cations are visible through all access paths to that object. For example, 

s :=stack(lO) 

assigns a stack object of size 10 to the variable s, and 

s.push(v) 

pushes the value of v on the stack s. As a side-effect the stack sis modified 
such that subsequent operations on s may perceive the effect of that 
modification. In the formal definition this is relevant for the concepts 
"state" and "environment", which are modified in this way. 

The language is dynamically typed, i.e. the type of variables is not fixed 
statically (as in PASCAL) but is only determined during the execution of the 
program (as in LISP or SNOBOL4). Moreover, generic operations on data 
structures are allowed. If an operation is defined on several data types, 
then the procedure to be executed when that operation occurs is determined 
by the type of the (left) operand of that operation. 

Control structures and data structures are self-explanatory except 
possibly arrays and for-statements. 

Arrays are vectors of values, indexed by 0, ... , N -1, where N is the 
number of elements in the array. If A is an array then the operation A . size 
will yield the number of elements in the array. A new array is created by 

or 
array(N, V). 

In the former case, an array of size N is created and initialized to the values 
V0, ... , VN- 1. In the latter case, an array of size N is created and all 
elements are initialized to the value V. Array denotations are also allowed 
as left hand side of assignments. This provides a convenient notation for 
multiple assignments. For example, 

[x,y, zJ := [10, 20, 30] 
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is completely equivalent with 

X := 10; y := 20; Z := 30 

and, more generally, 

is equivalent with 

The general form of a for-statement is: 

for V in G do S od 
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where Vis a variable, G is an expression that has as value an object capable 
of generating a sequence of values VAL; and where S is an arbitrary state­
ment. For each VAL; the assignment V:= VAL; is performed and S is 
evaluated. In this paper, the expression G will be used in two forms: the 
value of G is either an array (in which case consecutive array elements are 
generated) or G is an array on which the operation index has been 
performed (in which case all indices of consecutive array elements are 
generated). For example, in 

a:= (144, 13, 7]; 
for x in a do print(x) od 

an array object is assigned to the variable a and the values 144, 13 and 7 
will be printed, while 

for i in a. index do print(r) od 

will print the values 0, 1 and 2. Further examples of for-statements will be 
found in the following paragraphs. 

2.3. Semantic domains 

A semantic domain is a set, whose elements either describe a primitive 
notion in the defined language (like "variable" or "procedure 
declaration") or have some common properties as far as the language 
definition is concerned. The relationship between these domains is given by 
a series of domain equations. 

In the remainder of this paragraph the domains in the SUMMER definition 
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are briefly described. The abstract properties of these domains are given in 
[4]. Here, they are only introduced informally. First, the domain equations 
are given. Next, the meaning of each domain is described. 

The relationship between the domains BASIC-VALVES, DENOTABLE­
V ALUES, STORABLE-VALUES, ENVIRONMENT, LOCATIONS, 
STATE, PROC, CLASS and INSTANCE is as follows 

BASIC-VALVES = STRING U INTEGER U UNDEFINED 
DENOTABLE-VALVES= LOCATIONS U INSTANCE U PROC 

U CLASS U BASIC-VALVES 
STORABLE-VALVES = INSTANCE U BASIC-VALVES 
ENVIRONMENT = ID➔ DENOTABLE-VALVES 
STATE =LOCATIONS➔(STORABLE-VALUES 

U {unused}) 
PROC = PROC-DECL x ENVIRONMENT 
CLASS = ID x CLASS-DECL 
INSTANCE = ID x CLASS-DECL x ENVIRONMENT 

Here, ID, PROC-DECL and CLASS-DECL are the sets of string values 
that can be derived from the syntactic notions (identifier), (procedure­
declaration > and (class-declaration) in the SUMMER grammar. BASIC­
V ALVES is the domain of primitive values in the language.DENOTABLE­
V ALVES is the domain of values which can be manipulated by the evalu­
ation process. STORABLE-VALUES is the domain of values which can be 
assigned to variables in the source program. The domain LOCATIONS is 
used to model the notion "address of a cell capable of containing a value". 
Inspection of the contents of a location does not affect the contents of that 
location itself or of any other location. Modification of the contents of a 
location does not affect the contents of any other location. ST A TE is the 
domain that consists of functions that map locations on actual values or 
unused. 

PROC is the domain of procedures. Each element of this domain 
describes a procedure declaration and contains a literal copy of the text of 
the procedure declaration itself and an environment that reflects all names 
and values available at the point of declaration. 

CLASS is the domain of classes. Each element of this domain describes 
one class declaration and contains the name of the class and a literal copy 
of the text of the class declaration. INSTANCE is the domain of class 
instances. All values that are created by a SUMMER program are instances 
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of some class. An instance consists of the name of the class to which it 
belongs, the literal text of the declaration of that class and an environment 
that has to be used to inspect or update components from the instance. 
Operations are defined on elements in PROC, CLASS and INSTANCE to 
manipulate the components of an element in these domains. For complete­
ness, these domains are mentioned here, but they will not be used in the 
remainder of this paper. 

STRING, INTEGER and UNDEFINED are the domains modeling the 
values and operations for the built-in types string, integer and undefined 
respectively. UNDEFINED is the domain consisting of undefined values. 
All variables are initialized to an undefined value. Operations are defined 
on elements in STRING, INTEGER and UNDEFINED that model the 
primitive operations on the data types string, integer and undefined. 

ENVIRONMENT is the domain of environments. Environments 
administrate the binding between names and values and the introduction of 
new scopes (i.e. ranges in the program where names may be declared). The 
operations defined on environments modify, in general, the environment 
to which they are applied. 

The definitions given in following sections are centered around 
operations on elements of these semantic domains, but we will see 
relatively few of them in the examples. Operations will only be explained 
when they occur in an example. 

2.4. Evaluation process 

An extended form of BNF notation is used to describe the syntax of the 
defined language. The extensions aim at providing a concise notation for 
the description of repeated or optional syntactic notions. A syntactic 
notion suffixed with '' + '' means one or more repetitions of that notion. A 
notion suffixed with "*" stands for zero or more repetitions of that 
notion. The notation 

{ notion separator} replicator 

i.e. a notion followed by a separator enclosed in braces followed by a 
replicator, is used to describe a list of notions separated by the given 
separator. A replicator is either '' + '' or '' *''. The replicator '' + '' indicates 
that the list consists of one or more notions. The list begins and ends with a 
notion. The replicator "*" indicates that the list consists of zero or more 
notions. 
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An optional syntactic notion is indicated by enclosing that notion in 
square brackets, e.g. "[notion]". The terminal symbols of the grammar 
are either enclosed in single quotes (for example: ',' or ':=') or written in 
upper case letters if the terminal symbol consists solely of letters (for 
example: IF may be used to denote the terminal symbol if). Where 
necessary, parentheses are used for grouping. 

Some parts of a syntax rule may be labeled with a (tag); their meaning 
will become clear below. 

The evaluation process is described in SUMMER extended with parse 
expressions1 of the form 

'{{'(identifier)'==' (syntax-rule)'}}' 

which are used as a very concise notation for parsing and extracting infor­
mation from the text of the source program. A parse expression succeeds if 
the identifier at the left hand side of the'==' sign has a string as value and 
if this string is of the form described by the (syntax-rule) at the right hand 
side of the'==' sign. All (tag)s occurring in the (syntax-rule) should have 
been declared as variables in the program containing the parse expression, 
in this case the evaluation process. Substrings of the parsed text are 
assigned to these variables. If the recognized part of the text is a list or 
repetition, then an array of string values is assigned to the variable corres­
ponding with the tag. Consider, for example, the following program 
fragment: 

if { {e== WHILE t: (test) DO b: (body) OD}} 
then 

put ( 'e is a while expression') 
fi 

The parse expression will succeed if e has the form of a while expression; 
the literal text of the ( test) is then assigned to variable t and the text of the 
(body) is assigned to variable b. Repetition occurs in 

if {{e== VAR list: (test) DO b: (body) OD}} 

1 There is no fundamental reason to introduce this language extension. However, the 
disadvantage of introducing such an ad-hoc extension is more than compensated by the fact 
that we use a notation which is sufficiently similar to BNF notation to be almost self­
explanatory. The effect of introducing a language extension as proposed here is interesting in 
its own right but falls outside the scope of the current discussion. 
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put('e is a variable declaration containing:'); 
for l in list do put (!) od 
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The parse expression succeeds if e has the form of a ''variable declaration'' 
(i.e. the keyword var followed by a list of (identifier)s separated by 
commas) and in that case an array of string values corresponding to the 
< identifier)s occurring in the declaration is assigned to the variable list, 
which is printed subsequently. 

Parse expressions may be used as test in if statements or may stand on 
their own. In the latter case, the string to be parsed has to be of the form 
described by the parse expression. In this way, parse expressions can be 
used to decompose a string with a known form into substrings. 

In the case of the SUMMER definition, the overall structure of the evalu-
ation process is: 

var E; 
var S; 
var varinit; 
proc ERROR 

proc eval(e) 
(var value, signal, ... ; 
if { { e == (program-declaration)}} 
then 

return([value, signal]) 
fi; 
if { { e == <variable-declaration)}} 
then 

return([ value, signal]) 
fi; 

if {{e==(empty)}} 
then 

return([ value, signal]) 
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fi; 
ERROR 

); 

P. Klint 

The variable E has as value the current environment and S has as value the 
current state. The variable varinit has as value a string consisting of the text 
of all (variable-initialization)s in the current (block). 

The procedure ERROR is called when a syntactic or semantic error is 
detected during evaluation. In that case, the whole evaluation process is 
aborted immediately. The main defining procedure is eval, which selects an 
appropriate case depending on the syntactic form of its argument e. Some 
examples of these various cases will be given in Section 2.5. Note that each 
of these cases involves a complete syntactic analysis of the string e. The 
evaluation process is initiated by creating an initial, empty environment E 
and by calling eva/ with the text of the source program as argument. If the 
evaluation process is not terminated prematurely (by the detection of a 
semantic error) the result of the evaluation of the source program can be 
obtained by inspecting the resulting environment E. Note how syntactically 
incorrect programs are intercepted in eval by ERROR, which is called if 
none of the listed cases applies. 

The procedure eval delivers as result an array of the form [ value, signal], 
where value is the actual result of the procedure and signal is a success/fail 
flag that indicates how value should be interpreted. SUMMER uses a success­
directed evaluation scheme: an expression can either fail or succeed. These 
success/ fail signals are used by language constructs like (if-expression) 
and < while-expression) to determine the flow-of-control. The signal 
delivered by eval is used to model this evaluation mechanism. This signal 
may have the following values: 
N: evaluation terminated normally. 
F: evaluation failed. 
NR: normal return; a (return-expression) was encountered during evalu­
ation. 
FR: failure return; a failure return was encountered during evaluation. 
The signal is tested after each (recursive) invocation of eval. In most cases 
eval performs an immediate return if the signal is not equal to N after the 
evaluation of a subexpression. Exceptions are cases such as (if-expression> 
and (return-expression) in which the signal is used to determine how 
evaluation should proceed. This organization has the effect that aborting 
the evaluation of the "current" expression, which is necessary if failure 



Formal language definitions can be made practical 125 

occurs in a deeply nested subexpression, can be achieved by passing a signal 
upwards until it reaches an incarnation of eval that can take appropriate 
measures. The difference between F and FR lies in the language constructs 
that handle these cases. For example, consider <if-expression)s. An F 
signal generated in the (test) part of an <if-expression) can be treated by 
the semantic rule associated with <if-expression)s. But an FR signal 
generated during the evaluation of the ( test) can only be treated by the 
semantic rule associated with the invocation of the procedure in which the 
(if-expression) occurs. In general, the signals NR and FR are only 
generated by return-expressions and are only handled by the semantic rules 
associated with procedure calls. The latter rules turn NR into N and FR 
into F before the evaluation process is resumed at the point where it left off 
to perform the (now completed) procedure call. All other semantic rules 
return immediately when an NR or FR signal occurs. 

Note that the [value, signal] artifact is induced by the specific form of 
expression evaluation in SUMMER and has nothing to do with the definition 
method itself. We have just chosen one particular way to describe a form 
of goto statement. 

2.5. Some examples 

2. 5.1. If expressions 
<if-expression)s correspond to the if-then-else statement found in most 

programming languages. If evaluation of the (test) immediately contained 
in the (if-expression) terminates successfully, the (block) following then 
is evaluated. Otherwise, the successive (test)s following subsequent elifs 
are evaluated until one such evaluation terminates successfully (in which 
case the following ( block) is evaluated) or the list is exhausted. In the 
latter case, the (if-expression) may contain an else and then the (block) 
following that else is evaluated. The formal definition is: 

J if { {e==lF t: (test) THEN b: (block) 
2 elifpart: (ELIF ( test) THEN (block))* 
3 e/separt: [ELSE (block)] Fl}} 
4 then 
5 [v,sig] :=eval(t); 
6 if sig=N then return(eval(b)) 
7 elif sig :;t: F then return([ v, sig]) 
8 else 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 fi; 

fi 
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for ei in elif part 
do { {ei==ELIF t: (test) THEN b: (block)}}; 

[v,sigJ :=eval(t); 
if sig = N then return( eval( b)) 

elif sig * F then return( [ v, sig]) fi 
od; 
if { {elsepart==ELSE b: (block)}} 
then 

return(eval(b)) 
else 

return([a _ undefined, NJ) 
fi 

The parse expression in lines 1-3 decomposes the string value of e in 
several parts. In line 5 the (test) of the <if-expression) is evaluated. Note 
how the occurrence of non-standard (i.e. sig=NR or sig=FR) signals 
terminates the evaluation of the <if-expression) (lines 7, 13). This is 
particularly relevant for the evaluation of the ( test) part. SUMMER allows 
the occurrence of a return statement in a (test). This is reflected in the 
above definition. 

For a better understanding of the above definition, it may be useful to 
note that parts of the source program are parsed repeatedly during one 
evaluation of a given <if-expression). For example, the (block) following 
an elif is parsed both in lines 2 and 10. (This explains, by the way, why the 
parse expression in line JO needs not be contained in an if statement, see 
Section 2.4.) In general, the source text of the <if-expression) is parsed 
each time that it is evaluated. 

2. 5. 2. Variable declarations 
A (variable-declaration) introduces in the current environment a series 

of new variables, i.e. names of locations whose contents may be inspected 
and/or modified. The declaration may contain (expression)s whose value 
is to be used for the initialization of the declared variables. First, these 
initializing expressions are evaluated. Next, the (expression)s following 
the ( variable-declaration)s are evaluated. In the formal definition this is 
described by appending all variable initializations in the current ( block) to 
the variable varinit and by evaluating the string value of that variable 
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before the evaluation of the subsequent <expression) s in the <block). The 
formal definition of (variable-declaration) s is: 

1 if { { e == VAR vi: { (variable-initialization) 
2 then 
3 for v in vi 

','}+';'}} 

4 
5 
6 

do if { { v == x: ( identifier) ':=' <expression)}} then 
varinit : = varinit II v II ';' ; 
E. bind(x, S. extend(a _ undefined)); 

7 else 
8 {{ v ==x: (identifier)}}; 
9 E. bind(x, S. extend(a _ undefined)) 

JO fi 
11 od; 
12 return( [a_ undefined, N]) 
13 fi; 

In line 1, e is decomposed into an array of strings which have the form of a 
<variable-initialization>. These string values are considered in succession 
in the for loop in lines 3-11. If the (variable-initialization) contains an 
initializing expression, that expression is appended to varinit (line 5) using 
the string concatenation operator "II". In both cases, the state S is 
extended with a location containing an undefined value, and that new 
location is bound, in the current environment E, to the identifier being 
declared. Note that, in line 8, v is known to have the form of an 
(identifier). 

2.5.3. Blocks 
A (block) introduces a new scope to be used for the declaration of new 

variables and constants. It consists of a (perhaps empty) list of declarations 
followed by a sequence of expressions separated by semicolons. A (block) 
is evaluated as follows: 

(1) Evaluate all declarations. 
(2) Evaluate all variable-initializations resulting from the evaluation of 

the declarations. 
(3) Evaluate the sequence of expressions in the (block). (Note that 

SUMMER forbids the failure of an expression inside a sequence of expres­
sions. Only the last expression in a sequence is allowed to fail; this failure is 
passed upwards to enclosing language constructs.) 
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The formal definition is: 

1 if { { e == dlist: <variable-declaration)* 
2 elist: {[(expression)] ';' }*}} 
3 then 
4 var El, varinitl; 

5 El :=E; 
6 E. new_ inner_ scope; 
7 varinitl := varinit; 
8 varinit := '' ; 
9 for d in dlist 

JO do [v,sig] :=eval(d); 
11 if sig=t=N then ERROR fi 
12 od; 
13 [v,sig] :=eval(varinit); 
14 varinit := varinitl; 
15 if sig =t= N then E := E 1; return([ v, sig]) fi; 
16 for i in elist . index 
17 do 
18 [v,sig] :=eval(elist[i]); 

19 case sig of 
20 N:, 
21 F: if i =t= elist. size - 1 then ERROR fi, 
22 NR: FR: (E:=El; return([v,sig])) 
23 esac 
24 od; 
25 E:=EI; 
26 return([ v, sig]) 
27 fi; 

In lines 5-8 local copies are made of E and varinit and new values are 
assigned to them. In lines 9-13 the list of (variable-declaration)s in the 
( block) and the resulting ( variable-initia/ization)s are evaluated. In lines 
16-24 the list of (expression)s in the (block) are evaluated. Note how 
failure of an expression in the middle of the list is treated (line 21, see 
above). 
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3. Assessment 

The formal language definition presented in the previous section will 
now be assessed. It is tempting to try to get statements like: 

or 

"Users can answer 87% of their questions on language issues 
within Jive minutes if they have access to a formal language 
definition of the kind described in this article. " 

"35% of all run-time errors in user programs are directly 
related to anomalies in the language definition". 

In the absence of such results and with the methods to obtain them lacking, 
we have to live with qualitative and more or less speculative observations. 

A rough indication for the conciseness of the definition can be obtained 
by comparing various sizes as they apply to the SUMMER definition: 

formal definition 
reference manual 
implementation 

20 pages 
100 pages 
200 pages 

These figures show that the implementation is ten times larger than the 
formal definition. This is not surprising, since the implementation has to 
be efficient while the formal definition does not have to be. In this light the 
"a-language-is-defined-by-its-implementation" approach can be rephrased 
as: "if a language is defined by its implementation, then that implemen­
tation had better be small". 

The definition is precise and complete, in the sense that all semantic 
operations associated with a particular language construct have to be 
specified to allow the construction of an executable version of the 
definition. The number of operational details, i.e. details in the definition 
which stem from the chosen definition method and have no inherent 
meaning in the defined language, is surprisingly small. This is a conse­
quence of the choice of the defining language (which should have powerful 
data types and string manipulation operations) and the choice of high-level 
environment manipulation primitives which correspond directly to 
operations in the defined language and which are not (yet) perverted by 
implementational details. SUMMER extended with parse expressions seems a 
quite reasonable vehicle for language definition. It is, however, not 
possible to make continuation-style (see [11) definitions, since higher-order 
functions are lacking. 
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It is difficult to give an objective judgement on the readability of the 
definition, but we have observed that only a moderate effort (a few days) is 
required on the part of a programmer without any training in formal 
semantics and without any previous exposure to the language to learn 
SUMMER using only the (annotated) formal definition. 

The advantages and disadvantages of the formal definition for designer, 
implementor and user will now be discussed in some detail. 

The advantages for the designer are: 
(1) Anomalies in the design are magnified. It is a general rule that ill­

formed entities can only be described by ill-formed descriptions or by 
descriptions which list many exceptional cases. It is easier to locate such 
exceptions or anomalies in a concise formal definition than in an 
ambiguous natural language definition or in a bulky implementation. In 
the SUMMER definition, for example, a very specific operation on environ­
ments is needed ("partial-state-copy") to accommodate the definition of 
just one language feature ("try-expression"). It turned out that a slight 
modification of that feature would at the same time simplify the definition 
and improve the feature. 

(2) Exhaustive enumeration of language features. A formal definition 
method forces the designer to enumerate all language features in the same 
framework and this may help him to find omissions in the design. 

(3) Interactions between language features can be studied. In the 
SUMMER definition, for example, the designer is forced to decide what 
happens when a <return-expression> is evaluated during the evaluation of 
any other expression. There is, however, no guarantee that all interactions 
can be found, since the formal definition may still contain hidden inter­
actions between language features. The use of auxiliary functions in the 
definition is an aid in making interactions explicit. One may even apply 
techniques such as calling graph analysis and data flow analysis to the 
definition to discover clusters of interacting features and to establish 
certain properties of the definition. 

(4) An executable formal definition can be tested and used. This may 
help eliminate clerical and gross errors from the definition. An executable 
definition allows the designer to play with (toy) programs written in the 
language he is designing. Here is, however, a problem with circular 
definitions: some implementation of the defined language has to exist 
before the definition itself can be made executable. 
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Disadvantages for the designer are: 
(1) A considerable effort is required to construct a formal definition. 
(2) A general problem is that there are no canned, satisfactory definition 

methods available and that the designer has to begin with either creating a 
new method or adapting and extending an existing one. 

Advantages for the implementor are: 
(1) Unambiguous language definition. 
(2) The implementor may be in doubt as to the meaning of a certain 

combination of features. Such cases can be executed both by the implemen­
tation and by the definition and the results can be compared. 

Disadvantages for the implementor are: 
(1) The implementor must be familiar with the definition method or 

become acquainted with it. This is only a minor effort if one compares it 
with the total effort required to implement the language. 

(2) It is non-trivial to derive an implementation strategy from the 
language definition. This is a problem shared by all "abstract" language 
definitions, in which no attempt is made to use primitives in the definition 
with a direct counterpart in an implementation. This leads to the con­
clusion that such abstract definitions should be accompanied by an 
"annotation for implementors", which states where well-known imple­
mentation techniques can be used and where certain optimizations are 
possible. 

Advantages for the user are: 
(1) Unambiguous and concise language definition. 
(2) The user is used to reading programs and the formal definition can be 

read as such. In the case of a circular definition, the formal definition may 
be considered as a very informative example program. 

Disadvantages for the user are: 
(I) The user must be exposed to the definition method. 
(2) A formal definition is harder to read than a "natural language" 

definition. 
(3) In the case of the SUMMER definition, the circularity may be con­

fusing for the naive user. 
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In retrospect, it seems justified to conclude that the method presented in 
this paper is a first step in satisfying the requirements given in Section 1. 
However, many problems remain to be investigated. Does the given 
method lend itself to mathematical analysis? How can the "complexity" of 
a language be derived from its definition? Is it possible to "optimize" the 
executable version of definitions? (Attempts in this direction can be found 
in [2].) What is the relationship between this definition method and 
extensible languages? Answers to these questions will provide more insight 
in the structure of programming languages and the methods for defining 
them. 
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