
Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 115-132

Formal Language Definitions Can Be Made Practical

Paul Klint

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

If some formal method is used to define a programming language, the
problem arises that individuals with different backgrounds and intentions have
to learn a notation and definition method they are unfamiliar with. The
various uses of formal definitions are summarized in this paper and an
improved method for operational language definitions is presented. This
method aims at language descriptions that are understandable and useful for
both designer, implementor and user of a defined language. The method has
been used in the definition of the SUMMER programming language. Various
examples of that definition are given and the method as a whole is assessed.

The metalanguage of a formal definition must not become a language
known to only the priests of the cult. Tempering science with magic is a sure
way to return to the Dark Ages." [6]

1. The Problem

Programming languages are being designed using pre-scientific methods.
Of course, there is no substitute for experience, taste, style and intuition
but a scientific design methodology to support them is lacking. Methods
for describing programming languages are somewhat more developed, but
most definitions are either ambiguous and inaccurate, or excessively
formal and unreadable. In general, a language definition method should:

(1) help the language designer by giving insight in the language he or she
is designing and by exposing interactions that might exist between language
features. The definition should at the same time be a pilot implementation
of the defined language or it should at least be convertible into one. It is
assumed here, that design and definition can best be carried out simul­
taneously.

(2) help the language implementor by providing him with an unam-

115

116 P. Klint

biguous and complete definition that is capable of "executing" small
programs in cases where the implementor is in doubt about the meaning of
a particular language feature.

(3) help the user by providing him with a precise definition in a language
he is not too unfamiliar with.

These three goals impose different and to a certain extent contradictory
requirements on the definition method to be used. In particular, it seems
difficult to combine precision and readability in one method, since a
precise definition has to use some formalism to which the reader has to be
initiated and such a definition will have a tendency to become long and
unreadable. This paper reports on an experiment with a language definition
method that may be considered as a first step in satisfying the above
requirements.

The defined language is SUMMER [3, 4] an object-oriented string pro­
cessing language. The definition method is similar in spirit to the SECD
method [5], i.e. it is an operational language definition method which uses
recursive functions and syntactic recognition functions to define a finite
state machine that associates semantic actions with all constructs in the
grammar of the language. In the method presented in this paper readability
has been considerably enhanced by using a few imperative constructs and
by introducing a very concise notation for parsing and decomposing the
source-text of programs in the defined language. SUMMER, extended with
such parsing and decomposing operations, is used as defining language.
The definition is hence circular (see Sections 2.1 and 3).

A complete description of the definition method can be found in [4]. The
next section gives only a birds-eye view of the description method and
shows some illustrative examples from the SUMMER definition. In Section 3
the method as a whole and its application to SUMMER are assessed.

2. The Method

2.1. Introduction

An evaluation process or interpreter (with the name "eval") will be
defined that takes an arbitrary source text ("the source program") as input
and either computes the result of the execution of that program (if it is a
legal program in the defined language) or detects a syntactic or semantic
error. The evaluation process operates directly on the text of the source

Formal language definitions can be made practical 117

program and the process as a whole may be viewed as performing a series
of string transformations on that text. During this process a global
environment may be inspected or updated. An environment is a mapping
from identifiers in the source program to their actual values during the
evaluation process. Environments are used to describe concepts such as
variables, assignment and scope rules.

A fundamental question arises here: in which language do we write the
definition? Several choices can be made, such as the formalism used in
denotational semantics ([1], this boils down to mathematical notation for
recursive functions and domains) or the Vienna Definition Language ([8], a
programming language designed for the manipulation of trees). This is not
the right place to discuss the merits of these formalisms, but none has the
desired combination of properties as described in the previous paragraph.
Instead of designing yet another definition language, the defined language
itself (this is SUMMER in the examples given in this paper) will be used as
definition language. This choice has the obvious disadvantage that the
definition is circular, but it has the practical advantage that readers who
have only a moderate familiarity with the defined language will be able to
read the definition without great difficulty. An extensive discussion of
circular language definitions can be found in [7]. It should be emphasized
that there is no fundamental reason to make the definition circular. The
definition method described here would also work if, for example, ALGOL

68 was used as defining language. In any case, it is essential that the
defining language has powerful string operations and allows the creation of
data structures (of dynamically determined sizes). This requirement makes,
for example, PASCAL less suited as defining language. Choosing SUMMER

as defining language gave us the opportunity to investigate the suitability
of that language in the area of language definition (see Section 3).

In the following sections the definition method and an example of its
application (in the SUMMER definition) are described simultaneously. In
Section 2.2 some aspects of the use of SUMMER as a metalanguage are
described. The definition method can be subdivided in the definition of
semantic domains (Section 2.3) and of the evaluation process (Section 2.4).
Some more detailed examples from the SUMMER definition are given in
Section 2.5.

2.2. SUMMER as metalanguage

This paragraph focuses on some aspects of SUMMER that are used in the

118 P. Klint

formal definition. Most of these constructs have some similarity with
constructs in, for instance, PASCAL and are assumed to be self-explanatory.
Only less obvious constructs that are essential for the understanding of the
definition are mentioned here.

SUMMER is an object-oriented language with pointer semantics. This
means that an object can be modified by assignment and that such modifi­
cations are visible through all access paths to that object. For example,

s :=stack(lO)

assigns a stack object of size 10 to the variable s, and

s.push(v)

pushes the value of v on the stack s. As a side-effect the stack sis modified
such that subsequent operations on s may perceive the effect of that
modification. In the formal definition this is relevant for the concepts
"state" and "environment", which are modified in this way.

The language is dynamically typed, i.e. the type of variables is not fixed
statically (as in PASCAL) but is only determined during the execution of the
program (as in LISP or SNOBOL4). Moreover, generic operations on data
structures are allowed. If an operation is defined on several data types,
then the procedure to be executed when that operation occurs is determined
by the type of the (left) operand of that operation.

Control structures and data structures are self-explanatory except
possibly arrays and for-statements.

Arrays are vectors of values, indexed by 0, ... , N -1, where N is the
number of elements in the array. If A is an array then the operation A . size
will yield the number of elements in the array. A new array is created by

or
array(N, V).

In the former case, an array of size N is created and initialized to the values
V0, ... , VN- 1. In the latter case, an array of size N is created and all
elements are initialized to the value V. Array denotations are also allowed
as left hand side of assignments. This provides a convenient notation for
multiple assignments. For example,

[x,y, zJ := [10, 20, 30]

Formal language definitions can be made practical

is completely equivalent with

X := 10; y := 20; Z := 30

and, more generally,

is equivalent with

The general form of a for-statement is:

for V in G do S od

119

where Vis a variable, G is an expression that has as value an object capable
of generating a sequence of values VAL; and where S is an arbitrary state­
ment. For each VAL; the assignment V:= VAL; is performed and S is
evaluated. In this paper, the expression G will be used in two forms: the
value of G is either an array (in which case consecutive array elements are
generated) or G is an array on which the operation index has been
performed (in which case all indices of consecutive array elements are
generated). For example, in

a:= (144, 13, 7];
for x in a do print(x) od

an array object is assigned to the variable a and the values 144, 13 and 7
will be printed, while

for i in a. index do print(r) od

will print the values 0, 1 and 2. Further examples of for-statements will be
found in the following paragraphs.

2.3. Semantic domains

A semantic domain is a set, whose elements either describe a primitive
notion in the defined language (like "variable" or "procedure
declaration") or have some common properties as far as the language
definition is concerned. The relationship between these domains is given by
a series of domain equations.

In the remainder of this paragraph the domains in the SUMMER definition

120 P. Klint

are briefly described. The abstract properties of these domains are given in
[4]. Here, they are only introduced informally. First, the domain equations
are given. Next, the meaning of each domain is described.

The relationship between the domains BASIC-VALVES, DENOTABLE­
V ALUES, STORABLE-VALUES, ENVIRONMENT, LOCATIONS,
STATE, PROC, CLASS and INSTANCE is as follows

BASIC-VALVES = STRING U INTEGER U UNDEFINED
DENOTABLE-VALVES= LOCATIONS U INSTANCE U PROC

U CLASS U BASIC-VALVES
STORABLE-VALVES = INSTANCE U BASIC-VALVES
ENVIRONMENT = ID➔ DENOTABLE-VALVES
STATE =LOCATIONS➔(STORABLE-VALUES

U {unused})
PROC = PROC-DECL x ENVIRONMENT
CLASS = ID x CLASS-DECL
INSTANCE = ID x CLASS-DECL x ENVIRONMENT

Here, ID, PROC-DECL and CLASS-DECL are the sets of string values
that can be derived from the syntactic notions (identifier), (procedure­
declaration > and (class-declaration) in the SUMMER grammar. BASIC­
V ALVES is the domain of primitive values in the language.DENOTABLE­
V ALVES is the domain of values which can be manipulated by the evalu­
ation process. STORABLE-VALUES is the domain of values which can be
assigned to variables in the source program. The domain LOCATIONS is
used to model the notion "address of a cell capable of containing a value".
Inspection of the contents of a location does not affect the contents of that
location itself or of any other location. Modification of the contents of a
location does not affect the contents of any other location. ST A TE is the
domain that consists of functions that map locations on actual values or
unused.

PROC is the domain of procedures. Each element of this domain
describes a procedure declaration and contains a literal copy of the text of
the procedure declaration itself and an environment that reflects all names
and values available at the point of declaration.

CLASS is the domain of classes. Each element of this domain describes
one class declaration and contains the name of the class and a literal copy
of the text of the class declaration. INSTANCE is the domain of class
instances. All values that are created by a SUMMER program are instances

Formal language definitions can be made practical 121

of some class. An instance consists of the name of the class to which it
belongs, the literal text of the declaration of that class and an environment
that has to be used to inspect or update components from the instance.
Operations are defined on elements in PROC, CLASS and INSTANCE to
manipulate the components of an element in these domains. For complete­
ness, these domains are mentioned here, but they will not be used in the
remainder of this paper.

STRING, INTEGER and UNDEFINED are the domains modeling the
values and operations for the built-in types string, integer and undefined
respectively. UNDEFINED is the domain consisting of undefined values.
All variables are initialized to an undefined value. Operations are defined
on elements in STRING, INTEGER and UNDEFINED that model the
primitive operations on the data types string, integer and undefined.

ENVIRONMENT is the domain of environments. Environments
administrate the binding between names and values and the introduction of
new scopes (i.e. ranges in the program where names may be declared). The
operations defined on environments modify, in general, the environment
to which they are applied.

The definitions given in following sections are centered around
operations on elements of these semantic domains, but we will see
relatively few of them in the examples. Operations will only be explained
when they occur in an example.

2.4. Evaluation process

An extended form of BNF notation is used to describe the syntax of the
defined language. The extensions aim at providing a concise notation for
the description of repeated or optional syntactic notions. A syntactic
notion suffixed with '' + '' means one or more repetitions of that notion. A
notion suffixed with "*" stands for zero or more repetitions of that
notion. The notation

{ notion separator} replicator

i.e. a notion followed by a separator enclosed in braces followed by a
replicator, is used to describe a list of notions separated by the given
separator. A replicator is either '' + '' or '' *''. The replicator '' + '' indicates
that the list consists of one or more notions. The list begins and ends with a
notion. The replicator "*" indicates that the list consists of zero or more
notions.

122 P. Klint

An optional syntactic notion is indicated by enclosing that notion in
square brackets, e.g. "[notion]". The terminal symbols of the grammar
are either enclosed in single quotes (for example: ',' or ':=') or written in
upper case letters if the terminal symbol consists solely of letters (for
example: IF may be used to denote the terminal symbol if). Where
necessary, parentheses are used for grouping.

Some parts of a syntax rule may be labeled with a (tag); their meaning
will become clear below.

The evaluation process is described in SUMMER extended with parse
expressions1 of the form

'{{'(identifier)'==' (syntax-rule)'}}'

which are used as a very concise notation for parsing and extracting infor­
mation from the text of the source program. A parse expression succeeds if
the identifier at the left hand side of the'==' sign has a string as value and
if this string is of the form described by the (syntax-rule) at the right hand
side of the'==' sign. All (tag)s occurring in the (syntax-rule) should have
been declared as variables in the program containing the parse expression,
in this case the evaluation process. Substrings of the parsed text are
assigned to these variables. If the recognized part of the text is a list or
repetition, then an array of string values is assigned to the variable corres­
ponding with the tag. Consider, for example, the following program
fragment:

if { {e== WHILE t: (test) DO b: (body) OD}}
then

put ('e is a while expression')
fi

The parse expression will succeed if e has the form of a while expression;
the literal text of the (test) is then assigned to variable t and the text of the
(body) is assigned to variable b. Repetition occurs in

if {{e== VAR list: (test) DO b: (body) OD}}

1 There is no fundamental reason to introduce this language extension. However, the
disadvantage of introducing such an ad-hoc extension is more than compensated by the fact
that we use a notation which is sufficiently similar to BNF notation to be almost self­
explanatory. The effect of introducing a language extension as proposed here is interesting in
its own right but falls outside the scope of the current discussion.

then

fi

Formal language definitions can be made practical

put('e is a variable declaration containing:');
for l in list do put (!) od

123

The parse expression succeeds if e has the form of a ''variable declaration''
(i.e. the keyword var followed by a list of (identifier)s separated by
commas) and in that case an array of string values corresponding to the
< identifier)s occurring in the declaration is assigned to the variable list,
which is printed subsequently.

Parse expressions may be used as test in if statements or may stand on
their own. In the latter case, the string to be parsed has to be of the form
described by the parse expression. In this way, parse expressions can be
used to decompose a string with a known form into substrings.

In the case of the SUMMER definition, the overall structure of the evalu-
ation process is:

var E;
var S;
var varinit;
proc ERROR

proc eval(e)
(var value, signal, ... ;
if { { e == (program-declaration)}}
then

return([value, signal])
fi;
if { { e == <variable-declaration)}}
then

return([value, signal])
fi;

if {{e==(empty)}}
then

return([value, signal])

124

fi;
ERROR

);

P. Klint

The variable E has as value the current environment and S has as value the
current state. The variable varinit has as value a string consisting of the text
of all (variable-initialization)s in the current (block).

The procedure ERROR is called when a syntactic or semantic error is
detected during evaluation. In that case, the whole evaluation process is
aborted immediately. The main defining procedure is eval, which selects an
appropriate case depending on the syntactic form of its argument e. Some
examples of these various cases will be given in Section 2.5. Note that each
of these cases involves a complete syntactic analysis of the string e. The
evaluation process is initiated by creating an initial, empty environment E
and by calling eva/ with the text of the source program as argument. If the
evaluation process is not terminated prematurely (by the detection of a
semantic error) the result of the evaluation of the source program can be
obtained by inspecting the resulting environment E. Note how syntactically
incorrect programs are intercepted in eval by ERROR, which is called if
none of the listed cases applies.

The procedure eval delivers as result an array of the form [value, signal],
where value is the actual result of the procedure and signal is a success/fail
flag that indicates how value should be interpreted. SUMMER uses a success­
directed evaluation scheme: an expression can either fail or succeed. These
success/ fail signals are used by language constructs like (if-expression)
and < while-expression) to determine the flow-of-control. The signal
delivered by eval is used to model this evaluation mechanism. This signal
may have the following values:
N: evaluation terminated normally.
F: evaluation failed.
NR: normal return; a (return-expression) was encountered during evalu­
ation.
FR: failure return; a failure return was encountered during evaluation.
The signal is tested after each (recursive) invocation of eval. In most cases
eval performs an immediate return if the signal is not equal to N after the
evaluation of a subexpression. Exceptions are cases such as (if-expression>
and (return-expression) in which the signal is used to determine how
evaluation should proceed. This organization has the effect that aborting
the evaluation of the "current" expression, which is necessary if failure

Formal language definitions can be made practical 125

occurs in a deeply nested subexpression, can be achieved by passing a signal
upwards until it reaches an incarnation of eval that can take appropriate
measures. The difference between F and FR lies in the language constructs
that handle these cases. For example, consider <if-expression)s. An F
signal generated in the (test) part of an <if-expression) can be treated by
the semantic rule associated with <if-expression)s. But an FR signal
generated during the evaluation of the (test) can only be treated by the
semantic rule associated with the invocation of the procedure in which the
(if-expression) occurs. In general, the signals NR and FR are only
generated by return-expressions and are only handled by the semantic rules
associated with procedure calls. The latter rules turn NR into N and FR
into F before the evaluation process is resumed at the point where it left off
to perform the (now completed) procedure call. All other semantic rules
return immediately when an NR or FR signal occurs.

Note that the [value, signal] artifact is induced by the specific form of
expression evaluation in SUMMER and has nothing to do with the definition
method itself. We have just chosen one particular way to describe a form
of goto statement.

2.5. Some examples

2. 5.1. If expressions
<if-expression)s correspond to the if-then-else statement found in most

programming languages. If evaluation of the (test) immediately contained
in the (if-expression) terminates successfully, the (block) following then
is evaluated. Otherwise, the successive (test)s following subsequent elifs
are evaluated until one such evaluation terminates successfully (in which
case the following (block) is evaluated) or the list is exhausted. In the
latter case, the (if-expression) may contain an else and then the (block)
following that else is evaluated. The formal definition is:

J if { {e==lF t: (test) THEN b: (block)
2 elifpart: (ELIF (test) THEN (block))*
3 e/separt: [ELSE (block)] Fl}}
4 then
5 [v,sig] :=eval(t);
6 if sig=N then return(eval(b))
7 elif sig :;t: F then return([v, sig])
8 else

126

9
10
11
12
13
14
15
16
17
18
19
20
21
22 fi;

fi

P. Klint

for ei in elif part
do { {ei==ELIF t: (test) THEN b: (block)}};

[v,sigJ :=eval(t);
if sig = N then return(eval(b))

elif sig * F then return([v, sig]) fi
od;
if { {elsepart==ELSE b: (block)}}
then

return(eval(b))
else

return([a _ undefined, NJ)
fi

The parse expression in lines 1-3 decomposes the string value of e in
several parts. In line 5 the (test) of the <if-expression) is evaluated. Note
how the occurrence of non-standard (i.e. sig=NR or sig=FR) signals
terminates the evaluation of the <if-expression) (lines 7, 13). This is
particularly relevant for the evaluation of the (test) part. SUMMER allows
the occurrence of a return statement in a (test). This is reflected in the
above definition.

For a better understanding of the above definition, it may be useful to
note that parts of the source program are parsed repeatedly during one
evaluation of a given <if-expression). For example, the (block) following
an elif is parsed both in lines 2 and 10. (This explains, by the way, why the
parse expression in line JO needs not be contained in an if statement, see
Section 2.4.) In general, the source text of the <if-expression) is parsed
each time that it is evaluated.

2. 5. 2. Variable declarations
A (variable-declaration) introduces in the current environment a series

of new variables, i.e. names of locations whose contents may be inspected
and/or modified. The declaration may contain (expression)s whose value
is to be used for the initialization of the declared variables. First, these
initializing expressions are evaluated. Next, the (expression)s following
the (variable-declaration)s are evaluated. In the formal definition this is
described by appending all variable initializations in the current (block) to
the variable varinit and by evaluating the string value of that variable

Formal language definitions can be made practical 127

before the evaluation of the subsequent <expression) s in the <block). The
formal definition of (variable-declaration) s is:

1 if { { e == VAR vi: { (variable-initialization)
2 then
3 for v in vi

','}+';'}}

4
5
6

do if { { v == x: (identifier) ':=' <expression)}} then
varinit : = varinit II v II ';' ;
E. bind(x, S. extend(a _ undefined));

7 else
8 {{ v ==x: (identifier)}};
9 E. bind(x, S. extend(a _ undefined))

JO fi
11 od;
12 return([a_ undefined, N])
13 fi;

In line 1, e is decomposed into an array of strings which have the form of a
<variable-initialization>. These string values are considered in succession
in the for loop in lines 3-11. If the (variable-initialization) contains an
initializing expression, that expression is appended to varinit (line 5) using
the string concatenation operator "II". In both cases, the state S is
extended with a location containing an undefined value, and that new
location is bound, in the current environment E, to the identifier being
declared. Note that, in line 8, v is known to have the form of an
(identifier).

2.5.3. Blocks
A (block) introduces a new scope to be used for the declaration of new

variables and constants. It consists of a (perhaps empty) list of declarations
followed by a sequence of expressions separated by semicolons. A (block)
is evaluated as follows:

(1) Evaluate all declarations.
(2) Evaluate all variable-initializations resulting from the evaluation of

the declarations.
(3) Evaluate the sequence of expressions in the (block). (Note that

SUMMER forbids the failure of an expression inside a sequence of expres­
sions. Only the last expression in a sequence is allowed to fail; this failure is
passed upwards to enclosing language constructs.)

128 P. Klint

The formal definition is:

1 if { { e == dlist: <variable-declaration)*
2 elist: {[(expression)] ';' }*}}
3 then
4 var El, varinitl;

5 El :=E;
6 E. new_ inner_ scope;
7 varinitl := varinit;
8 varinit := '' ;
9 for d in dlist

JO do [v,sig] :=eval(d);
11 if sig=t=N then ERROR fi
12 od;
13 [v,sig] :=eval(varinit);
14 varinit := varinitl;
15 if sig =t= N then E := E 1; return([v, sig]) fi;
16 for i in elist . index
17 do
18 [v,sig] :=eval(elist[i]);

19 case sig of
20 N:,
21 F: if i =t= elist. size - 1 then ERROR fi,
22 NR: FR: (E:=El; return([v,sig]))
23 esac
24 od;
25 E:=EI;
26 return([v, sig])
27 fi;

In lines 5-8 local copies are made of E and varinit and new values are
assigned to them. In lines 9-13 the list of (variable-declaration)s in the
(block) and the resulting (variable-initia/ization)s are evaluated. In lines
16-24 the list of (expression)s in the (block) are evaluated. Note how
failure of an expression in the middle of the list is treated (line 21, see
above).

Formal language definitions can be made practical 129

3. Assessment

The formal language definition presented in the previous section will
now be assessed. It is tempting to try to get statements like:

or

"Users can answer 87% of their questions on language issues
within Jive minutes if they have access to a formal language
definition of the kind described in this article. "

"35% of all run-time errors in user programs are directly
related to anomalies in the language definition".

In the absence of such results and with the methods to obtain them lacking,
we have to live with qualitative and more or less speculative observations.

A rough indication for the conciseness of the definition can be obtained
by comparing various sizes as they apply to the SUMMER definition:

formal definition
reference manual
implementation

20 pages
100 pages
200 pages

These figures show that the implementation is ten times larger than the
formal definition. This is not surprising, since the implementation has to
be efficient while the formal definition does not have to be. In this light the
"a-language-is-defined-by-its-implementation" approach can be rephrased
as: "if a language is defined by its implementation, then that implemen­
tation had better be small".

The definition is precise and complete, in the sense that all semantic
operations associated with a particular language construct have to be
specified to allow the construction of an executable version of the
definition. The number of operational details, i.e. details in the definition
which stem from the chosen definition method and have no inherent
meaning in the defined language, is surprisingly small. This is a conse­
quence of the choice of the defining language (which should have powerful
data types and string manipulation operations) and the choice of high-level
environment manipulation primitives which correspond directly to
operations in the defined language and which are not (yet) perverted by
implementational details. SUMMER extended with parse expressions seems a
quite reasonable vehicle for language definition. It is, however, not
possible to make continuation-style (see [11) definitions, since higher-order
functions are lacking.

130 P. Klint

It is difficult to give an objective judgement on the readability of the
definition, but we have observed that only a moderate effort (a few days) is
required on the part of a programmer without any training in formal
semantics and without any previous exposure to the language to learn
SUMMER using only the (annotated) formal definition.

The advantages and disadvantages of the formal definition for designer,
implementor and user will now be discussed in some detail.

The advantages for the designer are:
(1) Anomalies in the design are magnified. It is a general rule that ill­

formed entities can only be described by ill-formed descriptions or by
descriptions which list many exceptional cases. It is easier to locate such
exceptions or anomalies in a concise formal definition than in an
ambiguous natural language definition or in a bulky implementation. In
the SUMMER definition, for example, a very specific operation on environ­
ments is needed ("partial-state-copy") to accommodate the definition of
just one language feature ("try-expression"). It turned out that a slight
modification of that feature would at the same time simplify the definition
and improve the feature.

(2) Exhaustive enumeration of language features. A formal definition
method forces the designer to enumerate all language features in the same
framework and this may help him to find omissions in the design.

(3) Interactions between language features can be studied. In the
SUMMER definition, for example, the designer is forced to decide what
happens when a <return-expression> is evaluated during the evaluation of
any other expression. There is, however, no guarantee that all interactions
can be found, since the formal definition may still contain hidden inter­
actions between language features. The use of auxiliary functions in the
definition is an aid in making interactions explicit. One may even apply
techniques such as calling graph analysis and data flow analysis to the
definition to discover clusters of interacting features and to establish
certain properties of the definition.

(4) An executable formal definition can be tested and used. This may
help eliminate clerical and gross errors from the definition. An executable
definition allows the designer to play with (toy) programs written in the
language he is designing. Here is, however, a problem with circular
definitions: some implementation of the defined language has to exist
before the definition itself can be made executable.

Formal language definitions can be made practical 131

Disadvantages for the designer are:
(1) A considerable effort is required to construct a formal definition.
(2) A general problem is that there are no canned, satisfactory definition

methods available and that the designer has to begin with either creating a
new method or adapting and extending an existing one.

Advantages for the implementor are:
(1) Unambiguous language definition.
(2) The implementor may be in doubt as to the meaning of a certain

combination of features. Such cases can be executed both by the implemen­
tation and by the definition and the results can be compared.

Disadvantages for the implementor are:
(1) The implementor must be familiar with the definition method or

become acquainted with it. This is only a minor effort if one compares it
with the total effort required to implement the language.

(2) It is non-trivial to derive an implementation strategy from the
language definition. This is a problem shared by all "abstract" language
definitions, in which no attempt is made to use primitives in the definition
with a direct counterpart in an implementation. This leads to the con­
clusion that such abstract definitions should be accompanied by an
"annotation for implementors", which states where well-known imple­
mentation techniques can be used and where certain optimizations are
possible.

Advantages for the user are:
(1) Unambiguous and concise language definition.
(2) The user is used to reading programs and the formal definition can be

read as such. In the case of a circular definition, the formal definition may
be considered as a very informative example program.

Disadvantages for the user are:
(I) The user must be exposed to the definition method.
(2) A formal definition is harder to read than a "natural language"

definition.
(3) In the case of the SUMMER definition, the circularity may be con­

fusing for the naive user.

132 P. Klint

In retrospect, it seems justified to conclude that the method presented in
this paper is a first step in satisfying the requirements given in Section 1.
However, many problems remain to be investigated. Does the given
method lend itself to mathematical analysis? How can the "complexity" of
a language be derived from its definition? Is it possible to "optimize" the
executable version of definitions? (Attempts in this direction can be found
in [2].) What is the relationship between this definition method and
extensible languages? Answers to these questions will provide more insight
in the structure of programming languages and the methods for defining
them.

Acknowledgement

J. Heering, H.J. Sint and A.H. Veen made useful comments on various
drafts of this paper. Parts of it were discussed with L.J.M. Geurts, F.E.J.
Kruseman Aretz and L.G.L.T. Meertens. I am grateful for their support.

References

[l] M.J.C. Gordon, The Denotational Description of Programming Languages (Springer,

Berlin, 1979).
[2] N.D. Jones, Semantics-directed Compiler Generation (Springer, Berlin, 1980).
[3] P. Klint, An overview of the SUMMER programming language, in: Conference Record of

the 7th Annual ACM Symposium on Principles of Programming Languages (Jan. 1980)
pp. 47-55.

[4] P. Klint, SUMMER Reference Manual, Mathematical Centre, to appear.
[5] P.J. Landin, The mechanical evaluation of expressions, Comput. J. 6 (1964) 308-320.
[6] M. Marcotty, H.F. Ledgard and G.V. Bachmann, A sampler of formal definitions,

Com put. Surveys 8 (1976) I 91-276.
[7] J.C. Reynolds, Definitional interpreters for higher-order languages, Proceedings ACM

Annual Conference (Aug. 1972) pp. 717-740.
[8] P. Wegner, The Vienna Definition Language, Com put. Surveys 4 (1972) 5-63.

