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The programming language PLAIN has been designed to provide an effective 
tool for the systematic construction of interactive information systems. To 
achieve this goal, PLAIN started with a PASCAL-like framework and incorpor­
ated features for the construction of interactive programs, including string 
handling, pattern specification and matching, input/output, exception 
handling, and relational data base definition and management. Additional 
features have also been incorporated to support a systematic approach to 
programming, with particular attention given to issues of modularity and data 
abstraction. This paper describes some of the innovative aspects of PLAIN, 
shows how they have been synthesized into the language, and illustrates how 
they are used in the creation of interactive information systems. 

1. The Design Context of PLAIN 

The User Software Engineering (USE) project [25, 27, 29] was under­
taken in 1975 with the goal of providing application developers with a 
methodology and programming environment to support the systematic 
creation of interactive information systems. Interactive information 
systems may be characterized in the following way: 

(1) the user repeatedly types some input, e.g., a command; 
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(2) this input is decoded and parsed; if it is incorrect, a diagnostic 
message is presented to the user, who then provides alternative input; 

(3) the input is subjected to various semantic checks, which may also 
produce diagnostic messages; 

(4) if the input is validated, then some program action is taken, typically 
an access to or modification of some item(s) in a database, during which 
time output messages may be provided to the user. 

A study of languages and systems available for the construction of 
interactive programs [23] led to the conclusion that "the programming 
languages designed explicitly for interaction do not [have the structure] for 
creating modular, well-structured software". With that in mind, the pro­
gramming language PLAIN (Programming LAnguage for INteraction) 
became the first tool to be designed in the USE environment. 

The design of PLAIN was carried out in parallel with many other 
language designs, including CLU [11], ALPHARD [34], GYPSY [3], EUCLID 

[9], and ADA [8]. These languages all have similar objectives (though with 
differing emphases) of support for data abstraction, support for system 
modularity, support for program readability, support for testing and/or 
verification of programs, and the imposition of greater discipline on the 
programmer. In addition, each of these languages draws heavily on the 
ALGOL family of languages, particularly PASCAL [33], and on one another. 
Of these languages, though, only PLAIN addresses the application area of 
interactive programs and their need for database facilities. 

2. PLAIN Design Goals and Features for Interactive Programs 

From the outset, the contribution of PLAIN was seen to be not so much 
the introduction of new language features, but rather a synthesis of 
features whose interrelationships would lead to a useful tool for such appli­
cation programs. The approach was to make innovations to support 
interactive programs and to adhere closely to well-understood approaches 
for other features. 

Essential capabilities for the creation of interactive programs were 
identified, including: 

(1) Data base management. The language must deal with data bases and 
with operations performed on data bases, as well as with more primitive 
file concepts. 
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(2) String handling. Interactive programs involve large amounts of text 
processing, particularly user-program dialogue. 

(3) Exception handling. User errors must be expected, but the user 
should not be adversely affected. 

(4) Pattern specification and matching. Many interactive programs 
depend on a specific text pattern, e.g., a command, to determine program 
action. 

PLAIN provides these capabilities by synthesizing a PASCAL-like frame­
work with necessary features for interactive programs, including the 
following: 

( 1) data of type relation and associated relational algebra-like operators 
that provide a data base management facility; 

(2) data of type char and type string, providing for both fixed and 
variable length strings; 

(3) procedure-oriented exception handling, including a time exception; 
(4) pattern specification primitives and pattern matching operations; 
(5) sequential and direct access files; 
(6) input/output operations, possibly involving patterns and files; 
(7) access to external objects, such as data bases. 
Space limitations make it impossible to give a complete description of 

the language or even the above features. A complete language description 
may be found in the Revised Report [30], and explanations of various other 
aspects of PLAIN may be found in [26,28,31,32]. In this paper, we wish to 
summarize the motivations behind the design of features for database 
management, string handling, pattern specification and matching, and 
exception handling, and then to show how they work together in the 
construction of interactive information systems. 

3. Database Management in PLAIN 

A key design goal for PLAIN was to support database management 
explicitly, rather than working with the lower-level concept of a file as it 
exists in many languages or relying on traditional approaches to program­
ming languages/data base interfaces. Problems with embedded query 
languages and with host language interfaces were noted and the need for a 
unified approach to programming languages and data base management 
was emphasized, so that "it becomes possible to achieve a level of con-
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sistency in syntax and semantics" and so that "both type checking and 
data independence can be achieved" [24]. 

Other efforts have been made to extend programming language with 
database notions [1, 2, 20, 21, 22], but these suffer from one or more of the 
unpleasant problems of language/ data management interaction identified 
in [17], including the difficulty of performing type checking, the tradeoffs 
between interpretation and compilation, the need to support data 
abstractions in the database environment, and the unattractive nature of 
combining nonprocedural data management sublanguages in procedural 
programming languages. 

Two key goals were established for the data definition and management 
facilities of PLAIN: 

(1) Use existing language structures wherever possible. Uniformity of 
syntax is important so that the data management operations will blend 
cleanly with other language features. Thus, traditional programming 
concepts of types and variables should be applicable to database declar­
ations, and the operations on databases should be procedural, in keeping 
with the procedural nature of the language. 

(2) Minimize the number of features added to the language specifically 
for database management. This objective follows directly from the first 
objective. Instead of providing a large set of database operations, the 
decision was made to strive for a compact, yet complete, set of operations. 
This decision was made with the understanding that the price of the 
language simplicity would be an increase in the amount of text needed to 
express complicated data management operations. 

These goals pointed clearly toward use of the relational model of data [5] 
as the basis for database management in PLAIN. From a syntax standpoint, 
it is possible to exploit the similarity in notation between records and 
tuples, as was also done by Schmidt [21]. From a language axiomatization 
standpoint, relations were also the best choice because of their mathe­
matical foundations. Although it was recognized that the relational model 
is weak in specifying the semantics of the database, it seemed that the 
potential advantages of the model greatly outweighed the disadvantages 
for programming language design and implementation. 

A data base type definition specifies a structure consisting of an 
arbitrary number of record occurrences (each called a 'tuple') where each 
tuple consists of a fixed number of components (called 'attributes'). PLAIN 

supports two kinds of data base type declarations: relation and marking. A 
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relation is a set of tuples and has the property that all tuples are unique; the 
definition of a relation includes the specification of a non-null set of key 
attributes that uniquely identifies a tuple. A marking is a set of referenced 
tuples from one or more relations. Markings are used to store intermediate 
results during operations on relations. They play much the same role in 
database management that temporary variables play in complicated 
arithmetic calculations. Thus, one may declare variables to be of type 
relation, using a syntax similar to that for records in PASCAL, or of type 
marking. Similarly, all attributes must be declared of some type; 
permissible types are simple types, including scalars, fixed length strings 
(type char[n]), and variable length strings (type string). Database manage­
ment operations are provided at the item (attribute) level, the tuple level, 
and the relation level. 

3.1. Item level operations 

At the lowest level of relation access and manipulation, it is possible to 
name individual tuples within a relation through a tuple designator. If a 
relation of degree N (N attributes) has M key attributes, where M ~N, 
specification of values for the M key attributes designates a unique tuple of 
the relation ( or no tuple at all). The syntax for a tuple designator is of the 
form 

relation-name [key-value-list] 

which permits an attribute of a relation to be designated with the notation 

relation-name [key-value-list]. attribute-name. 

This mechanism provides two important benefits. First, it is an 
associative addressing mechanism for databases that can be used to obtain 
single tuples and single attribute values from relations, yielding a clean 
solution to the problem of converting objects from type relation to the 
underlying attribute type. This makes it possible to perform complete type 
checking on items in the database, since each attribute must be declared 
with a type. 

Second, it achieves integration at the lowest level between language 
concepts and database concepts, since the attribute designator may be used 
in arbitrary expressions throughout a program. Information stored in a 
relation can be used to declare the dimensions of arrays, to provide a 
bound on the number of iterations in a loop, or to supply the text for an 
output message. 
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3.2. Tuple operations 

At the tuple level, it is possible to insert tuples and to remove tuples one 
at a time from a relation. One may simply construct a new tuple by 
designating a record variable or by specifying values for the attributes of 
the tuple. The tuple insertion assignment is designated by':+', while tuple 
deletion is given by ':-'. 

One may also iterate over the tuples of a relation or marking by use of 
the foreach clause in a loop statement. The effect of the foreach is to 
permit access to individual tuples in much the same way that iteration is 
performed over other types of variables. 

3.3. Relation level operations 

High level operations on relations and markings permit the construction 
of database expressions and the assignment of the expression to a relation 
or marking variable. The operations supported are selection on a condition 
(where), projection ( ⇒ ), natural join on two attributes of the same type 
(join), and the set-oriented operations of intersection, union, and 
difference. The language syntax limits the complexity of database 
expressions, making it necessary to decompose complicated operations into 
several steps (perhaps creating markings). The rationalization for this 
approach is presented in detail in [19]. 

In summary, PLAIN makes a number of advances toward achieving an 
effective integration between modern notions of programming languages 
and facilities for database definition and manipulation. In particular, the 
procedurality of the operations, the ability to perform type checking on 
database objects, and the associative access feature are the principal 
unifying ideas. 

4. String Handling and Pattern Matching 

Features for string handling and pattern matching were also seen as 
essential for PLAIN. In addition to providing strings as a data type, it is also 
necessary to provide tools for checking the conformity of strings to 
predetermined patterns, particularly for user input. User input must be 
checked for conformity to the syntactic rules and must then be checked to 
see that it is meaningful in the context of the input. A numeric input might 
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fail not only for reasons of invalid characters, but also for arithmetic over­
flow, arithmetic underflow, or because the numeric value was not a 
meaningful value for the corresponding data element. 

PLAIN provides for the built~in simple type char (as in PASCAL, ADA, and 
other similar languages) and for the built-in structured type string. 
Variables of type char or array of char permit fixed length string 
processing, while variables of type string provide for variable length 
strings. String concatenation is provided with the binary operator '++' 
returning an array of type char or a string, depending on the operands. 
String contains is provided with the operator '$'; for strings a and b, the 
value of a$b is true iff the string b is contained in a. String follows (lexical 
ordering) is provided with the operator'>>'; for strings a and b, the value 
of a>> b is true iff the lexicographic order of a follows b in the ASCII 
collating sequence. The remaining string operations are provided through 
functions, including length, string searching, substring extraction, 
insertion, deletion, and replacement. 

The key observation for successful handling of user input was to see user 
inputs as languages subject to various kinds of syntactic and semantic 
rules. In short, one can define a grammar that describes the valid syntax 
for a given user input. 

From that point, it became possible to identify some goals for the 
inclusion of pattern processing mechanisms in PLAIN, including the 
following: 

(1) simplicity, comparable to that of MUMPS patterns, rather than to the 
more powerful and general SNOBOL 4 patterns; 

(2) the pattern facilities should simplify not only the syntactic checking 
of user input, but also any subsequent semantic checking; 

(3) certain common patterns should be predefined, i.e., 'built into' the 
language; 

(4) the pattern facilities should be usable for control of program output 
as well, so that it would not be necessary to include a totally separate 
output management mechanism; 

(5) the power of the pattern specification and pattern matching should 
make it possible to recognize a large class of possible user inputs, such as 
specified by a context-free (Type II) grammar. 

The key idea behind pattern specification and matching in PLAIN was to 
provide a simple mechanism whereby the programmer could define the 
grammar for a language, and then use built-in operators to determine the 
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match between a pattern and a string defined by the grammar. 
The pattern declaration facility permits patterns and pattern sets to be 

declared. In a pattern, all elements are required for pattern matching, while 
in a pattern set, only one of an alternative list of patterns is required for 
matching. In both cases, the declarations are static and, unlike SNOBOL4, it 
is not possible to create patterns dynamically. 

A pattern is composed of a list of pattern elements, which may be string 
literals, subranges of characters, or the name(s) of other patterns, 
including pattern sets. Each pattern element may be preceded by a 
repetition count, which may be definite (a positive integer), or indefinite. 
The indefinite cases are '*' for zero or more instances, and '.' for one or 
more instances. In the absence of a repetition count, a default count of one 
is assumed. 

Many common pattern matching cases are covered by predefined 
patterns in PLAIN. These patterns include A for alphabetic characters, N 
for numerics, P for punctuation, I for a (signed) integer, X for blank, and 
S for string, which matches anything. 

A simple example of a pattern definition is given by the patterns 

bookid = (ION); 
chkout =('out',. X, bookid, '/',I) 

they would match the string 'out 9023633407 /12554'. Note that chkout 
contains the name of another pattern, bookid, as well as string literals and 
predefined pattern names. 

Such pattern names can be combined into other patterns and pattern 
sets. Thus, the pattern chkout might be an alternative in the pattern set 

command= [chkout, checkin, reserve, status, quit] 

where each of the patterns represents the permissible user input for the 
various commands in the system. (If a string matches more than one 
pattern in the pattern set, the leftmost matching alternative is selected.) 

A more complex example can be given by combining patterns and 
pattern sets to define a class of strings representing permissible ways to 
input a date, showing that patterns and pattern sets may be nested. 

date= [form 1, form2, form3]; 
forml = (one-or-two, sep, one-or-two, sep, two-or-four); 
form2 = (one-or-two, lX, month, IX, two-or-four); 
form3 = (month, X, one-or-two,',', X, 4N); 
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one-or-two= [IN, 2N]; 
two-or-four= [2N,4N]; 
sep= ['/','-','.']; 

month= [longenglish, shortenglish]; 

{ intermediate months omitted in the next two pattern sets} 
longenglish =['January', 'February', ... , 'December']; 
shortenglish = ['Jan', 'Feb', ... , 'Dec']; 

Note that, from a syntactic standpoint, this pattern specification handles 
most of the forms of giving the date in the English language. Among the 
strings accepted by date are '2/2/1972' and '27 .08.80', corresponding to 
forml, '4 July 1778' and '22 Nov 63', corresponding to form2, and 'June 
6, 1944', corresponding to form3. 

Two more observations may be made about this scheme: 
(1) the availability of the built-in patterns and the ability to include string 

literals eliminates the need for a separate lexical analysis tool; primitive text 
units, i.e., tokens, can be placed within the patterns and pattern sets; 

(2) the pattern declaration mechanism permits one to specify an arbitrary 
context free language, since patterns may contain arbitrarily many patterns 
and pattern sets with a completely recursive capability; 

PLAIN contains two pattern matching operators: one for determining the 
exact match between a string and the pattern specification, and one for 
determining whether the pattern can be found anywhere in the string. 
Accordingly, two binary pattern matching operators, pattern match (?=) 
and pattern contains (?) were defined. The left-hand operand for each is a 
string; the right-hand operand is the name of a pattern. The pattern match 
operator '?=' returns true iff the pattern matches the entire string. The 
pattern contains operator '?' returns true iff the pattern matches a 
substring. 

For example, if one uses the patterns forml and form2 declared in 
conjunction with the date example above with the variables sa, sb, and sc 
as follows: 

var sa, sb: string; sc: char[l6]; 

with the following assignments 

sa := '04/02/77'; 
sb := '27 Aug 72'; 
sc := 'Received 6-11-66'; 
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then sa? = forml is true, sc? = forml is false, sb?form2 is true, sa? = form2 
is false, and sc?forml is true. 

The binary operators match and contains are used with the case state­
ment to allow branching based on pattern matching. These operations 
return a pattern name if the case expression, which must be of type string 
or array of char, is successfully found in the designated pattern set. The 
pattern name is then used as the case selector, as follows: 

case input match month of { assume input declared of type string} 
when longenglish, shortenglish: english-date (display) 
when others: unknown-date (display) 

end case 

The remaining necessary capabilities are to be able to split a given string 
into its components and to combine two or more shorter strings into a 
longer string, based on patterns. The split and combine operations, respec­
tively, provide these capabilities in PLAIN. The split operation apportions a 
string value to one or more variables, possibly discarding part of the string. 
The combine operation assembles two or more expressions into a single 
string value according to a specific pattern. The assembled string value is 
then assigned to a variable. A given string may be split or combined 
according to different patterns as necessary at any level of the pattern 
matching. Such a facility is particularly useful for processing of command 
languages. 

With this set of pattern matching capabilities, it is possible to make 
effective use of the pattern facility in conjunction with the string handling 
features and to carry out the input/ output and string processing that is 
essential to the effective construction of interactive programs. These string­
handling and pattern matching features are described at greater length in 
[31]. 

5. Exception Handling 

The ability to anticipate and to handle non-standard situations is 
essential to the construction of reliable systems. Thus, the specification for 
a system may provide not only for 'normal' conditions, such as proper 
operation of the hardware and meaningful user input, but also for 
abnormal conditions, such as hardware errors and arithmetic overflow, 
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describing the action to be taken if these conditions arise during system 
operation. 

Accordingly, exception-handling mechanisms have been designed and 
implemented in many programming languages, including PL/I [14], MESA 

[16], CLU [12], and ADA [13]. Also, there have been proposals made for the 
inclusion of exception-handling mechanisms in languages and systems, and 
for the specification and implementation of exceptions [4, 7, 10, 15, 18]. 

The goals established for the exception-handling features of PLAIN are 
the following: 

(1) Association of exceptions - it should be possible to associate 
exception handlers with specific exceptions and to bind this association at 
the statement level in the source program; it should also be possible to 
attach this association to a group of statements, such as a procedure body. 

(2) Fielding of exceptions - it should be possible to pass an exception 
from the environment in which it was signalled to any previous level of 
invocation for handling. 

(3) Orderliness - it should be possible to carry out normal shutdown 
procedures in the event of a fatal error, permitting, insofar as possible, the 
closure of open files, and the generation of messages. 

(4) Grouping of exceptions - it should be possible to define a group of 
exceptions that are to be treated similarly under certain conditions. 

(5) Programmer-defined vs. built-in exceptions - the exception-handling 
scheme should support both the handling of built-in exceptions and the 
definition, signalling, and handling of programmer-defined exceptions. 

We designed a procedure-oriented approach to exception-handling for 
several reasons: 

(1) the use of a call provides a constraint upon control flow, since control 
can return from the handler to its invocation point; 

(2) the same handler can be invoked for several different exceptions or 
for several different instances of the same exception; 

(3) the use of procedures serves to separate the exception-handling code 
from the remainder of the code; 

(4) data coupling is made more visible through the parameter passing 
mechanism of procedure calls. 

PLAIN provides built-in exceptions for commonly occurring exceptional 
program conditions, and permits the declaration of user-defined 
exceptions. Built-in exceptions are raised automatically by the runtime 
system, while user-defined exceptions must be explicitly raised. The signal 
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statement is used to signal a condition or event that needs special handling. 
The execution of a signal statement causes the program unit being executed 
to be immediately terminated at the point of the signal, with control 
returned to the invoker of the unit with the named exception as an active 
exception in the invoking context. 

Program statements may optionally contain an exception part, which 
contains a list of exceptions and the names of associated exception­
handling routines, called handlers. A handler is like a procedure in that it 
may be invoked from numerous places within a program and that standard 
parameter passing rules apply. Handlers are also like procedures in that 
there are no restrictions upon declarations or statement types; in other 
words, any type of computation may be performed within a handler. 

The handler attempts to perform whatever actions are necessary to take 
care of the exception that caused it to be invoked and then returns to the 
point of invocation. There are four possible ways in which the computation 
may then proceed: 

(1) the exception has been cleared and normal program execution may 
continue; 

(2) the exception has not been handled completely and is then passed to 
the invoker of the routine in which the exception occurred, causing the 
termination of the routine; 

(3) the exception has been cleared and the program segment (statement 
or compound statement) associated with the exception is retried; 

(4) a different exception is returned to the location where the first 
exception occurred, which must be handled before handling of the first 
exception can be completed. 

This mechanism permits exceptions to be passed up the activation chain 
and permits them to be handled at each level until they are cleared or until 
the absence of a programmer-defined handler causes the system-defined 
default handler to be invoked, thereby causing program termination. 

The clear statement clears the exception that caused the invocation of the 
handler. The retry statement clears the active exception and then returns 
control to the beginning of the statement from which the handler was 
invoked, attempting to restore the environment which then existed. (Note 
that not all these effects, e.g., input/output and database updates, can be 
feasibly undone.) The clear and retry statements may only be used within a 
handler. 

There are three built-in user-callable handlers that facilitate the use of 
this mechanism: 
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(1) abort, which signals the unclearable fail exception to the invoker of 
the currently executing routine; 

(2) continue, which clears the active exception and results in continued 
execution of the currently executing routine; 

(3) pass, which passes the active exception to the invoker of the currently 
executing routine. 

Although this mechanism is more complex than some of those provided 
by other languages, it also provides some facilities that are not present in 
other exception-handling schemes, but that are important for interactive 
programs, including: 

(1) exception handling is preemptive so that executions may be inter­
rupted and stacked, making it possible to react to an exception while 
handling another; 

(2) the pass handler makes it possible to pass exceptions through 
successive function/procedure invocation levels to a point at which the 
exception is meaningful in terms of the intended function; a low-level 
exception may or may not signify an error condition; 

(3) the retry statement (see above) makes it very easy to program the 
common situation of asking the user to repeat input that does not conform 
to expected patterns. 

These features may be illustrated by considering an example of user/ 
program dialogue, such as asking the user to type in a valid bookid as 
defined above. In this example, the program reads a variable input 
according to the bookid pattern. An exception part is associated with the 
read statement to handle the various exceptional conditions that might 
arise. If the user transmits the break or the escape character, the handler 
break-message will be invoked. An exception can then arise while executing 
the read statement in break-message. 1 

var input: char[IO]; 
limit: integer; 

{ limit is set to the number of tries we are willing to make} 

read[bookid]: input! [ioerr: abort; patform: ask-again; 
break, escape: break-message]; 

1 The exception parts shown in this example are intentionally thorough. In practice, the 
thoroughness of the exception parts would depend on the desired robustness of the program. 



42 A.I. Wasserman et al. 

{ ask-again and break-message are user-defined handlers} 

handler yes-or-no; 
imports limit: modified; 
begin 

if limit> 0 then 
write 'Please answer yes or no'; 
limit:= limit-I; 
retry { causes read in break-message to be repeated} 

end if; 
write 'The program is being terminated'; 
signal fail; 

end yes-or-no; 

handler break-message; 
var answer: string; 
pattern yes-no= ['yes', 'no']; 
begin 

write 'Do you wish to terminate the program? .. .'; 
read [yes-no]: answer![patform, time: yes-or-no]; 
if answer= 'yes' then signal fail end if; 
retry { causes read in main program to be repeated} 

end break-message; 

handler ask-again; 
begin 

write 'Invalid book number. Please try again.', \ n; 
retry { causes read in main program to be repeated} 

end ask-again; 

It can be seen from this example that a significant portion of the code in 
an interactive system must be devoted to management of the user/program 
dialogue, particularly if one wishes to create user-centered systems that are 
easy to learn and easy to use [29]. Because careful handling of user errors is 
critical in such an environment, the exception-handling mechanism is 
particularly important, and the exception handling features of PLAIN were 
designed with this requirement in mind. 
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6. Interactive Information Systems in PLAIN 

The combination of database management, string handling, pattern 
matching, and exception handling within the framework of a language to 
support and encourage systematic programming is the most significant 
contribution made by PLAIN. These features work together most effectively 
in the construction of interactive information systems. 

A program schema for the typical interactive information system 
characterized in the introduction is as follows: 

program iisschema; 
external { names of external objects used by program, such 

as databases and files} 
var input: string; 

{ other global declarations, including exceptions} 
pattern cmdset = [coml, com2, com3, ... , comN, quit]; 

coml=( ... ); 
com2=( ... ); 

comN = ( ... ); 
quit= ('quit'); 

begin 
loop 

read input! [ioerr: abort]; 
{ terminate on hardware I/0 error} 
case cmdset match input of 

when coml: actionl ( ... ) {parameter list} 
when com2: action2 ( ... ) 

when comN: actionN ( ... ) 
when quit: exit 
when others: write 'illegal command' {pattern match failed} 

end case; 
repeat; 
write 'byebye' 

end iisschema. 
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Each of the actions associated with the commands may perform 
additional decoding or analysis of the command, perhaps splitting the 
command string into substrings via the string functions or the split 
operation, and will then carry out the action implied by the user command. 

Consider the example of a library information system using the pattern 
set command and the pattern chkout shown above. The procedure book­
checkout would include the following code: 

procedure bookcheckout (input: string); 
imports book, cardholder: readonly; checkout: modified; 

{book cardholder, and checkout defined external to bookcheckout 
as relations in library data base} 

var booknum: char [IO]; copyno: 1..100; datedue: char [4]; 
oldcount, person: integer; 

{handlers bad-book, bad-card, bad-copy, and dberr not shown} 

begin 
(#, #, booknum, #,person):= split [chkout]: input; 
{ check validity of ISBN number and cardholder} 
assert book [boo kn um] in book ! [assertion: bad-book]; 
assert cardholder [person] in cardholder ! [assertion: bad-card]; 
write 'Copy number:'; 
read copyno ! [patform, range: bad-copy]; 
write copyno; 
{ compute due date and save in variable datedue} 

{ update set of checkouts} 
checkout :+ [ ( boo kn um, person, copyno, datedue)] ! [fail, duplicate: 

dberr]; 
end bookcheckout; 

This brief example shows how these features combine to incorporate the 
facilities for interactive systems with such important features as assertion 
checking for semantic integrity of databases and powerful control 
structures. These features are easily used in a similar fashion for other 
similar kinds of examples and greatly simplify the problems of writing this 
class of programs. 
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Because of space limitations, we have omitted discussion of the PLAIN 

module facility, which provides facilities for data abstraction. The module 
facility is extremely useful in PLAIN, since it permits type extension of data­
base types as well as other types. It is similar in most other respects to 
data abstraction facilities found in other modern languages, e.g., CLU. 

7. Conclusion 

The design of PLAIN combines modern programming language design 
concepts for creating well-structured programs with an integrated set of 
innovative features to support the implementation of interactive infor­
mation systems. 

Among the most significant aspects of these innovative features are: 
(1) the associative addressing capability of relations, making it possible 

to access and modify individual data base items, to use data base items 
routinely throughout the program text, and to perform conversion between 
data base types and the underlying types of their attributes; 

(2) the pattern and pattern set specification facility, making it possible to 
specify a context-free grammar, using the pattern-matching features to 
carry out the lexical and syntactic aspects of the text processing; 

(3) the procedure-oriented exception-handling scheme, which makes it 
practical for the programmer to anticipate user errors and to build robust 
programs that handle these errors. 

These features are largely orthogonal and do not interfere with one 
another in using or implementing the language, even though they are 
typically used together in practice. 

Experience with PLAIN and with other modern programming languages 
indicates, subjectively at least, that it is much easier to implement inter­
active information systems with PLAIN than with any of the languages 
previously used for such applications or any of the other modern languages 
designed to support systematic programming. Work is continuing to use 
PLAIN to implement various application systems and software tools, as well 
as to develop implementations of PLAIN for a variety of execution environ­
ments. 
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