
Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFJP, North-Holland Publishing Company, 1981, 29~47

PLAIN: An Algorithmic Language for
Interactive Information Systems*

Anthony I. Wasserman

Medical Information Science, University of California, San Francisco, CA 94143, U.S.A.

Reind P. van de Riet and Martin L. Kersten

Wiskundig Seminarium, Vrije Universiteit, Amsterdam, The Netherlands

The programming language PLAIN has been designed to provide an effective
tool for the systematic construction of interactive information systems. To
achieve this goal, PLAIN started with a PASCAL-like framework and incorpor­
ated features for the construction of interactive programs, including string
handling, pattern specification and matching, input/output, exception
handling, and relational data base definition and management. Additional
features have also been incorporated to support a systematic approach to
programming, with particular attention given to issues of modularity and data
abstraction. This paper describes some of the innovative aspects of PLAIN,
shows how they have been synthesized into the language, and illustrates how
they are used in the creation of interactive information systems.

1. The Design Context of PLAIN

The User Software Engineering (USE) project [25, 27, 29] was under­
taken in 1975 with the goal of providing application developers with a
methodology and programming environment to support the systematic
creation of interactive information systems. Interactive information
systems may be characterized in the following way:

(1) the user repeatedly types some input, e.g., a command;

• This work was supported in part by National Science Foundation grant MCS78-26287
and by The Netherlands Organization for the Advancement of Pure Research (ZWO) (grant
00-62-139). Computing support for text preparation was provided by U.S. National Institutes
of Health grant RR-1081 to the UCSF Computer Graphics Laboratory, Principal
Investigator: Prof. Robert Langridge.

29

30 A.I. Wasserman et al.

(2) this input is decoded and parsed; if it is incorrect, a diagnostic
message is presented to the user, who then provides alternative input;

(3) the input is subjected to various semantic checks, which may also
produce diagnostic messages;

(4) if the input is validated, then some program action is taken, typically
an access to or modification of some item(s) in a database, during which
time output messages may be provided to the user.

A study of languages and systems available for the construction of
interactive programs [23] led to the conclusion that "the programming
languages designed explicitly for interaction do not [have the structure] for
creating modular, well-structured software". With that in mind, the pro­
gramming language PLAIN (Programming LAnguage for INteraction)
became the first tool to be designed in the USE environment.

The design of PLAIN was carried out in parallel with many other
language designs, including CLU [11], ALPHARD [34], GYPSY [3], EUCLID

[9], and ADA [8]. These languages all have similar objectives (though with
differing emphases) of support for data abstraction, support for system
modularity, support for program readability, support for testing and/or
verification of programs, and the imposition of greater discipline on the
programmer. In addition, each of these languages draws heavily on the
ALGOL family of languages, particularly PASCAL [33], and on one another.
Of these languages, though, only PLAIN addresses the application area of
interactive programs and their need for database facilities.

2. PLAIN Design Goals and Features for Interactive Programs

From the outset, the contribution of PLAIN was seen to be not so much
the introduction of new language features, but rather a synthesis of
features whose interrelationships would lead to a useful tool for such appli­
cation programs. The approach was to make innovations to support
interactive programs and to adhere closely to well-understood approaches
for other features.

Essential capabilities for the creation of interactive programs were
identified, including:

(1) Data base management. The language must deal with data bases and
with operations performed on data bases, as well as with more primitive
file concepts.

PLAIN: an algorithmic language/or interactive information systems 31

(2) String handling. Interactive programs involve large amounts of text
processing, particularly user-program dialogue.

(3) Exception handling. User errors must be expected, but the user
should not be adversely affected.

(4) Pattern specification and matching. Many interactive programs
depend on a specific text pattern, e.g., a command, to determine program
action.

PLAIN provides these capabilities by synthesizing a PASCAL-like frame­
work with necessary features for interactive programs, including the
following:

(1) data of type relation and associated relational algebra-like operators
that provide a data base management facility;

(2) data of type char and type string, providing for both fixed and
variable length strings;

(3) procedure-oriented exception handling, including a time exception;
(4) pattern specification primitives and pattern matching operations;
(5) sequential and direct access files;
(6) input/output operations, possibly involving patterns and files;
(7) access to external objects, such as data bases.
Space limitations make it impossible to give a complete description of

the language or even the above features. A complete language description
may be found in the Revised Report [30], and explanations of various other
aspects of PLAIN may be found in [26,28,31,32]. In this paper, we wish to
summarize the motivations behind the design of features for database
management, string handling, pattern specification and matching, and
exception handling, and then to show how they work together in the
construction of interactive information systems.

3. Database Management in PLAIN

A key design goal for PLAIN was to support database management
explicitly, rather than working with the lower-level concept of a file as it
exists in many languages or relying on traditional approaches to program­
ming languages/data base interfaces. Problems with embedded query
languages and with host language interfaces were noted and the need for a
unified approach to programming languages and data base management
was emphasized, so that "it becomes possible to achieve a level of con-

32 A.I. Wasserman et al.

sistency in syntax and semantics" and so that "both type checking and
data independence can be achieved" [24].

Other efforts have been made to extend programming language with
database notions [1, 2, 20, 21, 22], but these suffer from one or more of the
unpleasant problems of language/ data management interaction identified
in [17], including the difficulty of performing type checking, the tradeoffs
between interpretation and compilation, the need to support data
abstractions in the database environment, and the unattractive nature of
combining nonprocedural data management sublanguages in procedural
programming languages.

Two key goals were established for the data definition and management
facilities of PLAIN:

(1) Use existing language structures wherever possible. Uniformity of
syntax is important so that the data management operations will blend
cleanly with other language features. Thus, traditional programming
concepts of types and variables should be applicable to database declar­
ations, and the operations on databases should be procedural, in keeping
with the procedural nature of the language.

(2) Minimize the number of features added to the language specifically
for database management. This objective follows directly from the first
objective. Instead of providing a large set of database operations, the
decision was made to strive for a compact, yet complete, set of operations.
This decision was made with the understanding that the price of the
language simplicity would be an increase in the amount of text needed to
express complicated data management operations.

These goals pointed clearly toward use of the relational model of data [5]
as the basis for database management in PLAIN. From a syntax standpoint,
it is possible to exploit the similarity in notation between records and
tuples, as was also done by Schmidt [21]. From a language axiomatization
standpoint, relations were also the best choice because of their mathe­
matical foundations. Although it was recognized that the relational model
is weak in specifying the semantics of the database, it seemed that the
potential advantages of the model greatly outweighed the disadvantages
for programming language design and implementation.

A data base type definition specifies a structure consisting of an
arbitrary number of record occurrences (each called a 'tuple') where each
tuple consists of a fixed number of components (called 'attributes'). PLAIN

supports two kinds of data base type declarations: relation and marking. A

PLAIN: an algorithmic language for interactive information systems 33

relation is a set of tuples and has the property that all tuples are unique; the
definition of a relation includes the specification of a non-null set of key
attributes that uniquely identifies a tuple. A marking is a set of referenced
tuples from one or more relations. Markings are used to store intermediate
results during operations on relations. They play much the same role in
database management that temporary variables play in complicated
arithmetic calculations. Thus, one may declare variables to be of type
relation, using a syntax similar to that for records in PASCAL, or of type
marking. Similarly, all attributes must be declared of some type;
permissible types are simple types, including scalars, fixed length strings
(type char[n]), and variable length strings (type string). Database manage­
ment operations are provided at the item (attribute) level, the tuple level,
and the relation level.

3.1. Item level operations

At the lowest level of relation access and manipulation, it is possible to
name individual tuples within a relation through a tuple designator. If a
relation of degree N (N attributes) has M key attributes, where M ~N,
specification of values for the M key attributes designates a unique tuple of
the relation (or no tuple at all). The syntax for a tuple designator is of the
form

relation-name [key-value-list]

which permits an attribute of a relation to be designated with the notation

relation-name [key-value-list]. attribute-name.

This mechanism provides two important benefits. First, it is an
associative addressing mechanism for databases that can be used to obtain
single tuples and single attribute values from relations, yielding a clean
solution to the problem of converting objects from type relation to the
underlying attribute type. This makes it possible to perform complete type
checking on items in the database, since each attribute must be declared
with a type.

Second, it achieves integration at the lowest level between language
concepts and database concepts, since the attribute designator may be used
in arbitrary expressions throughout a program. Information stored in a
relation can be used to declare the dimensions of arrays, to provide a
bound on the number of iterations in a loop, or to supply the text for an
output message.

34 A.I. Wasserman et al.

3.2. Tuple operations

At the tuple level, it is possible to insert tuples and to remove tuples one
at a time from a relation. One may simply construct a new tuple by
designating a record variable or by specifying values for the attributes of
the tuple. The tuple insertion assignment is designated by':+', while tuple
deletion is given by ':-'.

One may also iterate over the tuples of a relation or marking by use of
the foreach clause in a loop statement. The effect of the foreach is to
permit access to individual tuples in much the same way that iteration is
performed over other types of variables.

3.3. Relation level operations

High level operations on relations and markings permit the construction
of database expressions and the assignment of the expression to a relation
or marking variable. The operations supported are selection on a condition
(where), projection (⇒), natural join on two attributes of the same type
(join), and the set-oriented operations of intersection, union, and
difference. The language syntax limits the complexity of database
expressions, making it necessary to decompose complicated operations into
several steps (perhaps creating markings). The rationalization for this
approach is presented in detail in [19].

In summary, PLAIN makes a number of advances toward achieving an
effective integration between modern notions of programming languages
and facilities for database definition and manipulation. In particular, the
procedurality of the operations, the ability to perform type checking on
database objects, and the associative access feature are the principal
unifying ideas.

4. String Handling and Pattern Matching

Features for string handling and pattern matching were also seen as
essential for PLAIN. In addition to providing strings as a data type, it is also
necessary to provide tools for checking the conformity of strings to
predetermined patterns, particularly for user input. User input must be
checked for conformity to the syntactic rules and must then be checked to
see that it is meaningful in the context of the input. A numeric input might

PLAIN: an algorithmic language for interactive information systems 35

fail not only for reasons of invalid characters, but also for arithmetic over­
flow, arithmetic underflow, or because the numeric value was not a
meaningful value for the corresponding data element.

PLAIN provides for the built~in simple type char (as in PASCAL, ADA, and
other similar languages) and for the built-in structured type string.
Variables of type char or array of char permit fixed length string
processing, while variables of type string provide for variable length
strings. String concatenation is provided with the binary operator '++'
returning an array of type char or a string, depending on the operands.
String contains is provided with the operator '$'; for strings a and b, the
value of a$b is true iff the string b is contained in a. String follows (lexical
ordering) is provided with the operator'>>'; for strings a and b, the value
of a>> b is true iff the lexicographic order of a follows b in the ASCII
collating sequence. The remaining string operations are provided through
functions, including length, string searching, substring extraction,
insertion, deletion, and replacement.

The key observation for successful handling of user input was to see user
inputs as languages subject to various kinds of syntactic and semantic
rules. In short, one can define a grammar that describes the valid syntax
for a given user input.

From that point, it became possible to identify some goals for the
inclusion of pattern processing mechanisms in PLAIN, including the
following:

(1) simplicity, comparable to that of MUMPS patterns, rather than to the
more powerful and general SNOBOL 4 patterns;

(2) the pattern facilities should simplify not only the syntactic checking
of user input, but also any subsequent semantic checking;

(3) certain common patterns should be predefined, i.e., 'built into' the
language;

(4) the pattern facilities should be usable for control of program output
as well, so that it would not be necessary to include a totally separate
output management mechanism;

(5) the power of the pattern specification and pattern matching should
make it possible to recognize a large class of possible user inputs, such as
specified by a context-free (Type II) grammar.

The key idea behind pattern specification and matching in PLAIN was to
provide a simple mechanism whereby the programmer could define the
grammar for a language, and then use built-in operators to determine the

36 A.I. Wassermanetal.

match between a pattern and a string defined by the grammar.
The pattern declaration facility permits patterns and pattern sets to be

declared. In a pattern, all elements are required for pattern matching, while
in a pattern set, only one of an alternative list of patterns is required for
matching. In both cases, the declarations are static and, unlike SNOBOL4, it
is not possible to create patterns dynamically.

A pattern is composed of a list of pattern elements, which may be string
literals, subranges of characters, or the name(s) of other patterns,
including pattern sets. Each pattern element may be preceded by a
repetition count, which may be definite (a positive integer), or indefinite.
The indefinite cases are '*' for zero or more instances, and '.' for one or
more instances. In the absence of a repetition count, a default count of one
is assumed.

Many common pattern matching cases are covered by predefined
patterns in PLAIN. These patterns include A for alphabetic characters, N
for numerics, P for punctuation, I for a (signed) integer, X for blank, and
S for string, which matches anything.

A simple example of a pattern definition is given by the patterns

bookid = (ION);
chkout =('out',. X, bookid, '/',I)

they would match the string 'out 9023633407 /12554'. Note that chkout
contains the name of another pattern, bookid, as well as string literals and
predefined pattern names.

Such pattern names can be combined into other patterns and pattern
sets. Thus, the pattern chkout might be an alternative in the pattern set

command= [chkout, checkin, reserve, status, quit]

where each of the patterns represents the permissible user input for the
various commands in the system. (If a string matches more than one
pattern in the pattern set, the leftmost matching alternative is selected.)

A more complex example can be given by combining patterns and
pattern sets to define a class of strings representing permissible ways to
input a date, showing that patterns and pattern sets may be nested.

date= [form 1, form2, form3];
forml = (one-or-two, sep, one-or-two, sep, two-or-four);
form2 = (one-or-two, lX, month, IX, two-or-four);
form3 = (month, X, one-or-two,',', X, 4N);

PLAIN: an algorithmic language for interactive information systems 37

one-or-two= [IN, 2N];
two-or-four= [2N,4N];
sep= ['/','-','.'];

month= [longenglish, shortenglish];

{ intermediate months omitted in the next two pattern sets}
longenglish =['January', 'February', ... , 'December'];
shortenglish = ['Jan', 'Feb', ... , 'Dec'];

Note that, from a syntactic standpoint, this pattern specification handles
most of the forms of giving the date in the English language. Among the
strings accepted by date are '2/2/1972' and '27 .08.80', corresponding to
forml, '4 July 1778' and '22 Nov 63', corresponding to form2, and 'June
6, 1944', corresponding to form3.

Two more observations may be made about this scheme:
(1) the availability of the built-in patterns and the ability to include string

literals eliminates the need for a separate lexical analysis tool; primitive text
units, i.e., tokens, can be placed within the patterns and pattern sets;

(2) the pattern declaration mechanism permits one to specify an arbitrary
context free language, since patterns may contain arbitrarily many patterns
and pattern sets with a completely recursive capability;

PLAIN contains two pattern matching operators: one for determining the
exact match between a string and the pattern specification, and one for
determining whether the pattern can be found anywhere in the string.
Accordingly, two binary pattern matching operators, pattern match (?=)
and pattern contains (?) were defined. The left-hand operand for each is a
string; the right-hand operand is the name of a pattern. The pattern match
operator '?=' returns true iff the pattern matches the entire string. The
pattern contains operator '?' returns true iff the pattern matches a
substring.

For example, if one uses the patterns forml and form2 declared in
conjunction with the date example above with the variables sa, sb, and sc
as follows:

var sa, sb: string; sc: char[l6];

with the following assignments

sa := '04/02/77';
sb := '27 Aug 72';
sc := 'Received 6-11-66';

38 A.I. Wasserman et al.

then sa? = forml is true, sc? = forml is false, sb?form2 is true, sa? = form2
is false, and sc?forml is true.

The binary operators match and contains are used with the case state­
ment to allow branching based on pattern matching. These operations
return a pattern name if the case expression, which must be of type string
or array of char, is successfully found in the designated pattern set. The
pattern name is then used as the case selector, as follows:

case input match month of { assume input declared of type string}
when longenglish, shortenglish: english-date (display)
when others: unknown-date (display)

end case

The remaining necessary capabilities are to be able to split a given string
into its components and to combine two or more shorter strings into a
longer string, based on patterns. The split and combine operations, respec­
tively, provide these capabilities in PLAIN. The split operation apportions a
string value to one or more variables, possibly discarding part of the string.
The combine operation assembles two or more expressions into a single
string value according to a specific pattern. The assembled string value is
then assigned to a variable. A given string may be split or combined
according to different patterns as necessary at any level of the pattern
matching. Such a facility is particularly useful for processing of command
languages.

With this set of pattern matching capabilities, it is possible to make
effective use of the pattern facility in conjunction with the string handling
features and to carry out the input/ output and string processing that is
essential to the effective construction of interactive programs. These string­
handling and pattern matching features are described at greater length in
[31].

5. Exception Handling

The ability to anticipate and to handle non-standard situations is
essential to the construction of reliable systems. Thus, the specification for
a system may provide not only for 'normal' conditions, such as proper
operation of the hardware and meaningful user input, but also for
abnormal conditions, such as hardware errors and arithmetic overflow,

PLAIN: an algorithmic language for interactive information systems 39

describing the action to be taken if these conditions arise during system
operation.

Accordingly, exception-handling mechanisms have been designed and
implemented in many programming languages, including PL/I [14], MESA

[16], CLU [12], and ADA [13]. Also, there have been proposals made for the
inclusion of exception-handling mechanisms in languages and systems, and
for the specification and implementation of exceptions [4, 7, 10, 15, 18].

The goals established for the exception-handling features of PLAIN are
the following:

(1) Association of exceptions - it should be possible to associate
exception handlers with specific exceptions and to bind this association at
the statement level in the source program; it should also be possible to
attach this association to a group of statements, such as a procedure body.

(2) Fielding of exceptions - it should be possible to pass an exception
from the environment in which it was signalled to any previous level of
invocation for handling.

(3) Orderliness - it should be possible to carry out normal shutdown
procedures in the event of a fatal error, permitting, insofar as possible, the
closure of open files, and the generation of messages.

(4) Grouping of exceptions - it should be possible to define a group of
exceptions that are to be treated similarly under certain conditions.

(5) Programmer-defined vs. built-in exceptions - the exception-handling
scheme should support both the handling of built-in exceptions and the
definition, signalling, and handling of programmer-defined exceptions.

We designed a procedure-oriented approach to exception-handling for
several reasons:

(1) the use of a call provides a constraint upon control flow, since control
can return from the handler to its invocation point;

(2) the same handler can be invoked for several different exceptions or
for several different instances of the same exception;

(3) the use of procedures serves to separate the exception-handling code
from the remainder of the code;

(4) data coupling is made more visible through the parameter passing
mechanism of procedure calls.

PLAIN provides built-in exceptions for commonly occurring exceptional
program conditions, and permits the declaration of user-defined
exceptions. Built-in exceptions are raised automatically by the runtime
system, while user-defined exceptions must be explicitly raised. The signal

40 A.I. Wasserman et al.

statement is used to signal a condition or event that needs special handling.
The execution of a signal statement causes the program unit being executed
to be immediately terminated at the point of the signal, with control
returned to the invoker of the unit with the named exception as an active
exception in the invoking context.

Program statements may optionally contain an exception part, which
contains a list of exceptions and the names of associated exception­
handling routines, called handlers. A handler is like a procedure in that it
may be invoked from numerous places within a program and that standard
parameter passing rules apply. Handlers are also like procedures in that
there are no restrictions upon declarations or statement types; in other
words, any type of computation may be performed within a handler.

The handler attempts to perform whatever actions are necessary to take
care of the exception that caused it to be invoked and then returns to the
point of invocation. There are four possible ways in which the computation
may then proceed:

(1) the exception has been cleared and normal program execution may
continue;

(2) the exception has not been handled completely and is then passed to
the invoker of the routine in which the exception occurred, causing the
termination of the routine;

(3) the exception has been cleared and the program segment (statement
or compound statement) associated with the exception is retried;

(4) a different exception is returned to the location where the first
exception occurred, which must be handled before handling of the first
exception can be completed.

This mechanism permits exceptions to be passed up the activation chain
and permits them to be handled at each level until they are cleared or until
the absence of a programmer-defined handler causes the system-defined
default handler to be invoked, thereby causing program termination.

The clear statement clears the exception that caused the invocation of the
handler. The retry statement clears the active exception and then returns
control to the beginning of the statement from which the handler was
invoked, attempting to restore the environment which then existed. (Note
that not all these effects, e.g., input/output and database updates, can be
feasibly undone.) The clear and retry statements may only be used within a
handler.

There are three built-in user-callable handlers that facilitate the use of
this mechanism:

PLAIN: an algorithmic language for interactive information systems 41

(1) abort, which signals the unclearable fail exception to the invoker of
the currently executing routine;

(2) continue, which clears the active exception and results in continued
execution of the currently executing routine;

(3) pass, which passes the active exception to the invoker of the currently
executing routine.

Although this mechanism is more complex than some of those provided
by other languages, it also provides some facilities that are not present in
other exception-handling schemes, but that are important for interactive
programs, including:

(1) exception handling is preemptive so that executions may be inter­
rupted and stacked, making it possible to react to an exception while
handling another;

(2) the pass handler makes it possible to pass exceptions through
successive function/procedure invocation levels to a point at which the
exception is meaningful in terms of the intended function; a low-level
exception may or may not signify an error condition;

(3) the retry statement (see above) makes it very easy to program the
common situation of asking the user to repeat input that does not conform
to expected patterns.

These features may be illustrated by considering an example of user/
program dialogue, such as asking the user to type in a valid bookid as
defined above. In this example, the program reads a variable input
according to the bookid pattern. An exception part is associated with the
read statement to handle the various exceptional conditions that might
arise. If the user transmits the break or the escape character, the handler
break-message will be invoked. An exception can then arise while executing
the read statement in break-message. 1

var input: char[IO];
limit: integer;

{ limit is set to the number of tries we are willing to make}

read[bookid]: input! [ioerr: abort; patform: ask-again;
break, escape: break-message];

1 The exception parts shown in this example are intentionally thorough. In practice, the
thoroughness of the exception parts would depend on the desired robustness of the program.

42 A.I. Wasserman et al.

{ ask-again and break-message are user-defined handlers}

handler yes-or-no;
imports limit: modified;
begin

if limit> 0 then
write 'Please answer yes or no';
limit:= limit-I;
retry { causes read in break-message to be repeated}

end if;
write 'The program is being terminated';
signal fail;

end yes-or-no;

handler break-message;
var answer: string;
pattern yes-no= ['yes', 'no'];
begin

write 'Do you wish to terminate the program? .. .';
read [yes-no]: answer![patform, time: yes-or-no];
if answer= 'yes' then signal fail end if;
retry { causes read in main program to be repeated}

end break-message;

handler ask-again;
begin

write 'Invalid book number. Please try again.', \ n;
retry { causes read in main program to be repeated}

end ask-again;

It can be seen from this example that a significant portion of the code in
an interactive system must be devoted to management of the user/program
dialogue, particularly if one wishes to create user-centered systems that are
easy to learn and easy to use [29]. Because careful handling of user errors is
critical in such an environment, the exception-handling mechanism is
particularly important, and the exception handling features of PLAIN were
designed with this requirement in mind.

PLAIN: an algorithmic language for interactive information systems 43

6. Interactive Information Systems in PLAIN

The combination of database management, string handling, pattern
matching, and exception handling within the framework of a language to
support and encourage systematic programming is the most significant
contribution made by PLAIN. These features work together most effectively
in the construction of interactive information systems.

A program schema for the typical interactive information system
characterized in the introduction is as follows:

program iisschema;
external { names of external objects used by program, such

as databases and files}
var input: string;

{ other global declarations, including exceptions}
pattern cmdset = [coml, com2, com3, ... , comN, quit];

coml=(...);
com2=(...);

comN = (...);
quit= ('quit');

begin
loop

read input! [ioerr: abort];
{ terminate on hardware I/0 error}
case cmdset match input of

when coml: actionl (...) {parameter list}
when com2: action2 (...)

when comN: actionN (...)
when quit: exit
when others: write 'illegal command' {pattern match failed}

end case;
repeat;
write 'byebye'

end iisschema.

44 A.I. Wasserman et al.

Each of the actions associated with the commands may perform
additional decoding or analysis of the command, perhaps splitting the
command string into substrings via the string functions or the split
operation, and will then carry out the action implied by the user command.

Consider the example of a library information system using the pattern
set command and the pattern chkout shown above. The procedure book­
checkout would include the following code:

procedure bookcheckout (input: string);
imports book, cardholder: readonly; checkout: modified;

{book cardholder, and checkout defined external to bookcheckout
as relations in library data base}

var booknum: char [IO]; copyno: 1..100; datedue: char [4];
oldcount, person: integer;

{handlers bad-book, bad-card, bad-copy, and dberr not shown}

begin
(#, #, booknum, #,person):= split [chkout]: input;
{ check validity of ISBN number and cardholder}
assert book [boo kn um] in book ! [assertion: bad-book];
assert cardholder [person] in cardholder ! [assertion: bad-card];
write 'Copy number:';
read copyno ! [patform, range: bad-copy];
write copyno;
{ compute due date and save in variable datedue}

{ update set of checkouts}
checkout :+ [(boo kn um, person, copyno, datedue)] ! [fail, duplicate:

dberr];
end bookcheckout;

This brief example shows how these features combine to incorporate the
facilities for interactive systems with such important features as assertion
checking for semantic integrity of databases and powerful control
structures. These features are easily used in a similar fashion for other
similar kinds of examples and greatly simplify the problems of writing this
class of programs.

PLAIN: an algorithmic language for interactive information systems 45

Because of space limitations, we have omitted discussion of the PLAIN

module facility, which provides facilities for data abstraction. The module
facility is extremely useful in PLAIN, since it permits type extension of data­
base types as well as other types. It is similar in most other respects to
data abstraction facilities found in other modern languages, e.g., CLU.

7. Conclusion

The design of PLAIN combines modern programming language design
concepts for creating well-structured programs with an integrated set of
innovative features to support the implementation of interactive infor­
mation systems.

Among the most significant aspects of these innovative features are:
(1) the associative addressing capability of relations, making it possible

to access and modify individual data base items, to use data base items
routinely throughout the program text, and to perform conversion between
data base types and the underlying types of their attributes;

(2) the pattern and pattern set specification facility, making it possible to
specify a context-free grammar, using the pattern-matching features to
carry out the lexical and syntactic aspects of the text processing;

(3) the procedure-oriented exception-handling scheme, which makes it
practical for the programmer to anticipate user errors and to build robust
programs that handle these errors.

These features are largely orthogonal and do not interfere with one
another in using or implementing the language, even though they are
typically used together in practice.

Experience with PLAIN and with other modern programming languages
indicates, subjectively at least, that it is much easier to implement inter­
active information systems with PLAIN than with any of the languages
previously used for such applications or any of the other modern languages
designed to support systematic programming. Work is continuing to use
PLAIN to implement various application systems and software tools, as well
as to develop implementations of PLAIN for a variety of execution environ­
ments.

46 A.I. Wasserman et al.

References

[I] E. Allman, M.R. Stonebraker and G.D. Held, Embedding a relational data sublanguage
in a general purpose programming language, Proc. Conf. on Data: Abstraction,
Definition, and Structure, ACM SIGPLAN Notices 11 (Special Issue) (1976) 25-35.

[2] T. Amble, K. Bratsbergsengen and 0. Risnes, ASTRAL: a structured and unified approach
to data base design and manipulation, in: G. Bracchi and G.M. Nijssen (Eds.), Data
Base Architecture (North-Holland, Amsterdam, 1979) pp. 257-274.

[3] A.L. Ambler et al., GYPSY: a language for specification and implementation of verifiable
programs, Proc. ACM Conf. on Language Design for Reliable Software, ACM
SIGPLAN Notices 12(3) (March 1977) 1-10.

[4] D.M. Berry, R.A. Kemmerer, A. von Staa and S. Yemini, Toward modular verifiable
exception handling, Comput. Languages 5 (2) (1980).

[5] E.F. Codd, A relational model of data for shared data banks, Comm. ACM 13 (6)
(June 1970) 377-387.

[6] E.F. Codd, Further normalization of the data base relational model, in: R. Rustin
(Ed.), Data Base Systems, Courant Computer Science Series, Vol. 6 (Prentice-Hall,
Englewood Cliffs, 1972) pp. 35-63.

[7] J.B. Goodenough, Exception handling: Issues and a proposed notation, Comm. ACM
18 (12) (December 1975) 683-696.

[8] J. Ichbiah et al., Reference manual for the ADA programming language, Advanced
Research Projects Agency, U.S. Department of Defense (July 1980).

[9] B.W. Lampson et al., Report on the programming language EUCLID, ACM SIGPLAN
Notices 12 (2) (February 1977) 1-79.

[!OJ R. Levin, Program structures for exceptional condition handling, Ph.D. Dissertation,
Computer Science Department, Carnegie Institute of Technology, Pittsburgh, PA
(1977).

[II] B. Liskov et al., cw reference manual, Lecture Notes in Computer Science, Vol. 114,
Springer, Berlin 1981.

[12] B. Liskov and A. Snyder, Exception handling in CLU, IEEE Trans. Software Engrg.
SE-5 (6) (November 1979) 546-558.

[13] D.C. Luckham and W. Polak, ADA exception handling: an axiomatic approach, ACM
Trans. Programming Languages and Systems 2 (2) (April 1980) 225-233.

[14] M.D. McLaren, Exception handling in PL/I, Proc. ACM Conf. on Language Design for
Reliable Software, ACM SIGPLAN Notices 12 (3) (March 1977) 101-104.

[15] P.M. Melliar-Smith and B. Randell, Software reliability: the role of programmed
exception-handling, Proc. ACM Conf. on Language Design for Reliable Software,
ACM SIGPLAN Notices 12 (3) (March 1977) 95-100.

[16] J.G. Mitchell, W. Maybury and R. Sweet, MESA language manual, version 5.0, XEROX
Palo Alto Research Center, Palo Alto, CA (1979).

[17] C.J. Prenner and L.A. Rowe, Programming languages for relational database
management, Proc. AFIPS 1978 NCC, Vol. 47, pp. 849-855.

[18] B. Randell, System structure for software fault tolerance, IEEE Trans. on Software
Engrg. SE-I, (2) (June 1975) 220-232.

PLAIN: an algorithmic language for interactive information systems 47

[19] R.P. van de Riet, A.I. Wasserman, M.L. Kersten and W. de Jonge, High level
programming features for improving the efficiency of a relational database system,
ACM Trans. on Database Systems 6 (3) (1981), in press.

[20] L.A. Rowe and K. Shoens, Data abstraction, views, and updates in RIGEL, Proc. of
ACM 1979 SIGMOD Conference, Boston, MA, pp. 71-81.

[21] J.W. Schmidt, Some high level constructs for data of type relation, ACM Trans. on
Database Systems 2 (3) (September 1977) 247-261.

[22] J.E. Shapiro, THESEUS - a programming language for relational databases, ACM Trans.
on Database Systems 4 (4) (December 1979) 493-517.

[23] A.I. Wasserman, Online programming systems and languages: a history and appraisal,
Techn. Rep. No. 6, Laboratory of Medical Information Science, University of Cali­
fornia, San Francisco CA (1974).

[24] A.I. Wasserman, Embedding database management operations in programming
languages, Conference Digest - IEEE COMPCON Spring 1976, pp. 79-82.

[25] A.I. Wasserman, USE: a methodology for the design and development of interactive
information systems, in: H.-J. Schneider (Ed.), Formal Models and Practical Tools for
Information Systems Design (North-Holland, Amsterdam, 1979) pp. 31-50.

[26] A.I. Wasserman, The data management facilities of PLAIN, Proc. ACM 1979 SIGMOD
Conference, Boston, MA, pp. 60-70.

[27] A.I. Wasserman, Software tools and the user software engineering project, in: W.E.
Riddle and R.E. Fairley (Eds.), Software Development Tools (Springer Verlag,
Heidelberg, 1980) pp. 93-113.

[28] A.I. Wasserman, The design of PLAIN - support for systematic programming, Proc.
AFIPS 1980 NCC, Vol. 49, pp. 731-740.

[29] A.I. Wasserman, User software engineering and the design of interactive systems, Proc.
5th International Conference on Software Engineering, San Diego, 1981, pp. 387-393.

[30] A.I. Wasserman et al., Revised report on the programming language PLAIN, ACM
SIGPLAN Notices 16 (5) (May 1981) 59-80.

[31] A.I. Wasserman and T. Booster, String handling and pattern matching in PLAIN, Techn.
Rep. No. 50, Laboratory of Medical Information Science, University of California,
San Francisco, CA (1981).

[32] A.I. Wasserman and M. Dippe, Design and evaluation of a procedure-oriented
exception-handling mechanism, in preparation.

[33] N. Wirth, The programming language PASCAL, Acta Inform. 1 (1) (1971) 35-63.
[34] W.A. Wulf (ed.), An informal description of ALPHARD (preliminary), Techn. Rep.

CMU-CS-78-105, Department of Computer Science, Carnegie-Mellon University (1978).

