
The Puzzle Forecast: Tutorial Analytics Predict Trial and Error
Dennis Vet

dennis.vet@student.uva.nl
University of Amsterdam

Amsterdam, The Netherlands

Riemer van Rozen
rozen@cwi.nl

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

ABSTRACT
Puzzle tutorials are designed to teach puzzle-solving skills. For
game designers, the difficulty is predicting if puzzle challenges will
present players with opportunities for learning with trial and error.
We aim to empower designers with tools and techniques for making
those predictions by analyzing the goal chains inherent to good
designs. We study PuzzleScript, an online game engine that has
made the source code of high-quality puzzle tutorials available.

Research on puzzles has yielded algorithms that can generate
playtraces of solutions. However, until now the importance of fail-
ure traces has been mostly overlooked. As a result, there is a lack of
tools with analytics that can help assess challenge. To deliver them,
we propose a novel approach that enriches playtraces with verbs.

We introduce TutoScript, a language for expressing goal chains
in terms of verbs. By combining TutoScript with well-known
search algorithms, and by mapping rules to verbs, TutoMate can
enrich, analyze and visualize generated playtraces of solutions,
failures and dead ends. Two case studies on Lime Rick and Block
Faker demonstrate how it helps to analyze simple goal chains, and
can also detect broken tutorials. Our solution takes a promising step
towards generic techniques for analyzing and generating tutorials.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Integrated and visual development environments; • Applied
computing → Computer games.

KEYWORDS
automated game design, domain-specific languages, puzzle tutorials,
verbs, skill atoms, analytics, learning, trial and error
ACM Reference Format:
Dennis Vet and Riemer van Rozen. 2024. The Puzzle Forecast: Tutorial
Analytics Predict Trial and Error. In Proceedings of the 19th International
Conference on the Foundations of Digital Games (FDG 2024), May 21–24, 2024,
Worcester, MA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3649921.3659854

1 INTRODUCTION
Puzzle-solving implies taking a series of actions, e.g., connecting
puzzle pieces, navigating mazes, or solving riddles. Solving a puzzle
requires skills, knowledge and insights about the rules.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0955-5/24/05
https://doi.org/10.1145/3649921.3659854

Puzzle tutorials are designed to teach these skills. Each step,
players progress towards a chain of goals that leads to identifying
a solution [25]. Through structured progression and practice, play-
ers learn how puzzle mechanisms work. For game designers, the
challenge is predicting if a puzzle tutorial will present players with
the intended opportunities for learning through trial and error.

We aim to empower game designers with languages, techniques
and tools that help automate these predictions. In particular, we
study how Domain-Specific Languages (DSLs) can give such tools
expressive power [28], e.g., for improving the predictive accuracy
of analyses and enabling procedural content generation [29].

We study PuzzleScript, an online programming language and
game engine created by Lavelle [19]. PuzzleScript expresses a wide
variety of high-quality puzzle games and tutorials whose sources are
publicly available [18]. We seize this rare research opportunity to
empirically study the source code of well-designed puzzle tutorials.

Research on puzzles has yielded algorithms and techniques that
can solve puzzles automatically, e.g., using SMT solvers [3], Answer
Set Programming (ASP) [26], and Heuristics Search [20]. These can
help to generate playtraces, or sequences of player actions. However,
existing tools and techniques have largely overlooked failure traces,
which are of critical importance for learning from mistakes.

Gameplay analytics offers metrics and visualizations to help gain
insight into player data, e.g., to assess gameplay and learning [8]. In
line with Koster’s Theory of Fun [15], verbs have been identified as
a key data point [4]. However, despite the availability of playtraces,
these techniques have not yet been applied to tutorial design.

Unfortunately, no tool exist for verifying goal chains (or Skill
Atoms) inherent to good tutorial designs [2, 5, 25]. As a result,
designers lack an automated means for identifying ways players
can learn from failure. They need analytics for measuring if tutorials
timely introduce challenges, gradually increase the difficulty, and
little by little present opportunities for learning. To deliver them,
we propose a novel approach that enriches playtraces with verbs.

We introduce TutoScript, a textual and visual DSL for express-
ing goal chains in terms of verbs. We automate the analysis of
goal chains for PuzzleScript by extending an existing framework
for static analysis [12]. TutoMate adds an engine for generating
playtraces, and analytics for comparing them against goal chains.
By combining TutoScript with well-known search algorithms,
and by mapping rules to verbs, TutoMate can enrich, analyze and
visualize generated playtraces of solutions, failures and dead ends.

Two case studies on Lime Rick and Block Faker demonstrate how
TutoMate recognizes simple goal chains. Of course, as a proof of
concept, its analyses are still limited. Specifically, not every goal
can be expressed using a simple 1-to-1 mapping between verbs and
rules. Combinatorial explosions and sub-optimal algorithms also
turn out to be bottlenecks. Despite these shortcomings, our results
illustrate the approach is feasible for relatively small search spaces.

https://orcid.org/0009-0005-5806-970X
https://orcid.org/0000-0002-3834-682X
https://doi.org/10.1145/3649921.3659854
https://doi.org/10.1145/3649921.3659854
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649921.3659854
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649921.3659854&domain=pdf&date_stamp=2024-07-05

FDG 2024, May 21–24, 2024, Worcester, MA, USA Vet and van Rozen

Background

lightgreen green

11111

01111

11101

11111

10111

(a) Object definition (b) Rendered object

Figure 1: A background object showing grassy patches

. = Background

= Wall

P = Player

* = Crate

@ = Crate and Target

O = Target

(a) Legend

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

(b) Level (c) Rendered level

Figure 2: Simple Block Pusher legend and level

Ultimately, work on language-parametric solutions can help ana-
lyzing and generating tutorials in general. The contributions of this
paper are: 1) TutoScript, a DSL for expressing goal chains using
verbs; and 2) TutoMate, a tutorial design tool for PuzzleScript for
identifying ways players can learn through trial and error.

2 BACKGROUND
Automating the analysis and design of puzzle tutorials requires
a thorough understanding of PuzzleScript. We perform design re-
search [31], and we apply the Extract, Analyze, Synthesize (EASy)
metaprogramming approach to study and create DSLs [14].

To begin, we analyze the problem space by performing a domain
analysis [17]. Specifically, we analyze and reverse engineer the
designs of high-quality puzzle tutorials. We formalize the extracted
domain knowledge and create solutions in Sections 3 and 4. The case
studies of Section 5 further detail and validate our approach. Here,
we introduce PuzzleScript and summarize our problem analysis.

2.1 PuzzleScript
We introduce PuzzleScript using an example called Simple Block
Pusher, one of many Sokoban-like games created by David Skinner.

As the first game programmers see, its sources serve as a tutorial
to learn the language. PuzzleScript programs consist of sequence
of sections. This overview describes the essential ones. For more
detailed explanations we refer to Lavelle [19] and Anthropy [1].

2.1.1 Objects. The OBJECTS section defines a series of game assets
called objects, sprites of 5x5 pixels that can move and collide. The
objects of the example are background, wall, player, crate and target.
These objects appear in levels and are manipulated using rules.

Figure 1 shows its Background object. When the engine renders
the object, this results in the visual sprite displayed in Figure 1b.

2.1.2 Collision layers. The game has three collision layers. This
section specifies that Player, Wall and Crate objects can collide.

Background (background layer)

Target (support layer)

Player , Wall , Crate (foreground layer)

(a) F1. Get stuck (b) F2. Block path (c) S1. Store B and win

Figure 3: Two example failures and final steps of a solution

Table 1: Playtraces of failures and successes of one level

Name Playtrace (w = walk, p = push) Analysis

F1. Get stuck [w↓, p→] Trivial failure.
F2. Block path [w→, w→, w↓, p←] Simple blocked path.
S1. Solution [w↓, w←, p↑, Stash A to access B.

w→, w→, w↓, p←, Move B toward goal.
w↑, w←, w←, w↓, w↓, w→, p↑ , Move B toward goal.
w←, w↑, w↑, p→ Stash B to access A.
w↑, w↑, w←, p↓ Store A.
w←, w↓, w↓, w→, w→, w↑, p←, Move B toward goal.
w↓, w←, p↑, p↑] Store B and win.

2.1.3 Legend. The LEGEND section of Figure 2a defines how symbols
used in level descriptions can refer to objects to create levels.

2.1.4 Rules. PuzzleScript expresses game mechanics and run-time
behaviors using rewrite rules. Players can interact with these rules
using the arrow keys and the action key x. Simple Block Pusher has
just one rule, which expresses pushing.

[> Player | Crate] -> [> Player | > Crate]

The rule’s left hand side is a pattern describing the condition
that must hold before applying the rule. We can read: “if the player
moves in the direction of a crate”. Of course, a collision would nor-
mally prevent this movement. However, the rule’s right hand side
describes different result of the collision. We can read: “then the
player and the crate both move directionally”. The omnidirectional >
operator is short-hand for applying the rule in every direction.

2.1.5 Winconditions. The game has one win condition, which ex-
presses that all targets must have a crate directly on top.

all Target on Crate

2.1.6 Example level. We will take a closer look at the game’s first
level, shown in Figure 2b. There are two crates, where crate A is
on its target (@) and crate B is not (*). When we run the game, the
engine renders the level’s start state as shown in Figure 2c.

2.2 Problem Analysis
Our problem analysis can be summarized as follows. Figure 4 illus-
trates the design process. The designer creates tutorials by formu-
lating gameplay goals and programming in PuzzleScript.

2.2.1 Verbs. Designers formulate hypotheses about gameplay. For
the example, a designer may have the following goals in mind.
G1 Perceive setting. The player occupies a top down maze.
G2 Walk. The player moves around using the arrow keys.
G3 Push. Crates can be pushed by colliding into them.
G4 Store. Pushing a crate onto a target stores it.
G5 Get stuck. Crates pushed into corners become stuck.
G6 Block path. Unreachable crates cannot be pushed.

The Puzzle Forecast: Tutorial Analytics Predict Trial and Error FDG 2024, May 21–24, 2024, Worcester, MA, USA

Solve/Play Goal Chain
1: Notation

Player

PuzzleScript
Engine

Puzzle
AnalyzerUser

Interface

Interpreter

Programming
Environment

Rules

Levels

Playtraces

2: Verbs
record

generate
interact

Designer

hypotheses

run

solve and fail

program

emerge

analyze

verify

design

Figure 4: Tutorial design process in PuzzleScript

G7 Stash. Giving crates temporary spots helps create paths.
G8 Win. Every crate must be stored in order to win.
G9 Strategize. Solving a puzzle involves ordered stashing.

2.2.2 Playtesting. To assess if gameplay hypotheses hold, design-
ers make observations and analyze how behaviors affect player
experiences [24, 25]. Playtesting the example level reveals the fol-
lowing. Pressing the arrow keys moves the avatar (G2). Players can
deduce they occupy a top-down dungeon (G1). When first pressing
down and then right, the player observes movement (G2) and push-
ing (G3). However, Crate B is now stuck in a corner (G5), as shown
in Figure 3a. Clearly, pushing a crate into a corner is a bad idea.
Instead, the player could press right twice and then down (G2), to
push Crate B to the left (G3). However, the path to push it north is
now blocked (G6), as shown in in Figure 3b. Planning ahead (G9),
the player could first stash Crate A (G7) before retrieving Crate B.

2.2.3 Goal chains. We reverse engineer the tutorial design by ana-
lyzing the dependencies between verbs. The goal chain of Simple
Block Pusher is surprisingly complex. In Figure 5, arrows signify
prerequisites. Strategizing about complex puzzles first requires un-
derstanding how to overcome obstacles by stashing crates. Players
cannot make meaningful decisions without knowing how to win.

Automation is not yet possible because goal chains are not ex-
plicitly represented. Challenge 1 is creating a formal notation.

2.2.4 Playtraces. Designers can examine interaction patterns, or
playtraces, sequences of player actions resulting in successes and
failures. Table 1 shows three traces. Solving the puzzle (S1) en-
tails combining the walk, push, store, stash and win mechanisms.
Because failing is possible too, this requires a degree of strategizing.

Automation is not yet possible because (generated) playtraces
consists of key presses only. Challenge 2 is adding the verbs.

2.2.5 Automation. Given the rules and a sequence of levels, the
question is if the tutorial presents challenges in the intended order,
gradually increases the difficulty, and offers opportunities for learn-
ing. For assessing the tutorial quality, designers need to investigate
if the playtraces of successes and failures realize the goal chains.

Automating this analysis requires tackling two more challenges.
Challenge 3 is leveraging existing algorithms for puzzle-solving

Move

Push

Store Win

Get stuck

Block path Stash

Strategize

Figure 5: Simple Block Pusher: Goal Chain of Verbs

1 tutorial SimpleBlockPusher {

2 lesson 1: Storing {

3 "Winning requires storing crates."

4 introduce Move , Push , Store }

5
6 lesson 2: Stashing {

7 "Crates can be stashed to avoid blocking paths."

8 require Move , Push , Store

9 introduce Stash

10 avoid BlockPath }}

Figure 6: Simple Block Pusher: Tutorial design inTutoScript

to obtain generated playtraces. Challenge 4 is comparing the goal
chains against generated playtraces enriched with verbs.

We propose a novel approach that tackles these challenges. Our
solution consists of two parts. The first, TutoScript, addresses
Challenge 1 by formalizing goal chains in Section 3. The second,
TutoMate, addresses Challenges 2–4 by creating a tutorial design
tool for PuzzleScript in Section 4. For assessing the quality of puzzle
tutorials it offers analytics that work on generated playtraces.

3 TUTOSCRIPT
We introduce TutoScript, a DSL for expressing goal chains. We
have already applied its visual notation in Figure 5. Here, we intro-
duce a textual notation, which is specifically designed for puzzle
game tutorials. Figure 6 shows an illustrative tutorial design.

Each design begins with the tutorial keyword. Two named
lessons, indicated by the lesson keyword, describe verbs of succes-
sive levels. The first lesson newly introduces the verbs Store, Push
and Move (lines 2–6). The win scenarios of the associated levels
must present evidence for these verbs. The second lesson builds on
prior knowledge and introduces challenge. The verbs Move, Push
and Store are required (lines 8–14). However, players now have to
Stash crates to solve the puzzle. For assessing challenge, we also
need evidence of failure scenarios. The avoid keyword indicates that
inadvertently blocking a path is a “good mistake”. Table 1 shows
example scenarios, each representing opportunities for learning.
Next, we will explain how TutoScript can be used for analytics.

4 TUTOMATE
We present TutoMate, a tutorial design tool for PuzzleScript that
leverges TutoScript and existing search algorithms to offer ana-
lytics that work on generated playtraces [30]. Unlike many other
tools, TutoMate is not based on PuzzleScript’s online engine [18].

Instead, we use the Rascal language workbench, which is espe-
cially suitable for developing DSLs and analyzing source code [14].
We use Rascal to extend ScriptButler, an existing framework specif-
ically designed for analyzing PuzzleScript [12]. We can reuse its

FDG 2024, May 21–24, 2024, Worcester, MA, USA Vet and van Rozen

PuzzleScript grammar for parsing every game in the open repos-
itory of remakes and demakes we use in this study [18]. Already
capable of static analysis, the framework still lacks an interpreter
and engine that is fast enough to perform dynamic analyses.

TutoMate adds the necessary components. We summarize how
they work. Vet gives a more detailed account [30].

4.1 Enriching Playtraces with Verbs
To enrich playtraces with verbs, we introduce a simple mapping
between rules and verbs. The verbs, defined in comments directly
behind each rule, express how TutoScript can refer to them.

(player is defined implicitly) (verb Walk)

[>Player | Crate] -> [>Player | >Crate] (verb Push)

TutoMate can enrich playtraces with these verbs. First, it col-
lects the mapping from the sources. When applying a rule transfor-
mation, TutoMate adds the associated verb in the trace.

In addition, the win verb is based on PuzzleScript’s win condi-
tions. Verbs “get stuck” or “become trapped” are expressed as dead
ends, occurrences where no rule exists that can be activated.

Of course, not every verb can be expressed this way. In particular
complex verbs, such as “block path”, cannot yet be expressed. In
Section 5 we discuss case studies and show examples.

4.2 TutoMate Engine
TutoMate performs its language-parametric analyses as follows.

4.2.1 Engine. Anew PuzzleScript engine adds an interpreter for an-
alyzing and playing games. This interpreter processes simulated or
real user actions. Given a button-press, it recursively loops through
rules to identify which ones should trigger. For activated rules it
performs the effects, updating the game state. To speed up the
engine, rules that cannot trigger are filtered out beforehand.

4.2.2 TutoScript. Another extension adds TutoScript and a play-
trace analyzer. This component compares the verbs of each lesson
with playtraces of levels. In particular, these are sets of verbs. The
analysis checks required and introduced verbs are in traces of suc-
cess scenarios, flagging omissions. Verbs to avoid on the other hand,
are compared against failure traces to obtain evidence for challenge.

4.2.3 Dynamic Analyzer. The core is a dynamic analyzer that uses
the engine to generate playtraces. Initially, we have applied a brute
force approach. To find the shortest traces, we have selected a simple
breadth first search algorithm. However, due to the unavoidable
combinatorial explosion problem, this approach does not scale well.

To speed up the analysis, we have used the level state heuristics
proposed by Lim and Harell [20]. To select which rule to apply,
these heuristics use metrics for the Manhattan distance between:
1) Win Condition and Objects; and 2) Player and Win Condition
Objects. The search continues until the win condition is satisfied.
Though not optimal, Section 5 shows it is adequate for validating
the approach on puzzle tutorials with relatively small search spaces.

To help obtain evidence for opportunities for learning, the ana-
lyzer also detects failure scenarios using avoid verbs. Failures are
deviations from the win scenario. To limit the search, and find prox-
imate playtraces that are likely encountered, the deviation depth
is limited (the default is two). Finally, dead ends are traces ending
with the inability to activate rules without winning.

Crawl

Climb
mormal

Climb
medium

Climb
large

Climb
top

Push crate Fill gap

Fall
Become
trapped

Eat apple Win

Strategize

Figure 7: Lime Rick: Goal Chain of Verbs

4.2.4 User interface. Using Rascal’s Salix framework, we create
programming environments for PuzzleScript and TutoScript. The
web-based interfaces includes a renderer, a path vizualizer and
interactive controls for playing and debugging puzzle games.

5 CASE STUDIES
We validate the approach in case studies on Lime Rick and Block
Faker. These are distinct puzzle games that each have high-quality
tutorials with at least five levels. We explore to what extent Tuto-
Mate can automate the analysis of these tutorials. Specifically, we
assess the viability of enriching playtraces with verbs and using
TutoScript for analytics. The first two studies explore the expres-
siveness of TutoScript, and if TutoMate can provide evidence
that the tutorials realize their goals. A third study, which illustrates
its uses for mixed-initiative design with breaking changes, is part of
Supplementary Material. Each study applies the following protocol.

5.1 Prototcol
First, we describe the game and analyze the tutorial by manually
playtesting its PuzzleScript implementation. Next, we reverse engi-
neer the tutorial design. We create a goal chain and use TutoScript
to formalize a progression of lessons. We specify a mapping be-
tween PuzzleScript rules and verbs, reporting limitations.

We then apply TutoMate to analyze generated playtraces for
solutions and failure scenarios for each of the levels in the tutorial.
For every trace, we record: a) the user actions (button presses) and
activated rules; b) its length (the number of steps); c) the verbs
identified for each step; and d) the time elapsed (in seconds).

Finally, we assess if these results are as expected. We record if
players: e) require verbs to solve the puzzle; f) meet challenges in
the failure traces; and g) progress through puzzles as expected.

5.2 Lime Rick
5.2.1 Description. Lime Rick is a Snake-like game created by Tommi
Tuovinen. In the game, the player is a snake whose objective is reach
an apple in a side-view dungeon. Reaching the apple requires using
a series of snaking mechanisms to crawl over obstacles. The rules
ensure snaking movements are similar in structure to a limerick.

When crawling, using arrow keys, the snake grows from its head
into open space. Players can only crawl upward three times before
switching direction. The head color changes: green, yellow, orange,
red. The snake needs solid ground to support its head. This includes
its own tail. The snake can push crates with its head. Gravity pulls
the head and crates own, causing both to fall.

The Puzzle Forecast: Tutorial Analytics Predict Trial and Error FDG 2024, May 21–24, 2024, Worcester, MA, USA

1 UP [UP PlayerHead4] -> [PlayerHead4] (verb ClimbTop // cannot climb more)

2 UP [UP PlayerHead3 | No Obstacle] -> [PlayerBodyV | PlayerHead4] (verb ClimbLarge //third climb: red head)

3 UP [UP PlayerHead2 | No Obstacle] -> [PlayerBodyV | PlayerHead3] (verb ClimbMedium // second climb: yellow head)

4 UP [UP PlayerHead1 | No Obstacle] -> [PlayerBodyV | PlayerHead2] (verb ClimbNormal //first climb: green head)

5 horizontal [> Player | Crate | No Obstacle] ->

[PlayerBodyH | PlayerHead1 | Crate] (verb Push //push crates horizontally)

6 horizontal [> Player | No Obstacle] -> [PlayerBodyH | PlayerHead1] (verb Crawl //snake grows horizontally)

7 [Player Apple] [PlayerBody] -> [Player Apple] [] (verb Approach // approach the apple)

8 [Player Apple] -> [Player] (verb Eat //eat the apple)

9 [> Player] -> [Player] (verb Cancel // prevent default movement)

10 DOWN [Player | No Obstacle] -> [PlayerBodyV | PlayerHead1] (verb Fall //the head falls down)

11 DOWN [Crate | No Obstacle] -> [| Crate] (verb FallCrate // crates fall down)

Figure 8: Lime Rick: PuzzleScript rules (on the left) annotated with Verb definitions (on the right)

1 tutorial LimeRick {

2 lesson 1: Crawling {

3 The snake can crawl.

4 introduce Crawl

5 introduce ClimbNormal , ClimbMedium }

6
7 lesson 2: Snaking {

8 The snake can climb on top of its own tail.

9 require ClimbNormal , ClimbMedium

10 introduce ClimbLarge , ClimbTop }

11
12 lesson 3: Trapped {

13 When falling in a gap , the snake is trapped.

14 require ClimbNormal , ClimbMedium , ClimbLarge

15 avoid Fall }

16
17 lesson 4: Reach {

18 The snake can reach great heights.

19 require ClimbNormal , ClimbMedium , ClimbLarge }

20
21 lesson 5: FillGaps {

22 Gaps can be filled with blocks.

23 avoid Fall

24 require ClimbNormal , ClimbMedium , ClimbLarge

25 introduce Push , FallCrate }

26
27 lesson 6: Strategy {

28 Mechanisms can be combined.

29 require ClimbNormal , ClimbMedium , ClimbLarge

30 }}

Figure 9: Lime Rick Tutorial Design in TutoScript

5.2.2 Tutorial. The Lime Rick tutorial consists of ten levels. We
discuss and analyze the first six. The first level shows the player
they can crawl, climb and fall. To eat the apple, players have to
traverse two walls and experience growing, climbing, and falling
in the process. In the second level, the player has to climb to a
platform four blocks high. They learn the snake cannot climb that
high unless it uses its own tail for support. The third level contains
a gap. If the player moves towards the apple in a straight line, they
find out they become trapped when falling inside. Eating the apple
requires a detour. In the fourth level, the player has to reach a
platform ten blocks high. Reaching it requires snaking multiple
times. In the fifth level, reaching the apple involves filling a gap to
avoid getting trapped. Finally, the sixth level requires a combination
of mechanisms to avoid getting trapped and reaching the apple.

5.2.3 Tutorial Design. We describe its goal chain in Figure 7. Next,
we create a mapping between verbs and rules, shown in Figure 8.
Because in Lime Rick, all snake movements are explicitly defined,
every verb can be mapped, except Strategize, which may be inferred.

(a) Scenario LW1 (b) Scenario LF1

(c) Scenario LW3 (d) Scenario LF3 (e) Scenario LW4

(f) Scenario LW6 (g) Scenario LF6

Figure 10: Lime Rick: Win and failure scenarios

We formalize the tutorial design using TutoScript. Figure 9
describes six lessons, one for each level. Lesson 1 introduces crawl-
ing and climbing (lines 4–5). Lesson 2 applies those verbs and adds
climbing as far as possible (line 10). Lesson 3 teaches to avoid
falling in gaps (line 15). Lesson 4 four again applies climbing (line
19). Lessons 5 and 6 introduces pushing and filling gaps (line 25).
Lesson 6 again applies climbing (line 29).

5.2.4 Analysis. We apply TutoMate to the PuzzleScript sources,
and obtain the enriched playtraces for levels 1, 3, 4 and 6 for win
and failure scenarios. For levels 2 and 5, we obtain no results. The
search times out due to failing heuristics. We discuss the results
using the traces shown in Table 2 and Figure 10.

Crawling is required in level 1. The win scenario (LW1) is a trace
of 19 steps computed in 15.8 seconds. It also shows players have to
eat the apple to win. The failure scenario (LF1) is a trivial scenario
of 5 steps. The snake becomes trapped behind a ledge.

Reaching the apple in level 3 requires crawling and climbing. The
win scenario (LW3) is a trace of 40 steps computed in 116.7 seconds.
By deviating slightly from the solution, the snake becomes trapped.
The trace LF3 is an example failure scenario of 29 steps computed
in 29.6 seconds. The trace shows verbs and actions it shares with
the win scenario in gray. Deviations are shown in black.

FDG 2024, May 21–24, 2024, Worcester, MA, USA Vet and van Rozen

Table 2: Lime Rick: Enriched playtraces and checks

Name Playtrace + verbs L. D. (s) Pass

LW1 [c→*4, c𝑛↑, c𝑚↑, c→*2, f, c→*2, c𝑛↑, c𝑚↑, c→,
c𝑛↑, c𝑚↑, c→*2, f, c→, e→w]

19 15.8 ✓

LF1 [c→*3, c𝑛↑, c→, f t] 5 6.3 ×

LW3 [c𝑛↑, c𝑚↑, c←, f, c←, f, c←*2, f, c→, f, c→, c𝑛↑,
c𝑚↑, c→, f, c→, f, c→*3, c𝑛↑, c→, f, c→*2, c𝑛↑,
c→, c𝑛↑, c←, 𝑐𝑛↑, c𝑚↑, c→, f, c→, f, c→, c𝑛↑,
c𝑚↑, c𝑙↑, c→, c𝑛↑, c𝑚↑, c𝑙↑, c→*2, c𝑛↑, c←,
e←w]

40 116.7 ✓

LF3 [c𝑛↑, c𝑚↑, c←, f, c←, f, c←*2, f, c→, f, c→, c𝑛↑,
c𝑚↑, c→, f, c→, f, c→*3, c𝑛↑, c→, f, c→, c𝑛↑,
c→, f t]

20 29.6 ×

LW4 [c←*2, c𝑛↑, c𝑚↑, c→, f, c→, c𝑛↑, c𝑚↑, c←*2,
c𝑛↑, c→*2, c𝑛↑, c𝑚↑, c𝑙↑, c←, f, c←, c𝑛↑, c𝑚↑,
c𝑙↑, c→*2, c𝑛↑, c←*2, c𝑛↑, c𝑚↑, c→, e→]

30 10.4 ✓

LW6 [c𝑛↑, c𝑚↑, c𝑙↑, c←, f, c←, c𝑛↑, c𝑚↑, c→*2, c𝑛↑,
c𝑚↑, c𝑙↑, c→, f, c→, c𝑛↑, c𝑚↑, c←*2, c𝑛↑, c𝑚↑,
c𝑙↑, c←, f, c←, c𝑛↑, c𝑚↑, c←, e←w]

23 49.6 ✓

LF6 [c𝑛↑, c𝑚↑, c𝑙↑, c←, f, c←, c𝑛↑, c←, f t] 7 8.7 ×

c = crawl, c𝑛 = climb normal, c𝑚 = climb medium, c𝑙 = climb large
f = fall, e = eat apple, t = become trapped, w = win

Reaching the goal indeed requires crawling and climbing. The
win scenario for lesson 4 (LW4) is a trace of 30 steps computed in
10.4 seconds. No proximate failure scenarios were identified.

Level 6 combines crawling and climbing. The win scenario for
lesson 6 is a trace of 23 steps computed in 49.6 seconds (LW6). By
deviating slightly from the solution, the snake can get trapped. LF6
is an illustrative failure scenario computed in 8.7 seconds.

Even though we cannot express the verb Strategize or fill gap
directly, we can still use the analytics to learn more about the
tutorial design. Several failure scenarios indicate challenge.

5.3 Block Faker
5.3.1 Description. Block Faker is a puzzle game by Droqen that
centers around push and vanish mechanisms. In a top-down view,
the player has to create a path to reach the exit (a green square) by
pushing crates that collide with walls (using arrow keys). Whenever
pushing results in three equal adjacent crates, they each disappear.

5.3.2 Tutorial. The Block Faker tutorial is a demo, which consists
of five levels that encourage players to play the full game.

Pushing is the goal of the first level. Deviating from the path is
not possible, forcing the player to push the crate. As a result, the
player observes how pushing works. Vanishing is a new goal of the
second level. The player has to push a crate once again. This time,
pushing results in three adjacent purple crates. The player observes
the alignment causes the crates to disappear.

Obstacles are introduced in the third level. Passing requires ap-
plying the vanishing mechanism. When the player pushes a purple
crate too far, an alignment causes it to vanish. However, as a result,
the exit becomes unreachable. Solving the puzzle requires realizing
this crate can instead be used to clear the path ahead. Strategizing
happens in the more complex puzzles of the fourth and fifth levels.
Solving these requires applying the push and vanish mechanisms,
and dealing with an increasing number of obstacles to clear a path.

Move Reach exit Win

Push Vanish

Get stuck Clear path

Strategize

Figure 11: Block Faker: Goal Chain of Verbs

1 tutorial BlockFaker {

2 lesson 1: Pushing {

3 "Blocks can be pushed."

4 introduce Push }

5
6 lesson 2: Vanishing {

7 "Three adjacent blocks vanish."

8 require Push

9 introduce VanishPurple VanishOrange }

10
11 lesson 3: Obstacle {

12 "Vanishing can be used to pass obstacles."

13 require Push , VanishPurple

14 avoid VanishPink }

15
16 lesson 4: Combinations {

17 "Techniques can be combined."

18 require Push

19 introduce VanishGreen , VanishOrange }

20
21 lesson 5: Strategy {

22 "A strategy that requires moving all blocks."

23 require Push , VanishPink , VanishPurple ,

VanishOrange , VanishBlue , VanishGreen } }

Figure 12: Block Faker Tutorial Design in TutoScript

5.3.3 Tutorial design. We extract the goal chain in Figure 11. We
then map its verbs to rules in Figure 13. Because movement is
defined, we add Walk verb before the first rule. We cannot map
“Get stuck” to a rule, or express the derived verb Strategize.

Figure 12 shows a an implementation of five lessons, one for each
level. Lesson 1 introduces the Push mechanism (line 4). Pushing
is necessary to solve the level. Lesson 2 applies pushing, a known
mechanism, and adds the Vanish mechanism (lines 9). Players are
required to align purple and orange crates. Lesson 3 introduces
an obstacle. The shortest trace to VanishPink is a failure scenario.
Players should avoid this obstacle (line 14). The fourth and fifth
lessons require combining vanish mechanisms to solve the puzzle.

5.3.4 Analysis. We apply TutoMate to the PuzzleScript sources,
and obtain the enriched playtraces shown in Table 3. Because the
algorithm times out, we do not obtain win scenarios for levels 3
and 4. As a result, no failure scenario can be identified either.

As expected, pushing is required in the win scenario for lesson 1.
A trace (BW1) of 26 steps is computed in 15.7 seconds. The trace
shows players have to reach the exit to win. Furthermore, vanishing
is part of the win scenario for lesson 2. The trace (BW2) has 24 steps
that show purple and orange crates have to vanish in this solution.

Strategy is harder to quantify and gauge. The win scenario for
lesson 5 is a trace (BW5) of 26 steps computed in 15.7 seconds.

The Puzzle Forecast: Tutorial Analytics Predict Trial and Error FDG 2024, May 21–24, 2024, Worcester, MA, USA

1 (the movement of the player is defined implicitly) (verb Walk //move left , right , up, down)

2 [> Moveable | Moveable] -> [> Moveable | > Moveable] (verb Push //push a crate)

3 [> Block | Grille] -> [Block | Grille] (verb Collide // collisions prevent movement)

4 late [PinkBlock | PinkBlock | PinkBlock] -> [| |] (verb VanishPink //three pink blocks vanish)

5 late [BlueBlock | BlueBlock | BlueBlock] -> [| |] (verb VanishBlue //three blue blocks vanish)

6 late [PurpleBlock | PurpleBlock | PurpleBlock] -> [| |] (verb VanishPurple //three purple blocks vanish)

7 late [OrangeBlock | OrangeBlock | OrangeBlock] -> [| |] (verb VanishOrange //three orange blocks vanish)

8 late [GreenBlock | GreenBlock | GreenBlock] -> [| |] (verb VanishGreen //three green blocks vanish)

Figure 13: Block Faker PuzzleScript rules (on the left) annotated with Verb definitions (on the right)

Table 3: Block Faker: Enriched playtraces and checks

Name Playtrace + verbs L. D. (s) Pass

BW1 [w↑, w←, p←, w↑, w←, p↓*2, w←*2, w↑*3, w→,
w↑, w→, p→*4, w↑, w→ p↓*2, w→, w↓, w→, r]

26 15.7 ✓

BW2 [p↑*4, v𝑝𝑙 , w←*5, w↓, w→, p↑, w←, w↑, p→,
w↑, w→, p↓, v𝑜 , w↓, w→*3, r]

24 10.8 ✓

BW5 [p↓, p→, p→ v𝑔 , w→*3, w↓*2, p↓, v𝑜 , w↓, r] 26 15.7 ×

MW2 [p↑*2, v𝑜 , w↑, w→*3, r] 6 2.3 ×

w = walk, p = push, r = reach exit / win
v𝑜 = vanish orange, v𝑔 = vanish green, v𝑝𝑘 = vanish pink, v𝑝𝑙 = vanish purple

TutoMate identifies verbs that are not in the trace. Initially puz-
zled by trace WB5, upon closer inspection we find this is intended
behavior. Blue, purple and pink crates need not vanish.

6 DISCUSSION
6.1 Costs and benefits
We have proposed a novel approach for predicting if puzzle tutori-
als will present opportunities for learning. The case studies show
TutoMate helps assess to what extent playtraces enriched with
verbs, realize the goal chains of a puzzle tutorial. TutoMate pro-
vides useful analytics and TutoScript is an expressive notation for
expressing these analytics in terms of verbs. Particularly insightful
are the failure scenarios, which indicate challenge.

For debugging, the interactive visualizations with replay func-
tionality are especially helpful. A key benefit of test automation
is reducing the need for manual playtesting. In mixed-initiative
design settings, where designers make gradual changes to levels
and rules, re-testing hypotheses is particularly helpful. At present
however, the puzzle-solving algorithms are still prohibitively slow.

Of course, there are also costs. The automation shifts the division
of work between engineers and designers. While it helps raise the
tutorial quality, the workload is not necessarily reduced. As with
every DSL, learning to program TutoScript costs time and effort,
and maintaining the framework is a long term investment.

6.2 Limitations and threats to validity
Of course, our approach is a research prototype and a proof of
concept. We describe its limitations and discuss threats to validity.

The approach relies on the availability of playtraces, in particular
generated ones. Because no off-the-shelf solution suited our needs,
we have implemented a simple breadth first search algorithm. Since
tutorials are designed to be safe, manageable and simple, we have
assumed they have relatively small search spaces. Our engine is not
yet optimized for speed and scalability. Depending on the puzzle,
generating solutions results in potentially vast state spaces. For
now, applications to complex puzzles are therefore out of scope.

The one-to-one mapping between verbs and PuzzleScript rules
limits which verbs can be recognized. In particular, the notation
cannot yet express composite verbs or derived skills. For instance,
the verb strategize is never a single act. In Lime Rick, players “snake”
by crawling on top of the snake’s tail. A more powerful TutoScript
is part of future work. Despite its shortcomings, the results show the
approach is viable for small search spaces. The simple mapping is
sufficient for many meaningful analyses. TutoMate helps provide
useful insights that are difficult to obtain by other means.

7 RELATEDWORK
The contributions of this paper intersect at the areas of game ana-
lytics, automated game design and procedural content generation.

7.1 Game Analytics
Game Analytics is an area that leverages player data to perform
quantitative analyses [8]. Many tools, techniques and commercial
frameworks have been created that record and analyze game states,
events and interactions, e.g., activities and time spent. Using met-
rics, visualizations and statistical analyses, these tools can provide
valuable insight on a game’s qualities, e.g., player preferences, and
reasons to play. Playtraces are commonly used in analytics to re-
late observations to expectations [9, 21, 23]. Osborn et al. propose
PlaySpecs, regular expressions for analyzing playtraces [23]. Play-
traces are defined as sequences of facts that record observations of
the game state. In accordance with Koster’s Theory of Fun [15] and
best practices [25], a standardization effort has identified verbs as a
key data point [4]. However, despite the availability of playtraces,
these techniques have not yet been applied to puzzles. We address
this challenge with specialized metrics and analytics.

7.2 Automated Game Design
Automated Game Design (AGD) is a research area that develops and
applies techniques for automating game design processes [6, 29].
Domain-Specific Languages (DSLs) are a particular means to give
such tools expressive power [28], e.g., for enabling generative ap-
proaches and analyses with predictive accuracy. In a comprehensive
survey of languages and tools for game design and development,
van Rozen identifies PuzzleScript as one of 108 languages in over
1400 publications [29]. Due to a lack of empirical studies, what the
merits of DSLs are for AGD is still largely unknown [16]. Our study
on PuzzleScript sheds additional light on this question.

A recent survey on puzzle generation shows the state-of-the-
art consists of highly focused applications that cannot be easily
reused [13]. Our DSL approach represents a promising first step
towards generic techniques for analyzing and generating tutorials.

FDG 2024, May 21–24, 2024, Worcester, MA, USA Vet and van Rozen

7.3 Tools for Puzzles and Tutorials
7.3.1 Algorithms. Research on puzzles has yielded algorithms and
techniques that can solve puzzles automatically, e.g., using SMT
solvers [3], Answer Set Programming (ASP) [26, 27], and Heuristics
Search [20]. Cooper describes Sturgeon-MKIII, a tool and technique
that uses SAT solvers for obtaining playthroughs for rule-based
transformations [7]. Green et al. propose an evolutionary approach
to generate Mario game tutorials [10]. We leverage existing algo-
rithms to obtain playtraces. Unlike many other approaches, we also
focus on failures and dead-ends, which are indicative of challenge.

7.3.2 Skill Atoms. Skill Atom theory originates with Dan Cook
who proposes designing challenges using skill chains [5]. Authors
have proposed techniques and tools that apply this theory [2, 11].

Talin is a low-code tool for creating tutorials by visually design-
ing a mastery model [2]. We also propose designing mastery models.
However, our aim is not to generate feedback only when needed,
but to obtain evidence that opportunities for learning exist.

Similar to Skill Atoms, Koster uses Verbs to design affordances [15,
16]. The visual notation of TutoScript also foregrounds verbs.
However, its aim is to describe prerequisite knowledge.

7.3.3 PuzzleScript. Lim and Harell propose an approach for ana-
lyzing PuzzlesScript that generates solutions to puzzles [20]. Two
sets of heuristics speed up the analysis. The first, level state heuris-
tics is used for evaluating how close the state of given level is to
completion during gameplay. The second, ruleset heuristics eval-
uates a videogame’s mechanics and assesses them for playability.
TutoMate uses the level state heuristics.

Naus and Jeuring study problem solving for rule-based sys-
tems [22]. Inspired by intelligent tutoring systems and expert sys-
tems, they propose a generic approach for creating feedback sys-
tems that provide hints, e.g., next-step hints for PuzzleScript puz-
zles. Their DSL expresses rule based problems and leverages generic
search algorithms to provide hints. In contrast, we aim to provide
feedback on the tutorial design itself.

8 CONCLUSIONS
We have proposed a novel approach for analyzing puzzle tutorials
that enriches playtraces with verbs. We have introduced Tuto-
Script, a textual and visual DSL for expressing goal chains in terms
of verbs. We have presented TutoMate, a tool for PuzzleScript
that offers analytics for automating the analysis of goal chains.
By combining TutoScript with well-known search algorithms,
and by mapping rules to verbs, TutoMate can enrich, analyze
and visualize generated playtraces of solutions, failures and dead
ends. To validate our approach, we have performed case studies on
Lime Rick and Block Faker. Our results demonstrate TutoMate
can recognize simple goal chains, and also detects broken tutorials.

Future Work. Generating puzzle game tutorials can provide per-
sonalized learning trajectories [10]. Extending TutoScript with
patterns could make the analyses more precise [23]. Finally, inves-
tigating code puzzles could help to generalize the approach.

ACKNOWLEDGMENTS
We thank the reviewers for providing insightful comments, and for
giving crucial suggestions that have helped improve this paper.

REFERENCES
[1] Anna Anthropy. 2019. Make Your Own PuzzleScript Games! No Starch Press.
[2] Batu Aytemiz, Isaac Karth, Jesse Harder, Adam M. Smith, and Jim Whitehead.

2018. Talin: A Framework for Dynamic Tutorials Based on Skill Atoms Theory.
In Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2018. AAAI.

[3] Eric Butler, Emina Torlak, and Zoran Popovic. 2017. Synthesizing Interpretable
Strategies for Solving Puzzle Games. In Foundations of Digital Games. ACM.

[4] Sven Charleer, Francisco Gutiérrez, Kathrin Gerling, and Katrien Verbert. 2018.
Towards an Open Standard for Gameplay Metrics. In CHI Play. ACM.

[5] Daniel Cook. 2007. The Chemistry Of Game Design. Game Developer (July 2007).
https://www.gamedeveloper.com/design/the-chemistry-of-game-design

[6] Michael Cook. 2020. Software Engineering for Automated Game Design. In 2020
IEEE Conference on Games (CoG). IEEE.

[7] Seth Cooper. 2023. Sturgeon-MKIII: Simultaneous Level and Example Playthrough
Generation via Constraint Satisfaction with Tile Rewrite Rules. In Foundations of
Digital Games, FDG 2023. ACM.

[8] Magy Seif El-Nasr, Anders Drachen, and Alessandro Canossa. 2016. Game Ana-
lytics. Springer.

[9] Michael Cerny Green, Ahmed Khalifa, Gabriella A. B. Barros, Tiago Machado, and
Julian Togelius. 2020. Automatic Critical Mechanic Discovery Using Playtraces
in Video Games. In Foundations of Digital Games. ACM.

[10] Michael Cerny Green, Ahmed Khalifa, Gabriella A. B. Barros, Andy Nealen, and
Julian Togelius. 2018. Generating Levels that Teach Mechanics. In Foundations of
Digital Games, FDG 2018. ACM.

[11] Britton Horn, Seth Cooper, and Sebastian Deterding. 2017. Adapting Cognitive
Task Analysis to Elicit the Skill Chain of a Game. In Proceedings of the Annual
Symposium on Computer-Human Interaction in Play, CHI PLAY 2017. ACM.

[12] Clement Julia and Riemer van Rozen. 2023. ScriptButler serves an Empirical
Study of PuzzleScript. In Foundations of Digital Games, FDG 2023. ACM.

[13] Barbara De Kegel and Mads Haahr. 2020. Procedural Puzzle Generation: A Survey.
IEEE Trans. Games 12, 1 (2020).

[14] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. EASYMeta-programming
with Rascal. In Generative and Transformational Techniques in Software Engineer-
ing (LNCS, Vol. 6491). Springer.

[15] Raph Koster. 2013. Theory of fun for game design. O’Reilly Media, Inc.
[16] Raph Koster. 2016. The Limits of Formalism. Raph Koster’s Website. Presentation

delivered at the BIRS Workshop on Computational Modeling in Games (2016).
https://www.raphkoster.com/games/presentations/the-limits-of-formalism

[17] Craig Larman. 2012. Applying UML and Patterns: An Introduction to Object Oriented
Analysis and Design and Interactive Development. Pearson Education.

[18] Stephen Lavelle. 2013. PuzzleScript. https://github.com/increpare/PuzzleScript
Last visited: November 26th 20203.

[19] Stephen Lavelle. 2013. PuzzleScript Documentation. https://www.puzzlescript.
net/Documentation/documentation.html Last visited: November 26th 20203.

[20] Chong-U Lim and D. Fox Harrell. 2014. An Approach to General Videogame
Evaluation and Automatic Generation using a Description Language. In 2014
IEEE Conference on Computational Intelligence and Games, CIG 2014. IEEE.

[21] Yun-En Liu, Erik Andersen, Rich Snider, Seth Cooper, and Zoran Popovic. 2011.
Feature-based Projections for Effective Playtrace Analysis. In Foundations of
Digital Games. ACM.

[22] Nico Naus and Johan Jeuring. 2019. Building a Generic Feedback System for
Rule-Based Problems. In Trends in Functional Programming. Springer.

[23] Joseph Carter Osborn, Ben Samuel, Michael Mateas, and Noah Wardrip-Fruin.
2015. Playspecs: Regular Expressions for Game Play Traces. In Artificial Intelli-
gence and Interactive Digital Entertainment, AIIDE. AAAI Press.

[24] Katie Salen and Eric Zimmerman. 2004. Rules of Play. MIT Press.
[25] Jesse Schell. 2008. The Art of Game Design: A Book of Lenses. CRC press.
[26] Adam M. Smith, Eric Butler, and Zoran Popovic. 2013. Quantifying over Play:

Constraining Undesirable Solutions in Puzzle Design. In Foundations of Digital
Games, FDG 2013. SASDG.

[27] Adam Summerville, Chris Martens, Ben Samuel, Joseph C. Osborn, NoahWardrip-
Fruin, and Michael Mateas. 2018. Gemini: Bidirectional Generation and Analysis
of Games via ASP. In Artificial Intelligence and Interactive Digital Entertainment,
AIIDE 2018. AAAI Press.

[28] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages:
An Annotated Bibliography. ACM SIGPLAN Notices 35, 6 (2000).

[29] Riemer van Rozen. 2021. Languages of Games and Play: A Systematic Mapping
Study. Comput. Surveys 53, 6 (2021).

[30] Dennis Vet. 2023. Tutomate: Relating skill atoms to playtraces for enabling au-
tomated analysis of game tutorials. Master’s thesis. University of Amsterdam.
https://github.com/Hyper445/Tutomate

[31] Roel. J. Wieringa. 2014. Design Science Methodology for Information Systems and
Software Engineering. Springer.

https://www.gamedeveloper.com/design/the-chemistry-of-game-design
https://www.raphkoster.com/games/presentations/the-limits-of-formalism
https://github.com/increpare/PuzzleScript
https://www.puzzlescript.net/Documentation/documentation.html
https://www.puzzlescript.net/Documentation/documentation.html
https://github.com/Hyper445/Tutomate

	Abstract
	1 Introduction
	2 Background
	2.1 PuzzleScript
	2.2 Problem Analysis

	3 TutoScript
	4 TutoMate
	4.1 Enriching Playtraces with Verbs
	4.2 TutoMate Engine

	5 Case Studies
	5.1 Prototcol
	5.2 Lime Rick
	5.3 Block Faker

	6 Discussion
	6.1 Costs and benefits
	6.2 Limitations and threats to validity

	7 Related Work
	7.1 Game Analytics
	7.2 Automated Game Design
	7.3 Tools for Puzzles and Tutorials

	8 Conclusions
	Acknowledgments
	References

