

ALGORITHMIC LANGUAGES

International Symposium on
Algorithmic Languages

Amsterdam, The Netherlands, 26-29 October 1981

organized by
The Mathematical Centre, Amsterdam,

under the auspices of
IFIP Technical Committee 2,

Programming
International Federation for Information Processing

Program Committee

0.-J. Dahl, R.B.K. Dewar, E.W. Dijkstra, A.P. Ershov,
C.A.R. Hoare, G. Kahn, C.H.A. Koster, B. Liskov, M. Paul (Chairman),

J.E.L. Peck, W.L. van der Poel, S.A. Schuman, M. Sintzoff,
T.B. Steel, Jr., W.M. Turski, J.C. van Vliet, N. Wirth, N. Yoneda

NORTH-HOLLAND PUBLISHING COMPANY

AMSTERDAM • NEW YORK • OXFORD

Adriaan van Wijngaarden

Editors' Preface

Adriaan van Wijngaarden, mathematician and computer scientist, was
born in Rotterdam, November 2, 1916. He was educated at the
Gymnasium Erasmianum in Rotterdam, and studied at the Delft Techno
logical University, where he obtained his Ph.D. in Mechanical Engineering
in 1945. The title of his thesis was 'Some applications of Fourier integrals
to elastic problems'. His first positions were with the Delft Technological
University - during the war years - and, during 1946, with the National
Aerospace Laboratory.

In February 1946, the Mathematisch Centrum (MC) was founded in
Amsterdam as a research institute in pure and applied mathematics by a
number of far-sighted scientists who foresaw the importance of mathemat
ics for the Dutch post-war society. On January 1, 1947, Van Wijngaarden
started his work at the MC as founder of its Department of Computation.
It was the beginning of his eminent career at our Institute. In the ensuing
years, the MC grew from a handful of people to a staff or more than 150
employees. Moreover, computer science in the Netherlands was born, grew
up and came of age, all due to the inspiring leadership and great scientific
achievements of Van Wijngaarden.

We shall try to briefly outline the main events of Van Wijngaarden's
years at the Mathematisch Centrum. Immediately after his appointment he
left for an extensive tour - taking most of 1947 - of the UK and the USA.
He visited many of the places and people involved in the fascinating
development of the first computers and their applications, including
Wilkes in Cambridge, Turing and Wilkinson at the National Physical
Laboratory, and Goldstine and Von Neumann at the Institute for
Advanced Study. Then, upon his return to Holland, Van Wijngaarden
initiated the work on the construction of the first Dutch computers. In the
early fifties, primarily at the Mathematisch Centrum and, later, also in a
number of industrial laboratories, the first electronic computers of the

vii

viii Editors' Preface

Netherlands were built. The ARRA was completed at the MC in 1952, and
was one of the first machines on the continent. Members of the group
headed by Van Wijngaarden were B.J. Loopstra and C.S. Scholten,
G.A. Blaauw for a somewhat shorter period, and, at a later stage
E.W. Dijkstra and W.L. van der Poel. The latter was employed at that
time by the Dutch PTT Laboratory, but worked in close contact with the
MC and was actually Van Wijngaarden's first Ph.D. student. (See also the
list of Van Wijngaarden's Ph.D. students below.) After the ARRA, the
MC constructed the ARMAC and the Xl, the first fully transistorized
machine. In the late fifties, it was felt that further manufacturing of com
puters was more appropriate in an industrial environment, rather than in a
research institute, and the Electrologica company was founded as an
independent firm for this purpose. Later, Electrologica was to become part
of the Philips concern.

In the years of his involvement in the development of Dutch computers,
Van Wijngaarden also worked very actively as a mathematician, publishing
numerous papers on a variety of topics in applied and numerical mathe
matics, and a few in number theory as well. In fact, the first published
algorithm in ALGOL 60 (the procedure euler of the Report on the Algo
rithmic Language ALGOL 60, cf. Peter Naur's invited lecture in these Pro
ceedings) was based on Van Wijngaarden's publication [17] (see the list of
publications to follow), one of his main contributions to numerical mathe
matics.

In the meantime, the importance of Van Wijngaarden's work was
recognized by the Dutch scientific community in a number of ways. In
1952, he was appointed 'Bijzonder hoogleraar' at the University of
Amsterdam. (This is a part-time appointment with the rank of full
professor, financed, e.g., by a research foundation.) In the same year, he
became a member of the Board of the Mathematisch Centrum. In 1958 he
was appointed as 'Buitengewoon hoogleraar' at the University of
Amsterdam (the difference with 'Bijzonder hoogleraar' being that the
position is paid by the university) to teach Applied Mathematics. In 1959
he was elected member of the Koninklijke Nederlandse Akademie van
Wetenschappen (the Royal Dutch Academy of Sciences), and he also
received the 'Medaille d'argent de la ville de Paris'. In 1960 he was elected
as a Senior Member of the Institute of Radio Engineers (now IEEE).

In the late fifties - after the termination of the MC's involvement in the
construction of computers - Van Wijngaarden's scientific interest

Editors' Preface ix

changed direction, and turned to the design of machine independent,
general purpose algorithmic languages. It is in this area that the contribu
tions of Van Wijngaarden have probably been the most profound. For this
reason, the organizers of the Symposium have selected the theme Algo
rithmic Languages as an appropriate topic for a conference in his honour.
We are very glad that these proceedings contain the excellent papers by
Peter Naur and Wladyslaw Turski describing Van Wijngaarden's share in
the design of ALGOL 60, and his monumental efforts in the design of
ALGOL 68. ALGOL 68 being essentially an IFIP project, it is only to be
expected that in Professor Zemanek's impressive address on Van
Wijngarden's role in the history of IFIP, a major part is played by the
ALGOL 68 developments. The final judgement on Van Wijngaarden's
work on algorithmic languages is in the hands of history. The editors
cannot but admire its mathematical depth, conceptual richness and
elegance, and sheer intellectual power, recognize its lasting influence on the
theory and teaching of programming languages, and, at the same time,
admit that the complete implementation of ALGOL 68 has posed serious
problems, and its practical use has spread little outside the academic world.

In 1961, Van Wijngaarden was appointed director of the Mathematisch
Centrum. Besides the demands of his scientific work, he now also carried
the responsibility for our Institute - helped by the associate directors
F.J.M. Barning and, later, J. Nuis. We feel that it has been a privilege for
us to be led by a great scientist. The example he has set us by his outstand
ing research, his love for mathematics in general - and for the Mathema
tisch Centrum in particular - , and the way in which he has represented our
Institute in national and international bodies concerned with the organiza
tion of scientific work have been vital for the MC, and, through this, for
the whole Dutch mathematical community. Internationally, most of Van
Wijngaarden's organizational contributions have been through IFIP, and
we are grateful to Professor Zemanek for his splendid laudatio of Van
Wijngaarden's IFIP work. In the Netherlands, Van Wijngaarden has been
involved in so many organizations that we cannot begin to describe his
contributions in full. He was founder and for many years member of the
Board of the Nederlands Rekenmachine Genootschap, i.e., the Dutch
Computer Society, which appointed him an honoary member in 1972. He
was a member of the Board of the Wiskundig Genootschap (the Dutch
Mathematical Society), and for many years chairman of its Committee for
Scientific Computing. For many years, again, he was chairman of the

X Editors' Preface

Academische Raad Sectie Informatica (the committee coordinating
university education in computer science in the Netherlands). He was one
of the founders of SARA, the joint computer centre of the Mathematisch
Centrum, the University of Amsterdam and the Free University at
Amsterdam. And, to close this very incomplete list with an activity which
has always been precious to Van Wijngaarden: through the years he has
taken a lively interest in computational linguistics, exemplified here by his
membership of the committee for Frequency Investigations of the Dutch
Language.

For almost thirty years now Van Wijngaarden has been a Professor of
Applied Mathematics at the University of Amsterdam. During those years
his teaching covered a wide spectrum of topics ranging from, e.g., numeri
cal mathematics through the design and application of ALGOL 60 and
ALGOL 68 to the art of two-level grammars. Numerous students have
received their first introduction to computer programming through his
lectures. The quest for elegance has always been one of Van Wijngaarden's
driving forces, and often his audience marveled at the crystal beauty of the
algorithms he taught them. Present day teaching of computer science in the
Netherlands owes an immense debt to Van Wijngaarden. Virtually all
Dutch professors of computer science were either his Ph.D. students (see
list below), or spent some years at the Mathematisch Centrum, profiting
from its stimulating research conditions. Besides his lectures at the
Amsterdam University, Van Wijngaarden has given innumerable lectures
in the Netherlands and abroad. Some impression of the scope of his
travelling can be obtained by Professor Zemanek's listing of his partici
pation in IFIP meetings. The full list of all his trips extends over ten pages.
It includes prolonged stays as visiting professor at New York University,
the University of California at Berkeley, and the University of Chicago.
Further many invited lectures at important conferences - at the IFIP
Congress 68 on ALGOL 68, to mention just one example-, special honours
such as the first Fibonacci lecture in Pisa, 1967, and countless talks at
universities around the world.

The importance of Van Wijngaarden's work for the Dutch society in
general was recognized by his being honoured in 1973 as Ridder in de Orde
van de Nederlandse Leeuw (one of the orders in the Queen's list of
honours). In 1974, his international work was honoured by the Inter
national Federation for Information Processing which awarded him its
Silver Core. In 1978, he was awarded an honorary doctorate by the Institut
National Polytechnique in Grenoble.

Editors' Preface xi

Having started our brief description of Van Wijngaarden's scientific
career with mentioning his Ph.D. at the Delft Technological University, we
now come to a very appropriate ending: In 1979, Van Wijngaarden was
awarded the Doctorate Honoris Causa by the Delft Technological
University. W.L. van der Poe!, his first Ph.D. student, was now his
promotor.

On September 1, 1980, Van Wijngaarden retired as director of the
Mathematisch Centrum, and became advisor to the Board of Trustees and
the Directorate of our Institute. His complete retirement from the MC will
take place in the fall of 1981. We know that the last years have been hard
for him, due to the untimely death of his beloved wife Willeke. She is
remembered in sorrow by countless friends and colleagues of Van
Wijngaarden.

Algorithmic - and other - languages continue to be central interests of
Van Wijngaarden's scientific life. 'Languageless programming' is the
intriguing title of his latest publication, and he remains enticed by the
charms of etymology; we are eagerly looking forward to the results of his
further studies.

Having reached the end of our Preface, we express our deepest gratitude
for everything done for our Institute and for the world of science by
Adriaan van Wijngaarden, Dutch mathematician and computer scientist.

The Editors

Publications by A. van Wijngaarden

1942 Laminar flow in radial direction along a plane surface,
A. van Wijngaarden, Proc. Ned. Akad. Wet., XLV(l942) 269-275.

1943 2 Stroming in radiate richting tussen twee vlakke wanden,
A. van Wijngaarden, Verslagen Ned. Akad. Wet., Lll (1943) 29-36.

1945 3 Enige toepassingen van Fourierintegralen op elastische problemen,
A. van Wijngaarden, Thesis T.H. Delft, Delft (Meinema, 1945) 122 pp.

1946 4 Large distortions of circular rings and straight rods,
A. van Wijngaarden, Proc. Kon. Ned. Akad. Wet, (1946) 648-664.

1947 5 The elastic stability of flat sandwich plates,
A. van Wijngaarden, Rep. & Trans. Nat. Aeron. Res. Inst., Xlll (1947) S37-56.

6 Over het niet-lineaire verband tusschen de doorbuiging en de belastende kracht
van een in zijn beide uiteinden ingeklemden haljcirke!vormigen ring,
A. van Wijngaarden, De Ingenieur 1947 no 8, Techn. Wet. Ond. 2, 1-3.

1948 7 Principes der electronische rekenmachines,
A. van Wijngaarden, Syllabus Math. Centre (1948) 27 pp.

1949 8 A!gemeen overzicht over moderne rekenmachines,
A. van Wijngaarden, Ned. Tijdschrift voor Natuurkunde, 15 (1949) 243-253.

9 Ecou!ement potential autour d'un corps de revolution,
A. van Wijngaarden, in Methodes de calcul dans des problemes de mecanique,
Paris (CNRS, Coll. Int. XIV, 1949) 72-87.

10 Cursus moderne rekenmethoden,
A. van Wijngaarden, Syllabus Math. Centre, 166 pp.

11 Table of Fresnel integrals,
A. van Wijngaarden and W.L. Scheen, Verhandelingen Kon. Ned. Akad. Wet.
(Afd. Natuurkunde, le Sectie, XIX, no 4, 1949) 1-26.

12 Practisch rekenen,
A. van Wijngaarden, Eerste Ned. Syst. Inger. Encycl. JV (1949) 104-112.

xiii

xiv Publications by A. van Wijngaarden

1950 13 Afrondingsfouten,
A. van Wijngaarden, Math. Centre, Comp. Dept., MR3 (1950) 20 pp.
(Translation: 'Rounding-off errors' by E. Lever and T.W. Hill, Division of
Math. Stat. CSIRO, Australia, Techn. Rep. 7 (1972), 16 pp.).

14 Grundsiitzliche Probleme der Abrundungsfehler,
A. van Wijngaarden, ZAMM, 30 (1950) 275-276.

15 Table of the cumulative symmetric binomial distribution,
A. van Wijngaarden, Proc. Kon. Ned. Akad. Wet., LIII (1950) 301-312.

16 A table of partitions into two squares with an application to rational triangles,
A. van Wijngaarden, Proc. Kon. Ned. Akad. Wet., LJ/1 (1950) 313-325.

1951 17 Large deflections of semi-oval rings,
A. van Wijngaarden, Rep. & Trans. Nat. Aeron. Res. Inst., XV/(1951) Sl-7.

18 Programmeren voor de ARRA,
A. van Wijngaarden, Math. Centre, Comp. Dept., MR7 (1951), 44 pp.

19 Decimal-binary conversion and deconversion,
A. van Wijngaarden, Math. Centre, Comp. Dept., Rl30 (1951) 41 pp.

1952 20 Tables for use in rank correlation,
L. Kaarsemaker and A. van Wijngaarden, Statistica, 7 (1953) 41-54.

21 Harmonic analysis of earth-tides measurements,
J. Berghuis and A. van Wijngaarden, Math. Centre, Comp. Dept., R97 (1952)
18 pp.

22 Table of the integral Sb exp(-v-2 -xv)v-Pdv,
A. van Wijngaarden, Math. Centre, Comp. Dept., Rl76 (1952) 6 pp.

23 Rekenmachines,
A. van Wijngaarden, in Winkler Prins Encyclopaedie, 6th edition, XV (1952)
841-842.

24 Electronische rekenmachines,
A. van Wijngarrden, (1952) 67-76.

25 Rekenen en vertalen,
A. van Wijngaarden, Oratie UVA, Delft (Waltman, 1952) 21 pp.

26 A note on Bernoulli numbers,
A. van Wijngaarden, Math. Centre, Comp. Dept., DR7 (1952) 3 pp.

1953 27 On a certain asymptotic expansion,
A. van Wijngaarden, Quarterly of Applied Math., XI (1953) 244-246.

28 A tranformation of formal series,
A. van Wijngaarden, Proc. Kon. Akad. Wet., ser. A, L VJ (1953) 522-543.

29 On the coefficients of the modular invariant J (T),

A. van Wijngaarden, Proc. Kon. Ned. Akad. Wet., ser. A, LV/(1953) 389-400.
30 Erreurs d'arrondiment dans /es ca/cuts systematiques,

A. van Wijngaarden, in Les machines a calculer et la pensee humaine, Paris
(CNRS, Coll. Int., XXXVII, 1953) 285-293.

31 Ut tensio sic vis, (in English),

Publications by A. van Wijngaarden xv

A. van Wijngaarden, in C.B. Biezeno Anniversary volume on applied
mechanics, Haarlem (Stam, 1953) 214-224.

32 A remark on Fermat's last theorem,
H.J.A. Duparc and A. van Wijngaarden, Nieuw Archief voor Wiskunde (3) I

(1953) 123-128.
33 Note on a previous paper on Fermat's last theorem,

H.J.A. Duparc and A. van Wijngaarden, Nieuw Archief voor Wiskunde (3) 11
(1954) 40-41.

34 Het gebruik van automatische rekenmachines,
A. van Wijngaarden, in Verslag van het tiende Nederlands Congres van leraren
in de wiskunde en de natuurwetenschappen, Groningen (Wolters, 1954) 13-18.

35 Mathematics and computing,
A. van Wijngaarden, in Automatical digital computation, NPL, Her Majesty's
Stationary Office, (1954) 125-127 (also p. 124).

36 Table of Everett's interpolation coefficients,
E.W. Dijkstra and A. van Wijngaarden, Math. Centre, Comp. Dept., R294
(1955) 204 pp.

37 Introduction,
A. van Wijngaarden, Proc. Inst. Electrical Engineers, 103 part B Supplement
number I (1956) 112-113.

38 Capita uit de numerieke wiskunde,
A. van Wijngaarden (ed), J. Berghuis, E.W. Dijkstra, Math. Centre, Syllabus
Coll. 1955/56, 25 pp.

39 Programmeren voor automatische rekenmachines,
A. van Wijngaarden, E.W. Dijkstra (eds.), Math. Centre, Syllabus cursus
1955/56 (1956), 128 pp.

1957 40 Automatisering in de Wetenschap,
A. van Wijngaarden, in Economisch-Statistische Berichten, no. 2103 (1957)
832-833.

41 Programmeren voor automatische rekenmachines,
A. van Wijngaarden (ed), T.J. Dekker, E.W. Dijkstra, Math. Centre, Syllabus
cursus 1956/57 (1957) 106 pp.

1959 42 The state of computer circuits containing memory elements,
A. van Wijngaarden, in Proc. Int. Symp. on the theory of switching (1957),
Annals Comp. Lab. Harvard Univ. 30 (1959) 213-224.

1960 43 Report on the algorithmic language ALGOL 60,
J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (editor),
A.J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. van
Wijngaarden, M. Woodger, Num. Mathematik 2 (1960) l06-136, and
elsewhere.

1961 44 L 'influence de ALGOL sur !'analyse numerique,

xvi

1962

1963

45

46

Publications by A. van Wijngaarden

A. van Wijngaarden, in Colloque sur !'analyse numerique tenu a Mons !es 22, 23
et 24 Mars 1961, CBRM, Paris (Gauthier-Villars, 1961) 89-97.

Generalized ALGOL,
A. van Wijngaarden, in Symbolic languages in data processing, New York
(Gordon and Breach, 1962) 409-419 and in Annual Review in Automatic
programming, 3 (1963) 17-26.

Revised Report on the algorithmic language ALGOL 60,
J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (editor),
A.J. Perlis, H. Rutishauer, K. Samelson, B. Vauquois, J .H. Wegstein, A. van
Wijngaarden, M. Woodger, Num. Mathematik 4 (1963) 420-453, and
elsewhere.

47 Switching and programming,
A. van Wijngaarden, in Switching theory in space technology, Stanford (Un.
Press, 1963) 275-283.

1964 48 Recursive definition of syntax and semantics,
A. van Wijngaarden, in Formal language description languages for computer
programming, Amsterdam (North Holland, 1966) 13-24.

49 Rekenen in Nederland,
A. van Wijngaarden, in NRMG 1959-1964, Amsterdam (NRMG, 1964) 5-23.

50 The language of the future,
A. van Wijngaarden, in Proc. Nat. Conf. on data processing, Rehovoth (1964),
Inf. Proc. Ass. of Israel (1965) 189-211.

51 Formal properties of newspaper Dutch,
J.A.Th.M. van Berke!, H. Brandt Corstius, R.J. Mokken and A. van
Wijngaarden, Math. Centre Tracts 12, 123 pp.

1965 52 Orthogonal design and description of a formal language,
A. van Wijngaarden, Math. Centre, Comp. Dept., MR76 (1965) 25 pp.

53 Procesanalyse,
A. van Wijngaarden, Syllabus Math. Centre (1965) 129 pp.

1966 54 Numerical analysis as an independent science,
A. van Wijngaarden, BIT, Nordisk Tidskrift for Informationsbehandling, 6
(1966) 66-8 I.

55 Triangular arrays of digits,
A. van Wijngaarden, Math. Centre, Comp. Dept., MR83 (1966) 28 pp.

56 De kwadratuur van de cirkel,
A. van Wijngaarden, Mededelingen NRMG, 8, I (1966) 1-3 and cover.

57 A draft proposal for the algorithmic language ALGOL X,
A. van Wijngaarden, B.J. Mailloux, Math. Centre, Comp. Dept. (1966) 63 pp.

1967 58 A draft proposal for the algorithmic language ALGOL 67,

Publications by A. van Wijngaarden xvii

A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, Math. Centre, Comp. Dept.,
MR88 (1967) 129 pp.

59 A draft proposal for the algorithmic language ALGOL 68,
A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, Math. Centre, Comp. Dept.,
MR92 (1967) 124 pp.

1968 60 Draft report on the algorithmic language ALGOL 68,
A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, Math.
Centre, Comp. Dept., MR93 (1968) Ill pp.

61 Working document on the algorithmic language ALGOi 68,
A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, Math.
Centre Comp. Dept., MR95 (1968) 180 pp.

62 Penultimate draft report on the algorithmic language ALGOL 68,
A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, Math.
Centre, Comp. Dept., MR99 (1968) 183 pp.

63 Final draft report on the algorithmic language ALGOL 68,
A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, Math.
Centre, Comp. Dept., MRI00 (1968) 155 pp.

1969 64 Report on the algorithmic language ALGOL 68,
A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, Math.
Centre, Comp. Dept., MRl0I (1969, 3 printings) and elsewhere, especially
Numerische Mathematik 14 (1969) 79-218. Translated into French, German,
Russian, Bulgarian and Chinese.

65 Physionomie, psyche en chironomie,
Leo Geurts, Lambert Meertens, Reind van de Riet, Aad van Wijngaarden,
Math. Centre, 4 october 1969, 34 pp.

66 Rekenmethodes voor automatische rekenmachines,
A. van Wijngaarden, in Colloquium Moderne Rekenmachines 1, MC Syllabus
7.1 (1969) 73-80.

67 Dynamica van rekenmachines,
A. van Wijngaarden, in Colloquium Moderne Rekenmachines 1, MC Syllabus
7.1 (1969) 120-128.

1970 68 On the boundary between natural and artificial languages,
A. van Wijngaarden, in Linguaggi nella societa e nella tecnica, Milano (edizioni
di Communita, 1970) 165-176.

1971 69 MC: MCMXLVI - MCMLXXI,
A. van Wijngaarden, in ZWO Jaarboek 1971, 105-I09.

1973 70 Ontwikkelingen op computergebied,
A. van Wijngaarden, in Een kwart eeuw wiskunde 1946-1971, MC Syllabus 18
(1973) 59-79.

xviii Publications by A. van Wijngaarden

1974 71 On the generative power of two-level grammars,
A. van Wijngaarden, in Proc. 2nd Colloquium on Automata, Languages and
Programming, Saarbriicken, Springer Lecture Notes in Comp. Sci. 14 (1974)
9-14.

1975 72 Revised Report on the algorithmic language ALGOL 68,
A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff,
C.H. Lindsey, L.G.L.T. Meertens, R.G. Fisker, editors, Acta Informatica 5
(1975) 1-234, and elsewhere. Translated into French, German, Russian.

73 Programmacorrectheid en grammatica's,
A. van Wijngaarden in Colloquium Programmacorrectheid 1975, MC Syllabus
21 (1975) 177-186.

1977 74 Het hangbuikzwijnwijfje,
A. van Wijngaarden, in Lexicologie, opstellen voor F. de Tollenaere, Groningen
(Wolters-Noordhoff, 1977) 309-313.

1979 75 Thinking on two levels,
A. van Wijngaarden, in Proc. bicentennial congress Wiskundig Genootschap,
part II, Math. Centre Tracts 101 (1979) 417-428.

1981 76 Languageless programming,
A. van Wijngaarden, in Proc. IFIP/TC2/WG2.5 working conference on the
relations between numerical computation and programming languages, Boulder,
North-Holland, to appear.

Ph.D. students of A. van Wijngaarden

1. W .L. van der Poel,

2. N.C. de Troye,

3. E.W. Dijkstra

4. G. Zoutendijk,

5. J.A. Zonneveld,

6. J.W. de Bakker,

7. R.P. van de Riet,

8. B.J. Mailloux,

9. J. Verhoeff,

10. H. Brandt Corstius,

11. M.H. van Emden,

12. P. van Emde Boas,

The logical principles of some simple
computers,
1956:02:01.
Classification and minimization of
switching functions,
1958:07:09.
Communication with an automatic
computer,
1959:10:28.
Methods of feasible directions,
1960:06:22.
Automatic numerical integration,
1964:06:17.
Formal definition of programming
languages,
1967:05:17.
ALGOL 60 as formula manipulation
language,
1968:02:07.
On the implementation of ALGOL 68,
1968:06:12.
Error detecting decimal codes,
1969:06:25.
Exercises in computational linguistics,
1970:01 :21.
An analysis of complexity,
1971 :06:09.
Abstract resource-bound classes,
1974:09: 18.

xix

xx Ph.D. students of A. van Wijngaarden

13. H.J .J. te Riele, A theoretical and computational study of
generalized aliquot sequences,

14. J.C. van Vliet,

15. D. Grune,

1976:01 :21.
ALGOL 68 transput,
1979: 10:03.
On the design of ALEPH,
1981: ...

Foreword

The International Symposium on Algorithmic Languages is an event
which, while dealing timely with a wide selection of appropriate topics in
the field, brings also back memories from earlier years when this subject
caught first the interest of scientists. In fact the advent of computers posed
almost immediately the problem how one could best describe the algo
rithms that one wanted to be performed with the help of these machines.
K. Zuse developed already during the year 1945 for this purpose his
'Plankalkiil' which allowed him to formulate algorithms, albeit in a form
which was mostly machine oriented.

An important step forward was made when, apart from the mere de
scriptive details, research about the fundamental concepts of programming
began. Strong impulses in this direction were given in 1951 by H. Rutis
hauer in his paper on automatic design of calculating plans for
programmable computers. Influenced by this work one of the fundamental
discoveries was made by F.L. Bauer and K. Samelson when they detected
the cellar principle. Through it the parsing of bracket structures became
very transparent, easily understandable, and efficiently implementable.
The latter being the most apparent and immediate aim since it allowed an
important part of compiler writing to be handled in a very satisfactory
way, the then new principle really goes much deeper than this. It marks in
truth the discovery of a basic equivalence: the equivalence of the abstract
data structure cellar (resp. push-down-store or LIFO-list) with trees in their
depth-first interpretation and consequently, therefore, among many others
with block- and bracket-structures in programming languages. This
principle has led the authors of the Report on the Algorithmic Language
ALGOL 60 to introduce rigorously the block structure for controlling the
scope of variables; moreover it was also used dynamically insofar as the
hierarchies of incarnations of procedure-bodies invoked by procedure calls
followed the same principle: the tree structure of hierarchies formed by

XX!

xxii Foreword

procedure calls allows the storage allocation to be handled by a cellar.
Without the equivalence mentioned above stated explicitly at that time, for
some working in this field the run-time stack was then seen as something
completely different from the operator-cellar for parsers of block- and
bracket-structures. Samelson's suggestions for the design of ALGOL,
however, were guided by his fully understanding the equivalence principle.

Meanwhile new challenges for the dealing with algorithmic languages
developed. Especially recursive data structures had become more impor
tant the more computer applications went into non-numerical computa
tions on a broader scale. List structures by J. McCarthy and the record
structures - abstract and concrete - by C.A.R. Hoare were the appropri
ate answer given to this challenge in the design of programming languages.
However, the greatest challenge for algorithmic languages in the 1960ies
came, when computing scientists felt utterly distressed by the fact that
programming and writing programs in an algorithmic language was
becoming so complex that it was extremely error-prone and had developed
into a hardly manageable engineering discipline.

These sorrows were openly discussed at the famous Garmisch
Conference on Software Engineering. One decisive step towards making
programming more reliable was the introduction of the axiomatic method
by R. W. Floyd and C.A.R. Hoare. With it programs written in an algo
rithmic language could be proved to be correct; but this approach was
really reaching much further than that in as far as it laid the foundations
for research in the field of constructing correct programs. It had a strongly
stimulating effect for work in this direction. The latter came about with the
predicate transformers introduced by E.W. Dijkstra, an idea that must be
considered as fundamental in the design and evolution of correct programs
starting from correct specifications of given problems. Considering this
important area makes clear that studying algorithmic languages involves
the investigation not only of data structures and function applications but
also of the process of designing algorithms. In fact this latter aspect has
recently drawn at least as much interest as the former, and it will become
even more demanding with application programs being required for
further and larger problem areas.

Another great challenge in dealing with algorithmic languages is
presented by distributed processing which has arrived in the wake of the
technological progress achieved with microprocessors and microprogram
ming. There is a host of research work going on at present in this field with

Foreword xxiii

regard to establishing principles and finding basic concepts for interacting
processes and their mutual communications. Much has been achieved
already if we consider concepts like semaphores, monitors, critical regions,
tasks, or if we look at models like Petrinets and data-flow machines.
However, much more remains to be done if we want to understand and
keep under control the enormous complexity of parallel programming
which is needed with distributed systems.

The development of algorithmic languages and typical research areas
connected with them as indicated above is reflected to a considerable extent
in the definition of high-level programming languages beginning with the
publication of FORTRAN in 1956 and ALGOL in 1958. It can be said in
regard of this line of languages and research areas that many members of
working groups under IFIP /TC 2 have had a great impact and influence
upon this evolution, thereby making a number of important steps toward
the point where we stand today. ALGOL 60 was the first of these steps,
and that language has played an important part as a stimulus for many
research projects in programming and compiling just as much as it was and
is used as a programming language.

Starting from ALGOL 60, within WG 2.1, ALGOL 68 was developed,
and new ideas (e.g. records, concise parameter linkage) went into that
language. It is known that ALGOL 68, unlike ALGOL 60, is controversial
in many details, and has by far not found the widespread use of ALGOL
60. It has, however, again served as a focus for interesting and stimulating
discussions in the field of programming languages. Furthermore, in the
Report on the Algorithmic Language ALGOL 68 a powerful and adaptable
form of grammar, which A. van Wijngaarden had introduced, was used
for the definition of the language. It were this class of two-level-grammars
and the class of VOL-languages which served as a starting point for
discussions in WG 2.2 which had been founded as a result of the succesful
Working Conference on Formal Language Definition Languages, 1964 in
Baden near Vienna. The controversies over ALGOL 68 had on one hand
the deplorable effect of splitting WG 2.1 but, as it turned out, also the very
positive effect of creating WG 2.3 on Programming Methodology on the
other.

All three working groups mentioned and, since 1973, WG 2.4 on Systems
Implementation Languages have had a sizeable share in creating a better
understanding of algorithmic languages, their concepts, their definition,
and their use in writing programs. TC 2 has therefore good reasons to

xxiv Foreword

appreciate that, under its auspices, an International Symposium on
Algorithmic Languages is organized by the Mathematical Centre as a
tribute to A. van Wijngaarden. The submitted papers which have been
selected deal with most of the areas which were mentioned above. In
addition, the program committee has invited speakers who will give talks
about selected topics on algorithmic languages as well as about A. van
Wijngaarden's contributions to ALGOL and his work for IFIP.

With great thankfulness to the authors and to the organizers from the
Mathematical Centre I express, also on behalf of IFIP /TC 2, my belief that
this Symposium deserves to be well received.

Miinchen, September 1981 M. Paul,
Chairman Program Committee

Table of Contents

Editors' Preface. vu
Publications by A. van Wijngaarden . xm
Ph.D. Students of A. van Wijngaarden . xix
Foreword . xx1

M. Paul

The role of Professor A. van Wijngaarden in the history of IFIP
(Invited Opening Address)
H. Zemanek

PLAIN: An algorithmic language for interactive information
systems

A.I. Wasserman, R.P. van de Riet, M.L. Kersten. 29
PORTAL -A PASCAL-based real-time programming language

R. Schild... 49
Naming by colours: A graph-theoretic approach to distributed

structure
J.D. Roberts . 59

Optimization of inductive assertions
H.S. Warren, Jr. 77

The design of vector programs
A. Bossavit, B. l'vfeyer...................................... 99

Formal language definitions can be made practical
P. Klint. 115

Is computer science based on the wrong fundamental concept of
'program'?
An extended concept (Invited Address)
J. Backus . 133

Issues in the design of a beginners' programming language
L.G.L. T. Meertens.. 167

XXV

xxvi Table of Contents

From VW-grammar to ALEPH
D. Grune . 185

On design principles for programming languages: An algebraic
approach
M. Broy, P. Pepper, M. Wirsing . 203

The structured description of algorithm derivations (Invited Address)
J. Darlington . 221

HYPERLISP
M. Sato, M. Hagiya . 251

Symbolic evaluation of LISP functions with side effects for
verification
D. de Champeaux, J. de Bruin. 271

Aad van Wijngaarden's contributions to ALGOL 60 (Invited
Address)
P. Naur.. 293

On the notion of strong typing
M.M. Fokkinga . 305

Abstract storage structures
H.B.M. Jonkers . 321

The essence of ALGOL (Invited Address)
J.C. Reynolds . 345

An operational semantics for bounded nondeterminism equivalent
to a denotational one
R. Kuiper . 373

A proof rule for fair termination of guarded commands
0. Griimberg, N. Francez, J.A. Makowsky, W.P. de Roever... 399

ALGOL 68 revisited twelve years later or from AAD to ADA
(Invited Address)*
W.M. Turski . 417

*This paper has been omitted from the Participants' Edition at the explicit request of the
author.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 1-28

Invited Opening Address

The Role of Professor A. van Wijngaarden in the History of IFIP

Heinz Zemanek

University of Technology, Vienna, Austria

Speaking of the role of Professor van Wijngaarden means speaking of
the European history of computing and of programming languages from
EDSAC to the present day. It also means speaking about the history of
IFIP. It is impossible to separate these subjects.

It is, however, equally impossible for me to treat this compound as a
whole or tell the entire Van Wijngaarden story. I would never dare to
embark on such a giant enterprise. What I can do and what I have been
asked to do is to give a description of what I have seen and experienced in
25 years of my acquaintance with him and leave out the formal, the
seriously scientific part, which is much better reflected by the symphony of
papers that is to follow in this week. My personal view will resemble a
shadow showing the contours, but never acquiring the full splendour of a
portrait painted in colours.

Before 1959

I am not entirely sure about when our relationship began, but I believe
that I first met Professor van Wijngaarden in Darmstadt at the first
European computer conference with some international flavour which I
had an opportunity to assist. From the very beginning I have sensed the
dual character of his unique personality: the large mind which has always
extended beyond my horizon, and the sharp brain that can suddenly focus
on the smallest detail, but will illustrate by it some general aspect; the

2 H. Zemanek

'generalizer' who generalized even a general purpose programming
language, and the 'specializer' whose production of sentences and
questions has often reminded me of a pencil sharpener.

At the Darmstadt GAMM-NTG-Fachtagung in October 1955 on
Electronic Digital Computers and Information Processing, organized by
Professor Alwin Walther, Professor van Wijngaarden gave a survey on
Scientific computing in The Netherlands [1]. It started with the observation
made by someone during the conference that the per capita number of
computers in The Netherlands was astonishingly high, maybe the highest -
at that time - in Europe. Professor van Wijngaarden left some doubts
whether this was really true, but he stressed the vivid activity in computer
research in his country.

Apart from a Ferranti computer in the Shell Laboratories, there were at
that time four computers that had been developed by and realized for
research in The Netherlands as well as several others still in planning stage,
and in all these cases - he himself did not say that clearly - he and his
students played a leading role: there was PTERA in PTT, which had been
developed by Kosten and Van der Poel and was running already for some
years, and there was ARRA, an electronic replacement of the earlier relay
computer of the same name, at the Mathematisch Centrum. This
institution had cooperated with Fokker to copy this machine for them - it
was then called FERTA - and a second, faster machine, ARMAC. The
paper included many slides of all those computers.

Two years later we met again in Cambridge, MA, at Howard Aiken's
conference of 1957 where Professor van Wijngaarden's paper was on The
state of computer circuits containing memory elements [2], giving his
version of sequential switching algebra and elementary automata theory.

Another two years later we were together at the ALGOL conference in
Copenhagen in February 1959, which was devoted to the exchange of ideas
and experiences with this new language. The prehistory is the following.
After the Darmstadt Fachtagung GAMM established a committee for
programming, and when in April 1958 they compared their work with the
results of a similar committee of ACM, they found that there was a lot in
common. It was therefore easy for both sides to accept cooperation. A
joint ACM-GAMM Committee was appointed and met in Zurich in May
1958. They formulated a preliminary report on an International
Algorithmic Language [10], first abbreviated by IAL and later called
ALGOL (58). The members of the Joint Committee were, for ACM,

Professor van Wijngaarden 's role in the history of IFIP 3

D. Arden, J. Backus, P. Desilets, D.C. Evans, R. Goodman, S. Gorn, H.
Huskey, C. Katz, J. McCarthy, A. Orden, A.J. Perlis, R. Rich, S. Rosen,
W. Turanski and J.H. Wegstein, and for GAMM, F.L. Bauer, H.
Bottenbruch, P. Graeff, P. Lauchli, M. Paul, F. Penzlin, H. Rutishauser
and K. Samelson.

As an ACM-GAMM-creation, ALGOL was an achievement of two sub
societies of the later IFIP member organizations AFIPS and DARA, and
since the 13 ALGOL fathers decided to bring ALGOL under the umbrella of
IFIP, ALGOL is a keyword of this paper, in particular because Professor
van Wijngaarden is the father of ALGOL 68. I will come back later to this
stream of events.

1959: ICIP

The meetings I have so far mentioned can be seen today as events leading
to the big bang in international information processing: to ICIP, the
International Conference on Information Processing organized under the
auspices and at the headquarters of UNESCO in Paris, in August 1959.
Professor van Wijngaarden was a leading figure in this extremely
important gathering, not only because he had the honouring title
Vicepresident of the Congress, but mainly because of his contributions to
the congress organization and programme. It is impossible to evaluate or
estimate the number of acquaintances, friendships, events and
developments which this first large-scale international computer
conference initiated. It is fascinating to read today, 22 years later, the
proceedings of that conference, including the paper by Backus on the
definition of ALGOL syntax by production rules, a paper by Bauer and
Samelson on ALGOL (58) and a paper with the famous title Processing data
in bits and pieces by Brooks, Blaauw and Buchholz. It is equally impressive
to read the list of participants; hardly any name famous in our field is
missing.

1960: IFIP

The main consequence of the UNESCO Congress was the foundation of

4 H. Zemanek

IFIP, the International Federation of Information Processing, which had
been prepared in parallel and completed in 1960 by essentially the same
group of people, with LL. Auerbach of the U.S.A. and J.A. Mussard of
UNESCO as the main driving forces. IFIP should not only continue to
organize international computer congresses, it should become the basis of
international cooperation in all fields of information processing and the
clearinghouse of ideas and activities. In 1959 nobody in Paris would have
dared to predict that within 20 years IFIP would have 40 member nations,
10 Technical Committees, 30 Working Groups and half a thousand
members making up all those committees. This is certainly no reason to
congratulate ourselves, and critical judgement does not only come from the
outside - IFIP is well aware of its shortcomings and is continuously
reviewing its structure and its activities, its policies and motivations.

Sometimes critical remarks and reorganization proposals have been
unrealistic or naive. IFIP is largely bound by the nature and quality of its
member organizations and by the delegates commissioned by them; IFIP
can hardly be better than the sum or the average of its constituents. IFIP
has lost less time and effort by fruitless political discussions than any other
similar organization I know. It would be a good thing to cut down on its
administration and to have fewer non-scientific and more scientific and
technical meetings. But it is easier to propose such a reduction than to
realize it without any damage to positive work. The people who installed
IFIP, and Professor van Wijngaarden is one of them, knew very well to
balance administrative needs and technical work and to build up a high level
and a climate of mutual confidence which are not easy to improve. In a
universe of increasing diversification of information processing, of
reduced resources in funds and manpower, of less support for events and
travelling, it is not easy to maintain the standard of the past, when
increasing duties and more problems call for increasing scopes and
achievements. IFIP needs the contributions and the sympathy of everyone
in the field. Professor van Wijngaarden is an admirable example for all of
us; in a seafaring country like Holland you might be reminded of a ship's
figurehead, a smiling, mythical beauty who is constantly ahead of the crew
and the passengers buried in the entrails of the ship.

Professor van Wijngaarden was not simply the representative of The
Netherlands in the IFIP Council and later in the General Assembly. In the
early years of IFIP he assumed almost all possible positions and
participated in nearly all events, not with the intention to obtain fame and

Professor van Wijngaarden 's role in the history of IFIP

Table I
Professor van Wijngaarden in IFIP

ICIP 59: Congress Vicepresident

IFIP COUNCIL/GENERAL ASSEMBLY: Member 1960-1971
IFIP Vice-President: 1962-1964
IFIP Trustee (elected COUNCIL member): 1967-1970
CHAIRMAN TC 1: 1967-1974->hibernated
Member WO I.I: 1967-1974->hibernated
Member TC 2: 1962-1971---+Koffeman
Member WO 2.1: since 1962
Member WO 2.2: since 1965
CHAIRMAN Future Policy Committee: 1963-1967
CHAIRMAN Publications Committee: 1965-1969
Finance Committee, Member: 1961-1962
Statutes and Bylaws Committee: 1969-1971
Member Congress Programme Committee: 1962
Member Working Conference Organizing Committee 1963/64
Chairman and Organizer IFIP 10 Years Anniversary 1969/70
SILVERCORE Recipient 1974

Table 2
Professor van Wijngaarden at IFIP events (and before)
Explanations:
[I] Paper read and published; see literature.

5

[76] Report of the Mathematisch Centrum, distributed before or at WO 2.1 meetings; see

[::]
[Q]

OCT
APR
FEB
AUG
NOV
JAN
JUN
FEB
OCT
FEB
MAR
MAR
MAR
AUG
AUG

literature.
Paper read but not published.
Excused at that meeting - only 4 meetings!

1955 DARMSTADT GAMM-NTG-Tagung
1957 CAMBRIDGE MA Aiken Conference
1959 COPENHAGEN ALGOL Conference
1959 PARIS !C!P 59
1959 PARIS ALGOL Conference
1960 PARIS ALGOL 60 Conference
1960 ROME 1st IFIP COUNCIL
1961 DARMSTADT 2nd IFIP COUNCIL
1961 COPENHAGEN 3rd IFIP COUNCIL
1962 SUNNYVALE CA Aiken Conference
1962 MUNICH-FELDAFING 1st TC 2 Meeting
1962 MUNICH-FELDAFING 4th IFIP COUNCIL
1962 ROME ICC Conference
1962 MUNICH 1st WG 2.1 Meeting
1962 MUNICH 2nd TC 2 Meeting

[!]

[2]

[.Q]

[3]

[4]

6 H. Zemanek

AUG 1962 MUNICH 5th IFIP COUNCIL
AUG 1962 MUNICH 2nd IFIP CONGRESS
SEP 1963 DELFT 2nd IFIP WG 2.1
SEP 1963 OSLO 3rd TC 2 MEETING
SEP 1963 OSLO-GOLA 6th IFIP COUNCIL
MAR 1964 MUNICH-TUTZING 3rd WG 2.1 Meeting
MAY 1964 PRAGUE-LIBLICE 4th TC 2 Meeting
MAY 1964 PRAGUE-LIBLICE 7th IFIP COUNCIL
SEP 1964 VIENNA-BADEN 4th WG 2.1 Meeting
SEP 1964 VIENNA-BADEN 1st IFIP WORKING CONFERENCE [5]
NOV 1964 ROME 8th IFIP COUNCIL
MAY 1965 PRINCETON NJ 5th WG 2.1 Meeting
MAY 1965 NEW YORK CITY 5th TC 2 Meeting
MAY 1965 NEW YORK CITY 9th IFIP COUNCIL
MAY 1965 NEW YORK CITY 3rd IFIP CONGRESS
OCT 1965 St. PIERRE 6th WG 2.1 Meeting [76]
NOV 1965 NICE 10th IFIP COUNCIL/GENERAL ASSEMBLY
APR 1966 KOOTWIJK Subcommittee Meeting

APR 1966 LONDON 7th TC 2 Meeting [.Q]

APR 1966 LONDON 10.5 IFIP COUNCIL [.Q]

JUN 1966 PISA 2nd IFIP WORKING CONFERENCE
OCT 1966 WARSAW 7th WG 2.1 Meeting
NOV 1966 JERUSALEM I Ith IFIP GENERAL ASSEMBLY
APR 1967 MADRID I 1.5 IFIP COUNCIL

APR 1967 ZANDVOORT 8th WG 2.1 Meeting [88]
MAY 1967 OSLO 8th TC 2 Meeting
MAY 1967 OSLO 3rd TC 2 WORKING CONFERENCE
SEP 1967 ALGHERO SARDINIA 1st WG 2.2 Meeting
OCT 1967 MEXICO CITY 12th IFIP GENERAL ASSEMBLY [.Q]

APR 1968 TBILISI USSR 12.5 !FIP COUNCIL
JUN 1968 ZURICH ALGOL 10 YEARS Anniversary
JUN 1968 PISA-TIRRENIA 9th WG 2.1 Meeting [93]
JUL 1968 COPENHAGEN-VEDBAEK 2nd WG 2.2 Meeting
JUL 1968 NORTH BERWICK 10th WG 2.1 Meeting [95]
AUG 1968 EDINBURGH 2nd WG 1.1 Meeting

AUG 1968 EDINBURGH I st TC I Meeting
AUG 1968 EDINBURGH 9th TC 2 Meeting

AUG 1968 EDINBURGH 13th IFIP GENERAL ASSEMBLY
AUG 1968 EDINBURGH 4th IFIP CONGRESS [::]

DEC 1968 MUNICH 11th WG 2.1 Meeting [100]

JAN 1969 LONDON-GUILDFORD 10th TC 2 Meeting

MAR 1969 BRUSSELS 13.5 IFIP COUNCIL [.Q]

APR 1969 HILVERSUM 3rd W G I.I Meeting
APR 1969 HILVERSUM 2nd TC I Meeting
SEP 1969 CALGARY-BANFF 13th WG 2.1 Meeting
OCT 1969 PRAGUE 11th TC 2 Meeting

OCT 1969 PRAGUE 14th IFIP GENERAL ASSEMBLY
JAN 1970 LONDON 4th WG I.I Meeting
MAY 1970 ATLANTIC CITY NJ 14.5 IFIP COUNCIL
JUN 1970 MUNICH 4th TC 2 WORKING CONFERENCE ALGOL 68

Professor van Wijngaarden 's role in the history of IFIP 7

JUL 1970 HABAY-LA-NEUVE 13th WG 2.1 Meeting

AUG 1970 EINDHOVEN 12th TC 2 Meeting

SEP 1970 NEW HAVEN 5th WG 2.2 Meeting

OCT 1970 AMSTERDAM 15th IFIP GENERAL ASSEMBLY

OCT 1970 AMSTERDAM IFIP 10 YEARS Celebrations [::]

Table 3
25 Years of Professor van Wijngaarden: I 955- I 980

1955 DARMSTADT GAMM-NTG-Fachtagung [I]

1956
1957 CAMBRIDGE MA Aiken Conference [2]
1958
1959 PARIS ICIP 59
1960 ROME 1st lFIP COUNCIL

1961 !st TC 2 Meeting

1962 1st WG 2.1 Meeting, lFIP Vice-President
ROME Paper on Generalized ALGOL [4]

1963 GOLA Chairman of Future Policy Committee
1964 VIENNA-BADEN I st IFIP Working Conference [5]
1965 PRINCETON ALGOL X begins

NEW YORK CITY Chairman of Publications Committee till 1968:
hard development work

1966
1967 Chairman TC I

1968 EDINBURGH ALGOL 68 lecture at 4th IFIP Congress
1969 Chairman of Statutes and Bylaws Committee

1970 AMSTERDAM JO YEARS ANNIVERSARY CELEBRATIONS
1971 Resignation from General Assembly and TC 2
1972
1973 Resignation from TC I and WG 1.1
1974 STOCKHOLM SIL VER CORE at 6th JFIP Congress
1975 Revised ALGOL 68 Report
1976
1977
1978
1979 URGENCH Lecture at Symposium on Algorithms

1980
1981 AMSTERDAM Honored by Symposium

8 H. Zemanek

Table 4
Professor van Wijngaarden and IFIP

1960 1961 1962 1963 1964
LI.I z ;;;: LI.I
0 Cl
00: .,:

o:i

IFIP
VICE-PRESIDENT

1965 1966 1967 1968 1969
:i:
Cl
00:
:::,
o:i z
i5
LI.I

IFIP
TRUSTEE

IFIP COUNCIL/GENERAL ASSEMBLY MEMBER

1970 1971 1972
;;;:
.,:
Cl
00:
LI.I
I-
VJ
;;;:
.,:

AUDI- FINANCE FUTURE POLICY STATUTES AND
BYLAWS COMMITTEE TOR COMMITTEE COMMITTEE

CONGR WORKING
PC CONFERENCE

CHAIRMAN
PUBLICATIONS COMMITTEE

MEMBER TC 2

10 YEARS
CELEBRATIONS

CHAIRMAN TC !

MEMBER WG 1.1

MEMBER WG 2.1 I ALGOL 68 EFFORT I UNTIL
TODAY MEMBER WG 2.2

1973 1974
;;;:
...l
0
:i:
::a,:
u
0
I-
VJ

SILVER
CORE

honours, but working hard to make his contributions worthwhile. Tables 1
and 2 show the quasi syntactical size of his efforts in the form of a list of
positions and a list of events in which he participated. The semantical size
of his contributions is not so easy to show, but I will try. When I wrote this
paper, I realized very soon that I should have started a year ago on a full
research project including interviews with people all over the world; thus I
might have done a really good job. But I doubt that Professor van
Wijngaarden would like such an enterprise and I hope that he prefers my
imperfect achievements and will forgive me for everything I do not know
or forget to mention.

Professor van Wijngaarden was IFIP Vicepresident from 1962 to 1964,
IFIP Trustee (i.e. an elected Council member) from 1967 to 1970, and he
served on many IFIP committees. His first job was that of an auditor for
the first IFIP accounts, and his second was in the IFIP Finance Committee.
He chaired the first IFIP Future Policy Committee, then called Committee

Professor van Wijngaarden 's role in the history of IFIP 9

for Future Operations and Policies, and there he laid the foundation for all
future planning activities.

In those early days the IFIP family was much smaller and each national
representative was a kind of general-purpose officer. The programme for
IFIP Congress 62 was made up much along the same lines as it is being
done today, but the Programme Committee consisted mainly of Council
members. Since I had also been included - although Austria was not yet an
IFIP member - Van Wijngaarden and I met in Copenhagen in October
1961, where the final programme was established, and we met of course at
the Munich IFIP Congress 62. This was the first real IFIP congress, but
still got the number '2' (the ICIP congress was considered number 1). This
made it possible to go in parallel with our sister organizations - IFAC,
IFORS, IMEKO and (then) AICA, which were later coordinated by
FIACC, the Five International Organizations Coordinating Committee -
which all accepted the 3-year cycle and have the same counting within one
cycle as IFIP. Naturally we met again at the congresses in New York City in
1965 and in Edinburgh 1968 - the General Assembly is always held in the
week before the congress and there are often committee meetings arranged
at the same time in order to save on travel expenses.

1962: Rome and TC 2

This is the point to turn back to the stream of ALGOL events, since 1962
was a key year for both ALGOL and Professor van Wijngaarden. That year
we first met in Sunnyvale, CA, where Howard Aiken had organized a
conference on Switching Theory in Space Technology - but actually it had
not too much to do with space travelling, Aiken had simply found a way to
gather computer people in California with the remarkable support of the
local industry. Professor van Wijngaarden read a paper on Switching and
programming [3] which began as follows:

In switching theory much attention has been paid to the analysis and
simplification of circuits and systems, and to properties of networks. The
objective has been to provide network structures using rather simple
components.

In the programs for automatic computers, similar structures are found,
although on another scale. These programs consist of sequences of
statements performing certain operations and are connected by transfers

H. Zemanek

for control into a complicated network. Executing the statement means
moving along the paths of the circuits, seemingly completely different
structures may be more or less the same functionally, and the problem of
simplification arises immediately.

This was not simply an argumentation to make a paper on programming
fit into a conference on switching, this was the indication of a path and the
discovery of an equivalence the use and advantages of which have not yet
been fully recognized today. We are all too preoccupied with daily work to
dig deeper into such proposals and so were we in those days.

Already one month later we met again in Feldafing near Munich in order
to start IFIP TC 2.

ALGOL, as I have already mentioned, was originally an ACM-GAMM
creation, but after the publication of the Preliminary Report, the interest
went up very steeply. Professor van Wijngaarden joined the enterprise in
1959, after an, in ALGOL 68 terminology, lengthened to long stay in Scot
land. After the Copenhagen meeting in February there was another one in
Paris in December, and after the ICIP Congress in Paris the last
preparations were made for the Paris Conference in January 1960, where
the Report on the Algorithmic Language ALGOL 60 [11] worked out by a
committee originally planned to consist of seven ACM and seven GAMM
members, but since William Turanski was killed in a car accident shortly
before the conference, the number of 13 ALGOL fathers emerged: J. W.
Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (editor),
A.J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A.
van Wijngaarden and M. Woodger. Thus Professor van Wijngaarden is
one of the 13 ALGOL fathers and Peter Naur will describe his contributions
to ALGOL 60 in the course of this symposium.

The best way to follow the development is to study the ALGOL Bulletin,
which was founded by Peter Naur at the Paris conference in February 1959
and was later taken over with ALGOL under the IFIP umbrella. Professor
van Wijngaarden, by the way, not only supported the Bulletin over long
periods in general and by special contributions, but also gave substantial
aid to its production and distribution.

Practically all the ALGOL authors (fathers) who were interested in the
continuation of the work suggested to transfer the responsibility for the
language to IFIP, which means to the Federation of National Computer
Societies. And it was clear that the work should continue. To make this
possible, IFIP had to create the necessary structure. After many

Professor van Wijngaarden 's role in the history of IFIP 11

discussions the idea was presented and then realized in order to better
match the ALGOL crew with its rather unequal national composition to the
IFIP Council which necessarily was nationally structured. A two-level
solution was found: a Technical Committee, into which each member
society, i.e. each nation, could delegate one and only one member, and a
Working Group, formally reporting to the Technical Committee, where
membership was personal, only based on competency and the interest to
cooperate, but accepted only in concordance with the TC, if necessary by a
vote.

Naturally, there were also personal difficulties - the nomination or
election of the two chairmen was a delicate problem. The solution was a
diplomatic compromise. It was proposed that I chair TC 2, even if Austria
was not yet an IFIP member, and Professor W.L. van der Poel was to chair
WG 2.1. Thus the two bodies started work, TC 2 in Feldafing near
Munich in March 1962, and WG 2.1 in Munich in August 1962; Professor
van Wijngaarden was a member of both. TC 2 and WG 2.1 not only
fulfilled their ALGOL 60 duties by producing and forwarding to ISO (which
had also requested them) one proposal for ALGOL 60 Input/Output and
one proposal for an ALGOL 60 subset, both published in 1964 [12]. A
revised ALGOL 60 report was passed and published in 1963 [13]. Then work
on the successor language was started. The working names were ALGOL X

for the future programming language and ALGOL Y for the meta language.
I will come back to this development a little later.

A few days after the March meeting in Germany, the IFIP programming
language crew met again in Rome, where the International Computing
Center - today the Intergovernmental Bureau for Informatics, IBI - had
organized a symposium on Symbolic Languages in Data Processing. There
Professor van Wijngaarden presented his famous paper on Generalized
ALGOL [4], which contained most of the basic ideas he later incorporated in
ALGOL X, which became ALGOL 68. Let me quote a paragraph of the
introduction to this paper, a paragraph which those people who criticized
ALGOL 68 later on - although they had been members of WG 2.1 - should
have read more carefully. It is a kind of scientific programme of Professor
van Wijngaarden's language work, his philosophy of programming,
implemented by ALGOL 68 and crowned by his US paper 1981 [18].

The title "Generalized ALGOL" of this paper needs an explanation. The
word ALGOL is used because of the fact that many of the concepts of the
language to be described can be found, partially at least, in ALGOL. On the

12 H. Zemanek

other hand, the generalization goes to such an extent that the connection
with ALGOL can only be appreciated by those who know ALGOL quite well.

Thus a certain alienation is clearly announced and declared to belong to
the development programme. The introduction continues:

The main idea in constructing a general language, I think, is that the
language should not be burdened by syntactical rules which define
meaningful texts. On the contrary, the definition of the language should be
the description of an automatism, a set of axioms, a machine or whatever
one likes to call it, that reads and interprets a text or a program, any text
for that matter, i.e. produces during the reading another text, called the
value of the text so far read. This value is a text which changes
continuously during the process of reading and intermediate states are just
as important to know as the final value. Indeed this final value may be
empty.

In order that such a language be powerful and elegant, it should not
contain many concepts and it should not be defined with many words. On
the contrary, by saying less one can say more, at least say more general
things. Each definition in the language may restrict the set of meaningful
texts. Without any definitions, however, one can only be silent in full
generality. Of course, some compromise must be made in practice. This
compromise has been made in ALGOL in a certain way. There are other
ways, however, by which a better defined and more general language can
be obtained using fewer concepts.

The paper continues with a discussion of the description of such a
syntax-free language. It is seen as a machine MO the working of which is
described on the lid of the machine so that the user can easily find out how
the language is used. If he should have doubts, he can open the machine
and inspect its precise working. To his surprise, he finds that there are
actually two machines inside, a preprocessor Pl and a more basic machine
Ml - and so it goes on. Each machine Pl and Ml may again be made up of
a preprocessor and a processor. This continues until the user finally finds a
machine that cannot be opened, which is the most primitive machine for
which there is no better explanation than the wording on the lid.

It is a systems theory of programming languages, elegant, general and
powerful, but obviously for a certain price. Not everyone is ready to pay
this price, as the course of history has shown.

Professor van Wijngaarden's role in the history of /FIP 13

1963 and 1964

In 1963, there was only one IFIP Council meeting which took place in
Norway, but no spring meeting. TC 2 met in downtown Oslo, but the
Council took place in the country at Gola, a typical Norwegian summer
and winter resort. After a reception in Oslo the delegates went by train via
Lillehammer to Harpefoss and continued by bus to the meeting place. Our
Norwegian delegate, Jan Garwick, had come in his own Citroen car and
took Professor van Wijngaarden, Academician Dorodnicyn and me for a
ride through the beautiful, slightly rough countryside. When you compare
Norway to Austria you will find that a mountain region of a certain
character that might be placed, say, at 2000 min Austria, will be found in
Norway 1000 m lower, though the gulf stream makes up for much of the
northern latitude. We enjoyed our ride thoroughly and had an amusing
adventure.

As may happen to the best driver when he gives a lot of explanations
instead of concentrating on the way he is going, Jan Garwick got lost. Since
we could not loose too much time in order to reach our group again, Jan
stopped at the first person we saw - there are not many in that region -
and asked how we could best get back to the road to Oslo. It was not
difficult to understand that obvious question in Norwegian. "You go
straight ahead for a mile and then turn right," said the farmer - and
pointed with his finger to the left. None of us doubted that left was the
right direction. One easily says the opposite word to the one you want to
say, but one rarely makes the opposite gesture. I like to tell this story to all
those computer enthusiasts who propose to turn to oral input without
making sure that the computer also registers the accompanying gestures.

In that year 1963, Professor van Wijngaarden joined me in a venture
which should become the most frequently used model in IFIP. On the
instigation of TC 2 the IFIP Council of Gola had approved the first
Working Conference on Formal Language Definition Languages. The
model envisaged that a TC should work out a list of some 50 to 80
specialists working in a field that was still new and yet developed enough
for many people to work in it and to make it possible for discussions and
working conferences to bring progress and consensus. In order to establish
the vocabulary and to base the discussions on solid ground, there should be
about 20 invited papers, distributed to the participants before or during the
meeting, which constituted the essence of the proceedings. At this first

14 H. Zemanek

conference we also included the publication of the discussions. For this
purpose there were a number of portable tape recorders in addition to the
master tape on which the speakers were recorded; whoever wanted to
contribute to the discussion had to wait for one of the conference assistants
to come up with the recorder. That assistant pronounced the name of the
speaker so that all names were recorded without exception. The auxiliary
tapes were then copied onto the master tape which was then sent to the
Rand Corporation in Santa Monica, where Tom Steel Jr. headed the job of
transcription and editing. The proceedings appeared in 1966 and a large
number was sold.

This proves the success of this first IFIP Working Conference. It is not
easy to judge how much the participants profited from it. For the
collaborators of the Vienna IBM Laboratory it was, however, a
magnificent opportunity to meet all the people active in the field of formal
definition. The contents of the papers (of course some more than others)
were the basis for the development of the Vienna Definition Method to be
applied for the formal definition of PL/I, not only the syntax, but also the
semantics.

Professor van Wijngaarden's paper at the first IFIP Working
Conference had the title Recursive definition of syntax and semantics [3].
Recursion was a key issue at that time and we teased him by proposing to
him the title and official address His high recursivity Professor van
Wijngaarden. Actually, the paper did not once use the word recursive
except in the title. The paper was a kind of elaboration of an aspect of the
Rome Paper on Generalized ALGOL and its notion of an interpreting
machine consisting of preprocessor and processor, an investigation and a
closer definition of their properties and their power to reduce the many
concepts usually included in ALGOL-like languages to a few basic ones.
ALGOL-like, by the way, was also a word that became a fashion at and
through this conference with the culminating proposal or joke - the
distinction between proposal and joke was not always clear in WO 2.1 and
TC 2 - that ALGOL was not an ALGOL-like language.

A characteristic trait of the mood and spirit of WO 2.1 was the famous
extension of the voting possibilities - I am of course not submitting that it
was Professor van Wijngaarden's invention - from yes, no and abstention
to a fourth choice: I did not understand the question, the semantics of
which was essentially that the voting member for tactical reasons pretended
not to understand the subject of the vote.

Professor van Wijngaarden 's role in the history of IFIP 15

WG 2.1 and TC 2 were both a crew of old friends and enemies who
enjoyed meeting and fighting and who gained, everyone from everyone, a
lot from the official and inofficial discussions. You have only to read
Duncan Fraser's closing banquet talk of the Working Conference which
the editor, Tom Steel, very appropriately included in the proceedings. It
had the title: Our ultimate metalanguage, which was a quotation from a
paper by Peter Naur. This ultimate metalanguage is of course English, the
computer language and the IFIP language. The Fraser talk was composed
of a series of witty remarks on the subject and on the conference, out of
which I quote only one sentence: "Is your Chomsky really necessary?"

From 1965 to 1968 the main work of both WG 2.1 and TC 2 was the
development of the ALGOL successor language, first called ALGOL X,
once ALGOL 67 [88], and finally ALGOL 68. It is not my intention to treat
here the history of ALGOL 68. Let me proceed in comfortable disorder.

Princeton and St. Pierre

This summer the chairman of a TC 3 Working Conference in Vienna
explained that they choose their meeting places according to certain
parameters of which the most important were culture and food. Looking at
the list of TC 2 and WG 2.1 meetings I find retrospectively that Professor
van der Poel and I must have used similar parameters - restricted later by
the Van Wijngaarden principle (a principle which he had submitted in IFIP
several times and which said that there should never be a meeting in a place
more than one hour's driving away from the next international airport).
Maybe it was Princeton that he found too far away, maybe it was St. Pierre
de Chartreuse, the two WG 2.1 places of 1965. For many other parameters
they were fine places. Princeton recommended itself by its University and
the Institute for Advanced Studies, while St. Pierre offered the opportunity
to visit the distillery of the Chartreuse monks where we learned, among
other things, that only four monks were introduced at one time into the
secret of which and how many plants to use in the production of the
Chartreuse essence from which the yellow, the green and the 72-degree
Chartreuse liqueurs are made.

St. Pierre was also the starting point for another adventure with
Professor van Wijngaarden.

The St. Pierre meeting was immediately prior to the last old-style

16 H. Zemanek

Council (from then on the spring IFIP meeting was only the Council
meeting, i.e. Executive Body plus a number of trustees, while in autumn
both the Council and the General Assembly had their meetings). The
General Assembly was scheduled for Nice - and St. Pierre certainly did not
correspond to the van Wijngaarden principle. I turned the disadvantage
into an advantage: I flew to Nice and rented a car of the make I have
owned since I first got a car - a Citroen. In that car I drove from Nice to
Grenoble and spent 2 days with vacationing and sightseeing; I visited the
Dames Coiffees, bizarre rocks, and the small town of Barcelonette and
took in much of the landscape described by the French writer Jean Giono,
which is the valley of the Durance. I stayed in a hotel down in Grenoble
and drove up to St. Pierre several times. This, of course, was noticed by
some WG 2.1 members and Aad van Wijngaarden and Fritz Bauer
proposed to me to go together from St. Pierre to Nice to the General
Assembly. I told them that I wanted to visit Avignon, the city of the popes,
which I had never seen before. They quite agreed to this and said they
would come along, if only we went together to Nice. Can you resist such a
cordial invitation? No, you cannot. And with two mathematicians you
cannot start off at six in the morning, as I had intended, but at 9:30, which
is the proper time, and not in the middle of the night. Thus I picked them
up at St. Pierre on October 30, the Saturday before a long weekend -
November 1 (which was a Monday) being a holiday in France, which will
be important for my story - and we headed for Avignon.

We went down the main road to the Rhone valley and again and again
passed signposts indicating the roads to passes which are called 'col' in
Southern France. "Let us go up to one col," Bauer and Van Wijngaarden
said. ''I want to go to Avignon,'' I answered, ''and a detour will cost a lot of
time." "Alright, alright," they tried to calm me, "but a little detour will
not take that much time.'' They consulted a map and saw that one of the
next cols would permit us to continue our way to Avignon in a relatively
straight line. Who was I to point out that the map did not show the minor
details such as bends and gradients? We turned left and mounted to the col.
The weather was fine, the air was clear, the view was splendid. We
collected alpine plants and had a coffee after we had passed the tunnel at
the top.

But at the first bend on our way downwards a red light appeared on the
dashboard of the Citroen: hydraulic trouble. It disappeared, but
reappeared again after some time. When we had negotiated half the way

Professor van Wijngaarden 's role in the history of IFIP 17

down it was more often on than off and steering became harder and
harder. Being in France, the hope of finding a Citroen repairshop was a
logical one, and indeed we saw a sign directing us to a repairshop in a town
called Die - which was not really in our direction, but was it not better to
aim for the nearest mechanic? The red light was on all the time, but our
luck held and we not only found Die but also the repairshop immediately.
"It can't be anything serious, please help us as fast as you can, because we
want to reach Avignon in time,'' we asked him. The face of the man
indicated delay. At that moment Aad gave a cry: he had seen the hydraulic
liquid escape in a stream as thick as a finger. "No chance," said the
mechanic. "And there is a long weekend to come. My son has already gone
and I will close in five minutes. We will start on the car on Tuesday
morning." All our entreaties did not help. We left the car at the shop and
started looking for a hotel room. I must explain that Die owes its fame to
the single fact that it is the place where Hannibal started out on his treck
across the Alps. Nothing spectacular has happened since then and thus the
hotel situation is somewhat unlike Grenoble or Nice; the few inns we found
were practically sold out. Only by extraordinary good luck and with the
help of the mechanic we finally got a single and a double room. Can you
imagine how happy I was? No more hope to see Avignon, and perhaps we
would even be too late for a part of the meetings. I was furious and
apathetic at the same time. This was the moment when Van Wijngaarden
showed his strength. He gave me a three-sentence lecture after which I was
neither furious nor apathetic any more - all the three of us were ready for a
nice weekend in Die. We visited the ruins dating back to Hannibal's time,
drank wine called Clairette de Die, and had a fine dinner. The next
morning, Professor van Wijngaarden developed the algorithm for the Fly
and the Spider on the paper cover of the breakfast table - a copy is shown
on the next page.

Then we walked back to our mechanic and with a lot of good words we
could convince him to start working on the car despite the holiday and
without his son.

Avignon was lost for me, and I have not seen it to the present day, but
we drove gaily down to Nice, that is with the exception of one incident.
Bauer - being also a Citroen fan - wanted to drive for a while, not to Van
Wijngaarden's pleasure, by the way. Suddenly Bauer was stopped by a
policeman who wanted to give him a ticket; he said that Bauer would have
passed another car, hadn't he seen the gendarme at the very last moment.

Professor van Wijngaarden 's role in the history of IFIP 19

Then he started to grumble over the car papers. This was the point where I
joined the discussion. "You shut up", I was told by the gendarme. "But it
is I who has rented the car,'' I retorted, and with carefully selected
Austrian arguments I managed to convince him in my very best French to
forget the ticket. And so we arrived in Nice in due time for the first evening
gathering.

1965 to 1969: ALGOL 68

I must repeat: it is not the intention of this paper to give a technical
history of ALGOL 68. This would be a scientific project of quite some extent
- a job somebody should undertake, however, before it is too late to
collect the material completely (I invite you to submit a comprehensive
paper for the Annals for the History of Computing).

Professor Turski will revisit ALGOL 68 in his closing lecture and he will
certainly do more than only paraphrase the thin skeleton of the
development I intend to sketch here.

The intensive development work of ALGOL 68 extended over the years
from 1965 to 1969. At the Princeton meeting of W G 2. l in May 1965, an
invitation for written descriptions of a language proposal was extended. At
the meeting in St. Pierre three full descriptions were presented, by Niklaus
Wirth, by Gerhard Seegmiiller and by Professor van Wijngaarden [76].
Tony Hoare and Peter Naur presented significant papers. A four-man
subcommittee consisting of Professor van Wijngaarden, Tony Hoare,
Gerhard Seegmiiller and Peter Naur was charged to bring the proposal into
one common shape. The subcommittee met at Kootwijk in April and WG
2.1 in Warsaw in October, but the balance they had wanted was not
achieved. From 1967 onwards it became clear that the Amsterdam group
was gaining the absolute leadership, with one of the reasons being the
amount of work they were investing into the new language. They had
prepared a draft proposal for the May meeting in Zandvoort [88] which
was followed by a next version distributed in November [92]. 1968 brought
the culmination both of the work and of the number of meetings. The June
meeting in Tirrenia near Pisa had an Amsterdam draft of January [93], the
July meeting in North Berwick its follower from July [95], and in October
the Mathematisch Centrum issued already the next version [99]; on the
table of the December meeting in Munich the final version was presented

20 H. Zemanek

[100]. Only those who participated in this giant effort can judge the
intensity and strain of the work. But at the same time criticism and tension
spread, there was more fighting than agreement, and it was easy to predict
that the December meeting in Munich would be a decisive and shaken
event. In a circular letter to TC 2 and WG 2.1 of October 18 I tried to point
out very clearly the situation and the responsibilities of the two bodies. I
indicated the choices I saw for the Munich meeting:

(1) The language produced and described in the MRs would have to be
the next ALGOL, or else WG 2.1 would have to decide that the editor and
the authors had essentially failed to carry out their commission;

(2) WG 2.1 might decide that the editor and the authors had carried out
their commission, but that the whole enterprise had become a failure;

(3) WG 2.1 might decide that the content of the language was
acceptable, but that its description was unacceptable. In that case, another
description would have to be produced;

(4) WG 2.1 might decide that the final document of the editor was a first
edition and that a further edition should appear;

(5) WG 2.1 might decide that the final document of the editor was
without any restriction the report on the new ALGOL.

These choices indicate the controversy within WG 2.1 and the criticism
from outside. WG 2.1 in Munich accepted ALGOL 68, but there was an
opposing minority report and TC 2 presented the language to IFIP for
acceptance with an extremely carefully worded cover letter. This letter
appreciated the magnitude and difficulty of the task, but mentioned the
minority report and added that the language was submitted to IFIP for
publication as one of the possible approaches to the subject rather than a
final answer; it said, however, that the work had reached the proper stage
for submission to the crucial tests of implementation and subsequent use
by the computing community. With this cover letter ALGOL 68 became
official, but the group split. WG 2.1 continued to take care of ALGOL 68.
In June 1970 TC 2 and WG 2.1 set up a Working Conference on ALGOL 68
Implementation [7], and a few year later WG 2.1 presented a revised
edition of the ALGOL 68 Report [8] it had produced, again under the
leadership of Professor van Wijngaarden. The WG 2.1 dissidents formed,
in response to an invitation of TC 2, Working Group 2.3, constituted
under the chairmanship of Mike Woodger in 1969 with the name of
Programming Methodology and with the scope Support and Tools for
Program Composition.

Professor van Wijngaarden 's role in the history of IFIP 21

At the spring Council a paper on ALGOL 68 was invited for the
Edinburgh Congress 68, and this lecture by Professor van Wijngaarden
found so much interest that more people had to go away than found room
in the lecture hall.

What had happened in the late fifties, namely that the programming
community was split into the FORTRAN and ALGOL cultures, and later in
addition into the COBOL culture - in a simplified manner one might
speak of the industrial, academic and commercial subfields of
programming in spite of the considerable overlaps - was repeated within
the university community and today we have ALGOL 60, ALGOL 68 and
PASCAL in parallel (with unequal shares).

The story of the Babylonian language confusion is as contemporary as
can be. It is a basic law of human thinking that giant enterprises - and
computer programming is a giant enterprise - develop different mentalities
which in turn and in feedback lead to the development of different
languages. This multitude is a fact of life. We must accept the diversity.
Every language must be judged by its merits. It is beyond doubt that ALGOL

68 has, in certain aspects, more power than any other language. Why
ALGOL 68 did not have the impetus of ALGOL 60 will be judged - in
appropriate distance - by history. The unique and outstanding role of
Professor van Wijngaarden, the incredibly concentrated and immense
amount of work done by him and his collaborators at the Mathematisch
Centrum, with Professor Peck, Professor Mailloux and other Canadian
'guest workers', has already now filled many pages in the books of history.

1967: TC 1 and WG 1.1

In 1967 Professor van Wijngaarden took over TC 1, which - under the
chairmanship of G. Tootill and A.R. Wilde - had tried since 1962 to carry
out what had looked like a superidea of Ike Auerbach: the compilation of a
multilingual glossary for information processing systems and related
subjects. The proposal was that a collection of definitions and concepts
and terms should be produced, the keywords being arranged in a kind of
decimal classification. Then, for the different languages, it was simply
necessary to establish the translations of the keywords and so the
information processing community would soon and easily have a
multilingual, well-defined dictionary. It would be sufficient to buy the

22 H. Zemanek

English glossary and the keyword translations for, say Spanish and
Hungarian, to get the correct translation of technical texts [14].

It was indeed very astonishing that this idea should proceed so slowly, in
particular in the early years, where the number of terms was not yet as large
as it is today, and where not very many specialized dictionaries were on the
market. The member societies obviously did not support the project
strongly enough, only very few attempts of translations of keywords
became known, and most of them did not follow the rules. North-Holland
have only one non-English dictionary on their list, the German
Fachworterbuch of 1968 [15].

Thus it seemed a reasonable step that a General Assembly member that
had chaired the Publications Committee should try to save the enterprise.
Professor van Wijngaarden let himself be convinced to do it, although he
realized how bad the situation was. He separated the Technical Committee
and its general scope from the direct definition work and for the latter
purpose created WG 1. I.

But in spite of his efforts, the situation did not improve. In 1973 he
submitted the following letter of resignation to the General Assembly:

TC I Terminology

Since the General Assembly Meeting in Sofia in October 1972, the
progress in the translation, by national groups, of the terms in the
2nd Volume of the IFIP Guide to Concepts and Terms in Data
Processing has been regrettably small. Although a request has been
sent out to all national representatives of IFIP and to all TC I
members to supply TC 1 with the translations of the terms, so far
only the translations into Finnish, Dutch, Swedish, Czech, French
and Slovak have been received. Obviously, with languages as
German, Italian, Russian, Spanish, and so on, missing, Volume 2
cannot appear.

Since the chairman of TC 1 obviously has failed to raise sufficient
cooperation in IFIP circles he offers his resignation as such.

A. van Wijngaarden

In order to check on its own operations, IFIP had set up review
committees for its various bodies, and at that time it happened that such a
committee was reviewing TC I. In its report to the next IFIP Council,

Professor van Wijngaarden 's role in the history of IFIP 23

Professor van Wijngaarden's proposal to hibernate both TC 1 and WG
1.1, that is to inactivate them, but keep them in the lists so that they might
be revived when needed, was brought forward. Unfortunately, the General
Assembly in Stockholm did not follow this proposal; the bodies were
discontinued. IFIP would now need a new edition of the glossary. If they
had followed Professor van Wijngaarden's proposal they might simply
dehibernate TC 1 and WG 1.1 and the work would probably proceed much
faster.

Professor van Wijngaarden, just to mention this, was also in the Site
Selection Committee for IFIP Congresses that recommended Stockholm as
the site for Congress 74.

1970: 10 Years of IFIP

Dov Chevion considers it his duty to remind IFIP of its anniversaries; he
brought up the proposal to celebrate the 10th anniversary and he put the
20th on the agenda. The real job, however, is to find somebody to organize
the celebration, which is long and hard work. For the 20th anniversary
IFIP failed to find a volunteer; and in view of the extraordinary event of
1980, namely the 8th Congress which was carried through as a Pacific event
in two hemispheres, in two seasons, on two continents and in two big
countries, it was decided not to insist too strongly on the anniversary idea
and rather to celebrate the 25th anniversary. A volunteer has been found in
the meantime: Professor Bauer in Munich.

The volunteer for 1970 was Professor van Wijngaarden, the location was
Amsterdam, and the time a day during the General Assembly 1970.

What Professor van Wijngaarden achieved was an event of national and
international importance, impressive and a model for the future. The
programme included two opening addresses by representatives of the
United Nations, Mr. Malecki of UNESCO and Mr. Gresford of UN New
York, seven papers by active or past IFIP officers and two papers by
representative managers of the industry.

Academician Dorodnicyn gave an overview over the first 10 years of
IFIP and then announced the election of LL. Auerbach, the first IFIP
President, as IFIP Honorary Member.

The six other IFIP speakers were Professor Speiser, second IFIP
President, Dov Chevion, Professor Bauer, E.L. Harder, Professor van

24 H. Zemanek

Wijngaarden and myself. The outside papers were by G.E. Jones, Senior
Vicepresident of IBM, and by Professor Casimir of Philips.

Almost all the papers have been published in the volume The Skyline of
Information Processing [16], so I need not describe their contents. But I
want to add two remarks. One is a quotation from Professor Speiser's
paper which seems to me as worth of being quoted as often as possible. He
mentioned the blackout which in 1965 deprived the entire North-East of
the United States of electricity for several hours. The sequence of events
which led to the disaster has been reconstructed with great accuracy. In the
course of these studies it was learned that in systems of this high degree of
complexity there can occur conditions of instability, even under perfectly
normal operating circumstances, in which an almost arbitrarily small
perturbation can have catastrophic effects [16, p. 32]. The second remark
is also concerned with a perturbation. Into my own contribution on Some
philosophical aspects I should have invested a lot of the effort I put into it
afterwards before the lecture. The main effect of such a state of affairs is,
of course, that your manuscript becomes much too long: all of you know
the excuse - I had not the time to write a short letter, so you get a long one.
The General Assembly is more than a full-time job for the members of the
Executive Body, and there was no chance to do in Amsterdam what I
should have done in Vienna. Knowing all this, I fell into the second of the
two alternatives that wait for the speaker: to fly above the manuscript, or
to swim behind it. I did not only swim, I drowned. In doing so I lagged
hopelessly behind the speaking time allotted to me, and upset Professor
van Wijngaarden, his speech (which came next), and his time schedule
completely.

Eleven years later, I apologize once more and regret my imperfection.
And since I have embarked on apologies, I want to generalize them on
behalf of IFIP: we are all imperfect and on many occasions we have made
our distinguished member and friend Professor van Wijngaarden angry.
This is the opportunity to present our apologies to him. But I am sure he
will wave them aside. Not only because he realizes that he, too, has
occasionally upset others, but mainly because he forgives immediately.

1979: Urgench

This account started with conferences outside the range of IFIP. Let me

Professor van Wijngaarden 's role in the history of IFIP 25

begin also the last chapter with a conference outside IFIP, the last one
where we met before this symposium. It was the meeting on Algorithms in
Modern Mathematics and its Applications, dedicated to al-Khorezmi, in
Urgench, the capital of Khorezm, a region in Uzbekistan. The place was
chosen because the Arab mathematician al-Khorezmi, from whose name
the term algorithm was derived, was of Khorezmian origin. You can be
sure that it is only the absolute time limit that prevents me from
summarizing my speech on al-Khorezmi and his country, which I gave in
Urgench; the countryside is spectacular and the city of Khiva near Urgench
is the most impressive and best-preserved Central Asian town (we saw it
during an excursion in the course of the symposium). Fortunately, the
proceedings of the Urgench conference will appear soon, and thus you
cannot only read my paper but also that of Professor van Wijngaarden [17] *

which he read at that conference and which I consider just as important as
his paper on Generalized ALGOL, although it was more a sketch than a
completed paper (which I hope to see in not too distant a future).

The basic idea of the Urgench paper was that by a further step of
generalization one and the same, but highly general language structure
permits not only, like Generalized ALGOL, the formulation of the problem
and the gestaltung of the language in which one wants to formulate the
problem - choosing, of course, the best formulation and language one can
think of within the general structure, but also forming the automaton, the
particular computing structure, on which the given problem is processed -
again matched to the optimum.

In this latest step of intellectual development of a computer pioneer, one
can recognize the superpower of generalization, but also the disadvantage
by which one has to buy extreme generalization. The computer, whether we
like it or not, has also the contrary tendency to particularize, to save the
user from what a generalizer of the academic strength of Professor van
Wijngaarden considers the essence of computing work: the narrowing
down from the most general possibilities of the general purpose computer
to the particular language, algorithm and computer, which finally carries
out the job. In the daily life of today people expect the computer to even
press the button for them which starts the execution of the job.

If ALGOL 60 was a programming language for computer professors,
ALGOL 68 was a language for language professors and the latest proposal

* Note by the editors: The paper referred to here will not appear in ref. [17] but in ref. [18].

26 H. Zemanek

of highest generality is a language for generalization professors, a very small
class, of which Professor van Wijngaarden is one of the most prominent
representatives. Progress in science has never come from particularization,
but from generalization, from the recognition of common and general
properties and laws, from reduction to the ultimate invariables. All his
life Professor van Wijngaarden has contributed to this progress, by hard
work in many more fields than IFIP, of which I have described here only
what I was able to see and remember.

Professor van Wijngaarden

I am extremely proud that the Silvercore, the symbol of recognition and
service award of IFIP, bestowed on Professor van Wijngaarden in 1974,
carries my signature. The plaque is certainly very modest, an all too modest
sign compared to everything Professor van Wijngaarden has done for
IFIP, for the examples he has set, for the model and challenge his presence
and contributions in the many IFIP bodies have meant for all of us.

All abstraction and formalization that finally make up the body of
science and technology separate themselves from the people who have
created them. Maybe that a name remains attached to a law or a language
- after less than one generation, the name is not much more than a
keyword. The real importance, however, of human life and its
incorporation in a field of science and technology, is not on the abstract
and formal side, but in the personal style and accent, in the human and
heartfelt involvement which distinguishes, for example, a teacher from a
teaching machine. The next generation cannot find this dimension in the
papers and programs, in the minutes and protocols. But the friends and
students know it better than they can ever express: they are aware of a
distributed monument of Professor van Wijngaarden which no sculpture in
front of the Amsterdam railway station or the Schiphol airport building
can bring to light.

This symposium is part of the distributed abstract monument just as well
as the many documents and publications he has produced and by which he
has influenced IFIP.

Professor van Wijngaarden can look back at a giant lifework extending
far beyond the IFIP universe I have described. There are the mathematical
contributions and there is the Mathematisch Centrum with its industrial

Professor van Wijngaarden '.s role in the history of IFIP 27

impact. There are the many people, students, friends and readers whose
thoughts and achievements he has influenced, coined and sped on. AH
descriptions must remain behind reality, all words imperfect.

And yet it is appropriate to use this opportunity to express on behalf of
IFIP as well as on my own behalf the infinite thanks and appreciation to a
man of the first hour, and of 25 subsequent years in IFIP, to enumerate
once more his contributions and to wish him a pleasant and successful
evening of his life.

Retirement from a position or job for Professor van Wijngaarden has
never been transition to inactivity, and will never be inactivity.

We are looking forward at this meeting to all the things by which he will
continue to surprise us.

References

[1] A. van Wijngaarden, Moderne Rechenautomaten in den Niederlanden (Auszug aus
dem Vortrag), Nachrichtentechnische Fachberichte 4 (1956) 60-61.

[2] A. van Wijngaarden, The state of computer circuits containing memory elements, in:
H. Aiken (Ed.), Proc. Int. Symp. on the Theory of Switching, Cambridge, MA, 2-5
April 1957. Annals of the Computation Laboratory, Vol. XXX (Harvard University
Press, Cambridge, MA, 1959} pp. 213-224.

[3] A. van Wijngaarden, Switching and programming, in: H. Aiken and W.F. Main (Eds.),
Switching Theory in Space Technology (Stanford University Press, Stanford, CA,
1963) pp. 275-283.

[4] A. van Wijngaarden, Generalized ALGOL, in: Symbolic Languages in Data Processing.
Proceedings of the Symposium organized and edited by the International Computation
Center Rome, March 26-31, 1962 (Gordon and Breach, New York, 1962) pp. 409-419.

[5] A. van Wijngaarden, Recursive definition of syntax and semantics, in: T.B. Steel Jr.
(Ed.), Formal Language Description Languages for Computer Programming,
Proceedings of the IFIP Working Conference (North-Holland, Amsterdam, 1966)
pp. 13-24.

[6] A. van Wijngaarden (Ed.), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster, Report on
the algorithmic language ALGOL 68, Numer. Math. 14 (1969) 79-218.

[7] J.E.L. Peck (Ed.), ALGOL 68 implementation, Proceedings of the IFIP Working
Conference in Munich, July 20-24, 1970 (North-Holland, Amsterdam, 1971) 375 pp.

[8] A. van Wijngaarden et al. (Eds.), Revised report on the algorithmic language ALGOL 68,
Techn. Rep. TR 74-3. (March 1974) 226 pp. Dept of Computer Science, The University
of Alberta, Edmonton, Alb.; Acta Informatica 5 (1975) in parts I through 3; ALGOL
Bull. Supplement No. 36; as book: (Springer-Verlag, Berlin, 1976) 236 pp.

[9] C.H. Lindsey and S.G. van der Meulen, Informal Introduction to ALGOL 68 (North
Holland, Amsterdam, 1971) 382 pp. (Revised Edition 1977).

[10] A.J. Perlis and K. Samelson (Eds.), Preliminary report - International algebraic
language, Comm. ACM I (12) (1958) 8-22; Numer. Math. l (1959) 41-60.

28 H. Zemanek

(11] P. Naur (Ed.), Report on the algorithmic language ALGOL 60, ALGOL Bull. Suppl. No. 2
(March 1960), Numer. Math. 2 (1960) 106-136; Comm. ACM 3 (5) (1960) 299-314.

[12] Report on Subset ALGOL 60 (IFIP); Report on Input-Output-Procedure for ALGOL 60;
both in: Comm. ACM 6 (1963) 626 ff; Numer. Math. 6 (1964) 454-462.

[13] P. Naur (Ed.): Revised Report on the Algorithmic Language ALGOL 60. -
In: Numerische Mathematik 4 (1963); pp. 420-453.

Comm. ACM 6 (1963), No. I, pp. 1-17.
The Computer Journal 5 (1963), pp. 349-367.

[14] IFIP/ICC Vocabulary of Information Processing (North-Holland, Amsterdam, 1966)
(Third Edition 1968) 208 pp. I.H. Gould (Ed.), IFIP Guide to Concepts and Terms in
Data Processing (North-Holland, Amsterdam, 1971) 161 pp.

[15] IFIP Fachworterbuch der Informationsverarbeitung (North-Holland, Amsterdam,
1968) 296 pp.

[16] H. Zemanek (Ed.), The skyline of information processing, Proceedings of the 10th
Anniversary Celebrations of IFIP, Amsterdam, October 25, 1970 (North-Holland,
Amsterdam, 1972) 146 pp.

[17] A.P. Ershov and D. Knuth (Eds.), Proc. Int. Symp. in Urgench, Khorezm (Uzbek
SSR), September 1979, Springer Lecture Notes in Information Processing (Springer
Verlag, Heidelberg, 1981).

[18] A. van Wijngaarden, Languageless programming, in: Relationship between numerical
computation and programming languages, Proc. IFIP WG 2.5, working conference,
Boulder, CO, U.S.A. (August 1981), North-Holland, Amsterdam, to appear.

[76] A. van Wijngaarden, Orthogonal design and description of a formal language,
Mathematisch Centrum, Amsterdam, MR 76 (October 1965).

[88] A. van Wijngaarden, B.J. Mailloux and J.E.L. Peck, A draft proposal for the
algorithmic language ALGOL 67, Mathematisch Centrum, Amsterdam, MR 88 (May
1967).

[92] A. van Wijngaarden, B.J. Mailloux and J.E.L. Peck, A draft proposal for the
algorithmic language ALGOL 68, Mathematisch Centrum, Amsterdam, MR 92
(November 1967).

[93] A. van Wijngaarden (Ed.), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster, Draft
report on the algorithmic Language ALGOL 68, Supplement to ALGOL Bulletin 26,
Mathematisch Centrum, Amsterdam, MR 93 (January 1968).

[95] A. van Wijngaarden (Ed.), B.J. Mailloux, J .E.L. Peck and C.H.A. Koster, Working
document on the algorithmic language ALGOL 68, Mathematisch Centrum, Amsterdam,
MR 95 (July 1968).

[99] A. van Wijngaarden (Ed.), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster, Penultimate
draft report on the algorithmic language ALGOL 68, Mathematisch Centrum,
Amsterdam, MR 99 (October 1968).

[100] A. van Wijngaarden (Ed.), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster, Final draft
report on the algorithmic language ALGOL 68, Mathematisch Centrum, Amsterdam,
MR 100 (December 1968).

[IOI] A. van Wijngaarden (Ed.), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster, Report on
the algorithmic language ALGOL 68, Mathematisch Centrum, Amsterdam, MR 101
(October 1969).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFJP, North-Holland Publishing Company, 1981, 29~47

PLAIN: An Algorithmic Language for
Interactive Information Systems*

Anthony I. Wasserman

Medical Information Science, University of California, San Francisco, CA 94143, U.S.A.

Reind P. van de Riet and Martin L. Kersten

Wiskundig Seminarium, Vrije Universiteit, Amsterdam, The Netherlands

The programming language PLAIN has been designed to provide an effective
tool for the systematic construction of interactive information systems. To
achieve this goal, PLAIN started with a PASCAL-like framework and incorpor
ated features for the construction of interactive programs, including string
handling, pattern specification and matching, input/output, exception
handling, and relational data base definition and management. Additional
features have also been incorporated to support a systematic approach to
programming, with particular attention given to issues of modularity and data
abstraction. This paper describes some of the innovative aspects of PLAIN,
shows how they have been synthesized into the language, and illustrates how
they are used in the creation of interactive information systems.

1. The Design Context of PLAIN

The User Software Engineering (USE) project [25, 27, 29] was under
taken in 1975 with the goal of providing application developers with a
methodology and programming environment to support the systematic
creation of interactive information systems. Interactive information
systems may be characterized in the following way:

(1) the user repeatedly types some input, e.g., a command;

• This work was supported in part by National Science Foundation grant MCS78-26287
and by The Netherlands Organization for the Advancement of Pure Research (ZWO) (grant
00-62-139). Computing support for text preparation was provided by U.S. National Institutes
of Health grant RR-1081 to the UCSF Computer Graphics Laboratory, Principal
Investigator: Prof. Robert Langridge.

29

30 A.I. Wasserman et al.

(2) this input is decoded and parsed; if it is incorrect, a diagnostic
message is presented to the user, who then provides alternative input;

(3) the input is subjected to various semantic checks, which may also
produce diagnostic messages;

(4) if the input is validated, then some program action is taken, typically
an access to or modification of some item(s) in a database, during which
time output messages may be provided to the user.

A study of languages and systems available for the construction of
interactive programs [23] led to the conclusion that "the programming
languages designed explicitly for interaction do not [have the structure] for
creating modular, well-structured software". With that in mind, the pro
gramming language PLAIN (Programming LAnguage for INteraction)
became the first tool to be designed in the USE environment.

The design of PLAIN was carried out in parallel with many other
language designs, including CLU [11], ALPHARD [34], GYPSY [3], EUCLID

[9], and ADA [8]. These languages all have similar objectives (though with
differing emphases) of support for data abstraction, support for system
modularity, support for program readability, support for testing and/or
verification of programs, and the imposition of greater discipline on the
programmer. In addition, each of these languages draws heavily on the
ALGOL family of languages, particularly PASCAL [33], and on one another.
Of these languages, though, only PLAIN addresses the application area of
interactive programs and their need for database facilities.

2. PLAIN Design Goals and Features for Interactive Programs

From the outset, the contribution of PLAIN was seen to be not so much
the introduction of new language features, but rather a synthesis of
features whose interrelationships would lead to a useful tool for such appli
cation programs. The approach was to make innovations to support
interactive programs and to adhere closely to well-understood approaches
for other features.

Essential capabilities for the creation of interactive programs were
identified, including:

(1) Data base management. The language must deal with data bases and
with operations performed on data bases, as well as with more primitive
file concepts.

PLAIN: an algorithmic language/or interactive information systems 31

(2) String handling. Interactive programs involve large amounts of text
processing, particularly user-program dialogue.

(3) Exception handling. User errors must be expected, but the user
should not be adversely affected.

(4) Pattern specification and matching. Many interactive programs
depend on a specific text pattern, e.g., a command, to determine program
action.

PLAIN provides these capabilities by synthesizing a PASCAL-like frame
work with necessary features for interactive programs, including the
following:

(1) data of type relation and associated relational algebra-like operators
that provide a data base management facility;

(2) data of type char and type string, providing for both fixed and
variable length strings;

(3) procedure-oriented exception handling, including a time exception;
(4) pattern specification primitives and pattern matching operations;
(5) sequential and direct access files;
(6) input/output operations, possibly involving patterns and files;
(7) access to external objects, such as data bases.
Space limitations make it impossible to give a complete description of

the language or even the above features. A complete language description
may be found in the Revised Report [30], and explanations of various other
aspects of PLAIN may be found in [26,28,31,32]. In this paper, we wish to
summarize the motivations behind the design of features for database
management, string handling, pattern specification and matching, and
exception handling, and then to show how they work together in the
construction of interactive information systems.

3. Database Management in PLAIN

A key design goal for PLAIN was to support database management
explicitly, rather than working with the lower-level concept of a file as it
exists in many languages or relying on traditional approaches to program
ming languages/data base interfaces. Problems with embedded query
languages and with host language interfaces were noted and the need for a
unified approach to programming languages and data base management
was emphasized, so that "it becomes possible to achieve a level of con-

32 A.I. Wasserman et al.

sistency in syntax and semantics" and so that "both type checking and
data independence can be achieved" [24].

Other efforts have been made to extend programming language with
database notions [1, 2, 20, 21, 22], but these suffer from one or more of the
unpleasant problems of language/ data management interaction identified
in [17], including the difficulty of performing type checking, the tradeoffs
between interpretation and compilation, the need to support data
abstractions in the database environment, and the unattractive nature of
combining nonprocedural data management sublanguages in procedural
programming languages.

Two key goals were established for the data definition and management
facilities of PLAIN:

(1) Use existing language structures wherever possible. Uniformity of
syntax is important so that the data management operations will blend
cleanly with other language features. Thus, traditional programming
concepts of types and variables should be applicable to database declar
ations, and the operations on databases should be procedural, in keeping
with the procedural nature of the language.

(2) Minimize the number of features added to the language specifically
for database management. This objective follows directly from the first
objective. Instead of providing a large set of database operations, the
decision was made to strive for a compact, yet complete, set of operations.
This decision was made with the understanding that the price of the
language simplicity would be an increase in the amount of text needed to
express complicated data management operations.

These goals pointed clearly toward use of the relational model of data [5]
as the basis for database management in PLAIN. From a syntax standpoint,
it is possible to exploit the similarity in notation between records and
tuples, as was also done by Schmidt [21]. From a language axiomatization
standpoint, relations were also the best choice because of their mathe
matical foundations. Although it was recognized that the relational model
is weak in specifying the semantics of the database, it seemed that the
potential advantages of the model greatly outweighed the disadvantages
for programming language design and implementation.

A data base type definition specifies a structure consisting of an
arbitrary number of record occurrences (each called a 'tuple') where each
tuple consists of a fixed number of components (called 'attributes'). PLAIN

supports two kinds of data base type declarations: relation and marking. A

PLAIN: an algorithmic language for interactive information systems 33

relation is a set of tuples and has the property that all tuples are unique; the
definition of a relation includes the specification of a non-null set of key
attributes that uniquely identifies a tuple. A marking is a set of referenced
tuples from one or more relations. Markings are used to store intermediate
results during operations on relations. They play much the same role in
database management that temporary variables play in complicated
arithmetic calculations. Thus, one may declare variables to be of type
relation, using a syntax similar to that for records in PASCAL, or of type
marking. Similarly, all attributes must be declared of some type;
permissible types are simple types, including scalars, fixed length strings
(type char[n]), and variable length strings (type string). Database manage
ment operations are provided at the item (attribute) level, the tuple level,
and the relation level.

3.1. Item level operations

At the lowest level of relation access and manipulation, it is possible to
name individual tuples within a relation through a tuple designator. If a
relation of degree N (N attributes) has M key attributes, where M ~N,
specification of values for the M key attributes designates a unique tuple of
the relation (or no tuple at all). The syntax for a tuple designator is of the
form

relation-name [key-value-list]

which permits an attribute of a relation to be designated with the notation

relation-name [key-value-list]. attribute-name.

This mechanism provides two important benefits. First, it is an
associative addressing mechanism for databases that can be used to obtain
single tuples and single attribute values from relations, yielding a clean
solution to the problem of converting objects from type relation to the
underlying attribute type. This makes it possible to perform complete type
checking on items in the database, since each attribute must be declared
with a type.

Second, it achieves integration at the lowest level between language
concepts and database concepts, since the attribute designator may be used
in arbitrary expressions throughout a program. Information stored in a
relation can be used to declare the dimensions of arrays, to provide a
bound on the number of iterations in a loop, or to supply the text for an
output message.

34 A.I. Wasserman et al.

3.2. Tuple operations

At the tuple level, it is possible to insert tuples and to remove tuples one
at a time from a relation. One may simply construct a new tuple by
designating a record variable or by specifying values for the attributes of
the tuple. The tuple insertion assignment is designated by':+', while tuple
deletion is given by ':-'.

One may also iterate over the tuples of a relation or marking by use of
the foreach clause in a loop statement. The effect of the foreach is to
permit access to individual tuples in much the same way that iteration is
performed over other types of variables.

3.3. Relation level operations

High level operations on relations and markings permit the construction
of database expressions and the assignment of the expression to a relation
or marking variable. The operations supported are selection on a condition
(where), projection (⇒), natural join on two attributes of the same type
(join), and the set-oriented operations of intersection, union, and
difference. The language syntax limits the complexity of database
expressions, making it necessary to decompose complicated operations into
several steps (perhaps creating markings). The rationalization for this
approach is presented in detail in [19].

In summary, PLAIN makes a number of advances toward achieving an
effective integration between modern notions of programming languages
and facilities for database definition and manipulation. In particular, the
procedurality of the operations, the ability to perform type checking on
database objects, and the associative access feature are the principal
unifying ideas.

4. String Handling and Pattern Matching

Features for string handling and pattern matching were also seen as
essential for PLAIN. In addition to providing strings as a data type, it is also
necessary to provide tools for checking the conformity of strings to
predetermined patterns, particularly for user input. User input must be
checked for conformity to the syntactic rules and must then be checked to
see that it is meaningful in the context of the input. A numeric input might

PLAIN: an algorithmic language for interactive information systems 35

fail not only for reasons of invalid characters, but also for arithmetic over
flow, arithmetic underflow, or because the numeric value was not a
meaningful value for the corresponding data element.

PLAIN provides for the built~in simple type char (as in PASCAL, ADA, and
other similar languages) and for the built-in structured type string.
Variables of type char or array of char permit fixed length string
processing, while variables of type string provide for variable length
strings. String concatenation is provided with the binary operator '++'
returning an array of type char or a string, depending on the operands.
String contains is provided with the operator '$'; for strings a and b, the
value of a$b is true iff the string b is contained in a. String follows (lexical
ordering) is provided with the operator'>>'; for strings a and b, the value
of a>> b is true iff the lexicographic order of a follows b in the ASCII
collating sequence. The remaining string operations are provided through
functions, including length, string searching, substring extraction,
insertion, deletion, and replacement.

The key observation for successful handling of user input was to see user
inputs as languages subject to various kinds of syntactic and semantic
rules. In short, one can define a grammar that describes the valid syntax
for a given user input.

From that point, it became possible to identify some goals for the
inclusion of pattern processing mechanisms in PLAIN, including the
following:

(1) simplicity, comparable to that of MUMPS patterns, rather than to the
more powerful and general SNOBOL 4 patterns;

(2) the pattern facilities should simplify not only the syntactic checking
of user input, but also any subsequent semantic checking;

(3) certain common patterns should be predefined, i.e., 'built into' the
language;

(4) the pattern facilities should be usable for control of program output
as well, so that it would not be necessary to include a totally separate
output management mechanism;

(5) the power of the pattern specification and pattern matching should
make it possible to recognize a large class of possible user inputs, such as
specified by a context-free (Type II) grammar.

The key idea behind pattern specification and matching in PLAIN was to
provide a simple mechanism whereby the programmer could define the
grammar for a language, and then use built-in operators to determine the

36 A.I. Wassermanetal.

match between a pattern and a string defined by the grammar.
The pattern declaration facility permits patterns and pattern sets to be

declared. In a pattern, all elements are required for pattern matching, while
in a pattern set, only one of an alternative list of patterns is required for
matching. In both cases, the declarations are static and, unlike SNOBOL4, it
is not possible to create patterns dynamically.

A pattern is composed of a list of pattern elements, which may be string
literals, subranges of characters, or the name(s) of other patterns,
including pattern sets. Each pattern element may be preceded by a
repetition count, which may be definite (a positive integer), or indefinite.
The indefinite cases are '*' for zero or more instances, and '.' for one or
more instances. In the absence of a repetition count, a default count of one
is assumed.

Many common pattern matching cases are covered by predefined
patterns in PLAIN. These patterns include A for alphabetic characters, N
for numerics, P for punctuation, I for a (signed) integer, X for blank, and
S for string, which matches anything.

A simple example of a pattern definition is given by the patterns

bookid = (ION);
chkout =('out',. X, bookid, '/',I)

they would match the string 'out 9023633407 /12554'. Note that chkout
contains the name of another pattern, bookid, as well as string literals and
predefined pattern names.

Such pattern names can be combined into other patterns and pattern
sets. Thus, the pattern chkout might be an alternative in the pattern set

command= [chkout, checkin, reserve, status, quit]

where each of the patterns represents the permissible user input for the
various commands in the system. (If a string matches more than one
pattern in the pattern set, the leftmost matching alternative is selected.)

A more complex example can be given by combining patterns and
pattern sets to define a class of strings representing permissible ways to
input a date, showing that patterns and pattern sets may be nested.

date= [form 1, form2, form3];
forml = (one-or-two, sep, one-or-two, sep, two-or-four);
form2 = (one-or-two, lX, month, IX, two-or-four);
form3 = (month, X, one-or-two,',', X, 4N);

PLAIN: an algorithmic language for interactive information systems 37

one-or-two= [IN, 2N];
two-or-four= [2N,4N];
sep= ['/','-','.'];

month= [longenglish, shortenglish];

{ intermediate months omitted in the next two pattern sets}
longenglish =['January', 'February', ... , 'December'];
shortenglish = ['Jan', 'Feb', ... , 'Dec'];

Note that, from a syntactic standpoint, this pattern specification handles
most of the forms of giving the date in the English language. Among the
strings accepted by date are '2/2/1972' and '27 .08.80', corresponding to
forml, '4 July 1778' and '22 Nov 63', corresponding to form2, and 'June
6, 1944', corresponding to form3.

Two more observations may be made about this scheme:
(1) the availability of the built-in patterns and the ability to include string

literals eliminates the need for a separate lexical analysis tool; primitive text
units, i.e., tokens, can be placed within the patterns and pattern sets;

(2) the pattern declaration mechanism permits one to specify an arbitrary
context free language, since patterns may contain arbitrarily many patterns
and pattern sets with a completely recursive capability;

PLAIN contains two pattern matching operators: one for determining the
exact match between a string and the pattern specification, and one for
determining whether the pattern can be found anywhere in the string.
Accordingly, two binary pattern matching operators, pattern match (?=)
and pattern contains (?) were defined. The left-hand operand for each is a
string; the right-hand operand is the name of a pattern. The pattern match
operator '?=' returns true iff the pattern matches the entire string. The
pattern contains operator '?' returns true iff the pattern matches a
substring.

For example, if one uses the patterns forml and form2 declared in
conjunction with the date example above with the variables sa, sb, and sc
as follows:

var sa, sb: string; sc: char[l6];

with the following assignments

sa := '04/02/77';
sb := '27 Aug 72';
sc := 'Received 6-11-66';

38 A.I. Wasserman et al.

then sa? = forml is true, sc? = forml is false, sb?form2 is true, sa? = form2
is false, and sc?forml is true.

The binary operators match and contains are used with the case state
ment to allow branching based on pattern matching. These operations
return a pattern name if the case expression, which must be of type string
or array of char, is successfully found in the designated pattern set. The
pattern name is then used as the case selector, as follows:

case input match month of { assume input declared of type string}
when longenglish, shortenglish: english-date (display)
when others: unknown-date (display)

end case

The remaining necessary capabilities are to be able to split a given string
into its components and to combine two or more shorter strings into a
longer string, based on patterns. The split and combine operations, respec
tively, provide these capabilities in PLAIN. The split operation apportions a
string value to one or more variables, possibly discarding part of the string.
The combine operation assembles two or more expressions into a single
string value according to a specific pattern. The assembled string value is
then assigned to a variable. A given string may be split or combined
according to different patterns as necessary at any level of the pattern
matching. Such a facility is particularly useful for processing of command
languages.

With this set of pattern matching capabilities, it is possible to make
effective use of the pattern facility in conjunction with the string handling
features and to carry out the input/ output and string processing that is
essential to the effective construction of interactive programs. These string
handling and pattern matching features are described at greater length in
[31].

5. Exception Handling

The ability to anticipate and to handle non-standard situations is
essential to the construction of reliable systems. Thus, the specification for
a system may provide not only for 'normal' conditions, such as proper
operation of the hardware and meaningful user input, but also for
abnormal conditions, such as hardware errors and arithmetic overflow,

PLAIN: an algorithmic language for interactive information systems 39

describing the action to be taken if these conditions arise during system
operation.

Accordingly, exception-handling mechanisms have been designed and
implemented in many programming languages, including PL/I [14], MESA

[16], CLU [12], and ADA [13]. Also, there have been proposals made for the
inclusion of exception-handling mechanisms in languages and systems, and
for the specification and implementation of exceptions [4, 7, 10, 15, 18].

The goals established for the exception-handling features of PLAIN are
the following:

(1) Association of exceptions - it should be possible to associate
exception handlers with specific exceptions and to bind this association at
the statement level in the source program; it should also be possible to
attach this association to a group of statements, such as a procedure body.

(2) Fielding of exceptions - it should be possible to pass an exception
from the environment in which it was signalled to any previous level of
invocation for handling.

(3) Orderliness - it should be possible to carry out normal shutdown
procedures in the event of a fatal error, permitting, insofar as possible, the
closure of open files, and the generation of messages.

(4) Grouping of exceptions - it should be possible to define a group of
exceptions that are to be treated similarly under certain conditions.

(5) Programmer-defined vs. built-in exceptions - the exception-handling
scheme should support both the handling of built-in exceptions and the
definition, signalling, and handling of programmer-defined exceptions.

We designed a procedure-oriented approach to exception-handling for
several reasons:

(1) the use of a call provides a constraint upon control flow, since control
can return from the handler to its invocation point;

(2) the same handler can be invoked for several different exceptions or
for several different instances of the same exception;

(3) the use of procedures serves to separate the exception-handling code
from the remainder of the code;

(4) data coupling is made more visible through the parameter passing
mechanism of procedure calls.

PLAIN provides built-in exceptions for commonly occurring exceptional
program conditions, and permits the declaration of user-defined
exceptions. Built-in exceptions are raised automatically by the runtime
system, while user-defined exceptions must be explicitly raised. The signal

40 A.I. Wasserman et al.

statement is used to signal a condition or event that needs special handling.
The execution of a signal statement causes the program unit being executed
to be immediately terminated at the point of the signal, with control
returned to the invoker of the unit with the named exception as an active
exception in the invoking context.

Program statements may optionally contain an exception part, which
contains a list of exceptions and the names of associated exception
handling routines, called handlers. A handler is like a procedure in that it
may be invoked from numerous places within a program and that standard
parameter passing rules apply. Handlers are also like procedures in that
there are no restrictions upon declarations or statement types; in other
words, any type of computation may be performed within a handler.

The handler attempts to perform whatever actions are necessary to take
care of the exception that caused it to be invoked and then returns to the
point of invocation. There are four possible ways in which the computation
may then proceed:

(1) the exception has been cleared and normal program execution may
continue;

(2) the exception has not been handled completely and is then passed to
the invoker of the routine in which the exception occurred, causing the
termination of the routine;

(3) the exception has been cleared and the program segment (statement
or compound statement) associated with the exception is retried;

(4) a different exception is returned to the location where the first
exception occurred, which must be handled before handling of the first
exception can be completed.

This mechanism permits exceptions to be passed up the activation chain
and permits them to be handled at each level until they are cleared or until
the absence of a programmer-defined handler causes the system-defined
default handler to be invoked, thereby causing program termination.

The clear statement clears the exception that caused the invocation of the
handler. The retry statement clears the active exception and then returns
control to the beginning of the statement from which the handler was
invoked, attempting to restore the environment which then existed. (Note
that not all these effects, e.g., input/output and database updates, can be
feasibly undone.) The clear and retry statements may only be used within a
handler.

There are three built-in user-callable handlers that facilitate the use of
this mechanism:

PLAIN: an algorithmic language for interactive information systems 41

(1) abort, which signals the unclearable fail exception to the invoker of
the currently executing routine;

(2) continue, which clears the active exception and results in continued
execution of the currently executing routine;

(3) pass, which passes the active exception to the invoker of the currently
executing routine.

Although this mechanism is more complex than some of those provided
by other languages, it also provides some facilities that are not present in
other exception-handling schemes, but that are important for interactive
programs, including:

(1) exception handling is preemptive so that executions may be inter
rupted and stacked, making it possible to react to an exception while
handling another;

(2) the pass handler makes it possible to pass exceptions through
successive function/procedure invocation levels to a point at which the
exception is meaningful in terms of the intended function; a low-level
exception may or may not signify an error condition;

(3) the retry statement (see above) makes it very easy to program the
common situation of asking the user to repeat input that does not conform
to expected patterns.

These features may be illustrated by considering an example of user/
program dialogue, such as asking the user to type in a valid bookid as
defined above. In this example, the program reads a variable input
according to the bookid pattern. An exception part is associated with the
read statement to handle the various exceptional conditions that might
arise. If the user transmits the break or the escape character, the handler
break-message will be invoked. An exception can then arise while executing
the read statement in break-message. 1

var input: char[IO];
limit: integer;

{ limit is set to the number of tries we are willing to make}

read[bookid]: input! [ioerr: abort; patform: ask-again;
break, escape: break-message];

1 The exception parts shown in this example are intentionally thorough. In practice, the
thoroughness of the exception parts would depend on the desired robustness of the program.

42 A.I. Wasserman et al.

{ ask-again and break-message are user-defined handlers}

handler yes-or-no;
imports limit: modified;
begin

if limit> 0 then
write 'Please answer yes or no';
limit:= limit-I;
retry { causes read in break-message to be repeated}

end if;
write 'The program is being terminated';
signal fail;

end yes-or-no;

handler break-message;
var answer: string;
pattern yes-no= ['yes', 'no'];
begin

write 'Do you wish to terminate the program? .. .';
read [yes-no]: answer![patform, time: yes-or-no];
if answer= 'yes' then signal fail end if;
retry { causes read in main program to be repeated}

end break-message;

handler ask-again;
begin

write 'Invalid book number. Please try again.', \ n;
retry { causes read in main program to be repeated}

end ask-again;

It can be seen from this example that a significant portion of the code in
an interactive system must be devoted to management of the user/program
dialogue, particularly if one wishes to create user-centered systems that are
easy to learn and easy to use [29]. Because careful handling of user errors is
critical in such an environment, the exception-handling mechanism is
particularly important, and the exception handling features of PLAIN were
designed with this requirement in mind.

PLAIN: an algorithmic language for interactive information systems 43

6. Interactive Information Systems in PLAIN

The combination of database management, string handling, pattern
matching, and exception handling within the framework of a language to
support and encourage systematic programming is the most significant
contribution made by PLAIN. These features work together most effectively
in the construction of interactive information systems.

A program schema for the typical interactive information system
characterized in the introduction is as follows:

program iisschema;
external { names of external objects used by program, such

as databases and files}
var input: string;

{ other global declarations, including exceptions}
pattern cmdset = [coml, com2, com3, ... , comN, quit];

coml=(...);
com2=(...);

comN = (...);
quit= ('quit');

begin
loop

read input! [ioerr: abort];
{ terminate on hardware I/0 error}
case cmdset match input of

when coml: actionl (...) {parameter list}
when com2: action2 (...)

when comN: actionN (...)
when quit: exit
when others: write 'illegal command' {pattern match failed}

end case;
repeat;
write 'byebye'

end iisschema.

44 A.I. Wasserman et al.

Each of the actions associated with the commands may perform
additional decoding or analysis of the command, perhaps splitting the
command string into substrings via the string functions or the split
operation, and will then carry out the action implied by the user command.

Consider the example of a library information system using the pattern
set command and the pattern chkout shown above. The procedure book
checkout would include the following code:

procedure bookcheckout (input: string);
imports book, cardholder: readonly; checkout: modified;

{book cardholder, and checkout defined external to bookcheckout
as relations in library data base}

var booknum: char [IO]; copyno: 1..100; datedue: char [4];
oldcount, person: integer;

{handlers bad-book, bad-card, bad-copy, and dberr not shown}

begin
(#, #, booknum, #,person):= split [chkout]: input;
{ check validity of ISBN number and cardholder}
assert book [boo kn um] in book ! [assertion: bad-book];
assert cardholder [person] in cardholder ! [assertion: bad-card];
write 'Copy number:';
read copyno ! [patform, range: bad-copy];
write copyno;
{ compute due date and save in variable datedue}

{ update set of checkouts}
checkout :+ [(boo kn um, person, copyno, datedue)] ! [fail, duplicate:

dberr];
end bookcheckout;

This brief example shows how these features combine to incorporate the
facilities for interactive systems with such important features as assertion
checking for semantic integrity of databases and powerful control
structures. These features are easily used in a similar fashion for other
similar kinds of examples and greatly simplify the problems of writing this
class of programs.

PLAIN: an algorithmic language for interactive information systems 45

Because of space limitations, we have omitted discussion of the PLAIN

module facility, which provides facilities for data abstraction. The module
facility is extremely useful in PLAIN, since it permits type extension of data
base types as well as other types. It is similar in most other respects to
data abstraction facilities found in other modern languages, e.g., CLU.

7. Conclusion

The design of PLAIN combines modern programming language design
concepts for creating well-structured programs with an integrated set of
innovative features to support the implementation of interactive infor
mation systems.

Among the most significant aspects of these innovative features are:
(1) the associative addressing capability of relations, making it possible

to access and modify individual data base items, to use data base items
routinely throughout the program text, and to perform conversion between
data base types and the underlying types of their attributes;

(2) the pattern and pattern set specification facility, making it possible to
specify a context-free grammar, using the pattern-matching features to
carry out the lexical and syntactic aspects of the text processing;

(3) the procedure-oriented exception-handling scheme, which makes it
practical for the programmer to anticipate user errors and to build robust
programs that handle these errors.

These features are largely orthogonal and do not interfere with one
another in using or implementing the language, even though they are
typically used together in practice.

Experience with PLAIN and with other modern programming languages
indicates, subjectively at least, that it is much easier to implement inter
active information systems with PLAIN than with any of the languages
previously used for such applications or any of the other modern languages
designed to support systematic programming. Work is continuing to use
PLAIN to implement various application systems and software tools, as well
as to develop implementations of PLAIN for a variety of execution environ
ments.

46 A.I. Wasserman et al.

References

[I] E. Allman, M.R. Stonebraker and G.D. Held, Embedding a relational data sublanguage
in a general purpose programming language, Proc. Conf. on Data: Abstraction,
Definition, and Structure, ACM SIGPLAN Notices 11 (Special Issue) (1976) 25-35.

[2] T. Amble, K. Bratsbergsengen and 0. Risnes, ASTRAL: a structured and unified approach
to data base design and manipulation, in: G. Bracchi and G.M. Nijssen (Eds.), Data
Base Architecture (North-Holland, Amsterdam, 1979) pp. 257-274.

[3] A.L. Ambler et al., GYPSY: a language for specification and implementation of verifiable
programs, Proc. ACM Conf. on Language Design for Reliable Software, ACM
SIGPLAN Notices 12(3) (March 1977) 1-10.

[4] D.M. Berry, R.A. Kemmerer, A. von Staa and S. Yemini, Toward modular verifiable
exception handling, Comput. Languages 5 (2) (1980).

[5] E.F. Codd, A relational model of data for shared data banks, Comm. ACM 13 (6)
(June 1970) 377-387.

[6] E.F. Codd, Further normalization of the data base relational model, in: R. Rustin
(Ed.), Data Base Systems, Courant Computer Science Series, Vol. 6 (Prentice-Hall,
Englewood Cliffs, 1972) pp. 35-63.

[7] J.B. Goodenough, Exception handling: Issues and a proposed notation, Comm. ACM
18 (12) (December 1975) 683-696.

[8] J. Ichbiah et al., Reference manual for the ADA programming language, Advanced
Research Projects Agency, U.S. Department of Defense (July 1980).

[9] B.W. Lampson et al., Report on the programming language EUCLID, ACM SIGPLAN
Notices 12 (2) (February 1977) 1-79.

[!OJ R. Levin, Program structures for exceptional condition handling, Ph.D. Dissertation,
Computer Science Department, Carnegie Institute of Technology, Pittsburgh, PA
(1977).

[II] B. Liskov et al., cw reference manual, Lecture Notes in Computer Science, Vol. 114,
Springer, Berlin 1981.

[12] B. Liskov and A. Snyder, Exception handling in CLU, IEEE Trans. Software Engrg.
SE-5 (6) (November 1979) 546-558.

[13] D.C. Luckham and W. Polak, ADA exception handling: an axiomatic approach, ACM
Trans. Programming Languages and Systems 2 (2) (April 1980) 225-233.

[14] M.D. McLaren, Exception handling in PL/I, Proc. ACM Conf. on Language Design for
Reliable Software, ACM SIGPLAN Notices 12 (3) (March 1977) 101-104.

[15] P.M. Melliar-Smith and B. Randell, Software reliability: the role of programmed
exception-handling, Proc. ACM Conf. on Language Design for Reliable Software,
ACM SIGPLAN Notices 12 (3) (March 1977) 95-100.

[16] J.G. Mitchell, W. Maybury and R. Sweet, MESA language manual, version 5.0, XEROX
Palo Alto Research Center, Palo Alto, CA (1979).

[17] C.J. Prenner and L.A. Rowe, Programming languages for relational database
management, Proc. AFIPS 1978 NCC, Vol. 47, pp. 849-855.

[18] B. Randell, System structure for software fault tolerance, IEEE Trans. on Software
Engrg. SE-I, (2) (June 1975) 220-232.

PLAIN: an algorithmic language for interactive information systems 47

[19] R.P. van de Riet, A.I. Wasserman, M.L. Kersten and W. de Jonge, High level
programming features for improving the efficiency of a relational database system,
ACM Trans. on Database Systems 6 (3) (1981), in press.

[20] L.A. Rowe and K. Shoens, Data abstraction, views, and updates in RIGEL, Proc. of
ACM 1979 SIGMOD Conference, Boston, MA, pp. 71-81.

[21] J.W. Schmidt, Some high level constructs for data of type relation, ACM Trans. on
Database Systems 2 (3) (September 1977) 247-261.

[22] J.E. Shapiro, THESEUS - a programming language for relational databases, ACM Trans.
on Database Systems 4 (4) (December 1979) 493-517.

[23] A.I. Wasserman, Online programming systems and languages: a history and appraisal,
Techn. Rep. No. 6, Laboratory of Medical Information Science, University of Cali
fornia, San Francisco CA (1974).

[24] A.I. Wasserman, Embedding database management operations in programming
languages, Conference Digest - IEEE COMPCON Spring 1976, pp. 79-82.

[25] A.I. Wasserman, USE: a methodology for the design and development of interactive
information systems, in: H.-J. Schneider (Ed.), Formal Models and Practical Tools for
Information Systems Design (North-Holland, Amsterdam, 1979) pp. 31-50.

[26] A.I. Wasserman, The data management facilities of PLAIN, Proc. ACM 1979 SIGMOD
Conference, Boston, MA, pp. 60-70.

[27] A.I. Wasserman, Software tools and the user software engineering project, in: W.E.
Riddle and R.E. Fairley (Eds.), Software Development Tools (Springer Verlag,
Heidelberg, 1980) pp. 93-113.

[28] A.I. Wasserman, The design of PLAIN - support for systematic programming, Proc.
AFIPS 1980 NCC, Vol. 49, pp. 731-740.

[29] A.I. Wasserman, User software engineering and the design of interactive systems, Proc.
5th International Conference on Software Engineering, San Diego, 1981, pp. 387-393.

[30] A.I. Wasserman et al., Revised report on the programming language PLAIN, ACM
SIGPLAN Notices 16 (5) (May 1981) 59-80.

[31] A.I. Wasserman and T. Booster, String handling and pattern matching in PLAIN, Techn.
Rep. No. 50, Laboratory of Medical Information Science, University of California,
San Francisco, CA (1981).

[32] A.I. Wasserman and M. Dippe, Design and evaluation of a procedure-oriented
exception-handling mechanism, in preparation.

[33] N. Wirth, The programming language PASCAL, Acta Inform. 1 (1) (1971) 35-63.
[34] W.A. Wulf (ed.), An informal description of ALPHARD (preliminary), Techn. Rep.

CMU-CS-78-105, Department of Computer Science, Carnegie-Mellon University (1978).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 49-58

PORTAL - A PASCAL-Based Real-Time Programming Language

Rudolf Schild

Central Research Laboratory, LGZ Landis & Cyr Zug AG, CH-6301 Zug, Switzerland

The high level programming language PORTAL was developed to alleviate the
problems experienced in programming complex real-time process control
systems. It is based on PASCAL and includes facilities for breaking a task up
into modules (information hiding), for describing and synchronising parallel
processes, and for handling peripheral devices and interrupts. It has been used
in actual systems with excellent results.

1. Introduction

1. 1. Motivation

The programming language PORTAL (for Process Oriented Real-Time
Algorithmic Language) was developed for the efficient production of
reliable real-time software.

In process control software parallel processes as well as real-time events
play an eminent part. This, of course, makes the programming of such
systems especially difficult. We know by now that the design of sequential
programs is in itself a difficult task. The difficulties are compounded when
several activities go on concurrently, but each at its own speed, and when
asynchronous external events must be taken into account.

In view of the possibly severe costs of a failure in a real-time system, it is
extremely important to detect errors as early in the development process as
possible. If the manner in which the system is designed and the tools used
for this task can prevent a number of errors from being committed in the
first place then quite a lot has been gained.

If we are furthermore able to reduce the complexity of what we are
dealing with at any given moment, so that we can comprehend the
(sub)task and stay in control, then there is hope for building complex yet
reliable systems.

49

50 R. Schild

Thus, to attack the problem of producing efficient and reliable systems
we found these two means essential: structuring - to keep within
manageable limits - and redundancy - to reduce the number of errors.

1.2. Achieving the goal

Originally we did not set out to produce a new language. The project
started in 1974 with a study that was to find tools for proving real-time
software correct. We did find that there were quite a number of efforts
going in that direction, but we also found that the general consensus was: it
is more difficult than we expected, and beyond the current state of the art.

Our next thrust - in 1975 - was in the direction of finding an existing
programming language which would allow us to build our systems in such a
way that we could be reasonably certain the job had been done well, and
which would be amenable to program proofs if there ever was a way of
automatically proving programs.

Again we did not find what we were looking for. To be sure there were a
number of candidates, but some existed only on paper, while for others we
could not obtain a compiler that would fill our needs.

Thus our final step was to design our own language. Throughout our
effort we remained in contact with Niklaus Wirth and his collaborators at
the Swiss Federal Institute of Technology (ETH Zurich), who were then
developing Modula.

1. 3. Language design

As a basis we chose PASCAL, augmented with constructs for parallel
processing. Since the study of programming languages in the early
seventies had pointed out the desirability or undesirability of a number of
language constructs, we decided to make use of that knowledge, rather
than try to invent new features.

2. The PORTAL Language

2.1. Structuring

In order to manage the complexity of a system, there are two ways of
structuring it:

PORTAL 51

(a) The entire system is divided into several processes, each of which
runs at its own speed, perhaps driven by some sort of external signal. Each
of these processes can then be viewed separately, with occasional
interaction with some of the others, and totally ignorant of the existence of
the remainder of them.

(b) There is also a static division of the system into modules. Modules
serve as information hiding devices; they can be used to implement certain
structures or even entire subsystems. The internal implementation of a
module need not be known to the outside, i.e. to the user of the module;
access to it is solely through the interface.

2.2. Synchronisation

In order to make up a coherent system, the parallel processes must
somehow be able to synchronise with one another.

We chose the well-known monitor and signal concept [1]. The monitor
guarentees exclusive access to the routines and therefore to the data within
it. A process that is active within a monitor may find that it is unable to
proceed because some condition is not present or some event has not
happened. In this case it frees the monitor by waiting for a signal. This
signal must subsequently be given by another process, which must be active
within the monitor .to do so. It creates the condition desired by the waiting
process and sends the signal.

It seemed important to us to assure that this condition is in fact still true
when the first (the waiting) process receives control, since any kind of
proof or even plausibility argument would have to be able to rely on that.
For this reason we decided to switch processes immediately after the send
statement. This means that the sending process is suspended until the
waiting - and now reawakened - process frees the monitor again, either by
leaving it for good, or by going into another wait state.

2.3. Synchronisation with the clock

A rather simple device was introduced to permit access to a clock. A
process may wait for a signal and at the same time specify a maximum
delay (in some predefined units such as ticks). This is often useful in
connection with external interrupts (Section 2.4), which might be lost and
thus keep a process waiting forever.

Normally, in accordance with Hoare's ideas, processes are unidentified,

52 R. Schild

which means that a process cannot tell who woke it up. But when the wait
with delay is used, it may well be important to know that the delay has
elapsed and the expected signal did not come, which might e.g. indicate
some equipment malfunction. Therefore there is another parameter
accessible if the wait is used with a delay, which indicates whether the clock
or some other process sent the signal.

The abilily to recover from lost interrupts was in fact the principal
reason for introducing the wait with delay. But it can also be used to wait
for a dummy signal, which will never be sent by any other process and
which therefore causes the waiting process to be awakened by the clock,
after the specified delay has elapsed.

2.4. Interrupts

Real-time systems generally comprise a number of peripheral hardware
devices that usually communicate via interrupt with the central processor.
It seemed important to us that the system designer be able to handle
interrupts without having to take recourse to assembler language
programming.

The method we chose was to represent interrupts as signals given by a
hidden process. Once a signal is defined as belonging to an interrupt, it is
then used in exactly the same way as any other signal.

2.5. Safety

Since our goal included preventing errors from being committed (if
possible) the criteria for inclusion of a certain construct in the language
were:
- it must aid the designer in constructing reliable software,
- it should not be inherently dangerous to use,
- it must be implementable in a clear and fairly straightforward way ..

According to these criteria we did not include pointers or record variants
(dangerous) nor exception handling (difficult).

It was felt, however, that thereby we restricted ourselves too much, and
we introduced different, safer versions of pointers and record variants.
(We do not yet have an answer to the problem of exceptions.)

Pointers for linked lists, say, can be had by our index type. This is always
tied to a specific array type, can only be used with an existing variable, and
thus avoids the problem of dangling references at least partially.

PORTAL 53

Pointers to an element of a data structure, say from inside a module, can
be realised with the resource function, which in effect returns a pointer.
The syntax ensures that this result pointer is only used while access to the
structure, and in particular to that element, is guaranteed.

The case type represents a restricted form of the record variants, similar
to ALGOL 68's union. The syntax was chosen such that the specific variant
being processed must be indicated at compile time, either as a constant if it
is known, or in a case statement if it must be selected. Either way the
language guarantees that in fact the fields for the actual variant are being
accessed and none other.

3. Implementation

3.1. Synchronisation

The methods used to implement monitors and signals are quite straight
forward. At run time the PORTAL nucleus manages all the processes and
their synchronisation. The state of each process is recorded in a process
descriptor. Calls of monitor routines - i.e. routines which can be viewed as
indivisible actions - are not executed directly but via the nucleus, which
keeps track of the availability of each monitor and maintains the entry
queues.

The signals are implemented as queues also, with the execution of a wait
statement causing the process descriptor to be entered into that queue. The
execution of a send statement puts the executing process's descriptor in a
stack and removes the first item from the signal queue.

A process leaving a monitor will cause the send stack to be popped. If it
is empty, i.e. if there are no more processes suspended because of sending a
signal, then the first process from the entry queue (if there is one) enters the
monitor.

Processes waiting with a maximum delay are additionally linked in a
time-out list, since they may be removed from inside their respective signal
queues.

Interrupts are caught by the nucleus, which then removes the first
descriptor from the corresponding signal queue, just as if a signal had been
sent by another process. 'Normal' send's, i.e. those executed by processes,
may be performed on an empty queue, in which case no other process is

54 R. Schild

started. The sent signal is thus lost without any other effect. In case of an
interrupt, however, there must be exactly one process waiting for it,
otherwise a run-time error occurs. This seems to be a reasonable
interpretation of interrupts as hidden processes.

3.2. Priorities

Each process is given, at compile time, a fixed priority under which it
runs. The assignment of priorities is up to the programmer; if none is given
the compiler uses a default value of zero (lowest).

In addition, monitors are also assigned priorities, also fixed at compile
time (default 3). While a process is active within a monitor, it runs under
the monitor's priority. To avoid the possibility of resulting confusion,
processes may only enter monitors of at least the same priority as their own
current priority. Thus it is possible to cell a routine in another monitor
from within one, but only if this would not lower the process's priority.

Monitors whose routines deal with hardware interrupts must be assigned
the priority of the hardware device the handle in order to run correctly.

3.3. Checks

3.3.1. Run-time checks
The usual run-time checks for overflow, assignment to subrange

variables, access to array elements, selection of case statements, are of
course included.

3.3.2. Computation of the stack lengths
Since all routines are reentrant, i.e. they can be executed by several

processes at once, their local data are stored on a stack. Each process has
its own stack whose size increases and decreases during the system's
operation. In most process control applications it is considered quite
unacceptable to have the system signal a memory overflow, and perhaps
stop, simply because one of the process stacks has overflown. To avoid
this, the PORTAL compiler contains a pass which computes the maximum
stack length for each process, taking into account all routine calls. Each
process is then assigned a portion of memory for its stack, and it can be
guaranteed that this will suffice for any possible control flow, yet it will not
be more than can actually be required.

If routines call each other recursively, this is no longer possible,

PORTAL 55

however, and the compiler issues a warning message. The programmer in
this case has the option of introducing a special test with the recursive calls,
allowing the program to handle imminent stack overflow itself.

The stack length computation has been found very useful, in particular
by users who had had access to an earlier version with a fixed allocation of
stack storage.

4. Examples

Two examples should serve to illustrate the experience made with the
language in different areas. Details will not be considered.

4. 1. A process control example

The system consists of two identical PDP-11/04's that work together as
a master/standby system. The two CPU's are connected by a watchdog unit
for changing the standby machine to master, and a single data line for
transmission of certain operator input from one machine to the other, for
updating purposes. Attached to each machine are a teletype, a magtape
unit, and up to six communication interfaces connected to telephone lines
for dialling, and for sending and receiving information from outlying
stations.

Roughly, the specifications for the system are as follows. Every day at a
specified time the master unit calls the outlying stations according to a list
and requests information from them. This information is then stored on
magnetic tape for later off-line processing. The standby unit listens in
continuously and stores the data it receives on its own magnetic tape. Thus,·
if all is well, master and standby always have the same data on their
respective tapes.

The time at which the calling sequence is to start, the list of stations, as
well as a list of messages which the system may print out, can all be
changed on-line by the operator. Furthermore, the operator is able to call
up stations individually as well as retrieve selected information from either
magtape.

The system was programmed entirely in PORTAL, with the exception of
the nucleus (about 1 K bytes). In particular, all drivers were programmed
without using assembly language.

56 R. Schild

Our experience with this system was extremely encouraging. The
deadline for the acceptance test was easily met; and neither the acceptance
test nor the subsequent operations (the system has been in continuous use
since March 1979) have turned up any software errors.

4. 2. A simulation example

In simulating a polyvalent heating system, full use could be made of the
possibilities for parallelism as well as of the modular approach.

Physically, such a system consists of a number of elements such as heat
stores, heat consumers and producers, etc., which are interconnected in a
pipe network. For each element there exists a corresponding PORTAL

module containing a process representing the dynamics of the element. A
complete system is configured during a dialogue with the computer,
determining the elements and the actual pipe-layout. This makes the
program very flexible and easy to use. Each type of element constitutes a
different simulation problem, but by this separation they are easy to
handle. Once the framework of the program had been completed, different
people were able to implement elements without any deep knowledge of the
intricacies of the rest of the program; only the interface definitions had to
be observed.

Furthermore, if desired, true concurrency can be achieved by running a
number of modules on a second processor. Thus all the calculations for
solving the differential equations for the elements are done on one
machine, while the remainder of the program (the simulation control, the
plotting, etc.) run on another processor. To achieve this separation, only a
small number of quite localised changes have to be made, essentially
stretching the interface between two modules across machine boundaries.

5. Programming and Debugging Support

Two programs to support the PORTAL system have been written in
PORTAL: an editor and a post-mortem-dump analyser.

5.1. The editor

The editor provides the usual functions for editing files, with the user
moving a cursor on the display screen to indicate the place where a change

PORTAL 57

is to be made. But in addition to the normal editing mode, this editor also
checks the PORTAL program being edited for syntactical correctness (line by
line).

If so desired, keywords may be entered by pressing just one functional
key. When the program is displayed or listed, all keywords are (optionally)
converted to lower case letters for better readability of the program.

For easier structuring, the program lines are automatically indented.
Structures (statements, routines, modules) can be properly terminated by
just pressing the special end-key.

5.2. The post-mortem analyser

The post-mortem-dump analyser lets the user request information about
the values of variables, the status of processes and the calling sequence of
routines, after a run-time error has occurred. After the error, the entire
memory partition used by the program is dumped onto a file, e.g. on a
floppy disk. This file, together with files generated during compilation, are
then used to produce the required formation interactively.

It is important to note that the code of the program itself is in no way
changed by the fact that a PMD analyser is being used. All the information
the analyser needs to find names and types of variables, line-numbers of
statements, etc. is contained in the files produced during compilation; they
provide the connection between the source program and the machine
representation.

Depending on the actual system configuration it is also possible to set
triggers, referring to line numbers. Whenever control passes such a trigger,
the system is stopped and may be analysed on-line, then execution can be
resumed.

6. Conclusion

Great care has been taken in the design of PORTAL to produce a language
that will provide the necessary tools and constructs for the efficient
development of process control software with special emphasis on the
reliability of the finished product. A great deal of thought and debate has
gone into it, especially where compromises had to be made between 'pure'
and 'practical', which sometimes seem to lie at opposite ends of the
spectrum.

58 R. Schild

Whether it is for the production of a real-time system with physically
concurrent processes, or for writing an essentially sequential program,
experience has shown us that we are on the right track and that our new
development tool is a useful one.

Acknowledgement

I would like to thank my friends and colleagues at Landis & Gyr for their
work on PORTAL, which would not exist without them.

I would also like to thank Klaus Wirth for numerous fruitful discussions
and for introducing me to compilers in the first place.

And finally I would like to thank the referees for their helpful
suggestions on the first draft of this paper.

References

[1] C.A.R. Hoare, Monitors: An operating systems structuring concept. Comm. ACM 17
(10) (1974) 549-557.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 59-76

Naming by Colours: A Graph-Theoretic Approach
to Distributed Structure

J.D. Roberts
University of Reading, Reading, U.K

The use of relative or 'local' naming which is already significant in many
programming languages is developed further by the concept of a directed
graph (called a 'name-graph') with labelled nodes and coloured arcs. Such
name-graphs enable remote objects to be named by 'colour' rather than by
globally valid labels, and their use is illustrated by systems incorporating both
active and passive components. Various ways of generating name-graphs are
explored, as finally also is their application to specifying type and visibility.

1. Introduction

In the 1960's Dijkstra [2] suggested the possibility "that a confrontation
with the intricacies of Multiprogramming [could] give us a clearer under
standing of what Uniprogramming is all about". Another question which
we might ask in the 1980's is whether a confrontation with Distributed
Computing might give us a clearer understanding of some of the funda
mental problems of data structure and type.

In the exploration which follows answers are sought to the following
questions.

Should a programming language allow communication
structure to be described independently of the other details
of the program?

Should it be possible for a process to reference neighbours
other than through global identifiers or formal parameters?

Can regular but non-rectangular communication structures
be described concisely by generally applicable methods?

How can synonymous references be prohibited?

59

60 J.D. Roberts

This study has also been motivated by a longer term wish to understand
various fundamental problems of how sharing and recursivity in data
structures should be handled and of how far references can be removed by
abstraction.

Eventually perhaps the study will be presented starting with passive data
structures and working towards distributed activities; but here the
questions are taken in the opposite order, for the simple reason that this is
how the exploration has so far taken place.

2. Naming by Colours

The basic principle developed here is that the naming of objects in some
localized context needs only to distinguish between members of that set of
objects to which reference needs to be made. As such, the principle is
already well established in programming languages. In the context of an
ALGOL 60 block, a variable is specified uniquely by its identifier, whereas in
a global context it would be necessary to specify somehow which instance
of the block was intended. Although it is not to be found in ALGOL 60, such
extra-contextual reference to local names is an important feature of more
recent languages exemplified by the 'inspect' feature of Simula or the
'with' construction of PASCAL. What does not seem to be found currently
is the use of local or relative naming in a situation where a fairly large
number of (active or passive) objects coexist at the same scope level, but
where in the context of each object, reference needs to be made to only a
very small number of other objects; yet in distributed computing this seems
to be a highly realistic requirement. The reasons for this lie in:

(i) the economic desirability of localizing communication,
(ii) the fact that many problems do admit solutions having such

structure, and
(iii) the simplicity and uniformity of programs which provide such

solutions.
In graph-theoretic terminology, the information required to specify such

a relative or local naming scheme corresponds to a directed graph with
labelled nodes and coloured arcs. Such a graph we shall call a 'name
graph'. The nodes correspond to the objects, and their labels correspond to
global identifiers. An arc is directed from an object A to an object B if and
only if reference has to be made to B in the context of A, and the colour of

Naming by colours 61

the arc corresponds to the local name by which reference is made. The
labels (so-called because they have to be all different) attached to the nodes
are all strings of symbols over some alphabet, and the developments in the
later sections will actually use this structure. This is perhaps the only not
entirely standard graph-theoretic concept. The colours (so-called because
the same colour may be used on man~ arcs) are treated as symbols with no
internal structure. As it is sometimes quite natural for an object to be called
by the same name by more than one process, there is no requirement for
name-graphs to be properly in-coloured (i.e. have at most one arc of any
colour directed into any node); but they will normally be properly out
coloured. To violate the latter restriction would lead to non-deterministic
references to variables which we shall, provisionally at least, avoid. Most
ways of expressing communication between two activities seem to require
each to be able to reference the other. For this reason name-graphs related
to systems of active objects are typically symmetric digraphs but this is not
an essential property.

The use of relative names of this kind is analogous to the use of
pronouns in natural language (see Fig. 1), or the use of logical numbers of
devices in computing systems.

thou I

john

thou

here now now

Fig. I. Hypothetical application of relative names in natural language.

3. Two Examples

The applicability of the 'name-graph' concept is not confined to any
particular communication or synchronization mechanism. To illustrate this

62 J.D. Roberts

fact two examples of asynchronous processing have been chosen which use
contrasting primitive mechanisms. Both have been described previously
using global names and here the original mechanism of each is represented
but in terms of relative names (i.e. the colours of the arcs in a name-graph).
They are:

(1) matrix x vector multiplication pipeline [6], using the handshaking
communication primitives '?' (input) and'!' (output), and

(2) the dining philosophers [4] using 'p' 'v' operations on semaphores
and a subroutine calling mechanism.

3.1. Matrix x vector multiplication

In this example a stream of 3-vectors is multiplied by a constant matrix
using a system of 21 processors which are arranged on a rectangular array

OJ

s n

0
Fig. 2. Name-graphs applied to distributed computing. (a) Matrix x vector pipeline.

Naming by colours 63

Fig. 2 (continued). (b) The dining philosophers.

and the programs which they execute are divided into 5 classes, instances of
which are located respectively at the north, south, east and west borders
and centre square of the system.

In the original description, the definition of each process class referred
to its neighbouring processes by use of globally recognizable pairs of
subscripts; but in the context of the name-graph shown in Fig. 2a those
processes with which direct communication takes place can be identified
more simply by their relative positions which are denoted by the arc colours
n, s, e, w. Each node is labelled with a string of length 2 of symbols taken
from 0, ... , 4, which serves to determine the class of process attached.

The program below shows how this system could be represented in a
form which relates to this name-graph but which follows Hoare's original
version in other details.

64 J.D. Roberts

"matrix x vector multiplication":
begin

end

"Fig. 2a";
{This brings into the scope of this block the colours and labels of

Fig. 2a and the connections between them and also provides the
environment for defining classes of activity at each of the labelled
nodes}
formal j, k: 1, ... , 3;

{This restricts the classes of symbol for whichj, k may stand when
used as name parameters delimited by the meta-symbols (,) }
at 'O(k)' : "north"; at '4(k)' : "south(k)";
at '(j)4' : "east"; at 'j(O)' : "west";
at '(j, k)' : "centre";
"north" : *[true--->s !O]
"south(k)" : "process consuming output(k)"
"east" : *[x: real; w?x--+skip]
"west(j)" : "process supplying input(j)";
"centre(j, k)": [a: real; "initialize a depending on (j, k)";

{ which can be performed prior to run-time
possibly even when the hardware is being built}

*[x: real; w? x--+e!x;
sum: real; n?sum; s!(a*x+sum)

]]

3.2. The dining philosophers

In this classical example the sustenance of each philosopher depends on
the non-eating state of his left and right neighbours. By using the name
graph shown in Fig. 2b, these neighbours can be denoted by/, r in identical
routines for each philosopher, and the original identities 0, 1, 2, 3, 4 cease
to serve any purpose. The solution give here, closely follows that recom
mended in Dijkstra's original discussion [4]. This made use of a routine
named test(i) for testing and if appropriate stimulating a particular
philosopher i into eating. In the distributed representation, each potential
activation of this routine is realized as a separate activity connected directly
to the philosopher (denoted relatively by the colour ph) being tested. A
specified test activation is invoked by an occurrence in the program text of

Naming by colours 65

a statement of the form 'call ((routine activation name))'. It may be
conceptually useful to regard this as a coroutine call; but in practice the
simplest of subroutine calling mechanisms will suffice, since the use of the
global mutual exclusion semaphore in this example ensures that no already
active routine will be re-entered.

"5 dining philosophers":
begin

end

"Fig. 2b";
formal i: 0, ... , 4;
at '(i)' : "philosopher";
at 'rou(i)' : "test routine";
"philosopher" : *[true

--+p(mut); s := hungry; call(test);
v(mut); p(pri);

l;

"eat";
p(mut); s := thinking;

call(!. test); call(r. test);
v(mut);
''think''

"test routine" : [ph. s = hungry and eating(; {ph. l. s,ph. r. s}
--> ph. s := eating; v(ph. pri)
□ ... {else-condition} ...
--+skip

l

4. Description of name-graphs

Although each of the name-graphs illustrated in Fig. 2 is intended to be
an essential part of a computer program, we have not yet proposed any
notation which would be acceptable to a computer for describing them; nor
is there any fundamentally urgent reason to do so. I suggest in principle,
that Figs. 2a, b be considered provisionally as examples of a perfectly
acceptable 'publication language', and that any sequential text containing
equivalent information be regarded as analogous to what in the ALGOL 60

66 J.D. Roberts

report was called a 'hardware representation'. Nevertheless, the systematic
and repetitive structure of the examples does suggest that it would be of
value (and indeed necessary in larger scale examples) to identify principles
for describing large regular structures concisely. This is in fact one of the
distinctive features of Hoare's proposal [6] which is intended as a neutral
description suitable for realizing either on distributed systems or by
sequential operations on vectors; but this particular notation is restricted to
rectangular arrays and we would require different notations to describe
non-rectangular structures.

Fig. 3. Fast discrete fourier transform pipeline.

Naming by colours 67

One example of a regular but non-rectangular structure has already been
given in Fig. 2b. Another pattern is exhibited by the fast discrete fourier
transform pipeline illustrated in Fig. 3. Further examples of communi
cation structure are offered by the hexagonal mesh systems and the
hierarchical configurations (which map onto Peano-like curves) of Kung
[8]. Some applications may require the description of structures which
combine a varied collection of symmetric substructures in this way. One
example of this would be the use of asynchronous machines to implement
finite element methods (as described by Loendorf [9]), which would require
the specification of name-graphs corresponding in structure to the finite
element decomposition; and these, as has been illustrated by Zienkiewicz
[13], can be highly complex and irregular. These represent a very wide
variety indeed and indicate the need for a fundamental approach which
does not favour any particular type of structure.

Three basic methods will be explored for describing name-graphs:
(i) enumeration of nodes and arcs (with their labels and colours),

(ii) functional description of the maps (over the domain of nodes)
defined by each colour,

(iii) generation from smaller name-graphs by means of the operations U
(union) and x (Cartesian product) supplemented by appropriate joining
and contracting principles.

4.1. Enumerative and functional descriptions

Simple name graphs are readily describable by enumeration of the pairs
of nodes connected by arcs of each colour e.g.

"Fig. l":
name graph
nodes '1981', 'amsterdam', 'john', 'mary';
arcs I : 'john'-> 'john', 'mary'-> 'mary';

end

thou: 'john'-> 'mary', 'mary'-> 'john';
here : 'john', 'mary'-> 'amsterdam';
now: 'john', 'mary'->'1981'

The description of a systematically constructed larger graph can

68 J.D. Roberts

alternatively be achieved by defining the underlying functions which it
describes. This requires some means of indexing whole families of nodes
with formal parameters, as has already been used viz:

"Fig. 2a":
name graph
formal i: 0, ... ,3; j: I, ... ,3; k: 1, ... ,4; /:0, ... ,4;
nodes '0(j)', '4(j)', '(j, I)';
arcs n: '(k,j)' -+'(k-1,j)';

end

s: '(i,j)'-> '(i + l,j)';
e: '(j, i)'-> '(j, i + 1)';
w: '(j, k)'-+'(j, k-1)'

4. 2. Composition from simpler graphs

Three composition operations on name-graphs are proposed namely:
union (denoted by U), Cartesian product (denoted by x) and directed
coloured join (denoted by 4 where c is a colour); and these are supple
mented by colour contraction operation (denoted by mod).

The union s1 U !!il of two name-graphs s1 and !!iJ is simply the union of
the nodes and arcs of s1 and !!iJ with similarly labelled vertices contracted
to a single vertex and redundant repeated edges with same name removed.
e.g.

In\ "-.r":\ s --f::\
~

~-··SJ:'\
\V ~v ~

If none of the labels in sl occur in !!iJ, then the structure of the union thus
defined is equivalent to the conventional union of two unlabelled graphs.

The product sf x !!iJ is formed by constructing the conventional
Cartesian product and labelling each vertex with a string formed by con
catenating the strings used to label the corresponding vertices of the
original graphs. All the edges retain their original colours. E.g.

-A
~

C

Naming by colours 69

X

The pair of operators U and x satisfy the normal associative and distri
butive laws of the algebra of sets.

Using these composition operators, the name-graph of Fig. 2a can be
expressed as

I

~)
ZJ w u) u)

(0 0 0))

Here the factor graphs could quite reasonably be regarded as 'standard'
graphs or alternatively they could be decomposed by further recursive
formulae to even simpler forms.

An example of a regular but non-rectangular structure is offered by a
hypothetical pipeline for the fast discrete fourier transform. This was used
by Dijkstra [3] as an example of how to 'build elephants out of mosquitoes'
and further considered by the writer [11]. A name graph which leads to
concise and uniform coding at the nodes is shown in Fig. 3 for the case of
order 8. The nodes are labelled by strings of symbols taken from the
alphabet { 0, 1, •}. This order-8 graph contains two order-4 graphs as sub
graphs (on the left and right of the picture) in which the vertex labels are
prefixed by 0 and 1 respectively. These are joined by four order-2 graphs
which can be generated respectively by appending the strings 00 01 10 11 to
all the node labels of the basic order-2 fourier transform graph (shown
below). The order-4 graph is similarly decomposable and more generally
the name-graph .5'n for the transform pipeline of order 2 n can be generated
by the recursive formula

,'?n=(@Xffn-1)U(YiX@n-l) (n>l)

70 J.D. Roberts

where

and

To describe the kind of name-graph shown in Fig. 2b (for the dining
philosophers) we introduce the directed coloured join st 4 f!8 which is
generated by augmenting the union st U f!8 with c-coloured arcs directed
from every node of f!8 to every node of st. Fig. 2b can thus be expressed as
follows.

(e mut
++

sem 0
G) G)

0 G
)

As with the operation U, if st and f!8 share no labels in common, the
structure of the graph st 4 f!8 is that of the ordinary undirected join
st + fJd. In the most general case the join so defined could contain loops
and multiple edges; but we neither use nor (for the time being) formally
prohibit such constructions.

The fact that we are working with labelled graphs actually enhances the
versatility of the union and join operations. In fact the graph obtained by

Naming by colours 71

removing all labels colours and edge directions from Fig. 2b has the kind of
structure described by Akiyama and Harary [1] in terms of a ternary
composition operation based on the ordinary join (denoted by'+') already
mentioned and a more complex corona operation (denoted by ' 0').

Finally, we show how the union operation on labelled graphs plays an
important role in building systems by connecting prefabricated modules;
but for this purpose we also need a contraction operation. To construct the
graph denoted by sl mod c (where c is a colour) we proceed as follows. For
each arc a in sf of colour c we note the originating node a0 and the desti
nation node a I and redirect all arcs pointing to a0 to point to a 1; then we
remove the c-coloured arcs. E.g.

mod c

For the application to the linking of modules we refer to Fig. 4. The graphs
sf, 86 shown in Figs. 4a and 4b represent classes of activity with unspecified
input and output. The graph shown in Fig. 4c represents two communi
cating instances of sf and 86 (respectively named X and Y) and can be
generated by the formula

((,q[xsf)U('21/ x f!l)U rt) mod link) modparam
where

link

ct~~
link

'211~@

(b)

72 J.D. Roberts

oup

ip

8 8 (c)

Fig. 4. (a), (b) Graphs showing classes of activity.wand :'.i. (c) Graph of program formed by
linking instances of ,w and .JJ.

5. Some Problems Concerning 'Type'

5.1. Prohibition of synonyms

Research into reasoning processes which underlies the composition of
programs indicates that it is important to avoid any situation in which the
same object can be called by more than one name. The formal reason for
this is found in the axiomatic description of the semantics of the assign
ment statement; for whether this be expressed in terms of post-conditions
implied by pre-conditions [7] or in terms of weakest pre-conditions
required for given post-conditions [5] the description involves the concept
of a 'predicate transformer' which substitutes an expression for every
occurrence of a variable with a given name. If the possibility exists of a
variable being called by more than one name then the reasoning process
becomes complicated and prone to error, and it would be difficult for
example to see the way to automating the verification of assertions under
such conditions.

Not every programming language has been designed to meet this
criterion. To achieve it even in sequential programming involves restriction,
which is why in the design of PASCAL [7] the substitution of actual var
parameters is carefully restricted, and variables accessible via pointers are
segregated from those which are declared 'directly'. These precautions
indicate the importance which has been attached to the principle of
prohibiting synonymous names.

Naming by colours 73

Unfortunately, name-graphs as described so far do allow multiple
naming. The problem is not that different processes use different names
for the same object (as reasoning about a parallel processing environment
is bound in any case to extend beyond the application of simple predicate
transformers to sequential sub-programs): it is the more serious problem
that the same object can be accessed by the same process via different
naming routes. In the code which drives a dining philosopher, for example,
the names

pri, I. r. pri, I. I. l. I. I. pri

would be synonymous, and to attain the criterion of unique naming it is
necessary to prohibit all but one of these. In the general case we need some
principle restricting the use of the name-graph just sufficiently to provide
one and only naming route to each object to which access is required.

5.2. Visibility of attributes

The kind of restriction required on the use of names is comparable to the
control of visibility of the attributes of an object which is already estab
lished and manifest in several well-known programming languages, such as
SIMULA (in later versions), PASCAL PLUS and ADA. These languages allow
the programmer to select which attributes should be accessible from out
side and in some cases to discriminate between read access and write access
and even (with enumerated types) which constant values of a given type
may be used; but to prohibit synonyms, such visibility control would in
general need to be specified individually for each accessing process. The
collection of attributes of and operations acting upon an object as seen
through such an individually restricted view is what we shall call the
apparent type of the object (i.e. how its type appears to the accessing
process).

In the dining philosophers configuration for example (Fig. 2b) the main
code for each philosopher needs only to access the attributes s and test of
its neighbours, but the 'test' activity requires access to the/ and r attributes
of the philosopher with which it is associated and these neighbours should
have an apparent type which allows access to the attributes s, pri, I. s, r. s
but in a way which prevents synonyms like l. r. s from being formed. To
achieve all the objectives, three different apparent types of philosopher
need to be distinguished, namely:

74 J.D. Roberts

philosopher= (s: state; pri: sem; mut: mutex; test: test routine;
I, r: neighbour);

neighbour= (test: test routine; s: state)
{prohibiting synonyms like/. mut (for mut),
I. r.s (for s) etc._};

tested phil = (s: state, pri: sem; I, r: neighbour)
{ describing how the type of a philosopher
appears from inside its test routine and
prohibiting ph. test. ph as a synonym for
ph}.

5.3. Graphs of apparent type

It is convenient to embed visibility restrictions of the kind just described
in a separate name graph called a graph of apparent type. In such a graph,
each node is labelled with either a class name or the name of an apparent
type and the colours of the arcs are taken from those of the main name
graph. Its use is to check the naming route for every reference in a class
body (at compile-time) by following it through the graph of apparent type
starting at the node labelled with the class name. The examples shown in
Figs. 5a and 5b prohibit synonyms while providing all naming needs for the
programs associated with Figs. 2a and 2b respectively.

A further use for a type-name-graph is to combine it with the main
name-graph by directing arcs coloured to denote class from each class

Fig. 5. Graphs of 'apparent type'. (a) Matrix x vector multiplication. (b) Dining
philosophers.

Naming by colours 75

instance to the node in the type graph with the appropriate class label. Such
a combined graph would then include the information contained in the 'at'
statements in the program examples of Sections 3 .1 and 3 .2.

Finally we could ask the question: ''ls it always possible to prohibit
unwanted synonyms by using a suitable graph of apparent type?" and this
can be answered almost trivially 'yes'; for as a last resort we could
construct a 'forest' of trees where each tree would describe a set of unique
naming routes for each node in the original name graph. Indeed, we could
resolve the problem of synonym prohibition by constructing any spanning
tree of the main name-graph; but in the examples already considered this
would lead to close neighbours being addressed by circuitous routes and to
totally unsystematic and irregular coding. The main questions here are
pragmatic rather than graph-theoretic.

6. Conclusion

Affirmative answers to the first three questions posed are, I believe,
indicated by the examples studied; for although the first two questions
were subjective in character, it has been shown that the use of name-graphs
has allowed subscripted references to give way to simple names and more
over to do so in a way which narrows the gap between language and
machine. The operations defined on name-graphs of union, Cartesian
product, coloured directed join and colour contraction seem to be useful
and versatile tools for describing name-graphs. The question of whether
proof techniques using global invariants will lend themselves to 'naming by
colour' remains an open topic for further study.

The last question also seems to be answered by the use of name-graphs to
define apparent type. In this way it seems practicable to describe and study
a degree of finely selective visibility which is sufficient to avoid the
possibility of 'synonyms'.

Acknowledgement

I would like to thank Frank Harary for pointing me in helpful graph
theoretic directions.

76

References

[l] J. Akiyama and F. Harary, A graph and its complement with specified properties, IV, J.
Graph Theory 5 (1981) 103-107.

[2] E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys (Ed.), Programming
Languages (Academic Press, New York, 1968).

[3] E.W. Dijkstra, Asynchronous systems, conservation laws, and convergence to a steady
state, Joint IBM University of Newcastle Seminar on Computers and Communications
(4-7 September 1973).

[4] E.W. Dijkstra, Hierarchical ordering of sequential processes, Acta Informat. 1 (l 971)
115-138.

[5] E.W. Dijkstra, Chapter 4, in: A Discipline of Programming (Prentice Hall, Englewood
Cliffs, NJ. 1976).

[6] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (8) (August 1978)
666-677.

[7] C.A.R. Hoare and N. Wirth, An axiomatic definition of the programming language
PASCAL, Acta Informat. 2 (1973) 335-355.

[8] H.T. Kung and C.E. Leiserson, Algorithms for VLSI processor arrays, in: C. Mead and
L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980).

[9] D. Loendorf, The finite element machine: an array of asynchronous microprocessors,
!CASE Workshop (April 1980).

[10] J. Olszewski, A machine-oriented version of PASCAL: A proposal, Univ. of Reading,
Dept. of Computer Science Internal Report, RCS 100 (April 1978).

[I I] J .D. Roberts, A fast discrete fourier transform algorithm suitable for a pipeline vector
processor, Univ. of Reading, Dept. of Computer Science Internal Report, RCS 82
(December 1977).

[12] J .D. Roberts, The construction of inherently tame asynchronous programs, Univ. of
Reading, Dept. of Computer Science Internal Report, RCS 106 (August 1978).

[13] O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, New York, 1977).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 77-98

Optimization of Inductive Assertions

Henry S. Warren Jr.

IBM Thomas J. Watson Research Center, Yorktown Heights, NY i0598, U.S.A.

Inductive assertions are assertions placed in the loops of a program, pri
marily to aid a mechanical correctness prover. Here we assume that the asser
tions in a program are executed along with the program. That is, the predicate
expression of each assertion is evaluated when encountered during program
execution, to verify that its value is true.

Inductive assertions are particularly expensive to execute. This is not only
because they are in loops, but also because they are frequently themselves
loops (quantified expressions). Thus executing them can slow a program's
execution by a factor that can be indefinitely large.

We investigate the possibility of optimizing such quantified inductive asser
tions by substantially reducing the range of quantification. Many inductive
assertions encountered in practice fall into a simple pattern in which the
quantifier may, essentially, be removed. This restores the execution time of the
program to the same order of magnitude that it would have been if the induc
tive assertions were not executed.

We emphasize methods that are no more costly in compiler size and execu
tion time than conventional global optimization techniques.

1. Introduction

This paper explores ways to optimize inductive assertions in computer
programs. The orientation is toward conventional high level languages
(PL/I, ALGOL, PASCAL, etc.) that have been augmented to include an
'assertion' statement. The assertion statement allows simple bounded
quantifiers over the predicates of the base language. Such quantifiers are
the minimal equipment necessary to make significant statements about the
facts alleged to hold at various points in a program, e.g., "array A is
sorted," "xis the greatest common divisor of y," etc.

Inductive assertions are, of course, contained in loops. Frequently they
are quantified expressions, and thus the quantified expression is a loop

77

78 Henry S. Warren Jr.

within one or more containing loops. It is this pattern that we seek to
optimize: a quantified expression contained in a loop. We are not really
concerned with whether or not the quantified expression forms part of an
inductive proof. We will show that little is gained by considering only
assertions, and, if quantifiers are allowed in contexts other than in asser
tions, much would be lost.

We emphasize methods paralleling those found in conventional globally
optimizing compilers. We restrict our attention to the use of transitive
closure-like processes such as are found in data flow analysis and strength
reduction problems, and we avoid 'theorem proving' methods, such as
proving the equivalence or non-equivalence of expressions, and inventing
inductive proofs. Although what constitutes a 'theorem proving' method is
ill-defined, we mean to minimize complicated (long) algorithms unless they
are likely to be in the compiler anyway, and we mean to completely avoid
algorithms with exponential worst-case running time.

We first discuss two simple examples. Then we make necessary quali
fying remarks about the assertion language. Next we discuss the important
issue of safety, and lastly we give two methods for doing the optimization,
and discuss their relative merits.

This paper is a summary of work done as a thesis at New York Uni
versity's Courant Institute of Mathematical.Sciences. It stems from work
done there on algorithmic differentiation [2, 3]. The interested reader is
referred to the thesis [4] for a more complete development.

2. Basic Examples

The optimization we are looking for is illustrated by the program below.
This program searches a vector A, of length n, for the first component
equal to a given item x. If found, it returns its index, and otherwise it
returns zero.

function searchl(A, n,x);

do i=l ton;
if A(i) =x then go to out;
end;

return O;
out: return i;

end search];

"Not found."
"Found."

Optimization of inductive assertions 79

The main assertions for this program are (1) at the 'not found' exit, all
components of A are not equal to x, and (2) at the 'found' exit, i indexes
the first component of A that is equal to x. The inductive assertion asserts
that all components checked thus far are not equal to x. No entry assertion
is necessary, but for completeness we write 'assert true' at the entry point.
The fully annotated program is shown below.

function searchl(A, n,x);

Al: assert true;
do i = I ton;

if A(i) =x then go to A4;
A2: assert 1 :5 Vk:5i: A(k)=t=x;

end;
A3: assert I :5 Vk:5n: A(k)=t=x;

return O; "Not found."
A4: assert (1:5 Vk<i: A(k)=t=x) &A(i)=x;

return i; "Found."
end search];

A2': assert A(i)=t=x;

We wish to optimize assertion A2, as it is iterative and is in a loop.
Observe that the only variable occurring in this assertion that varies in the
loop is i: the upper limit of the quantifier. Furthermore, observe that i
increases by one each time around the loop. Therefore, if the assertion was
true on one pass around the loop, then on the next pass it is certainly true
that

l:5Vk:5i-1: A(k)=t=x,

and so the assertion will be true iff A(i)=t=x. Hence the assertion may be re
placed by A2' shown in the box below the program. Replacing A2 by A2'
restores the program from O(n2) back to the O(n) execution time character
istic that the program would have without the assertions.

This is the basic pattern that is studied here. We will speak of this trans
formation as 'differentiating' the program; A2' is the derivative of the
original assertion with respect to the change i +- i + 1.

Although there are several unstated assumptions in the above reasoning
(e.g., we have used the fact that i~ 1 in the loop, and have assumed that
execution terminates if the assertion ever evaluates to false), this basic

80 Henry S. Warren Jr.

pattern occurs in many programs. The pattern is:
(1) there is a quantified expression in a loop,
(2) the range of quantification increases or decreases monotonically, and
(3) the free variables in the quantified expression are loop constants.
For our methods to be practical, it is also necessary that we can easily

detect when these conditions are satisfied. It is desirable and possible to
relax condition (3) slightly, by allowing indexed array assignments in the
loop.

Now let us consider another equally simple example, but one that uses 3
quantifiers rather than V (although V quantifiers seem to be more common
than II, with the expressions in prenex normal form). The program below is
a somewhat contrived variation of search] for which the assertions would
most naturally be writen with II quantifiers. It searches a vector A for an
arbitrary occurrence of a component equal to a given item x, and it is given
the fact that A is certain to contain some component equal to x.

function search2(A, n,x);

Al: assert I -5.Ilk-5.n: A(k) =x;
do i = l ton;

if A(i) =X then go to A4;
A2: assert i + l -5. Ilk-5. n: A(k) = x;

end;
A3: assert false;

return O;
A4: assert A(i) =x;

return i;
end search2;

A2': if i = 1 VA(i) =x then

"Not found."

"Found."

assert i + 1 -5.Ilk-5.n: A(k)=x;

The program itself is identical to search]. The assertions, however, are
entirely different. The input assertion specifies that some component of A
is equal to x. The inductive assertion says that some component in the
unexamined portion of A is equal to x.

Loop fall-through should never occur; 'assert false' is appropriate there.
The assertion we wish to optimize is A2. Notice that the range of the

quantifier, i + 1 ton, gets smaller and smaller as control flows around the

Optimization of inductive assertions 81

loop. One would expect this for existential quantifiers, and the opposite for
universal quantifiers, as this makes them get stronger and stronger with
successive loop iterations. (However, this is not always the situation.)

To optimize A2, consider the usual case in which A2 is executed, i.e., the
case in which it has been executed before. If A(i) =;;x, then there is no need
to check the assertion: its truth follows from the previous iteration. On the
other hand, if A(i) =x, then the assertion must be checked for the whole
range from i + 1 ton. (Of course if A(i) =x, assertion A2 is not reached,
but our optimizer would not know this. Furthermore, in more general
situations, particularly when the program has bugs or incomplete
assertions, the assertion must be fully checked.) Thus for the usual loop
iteration, assertion A2 can be replaced by:

if A(i) =x then assert i + l $.Jlk$.n: A(k)=x;

However, if that were all that were done, the revised program would not be
the same as the original on first time through the loop. To properly handle
this case, the assertion must be executed on first time through. The correct
replacement for A2 is shown as A2' above.

Our 'optimization' has, unfortunately, made the program larger.
However, it is a bona fide optimization in time, because the quantified part
of the assertion is only executed on first time through the loop. One would
expect that in more general situations, also, the quantifier would not
usually be executed.

The two methods to be described transform the program quite differ
ently from what was just illustrated. However, they retain the property that
the range of quantification executed is substantially reduced.

3. The Assertion Language

We require that the evaluation of assertions be without side effects, and
this is an unpoliced rule. (The program must function in the same way with
or without correct assertions being compiled with it.)

Bound variables are of strictly local significance, i.e., in:

k=O;

assert 1 < Vk< n ...

print k;

82 Henry S. Warren Jr.

the value printed will be zero.
It will be helpful for the optimizer to know what happens if an assertion

evaluates to false: Does the program terminate or does it continue to run?
Must all the variables be available for dumping with the values set as if no
optimization had been done? The greatest optimization is possible if false
assertions result in termination, as will be seen. However, we do not make
this assumption. The reason is that we wish to be able to optimize
assertions of forms such as "assert PVQ"; after such an assertion it is not
necessarily the case that P is true, or that Q is true.

We assume that the order of evaluation of Vand 3may be reversed, i.e.,
m?!. Vk?!.n may be replaced with ns Vksm. This is not essential but is a
convenience for the optimization algorithms. It is used to bring quantifier
expressions into a 'standard form', which is described in Section 5.

We also assume that the implementation of the language is free to
evaluate quantifier expressions over their entire range of quantification,
even if the value of the expression is apparent before the range is ex
hausted.

Lastly, we assume the implementation is free to evaluate all sub
expressions of a quantified expression (i.e., the 'left-to-right rule' for
Boolean expression is not used). This assumption is not essential, but it per
mits breaking up a quantifier expression to consider its parts separately for
optimization. For example, in ''assert P & Q '', it may be that no optimiza
tion can be done, because variables of P are assigned to in the region of
optimization. We allow breaking this up (if necessary) into t 1 =P; t2 = Q;
assert t1 & t2 , and then consider separately P and Q for optimization. This
'breaking up' is not discussed here (see [41).

4. Safety

There is no generally accepted and unambigous definition of 'safe'
transformation. We take a fairly conservative position, and consider any
of the following ill-defined operations to be unsafe:

(a) division by zero ('divide check'),
(b) fixed point overflow,
(c) subscript or substring range check, and
(d) use of an uninitialized value.
Following Kennedy [I], we allow the optimized program to execute

Optimization of inductive assertions 83

fewer ill-defined operations, and to execute them in different places and in
a different order, but it must not execute any new ill-defined operations.

In searching for reasonably general and simple ways to optimize
inductive assertions, problems of safety were frequently encountered. For
example, let us see what happens if we apply the 'strength reduction'
technique to the search] program. This technique will be reviewed in a later
section; suffice it to say here that the technique is to maintain the current
value of the expression being optimized in a variable t. The variable t is
initialized at loop entry and is updated wherever the value of the expression
being optimized might change. This transforms search] to the code below,
where we explicitly show the loop control steps.

function searchl(A, n,x);

i = 1;
t= 1 ::5 Vk:;;i: A(k):;t=x; "Inserted".

Ll: if i >n then go to L2;
if A(i) =x then go to out;

Al: assert t;
i=i+l;
t=t & (A(i)=t=x);
go to Ll;

L2: return O;
out: return i;

end search];

''Inserted.''

A safety problem should be suspected, because we have inserted code at
points which are not necessarily executed either before or after the point
(Al) from which the code came. In fact both inserted evaluations of
"A(i) :;t=x" are unsafe. A subscript range check could occur at the first if
n =0. The second will evaluate A(n + 1), which could also cause a subscript
range check.

These safety problems in search] are relatively easy to fix, because they
merely involve illegal computations that "don't matter". That is, if they
don't cause an interrupt (because of insufficient checking on the machine),
then the program will still work correctly. If they do cause an interrupt, the
proper fix is to simply ignore it. (This is not entirely trivial, because the
language implementation must discern which interrupts can safely be
ignored.)

84 Henry S. Warren Jr.

However, there are more difficult situations. Since we are manipulating
iterative expressions, we must take care not to inadvertently insert a near
infinite iteration. This could happen in connection with interchanging the
order of quantifiers, which is sometimes desirable to do to optimize nested
quantifiers [4]. Suppose we change the expression

1 :5 Vi :5m: [P(i)Vl :5 VJ :5n: Q(i,j)] (1)

where m,P, and Qare loop invariant, but n is varying, to:

1 :5 Vj :5n: 1 :5 Vi :5 m: [P(i)VQ(i, j)] (2)

to simplify differentiating it with respect to changes in n. Then the
possibility exists that when m = 0, n is undefined (uninitialized). An attempt
to evaluate (2) could then cause an enormous value to be used for n, which
would cause the 'optimized' program to loop nearly indefinitely. The
proper fix for this depends upon the details of the optimizing transforma
tion being used. For example, in the strength reduction technique, we
should insert (1) at loop entry, not (2), even though it is (2) that we are
differentiating. However, the point being made is that no system that
detects errors by means of interrupts can fix this type of safety problem (we
assume that the language implementation does not include a check for uses
of uninitialized data, which is usually the case with conventional HLL's).

We develop two methods of optimizing quantified expressions in loops,
which observe the safety requirement in different ways. In the first, the
'min-k' method, we avoid safety problems by limiting ourselves to trans
formations that adhere to the principle that for every expression e inserted
into the program in the course of optimizing it, the original program would
evaluate e, either before or after the point at which we inserted e, for the
same values of the arguments of e. Thus if the optimized program
interrupts or loops indefinitely in evaluating e, the original program would
also, although possibly sooner or later than the optimized program.

We will, however, find it necessary to allow minor violations of this, for
example introducing an evaluation of e + 1 in the neighborhood of an
evaluation of e in the original program.

The second method uses the technique of strength reduction. We avoid
this method's safety problems by (1) avoiding the use of uninitialized
variables, and (2) by monitoring interrupts via a mechanism such as the
PL/I 'ON' statement. If an interrupt occurs in an expression that was
inserted by the optimizer, then a switch variable is set that causes re-

Optimization of inductive assertions 85

evaluation of the expression being optimized when it is reached at its
original position in the program.

5. The 'min-k' Method

In this method we keep track of the index k1 of the least false value of
P(k) in the expression being optimized,

q=m$ Vk$n: P(k), (3)

or equivalently the first true value in the corresponding existential predi
cate. If (3) is true, we record this fact with a special value of k1 .

Reduced to its bare essentials, the method is to transform the program:

do while ... ;

end;

where m and P(k) are loop-invariant, to:

k1 =m;
do while ... ;

The value of

k1=k1$min k$n:,P(k);
q=(k1 >n);

end;

m$min k$n: P(k)

is the least k in the range m to n inclusive for which P(k) is true, if such a k
exists, or n + 1 if m $ n and all P(k) in the indicated range are false, or m if
m>n.

86 Henry S. Warren Jr.

This method has the following virtues:
(1) It does not require any code to be inserted at the points where n is

assigned to, and thus avoids the safety problems that this would bring on.
(2) It gives the correct result and the evaluation of P(k) is safe regardless

of the value of n1, i.e., regardless of how n varies with each loop iteration.
(3) It gives the correct result if initially m > n (simpler methods break

down in this case).
(4) Since no code is inserted at the assignments to n, these may be in a

strongly connected region strictly contained in the strongly connected
region containing the assignment to q, and the transformation is still an
optimization.

(5) The method is correct and there is no safety problem if the assign
ment to q is conditionally executed in the loop.

(6) The optimization is particularly 'strong' in that if n1 li> I and q is
false, P(k) is evaluated only once per iteration.

However, the method should be extended to handle indexed assignments
to arrays that occur in the quantified expression. A more complete descrip
tion of the min-k method, that allows such array assignments, follows.
This description is simplified from that in [4], in that here we assume that
the quantifier being optimized is the outermost position (is not nested), and
here we do not independently consider for optimization P and Q in the
form "assert P & Q".

The optimization may be applied when the following conditions are met:
(1) A quantifier expression Q occurs in a strongly connected region R. Q

is of one of the sixteen forms:

m:5,.Vk:5,.n: P(k),

m $. :il'k $. n: P(k),

or

m>Vk~n: P(k),

etc., where m and n are integer-valued expressions independent of k, and P
is a predicate expression possibly dependent on k.

(2) Q is free of side effects, and the order of evaluation of the quantifier
may be reversed.

(3) At most one of the range limits m and n varies in R. ([4] shows how
to remove this restriction, at some cost in compiler complexity.)

Optimization of inductive assertions 87

(4) All the free variables of P that are assigned to in R must be array
variables, and the assignments must be array assignments satisfying:

(a) Each such assignment is of the form A(xJ = ... , where xi is an
arbitrary integer-values expression (possibly involving A), except X(=F - oo,
the maximum negative number of the machine, and A is a vector (one
dimensional array) occurring in P only in the form A(±k+c1), where k is
the bound variable of Q, and each c1 is invariant in R.

(b) The control flow is such that an assignment to A(xJ cannot be
executed twice without an intervening execution of Q.

Observe that there are few control flow restrictions. We require that Q
be in an SCR, but the structure of the SCR is arbitrary. The assignment to
the variables of morn, if any, may be in an SCR that is properly contained
in R and does not contain Q. However, restriction (4(b)) implies that any
relevant array assignments are not in such an SCR.

Restriction (4) implies that P does not contain a free occurrence of the
varying range limit.

If the above conditions are met, the quantifier Q is optimized by the
transformations given below.

(1) Convert the quantifier to 'standard form' as follows:
(a) If the quantifier is 3, replace it with -, V,.
(b) Replace 'decrementing' quantifiers with 'incrementing' ones, e.g.,

replace "m> Vk?:.n" with "n$ Vk<m", etc.
(c) Replace "m<Vk<n" with "m+lVkn-1", etc., so that

only '$' remains.
(d) If the lower limit m varies (while the upper limit n is constant),

replace "m$ Vk$n: P(k)" with "-n$ Vk5'-m: P(-k)".
The quantifier is now in the form

m$ Vk$n: P(k),

with m invariant in R. We will refer to this 'standard form' quantifier as
Qs.

(2) At each entry to R, insert the code (outside of R):

k1 =-oo;
t1 = -oo;

t,=-oo;

where there are r array element assignments in R as described in restriction

88 Henry S. Warren Jr.

(4) above, and -o:i denotes the maximum negative number representable
on the machine.

(3) Replace each such assignment A(x;) = ... with

A(t;) = ... ;

(This is simply to capture the subscript value in the variable t;.)
(4) Replace the quantifier in standard form,

q=m5 Vk5n: P(k),

with the following code:

if m5n then do;
if k1 =-o:i then k1 =m;

if t; * -o:i then do;

[
kd= ±(t;-cj);
if m5kd<k1 & kd5n
then if ,P(kd) then k1 = kd;
f;=-o:i;

end if t;;
k1=k15min k5n; ,P(k);
q=(k1>n);
end;

else q = true;

where the code indicated by the inner bracket is repeated for each
j = 1, 2, ... ,s, wheres is the number of occurrences of A(±k+ c1) in P, and
the code indicated by the outer bracket is repeated for each i = 1, 2, ... , r
(giving (3s + 3)r lines of code represented by the six bracketed lines). In the
assignment "kd = ± (t; - cj)", the ± is to be taken in the same sense as the
± in the corresponding term A(±k+c1) occurring in Q5 •

The main idea of this transformation is that whenever an array assign
ment

A(x)= ... ;

occurs that can affect P(k) in Q5 , we reduce the value of kr, if necessary, to

Optimization of inductive assertions 89

maintain the truth of:

k1 ?:.m & ms Vksk1 - l: P(k),

which is the invariant that makes the method work. If P(k) contains a
reference to A(k + c1), the assignment to A(x) might affect the value of P(k)
for x=k+c1, i.e., for k=x-c1. Therefore, before evaluating the mink
functional that replaces Q5 , we reduce k1 to x- c1 if (1) m ~ x - c1 < k1,
(2) x-c1s n (for reasons of safety) and (3) P(x- c) is false.

We do not attempt to 'correct' Q5 at the point of the assignment
A(xi) = ... ; this would lead to safety problems. Instead, at the point of the
assignment we save the value of the subscript X;, and use it to correct Q5 at
the point where Q appeared in the original program. Since we have intro
duced only one temporary t; for each assignment A(x) = ; .. , it is necessary
that this temporary be used (if the quantification ranges are such that it will
be used) to update Q5 before the assignment is reached again. That is the
reason we require that the control flow be such that an assignment to A(x;)
cannot be executed twice without an intervening execution of Q (restriction
(4(b))).

The test "if m ~ n ... " may seem unnecessary. However, it provides a
valuable safety check. Without it, there would be a possibility of evaluating
c1 when the original program would not. This would cause trouble in a
quantifier expression such as

Is Vksn: ... A(k+ lie) ...

The optimized program without the ''if ms n ... '' test would cause a divide
check if conditions are such that when n < 1, c = 0.

Reference [4] contains a proof that the transformation is correct, and is
safe within limits that are defined there.

Below is a sample program, the 'insertion sort', before and after optimi
zation by the min-k method. Assertion Al is optimized. Assertion A2 is not
optimizable because an unbounded number of elements of A get assigned
to between two successive times that control reaches A2 (restriction (4(b)) is
not satisfied for any SCR that contains A2).

90 Henry S. Warren Jr.

procedure insort(A, n);
doj=2 ton;

i=j-1;
x=A(j);

L: if x<A(i) then do;
A(i + 1) =A(i);

Al: assert i < Vk-5.j: [A(k-1)-5.A(k) &x<A(k)];
i=i-1;
if i >0 then go to L;
end if x;

A(i + I) =x;
A2: assert 1 -5. Vk<j: A(k)-5.A(k+ 1);

end do j;
end insort:

1. procedure insort(A, n);
2. do j = 2 ton;
3. i=j-1;
4. x=A(j);
5. k1=-oo;
6. t1 = -oo;
7. L: if x<A(i) then do;
8. t1=i+l;
9. A(t1) =A(i);

10. Al:
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

if i <j then do;
if k1 =-oo then k1 =-j;
if t 1 * -oo then do;

kd= -(ti+ l);
if -j -5. kd-5. k1 & kd-5.-(i + 1) then if
,[A(-kd- l)-5.A(-kd) &x<A(-kd)J then k1 =kd;
kd= -ti;
if -j-5. kd< k1 & kd-5.-(i + 1) then if
,[A(-kd-1)-5.A(-kd) &x<A(-kd)l then k1 =kd;
!1=-00;

end if t1;

k1 =k1 -5.min k-5.-(i + l);
,[A(-k- l)-5.A(-k) & x<A(-k)]
q=(k1>-(i+ I);

24.
25.
26.
27.
28.

Optimization of inductive assertions

end;
else q = true;
assert q;
i=i-1;
if i >0 then go to L;

29. end if x;
30. A(i + I) =x;
31. A2: assert l:::; Vk<J: A(k)::5A(k+ l);
32. end do j;
33. end insort;

6. The Strength Reduction Method

91

In this section we show how to apply the strength reduction, or 'formal
differentiation', technique of Paige and Schwartz [3] to the optimization of
inductive assertions.

We will replace V and ti with arithmetic summation, with the quantified
expression having true treated as 1 and false treated as 0. The assignment:

q=m::5 Vk::sn: P(k);

is replaced with:

n

C= L ,P(k);
k=m

q=(C=0);

where C is a compiler-generated integer-valued temporary. We transform
ti-expressions similarly. The expression to optimize now is the summation.

We make this transformation for two reasons. First, it permits differ
entiation with respect to both increasing and decreasing changes in the
range of quantification. Second, it is necessary to handle differentiating
with respect to array element assignments by the Paige-Schwartz method,
which requires a subtractive correction followed by an additive correction
to the expression being differentiated.

The optimization in a typical situation is illustrated in Table 1.
The assignment "C=C-[A(i)<x]" is evaluated by evaluating the

predicate, converting true or false to 1 or 0, respectively, and subtracting
the I or O from C.

92

Table I

Original

do i = I ton;

A(i)= ... ;

end;

Henry S. Warren Jr.

Optimized

i =I;
C= I:~~I [A(k)<x];
L: if i > n then go to out;

C= C- [A(i)<x];
A(i) = ... ;
C=C+ [A(i)<x];

(no code).

C= C+ [A(i + l)<x];
i=i+l;
go to L;

out: ...

The transformation has several safety problems:
(1) If n:$;0, the optimized program evaluates "A(l)<x" (second line),

whereas the original program does not. Possibly in this case neither A nor x
is defined, e.g., they might have the PL/I BASED storage attribute, and the
base pointers may not be initialized. Then the attempt to evaluate
"A(l) <x" can cause an addressing exception. Also, if n :$; 0, array A might
be of zero extent, in which case the reference to A(l) would cause a sub
script range check. If these interruptions do not occur, there might be an
overflow interruption if ' <' is implemented by subtraction (because of the
reference to an undefined quantity).

(2) If n >0, the optimized program evaluates A(n + 1) (in the term
[A(i + 1) <x], on the last loop iteration), whereas the original program does
not. This could cause a subscript range check or overflow interruption.

(3) Even if the reference to A(n + 1) does not in itself cause an interrup
tion (e.g., if subscript range checking is disabled), it can cause another
problem. It causes the optimized program to calculate a slightly larger
maximum value of C than the original. This is not a serious problem for
the above program (surely C < 231), but there are probably analogous situa
tions involving other functionals, such as the L of real numbers, where
this problem (possibility of overflow) cannot be ignored.

(4) A(i) in the fourth line, and also A(i + 1) in the term [A(i + l)<x],
may be undefined (for any i), as the statement ''A (l) = ... '' may be initializ
ing the array. These references to an undefined quantity might cause an
overflow interruption, etc.

Optimization of inductive assertions 93

These safety problems may be solved as follows. Problem (1) is caused
by evaluating the expression being optimized at loop entry, when the loop
may in fact not be executed at all. The interrupt cannot be simply ignored,
because it may be a 'legitimate' one that would have occurred in the
original program (if the loop is executed one or more times). We solve this
problem by leaving the expression being optimized where it was in the
original program, but conditionally executing it under control of a Boolean
switch variable sw. At loop entry, we set sw to true, which causes C to be
initialized when it is first encountered in the loop. Then, sw is set to false,
so that subsequently C will be calculated in the more efficient, strength
reduced, way.

The second problem, that the optimized program evaluates A(n + 1) on
the last loop iteration, is solved in a similar way (note that a 'legitimate'
interrupt could also occur at this point). We replace the code

i = i + 1,

with the following:

on error sw = true;
C= C+ [A(i + 1) <x];
revert error;
i=i+l;

The 'on error' statement signals the operating system to execute the code
"sw =true;" if any type of interrupt should occur after execution of the
'on error' statement. After applying the differential correction to C, the
program executes 'revert error'. This signals the operating system to cancel
the last executed 'on error', and to revert to the previous error action,
whatever it was. If no interrupt occurs, C is differentially updated. If an
interrupt occurs, the value of C is undefined, but sw is set to true. If control
never reaches the point of the original expression being optimized, then the
interrupt is in effect ignored, as it should be. If control does reach the point
of the original expression, then the expression will be reevaluated in its
original form, and the interrupt will occur, as it should.

Problem 3 above (that the optimized program calculates a slightly larger
value of C than the original) is also solved by this technique.

Problem 4, that the first reference to A(i) in the code:

C=C-[A(i)<x];
A(i)= ... ;
C=C+[A(i)<x];

94 Henry S. Warren Jr.

may be undefined, is solved in a similar way. We surround the first and last
of the three statements above with 'on error - revert error.'

The complete transformation of our skeletal example is shown in Table
2.

Table 2

Original

do i = 1 to n;

A(i)= ... ;

end;

Optimized

i = 1;
sw=true;
L: if i > n then go to out;

on error sw = true;
C= C- [A(i)<x];
revert error;
A(i)= ... ;
on error sw = true;
C=C+[A(i)<x];
revert error;

if sw then do;
C= L~~i [A(k)<x];
sw=false;
end;

on error sw = true;
C=C+[A(i+l)<x];
revert error;
i=i+l;
go to L;

out: ...

The 'on' and 'revert' statements may be implemented in a way that has
practically no cost in execution time, as long as interrupts do not occur.
The technique involves the creation of tables that define the beginning and
ending addresses of the machine code that is bracketed by 'on' and 'revert';
see [4] for details.

The reader is also referred to [4] for a detailed description of when this
transformation may be applied, exactly how to do it, a proof that it is
correct, and a proof that it is safe, with minor qualifications.

Below we show the 'insertion sort' program after optimization by the
strength reduction method.

Optimization of inductive assertions

I. procedure insort(A, n);
2. doj=2ton;
3. i=j-1;
4. x=A(j);
5. sw=true;

6. L: if x<A(i) then do;
7.
8.
9.

10.
11.

12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Al:

on error sw = true;
if i + 1 ::5 (i + l) - (-1) ::5 j then C = C -

---, [A (((i + 1) - (-1)) - I) ::5 A ((i + 1) -- (-1))

& x<A((i + 1)-(-1))];
if i + l ::5 (i + 1) - 0 ::5j then C = C -

,[A(((i + l)-0)-1)::5A((i + 1)-0)
& x<A((i + 1)-0)];

revert error;
A(i + I) =A(i),
on error sw = true;
if i+l::5(i+l)-(-l)::5j then C=C+

,[A(((i + 1)-(-l))- l)::5A((i + 1)-(-1))
& x<A((i + 1)- (-1)));

if i+l::5(i+l)-0:::::j then C=C+
,[A(((i + 1)-0)-l)::5A((i + 1)-0)

& x<A((i + 1)-0));
revert error;
if i <j then do;

t=i+l;
on error sw = true;
C= C+ [Z,~n}m-1,J)-, [A(k- l)::5A(k) & x<A(k)];
revert error;
m=t;
if sw then do;

C= [{=m---, [A(k- l)::5A(k) & x<A(k)];
sw=false;
end;

q=(C=0);
end;

else q = true;
assert q;
i=i-1;

95

96 Henry S. Warren Jr.

35. if i >0 then go to L;
36. end if x;
37. A(i+l)=x;
38. A2: assert 1::; Vk<): A(k)::;A(k+ 1);
39. end do);
40. end insort;

7. Summary

We have studied a number of examples of inductive assertions. We have
observed that they frequently involve quantifier expressions, and that there
are many opportunities to substantially optimize these quantifier express
ions. In many cases these optimizations can be done by straightforward
extensions of the facilities that are normally found in globally optimizing
compilers.

We believe the optimization methods described fit in well with a conven
tional globally optimizing compiler. The main functions that are normally
included in such a compiler, and that are used by our optimizing methods,
are control flow analysis and data flow analysis. Either interval analysis or
SCR analysis would be adequate for our purposes. In the 'min-k' method,
we use data flow analysis only to the minor extent of detecting which
variables and expressions are invariant in each region. In the strengh
reduction method, we use data flow analysis for this and also for a map
that gives all the 'definition' (assignment) points that reach a given use.

A sampling of programs was obtained from various sources in the litera
ture, which contained a total of 38 inductive assertions. In this sample, it
was found that about 70% of the inductive assertions could be optimized
by some algorithmic differentiation technique. The methods we have des
cribed get about 70% of these, which amounts to about 50% of all the
quantifiers appearing in loops. When the optimization does apply, it fre
quently gives an 'order of magnitude' improvement in execution speed.

The table below compares the two methods of optimizing inductive
assertions that were given. The methods are compared as regards range of
applicability, output code volume, and complexity added to the compiler.
Both methods are approximately equal in output code execution time.

In Table 3, R is the strongly connected region with respect to which

Optimization of inductive assertions 97

Table 3

Min-k Strength reduction

Easily handles only one varying range limit Both range limits may vary

No restriction on placement of assignments No assignment to a range limit may be in an
to range limits in R SCR that is wholly contained in R and that

does not contain Q

All array references in Q that undergo assign
ments in R must be of the form A (±k + c)
with cJ invariant in R

Arbitrary assignments to range limits are al
lowed

All array references in Q that undergo assign
ments in R must be of the form A (±k + c)
with cJ a constant (known at compile-time)
and all signs of k the same

Range limits must be recursively additive or
monotonically increasing (upper limit) or de
creasing (lower limit)

Optimized code does not generate interrupts Optimized code may generate interrupts;
some sort of interface with the operating sys
tem, such as 'on units', is required to allow
execution to continue

Inserted code volume is large at the point of l nserted code volume is large at assignments
Q, small at other points to range limits and to arrays that appear in

Q, small at other points

Complexity added to compiler is 509 SETL Complexity added to compiler is 687 SETL
source lines of code source lines of code

optimization is being done, Q is the quantified expression being optimized,
and A is an array that is referenced in Q and that is assigned to in R.

Acknowledgements

I am indebted to Professor Schwartz for having first observed that this
optimization might be useful, and for guidance during its development. I
have also benefitted from technical discussions with Robert Paige.

References

[!] K. Kennedy, Saftey of code motion, Int. J. Comput. Math. Section A 3 (1972) 117-130.

98 Henry S. Warren Jr.

[2] R. Paige, Expression continuity and the formal differentiation of algorithms, Thesis, in:
Data Structure Choice/Formal Differentiation, Two Papers on Very High Level Program
Optimization, Courant Computer Science Report No. 15, Courant Institute of Mathe
matical Sciences, New York University (September 1979).

[3] R. Paige and J.T. Schwartz, Expression continuity and the formal differentiation of
algorithms, Conf. Rec. 4th ACM Symp. on Principles of Programming Languages (1977)
58-71.

[4] H.S. Warren Jr., Optimization of inductive assertions, PhD Thesis, New York University,
Courant Institute of Mathematical Sciences (October 1980).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 99-114

The Design of Vector Programs

Alain Bossavit and Bertrand Meyer

Direction des Etudes et Recherches, Electricite de France, Clamart, France

Current vector computers such as the Cray-1, Cyber 205 SI, DAP or BSP
pose a special challenge to the software designer as the available software tools
and techniques are far behind the hardware developments, and the goals of
efficient vector programming seem to conflict with some of the basic principles
of good software engineering. After studying some properties of these
computers, with particular emphasis on the Cray-!, we purport to show that a
systematic approach to vector programming is possible and fruitful; the
proposed methods are applied to the systematic, proof-oriented derivation of
several vector algorithms. Language aspects are also considered.

1. Introduction

The advent of 'second-generation' vector processors [8] such as the
Cray-I, CDC Cyber 205, Lawrence Livermore Laboratory SI, ICL DAP
and Burroughs BSP, is one more piece of evidence for the fact that soft
ware lags far behind hardware as far as practical industrial usage is
concerned. These computers, built with the latest LSI or VLSI technology
in highly optimized architectures, are capable of achieving speeds which
were unheard of before: for example, a Cray-1 computer will in good
conditions carry out more than 100 million 'actual' operations, excluding
control, per second. On the other hand, a look at the software provided
with these 'super-computers' will show them to be what may be called
Fortran machines: even though processors for other languages may exist,
these computers are obviously tailored to a philosophy of programming
which has the static array as its only data structure and the DO-loop as its
main control structure. Recipes given for writing efficient programs in that

99

A. Bossavit and B. Meyer

framework [6], seem at first glance to be very far from modern ideas about
programming, if not incompatible with them.

Vector programming thus appears as a challenge for the software
specialist. Areas where advances are needed include the following inter
related topics:

(1) algorithmics (algorithms for vector processing, and methods for
finding such algorithms);

(2) program design (how to find program and data structures which will
lead to efficient use of supercomputers while ensuring other program
qualities such as reliability, clarity, portability, modularity, etc.);

(3) program transformation (methods for adapting existing programs to
efficient execution on vector computers);

(4) languages for vector programming;
(5) proof methods.
The aim of this paper is to lay some foundations for a systematic treat

ment of vector programming. It is mostly concerned with (1) and (2), with
a brief discussion of (4).

The particular machine which motivated this study is the Cray-1
computer, which seems to be the most widely available among the 'second
generation' vector machines, and is quoted as the fastest currently avail
able computer, even in scalar mode [4, 8]. Most of the discussion is,
however, also valid for the other machines.

In Section 2, we give a software interpretation of the rules which must be
obeyed by a computation in order to be able to use the vectorization
capabilities of the hardware. In Section 3, we give a more abstract interpre
tation of these rules in terms of the data types involved. Section 4 discusses
language problems. Section 5 is devoted to a study of systematic program
construction techniques applied to vector programming; several
algorithms, in particular a 'vector Cholesky', are derived.

2. Rules for Vectorization

Vector machines require that a program satisfy certain conditions in
order to be vectorizable, i.e. amenable to processing in vector, as opposed
to scalar, mode. The study of these conditions is particularly interesting in
the case of vector computers such as the Cray-I or BSP which accept
standard FORTRAN, so that vectorization rests with the compiler rather

The design of vector programs 101

than the programmer. Abstracting from machine peculiarities, five basic
conditions appear as necessary and sufficient:
- repetitive series of operations;
- primitive operations only;
- regularity;
- no backward dependency;
- no cross dependency.

These conditions are studied in [12] for the Cray case. We shall outline
them here in general terms.

2.1. Repetitive series of operations

The only sequences amenable to vectorization are loops, and, more
precisely, for loops, i.e. counter loops with a number of executions known
at the outset. The/or loop control structure, associated with the array data
structure, is the software representative of the so-called SIMD (Single
Instruction stream, Multiple Data stream) mode of restricted parallelism.

2.2. Primitive operations only

With some slight extensions, only assignments and numerical or boolean
operations are allowed in a vector loop. This precludes in particular jumps,
thence conditional statements other than conditional assignments. The
Cray-1 Fortran compiler (CFT) will also inhibit vectorization of a loop
containing a subprogram call (except the subprogram is known to CFT as
having a vector version) or another loop (thus restricting vectorization to
the innermost loops).

2.3. Regularity

For a loop to be vectorizable, it must involve only 'regular' array
elements, i.e. elements whose indices follow a strictly defined pattern, so
that they can be fetched in advance for vector operations. On the Cyber
205, the only regular elements are those which are stored contiguously; on
the Cray-I, a sequence is regular iff the distance between successive
elements is constant (but not necessarily 1). Thus only certain types of
subarrays may be processed in vector mode.

102 A. Bossavit and B. Meyer

2.4. No backward dependency

Let a loop with i as a counter contain the following array element assign
ment:

where ,ALGOL-like brackets are used for array elements, op is some
numerical or logical operation, the f/s are linear functions (from the
regularity rule), and all arrays are considered as one-dimensional (which is
always possible on a machine with a linear store).

This assignment has a backward dependency, which will inhibit vectori
zation, iff for some k (1 :5 k:5 m) bk is a, and for some pair of values p, q in
the range of i, the following holds:

In other words, the computation of a[f0(q)] will use the value of another
element of a, which was fetched for updating in some previous iteration.
For example, the assignment a[i] := a[i- 1] + 1 introduces a backward
dependency.

The reason for this rule is that the vector interpretation of such a compu
tation would use the old value of the array element, not the new one as in
the standard (sequential) interpretation of the loop.

Note that the vector interpretation makes perfect sense; it is only
different from the sequential one.

On the Cray-1 the condition is less stringent; a backward dependency
will actually arise only if the above condition holds together with

q-64<p

where 64 is the length of the vector registers, which on the Cray must be
used for the operands and results of vector operations (in contrast, the
Cyber 205 and BSP work directly on vectors stored in memory). Vector
processing on the Cray-1 may be considered, for all practical purposes, as
successive processing of 64-element vector slices, all elements in a slice
being processed in parallel.

An important case of backward dependency occurs when the dependency
affects a simple variable (which may be considered as a one-element array,
whose index is constant through the loop), i.e. when the loop contains an
assignment of the form

The design of vector programs 103

Such an operation is called a reduction; it is particularly unfortunate that
it should not vectorize, since it corresponds to the very common case of
accumulating a result into a variable, as in the computation of the sum of
the elements of a vector, or of the scalar (inner) product of two vectors. In
practice, techniques exist for reducing the loss of efficiency of reductions
as compared to truly vectorizable operations; reductions may thus be
thought of as 'pseudo-vectorizable' operations who execute more slowly
than vectorizable operations but faster than scalar ones.

2.5. No cross dependency

Let a loop contain the following assignments:

a[/o(i)] := op(...);

c[g0(i)] :=op'(... , a[gi(i)], ...).

They induce a cross dependency, which will inhibit vectorization, iff for
some pair of values p, q in the range of i, the following holds:

g,(p) =fo(q)

with lq-pl <64 (on the Cray-I).
For example, the following statements in a loop on i will cause a cross

dependency:

a[i] := l; c[i] :=a[i+ l].

The rule stems from the fact that, due to the limited size of the
instruction buffers, long loops may have to be split into several shorter
ones in order to be vectorized (by slices of 64 on the Cray); thus the two
assignments might end up in two different loops, giving a different
semantics for the program. In our example, assuming a was initially all 0,
then c would receive the previous null values in the sequential case and the
new unity values in the vector case.

3. Basic Thoughts for a Vector Programming Methodology

Considering the preceding rules, even though they do not include many
details which may be found in manufacturers' documentation, it is quite
tempting to dismiss them as too low-level and machine-dependent, and

104 A. Bossavit and B. Meyer

assert that vector programming is just programming with objects of data
type 'vector'. Although we will use this definition as the basis for our
approach to vector program construction, it should be pointed out that it is
not quite sufficient and that the previous rules, especially the last ones on
dependency, must also be taken into account for practical purposes.

Let us illustrate this point with an important vector algorithm: matrix
multiplication. Assume c is initialized to zero; a, b, c have dimensions
(m, n), (n,p) and (m,p) respectively. The ordinary algorithm will not
vectorize (notations are mostly taken from [11]):

for i in 1, ... , m do

for j in 1, ... ,p do

fork in 1, ... ,n do

I c[i,j] := c[i,j] + a[i, k] * b[k,j]

(3.1)

In terms of the preceding rules, we may say that c[i,j) has a backward
dependency on itself (the last line is a reduction). Now if we reverse the
loops on j and k, the program becomes vectorizable. This in fact means
that instead of the 'element' formula which forms the basis for algorithm
(3.1):

n

c[i,j] = L a[i, k] * b[k,j]
k=l

one relies on the 'vector' formula

n

c[i, *] = L a[i,k] *b[k, *]
k=l

(where x[i, *] and x[*,j] respectively denote the ith line and jth column of
matrixx).

However, ifwe applied a purely functional view of vector programming,
i.e. obtained a program directly from an 'abstract data type' specification
of matrix multiplication, the initial version of our program, as deduced
from the last formula, would require, for each line i, n vector variables:

C1 [i, *] := a[i, 1) * b[l, *];

c2[i, *] := a[i, 2) * b[2, *] + c1 [i, *];

Cm[i, *] :=a[i,m] *b[m, *] +cm-1[i, *];

c[i, *] :=cmU, *].

The design of vector programs 105

For practical reasons (storage) this is excluded; the same variable c[i, *]
has to be used all along. This programming simplification is correct
because it does not conflict with the no backward dependency rule, as every
operation of the form

c[i, *] := op(c[i, *D

will be implemented as a counter loop whose body is c[i,j] := op(c[i,j])
without any reference to c[i, /] for I* j (note that the loop counter here is j).
This condition guarantees that the vectorized form of the new version (i.e.
the standard program where loops on j and k have been interchanged) is
indeed semantically equivalent to the standard program.

Such a condition, which is more restrictive but conceptually simpler than
the no backward dependency rule, may be used as a replacement for it in a
systematic approach. It can be formalized in the following way, inspired
from the presentation of sequences in the specification language Z [1]. Let
VEC X[(n)], for n E rN (the set of n-vectors of elements of X) be defined as
the set of all total functions from 1, ... , n to X. Let & be the functional
binary operator such that, if f and g are two functions with the same
domain Y, thenf &g is the function h such that, for any ye Y, h(y) is the
pair (f(y),g(y)). Then for any binary operation p on X (p: XxX-+Z for
some Z) we may define a vector extension of p, ext(p): VEC[X](n) x
VEC[X](n)-+ VEC[Z](n), whose value for any two vectors v and w in
vec[X](n) is

ext(p)(v, w) =p 0 (v&w)

where O is functional composition; in other words, for any i E 1, ... , n,

ext(p)(v, w)(i) = p(v(i), w(i}).

It is possible to define in the same way (at least if p is associative) a
vector reduction of functionality

red(p) : VEC[X]-+ X

where red(+)= I:, etc.
We shall interpret the rules of Section 2 as implying that, in designing

programs for vector computers, one should work on objects of data type
vector, restricting oneself to extension operations as much as possible.
When an extension operation cannot be applied, a reduction will still be
preferable to operations which would perform arbitrary shifting of indices

106 A. Bossavit and B. Meyer

(e.g. p 0 ((v 0 pred)&w), where pred is the predecessor function on integers,
which would give p(v(i- 1), w(i)) for any i); such operations would
introduce hopeless backward dependencies.

The situation may be depicted using a hierarchy of abstract machines
(Fig. 1). At the matrix level, machine MAT offers the operations of matrix
algebra: multiplication, inversion, etc. At the vector level, several machines
are available to implement these operations: the extension machine EXT,
the reduction machine RED, and others. Choosing one of them will lead to
a definite algorithm , the scalar machine SCAL, which corresponds to
conventional programming languages. It is clear that the standard matrix
multiplication algorithm given above (3 .1) stems from the RED machine,
while its vectorizable counterpart will come out naturally if one uses the
EXT machine.

Data Type Abstract machines

Matrix MAT

r- ~...._ _______ :
Vector i

I I

L - --=--------'

Scalar SCAL

Fig. I. Hierarchy of types and virtual machines.

Using the above approach, we will derive vector algorithms by working
on vector objects from the beginning. This should lead to programs which
are both properly structured and efficient on a vector processor. This
should be contrasted with the results obtained through more 'ad hoc'
methods. For example Higbie [6], in a paper on how to write code which
will vectorize on the Cray, warns that 'overly modular or structured
programs' will not be vectorizable (because of the rule which we called
'primitive operations only', precluding subprogram calls inside a vectoriz
able loop). If this were true, the situation might be considered quite sad for
the programmer, forced to choose between structure and vectorization. On

The design of vector programs 107

the other hand, if one agrees that a program is 'structured' at least as much
from its proper adequation of control structure to data structure as from
its observance of rules regarding control structure only (e.g. many sub
programs, etc.), then the answer is clear: rather than in-line expansion of
subprogram calls in loop bodies, ·one should strive to write subprograms
working on entire arrays (to use expressions found in Cray publications,
"put the loop in the subroutine rather than the subroutine in the loop").
This will, in effect, implement the 'vector' data type abstraction. If the
program is indeed vectorizable, i.e. if it does have vectors as its principal
objects, there is a good chance that the version thus 'vectorized' will be
clearer and better 'structured' independently of any machine consider
ation.

4. Language Considerations

Before we turn to the derivation of a few vector algorithms, we must pay
some attention to language issues. The Cray approach uses a standard
language, FORTRAN, and places the task of detecting vectorizable portions
of code upon the compiler. The BSP also has a 'vectorizer' for standard
FORTRAN code (an introduction to the techniques used for such program
transformations may be found in [10]). Other methods have been used or
suggested (see [9] or [14] for a survey); for example, the Cyber 205 super
computer only vectorizes calls to special array processing subroutines.
Perrott [14, 15, 16] has argued repeatedly in favor of using a language
designed specifically for vector programming; he describes such a
language, ACTUS, based on PASCAL. This approach can be justified on
several grounds:
- In the Cray and BSP approach to optimization, the programmer has to

present his code in a 'favorable' way so that the compiler will be able to
detect vectorizable pieces of code; he thus has to know the compiler's
idiosyncracies in this respect. This, however, has to be balanced with the
considerations on program structuring expressed above.

- The search for vectorizable code amounts to de-compilation (recon
structing higher-level vector constructs, such as they might be expressed
in ALGOL 68, PL/I or APL, from lower-level FORTRAN scalar operations),
which is a rather silly activity;

- It is quite natural to specify the amount of allowable parallelism in

108 A. Bossavit and B. Meyer

connection with the data structure definition rather than with the
description of the operations performed on it.
On the other hand, the 'vector language' approach seems extremely

difficult to implement in the context of a large scientific computing center
(the typical target for supercomputers), where it is not realistic to imagine
that programmers will turn to a new language for every new kind of appli
cation and every new machine - especially at a time when concerns for
portability are at last making their way into the scientific programming
community.

Given the failures experienced by all previous efforts to impose
languages other than FORTRAN to this community, it is doubtful that a
proposal applying to vector computers would succeed. In view of the
current state of the art, the Cray approach seems sensible as far as program
coding is concerned. Languages such as ACTUS may, however, be very
useful as intermediary notations for vector program design, and we shall
use similar ways of expression in the examples which follow.

5. Examples of Systematic Vector Program Construction

We turn now to the application of the principles expounded in Section 3
to the construction of some practical programs. We shall use a method and
set of heuristics for constructing programs from specifications which were
exposed in [13]. A similar approach was applied to classical (scalar)
numerical algorithms in [2].

The following notation will be used in addition to the ones defined in
Section 3:
- VEC(n) stands for VEC[REAL](n), the set of vectors of n real elements;
- MTR(m, n) is the set of (m, n) real matrices;
- P1v, where VE VEC(n) and ls.n, is the projection of v on VEC(I).

For a matrix s E MTR(m, n),.if is. m and} s. n, we will consider line s[i, *]
and columns[*,}] as vectors in VEC(m) and VEC(n) respectively.

5 .1. Triangular systems

We saw in Section 3 a vector algorithm for matrix multiplication. Let us
proceed with the inverse operation: solving linear systems. We first
examine triangular systems. This will be a simple example of top-down
synthesis of a numerical algorithm.

The design of vector programs 109

The first step in the design of the program (called trisolv) is to express it
as a matrix algorithm (which could run on the virtual machine MAT):

ins: MTR(n, n), b: VEC(n); out x: VEC(n);
(P) { 1 ::5 i ::5 n =}Pi_ 1 s[*, i] = 0 and s[i, i] =t= 0}

trisolv
(Q) {sx=b, i.e. EZ= 1 s[*,k]*X[k]=b}

We must refine trisolv into a predicate transformer (on the vector
machine EXT) from the precondition (P) to the postcondition (Q). Let us
try twice the heuristic called 'uncoupling' [13], i.e. add an auxiliary vector
variable y, and an integer one I, noticing that

(Q) # b =Ls[*, k] *X[k] # (y + LksnS[*, k] *X[k] =band Y = 0)

#(y+ LkstS[*,k] *X[k] =bandP1y=0)

and l=n.

So (Q) # (/(/) and I= n) if we set /(/)=the first term of the and above.
Here, /(/) is a 'weakening' of the exit condition (Q) (which is /(n)). We
notice that /(0) can be trivially obtained. Thus a refinement of trisolv,
using /(/) as an invariant and / = n as the goal (exit condition) will be:

var/: Integer;
/ := 0; y := b{/(l)}
while l<n do

/:=/+1;
reestablish /(/);

{ / = n and I(!)}

This program is correct (by construction): /(/) being a loop invariant, it is
true after the completion of the loop, and the exit condition / = n is also
true, hence l(n). The statement reestablish is now (just as trisolv was, one
step backwards) a specification for what is to be done.

Next step: develop reestablish. One must go from/(/- 1), i.e.

Y + Lk<ts[*, k] *X[k] =band P1_ iY = 0

to /(/), i.e.

110 A. Bossavit and B. Meyer

Without modifying b, which is part of the input, we must use the assign
ment y := y-s[*, /] *X[/] after an x[/] such that P1(y- s[*, /] *X[/]) = 0 has
been found. But P1_ 1s[*, /] = 0 by hypothesis, and P1_ 1y = 0 also. The
equation thus becomes y(/] - s[*, /] *X[/] = 0, thence x[/]. The final version
of the program is:

l:=0; c:=b; /(0)
while l<n do

l:=l+I;
{ reestablish /(/) : }

I x[/] :=y[*,/]/s[/,/]
y:=y-S[*,/]*X[/]

Starting from a matrix specification and aiming at the EXT vector target
machine, we have just synthesized a program which must be, by con
struction, vectorizable.

5.2. Vectorized Choleski

We shall now introduce a more difficult algorithm, Choleski factoriz
ation: given a symmetric positive-definite matrix A, find a lower triangular
S such that SS1 =A (in view of the resolution in two easy steps, using e.g.
the above program, of the linear system Ax= b). What follows is also valid
for the LU factorization.

We again apply systematic top-down synthesis. Here are the successive
steps. First the specification, expressed in terms of MAT objects:

in a: MTR(n, n); outs: MTR(n, n);
(R) {symmetric(a) and positive-definite(a)}

Choleski
{l Si::5n=>P;_ 1[*,i] =0}

(S) {A =SSt, i.e. a= LksnS[*,k] *S[*,k]}

As before, we uncouple (S), after introducing the auxiliary variable c of
type MTR(n, n):

(S) ~ ((c+ Lks1s[*, k] *S[*, k] = a and P1c = 0) and I= n)

(I(/) and I= n).

The design of vector programs

The next refinement is, quite naturally:

l:=0; c:=a; {/(0)}
while l<n do

l:=l+ 1; {c+ Lk<t=a and P,_ 1c=0}
reestablish J(l);
{c+ Lk<t=a-s[*,!] *S[*,/] and P1c=0}.

111

To reestablish J(l), one must perform the assignment c:=c-S[*,/] *S[*,/]
once an s[*, /] such that P1 _ 1s1 = 0 and

has been found. As P 1_ 1c=0, row I is the only one concerned, and must
satisfy l-column(c - s[*, /] * s[*, /]) = 0, that is to say c[/, *] - s[/, /] * s[*, /] = 0,
which implies (/ component)

c[l, /] = (s[/, /]) 2.

Thence the two instructions for reestablish I(/):

s[/, /] := sqrt(c[l, /])); s[*,!] := c[/, *]/ s[/, /].

As c is symmetric (this fact is itself a loop invariant), P1_ 1 c[*, /] = 0 implies
P1_ 1c[l, *] = 0, therefore P1_ 1s[*, /] = 0.

The final version will thus be:

l:=0; c:=a;
while l<n do

l:=l+l;
pivot:= sqrt(c[l, /]);
s[*,/] :=c[/, *]/pivot;
c := c-s[*, /] *S[*, /]

A FORTRAN translation appears on Fig. 2 and 3. It exhibits some of the nice
properties of programs resulting from top-down design (high-level built-in
documentation, etc.) and the safety guaranteed by the systematic synthesis
method.

112 A. Bossavit and B. Meyer

cc
SUBROUTINE

C H D V E C
IN, A, S, NDP)

C
cc
C C
r" Fl.If/POSE, C,
r- r-
r- FACTORIZATION OF A SYMMETRIC MATRIX, VECTORIZABLF VERSION. r
C C
cc
C
C INFUT
C

('

r·
C
C
("'

C

C
C
("'

C
("'

C
C
("'

OUTPUT

INTEGER

f!EAL..

f\EAL

INTEGEf{

N

A

s

NDP

(l.)

(l.)

Order of ttte matrix A

Array of the er1tries of A. Aij is at
the position l(J l.)(2N - J) + 21)/2
c•colurnn--syrnmetric stc)rage mode•)

Arr·oy of the entries of A. Aj.j i.s at
the position (CJ - 1)(2N - J) + 21)/2
On exit, if NDP = N, A= S tr(S)RT

Number of columns actually taken into
accot1nt during the factorl.2ation.
If NDP < N, a non-positive rodl.x ap
peared i.n the treatment of column
NDP t 1

C
C
C
C

LOCAL VARIABLES,

C

JNTEGEF; l.., NNPH,?, AflRLL, ADR.JL, ADFU . .J, I, . .J, LF'l
REAL. PIVOT, Ml.IL, RADIC

C ARITHMETIC FUNCTION,
C

I NTEGEF; ADDF!ESS,
ADRESS(I, ,)) •0 ((,) •• U*<Z*N ••• ,J) t 2*Un

C

Fig. 2. Head of the vectorizable Choleski program (FORTRAN).

6. Conclusion

The field of numerical and scientific programming, although the oldest
and one of the best established among the application domains of
computers, has shown strong resistance to the practical implementation of
software research and advances in programming methodology. With the

The design of vector programs 113

c---
c

NDP 0
i (----· 0

l.. •= O•
(" C (-·-·- A

NNP1S2 = cN,cN + 1))/2
DO 1 I = 1, NNP1S2

:1. Sill = AIII
(~ -- The array S contains both C and A.
r while i (n do

IF IL 'GE' NI GOTO 7
r i (---- i + l. ;

l.. = l.. + 1
ADRl..l.. = ADRESSIL, LI

C pivot (------ sqrt I Cll) ;

C

FiADIC •= SIADRLU
IF CRADIC 'LE' 0'1 GOTO 7

-- Exception if A is not positive definite
PIVOT= SQRTCRADIC)
NDF' •= L.

Sl C--- Cl/pivot;
DD 3 I = L., N

SC ADFU .. l.. + I
CC--- C Sl * Sl

L.F" 1 = L. + 1

L.)

IF CL.Pl ' EQ' Nl GOTO 6
DO 5 ,J '" l..F'1, N

SCADRLL. t I - LI/PIVOT

ADRJJ = ADRESSIJ, JI
ADRJL = ADRESSCJ, LI
MUL. = SI ADFUU
[IQ 4 I c, J, N

S(A[IRJJ+I-Jl = S(A[IRJJ+I-J) - MUL.*SIA[IRJL.tl-Jl
r -- This loop is the only vectorizable one
4 CONTINUE

CONTINUE
6 CONTINUE

GOTO ,,
7 RETLmN

END

Fig. 3. Body of the Choleski program.

popularization of new 'number-crunching' machines, there is again a
strong temptation to go back to low-level, machine-dependent, program
ming techniques, and to dismiss any attempts at better software engineer
ing as incompatible with the efficient use of these very fast computers. We
hope to have shown that such an attitude has no justification, and that
systematic methods can be applied for the rational and efficient use of this
new technology.

114 A. Bossavit and B. Meyer

References

[!] J.R. Abrial, S.A. Schuman and B. Meyer, Specification language, in: Proceedings
Summer School on Program Construction, Belfast (September 1979).

[2] A. Bossavit and B. Meyer, On the constructive approach to programming: the case for
partial Choleski factorization (a tool for static condensation), in: Vichnevetsky and
Stepleman (Eds.), Advances in Computer Methods for Partial Differential Equations III
(!MACS, 1979).

[3] Cray-1 Computer System, FORTRAN (CFT) Reference Manual, Cray Document No.
2240009, Version E (1981).

[4] M. Dungworth, The Cray I computer system, in: Infotech State of the Art Report on
Supercomputers, Volume 2: Invited papers (Maidenhead, 1979) pp. 51-76.

[5] P.M. Flanders, FORTRAN extensioms for a highly parallel processor, in: Infotech State of
the Art Report on Supercomputers, Volume 2: Invited Papers (Maidenhead, 1979) pp.
117-134.

[6] L. Higbie, Vectorization and conversion of FORTRAN programs for the Cray-I (CFT)
compiler, Cray Document No. 2240207 (June 1979).

[7] Infotech State of the Art Report on Supercomputers, Volume 1: Total Systems Issues;
Volume 2: Invited papers (Maidenhead, 1979).

[8] E.W. Kozdrowicki and D.J. Theis, Second-generation of vector supercomputers,
Computer (IEEE), Special Section on Supersystems for the 80's 13 (11) (1980) 71-83.

[9] D.J. Kuck, Languages and compilers for parallel and pipeline machines, in: CREST
Conference on Design of Numerical Algorithms for Parallel Processing, Bergamo,
Italy (June 1981).

[10] D.J. Kuck, Automatic program restructuring for high-speed computation, in: W.
Handler (Ed.), CONPAR 81, Niirnberg, June 1981, Lecture Notes in Computer Science
111 (Springer, Berlin, 1981) pp. 66-84.

[ll] B. Meyer and C. Baudoin, Methodes de programmation (Eyrolles, Paris, 1978).
[12] B. Meyer, Un calculateur vectoriel: Le Cray-I et sa programmation, EDF Report

HI/3452-01, Atelier logiciel No. 24 (May 1980).
[13] B. Meyer, A basis for the constructive approach to programming, in: S.H. Lavington

(Ed.), Information Processing 80 (North-Holland, Amsterdam, 1980).
[14] R.H. Perrott, Parallel languages, in: Infotech State of the Art Report on Super

computers, Volume I: Total Systems Issues (Maidenhead, 1979) pp. 117-149.
[15] R.H. Perrott, A standard for supercomputer languages, in: Infotech State of the Art

Report on Supercomputers, Volume 2: Invited Papers (Maidenhead, 1979) pp. 291-308.
[16] R.H. Perrott, A language for array and vector processors, TOPLAS (Transactions on

Programming Languages and Systems, ACM) I (2) (1979) 177-195.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 115-132

Formal Language Definitions Can Be Made Practical

Paul Klint

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

If some formal method is used to define a programming language, the
problem arises that individuals with different backgrounds and intentions have
to learn a notation and definition method they are unfamiliar with. The
various uses of formal definitions are summarized in this paper and an
improved method for operational language definitions is presented. This
method aims at language descriptions that are understandable and useful for
both designer, implementor and user of a defined language. The method has
been used in the definition of the SUMMER programming language. Various
examples of that definition are given and the method as a whole is assessed.

The metalanguage of a formal definition must not become a language
known to only the priests of the cult. Tempering science with magic is a sure
way to return to the Dark Ages." [6]

1. The Problem

Programming languages are being designed using pre-scientific methods.
Of course, there is no substitute for experience, taste, style and intuition
but a scientific design methodology to support them is lacking. Methods
for describing programming languages are somewhat more developed, but
most definitions are either ambiguous and inaccurate, or excessively
formal and unreadable. In general, a language definition method should:

(1) help the language designer by giving insight in the language he or she
is designing and by exposing interactions that might exist between language
features. The definition should at the same time be a pilot implementation
of the defined language or it should at least be convertible into one. It is
assumed here, that design and definition can best be carried out simul
taneously.

(2) help the language implementor by providing him with an unam-

115

116 P. Klint

biguous and complete definition that is capable of "executing" small
programs in cases where the implementor is in doubt about the meaning of
a particular language feature.

(3) help the user by providing him with a precise definition in a language
he is not too unfamiliar with.

These three goals impose different and to a certain extent contradictory
requirements on the definition method to be used. In particular, it seems
difficult to combine precision and readability in one method, since a
precise definition has to use some formalism to which the reader has to be
initiated and such a definition will have a tendency to become long and
unreadable. This paper reports on an experiment with a language definition
method that may be considered as a first step in satisfying the above
requirements.

The defined language is SUMMER [3, 4] an object-oriented string pro
cessing language. The definition method is similar in spirit to the SECD
method [5], i.e. it is an operational language definition method which uses
recursive functions and syntactic recognition functions to define a finite
state machine that associates semantic actions with all constructs in the
grammar of the language. In the method presented in this paper readability
has been considerably enhanced by using a few imperative constructs and
by introducing a very concise notation for parsing and decomposing the
source-text of programs in the defined language. SUMMER, extended with
such parsing and decomposing operations, is used as defining language.
The definition is hence circular (see Sections 2.1 and 3).

A complete description of the definition method can be found in [4]. The
next section gives only a birds-eye view of the description method and
shows some illustrative examples from the SUMMER definition. In Section 3
the method as a whole and its application to SUMMER are assessed.

2. The Method

2.1. Introduction

An evaluation process or interpreter (with the name "eval") will be
defined that takes an arbitrary source text ("the source program") as input
and either computes the result of the execution of that program (if it is a
legal program in the defined language) or detects a syntactic or semantic
error. The evaluation process operates directly on the text of the source

Formal language definitions can be made practical 117

program and the process as a whole may be viewed as performing a series
of string transformations on that text. During this process a global
environment may be inspected or updated. An environment is a mapping
from identifiers in the source program to their actual values during the
evaluation process. Environments are used to describe concepts such as
variables, assignment and scope rules.

A fundamental question arises here: in which language do we write the
definition? Several choices can be made, such as the formalism used in
denotational semantics ([1], this boils down to mathematical notation for
recursive functions and domains) or the Vienna Definition Language ([8], a
programming language designed for the manipulation of trees). This is not
the right place to discuss the merits of these formalisms, but none has the
desired combination of properties as described in the previous paragraph.
Instead of designing yet another definition language, the defined language
itself (this is SUMMER in the examples given in this paper) will be used as
definition language. This choice has the obvious disadvantage that the
definition is circular, but it has the practical advantage that readers who
have only a moderate familiarity with the defined language will be able to
read the definition without great difficulty. An extensive discussion of
circular language definitions can be found in [7]. It should be emphasized
that there is no fundamental reason to make the definition circular. The
definition method described here would also work if, for example, ALGOL

68 was used as defining language. In any case, it is essential that the
defining language has powerful string operations and allows the creation of
data structures (of dynamically determined sizes). This requirement makes,
for example, PASCAL less suited as defining language. Choosing SUMMER

as defining language gave us the opportunity to investigate the suitability
of that language in the area of language definition (see Section 3).

In the following sections the definition method and an example of its
application (in the SUMMER definition) are described simultaneously. In
Section 2.2 some aspects of the use of SUMMER as a metalanguage are
described. The definition method can be subdivided in the definition of
semantic domains (Section 2.3) and of the evaluation process (Section 2.4).
Some more detailed examples from the SUMMER definition are given in
Section 2.5.

2.2. SUMMER as metalanguage

This paragraph focuses on some aspects of SUMMER that are used in the

118 P. Klint

formal definition. Most of these constructs have some similarity with
constructs in, for instance, PASCAL and are assumed to be self-explanatory.
Only less obvious constructs that are essential for the understanding of the
definition are mentioned here.

SUMMER is an object-oriented language with pointer semantics. This
means that an object can be modified by assignment and that such modifi
cations are visible through all access paths to that object. For example,

s :=stack(lO)

assigns a stack object of size 10 to the variable s, and

s.push(v)

pushes the value of v on the stack s. As a side-effect the stack sis modified
such that subsequent operations on s may perceive the effect of that
modification. In the formal definition this is relevant for the concepts
"state" and "environment", which are modified in this way.

The language is dynamically typed, i.e. the type of variables is not fixed
statically (as in PASCAL) but is only determined during the execution of the
program (as in LISP or SNOBOL4). Moreover, generic operations on data
structures are allowed. If an operation is defined on several data types,
then the procedure to be executed when that operation occurs is determined
by the type of the (left) operand of that operation.

Control structures and data structures are self-explanatory except
possibly arrays and for-statements.

Arrays are vectors of values, indexed by 0, ... , N -1, where N is the
number of elements in the array. If A is an array then the operation A . size
will yield the number of elements in the array. A new array is created by

or
array(N, V).

In the former case, an array of size N is created and initialized to the values
V0, ... , VN- 1. In the latter case, an array of size N is created and all
elements are initialized to the value V. Array denotations are also allowed
as left hand side of assignments. This provides a convenient notation for
multiple assignments. For example,

[x,y, zJ := [10, 20, 30]

Formal language definitions can be made practical

is completely equivalent with

X := 10; y := 20; Z := 30

and, more generally,

is equivalent with

The general form of a for-statement is:

for V in G do S od

119

where Vis a variable, G is an expression that has as value an object capable
of generating a sequence of values VAL; and where S is an arbitrary state
ment. For each VAL; the assignment V:= VAL; is performed and S is
evaluated. In this paper, the expression G will be used in two forms: the
value of G is either an array (in which case consecutive array elements are
generated) or G is an array on which the operation index has been
performed (in which case all indices of consecutive array elements are
generated). For example, in

a:= (144, 13, 7];
for x in a do print(x) od

an array object is assigned to the variable a and the values 144, 13 and 7
will be printed, while

for i in a. index do print(r) od

will print the values 0, 1 and 2. Further examples of for-statements will be
found in the following paragraphs.

2.3. Semantic domains

A semantic domain is a set, whose elements either describe a primitive
notion in the defined language (like "variable" or "procedure
declaration") or have some common properties as far as the language
definition is concerned. The relationship between these domains is given by
a series of domain equations.

In the remainder of this paragraph the domains in the SUMMER definition

120 P. Klint

are briefly described. The abstract properties of these domains are given in
[4]. Here, they are only introduced informally. First, the domain equations
are given. Next, the meaning of each domain is described.

The relationship between the domains BASIC-VALVES, DENOTABLE
V ALUES, STORABLE-VALUES, ENVIRONMENT, LOCATIONS,
STATE, PROC, CLASS and INSTANCE is as follows

BASIC-VALVES = STRING U INTEGER U UNDEFINED
DENOTABLE-VALVES= LOCATIONS U INSTANCE U PROC

U CLASS U BASIC-VALVES
STORABLE-VALVES = INSTANCE U BASIC-VALVES
ENVIRONMENT = ID➔ DENOTABLE-VALVES
STATE =LOCATIONS➔(STORABLE-VALUES

U {unused})
PROC = PROC-DECL x ENVIRONMENT
CLASS = ID x CLASS-DECL
INSTANCE = ID x CLASS-DECL x ENVIRONMENT

Here, ID, PROC-DECL and CLASS-DECL are the sets of string values
that can be derived from the syntactic notions (identifier), (procedure
declaration > and (class-declaration) in the SUMMER grammar. BASIC
V ALVES is the domain of primitive values in the language.DENOTABLE
V ALVES is the domain of values which can be manipulated by the evalu
ation process. STORABLE-VALUES is the domain of values which can be
assigned to variables in the source program. The domain LOCATIONS is
used to model the notion "address of a cell capable of containing a value".
Inspection of the contents of a location does not affect the contents of that
location itself or of any other location. Modification of the contents of a
location does not affect the contents of any other location. ST A TE is the
domain that consists of functions that map locations on actual values or
unused.

PROC is the domain of procedures. Each element of this domain
describes a procedure declaration and contains a literal copy of the text of
the procedure declaration itself and an environment that reflects all names
and values available at the point of declaration.

CLASS is the domain of classes. Each element of this domain describes
one class declaration and contains the name of the class and a literal copy
of the text of the class declaration. INSTANCE is the domain of class
instances. All values that are created by a SUMMER program are instances

Formal language definitions can be made practical 121

of some class. An instance consists of the name of the class to which it
belongs, the literal text of the declaration of that class and an environment
that has to be used to inspect or update components from the instance.
Operations are defined on elements in PROC, CLASS and INSTANCE to
manipulate the components of an element in these domains. For complete
ness, these domains are mentioned here, but they will not be used in the
remainder of this paper.

STRING, INTEGER and UNDEFINED are the domains modeling the
values and operations for the built-in types string, integer and undefined
respectively. UNDEFINED is the domain consisting of undefined values.
All variables are initialized to an undefined value. Operations are defined
on elements in STRING, INTEGER and UNDEFINED that model the
primitive operations on the data types string, integer and undefined.

ENVIRONMENT is the domain of environments. Environments
administrate the binding between names and values and the introduction of
new scopes (i.e. ranges in the program where names may be declared). The
operations defined on environments modify, in general, the environment
to which they are applied.

The definitions given in following sections are centered around
operations on elements of these semantic domains, but we will see
relatively few of them in the examples. Operations will only be explained
when they occur in an example.

2.4. Evaluation process

An extended form of BNF notation is used to describe the syntax of the
defined language. The extensions aim at providing a concise notation for
the description of repeated or optional syntactic notions. A syntactic
notion suffixed with '' + '' means one or more repetitions of that notion. A
notion suffixed with "*" stands for zero or more repetitions of that
notion. The notation

{ notion separator} replicator

i.e. a notion followed by a separator enclosed in braces followed by a
replicator, is used to describe a list of notions separated by the given
separator. A replicator is either '' + '' or '' *''. The replicator '' + '' indicates
that the list consists of one or more notions. The list begins and ends with a
notion. The replicator "*" indicates that the list consists of zero or more
notions.

122 P. Klint

An optional syntactic notion is indicated by enclosing that notion in
square brackets, e.g. "[notion]". The terminal symbols of the grammar
are either enclosed in single quotes (for example: ',' or ':=') or written in
upper case letters if the terminal symbol consists solely of letters (for
example: IF may be used to denote the terminal symbol if). Where
necessary, parentheses are used for grouping.

Some parts of a syntax rule may be labeled with a (tag); their meaning
will become clear below.

The evaluation process is described in SUMMER extended with parse
expressions1 of the form

'{{'(identifier)'==' (syntax-rule)'}}'

which are used as a very concise notation for parsing and extracting infor
mation from the text of the source program. A parse expression succeeds if
the identifier at the left hand side of the'==' sign has a string as value and
if this string is of the form described by the (syntax-rule) at the right hand
side of the'==' sign. All (tag)s occurring in the (syntax-rule) should have
been declared as variables in the program containing the parse expression,
in this case the evaluation process. Substrings of the parsed text are
assigned to these variables. If the recognized part of the text is a list or
repetition, then an array of string values is assigned to the variable corres
ponding with the tag. Consider, for example, the following program
fragment:

if { {e== WHILE t: (test) DO b: (body) OD}}
then

put ('e is a while expression')
fi

The parse expression will succeed if e has the form of a while expression;
the literal text of the (test) is then assigned to variable t and the text of the
(body) is assigned to variable b. Repetition occurs in

if {{e== VAR list: (test) DO b: (body) OD}}

1 There is no fundamental reason to introduce this language extension. However, the
disadvantage of introducing such an ad-hoc extension is more than compensated by the fact
that we use a notation which is sufficiently similar to BNF notation to be almost self
explanatory. The effect of introducing a language extension as proposed here is interesting in
its own right but falls outside the scope of the current discussion.

then

fi

Formal language definitions can be made practical

put('e is a variable declaration containing:');
for l in list do put (!) od

123

The parse expression succeeds if e has the form of a ''variable declaration''
(i.e. the keyword var followed by a list of (identifier)s separated by
commas) and in that case an array of string values corresponding to the
< identifier)s occurring in the declaration is assigned to the variable list,
which is printed subsequently.

Parse expressions may be used as test in if statements or may stand on
their own. In the latter case, the string to be parsed has to be of the form
described by the parse expression. In this way, parse expressions can be
used to decompose a string with a known form into substrings.

In the case of the SUMMER definition, the overall structure of the evalu-
ation process is:

var E;
var S;
var varinit;
proc ERROR

proc eval(e)
(var value, signal, ... ;
if { { e == (program-declaration)}}
then

return([value, signal])
fi;
if { { e == <variable-declaration)}}
then

return([value, signal])
fi;

if {{e==(empty)}}
then

return([value, signal])

124

fi;
ERROR

);

P. Klint

The variable E has as value the current environment and S has as value the
current state. The variable varinit has as value a string consisting of the text
of all (variable-initialization)s in the current (block).

The procedure ERROR is called when a syntactic or semantic error is
detected during evaluation. In that case, the whole evaluation process is
aborted immediately. The main defining procedure is eval, which selects an
appropriate case depending on the syntactic form of its argument e. Some
examples of these various cases will be given in Section 2.5. Note that each
of these cases involves a complete syntactic analysis of the string e. The
evaluation process is initiated by creating an initial, empty environment E
and by calling eva/ with the text of the source program as argument. If the
evaluation process is not terminated prematurely (by the detection of a
semantic error) the result of the evaluation of the source program can be
obtained by inspecting the resulting environment E. Note how syntactically
incorrect programs are intercepted in eval by ERROR, which is called if
none of the listed cases applies.

The procedure eval delivers as result an array of the form [value, signal],
where value is the actual result of the procedure and signal is a success/fail
flag that indicates how value should be interpreted. SUMMER uses a success
directed evaluation scheme: an expression can either fail or succeed. These
success/ fail signals are used by language constructs like (if-expression)
and < while-expression) to determine the flow-of-control. The signal
delivered by eval is used to model this evaluation mechanism. This signal
may have the following values:
N: evaluation terminated normally.
F: evaluation failed.
NR: normal return; a (return-expression) was encountered during evalu
ation.
FR: failure return; a failure return was encountered during evaluation.
The signal is tested after each (recursive) invocation of eval. In most cases
eval performs an immediate return if the signal is not equal to N after the
evaluation of a subexpression. Exceptions are cases such as (if-expression>
and (return-expression) in which the signal is used to determine how
evaluation should proceed. This organization has the effect that aborting
the evaluation of the "current" expression, which is necessary if failure

Formal language definitions can be made practical 125

occurs in a deeply nested subexpression, can be achieved by passing a signal
upwards until it reaches an incarnation of eval that can take appropriate
measures. The difference between F and FR lies in the language constructs
that handle these cases. For example, consider <if-expression)s. An F
signal generated in the (test) part of an <if-expression) can be treated by
the semantic rule associated with <if-expression)s. But an FR signal
generated during the evaluation of the (test) can only be treated by the
semantic rule associated with the invocation of the procedure in which the
(if-expression) occurs. In general, the signals NR and FR are only
generated by return-expressions and are only handled by the semantic rules
associated with procedure calls. The latter rules turn NR into N and FR
into F before the evaluation process is resumed at the point where it left off
to perform the (now completed) procedure call. All other semantic rules
return immediately when an NR or FR signal occurs.

Note that the [value, signal] artifact is induced by the specific form of
expression evaluation in SUMMER and has nothing to do with the definition
method itself. We have just chosen one particular way to describe a form
of goto statement.

2.5. Some examples

2. 5.1. If expressions
<if-expression)s correspond to the if-then-else statement found in most

programming languages. If evaluation of the (test) immediately contained
in the (if-expression) terminates successfully, the (block) following then
is evaluated. Otherwise, the successive (test)s following subsequent elifs
are evaluated until one such evaluation terminates successfully (in which
case the following (block) is evaluated) or the list is exhausted. In the
latter case, the (if-expression) may contain an else and then the (block)
following that else is evaluated. The formal definition is:

J if { {e==lF t: (test) THEN b: (block)
2 elifpart: (ELIF (test) THEN (block))*
3 e/separt: [ELSE (block)] Fl}}
4 then
5 [v,sig] :=eval(t);
6 if sig=N then return(eval(b))
7 elif sig :;t: F then return([v, sig])
8 else

126

9
10
11
12
13
14
15
16
17
18
19
20
21
22 fi;

fi

P. Klint

for ei in elif part
do { {ei==ELIF t: (test) THEN b: (block)}};

[v,sigJ :=eval(t);
if sig = N then return(eval(b))

elif sig * F then return([v, sig]) fi
od;
if { {elsepart==ELSE b: (block)}}
then

return(eval(b))
else

return([a _ undefined, NJ)
fi

The parse expression in lines 1-3 decomposes the string value of e in
several parts. In line 5 the (test) of the <if-expression) is evaluated. Note
how the occurrence of non-standard (i.e. sig=NR or sig=FR) signals
terminates the evaluation of the <if-expression) (lines 7, 13). This is
particularly relevant for the evaluation of the (test) part. SUMMER allows
the occurrence of a return statement in a (test). This is reflected in the
above definition.

For a better understanding of the above definition, it may be useful to
note that parts of the source program are parsed repeatedly during one
evaluation of a given <if-expression). For example, the (block) following
an elif is parsed both in lines 2 and 10. (This explains, by the way, why the
parse expression in line JO needs not be contained in an if statement, see
Section 2.4.) In general, the source text of the <if-expression) is parsed
each time that it is evaluated.

2. 5. 2. Variable declarations
A (variable-declaration) introduces in the current environment a series

of new variables, i.e. names of locations whose contents may be inspected
and/or modified. The declaration may contain (expression)s whose value
is to be used for the initialization of the declared variables. First, these
initializing expressions are evaluated. Next, the (expression)s following
the (variable-declaration)s are evaluated. In the formal definition this is
described by appending all variable initializations in the current (block) to
the variable varinit and by evaluating the string value of that variable

Formal language definitions can be made practical 127

before the evaluation of the subsequent <expression) s in the <block). The
formal definition of (variable-declaration) s is:

1 if { { e == VAR vi: { (variable-initialization)
2 then
3 for v in vi

','}+';'}}

4
5
6

do if { { v == x: (identifier) ':=' <expression)}} then
varinit : = varinit II v II ';' ;
E. bind(x, S. extend(a _ undefined));

7 else
8 {{ v ==x: (identifier)}};
9 E. bind(x, S. extend(a _ undefined))

JO fi
11 od;
12 return([a_ undefined, N])
13 fi;

In line 1, e is decomposed into an array of strings which have the form of a
<variable-initialization>. These string values are considered in succession
in the for loop in lines 3-11. If the (variable-initialization) contains an
initializing expression, that expression is appended to varinit (line 5) using
the string concatenation operator "II". In both cases, the state S is
extended with a location containing an undefined value, and that new
location is bound, in the current environment E, to the identifier being
declared. Note that, in line 8, v is known to have the form of an
(identifier).

2.5.3. Blocks
A (block) introduces a new scope to be used for the declaration of new

variables and constants. It consists of a (perhaps empty) list of declarations
followed by a sequence of expressions separated by semicolons. A (block)
is evaluated as follows:

(1) Evaluate all declarations.
(2) Evaluate all variable-initializations resulting from the evaluation of

the declarations.
(3) Evaluate the sequence of expressions in the (block). (Note that

SUMMER forbids the failure of an expression inside a sequence of expres
sions. Only the last expression in a sequence is allowed to fail; this failure is
passed upwards to enclosing language constructs.)

128 P. Klint

The formal definition is:

1 if { { e == dlist: <variable-declaration)*
2 elist: {[(expression)] ';' }*}}
3 then
4 var El, varinitl;

5 El :=E;
6 E. new_ inner_ scope;
7 varinitl := varinit;
8 varinit := '' ;
9 for d in dlist

JO do [v,sig] :=eval(d);
11 if sig=t=N then ERROR fi
12 od;
13 [v,sig] :=eval(varinit);
14 varinit := varinitl;
15 if sig =t= N then E := E 1; return([v, sig]) fi;
16 for i in elist . index
17 do
18 [v,sig] :=eval(elist[i]);

19 case sig of
20 N:,
21 F: if i =t= elist. size - 1 then ERROR fi,
22 NR: FR: (E:=El; return([v,sig]))
23 esac
24 od;
25 E:=EI;
26 return([v, sig])
27 fi;

In lines 5-8 local copies are made of E and varinit and new values are
assigned to them. In lines 9-13 the list of (variable-declaration)s in the
(block) and the resulting (variable-initia/ization)s are evaluated. In lines
16-24 the list of (expression)s in the (block) are evaluated. Note how
failure of an expression in the middle of the list is treated (line 21, see
above).

Formal language definitions can be made practical 129

3. Assessment

The formal language definition presented in the previous section will
now be assessed. It is tempting to try to get statements like:

or

"Users can answer 87% of their questions on language issues
within Jive minutes if they have access to a formal language
definition of the kind described in this article. "

"35% of all run-time errors in user programs are directly
related to anomalies in the language definition".

In the absence of such results and with the methods to obtain them lacking,
we have to live with qualitative and more or less speculative observations.

A rough indication for the conciseness of the definition can be obtained
by comparing various sizes as they apply to the SUMMER definition:

formal definition
reference manual
implementation

20 pages
100 pages
200 pages

These figures show that the implementation is ten times larger than the
formal definition. This is not surprising, since the implementation has to
be efficient while the formal definition does not have to be. In this light the
"a-language-is-defined-by-its-implementation" approach can be rephrased
as: "if a language is defined by its implementation, then that implemen
tation had better be small".

The definition is precise and complete, in the sense that all semantic
operations associated with a particular language construct have to be
specified to allow the construction of an executable version of the
definition. The number of operational details, i.e. details in the definition
which stem from the chosen definition method and have no inherent
meaning in the defined language, is surprisingly small. This is a conse
quence of the choice of the defining language (which should have powerful
data types and string manipulation operations) and the choice of high-level
environment manipulation primitives which correspond directly to
operations in the defined language and which are not (yet) perverted by
implementational details. SUMMER extended with parse expressions seems a
quite reasonable vehicle for language definition. It is, however, not
possible to make continuation-style (see [11) definitions, since higher-order
functions are lacking.

130 P. Klint

It is difficult to give an objective judgement on the readability of the
definition, but we have observed that only a moderate effort (a few days) is
required on the part of a programmer without any training in formal
semantics and without any previous exposure to the language to learn
SUMMER using only the (annotated) formal definition.

The advantages and disadvantages of the formal definition for designer,
implementor and user will now be discussed in some detail.

The advantages for the designer are:
(1) Anomalies in the design are magnified. It is a general rule that ill

formed entities can only be described by ill-formed descriptions or by
descriptions which list many exceptional cases. It is easier to locate such
exceptions or anomalies in a concise formal definition than in an
ambiguous natural language definition or in a bulky implementation. In
the SUMMER definition, for example, a very specific operation on environ
ments is needed ("partial-state-copy") to accommodate the definition of
just one language feature ("try-expression"). It turned out that a slight
modification of that feature would at the same time simplify the definition
and improve the feature.

(2) Exhaustive enumeration of language features. A formal definition
method forces the designer to enumerate all language features in the same
framework and this may help him to find omissions in the design.

(3) Interactions between language features can be studied. In the
SUMMER definition, for example, the designer is forced to decide what
happens when a <return-expression> is evaluated during the evaluation of
any other expression. There is, however, no guarantee that all interactions
can be found, since the formal definition may still contain hidden inter
actions between language features. The use of auxiliary functions in the
definition is an aid in making interactions explicit. One may even apply
techniques such as calling graph analysis and data flow analysis to the
definition to discover clusters of interacting features and to establish
certain properties of the definition.

(4) An executable formal definition can be tested and used. This may
help eliminate clerical and gross errors from the definition. An executable
definition allows the designer to play with (toy) programs written in the
language he is designing. Here is, however, a problem with circular
definitions: some implementation of the defined language has to exist
before the definition itself can be made executable.

Formal language definitions can be made practical 131

Disadvantages for the designer are:
(1) A considerable effort is required to construct a formal definition.
(2) A general problem is that there are no canned, satisfactory definition

methods available and that the designer has to begin with either creating a
new method or adapting and extending an existing one.

Advantages for the implementor are:
(1) Unambiguous language definition.
(2) The implementor may be in doubt as to the meaning of a certain

combination of features. Such cases can be executed both by the implemen
tation and by the definition and the results can be compared.

Disadvantages for the implementor are:
(1) The implementor must be familiar with the definition method or

become acquainted with it. This is only a minor effort if one compares it
with the total effort required to implement the language.

(2) It is non-trivial to derive an implementation strategy from the
language definition. This is a problem shared by all "abstract" language
definitions, in which no attempt is made to use primitives in the definition
with a direct counterpart in an implementation. This leads to the con
clusion that such abstract definitions should be accompanied by an
"annotation for implementors", which states where well-known imple
mentation techniques can be used and where certain optimizations are
possible.

Advantages for the user are:
(1) Unambiguous and concise language definition.
(2) The user is used to reading programs and the formal definition can be

read as such. In the case of a circular definition, the formal definition may
be considered as a very informative example program.

Disadvantages for the user are:
(I) The user must be exposed to the definition method.
(2) A formal definition is harder to read than a "natural language"

definition.
(3) In the case of the SUMMER definition, the circularity may be con

fusing for the naive user.

132 P. Klint

In retrospect, it seems justified to conclude that the method presented in
this paper is a first step in satisfying the requirements given in Section 1.
However, many problems remain to be investigated. Does the given
method lend itself to mathematical analysis? How can the "complexity" of
a language be derived from its definition? Is it possible to "optimize" the
executable version of definitions? (Attempts in this direction can be found
in [2].) What is the relationship between this definition method and
extensible languages? Answers to these questions will provide more insight
in the structure of programming languages and the methods for defining
them.

Acknowledgement

J. Heering, H.J. Sint and A.H. Veen made useful comments on various
drafts of this paper. Parts of it were discussed with L.J.M. Geurts, F.E.J.
Kruseman Aretz and L.G.L.T. Meertens. I am grateful for their support.

References

[l] M.J.C. Gordon, The Denotational Description of Programming Languages (Springer,

Berlin, 1979).
[2] N.D. Jones, Semantics-directed Compiler Generation (Springer, Berlin, 1980).
[3] P. Klint, An overview of the SUMMER programming language, in: Conference Record of

the 7th Annual ACM Symposium on Principles of Programming Languages (Jan. 1980)
pp. 47-55.

[4] P. Klint, SUMMER Reference Manual, Mathematical Centre, to appear.
[5] P.J. Landin, The mechanical evaluation of expressions, Comput. J. 6 (1964) 308-320.
[6] M. Marcotty, H.F. Ledgard and G.V. Bachmann, A sampler of formal definitions,

Com put. Surveys 8 (1976) I 91-276.
[7] J.C. Reynolds, Definitional interpreters for higher-order languages, Proceedings ACM

Annual Conference (Aug. 1972) pp. 717-740.
[8] P. Wegner, The Vienna Definition Language, Com put. Surveys 4 (1972) 5-63.

Algorithmic Languages, de Bakker/van Vliet (eds.)

© IFIP, North-Holland Publishing Company, 1981, 133-165

Invited Address

Is Computer Science Based on the Wrong Fundamental Concept of
'Program'? An Extended Concept

John Backus

IBM Research Laboratory, 5600 Cottle Road, San Jose, CA 95193, U.S.A.

1. Introduction

1.1. The Von Neumann concept of 'program'

Ever since John von Neumann and others proposed the machine we call
the Von Neumann computer, programmers have been writing 'Von
Neumann style' programs. Originally these programs were written in
machine language, then in assembly language, then in FORTRAN, and then
in a great variety of so-called higher level languages. The units of action
specified by a program element grew as these languages evolved, but all of
these programs were primarily concerned with two things: (1) the trans
mission of input and output between the 'store' and the outside world, and
(2) the transformation of the store from its state at input to some new state
in which the desired output was available. (Of course, the concept of the
'store' also evolved from a device to an abstract entity comprising a set of
'cells' each with a 'name' and 'contents'.) Additionally these languages
allowed one to make various assertions or declarations about the contents
of the store, for example, that a certain cell contains an integer.

The variety and dynamic nature of input-output operations in the great
assortment of Von Neumann languages make it difficult to include these
operations in a uniform concept of 'program' that is common to all these
languages over the past 30 years. So, following the example of ALGOL 60,
we shall not attempt to do so.

Having dismissed the question of input-output, we are left with what
may be considered the most fundamental concept of 'program': a
'program' is a mapping of some domain of 'stores' into itself. Each store in
the domain of a machine language is a set of pairs, each pair being the

133

134 J. Backus

number of a cell and the contents of that cell. In assembly language the cell
names of a store can be symbols; in higher level languages the cell names
can be more complicated, and some languages permit stores whose 'cells'
can hold 'contents' of more than one 'word'. But in all cases a 'store' is an
association between 'names' and 'objects', each 'name' denoting a 'cell' in
the store having a certain 'object' as its 'contents'.

Thus, neglecting input-output behavior, when any Von Neumann
'program' is given a store s in its domain, it will 'execute' and either the
execution will go on forever or it will stop and yield some new store s' in its
domain (it may happen that s=s').

At this point we must confess that our simple notion of 'program' as a
mapping of 'stores' into 'stores' differs from various precise notions to be
found in works on denotational semantics ([18], e.g. [16,19, 20]), even
though our simple notion reflects the spirit of these precise ones. To
explain the details of how a program achieves a store-to-store mapping, or
to explain dynamic storage reallocation, scope rules for variables, GOTOs,
side effects, error stops, or other such issues, 'programs' are assigned
mappings in denotational semantics that are more complex than store-to
store mappings. These mappings often involve 'environments' and
'continuations' as well as 'stores'.

In spite of the detailed explanations and language complications that
force denotational semantics to represent 'programs' as more complex
mappings, I submit that the single concept that is closest to our intuitive
understanding and to all the various detailed concepts embodied in
different Von Neumann languages is that 'programs' represent mappings
of 'stores' into 'stores'. (For each particular notion of 'program' we must
suitably choose the 'names' and 'contents' needed to construct the domain
of its 'stores'.)

1.2. A more general concept of 'program'; a basic question about the
conventional concept

To make it easier to consider a wider range of concepts of 'program',
some of which are non-Von Neumann, let us define a more general
property of 'programs' and then define what we mean by 'Von Neumann
programs':

(A) A 'program' represents a mapping of some domain D into itself.
(B) The domain associated with 'Von Neumann programs' is some

domain of 'stores'.

The wrong fundamental concept? 135

Thus for each notion of 'program' there is associated a particular
domain D; and for each kind of 'Von Neumann program' there is a
particular domain of 'stores' built from certain 'names' and certain
'contents'. Of course such a domain includes each possible association of
'names' with 'contents' in one of its 'stores'.

If you accept these notions as fundamental elements of the concept of
'program' and of 'Von Neumann program', then the question I should like
to raise for your consideration is an important one, one which, oddly
enough, seems to have received little attention. The question is this: is the
choice of 'stores' as the domain for 'programs' the correct choice? That is,
is there perhaps some other domain such that, if the notion of 'program'
were associated with mappings of this new domain into itself, then the
resulting concept of 'program' could be simpler, more powerful and
elegant than the Von Neumann concept?

1.3. Evolution of the Von Neumann concept; psychological barriers to
adoption of non-Von Neumann concepts

Before we consider notions of 'program' founded on other ~~.,,,u.,u~ let
us review some of the reasons why 'stores' were chosen for the domain of
conventional programs. Of course, in the first place the Von Neumann
computer itself required programs based on the domain of stores. And
when 'higher level' languages began to evolve it was important that their
programs correspond closely with machine programs, therefore they
naturally adopted an abstract notion of 'store' quite close to that of the
machine. Thus the evolution of programming languages from machine
languages is a natural and basic reason for the choice of 'stores' as the
domain for 'programs'. But I believe there is another, deeper reason.

In natural language and in mathematics one of the most universal and
deeply ingrained practices in thinking and writing is the use of names to
stand in place of their referents. In every natural language sentence or
mathematical expression most symbols denote something other than
themselves. Thus in 'a+ b' it is universally understood that we are to add,
not the letters 'a' and 'b', but some numbers to which they refer. The store
that is implicit in every conventional program is the repository of this
name-referent association that is so much a part of our traditional way of
thinking.

If we choose any domain other than 'stores' for our concept of

136 J. Backus

'program', then it may no longer be possible for the programmer to use a
'name' or 'variable' to refer to an object. Thus non-Von Neumann
concepts of 'program', those employing domains other than 'stores',
threaten to violate deep-rooted traditions of thought, therefore such
concepts tend to confuse and disturb programmers.

Because the conventional concept of 'program' is so closely linked by its
use of 'stores' to the traditional use of names in natural language and
mathematics, the adoption of new concepts may cause many computer
scientists a certain amount of anguish. But if we are to consider new
concepts of 'program' that may yield a more profound order in the realm
of programs, it is important that we be aware of the psychological
difficulties we may face in dealing with such new ideas.

Alternative concepts of 'program' not based on the domain of 'stores'
have been evolving over a long period. Their evolution has been confused
because many developers of the new view have been unable to free
themselves from the old one and have sought to find a viable mixture of the
two. Thus there is as yet no consensus on the key elements of a new
concept. Pure LISP was the first language whose program domain was not
'stores'. But most versions of LISP, other 'applicative' languages such as
GEDANKEN [17], as well as others emphasizing functional elements, such as
APL [11], all tend to incorporate the traditional notion that programs
transform stores.

1.4. The object level and the Junction level viewpoints

One important consequence of the conventional concept of 'program' is
an emphasis on the 'object level' view of programming. Since stores hold
'objects in their cells, programming becomes a process of describing how
to combine objects to form other objects, a program being a description of
how to combine the 'input objects', which are found in given cells, to form
the desired 'output objects' and deposit them in the proper output cells.

Even the traditional applicative languages such as pure LISP and ISWIM

[14] emphasize the object level view of programming. Though their
programs do not map stores into stores, they do use names for objects and
their basic semantics automatically builds a kind of store (during the
execution of a program) in which the values of variables mentioned in the
program are kept. And, like conventional programs, these programs are
primarily concerned with combining objects. For example, consider the

The wrong fundamental concept? 137

following definition of the object-to-object function fin the style of the
lambda calculus [6]:

f = AX· h(x,g(x)).
I

We are given the functions g and hand we wish to build the functionf. We
do this at the object level by introducing the object x, forming the object
g(x) and then the 'result object' h(x,g(x)); we then use the principal
program-forming operation of the lambda calculus, lambda abstraction, to
abstract the object variable x and convert the result object into the function
f. Thus we see that the object level definition off does not directly combine
the functions g and h from which/ is to be built, but instead this definition
descends from the function level of g and h to the object level of x, g(x),
and h(x,g(x)), then ascends again to the function level off. This down
then-up-again style is characteristic of the object level approach. (For
further discussion of 'functional' object level programs see [4]).

As we shall see later, there is a 'function level' approach to programming
that defines a new function in terms of given ones without descending to
the object level. For example, the function level definition off as above
would use two program-forming operations to build/from the functions g
and h and the identity function; no object or object variable would appear
in the definition. In general the function level approach uses program
forming operations (functionals) to combine given functions directly to
form the desired new one. ('Constants' in an object level definition are
'lifted' to constant-valued functions in the corresponding function level
definition.) Object level definitions all correspond to some isomorphic
function level one, but there are many function level definitions that have
no isomorph at the object level, although of course there is some
nonisomorphic object level definition for the defined function.

Of the various 'functional' or non-Von Neumann approaches to
programming, we shall argue that it is this function level approach that
offers the best possibility to have a universe of 'programs' with a deeper
mathematical order than can be found in the universe of Von Neumann
programs. It is also an approach that departs the farthest from the
traditional use of names and variables for objects, hence it is also an
approach that will be likely to cause the kind of deep unease I have tried to
indicate above.

138 J. Backus

1.5. Goals of the function level approach to programming

In the area of data types, as in e.g. [5,9,21,24]. we have already gone far
in moving from the object level viewpoint to a function level one. We have
moved from focussing on the objects of a data type and on their 'structure'
to an emphasis on (a) the operations used to build and manipulate those
objects and their structure, and on (b) the algebraic properties of these
operations as expressed in various 'axioms'.

The non-Von Neumann, function level approach to 'programs' seeks to
shift our viewpoint similarly, to introduce the kind of order into the
universe of 'programs' that the abstract, algebraic approach to data types
has introduced into the universe of objects, an order represented by axioms
or laws about the operations over the given universe (of objects or of
'programs'). With data types, we are concerned with objects (data) and
with operations on them; with 'programs' we are concerned with objects
(data), operations on objects (programs), and operations on programs
(program-forming operations or PFOs).

For a long time we regarded programs as a kind of yard-goods pieced
together by semicolons and begin/ends, just as we used to regard data
structures as pieced together by commas and brackets. More recently, in
the era of 'structured programs', we noticed that semicolons, if-then-elses,
and while-do's were 'control operations' that served to 'structure'
programs.

The goal of the function level approach to a concept of 'programs' is to
move now to an emphasis on the operations (PFOs) used to construct
programs and on the algebraic properties of those operations. For
example, in this approach if-then-else becomes a program-forming
operation, not a 'control' operation; it maps three given programs into one
new one and it has important algebraic properties with respect to other
PFOs, just as 'addition' in a ring has important properties with respect to
the other ring operation, 'multiplication'. It is these algebraic properties
that make it possible to transform programs from one form to another and
to solve equations for programs, just as it is the properties of the ring
operations that enable us to transform ordinary algebraic expressions and
to solve equations.

1.6. Incompatibility of the Von Neumann concept of 'program' and the
function level approach to programming

The choice of 'stores' as the domain for Von Neumann programs has

The wrong fundamental concept? 139

two immediate, harmful consequences for our ability to write general,
composable programs (we discuss these in the next section). But it is an
indirect consequence of that choice that blocks the use of a function level
style in Von Neumann programming: the choice of 'stores' as the domain
of programs limits our choice of program-forming operations, apparently
to PFOs lacking the required algebraic properties. (Again, we shall see later
why this is so.)

1. 7. Requirements and prospects jor the Junction level view of
'programs'

We shall show that by enlarging the domain for 'programs' beyond that
of 'stores' that we can form domains for a new concept of 'programs' and
that, using this new concept, we have a wider choice of program-forming
operations from which we can then choose a set of PFOs with a strong
algebraic structure.

If we adopt both the new concept of 'program' (with its new domain)
and the new PFOs that become available with it, then we can move from an
object-centered view of programming to a function-centered one (or
perhaps a relation-centered one) - despite the temporary trauma this may
cause. Already there are signs that a more profound order can be found in
the universe of the new 'programs' than we have found in the universe of
the old, but the concept and the form of its programs, being new, are very
much open to change. Having incubated for 20 years, the non-Von
Neumann concepts of 'program' are just beginning to develop a function
level view and 'programs' built by PFOs with algebraic structure.

Much work remains to be done before a definite function level or other
extended concept of 'program' (with its accompanying methodology and
implementations) can be developed and achieve some form of consensus.
Finding the 'best' concept of 'program' and achieving such a consensus
would be aided by a larger abstract theory concerning the effect of various
representations of programs over various domains on the properties of
such systems. Much will depend on our ability to exploit the algebraic
structure of PFOs to optimize programs. It will also be important to
develop new computer architectures that directly implement both the PFOs
and the composite data objects of the new concept and that exploit the
inherent parallelism of its programs.

Of course, as with any new approach, we may find difficulties with the

140 J. Backus

function level view that make it unsuitable, but that too can only become
clear after a lot of further work.

1.8. Organization of this paper

Section 2 discusses two difficulties associated directly with the choice of
'stores' as the domain for programs. Section 3 indicates how the Von
Neumann concept of 'program' can be extended to a non-Von Neumann
concept by enlarging the domain for programs. It discusses the advantages
of this extension; it does so by describing a 'typical' Von Neumann
language called L and its non-Von Neumann extension, called L *, and
comparing the two. The rest of the paper is best outlined by giving the
section and subsection titles:

2. Two fundamental problems with the Von Neumann concept of
'program'

2.1. Problem domains are not program domains
2.2. The principal program-forming operation, composition, is

ineffective for building Von Neumann programs

3. The extension of the Von Neumann concept of 'program' to a simpler,
non-Von Neumann concept

3 .1. Introduction
3 .2. Program domains
3.3. Abstract programs and PFOs versus concrete programs and PFOs
3 .4. Algebraic structure of a set of operations
3.5. The Von Neumann language L
3.6. The structure of L-programs
3.7. An extension of L: the non-Von Neumann language L*
3 .8. The structure of L *-programs
3.9. L *-images of L-expressions and L-programs
3.10. The algebraic structure of the PFOs of L* and L

4. Comparison of L and L *
4.1. Problem domains and program domains
4.2. Composition of programs
4.3. Relationship between a composite program and its subprograms
4.4. Complexity of program structure and of language structure

The wrong fundamental concept? 141

4.5. The relationship between languages and machines, serial versus
parallel
4.6. Object level and function level programs

5. Conclusions

2. Two fundamental problems with the Von Neumann concept of
'program'

2.1. Problem domains are not program domains

Programmers are never approached with the following request: "I have
a set of stores of this kind and I want you to write a program that will
transform them into stores of this other kind." Instead they are asked,
given a set of files and transactions, to write a program to transform a file
transaction pair into a new file and a response. Or they are asked to write a
program that inverts matrices, and so on. But 'programs' can only map
stores into stores.

Thus the primary difficulty with the Von Neumann idea of 'program' is
that the solution of a problem is never a program. For example, there is no
program for finding square roots. We tend to think this last statement is
wrong because we regard as insignificant the 'explanation' needed to
connect a so-called 'square-root program' with the actual mapping that
carries numbers into their square roots. Thus a 'square root program', to
be meaningful, actually consists of a program (that maps stores into stores)
plus a storage plan, the 'explanation', without which the program proper is
useless. If the program takes its input from, say, cell a and deposits its
output in cell b of the store, then the storage plan is a statement of these
facts. To compute the square root of some number n then requires two
other mappings in addition to that of the program itself: an input mapping
that creates a store with n in cell a and an output mapping that maps a store
into the contents of cell b; then the composition output0 program 0 input is a
function that maps numbers into their square roots, where 'input' and
'output' depend on the storage plan of 'program'. (In practice the use of a
square root program as a subroutine employs mechanisms to conform the
storage plan of the program to that of its context or vice versa, according
as it is called by name or by value.)

142 J. Backus

The choice of 'stores' as the domain of Von Neumann programs means
that a typical program has a 'purpose', that is, to map some domain D into
another domain E (possibly the same), which it can achieve only partially
and indirectly; it can be interpreted as accomplishing its 'purpose' only by
a mental transformation that requires full knowledge of its storage plan.
This storage plan constitutes a kind of artificial representation of the
domains of the program's 'purpose', D and E, in terms of stores.

The representation problem that is intrinsic in the Von Neumann
approach, representing problem data by stores, greatly complicates
programming by interposing storage plans between the straightforward
'purpose' of a program itself. This makes it impossible for a Von Neumann
program to achieve its 'purpose' directly.

2.2. The principal program-forming operation, composition, is ineffective
for building Von Neumann programs

The Von Neumann requirement for representing data by stores is also
the main reason we have found it so difficult to effectively build new
programs from existing ones. The principal program-forming operation
for building programs is composition, thus from programs p and q we can
form the new program p;q. But if p and q are Von Neumann programs
written independently, then p; q is almost certain to be meaningless. That
is, the program p; q will not achieve the 'purpose' of p followed by the
'purpose' of q (even in the indirect sense in which programs achieve their
'purpose') except in the unlikely event that q happens to take its inputs
from just those cells in which p places its outputs.

Thus the Von Neumann concept of 'program' assures that composition
is useful only for piecing together programs that are written together under
a unified storage plan, whereas in mathematics and in a proper universe of
'programs', composition is the primary, most powerful operation for
building functions or programs.

Some readers will complain that the above remarks about composition
fail to take into account the existence of procedure declarations, since these
enable one to make specific programs into general ones whose storage
plans can be varied. Suppose one wishes to compose two procedure calls so
as to obtain the composition of their 'purposes'. If they are P(x, y, z, w)
and Q(x,y,z, w), where in each case x and y are inputs and z and ware
outputs, then P(a, b, c, d); Q(c, d, e,f) transforms a and b into e and/. Here

The wrong fundamental concept? 143

we have merely simplified the storage planning problem: that of designing
two problems to be composed so that the storage plan for the first is
appropriate for that of the second. For ordinary programs the 'store' they
operate on is large and hence storage plans involve much detail; in the case
of our procedure calls their 'stores' have effectively only four 'cells' that
require planning (the other, local cells being isolated from all other cells in
the basic store). Thus P(a, b, c, d) becomes an actual program only after a,
b, c, and dare chosen; once chosen the chance that P(a, b, c, d) is meaning
fully composable with another independent program is as slight as ever.

Thus by the use of procedure declarations we make it possible to plan
storage at the time of use, rather than the time of writing a procedure. This
means that storage plans can be more local and flexible when using
procedure calls in place of 'programs'. But that still means that p; q is
almost always meaningless unless p and q have a common storage plan.
Compare this situation with the composition of functions in mathematics.
In that context a function and its 'purpose' are the same: a function maps
its intended domain directly into its intended range without any intervening
representations. Thus the composition of two functions is always
meaningful if the composition of their 'purposes' is meaningful.

The contrast between composition of Von Neumann programs and that
of functions is perhaps best seen by an example. If feet-inch is a program to
convert feet to inches and inch-yard is one to convert inches to yards, then

feet-inch; inch-yard

is a program, but it will almost certainly not convert feet to yards. On the
other hand if the same names denote two conversion functions, then

inch-yard 0 feet-inch

is a function that will convert feed to yards. The difference follows from
the fact that the program feet-inch maps stores into stores whereas the
function feet-inch maps numbers (in feet) into numbers (in inches).

Of course Von Neumann languages provide functions for use within
expressions, and these can be composed meaningfully within individual
expressions. Here we are addressing the problem of building programs
from pre-existing ones by composition, a more central issue.

144 J. Backus

3. The extension of the Von Neumann concept of 'program' to a simpler,
non-Von Neumann concept

3.1. Introduction

We have considered two important defects in the Von Neumann concept
of 'program' that are direct consequences of choosing 'stores' as the
domain for programs. These defects can be understood without examining
the structure of 'programs' determined by the operations used to build
them. But the most fundamental difficulties of Von Neumann programs
and the languages used to express them lie in their unnecessarily complex
structure, in our inability to use a powerful set of program-forming
operations to build programs, and in the fact that the PFOs that we do use
lack the algebraic properties that would allow us to prove useful general
theorems about large classes of programs.

In order to illustrate these difficulties we propose to describe the
elements of a typical, but oversimplified Von Neumann language, L. Since
our purpose is to expose defects in the simplest conventional concepts of
'program', it will not be necessary to include in L many of the complica
tions that appear in real languages. That complexity is very well illustrated
in the descriptions of real languages in the literature of denotational
semantics [19,20]. It will become apparent that the defects we discuss in L
can only become worse with the addition of further features.

The complexity of real languages revealed in denotational semantics can
be viewed in two different ways. The notion of 'continuations', for
example, can be viewed as an ingenious invention that makes it possible to
cope formally with various features of conventional languages. On the
other hand, continuations can be regarded as yet one more level of
mathematical obfuscation and complexity that is essential to shore up a
failing concept of 'program', a concept tottering under its own weight.

In the following we shall briefly examine the structure of L-programs in
terms of the operations used to build them and to build their components.
We shall then describe a non-Von Neumann language L* that is an
extension of L in the sense that (a) the domain for L *-programs contains
that for L-programs and (b) every L-program has an exact image within a
small subset of the programs of L *.

Up to this point we have emphasized the association of the concept of
'program' with the domain that programs operate on. In the following we
shall give equal emphasis to the second, independent element that is central

The wrong fundamental concept? 145

to the concept: the program-forming operations used to construct
'programs' and the properties of those PFOs.

We shall see that L *-programs can be built with a set of PFOs different
from that used to build L-programs, that these PFOs have a strong
algebraic structure where those of L do not, and that L *-programs have a
simpler structure than L-programs. We shall see that L *-programs
represent a function level approach to programming and L-programs an
object level one. But first we must discuss a few issues that have been dealt
with only vaguely, and then describe L and L *. We will then be able to
compare the two approaches in more detail.

3.2. Program domains

By definition we have assumed that 'programs' map some domain D into
itself. We do so because, if 'programs' mapped D into E, then, unless Eis
contained in D, it would not make sense to compose two such programs.

3.3. Abstract programs and PFOs versus concrete programs and PFOs

'Programs' can be regarded either as mappings (infinite entities) or as
representations {finite expressions) for such mappings, that is, as 'abstract'
or 'concrete' programs. In our discussions of 'expressions' in L (store-to
object mappings) and of programs in L and L * we do not want to
constantly distinguish between their abstract (mapping) and concrete
(representation) aspects. Even more, we want to speak of expression
forming and program-forming operations without saying whether we mean
operations that form abstract expressions or programs, or that form
concrete ones. We sketch informally how this can be done without
confusion.

Let us consider only programs, since the treatment of expressions is
similar. Let us agree that all concrete programs that represent one abstract
program are 'equivalent' and that when we speak of a 'program' we may
be referring either to the abstract program (mapping) or to one of the
concrete programs that represent it or to the entire equivalence class of
concrete programs. This gives us, at least, a clear understanding of the
ambiguity we shall allow ourselves in the use of the term 'program'.

Now consider an abstract program-forming operation n that builds, for
example, the abstract program n (p, q) from the abstract programs p and q.
Then there is a corresponding concrete program-forming operation ii such

146 J. Backus

that, for any concrete program-representations p and q for p and q. then
ft(jj, q) builds a concrete program that represents n(p, q). Of course,
concrete program-forming operations must be blind to the particular
choice of concrete program jj used to represent some abstract p; replacing
an argument of a concrete PFO by an equivalent one must give equivalent
results. Again, for each abstract PFO n there are many corresponding
('equivalent') concrete PFOs ft that differ in the representations they
produce for an abstract program.

As with the term 'program', we shall use the term 'program-forming
operation' or 'PFO' to mean either some abstract PFO n or some
corresponding concrete PFO ft or the entire equivalence class of concrete
PFOs that correspond to n.

3.4. Algebraic structure of a set of operations

We have referred to a set of operations as having a 'strong algebraic
structure'; although we do not intend the phrase to have a precise meaning,
it deserves some explanation. To the extent that pairs or tuples of
operations in the set are related by algebraic laws, we think of the set as
being structured by those laws. Thus the set of operations, addition and
multiplication, has a strong algebraic structure since the only pair in the set
is related by the distributive law (a+ b)c = ac + be, which expresses a multi
plication involving addition as an addition involving multiplications. It is
this kind of law, with this kind of 'symmetry' that has the greatest intuitive
'strength' in our notion of algebraic structure. Thus, for example, the
recursive definition of while-do using condition and composition lacks this
'symmetry' and hence is not as 'strong' a law.

The intent of our notion of algebraic structure of a set of operations is
that strong structure goes with strong theorems about the operations and
their domains and weak structure with weak theorems. We do not pretend
that the notion is precise or that it always achieves this intent. In the case of
the set comprising addition and multiplication our informal notion does
work: it has a strong algebraic structure and there are strong theorems
about the operations and their domain of numbers, e.g., the general
solution of quadratic equations.

A similar example, but with weak structure, is the set of operations of
addition and square root. Without the introduction of multiplication there
are no strong laws relating addition and square root, therefore there are no

The wrong fundamental concept? 147

strong, general theorems about systems with just these two operations,
only particular ones like sqrt(4) + sqrt(9) = 5.

I believe it will turn out that the reason we find so few strong, general
theorems about conventional programs is that their program-forming
operations have a weak algebraic structure. We shall see that the PFOs of L
have a weak structure; but those of L * have a strong structure and, in
accordance with the above notion, there are beginning to emerge some
general theorems about programs of this new kind (see [2,3,13,22]) and l
believe we shall see more theorems and stronger ones. We shall examine the
algebraic structure of the PFOs of both L and L * in more detail later on.

3.5. The Von Neumann language L

Our typical but oversimplified Von Neumann language L has the
following elements:

(1) A set of L-programs that map £-stores into L-stores.
(2) A set of L-stores, each store being a set of cells, each cell a

'name' and 'contents'.
(3) A set of L-objects that includes all the 'names' and 'contents' found

in any L-store. We assume that the set of L-objects is a rich one-~··"~'""'"""
objects built from elementary objects such as 'true', 'false',
symbols, etc., by constructions such as sequences, arrays, files, etc.

(4) A set of L-expressions that map L-stores into L-objects.
A set of object-forming operations such as +, square root, as well as

more complex operations on more complex objects.
(6) A set of program-forming operations that build 'structured' L

programs from L-expressions and L-programs. These are: composition
(semicolon), if-then-else, and while-do.

3.6. The structure of L-programs

£-programs are built on three planes. On the highest plane are L
programs; these are built from elementary L-programs by PFOs. On the
middle plane are the elementary L-programs (assignments); these are built
from 'names' and L-expressions by the 'assignment-forming operation'.
On the lowest plane are £-expressions; these are built by object-forming
operations (actually, by operations isomorphic to these) from elementary
L-expressions, which are L-objects and £-variables. £-programs map L
stores into L-stores. £-expressions map L-stores into L-objects.

148 J. Backus

3.6.1. Elementary L-expressions map stores into objects. An L-object,
serving as an L-expression, maps any store into the object itself. Thus 3
maps any stores into 3 (we write 3: s = 3). An L-variable ft (associated with
'name' n) maps a stores into the contents, ins, of cell n (fl: s = contents cell
n ins). (We do not deal with the question of subscripted variables or other
compound cell names, nor with the necessary distinction between 'names'
(objects n) and 'variables' (expressions fl).)

3.6.2. Constructing L-expressions with object-forming operations.
Actually, expressions are built with expression-forming operations that are
derived from object-forming ones as follows. If o(x1, ... ,Xn) is an object
forming operation of L, then oe(ei, ... ,en) is the corresponding expression
forming one, where the store-to-object mapping of the latter is

for any stores. For example +e builds an expression from the expressions a
and b, where (a+e b) :s = a :s+ b :s for any stores.

Having noted the isomorphic relationship between the object-forming
and expression-forming operations of L, from here on we can pretend they
are identical.

3.6.3. Properties of L-expressions. The points to notice about expressions
are these:

(a) They are object level constructions describing the combination of
objects to produce others.

(b) They represent the principal 'work' of a program.
(c) Laws concerning object-forming operations are suitable for proving

facts about objects, whereas we often want to prove facts about programs
rather than objects.

(d) Expressions cannot be built by composition since their domain
(stores) and range (objects) differ.

3.6.4. Elementary L-programs are assignments; these are built by an
assignment-forming operation, :=, from a name n and an expression e,
yielding the assignment n := e. The store-to-store mapping of this
assignment satisfies the following two equations:

fl :s' = e :s, (1)

The wrong fundamental concept? 149

fi':s' = n':s for an n' * n (2)

wheres'= (n := e) :s for all stores s. Thus (1) asserts that the contents of cell
n ins' (obtained from s by 'executing' the assignment) is the value of e with
respect to s, and (2) asserts that the contents of other cells in s' are the same
as ins.

3.6.5. Constructing L-programs with PFOs. The PFOs of L are
composition (;), if-then-else and while-do; these are used to build
programs from elementary ones. Thus if p and q are L-programs and b an
L-expression, then

p;q

if b then p else q

while b do p

are L-programs. Note that here we are emphasizing the operational
character of PFOs as operations on program-mappings. For example, if
then-else is not to be seen as a kind of punctuation used to divide up the
text of if b then p else q into the subtexts of b, p and q. Instead, we see it as
an operation with three operands: b, a mapping of stores into objects, and
p and q, mappings of stores into stores. The result of applying if-then-else
to these operands is a store-to-store mapping we denote by if b then p else
q.

Of course, as discussed earlier, there are many equivalent concrete
program-forming operations for if-then-else that map three concrete
representations for the mappings b, p, q into some concrete representation
for the mapping if b then p else q; as agreed earlier we have lumped the one
abstract PFO and the many concrete PFOs for if-then-else into the one
term 'if-then-else'. For this 'lumping' to be valid one must check that, if
one equivalent concrete program is substituted for another in a program
built by a PFO, then the resulting program will be equivalent to the
original. This will be true for any PFO if every program built by it only
applies the constituent programs in obtaining its result, since equivalent
programs are indistinguishable in that case. Every PFO we shall use has
this property.

The mappings associated with each of the PFOs of L are given by the
following definitions, for all stores s:

150 J. Backus

composition (p;q):s=q:(p:s);

if-then-else (if b then p else q) : s = p : s if b:s= 'true',

=q:s if b:s='false',

while-do

= undefined otherwise

(while b do p) :s=s if b:s= 'false',

=(while b dop):(p:s) if b:s='true',

= undefined otherwise.

3.6.6. Properties of L-programs. The main discussion of properties of L
programs is best left until we have described L *-programs and can compare
the two. For the present the main thing to note about L-programs is their
three-plane construction that divides them into expressions (that do most
of the work, and whose object-forming operations may have good
algebraic properties), assignments (that are built from expressions and
change one cell of a store), and programs (that are built from assignments).
Thus the power and possible algebraic elegance to be found in L-programs
is confined to expressions whose individual effect in a program is restricted
to changing one cell. (We shall examine the algebraic structure of the PFOs
of L later on.)

3.7. An extension of L: the non-Von Neumann language L*

The language L * has the following elements:
(1) A set of L *-programs that map L *-objects into L *-objects.
(2) A set of L *-objects (that contain all L-stores and L-objects as

described below).
(3) A set of program-forming operations.
The set of L *-objects contains all L-stores and all L-objects and hence

every 'name' and 'contents' found in any L-store. Furthermore, the set of
L *-objects is closed under sequence-formation; thus if Xi, ... , Xn are L *
objects then so is the sequence (Xi, ... ,x,,). We shall see that enlarging the
domain for 'programs' from 'stores' as in L to the domain of L *-objects
results in a surprising simplification in the concept of 'program' (already it
is evident that L * has fewer elements than L).

The wrong fundamental concept? 151

3. 8. The structure of L *-programs

L*-programs are built on one plane; they are built from elementary L*
programs by PFOs.

3.8.1. Elementary L *-programs. These are the given, primitive programs
of L *. They, and all L *-programs, have a single argument; they are
functions from L *-objects into L *-objects. They include the object-forming
operations of L, such as + and square root, and various functions and
predicates for accessing, rearranging and testing sequences, as well as
functions for dealing with whatever special data types are included in the
set of L *-objects. For example, +: (3, 4) = 7, null: <) ='true',
equal: (A,B) ='false', length: (A,B, C) = 3. Note that A and Bare simply
objects, they do not name other objects.

3.8.2. Constructing L*-programs with PFOs. Having chosen a domain for
programs does not determine the program-forming operations that can be
used to build them. In L we have used the traditional PFOs for 'structured'
programs. However, since L *-programs have a larger domain and a simpler
structure than L-programs, we shall use a somewhat different set of PFOs
to build L *-programs. We want this new set to have a strong algebraic
structure; as it turns out the following three PFOs for L * have such a
structure (we describe for each one the program it constructs in terms of its
argument-programs):

composition builds the program p 0 q from programs p and q, where

p 0 q:x=p:(q:x) for all L*-objects x,.

condition builds the program p-+q;r from the programs p, q and r,
where

(p-q:r):x=q:x ifp:x='true',

= r:x if p:x= 'false',

= undefined otherwise.

for all L *-objects x.
construction builds the program [pi, .. ,,Pnl from programs p 1, ... ,pn,

where

[Pi, ... , Pnl :x= (p,: x, ... , Pn :x) for all L *-objects x.

152 J. Backus

Composition is essentially the same as the PFO used in L except for its
domain, notation, and the order of its arguments. Condition is slightly
different from the if-then-else of L in that all three arguments are L *

programs; this difference improves its algebraic relationship to
composition. Construction is entirely new; in fact, it cannot be used in L
since the mapping it builds from L-programs would map a store into a
sequence of stores, and a sequence of stores is never a store, hence this
mapping cannot be an L-program and construction cannot be used to build
L-programs.

A fourth program-forming operation that is essential in L * is 'constant',
one that is different in that it builds a program from an object.

constant builds the program x from the object x, where

x:y=x forallL*-objectsy.

The reader may wonder at this point why there is no PFO in L *
analogous to while-do. Of course we could introduce one without
difficulty. But the three principal PFOs above have a strong algebraic
structure whereas there are no strong algebraic laws relating while-do to
these (other than the function level defining equation for while-do, which
relates it to composition and condition, a 'weak' law). Furthermore, the
algebraic structure of the principal PFOs allows us to formally solve and
reason about a much larger class of recursive equations than the class of
tail recursive ones for which while-do represents solutions (see [3,22] for a
discussion of such formal solutions).

Since recursive equations comprise a more powerful and expressive way
of defining programs than while-do, we shall allow them as program
definitions in L *; thus we have no need for while-do and can retain the
strong algebraic structure of the PFOs of L *.

One of the major benefits of the L * approach is that one can use a great
many operations for building programs in L *. Their analogues can be used
in L only to build object-forming operations, operations that are then used
to build L-expressions. Adopting this approach introduces a fourth plane
into the structure of L-programs: (1) build object-forming operations from
elementary ones using 'operation-forming operations', (2) build
expressions from object-forming operations, (3) build assignments from
variables and expressions, and (4) build programs from assignments with
PFOs. This structure is found in APL [11].

A few other PFOs we might use in L * are the following.

The wrong fundamental concept?

insert builds / p from p, where

lp:(x1)=X1,

Ip: <x1,X2,···,Xn) =p: <x1, Ip: (X2, ... ,Xn));

apply-to-all builds ap from p, where

fetch builds ix from the object x where

ix: s = contents of cell x in store s for any store s:

store builds lx from object x where

lx: (y,s) =s'

where s' is s with contents of cell x now equal y.

3.9. L*-images of L-expressions and L-programs

153

By the 'image' p in L * of an L-program or an L-expression p we mean
the L *-program j5 such that p: s = p: s for all L-stores s; we shall not be
concerned whether pis minimal, i.e., undefined for all non-stores. Because
of the defects of L-programs, their images in L * are perhaps the least
interesting and least useful programs in L *. But it may be of interest to
some readers, as an exercise in programming in L *, to see how expressions
and programs of L can be built (as programs) in L * using its different set of
PFOs. (This section is not essential to understanding later ones and may be
skipped.)

3.9. l. Elementary L-expressions. We illustrate images by examples and
consider the L *-images of the two kinds of elementary L-expressions, that
of the L-object 3 and that of the L-variable v. The L *-image of 3 is 3"; if we
take v to be an L *-object, then the L *-image of v is iv. To back up this
claim we must show that each entity and its image is, one in L and the other
in L*, the same mapping of stores into objects:

3:s=3 in L,

3 :s= 3 in L*,

v: s = contents of cell v of s in L,

iv: s = contents of cell v of s in L * (see the PFO fetch).

154 J. Backus

3.9.2. Composite L-expressions. If a and bare L-expressions and a and b
are their L *-images, then + 0 [a, bJ is the L *-image of the L-expression
a+eb; sqrt 0 a is the image of sqrte(a), since, for all stores s:

(a+eb):s=a:s+b:s in L,

+ 0 [a,b]:s= +:(ii:s,fi:s)=a:s+b:s inL*,

sqrte(a):s=sqrt (a:s) in L,

sqrt 0 a:s=sqrt:(fi:s)=sqrt(a:s) in L*.

3.9.3. Elementary £-programs (assignments). The L*-image of v:=e is
lv 0 [e, id], where e is the image of e and id is the identity function:

(v:=e):s=s' in L, where contents of cell v ins' is e:s.

lv 0 [e,id]:s=lv:(e:s,s)=s' in L*, wheres' is the same as
above, since e:s=e:s (see PFO 'store').

3.9.4. Composite L-programs. The L*-image of p;q in Lis {j 0fi. The L*
image of if b then p else q is b-+ fi; {j. The L *-image of while b do p is the
solution f of the equation

J= b-+f 0fi; id.

(To apply fas defined above to any object, apply the right side.) I leave it
to the interested reader to verify that these L *-images represent the same
store-to-store mappings as the original L-programs.

3.10. The algebraic structure of the PFOs of L * and L

The principal three PFOs of L * have a strong algebraic structure as
shown by the following 'strong' laws that relate each pair (with two laws
for one of the pairs). For all programs p, J~ g, h, Ji,... the following
function level identities hold:

Composition and condition

fo(p-.g; h) =p-+fog;

(p->g; h) of =pof-+gof; h of. (2)

The wrong fundamental concept? 155

Composition and construction

(3)

Construction and condition

[· •• (p---+g; h)· • ·] = p---+ [· •• g· • •]; [·· • h •• ·]. (4)

(4) holds either in the domain for which pis boolean -valued or always if
the sequence constructor is strict.

Each of the above laws relates two PFOs, call them A and B, where each
law expresses a program built by A (involving a program built by B) as an
equivalent program built by B (involving programs built by A).

Many other algebraic laws hold in L *, some relating other PFOs to the
principal ones and each other, and others that involve primitive L*
programs. But most of these laws are less symmetric, 'weaker' than those
above. For example, the law relating the PFOs insert, composition and
construction.

is a 'function level' version of the second part of the object level
description of If given earlier under the PFO insert.

Since any abstract L*-program can be represented by programs built
from suitable primitive programs by the three principal PFOs and recursive
equations, the strength of their algebraic structure indicates that there
should be a lot of strong general theorems involving these PFOs whose
universally quantified variables range over L*-programs.

Now consider the PFOs of L. They satisfy only one symmetric law,
which relates composition and if-then-else:

(if b thenp else g);r=if b then (p;r) else (q;r).

This is the analogue of (1); the analogue of (2) fails because one cannot
compose a program and an expression to form an expression (even if this is
allowed there are other complications). There are no symmetric laws
relating while-do with either composition or if-then-else (the function level
definition of while-do is a 'weak' law that relates all three PFOs of L).

The weak algebraic structure of the PFOs of L is consistent with the
existence of few general theorems about the programs of L; instead we
tend to find theorems about particular programs (' 'my program is

156 J. Backus

correct") or small classes of programs ("this program, where o is any
associative operation, is equivalent to that one"). One can (and should) ask
whether there are better sets of PFOs for building £-programs. The answer
is unclear; at this point all we can say is that construction, which relates
well to composition and condition (which is close to if-then-else) to form a
strongly algebraic triad, cannot be used as a PFO for any programs that
have 'stores' as their domain. Since it is hard to do without the PFOs for
composition and condition, or something similar, this does not bode well
for finding PFOs for L with a good algebraic structure.

Not only does L * have a strong algebraic structure in its major PFOs but
also it has, as noted above, weaker laws relating these to lesser PFOs such
as insert and apply-to-all, and to primitive £*-programs, such as those that
select the nth element of a sequence or rearrange various data structures.
These lesser PFOs and primitive L *-programs could only be used within
expressions of L, therefore theorems relating all of these elements would be
blocked in L by the barrier between programs and expressions. In L*, on
the other hand, we can expect to obtain theorems that interrelate both
major elements of a program-scheme (corresponding to the program plane
in L) and minor elements (corresponding to the expression plane in L),
since all these are programs in L * and are all put together by PFOs that are
related by algebraic laws, either weak or strong.

4. Comparison of Land L*

4.1. Problem domains and program domains

We noted earlier that £-programs never solve problems directly since
they are store-to-store mappings and real problems require other kinds of
mappings. Provided the data types of a problem are in the set of L *
objects, there is an L*-program that is a rather direct solution. Thus there
are L *-programs for square root, matrix inversion and file updating that do
not require storage plans to be useable, programs that map numbers into
their square roots, matrices into their inverses, and so on.

4.2. Composition of programs

Again we observed earlier that in L the composition p; q of two
independent programs has little chance of achieving a meaningful program

The wrong fundamental concept? 157

that represents the composite purpose of p and q. Thus if the purpose of p

is to transform A's into B's, and that of q is to transform B's into C's,
then p; q will almost certainly not transform A's into C's unless p and q
have a common storage plan.

On the other hand, if p and q are L*-programs for the same purposes,
then the results of p will be B's, as will the arguments of q, and q 0p is an
L*-program to map A's into C's.

4.3. Relationship between a composite program and its subprograms

We have observed that composition cannot assemble independent
programs in L into a meaningful composite program. That observation
applies equally well to the other two PFOs of L, if-then-else and while-do.
If we wish to use if-then-else to build a program from expression b and
programs p and q, then p and q must, in most cases, use corresponding
input and output cells, otherwise the composite program is likely to be
meaningless. Thus again p and q must have a common storage plan.

In contrast, in L * the PFO condition easily assembles appropriate
independent programs into a meaningful composite. For example, if b tests
whether its argument is an A or a B, and p maps A's into C's and q maps
B's into C's, then b-+p;q is a program that maps A UB into Cina way
that is evident from its structure.

Again in the case of the program while b do p the expression b and the
program p must have a common storage plan for the composite to be
meaningful. The recursive definition in L * corresponding to while-do can,
like the other PFOs of L*, easily combine its constituent programs into a
meaningful composite.

The PFOs of L * that are not in L also have this important ability to
create meaningful programs from existing, independent programs. Thus,
for example, from programs p, q and r, all defined on the domain A, the
PFO construction builds the program [p, q, r] that maps A into Bx C x D,
where B, C, D are the ranges of p, q, r.

It is important to note that the inability of the PFOs of L to assemble
independent programs into meaningful new ones comes from the choice of
'stores' as the domain for its programs and the barrier this poses between
the purpose of a program and what it actually does: map stores into stores.
In L *, on the other hand, there is no such barrier; if the purpose of a
program is to map A's into B's, then that is what it does. (Within L* there
are 'Von Neumann programs' that map stores into stores, but we do not
have to use them.)

158 J. Backus

The most important property of any system of programming is its ability
to build new programs from existing ones at any level. The lack of this
ability is the primary weakness of L and the Von Neumann concept of
'program'; having this ability is one of the primary strengths of the L *
concept of 'program'.

4.4. Complexity of program structure and of language structure

It is obvious that £*-programs have a much simpler structure than£
programs. The latter have a three-plane structure (expressions, assignments
- the interface between expressions and programs, and programs), each
plane having its own entity-forming operation(s). (The structure of real
Von Neumann programs is generally more complex than those of L and
their domain is usually more complex than 'stores'.)

L *-programs have a one-plane structure; they are built from primitive
ones by PFOs.

The term 'structured programming language' is often applied to
languages with PFOs like those of L in which the use of GOTOs is
restricted (if it is not, it is hard to define the effect of PFOs). This use of the
term is trivial and misleading: if programs are built by any PFOs at all,
then they are 'structured' by those PFOs, the only 'non-structured'
programs being those that are not built exclusively by well-defined PFOs.
But the fact that a language uses PFOs to build programs does not mean
that the language is structured, only its programs are.

If programs are 'structured' by the way they are built by PFOs, then
what is a reasonable notion of 'structure' for a language? Since the PFOs
of a language are one of its principal elements and since PFOs may be
'structured' by their interrelating algebraic laws, I propose that a
programming language should be considered 'structured' to the extent that
its PFOs have an algebraic structure. In this sense L and other Von
Neumann languages are very weakly structured, whereas the language L * is
strongly structured.

4.5. The relationship between languages and machines, serial versus
parallel

As outlined earlier, ·languages like L evolved from the Von Neumann
computer and its machine language; this is the basic reason behind the
choice of 'stores' as the domain for its programs. Therefore there is a

The wrong fundamental concept? 159

relatively small 'distance' between L-programs and machine programs.
Hence it is relatively easy to (a) convert one into the other. (b) project a
notion of efficiency from one to the other, and (c) retain the efficiency of
one in converting it into the other. But, like their machine counterparts, L
programs are hard to transform, to optimize, and to reason about.

The 'distance' between L*-programs and Von Neumann machine
programs is relatively large and therefore it is more difficult to convert
one to the other, and (b) project notions of efficiency onto L *-programs.

The symbiosis between conventional programs and Von Neumann
machine architecture, in which each needs the other, has kept the concepts
of 'program' and 'computer' all too static over the last 30 years. Originally
the Von Neumann concept of machine design was an elegant and beautiful
one that matched, in a design of great economy, the economics of circuitry
and the object level ideas about programming that where then current.
Those basic circuit economics persisted over several generations of new
circuitry, so there was little pressure for radical changes in machine design.
Now, however, VLSI circuitry has changed those economics and the Von
Neumann designs does not seem able to exploit the new economics nearly
as well as it did the old.

At the same time, VLSI is making computers so cheap that programming
costs are becoming far greater than equipment costs. Ever larger and more
complicated Von Neumann languages have been produced in response to
the resulting pressure to reduce programming costs, but they have not
succeeded in making a satisfactory reduction.

Thus there are twin pressures to find radical new designs that exploit
VLSI better and to find radical new languages that reduce the cost of
programming so that cheap machines can be cheaply and conveniently
programmed. It may be that non-Von Neumann languages such as L* and
others can offer some help in both areas.

There is now a race underway to find new architectures to exploit VLSI
to the full. One of the main concerns is to achieve a high degree of parallel
operation and to do so without paying the penalty (paid by some earlier
parallel designs) of greatly increasing the already soaring costs of
programming. On the contrary, it is vital to reduce programming costs
drastically while at the same time exploiting VLSI. This will require finding
parallel designs that are relatively 'close' to new non-Von Neumann
concepts of 'program' that appear to offer greater programming power.

Therefore many machine designers are studying non-Von Neumann

160 J. Backus

languages and attempting to find designs that correspond, that minimize
the 'distance' between their design and their chosen language model. Some
are looking at 'object level' functional languages, such as LISP, others at
'function level' ones, such as FP [2] or L* (plus other language models that
are hard to classify). (Here is a small sample of papers on representative
machine designs: [1,7,8,10,12,15].)

The resulting machine designs vary widely and, until their economics are
better understood, we can only wait to see what their cost-performance
turns out to be and what the 'distance' is between each design and the
various concepts of 'program'. (Of course that 'distance' is short for some
designs built around specific languages, e.g., the 'Scheme-79' machine and
the Scheme variant of LISP [10], Mago's machine and FP.)

One of the principal challenges in designing machines based on any of
the non-Von Neumann languages is to find economical machine techniques
to store, manage and operate on data having a hierarchical structure (such
as lists or sequences). Another challenge in designing machines based on
function level languages like L * is to implement a variety of PFOs in
hardware, thereby making the machine language 'higher level' in some
sense than today's 'higher level languages', and thereby helping to make
programs for such machines easier and cheaper to produce.

In the effort to find machine designs for parallel operation, languages
like L are poor guides. Basically this is because all of its PFOs combine
programs in a serial fashion, and having 'stores' as the domain for
programs greatly complicates the problems of introducing parallel PFOs.
In contrast, the one PFO of L * that cannot be used in L, construction, is
the one that combines L *-programs in parallel. Thus [p, q, r] is a program
all of whose subprograms, p, q, and r, can be applied in parallel to its
argument. Other PFOs can be used in L * that introduce parallel
operations, such as 'tree', which serves the same purpose as 'insert' [24].
Thus L * allows a programmer to naturally express parallel operation where
that is called for.

4.6. Object level and function level programs

The essence of an object level definition of a function or program is the
description, for every possible set of input objects, of how to build a
succession of objects (by applying given object-forming operations or
given programs) until the desired result-objects have been constructed. But

The wrong fundamental concept? 161

what are the 'ingredients' from which we build some desired program?
They are not the objects we construct in an object level definition. They are
in fact the object-forming operations and programs we use in laboriously
building the succession of objects that culminates in the 'results'.

In contrast, the function level approach to defining a program is to build
it directly from the given 'ingredients', the given operations and programs
that must be used in either an object level or a function level definition.
Instead of applying the given operations to objects, a function level
definition applies functionals (PFOs) to the given operations; instead of
building a succession of objects to obtain the 'result-objects', it builds a
succession of programs to produce the desired program.

For example, consider the problem of defining a program that
transforms x into sqrt(x) + square(x), given the object-forming operations
(in L) or programs (in L *) for + , sqrt, and square. A program in L is

y := sqrt(x) + square(x). (1)

If this object level program is applied to a stores in which the input number
is in cell x, then the result is a store s' in which the result is in cell y. The
expression on the right causes sqrt and square to be applied to the number
x :s, giving two intermediate objects that are added to form the result
object.

The corresponding L *-program is

+ 0 [sqrt, square]. (2)

This program maps numbers directly into the desired result. When it is
used it will construct the same intermediate and final results that (1) does:

+ 0 [sqrt, square] :x= +: (sqrt:x, square:x).

But (1) and (2) differ in that (1) applies sqrt and square to the ('abstract')
object x., giving two objects, whereas (2) applies the functional 'construc
tion' to the programs sqrt and square, giving a program, [sqrt, square],
and so on.

While L-programs focus on combining objects, L *-programs focus on
combining programs. Thus L-programs draw attention to object-forming
operations whereas L*-programs draw attention to PFOs. The algebraic
properties of object-forming operations are the basis for general theorems
about objects, whereas the algebraic properties of PFOs are the basis for
general theorems about programs.

162 J. Backus

Thus if we want to have a concept of 'program' in which the set of
programs themselves, together with some set of PFOs, form an elegant
mathematical space for which there are strong, interesting theorems, then
it behooves us to pursue a function level approach to the concept of
'program', the approach that is founded on just this viewpoint.

5. Conclusions

Powerful forces now threaten the Von Neumann concept of 'program':
The ever greater need to reduce programming costs and the continuing
failure of ever more gigantic Von Neumann languages to bring about
significant reductions. The drive to find non-Von Neumann architectures
that better exploit VLSI. These forces will continue to grow.

It is unclear what new concept of 'program' will emerge in response to
these forces, but I think it will become increasingly clear that the answer to
the question in the title of this paper is 'yes', that we, computer scientists,
need to work hard to develop a new concept of 'program'. And if we are to
succeed we need to be aware of and free ourselves from the psychological
barriers, the ancient traditions of language that keep us trying to modify
the Von Neumann concept based on 'stores' rather than develop something
new.

The new concept of 'program' that finally is developed may not turn out
to be of the function level kind that I have tried to sketch by describing L *,
but I believe the L * approach does at least bring out several properties that
will be important in any new concept of 'program'. First, and of the most
practical and immediate importance, is the ability to combine independent
programs to form new, meaningful programs at all levels, and to use a rich
set of operations in doing so. This essential element of programming power
is just the property that the Von Neumann concept of 'program' lacks, and
it is the one that the L * approach is designed to provide.

But perhaps the most important property for the success of the new
concept is that it should make possible an elegant and powerful
mathematics of 'programs'. Just as numbers, under the operations of
addition and multiplication, form a mathematical system called a ring, so
should 'programs', under their program-forming operations, form a
mathematical system of a similar kind. Just as there are hundreds of
important theorems about numbers and about the solutions of equations in

The wrong fundamental concept? 163

the ring of numbers, so there should be hundreds of important theorems
about 'programs' and about the solutions of equations in the mathematical
system of 'programs'. Just as theorems about numbers and their equations
represent a great body of deep understanding and knowledge that saves an
immense amount of work for mathematicians, so should theorems about
the mathematical system of 'programs' contain a deep understanding going
far beyond what has already been achieved, and save programmers an
immense amount of work.

The Von Neumann concept of 'program' has not given us a powerful
mathematics of its programs with a large body of useful general theorems.
The best mathematicians and logicians in computer science still struggle
hard to prove (often from first principles) that one single program does
what is claimed for it. Often they find it necessary to use elaborate
programs to help them. One has only to look at the voluminous formal
description of any Von Neumann language to realize that its programs do
not form a system one can regard as 'mathematical' any more than one can
regard a system with many pages of axioms as a useful mathematical one.

I believe that the fundamental reason behind the scarcity of general
theorems about conventional programs is the lack of algebraic structure of
their program-forming operations. The mutual properties of their PFOs
probably guarantee the non-existence of such theorems, just as the mutual
properties of addition and square root probably guarantee the lack of
interesting general theorems about a system of numbers having only these
two operations. But whatever the underlying reasons, it seems time to
abandon hope that the Von Neumann concept of 'program' can be the
basis of a mathematical system of programs, since 20 years of effort by the
best computer scientists have failed to produce the body of general
theorems that one expects of such a system.

The work to discover general theorems about function level 'programs'
of the sort belonging to L * has just begun, thus it is too early to predict
whether it can produce a large number of theorems, some of which are of
general practical importance and others, perhaps, which provide new
fundamental insights. But at least the outlook is brighter, since we begin
with PFOs having a strong algebraic structure and have the possibility of
discovering others that may strengthen it further. The laws relating the
principal PFOs of L * are themselves already useful and very general
identities and from them a small number of general theorems have been
obtained [2,3,13,22].

164 J. Backus

The kind of mathematical system represented by L * is somewhat new in
having a relatively large number of operations (PFOs) on a single domain
(of L*-programs) and an even larger number of laws relating these
operations. I believe this may turn out to be an exciting new area for study,
a relatively unexplored one that invites adjustment, exploration and classi
fication by mathematicians. I believe it is such studies that give the best
hope for a mathematics of 'programs', one that can guide us toward the
rapid development of a program by using its accumulated knowledge and
one that will provide the general tools for concisely proving a program
correct and for optimizing it.

Acknowledgements

I am grateful to Steven S. Muchnick for his careful and thoughtful
review of an earlier draft of this paper. I owe thanks also to John H.
Williams for many helpful discussions on various topic covered in the
paper.

References

[I] Arvind, K.P. Gostelow and W. Plouffe. An asynchronous programming language and
computing machine, Univ. of calif. (Irvine) Report, Dept. of Information and Computer
Science (1978).

[2] J. Backus, Can programming be liberated from the Von Neumann style? A functional
style and its algebra of programs, Comm. ACM 21 (8) (1978).

[3] J. Backus, The algebra of functional programs: function level reasoning, linear
equations, and extended definitions, Proc. Int. Colloq. on Formalization of
Programming Concepts, Peniscola, Spain (April}, Lecture Notes in Computer Science,
Vol. 107 (Springer-Verlag, Heidelberg, 1981).

[4] J. Backus, Function level programs as mathematical objects, Proc. Conf. on Functional
Programming Languages and Computer Architecture, Portsmouth, N.H. (1981).

[5] R. Burstall and J.A. Goguen, The Semantics of CLEAR, A Specification Language,
Lecture Notes in Computer Science, Vol. 86 (Springer-Verlag, Heidelberg, 1980).

[6] A. Church, The Calculi of Lambda-Conversion (Princeton Univ. Press, Princeton, NJ,
1941).

[7] J. Darlington and M. Reeve, ALICE: A multi-processor reduction machine for parallel
evaluation of applicative languages, Proc. Conf. on Functional Languages and
Computer Architecture, Portsmouth, N.H. (1981).

[8] J.B. Dennis, C.K.C. Leung and D.P. Misunas, A highly parallel processor using a data

The wrong fundamental concept? 165

flow machine language, CSG Memo 134-1, Laboratory for Computer Science, MIT,
Cambridge, MA (1974).

[9! J.V. Guttag and J.J. Horning, The algebraic specification of abstract data types, Acta
lnformat. 10 {1978).

[10] J. Holloway, G.L. Steele, G.J. Sussman and A. Bell, The SCHEME-79 chip, Al Memo
No. 559, Artificial Intelligence Laboratory, MIT, Cambridge, MA (1980).

[11] K.E. Iverson, A Programming Language (Wiley, New York, 1962).
[12] R.M. Keller, G. Lindstrom and S. Patil, An architecture for a loosely-coupled parallel

processor, TR UUCS-78-105, Dept. of Computer Science, Univ. of Utah, Salt Lake
City, UT (1978).

[13] R. Kieburtz and J. Shultis, Transformation of FP program schemes, Proc. Conf. on
Functional Programming Languages and Computer Architecture, Portsmouth, N.H.
(1981).

[14] P.J. Landin, The next 700 programming languages, Comm. ACM 9 (3) (1966).
[15] G.A. Mago, A network of microprocessors to execute reduction languages, Int. J.

Comput. Informat. Sci. 8 (5 and 6) (l 979).
[16] R.E. Milne and C. Strachey, A Theory of Programming Language Semantics (Chapman

and Hall, London; Wiley, New York, 1976).
[17] J.C. Reynolds, GEDANKEN - A simple typeless language based on the principle of

completeness and the reference concept, Comm. ACM 13 (5) (1970).
[18] D.S. Scott and C. Strachey, Toward a mathematical semantics for computer languages,

Techn. Monograph PRG-6, Univ. of Oxford (1971).
[19] J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory (MIT Press, Cambridge, MA, 1977).
[20] R.D. Tennent, The denotational semantics of programming languages, Comm. ACM 19

(8) (1976).

[21] J.W. Thatcher, E.G. Wagner and J.B. Wright, Data type specification:
parameterization and the power of specification techniques, Proc. Tenth Annu. ACM
Symp. on Theory of Computing (1978). New York (1978).

[22] J .H. Williams, On the development of the algebra of functional programs, Techn.
Report RJ2983, IBM Research Laboratory, San Jose (1980).

[23] J .H. Williams, Notes on the FP style of functional programming, Lecture notes for the
course "Functional Programming and its Aplications", Univ. of Newcastle upon Tyne
(1981).

[24] S.N. Zill es, An Introduction to Data Algebras, Lecture Notes in Computer Science, Vol.
86 (Springer-Verlag, Heidelberg, 1979).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 167-184

Issues in the Design of a Beginners' Programming
Language

Lambert Meertens

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Some problems are related that have been encountered in the design of a
programming language for beginners. The solutions were sometimes unex
pected, and required doing away with preconceptions. The use of systematic
methods has been of some help.

1. Introduction

Of the commonly available algorithmic languages, some are definitely
better suited to convey the algorithmic thoughts of the programmer than
others. Whatever the preferred point of view, be it structured program
ming, provability of correctness or the expressibility of abstraction, some
languages stand out for their excellence, some for their abomination.

The latter should not worry us for languages in disuse. It should, for
languages used widely. The relatively abominable FORTRAN, though far
from dead, seems on its way out. Reasonable alternatives for FORTRAN

exist. That absolute champion, BASIC, however, is steadily marching on.
Moreover, BASIC has it attractive points, from the viewpoint of the casual,
non-professional user.

An attempt is under way to redress that situation, by issuing a rival
language, provisionally referred to as 'B' (no relation to the precursor of
C; the 'B' is only a language-name name referring to the yet unknown
language name). For a language to beat a rival, more is involved than
language issues. The example of FORTRAN more than goes to show this
point. This paper will be restricted, however, to linguistic points. It is not
intended as an introduction to B, but as an exposition of some of the
choices and problems encountered in the process of designing an algor
ithmic language. The attempt has been to base the solutions, in a rational
way, on the design objectives.

167

168 L. Meertens

Bis designed as the limit of a sequence: B0 , Bi, The most recent ap
proximation, B2, is the joint effort of Robert Dewar of the Courant Insti
tute of Mathematical Sciences, New York University, Leo Geurts of the
Mathematical Centre, and the author. Contributions have been made by
Peter King of the University of Manitoba, Jack Schwartz of the Courant
Institute, and Dick Grune and Paul Klint of the Mathematical Centre. The
responsibility for the opinions expressed is solely that of the author.

2. The Design Objectives for B

The idea underlying the design objectives for B are: beat the enemy at its
strong points. The same idea has governed the design of ELAN [5]. There is
one important difference: ELAN aims primarily at the 'market' of
(introductory) education in computer science, whereas B aims first of all at
personal computing. The latter has not always been the case. The first
approximation of B (see [3]) was designed when personal computing was in
its infancy. Although the design objectives themselves have remained the
same, their impact on the design has changed quite drastically.

The design objectives for B are:
- simplicity;
- suitability for conversational use;
- inclusion of structured-programming tools.

These objectives are elaborated upon in [3]. The change referred to
above is mostly concerned with the objective of simplicity. In [3], this is
interpreted as simplicity not only for the user, but also for the
implementer. It is stated that "B should be implementable on small mini
computers".

The latter reflects our awareness, at the time, of the onset and future
importance of personal computing. At the same time, it reveals a lack of
perception of the torrent of hardware evolution. Tomorrow's hand-held
computers are yesterday's main-frames. Designing a language to run
smoothly on eight bit SK machines is designing for the past. In designing
B2, it was decided to ignore implementation issues completely. Not that we
do not care about implementation complexity; for the time being we have
merely disregarded the feelings of prospective implementers and concen
trated on the happiness of the user. Once sufficient implementation experi
ence is available, it may be decided to revise features that pose undue

Beginners' programming language 169

implementation problems in exchange for little or no gain in language
appeal. The impact of ALGOL 68R on the revision of ALGOL 68 reveals that
this may even help to improve the language from the user's point of view.

3. The Types of B2

In B0 and B1, the types were INT, REAL. STRING and 'RANGE' types
(similar to the scalar types of PASCAL), and ARRAYs of scalar elements
indexed by a compound of RANGE values (but without the PASCAL
restriction of compile-time fixed bounds). The type system had not really
been given much thought, and was the first thing tackled again in the
design of B2.

The type system of B2 has been designed in a new way that is, in itself, of
interest. If a sufficiently powerful collection of types is available (where
'type' includes type constructors as 'array'), any desired type (e.g., deque,
or ternary tree) can be 'simulated' or implemented by the user. The type
could also be added as a 'standard' type to the language. This may increase
the ease of use of the language. Not all types, however, are equally helpful
in this respect. Moreover, the language is made more complex, and
possibly much so. A type system is competitive only if it is better than each
other type system in at least one respect (ease of use, simplicity).

So we compiled a list of candidate types (including, e.g., bag, deque,
enumerated types, map, multi-valued map, queue, sequence, set, stack and
tree), constructed various schemes for implementing these types in terms of
other types, and assigned numerical values for (relative) algorithmic
importance and learning complexity of each type and for implementation
complexity of each scheme. The values took into account, of course, that
the user we have in mind is not a computer scientist. This made it possible,
with the assistance of a program, to weed out the non-competitive type
systems from the rather large powerset of the candidate types. The result
ing list of competitive systems was quite small, and it was easy, using old
fashioned human taste, to settle on one for use in B2 .

If B1 might be called ALGOL 60 in BASIC-like disguise (the abstract of [3]
reads: "FORTRAN: ALGOL 60 = PL/I :ALGOL 68 =BASIC:?"), B2 came out
like SETL [1] in sheep's clothing. The result is that the types of B2 are
'number', 'text', 'compound', 'list' and 'table'.

Numbers come in two kinds, 'exact' (i.e., rational) and 'approximate'

170 L. Meertens

(i.e., floating point). The distinction is made at run time. This choice
attempts to combine the following desiderata:

(a) The user must be allowed control over quantities that should not be
subject to rounding errors. (The choice for rational numbers, rather than
integers, is mainly a nicety. But there is some obvious advantage in having,
e.g., 1.25, represent an exact number.)

(b) The user should have no need to worry about the distinction if it is
not important. (E.g., adding exact and approximate numbers is allowed.)

(c) The language has strong typing.
(d) Coercions, i.e., automatic implicit type conversions, are deemed

undesirable.
(e} Approximateness propagates upwards in evaluating arithmetic ex

pressions.
(This list is not really exhaustive. It implies, among others, the presup

position that there should be some built-in treatment of approximate
numbers.)

The approach taken satisfies these five desiderata almost perfectly.
Almost ... ; in conformance with Murphy's Eighth Law, there is one ugly
snag. If xis approximate, xix does not equal 1. For approximateness pro
pagates, and the approximate number xix cannot be equal to the exact
number 1. It is, presumably, equal to the approximate number -1.

In fact, no proper solution satisfying the desiderata (a) through (e)
exists. As soon as one of these is lifted, a full solution becomes possible.
The fact that 1 does not equal ~1 is a violation of (b): sometimes the user
does have to worry. We choose this solution because we felt that the user
should be careful anyway when comparing approximate numbers and has
no business to expect exact answers. Moreover, it is still possible to define
the comparison 1 = ~ 1 to succeed, even though the values are not 'identi
cal'. The solution of allowing one coercion, from exact to approximate
numbers (and coercions in its wake on composite values), is still under con
sideration.

Texts are quite ordinary strings. (The term 'text', instead of the esoteric
'string', was taken from [5] .) No character values are provided; a text of
length one will do. Two subtext operators are available. If the value oft is
the sequence of characters c1, ... ,cm then the expression t@p, with
ls ps n + 1, stands for cP' ... , cn and the value oft J q, with O sq sn, is
c1, ... , Cq. A common combination will be t@p J q. If t I q't@(q + 1) is
defined c·• is concatenation), its value is t.

Beginners' programming language 171

These subtext operators may also be applied to text variables in target
('l.h.s.') positions. The replacing text need not have the same length as the
text replaced.

Compounds (tuples) are like structured values ('records'), but without
tags for selecting the fields. If, e.g., u and v are variables, then u,v may be
used in a target position. This allows decomposition of compounds.

Lists exist for values of any type (e.g., list of list of text). A list is simply
a multi-set, or bag. In an algorithmic context, given the choice between sets
and multi-sets, the latter are more useful. Having both is unnecessarily
complex, and even a potential source of confusion. Since we do not expect
the user to be familiar with the concept of a multi-set, the semantics are
explained in terms of ordered lists. A consequence is that a total ordering
has to be defined on the values of any given type. This can be done in a
reasonably natural way.

Tables are like SETL maps: generalized arrays whose domain is variable
and not necessarily a range of consecutive values. In contrast to SETL,

tables are a genuine type, not a syntactic sugaring for interpreting a set of
pairs as a map. In particular, a table cannot be a 'multi-valued' map.

Originally, there were many restrictions in this type system. For
example, the elements of a compound, list or table could only be numbers
or texts. Table keys (indices) were numbers, texts or compounds.
Especially the compounds had a special status. Although we thought we
had good reasons for these restrictions (at the time the decision to ignore
the ease of implementation had not been fully mentally digested), one by
one better reasons appeared to relax these constraints. At first, the
relaxations tended to make the complexity worse, until we took the step
that, in hindsight, seems so obvious: the type system was made completely
orthogonal: tables may be indexed with tables, and so on. (This decision
nevertheless required reworking most of the provisional language defini
tion.)

As the type system stands now, we are quite pleased by it. The types
appear in some way to span together the space of needs, as was the purpose
of the exercise. A carefully tamed 'free' type was at some time included,
but abandoned later on.

4. Command Syntax

Commands (statements) in B are rather wordy. Each command begins

172 L. Meertens

with a keyword, and keywords are also used to separate the parameters of a
command. For example, the following is an assignment command:

PUTa+1INa.

The philosophy behind this approach is given in [3]. An obvious draw
back of verbose syntax is that the user has to key in so many symbols.
However, as is already stated in [3], the language is embedded in a system
that is dedicated to B. In particular, the editor knows the syntax of B. If
this is combined with screen-editing facilities, it is possible to reduce the
number of key strokes drastically. As soon as the editor knows (or maybe
guesses) that a PUT command is intended, it may already display the IN
and position the cursor at the first parameter.

In [4] it is remarked that the keyword approach makes it possible to have
user-defined commands. This option has indeed been chosen for B2 . Such
command definitions take the role of procedures. For example, the user
may define

HOW'TO INCR x: PUT x+1 IN x

and next use this INCR command as though it had been part of the
language all of the time.

Since programs are entered through a B-dedicated editor, it is realistic to
consider program lay-out as an integral part of the syntax. In particular,
indentation is used to indicate grouping of commands. Although this was
already so in [3], it took us quite some time to disengage ourselves
completely from the idea that programs are prepared on one system and
parsed by a second one that need not trust its input. The fact that there is
no distinction between editor and parser means that no special delimiters
like BEGIN and END are needed. That BEGIN was superfluous, we had
already realized; but this was true anyway. But for quite some time, we
required END lines, as in

FOR p IN feasible:
IF pin cand:

REMOVE p FROM cand
INSERT p IN chosen

END IF
END FOR
RETURN chosen, cand.

Beginners' programming language 173

But the lines with END are pure noise. Once one gets used to it, the
following is much more legible:

FOR p IN feasible:
IF pin cand:

REMOVE p FROM cand
INSERT p IN chosen

RETURN chosen, cand.

5. Strong Typing without Declarations

It has been clear from the beginning that B should have strong typing.
Not for efficiency reasons, but to aid the user in spotting silly errors as
soon as possible. It seemed to us that this calls for declarations revealing
the type of identifiers. (The FORTRAN 57 solution of restricting the choice
of identifiers for a given type is unacceptable, as is the addition of special
symbols as in BASIC.)

One of the attractive features of BASIC is the lack of declarations.
Therefore, without really believing in it, we have searched for a system that
allows strong typing without declarations. (The advantage of declarations
that they provide a redundancy protecting against typos can be taken over
by checks against the use of uninitialized variables and warnings for
assignment to dead variables.) In some languages with strong typing, it is
essential that the type of identifiers is revealed through a declaration. For
ALGOL 68, e.g., the value yielded by

(amode block= ("abc", "def");
2 upb block

)

is 3 if amode is [,] char, but I if amode is [, ,] char. But this is clearly a
peculiarity. In almost all cases one can reconstruct the types from the con
text in which identifiers are used.

This has led us to finding a system for B2 in which it is always possible to
reconstruct the type of identifiers from the context. This statement should
be slightly weakened in two respects.

The first is that it may be possible to assign types to the identifiers con
sistently in more than one way. This happens, for example, in

174 L. Meertens

PUT{} IN x
IF x= {}: WRITE 'yes'.

Here x could be an empty list of numbers, but it could equally well be an
empty list of texts or anything else, or, in fact, an empty table (assuming x
is not used otherwise). In such cases the net effect is always the same for
each type assignment, so we do not care. It also happens in

PUT a IN a,

if no other assignments to a are made. But then a is not initialized, which is
illegal by itself (and is checked statically).

The second is that commands defined with HOW'TO may be truly
generic. The definition

HOW'TO SWAP a AND b: PUT b, a IN a, b

will work for any type, as long as the two parameters have the same type.
So no type can be assigned to a and b. Instead, the requirement is that if
HOW'TOs are expanded as macros to an arbitrary depth, consistent type
assignment remains possible. This raises some hard questions, and unde
cidability is lurking around the corner [2, 6]. Nevertheless, for B2 this
appears to be decidable without undue restrictions. Only after the last
sentence was written down, did the author become aware of the work on
type polymorphism by Milner [10]. Although this is described for an ap
plicative language, it appears equally applicable for a language as B. In
fact, the situation is simpler there, since the items carrying a polymorphic
type are not treated as values in B.

There is one point where an unconventional step had to be taken to
uphold the system. If a value comes into being through an operation on
other values, it is sufficient if the result type is only dependent on the
operand types, which is the case in B2 . We may thus concentrate on the
spots where values appear directly. This can happen in two ways.

One is through a constant denotation (literal). This is no problem, since
constants in B2 immediately reveal their types, with one exception: for
empty lists or tables. This case has been treated above.

The other case is when a value is obtained through interactive input.
There is no a priori way to determine the type. Therefore, it is required that
the READ command reveal the type of the (expected) input. A first attempt
required the presence of a 'type specifier', where the size of the syntax for

Beginners' programming language 175

specifiers turned out not unsubstantial. This was not very satisfying; it
meant the user had to learn a lot of (relatively weird) syntax for this one
purpose. Luckily, we found another solution, made possible by the fact
that for each value an explicit notation can be given. The type is now
specified by providing a 'sample': an expression of the same type. So one
has to write, e.g.,

READ n, v EG 0, { "}

if n is a number variable and v is a list of texts. (The constant {} will not
do in this case.)

6. Formulas

Just like 'procedure calls' and 'commands' are unified in B2, so are
'function calls' and 'formulas'. A new operator or function is introduced
by a YIELD unit:

YIELD fac n:
PUT 1 IN f
FOR i IN {1 .. n}: PUT f*i IN f
RETURN f.

The compound mechanism gives a natural way to introduce more para
meters:

YIELD abs (x, y): RETURN sqrt(X*X+Y*YI.

The parentheses are only required since the formal parameter is an explicit
compound; the definition might also have run:

YIELD abs z:
PUT z IN x, y

RETURN sqrt(X*X+Y*V),

These two definitions are functionally completely equivalent.
For some reason or other, the priorities of operators are a trouble spot in

algorithmic languages. An extreme solution as in APL is not attractive; the
more so since B2 is not really expression-oriented. Anyway, it is unaccept
able if2*n + 1 really means 2*(n + 1) (although it certainly helps in making
the users feel they belong to an esoteric cult). The MABEL solution of re-

176 L. Meertens

quiring parentheses as soon as several operators are involved [7], combines
the virtues of simplicity and error resistance. Still, it seems a bit harsh to
require parenthesizing of 2*m*n.

The solution that has been adopted for B2 is to require parenthesizing
whenever the priorities are not established by standing convention and
might matter. This is achieved by not assigning simple priorities to
operators, but a priority interval instead. This interval represents a 'fuzzy'
priority. If the precedence decision is independent of the choice of
priorities from the intervals, the expression is acceptable. Otherwise,
parentheses must be inserted. User-defined operators are always assigned
the maximal interval.

Acceptable expressions are, e.g., m *n/d + c + 1, a - b + 1 and 2*sqrt x.
Unacceptable are a/2*b, a/2/b and sqrt 2*X, to give just a few examples.
Of course, the editor warns the user on the spot that parentheses must
resolve the ambiguity.

It was a bit surprising that such a simple device as priority intervals could
be tuned to give such reasonable results.

7. Generators

Lists are only useful if there is some easy way to step through them.
Originally, there were two ways for stepping through a list, one (OVER
alist) in the normal, and one (REVO alist) in reversed order (word play in
tended). The second form followed an idea from [9], and was connected to
the scalar type requirement for table domains in B0 . Once this requirement
is relaxed, the convenience of the additional form no longer justifies the
extra complexity.

The keyword OVER was changed to IN for B2. For example, the
command

FOR i IN a: INSERT i IN b

merges list a into b. This was done after it had already been decided to
allow quantified tests: the test

SOME i IN a HAS i<O

succeeds if a contains a negative element (and sets i to stand for the value
of the first such element, if any). Instead of SOME, also EACH and NO
are allowed.

Beginners' programming language 177

In B0, the domain of a table had to be defined as a RANGE type in order
to create the table. With a dynamic domain, this no longer applies. But
there should be some way for the user to go through a table domain. As a
first attempt, a domain operator was introduced: keys t (during some time
written []t) gives the list of keys i such that t[i] is defined. So we could
write:

FOR i IN keys t:

Switching to a seemingly unrelated topic, we wanted some simple but
powerful mechanism for text parsing. A first attempt was a 'FITS test' of
the form

with e a text expression, V; variables and t; tests. (The keyword FITS keeps
appearing and disappearing in the design of B, each time with a different
meaning.) The whole test succeeds if an assignment of texts to Vi, ... , vn is
possible, such that e = v 1 A ••• Av n and all of the tests t; succeed. If several
successful assignments were possible, the lexicographically first one would
be returned.

Now this would have filled an appreciable part of the syntax for one
specialized capability. Moreover, it was unlike anything else in the
language. Then we realized that we almost had the capability already there,
right under our hands. For the semantics were exactly those of

SOME V1, ... ,vn IN??? HAS lt1 AND ···AND tnl,

provided some suitable expression for the ??? could be substituted. This
expression should be a list of all compounds s1, ... , Sn such that
e=s1A· • •Asn. A provisional notation for this list was e/n (e divided inn
parts). This raises the problem that the type of e/n is dynamically
dependent on n, which is incompatible with strong typing. If the form were
only allowed in this context, the problem would disappear; in fact, the n is
then redundant, since there are exactly n bound variables.

This triggered the solution adopted now. It is illustrated by the following
example:

WHILE SOME h, s, t PARSING sent HAS s= ',':
INSERT h IN words
PUT t IN sent.

178 L. Meertens

If sent contains a comma, the parsing will be found that positions s at the
first comma (so h will not contain a comma). If sent does not con
tain a comma, the test fails. If sent originally held the text
'hickory,dickory,dock', the effect is that of

INSERT 'hickory' IN words
INSERT 'dickory' IN words
PUT 'dock' IN sent.

This is the most complicated feature in B2; it is, however, quite powerful.
Its semantics can be explained in already familiar terms. At the same time,
it takes away the nagging problem that a simple command as

PUT 'memory is becoming cheap' /24 IN m

threatens to blow up even gigabyte systems.
When OVER and REVO were originally introduced, and when they were

replaced by IN, we did not think of the construction as a generator. With
PARSING, we clearly have a generator. It is quite natural then to have a
generator INDEXING to go through all keys of a table. For example,

PUT0 IN s
FOR i INDEXING t: PUT s+ t[i] IN s

sums the elements of t.
Such a decision may seem simple. But it has many ramifications. One is

that the function keys should be abolished. Inspection of programs shows
that in practice it is never used in a command like

PUT keys t IN kt.

But the function is used in other ways, such as

PUT min keys t IN mt,

which finds the smallest key in the domain of t. The meaningful test

i in keys t

would also have to be replaced by some new notation. Instead, it was
decide to leave keys alone, not to introduce INDEXING, but to generalize
FOR ... IN ... to iterate also over the characters of a text and the elements
of a table. Summing the elements of a table may thus be written:

Beginners' programming language 179

PUTO IN s
FOR e IN t: PUT s+e IN t.

The same generalization applies, of course, to SOME ... IN ... , but also
to all functions and tests previously only defined on lists (such as min and
in).

8. The final composition

As has been clear from the exposition, composing a language is not
merely a matter of putting ingredients together and stirring till the result is
a smooth paste. It would be helpful to language designers, if some top
down design method existed for algorithmic languages. If such a method
exists, it has escaped our attention. The requirement for applying a method
as 'separation of concerns' is that the relevant concerns be separable. The
whole experience of language design points in a different direction: ap
parently innocent minor decisions may quite unexpectedly work major
havoc in seemingly unrelated corners. A well-composed language is one in
which the 'features', although orthogonal, lend themselves to easy com
bination in many natural modes of expressing algorithmic thought. This
means that the whole language is a tightly knit fabric, threatened by loose
ends.

The best aid to systematic language design, until now, is the paradigm of
orthogonality, that derives its name from the title of Van Wijngaarden's
[14), but whose essence can already be found in his [13). Experience shows
that its application requires skill, if not expertise. It is interesting to see that
the evolution of B has been in the direction of more orthogonality, mainly
by virtue of the quest for simplicity.

For part of the work in designing B2, a new systematic approach has
been used: the method described in Section 3 to select the type system. This
method is more widely applicable; it can be used, e.g., to find a proper
system of string operations from a large set of candidates. Work is in pro
gress to apply another systematic method for the final polishing of the
whole language.

The idea has been used before by the author in a composition exercise of
a different nature: composing a string quartet with traditional harmony
[8]. The same idea is applicable here. In its bare essence, it boils down to

180 L. Meertens

considering all combinations of all alternatives for the microscopic design
decisions. For each combination, a check list is inspected of potential unac
ceptable or undesirable consequences. For each transgression, a fine is
imposed. The combination that collects the minimal total fine, comes out
as the winner.

The method is, of course, NP-complete. In practice, however, it is
expected to be feasible with the aid of some heuristics, since many design
decisions form relatively independent small clusters. Still, this computa
tional complexity is indicative of how hard it is to design a language. The
example of the five reasonable desiderata for the numbers, only four of
which could be satisfied simultaneously, is just one example of the
problems a language designer may run across.

It would be misleading to call such methods 'language design by com
puter'. The real skill goes into identifying the decisions, weighing the
importance and merits of various approaches, and identifying harmful
combinations. Only a dumb, but hard, part of the work is left to brute
force. It is expected that the first-time 'winner' will mainly serve to show
deficiencies in the input to the program, and that several iterations will be
needed to come up with a nice product. Indeed, the exercise may point out
directions we have overlooked. If anything, the method requires that
human prejudice is made explicit. The algorithm itself is, like Justice,
blind-folded.

References

[I] R.B.K. Dewar, The SETL programming language, Courant Institute of Mathematical
Sciences, New York University (1980).

[2] N. Gehani, Generic procedures: an implementation and an undecidability result,
Comput. Languages 5 (1980) 155-161.

[3] L.J.M. Geurts and L.G.L.T. Meertens, Designing a beginners' programming language,
in: S.A. Schuman (Ed.), New Directions in Programming Languages 1975 (IRIA,
Roquencourt, 1976) pp. 1-18.

[4] L.J.M. Geurts and L.G.L.T. Meertens, Keyword grammars, in: J. Andre and J.-P.
Baniitre (Eds.), Implementation and Design of Algorithmic Languages (IRIA, Rocquen
court, 1978) pp. 1-12.

[5] G. Hommel, J. Jackel, S. Jiihnichen, K. Kleine, W. Koch and K. Koster, ELAN - Sprach
beschreibung (Akademische Verlagsgesellschaft, Wiesbaden, 1979).

[6] H. Langmaack, On correct procedure parameter transmission in higher programming
languages, Acta Inform. 2 (1973) 110-142.

Beginners' programming language 181

[7] P.R. King, MABEL manual, University of Manitoba (1978).
[8] L.G.L. T. Meertens, The imitation of musical styles by a computer, in: Information Pro

cessing 68, Proc. of IFIP Congress 1968, Vol. 1 (North-Holland Pub!. Co., Amsterdam,
1968) pp. xxv-xxvi.

[9] L.G.L.T. Mode and meaning, in: S.A. Schuman (Ed.), New Directions in Programming
Languages 1975 (IRIA, Roquencourt, 1976) pp. 125-138.

[JO] L.G.L.T. Meertens, Preliminary draft proposal for the B programming language,
Mathematical Centre, Amsterdam (May 1981).

[11] R. Milner, A theory of type polymorphism in programming, J. Com put. System Sci. 17
(1978) 348-375.

[12] K. Tracton, 57 Practical Programs and Games in Basic (Tab Books, Blue Ridge Summit,
1978).

[13] A. van Wijngaarden, Generalized ALGOL, in: Symbolic Languages in Data Processing,
Proc. of an ICC Symp. (Gordon and Breach, New York, 1962) pp. 409-419; also in: R.
Goodman (Ed.), Annual Review in Automatic Programming, Vol. 3 (Pergamon Press,
Oxford, 1963) pp. 17-26.

[14] A. van Wijngaarden, Orthogonal design and description of a formal language, Report
MR 76, Mathematical Centre, Amsterdam (1965).

Appendix A: a B0 and a B2 Program for the Sieve of Eratosthenes

The following B0 program is copied from [3].

BEGIN
CONST n IS 1999
RANGE sievesize FROM 2 TO n
RANGE primality HAS prime, nonprime
ARRAY (sievesize) a TYPE primality
FOR i OVER sievesize PUT prime IN a(il
VAR k TYPE int, kmult TYPE sievesize
PUT 2 IN k
WHILE k*k FITS kmult

BEGIN
VAR k1 TYPE sievesize
IF k FITS k1, a(k1) = prime DO sieve
PUT k+1 IN k
END

sieve:
BEGIN
PUT nonprime IN a(kmult)

182 L.Meertens

WHILE km ult+ k FITS kmult PUT nonprime IN a(kmult)
END

FOR i OVER sievesize
IF a(i) = prime

BEGIN
NEWLINE
PRINTi
END

END

This problem was certainly not selected in [3] to show the cluminess of
B0. The algorithmic thought is captured more easily, though, in B2:

HOW'TO SIEVE n:
PUT {2 .. n}, 2 IN primes, k
WHILE k*k<=n:

PUT k•k IN kmult
WHILE kmult<=n:

IF kmult in primes: REMOVE kmult FROM primes
PUT km ult+ k IN km ult

PUT k min primes IN k
WRITE primes

SIEVE 1999

Note that this program is algorithmically slightly different from the B0

program given above. The formula k min primes yields the smallest
element of the list primes exceeding k.

Appendix B: a BASIC and a B2 Program for Tabulating a Recurrent
Sequence

The following program is copied from [12]. It has been selected because
for this problem none of the 'strong' points of B2, such as manipulation of
lists, apply. For purposes of fair comparison, non-keywords have been
rendered in lower case.

10 REM This program computes a table of Fibonacci
numbers

20 PRINT 'Enter first term'

Beginners' programming language

30 INPUT a
40 PRINT 'Enter second term'
50 INPUT b
60 PRINT 'Maximum number of terms ='

70 INPUT n
80 PRINT
90 PRINT 'Table of Fibonacci numbers'

100 PRINT 'Term no.','Fibonacci number'
110 LET k= 1
120 PRINT k,a
130 LET k=2
140 PRINT k,b
150 LET k = k + 1
160 LET q =a+ b
170 PRINT k,q
180 LET a= b
190 LET b= q
200 IF k>= n THEN 220
210 GOTO 150
220 PRINT 'Maximum numbers of terms reached'
230 PRINT
240 PRINT 'Type 1 to continue, 0 to stop'
250 INPUT/
260 IF I= 1 THEN 280
270 STOP
280 PRINT
290 GOTO 20
300 END

183

The following B2 program is not an exact transliteration; it contains an
obvious improvement that might also be applied to the BASIC version. As
to the question if this is fair in making a comparison, it should be con
sidered that part of the thesis motivating the development of B is that BASIC

invites clumsy programming.

HOW'TO TABULATE'FIBONACCl'NUMBERS:
PUT 'yes' IN cont
WHILE cont\ 1 = 'y':

WRITE / 'Enter first term: '

184 L. Meertens

READ a EG 0
WRITE / 'Enter second term: •
READ b EG 0
WRITE / 'Maximum number of terms='
READ n EG 0
WRITE / / 'Table of Fibonacci numbers'
WRITE / 'Term no. Fibonacci number'
FOR k IN { 1 .. n}:

WRITE/ k> >5, a> >15
PUT k+1, b, a+b IN k, a, b

WRITE / 'Maximum number of terms reached'
WRITE/ 'Do you want another table?'
READ cont EG "

This program shows some 'formatting': the formula x > > n yields a text
of length n representing the value of x, right adjusted (left-padded with
blanks).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 185-202

From VW-grammar to ALEPH

D. Grune

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

This paper gives an exposition of the designing of ALEPH. ALEPH (acronym
for A Language Encouraging Program Hierarchy) is a programming language
developed at the Mathematical Centre; it is unusual in that it originates from
the world of grammars rather than from the world of programming languages.
It has the interesting property that it is large enough not to be dismissed as a
toy language and small enough to keep the task of designing it intellectually
manageable.

An account of the design of ALEPH is interesting not only because of its
results, a language with a very simple but powerful flow-of-control in which
the uninitialized-variable problem is solved and in which side effects are under
full control, but also because the way in which these results are obtained lies
open to examination.

1. Introduction

ALEPH (acronym for A Language Encouraging Program Hierarchy) [6]
is a programming language developed at the Mathematical Centre; it is
unusual in that it originates from the world of grammars rather than from
the world of programming languages. It has the interesting property that it
is large enough not to be dismissed as a toy language and small enough to
keep the task of designing it intellectually manageable (although barely so).

Therefore an account of the design of ALEPH is interesting not only
because of its results, a language with a very simple but powerful flow-of
control in which the uninitialized-variable problem is solved and in which
side effects are under full control, but also because of the fact that the way
in which these results are obtained lies open to examination.

In this paper we shall give an exposition of the designing of ALEPH. Little
is known about design rules for programming languages. In essence design
rules serve to reduce the intellectual complexity of a task. Traditional

185

186 D. Grune

means are: imposing a structure, divide-and-conquer, defining interfaces,
etc. Hardly any of these applies to the design of programming languages.
The most successful principle is still orthogonality, which also has its
problems. It does not allow the designer to distinguish between the cheap
and the expensive, and its consistent application is difficult.

1. 1. Vocabulary

Our discussion leads us from VW-grammars through affix grammars to
ALEPH and conventional programming languages. A VW-grammar (2.1)
can be seen as a recipe for generating an (infinite) grammar capable of
generating the context-sensitive language we want. An affix-grammar (2.4)
can be seen as a parametrized context-free grammar where the context is
stored in the parameters (affixes).

Different terminology is (traditionally) used in these different fields, and
it may be helpful for the reader to refer to Table 1.

Table I

VW-grammars

grammar

hyper-rule

may produce
empty

is a blind alley
hypernotion

metarule
metanotion

Affix-grammars

grammar
initial symbol
rule
primitive predicate
left-hand-side, LHS
right-hand-side,

RHS
may produce e

produces w
affix expression

affix rule
affix
bound affix
free affix

ALEPH Conventional
programming languages

program program
root
rule procedure
external rule built-in function
rule head procedure heading
rule body procedure body

always succeeds always yields true

fails yields false
affix form, call

rule call
data type

affix parameter
formal affix formal parameter
local affix local parameter

From VW-grammar to ALEPH 187

2. Turning a VW-grammar into a Programming Language

2.1. VW-grammars

A VW-grammar (named after its originator, A. van Wijngaarden [9, 10])
is a special type of context-sensitive (CS) grammar which has many
properties of a context-free (CF) grammar. It is based on the observation
that we can use a CF grammar to describe a CS language, provided that
this grammar has infinitely many production rules; every actual production
of a desired sentence in the CS language, however, needs only a finite
number of them. In essence a VW-grammar is a recipe for generating such
an infinity of CF production rules. For an extensive explanation see [2].

A VW-grammar has the following main constituents:
- the metarules, a collection of (interrelated) CF grammars, each pro

ducing a language for a specific metanotion,
- the hyper-rules, a collection of templates from which to form (an infinity

of) CF production rules.
A CF production rule is derived from a hyper-rule by replacing

consistently each of the metanotions it contains by a terminal production
of that metanotion. For an example see TCGl below.

2.2. Two-colour grammars

Let me now introduce the notion of a 'two-colour' VW-grammar. We
start from a VW-grammar R, which produces sequences of symbols in red.
We then take a second VW-grammar P, which shares part or all of its
metarules with R and which produces its symbols in blue (or in a different
alphabet if you will). We now combine the two grammars and insert
hypernotions of Pin hyperalternatives of rules of R: the resulting grammar
produces sentences in mixed red and blue text.

If it now so happens that a hypernotion of P shares one or more meta
notions with its neighbours that belonged to R, then the production of blue
text is controlled by the same choice of metanotion substitutions as that of
the red text, and the red and blue pieces of text will become correlated.

As an example we shall now rewrite grammar Q from [2, p. 64] as a two
colour grammar.

188 D. Grune

TCGl:

N :: Nn;
ABC:: a; b; c.

text: red N a, blue N b, blue N c.

red N ABC:
red symbol ABC, red NI ABC, where rd NI plus one is N;
where rd N is zero.

red symbol ABC: red letter ABC symbol.
where rd N plus one is N n: where true.
where rd is zero: where true.

blue N ABC:
where bl N is zero;
blue symbol ABC, where bl NI is N minus one, blue NI ABC.

blue symbol ABC: blue letter ABC symbol.
where bl N is N n minus one: where true.
where bl is zero: where true.

where true: .

A possible production is (with N = nnn in 'text'):

red-a red-a red-a blue-b blue-b blue-b blue-c blue-c blue-c.

2.3. A top-down parser

It is well known that a CF grammar can be turned into a recognizer for
the language it produces. In the case of an unrestricted CF grammar such a
recognizer has to do extensive backtracking, which is painful in terms of
space and time, but if enough restrictions are put on the CF grammar, neat
recognizers result. Specifically, the LL(I) restriction leads to an efficient
top-down parser, which, as a program, has virtually the same form as the
original grammar.

This suggests that it may be possible to consider the red part of the two
colour grammar TCGI (which, in a sense, is LL(l)) as a top-down parser
for the red text, while at the same time retaining the producing nature of
the blue part. If we do this, we are led to consider the occurrences of
metanotions in hypernotions as parameters. We shall not worry at the

From VW-grammar to ALEPH 189

moment about the exact parameter-passing mechanism; for the time being
it can be thought of as 'call-by-name'. This brings us to the following
grammar /program:

Pl:

text: read N a, print N b, print N c.

read N ABC:
read symbol ABC, read Nl ABC, where rd Nl plus one is N;
where rd N is zero.

read symbol ABC: absorb letter ABC.
where rd Nl plus one is N: set N to NI plus one.
where rd N is zero: set N to zero.

print N ABC:
where pt N is zero;
print symbol ABC, where pt Nl is N minus one, print Nl ABC.

print symbol ABC: produce letter ABC.
where pt Nl is N minus one: set Nl to N minus one.
where pt N is zero: is N zero.

When we read this with the firm conviction that it is a program,
semantics begins to attach itself to various constructs. To perform 'text',
read Na's, then print Nb's, then print N e's. To read N ABC's, we have
the choice between two alternatives which we shall try in order. We attempt
to read a symbol ABC, and if we succeed we read Nl ABC's and set N to
NI plus one; otherwise (if we cannot read a symbol ABC) we set N to zero.
In this same vein we can understand the rest of the program, which prints
N b's and N e's.

At this point the reader will have gathered that we have cheated. The
above example was rigged so that its interpretation as a program suggested
itself. A general VW-grammar does not exhibit such a nice structure, and
the parsing problem cannot in general be solved. There is, however, a type
of CS grammar related to VW-grammars for which the parsing problem
can be solved: the affix grammars.

2.4. Affix grammars

Affix grammars are defined by Koster [7]; this definition is slightly

190 D. Grune

corrected and explained well in [1]. Koster shows that if an affix grammar
is 'well-formed' (see below) it is possible to construct a parser for the
language it generates. Most constituents of a VW-grammar also exist in an
affix-grammar. For a list of correspondences see Table 1. The principal
differences between affix grammars and VW-grammars are:
- a hypernotion consists of a characteristic name, its 'handle', followed by

one or more metanotions, called 'affixes', and
- context conditions are enforced by special rules called 'primitive

predicates'; they can be thought of as affix checkers.
A 'primitive predicate' is similar to a (normal) rule in that it has affixes;

but rather than producing its output by specifying affix forms and terminal
symbols, it contains a total recursive function T which, depending on the
affixes, will produce either 'empty' (e) or the forbidden symbol (w). We
shall call T the 'test' of the primitive predicate.

The well-formedness criterion requires (among other things) that all
occurrences of affixes be divided into two groups, the 'derived' (c5) and the
'inherited' (1) affixes, in such a way that they can properly be interpreted as
output and input parameters, respectively. Moreover, for each primitive
predicate with derived affixes D, inherited affixes I and test T, a total
recursive function must be given which will calculate D from I such that
T(I,D) succeeds (i.e., produces e); this requirement marks the transition
from a specification language to an algorithmic language.

We shall now show an affix-grammar equivalent to TCGI (some
comment is given between { { and } }):

AGl:

({ {V[n]:}} (text, red, red symbol, blue, blue symbol),
{ {V[t]:}} (red-a, red-b, red-c, blue-a, blue-b, blue-c),
{{A[n]:}} (N, Nl, ABC, ABCl),
{ {A[t]:}} (n, a, b, c),
{ { Q:}} (where rd plus one is, where rd is zero, where is,

where bl is minus one, where bl is zero
),

{ {E:}} text,
{{R:}} (N: N n;.

NI: N.
ABC: a; b; c. ,
ABCl: ABC.

),

From VW-grammar to ALEPH

{{S:}} ((text, 0, (/J, (/), ¢),
(red, 2, (J, 1), (N, ABC), (/J),

(red symbol, 1, (1), (ABC), ¢),
(where rd plus one is, 2, (1, J), (N, Nl),

AX Ay: (x+ 1 = y-+e, x+ 1 * y-+w)),
(where rd is zero, 1, (o), (N),

AX: (x=O-+e, x*O-+w)),
(where is, 2, (ABC, ABCl), (1, 1),

AX Ay: (x=y-+e, x*y-+w)),
(blue, 2, (1, 1), (N, ABC),¢),
(blue symbol, 1, (1), (ABC),¢),
(where bl is minus one, 2, (r, o), (N, Nl),

AXAy: (x=y-1-+e,x*y-l-+w)),
(where bl is zero, 1, (1), (N),

AX: (x=O-+e, x*O-+w)>
),

{{P:}} (text: red+N+a, blue+N+b, blue+N+c.
red+N+ABC:

>

red symbol+ ABC, red+ Nl + ABC,
where rd plus one is+ NI + N;

where rd is zero+ N.
red symbol+ ABC:

where is+ ABC+ a, red-a;
where is+ ABC+ b, red-b;
where is+ ABC+ c, red-c.

blue+ N + ABC:
where bl is zero+ N;
blue symbol+ ABC, where bl is minus one+ Nl + N,

blue+ Nl + ABC.
blue symbol+ ABC:

where is+ ABC+ a, blue-a;
where is+ ABC+ b, blue-b;
where is+ ABC+ c, blue-c.

191

To satisfy the well-formedness requirement this text must be augmented
by a list of functions, one for each primitive predicate, that calculate the

192 D. Grune

derived affixes from the inherited ones. Since lambda-notation does not
allow output-parameters, these functions cannot be written down here.
They correspond to the "set N to •··" in Pl.

3. From Affix Grammar to ALEPH

Although the affix grammar AG 1 can be converted easily into a
program, it will be clear that affix grammars are still a far cry from a
usable programming language. We have 'primitive predicates' which form
a kind of language inside the language. The global flow-of-control may be
obvious but details about the local flow-of-control (i.e., inside a rule) have
to be decided. The exact nature of affixes is open to negotiation. The affix
rules describe data structures, but their form will depend on decisions
about the affixes.

There are of course many ways to approach these problems. One such
approach has led to the Compiler Description Language CDL, designed by
Koster [8], and its successor CDL2 [4]. We shall follow here a different way
which leads to ALEPH.

Like in CDL we shall restrict ourselves to top-down (recursive descent)
parsers, since they lead more easily to programming languages than
bottom-up parsers. Bottom-up parsers for affix grammars have been con
structed by Crowe [3] and Bohm [I].

3.1. Global flow-of-control

The global flow-of-control relies completely on rules calling rules
(recursively); since there is only one level of rules and rules cannot occur as
parameters (nor be assigned to 'rule variables'), the program is a directed
graph; the starting point is the root. This has the great advantage that
many properties of the program can be decided mechanically (recursion
check, automatic cross-referencing). On the other hand it means that the
rule-calling and affix-passing mechanism will be used heavily and that
efficiency will be an important factor in the design of both.

3.2. Finding a place for the primitive predicates

We shall incorporate the 1/ <> affix information in the rule heads; an 1-

affix (input affix) is marked by a prefixed), a <>-affix (output affix) by a

From VW-grammar to ALEPH 193

postfixed) . We shall postpone the decision about the affix-passing
mechanism to Section 4.1.

The number of primitive predicates can often be greatly reduced by
describing their effect (producing e or w) in hyper-rules. Many full-size
examples of this technique can be found in [10, Ch. 7] and in [5]. This
suggests the possibility of using a fixed set of metarules for every grammar,
i.e., to supply a fixed set of data-types in the programming language. These
data-types are then supported by a predefined set of predicates on them,
the 'externals'.

The RHS of a rule may contain both affix forms and terminal symbols;
we shall simplify this situation by introducing two rules, 'absorb+ ABC'
and 'produce+ ABC'. 'Absorb+ ABC' looks at the next character in the
input stream; if it is equal to ABC, 'absorb' absorbs it and succeeds;
otherwise it fails. 'Produce+ ABC' produces the character ABC. They
replace the absorption and production mechanism implied in the function
ing of a two-colour grammar.

Our program now has the form (character constants are quoted with
l's):

P2:

root text.

external set to plus one+ N) +) Nl = 'INCR',
set+) N + Nl) ='SET',
set to minus one+ N) +) Nl = 'DECR',
equal+)N +)Nl = 'EQUAL'.

text: read+N+/a/, print+N+/b/, print+N+/c/.

read+N) +)ABC:
read symbol+ ABC, read+ Nl + ABC, where rd plus one is+ Nl + N;
where rd is zero+ N.

read symbol+)ABC: absorb+ABC.
where rd plus one is+) Nl +) N: set to plus one+ N +NI.
where rd is zero+N): set+0+N.

print+)N +)ABC:
where pt is zero+ N;
print symbol+ ABC, where pt is minus one+ Nl + N,

print+ Nl + ABC.

194 D. Grune

print symbol+) ABC: produce+ ABC.
where pt is minus one+ NI)+)N: set to minus one+ N + NL
where pt is zero+) N: equal+ N + 0.

end

Note that characteristic strings have been supplied in the external
declarations, which enable the compiler to find the proper routines outside
the program.

3.3. Local flow-of-control

Local flow-of-control is the flow-of-control inside a rule once it is called
due to global flow-of-control rules. Since global flow-of-control is trivial,
we shall use simply 'flow-of-control' for 'local flow-of-control'.

The parsing problem for affix grammars can be solved by a general top
down parser [7, par. 8], at the expense of extensive back-tracking. Now
ALEPH is intended for the writing of production soft-ware; here any back
track problems should be solved once at the writing desk, rather than over
and over again when the program is run. A traditional way to avoid back
tracking is to require the grammar to be of type LL(l).

What does it mean for an affix grammar to be LL(l)? It should be borne
in mind that the LL(l)-property is important only because it allows simple
flow-of-control rules for a backtrack-free deterministic parser. We shall
therefore take these rules as a starting point:

LL(l) rules:
- call the initial rule; iff it succeeds, the input belongs to the language;
- a rule is 'called' by trying the alternatives in its RHS for applicability and

calling an applicable alternative (there can only be one such alternative);
- an alternative is 'applicable' iff its first rule call succeeds;
- an alternative is 'called' by calling its rules in textual order as long as

these rule calls succeed;
- an alternative 'succeeds' iff all of its rule calls succeed;
- a rule call 'succeeds' iff the rule called has an applicable alternative that

succeeds.
Moreover we have an error condition:

- if any applicable alternative fails, the input does not belong to the gener
ated language (i.e., if an alternative is applicable it is the correct one).
We want to take over these rules as much as possible. After some experi

mentation we have come to the following flow-of-control rules:

From VW-grammar to ALEPH 195

ALEPH rules:
- execute the affix form in the root; it must succeed;
- an affix form is 'executed' by trying the alternatives in the RHS of its

rule for applicability and executing the first applicable alternative;
- an alternative is 'applicable' iff its first affix form succeeds;
- an alternative is 'executed' by executing its affix forms in textual order

as long as these affix forms succeed;
- an alternative 'succeeds' iff all of its affix forms succeed;
- an affix form 'succeeds' iff the rule called has an applicable alternative

that succeeds.
These flow-of-control rules allow us to view the first affix form as an

'entrance key': you enter the first alternative to which you have the right
key. Once you enter this alternative no others can be reached any more. An
important consequence is that there is only one way to reach a given affix
form. This leads immediately to the Central Theorem of ALEPH:

Central Theorem. When the Nth affix form in the Mth alternative is
reached, the entrance keys of alternatives 1 through M - 1 have failed, and
affix forms I through N - l in this alternative have succeeded.

This Central Theorem is a great help in deriving assertions (see below).
We still have to investigate the error condition inherited from the LL(l)

flow-of-control rules; we shall postpone this until Section 3.5.
The above rules are (almost) all the flow-of-control ALEPH has: there are

no case-, while-, do-, repeat-, until-, or exit-clauses. Rather than
emphasizing repetition, ALEPH emphasizes decomposition: each problem is
decomposed into several alternatives with entrance keys and each
alternative is decomposed into a sequence of sub-problems (which may, of
course, be congruent to the original problem). In short, every problem is
attacked by recursive descent.

Often a problem that requires a complicated application of the
traditional if's and while's can be formulated simply in ALEPH. A good
example is searching a list for a given name; the search process stops in one
of two ways; the list is empty, or we found the name. We want to do
different things in both cases. Here we would need a multi-exit loop or a
global toggle; or we would have to perform the same test twice. In ALEPH

we simply state the alternatives and tell what to do:

196 D. Grune

find name +) name+) list + entry):
is empty+ list, insert+ name + list + entry;
is name on top+ name+ list, top of+ list+ entry;
next of+ list+ list I, find name+ name+ listl +entry.

3.4. Success/failure

We have assumed in the above that any rule can fail (but we have not
based any conclusions on that). It soon becomes clear, however, that some
rules cannot fail, e.g., because a rule produces e regardless of the values of
its affixes.

The Central Theorem shows us immediately that if any alternative but
the last one in a rule has an entrance key that cannot fail, part of the RHS
is inaccessible.

3.5. Side effects

It is the error condition for LL(l)-parsing in Section 3.3 that allows us to
avoid back-tracking, in the following way. When a rule call fails, it has
only called other rules that failed. Now since the only terminal rule is
'absorb', and since 'absorb' has no side effect when it fails (Section 3.2),
no rule call that fails will have had side effects (by induction). So nothing is
modified on failure, and no back-track is necessary. This is the 'No cure -
no pay' principle: you may order something, but if you don't get it, you
don't pay.

We would certainly like to carry this nice feature of LL(l) parsing over
into our programming language. This is done trivially by forbidding any
applicable alternative to fail (either statically or dynamically). But we can
do better than this.

Where a CF grammar only has rules (which have side effects on success),
we have rules (which also have side effects on success) and primitive
predicates (which never have side effects). Moreover, some of our rules
derive entirely from primitive predicates (see Section 3.2). So in ALEPH a
successful affix form does not necessarily imply side effects.

Consequently it is perfectly safe to allow failure of an applicable
alternative, provided no affix form with side effects has yet succeeded in
the alternative.

Under this regime the 'No cure - no pay' principle holds:

If an affix form fails, it has had no side effects.

From VW-grammar to ALEPH 197

In Section 3.4 we have divided the rules into two groups, those that can
fail and those that can't. Now we have a second division, in those that can
have side effects (on success) and those that can't. These divisions are
independent, so four classes (rule types) result:

can have side effects

cannot have side effects

can fail

predicate

question

cannot fail

action

function

This classification allows us to give a proper place to 'absorb' and
'produce': their rule types are external predicate and external action,
respectively.

In principle the compiler could assess these properties, but it is much
more useful to have the programmer specify his intentions (opinions) and
have the compiler check them. The non-trivial redundancy obtained is
exploited for error detection.

Our program is now (affixes are written in small letters):

P3:

root text.

external function set to plus one+ n) +) nl = 'INCR',
function set+)n + nl) ='SET',
function set to minus one+n) +)nl = 'DECR',
question equal+)n+)nl = 'EQUAL',
predicate absorb +) abc = 'ABS',
action produce+) abc = 'PROD'.

action text: read+ n +/a/, print+ n + /b/, print+ n + / c/.

action read+ n) +)abc:
read symbol+ abc, read+ nl + abc, where rd plus one is+ nl + n;
where rd is zero+ n.

predicate read symbol+)abc: absorb+ abc.
function where rd plus one is+)nl +)n: set to plus one+ n + nl.
function where rd is zero+ n): set+ 0 + n.

198

action print+)n +)abc:
where pt is zero+ n;

D. Grune

print symbol+ abc, where pt is minus one+ nl + n,
print+ nl + abc.

action print symbol+)abc: produce+ abc.
function where pt is minus one+ nl) +) n: set to minus one+ n + nl.
question where pt is zero+) n: equal+ n + 0.

end

We see the impact the rule type classification has on the program: for
each rule it is lo~ally clear what to expect of it in terms of flow-of-control.
The consistency of the indications is checked by the compiler; we have here
strong type checking, not for data types but for rule types.

As with strong type checking on data the errors detected originate from
inconsistencies on behalf of the programmer. Suppose there is a rule 'xyz'
which has e as one of its alternatives and which is used for testing the
presence of an 'xyz'. Now, if 'xyz' is declared as a predicate, the empty
alternative will cause an error message, and if it is declared as an action, its
use as a test will be noticed.

4. Affixes

Rules in an affix grammar can have bound affixes (those that occur in
the LHS and in the RHS) and free affixes (that occur in the RHS only). In
ALEPH these correspond to formal and local affixes, or 'formals' and
'locals'. There are 'input' and 'output' formals; an input formal has a
value upon entry to the rule an output formal must have received a value
when the rule ends.

Of course it is necessary that all input affixes of an affix form have
obtained a value when the affix form is executed. Now, since
- the Central Theorem states that there is only one path from rule entrance

to a given affix form, and the Central Theorem gives that path;
- the initial states of all formals and locals at rule entrance are known

from the LHS; and
- for each affix form A on the path the effect on the affixes passed to it is

known from the LHS of A,

From VW-grammar to ALEPH 199

the compiler can ascertain in an efficient way that never the value of an
affix will be used before that affix has received a value. No run-time
checking is necessary. A similar test can ensure that an output formal will
always receive a value.

The details of this test depend on the affix-passing mechanism.

4.1. The affix-passing mechanism

The affix-passing mechanism has to obey two conditions: the value of an
inherited affix must be available inside the rule, and the value obtained by
a derived affix inside the rule must be made available to the caller.

If we do not allow the value of an affix to be changed (once it has
obtained a value), then the story ends here: all affix-passing mechanisms
that conform to the above conditions are indistinguishable (except,
perhaps, as to efficiency).

Little is known, however, about the possibility of programming with
initializable constants only, and we felt that variables are indispensable.
This decision has led to an interesting extension of the 'No cure - no pay'
principle to local variables.

Since rules need the possibility to change values of affixes of calling
rules, it seems that we need at least call-by-reference (or a more general
mechanism). Call-by-reference, however, can surprise the programmer
painfully with invisible aliases, as in:

action produce a or b + p) + q):
set+p+/a/, set+q+/b/, produce+p.

where a call 'produce a or b + x + x' produces /b/. Moreover, back-track
rears its ugly head again when a rule fails after having changed the value of
an (output) affix.

On the other hand it is clear that call-by-value is insufficient.
A good in-between is found in 'copy-restore': upon rule entry all input

affixes are copied to a local work space, and upon rule exit all output
affixes are restored from that local work space. If we now suppress the
restoring if the rule fails ('copy-maybe-restore'), no effects on affixes will
propagate upwards upon failure, and a failing rule will never spoil infor
mation: the 'No cure - no pay' principle also holds for affixes.

Under these circumstances we can easily introduce 'inout-affixes', which

200 D. Grune

must have a value upon entrance and which return the (possibly changed)
value; notation: +)tag).

The copy-maybe-restore mechanism allows us to view the (formal and
local) affixes as local variables, some of which are already initialized upon
rule entrance and some of will be returned to the caller if and when the rule
succeeds. This mechanism is easy to explain and efficient to implement. It
aids programming in that it supplies automatic back-tracking on local
variables.

The introduction of variables allows the following shorter form of our
program:

P4:

root text.

external function increment by one+) n) = 'INCR',
function set+)n+nl) ='SET',
function decrement by one+)n) = 'DECR',
question equal+)n +)nl ='EQUAL',
predicate absorb +) abc = 'ABS',
action produce+ > abc = 'PROD'.

action text - n: $ a 'local'
read+n+/a/, print+n+/b/, print+n+/c/.

action read+ n) +)abc:
read symbol+ abc, read+ n + abc, where rd plus one+ n;
where rd is zero+ n.

predicate read symbol+)abc: absorb+ abc.
function where rd plus one+) n): increment by one+ n.
function where rd is zero+ n): set+ 0 + n.

action print+)n +)abc:
where pt is zero+ n;
print symbol+ abc, where pt minus one+ n, print+ n + abc.

action print symbol+) abc: produce+ abc.
function where pt minus one+) n): decrement by one+ n.
question where pt is zero+)n: equal+ n + 0.

end

From VW-grammar to ALEPH 201

5. Other Features

Program P4 is correct ALEPH and, given suitable external routines
INCR , .. PROD, it will run. However, a number of externals have been
predefined in ALEPH; there are other data types besides the integers used
here; there are abbreviations for right-recursive rule calls; and there are
other features. All these allow the program to be simplified. For lack of
space we shall not treat them here. Details can be found in the ALEPH

Manual [6].

6. Conclusion

We have shown that by drawing heavily on the analogy between
grammars and programs, and between parsing and problem solving, a
practical language can be designed that has some properties not generally
found in programming languages.

Among these properties are:
- a simple and effective flow-of-control based solely on selection, de

composition and procedure calling;
- a Central Theorem which states in simple terms the conditions that apply

when a given construct is reached;
- an efficient compile-time check on the initialization of variables;
- a firm and compiler-checkable concept of side effects.

References

[I] A.P.W. Bohm, Affixgrammatica's, afstudeerverslag (Affix Grammars, MSc. Thesis),
TH Delft (1974) in Dutch.

[2] J.C. Cleaveland and R.C. Uzgalis, Grammars for Programming Languages (Elsevier,
Amsterdam, 1977).

[3] D. Crowe, Generating parsers for affix grammars, Comm. ACM 15 (1972) 728-734.
[4] J.P. Dehottay, H. Feuerhahn, C.H.A. Koster and H.M. Stahl, Syntaktische Be

schreibung von CDL2, Forschungsbericht Technische Universitat Berlin (1976).
[5] R. Glandorf, D. Grune and J. Verhagen, AW-grammar of ALEPH, IW 100/78, Mathe

matical Centre, Amsterdam (1978).
[6] D. Grune, R. Bosch and L.G.L.T. Meertens, ALEPH Manual, IW 17/75, Mathematical

Centre, Amsterdam (1975) (third printing).

202 D. Grune

[7] C.H.A. Koster, Affix grammars, in: J.E.L. Peck (Ed.), ALGOL 68 Implementation
(North-Holland, Amsterdam, 1971) p. 95.

[8] C.H.A. Koster, A compiler compiler, MR 127/71, Mathematical Centre, Amsterdam
(1971).

[9] A. van Wijngaarden, Orthogonal design and description of a formal language, MR 76,
Mathematical Centre, Amsterdam (1965).

[!OJ A. van Wijngaarden et al. (Eds.), Revised report on the algorithmic language ALGOL 68,
Acta Inform. 5 (1975) 1-236.

Algorithmic Languages, de Bakker/van Vliet (eds.)

© IFIP, North-Holland Publishing Company, 1981, 203-219

On Design Principles for Programming Languages:
An Algebraic Approach*

M. Broy, P. Pepper** and M. Wirsing***

Institut fur Informatik der Technischen Universitiit Miinchen, Postfach 202420,
D-8000 Miinchen 2, Federal Republic of Germany

Based on the technique of the algebraic specification of programming lan
guages a number of design principles for programming languages are formally
characterized and discussed. The notions covered in this article are abstract
ness, independence and duality of concepts, expressive power, coherence and
formal soundness.

Although these notions cannot be used as a complete methodology for the
design of programming languages, they allow for important insights into the
semantic structures of programming languages including their comparisons,
such that design alternatives can be compared and evaluated.

1. Introduction

The design of a programming language is an intricate task requiring
careful reflection and sophisticated decisions. Since questions of taste,
personal styles and individual perceptional habits are intermingled with
formal considerations and technical requirements, discussions on pro
gramming languages are not only challenging and pleasurable but also
subjective and quarrelsome topics. In addition, such discussions are all too
often based by the use of impressive, yet undefined, slogans and catch
words like 'coherence', 'abstractness', 'high-level', 'very-high-level' and so
on.

• This work was partially sponsored by the Sonderforschungsbereich 49, Programmier
technik, Miinchen, Federal Republic of Germany.
** Present address: Department of Computer Science, Stanford University, Stanford,
CA 94305, U.S.A.
*** Present address: Department of Computer Science, University of Edinburgh, Edinburgh
EH9 3JZ, Great Britain.

203

204 M. Broy et al.

With the gradual development of more and more rigorous methods for
the definition of programming languages there should also emerge a way of
formally characterizing and justifying such catchwords. Accordingly, we
will investigate in this paper some consequences that can be drawn from a
particular formal view of programming languages. In doing so, our aim is
twofold: On the one hand we try to isolate and discuss some basic design
principles, and on the other hand we try to give a formal background for
obtaining a more precise definition of these principles. Consequently, we
will only look at those principles here, for which we can offer some kind of
formal characterization.

The approach that we are taking for the specification of programming
languages emerged from investigations on a 'wide spectrum language'.
This language (cf. [2, 14]) was designed in the course of the project CIP
under the joint guidance of Professor F.L. Bauer and the late Professor K.
Samelson. Although being a general purpose language, it is devoted to a
particular view and methodology of programming: The language is used
for the formal specification of software and its stepwise development by
applying verified transformation rules. The formalization of this approach
led us to consider programming languages as algebraic theories (or more
technically as abstract types). This point of view now allows us to conceive
a number of general principles for (the design of) programming languages.

Note: As to the theoretical foundation of our algebraic approach, we
will try to burden this article as little as possible with heavy mathematics.
Detailed elaborations can be found in the papers listed in the references.

2. Abstractness

In recent years' computer science 'abstractness' has become one of the
most popular notions. Indicatively, it is used in various senses and too
often without a proper definition. Here we adapt the following idea
(leading to the definition given below): Abstractness means to describe
phenomena or concepts independent of particular representations. More
mathematically speaking, this means that we are dealing with the whole
class of structures in which the respective phenomena occur. This clearly
leads to algebraic theories (which are nowadays often presented in the form
of abstract data types).

On design principles for programming languages 205

Definition. The abstract syntax of a programming language is the
signature of a type. The basic nonterminals are represented by sorts, the
individual productions by Junctions over these sorts (cf. [20]).

Example 1. Let the sorts id and expr representing identifiers and expres
sions, respectively, be given. Then we may have the following correspond
ence between a concrete BNF-syntax and a signature:

(stat)::= (id):= (expr)

(stat)::= skip

assign: id x expr -> stat

skip: ->stat

(stat)::= (stat); (stat) semi: stat x stat ->stat

(stat) : := if (expr) then (stat) fi cond: expr x stat ->stat

(stat) ::=while (expr) do (stat) od while:exprxstat->stat

(stat) ::=do (stat) until (expr) od until:exprxstat ->stat

The term algebra W(L) (also called the word algebra) of such a signature
L provides the set of abstract programs. Each concrete syntax can be con
sidered as an initial model of the type T' = (L, 0) having the signature L
and an empty set of axioms. Hence, each concrete syntax (in particular the
most common one of parsing trees) is isomorphic to the abstract syntax.
(For a deeper analysis see [24].) The next step is now straightforward:

Definition. The abstract semantics of a language is given by a set ,w of
axioms, which are added to the abstract syntax L.

In this way, the complete syntactic and semantic specification of a
language is given by the pair T= (L,A), the meanwhile classical presenta
tion of an abstract data type.

In this setting, the context conditions (sometimes also called static
semantics) may be given by a set of definedness predicates; the requirement
that context conditions must be checkable at compile time therefore means
that the definedness predicates must be specified 'sufficiently complete'
and must be decidable.

The (dynamic) semantics causes more intrinsic problems. For termina
tion (i.e. least fixed point properties) cannot be expressed 'sufficiently
completely' by first order conditional equations. There are two solutions to

206 M. Broy et al.

this issue: Either one designates a sufficiently powerful kernel of the
language with its, say mathematical or operational semantics, and reduces
all other language constructs to this kernel ('transformational semantics'
[28]), or one extends the theory of abstract types by considering special
homomorphisms (cf. [6, 7, 8]).

Example 2. Given the signaure of Example 1, the essential axioms for alge
braically specifying the language are:

semi(skip, s) = s = semi(s, skip),

cond(true,s) =s, cond(false, s) = skip,

while(e, s) = cond(e, semi(s, while(e, s))),

until(e, s) = semi(s, cond(, e, until(e,s))).

The rest of the specification centers around the assignment. For example,
in the 'transformational semantics' version one uses axioms like

semi(assign(x, e), assign(x,f)) = assign(x,f_;)

in order to transform every statement into the 'normal form' of a single
collective assignment (cf. also Example 5). Then a rule such as

1x:=E;xj =E

associates an input/output relation (based on the semantics of expressions)
to each statement.

In the other approach, one introduces a semantic function like

value: stat x expr-+data

that gives the value of an expression after executing a statement. This
requires axioms such as

value(semi(s, assign(x, e)),f) = value(s,f;).

The extended theory of abstract types is needed in order to cope with the
possibly arising infinite reduction sequences.

In contrast to e.g. denotational semantics, where one particular model is
fixed, our algebraic specifications characterize in general whole classes of
semantic models. In these classes there are models corresponding to mathe-

On design principles for programming languages 207

matical semantics as well as models corresponding to various possibilities
of operational semantics. With the help of order relations induced by the
different homorphisms one can then compare these different semantic
structures. To elucidate this further, we will cite here one result (that stems
from [6]):

The minimal model in the aforementioned ordering is called 'weakly
terminal model'. In [26] the notion of 'fully abstract semantics' is
introduced, which means informally that two programs are equivalent (i.e.
equally interpreted in the semantic model) if and only if they can be substi
tuted for each other in any 'primitive' context without effecting any
changes (i.e. considered as black boxes they are indistinguishable). The
weakly terminal model - if it exists - provides such a fully abstract
semantics, and we call two programs extensionally equivalent1 if they are
equal in this model. (For instance, in Example 2 the programs until(-, e, s)
and semi(s, while(e,s)) are extensionally equivalent.)

To conclude this brief exposition of the algebraic specification of pro
gramming languages we would like to mention a general property (shown
in [12]): Every formal definition of a language induces some extensional
equivalence, and vice versa every equivalence relation (when considered as
being extensional) induces a formal semantics.

The abstraction achieved by the algebraic approach encourages one to
design languages in terms of concepts and their properties rather than by
giving meanings to notations.

The following sections are now devoted to conclusions that can be drawn
from this algebraic view.

3. Expressive power

Expressive power is not an absolute measure but rather a means for com
paring languages. Hence, we will only define the expressive power of one
language relative to another language. Though concerning mainly the
number and strength of the concepts of a language this notion is sometimes
also used in connection with a mere syntactical richness ('notational
variants').

As to the latter point, our notion of abstractness allows us to get rid of

1 Sometimes also called 'observably equivalent' or 'visibly equivalent'.

208 M. Broy et al.

such notational variants. For instance, the two iterative constructs of the
previous section are related to each other by means of the equation

until(e, s) = semi(s, while(, e, s))

leaving only the concept of 'iteration'. Analogously, the concept of a
'recursive function' is independent from its presentation as an ALGOL-like
declaration

functf = (mx)r:E(x,f)

or as a fixed point expression in the style of the types A-calculus

Y f: [m->r]. Ax: m. E(x,f).

Example 3. This syntactic richness becomes most apparent in languages
that provide a huge collection of special operators. Consider the operator
'I' of APL (cf. [22]); its effect is given by the functional

funct slash= (vector x, funct(real, real) real op) real:

if length(x) = I then first(x)

I length(x) > I then op(first(x), slash(rest(x, op)) fi.

Similar operators, which are oriented towards special data structures, can
be found in SETL (cf. [16]).

These considerations may be formalized as follows (cf. also the notation
of 'extensions by definitions' in [30]).

Definition. Let L be a language (i.e. an abstract type). A new construct g
(i.e. a new function) can be added to L as a notational variant by specifying
an axiom of the form

g(Xi, ... ,Xn) =E

where Eis a term of L in the free variables Xi, ... ,Xn (and of course the
operation g must not occur in E).

The classical way of comparing the expressive power of two languages is
to map both onto the same semantic model. This is rather straightforward
for two applicative languages, say LISP and the Backus-language, or for

On design principles for programming languages 209

two procedural languages, say ALGOL 60 and PASCAL; but it becomes quite
artificial, when an applicative language is to be compared with a pro
cedural one.

In order to get a more direct mode of comparison, we employ again our
algebraic techniques. As a prerequisite we need a common basis, viz. a
common set of primitive data types. (We will consider this basis as an
unspecified parameter, both for gaining flexibility and for avoiding
'simple' translations via Godelization.)

Definition. A language L 1 is interpretable in a language L2 , if there is a
mapping (morphism) </J: W(L 1)----> W(L2), which associates to each term of
L1 a term of L2 (and which is the identity on the 'primitive terms' of the
common basis) such that congruent terms of L 1 are mapped to congruent
terms of L2 , i.e.

In other words, the equivalence classes constituting the semantics of L 1 are
mapped to equivalence classes of L2 . Two languages are called equipollent,
if each of them is interpretable in the other one. This renders the notion of
a 'coherent family of languages' [19] more precise.

The above definition still contains a certain degree of freedom, viz. the
congruence relations to be chosen. For instance, if in both cases the exten
sional equivalence (cf. Section 2) is taken, then the expressive power refers
to the mathematical semantics, i.e. to the input/output behaviour. Other
equivalence relations allow us to compare versions of operational
semantics.

Example 4. Consider a language Lm with collective assignments and a
language Ls with only single assignments. The correspondence

</):(x,y):=(e,f)- 1varh:=e;y:=f;x:=hJ

establishes the interpretation of Lm in Ls (the converse is trivial). Hence,
both languages are equipollent, if we consider the extensional equivalence.
However, if we consider an 'operational' equivalence, where the number of
used variables plays a role, then the equivalence classes of Lm are not
necessarily mapped to equivalence classes of Ls.

210 M. Broy et al.

Similarly, without blockstructure the above translation does not work.
For there exists always an environment in which the auxiliary identifier h
occurs. In this case Ls is definitely 'weaker' than Lm.

4. On the duality of styles

In programming, we distinguish two major 'styles', viz. applicative
languages and procedural languages. The former comprise expressions and
possibly also declarations of constants and functions, the latter are made
up of assignments, loops, procedures and even goto's.

As an example, we will now give an interpretation of the procedural
language of Example 1 in the following applicative language (for reasons
of easier readability we use concrete syntax and let x stand for a whole
tuple of identifiers):

function abstraction: AX .E,

function application: (AX. E 1)(£2),

conditional expression: (B-> E),

fixed point: Yf. AX. E

where (Ax. false-> E) = id.
To each statement S of a procedural language we can now define its

associated expression Es by induction on the structure of the language.

Example 5. The language of Example 1 can be associated to the above
expression language as follows:

skip -> id(x)

x:=E ->E

S; T ->(AX. ET)(Es)

if B then S fi ->(B->Es)

while B do S od->(Yf. AX. B-> f(Es))(x).

In this way, every statement containing the variable x corresponds to an
expression where x (in general) occurs freely.

On design principles for programming languages 211

Now it remains to show that the translation is compatible with the equi
valences characterizing the semantics of the languages. We will consider
here only two examples: First, the associativity of the semicolon requires
the equivalence of the expressions

This equivalence is indeed valid for usual expression languages (both under
call-by-value and call-by-name semantics). As the second example, we con
sider the recursive characterization of the while-loop, viz. the equivalence.

while B do S od = if B then S; while B do S od fi;

this is compatible with the applicative language because of the
characteristic fixed point property

Yf. AX. E =AX. Efl · h • E.

In the above translation the image of every construct of the statement
language is a notational variant of an expression.

Definition. Let the language L 1 be interpretable in L 2 wrt. the mapping</).
A construct g of L 1 is representable in the style of L2 if </)(g) can be specified
by

where E is a term of L2 in the free 'variables' </)(xi), ... , </)(xn), If all
constructs of L 1 are representable in L2 and vice versa, then L 1 and L2 are
called 'dual in style'.

E.g. the while-statement is represented in the expression language by
'tail recursion'. The procedural language is representable in the style of the
applicative language, but the converse is not true (cf. [31]).

A number of interesting results on the equipollence of certain recursion
and iteration mechanisms are well known from the literature:

(i) Counted iteration (for i to n do ... od) and primitive recursion are
equipollent and even mutually representable in the other style.

(ii) General goto-systems as well as nested loops with multiple-level
exits are equipollent to systems of (mutually) tail-recursive functions (cf.
[14, 15]), but are not dual in style.

(iii) Parallel programs with processes described by simple tail-recursion

212 M. Broy et al.

(for instance by while-loops) are equipollent to mutually recursive, tail
recursive sequential nondeterministic programs (see [4]), but are not dual
in style (note, that this holds only for closed parallel programs but not for
single processes).

The translation of Example 5 may be used to clarify relationships
between a number of other semantic properties. We will exemplify this by
two observations on call-by-value and call-by-name semantics, showing the
close relationships of different topics.

Example 6. Consider the trivial procedural program

(P) while true do x :=x od; x := 1

and its associated expression

(E) (AX. l)((Yf. AX. true-+ f(x))(x)).

In call-by-value semantics the applicative program (E) does not terminate
and so does the procedural program (P) in classical languages. In a call-by
name semantics, however, the program (E) does terminate and yields I; the
same is intended for the program (P) in procedural data flow semantics.

Example 7. Consider the program part

vary; varx:=a, while b(x) doy:=g(x); x:=h(x,y) od

although the variable y is not initialized, this program may have a perfect
meaning. We can capture this meaning and also the possible failure by the
expression.

(Yf. AX, y. if b(x) then (h(x,g(x)), g(x)) else (x, y) fi)(a, error),

provided that we assume a call-by-name semantics for functions such that
the argument error does not harm. There is no direct way of representing
the above procedural program under a call-by-value semantics, which is,
however, necessary for explaining e.g. the semicolon by the composition of
function applications (the only way out is to introduce some artificial value
'still not initialized').

Besides the duality of applicative and procedural styles, there is a second
major duality between two different conceptual issues, viz. the corres
pondence of concurrent program and nondeterministic sequential pro-

On design principles for programming languages 213

grams. (This correspondence was put into formal transformation rules in
[3, 4].)

Example 8. The semantics of conditional critical regions may be explained
by axioms like

Ir await B1 then S1 end; T1 //await B2 then S2 end; T2 _//

= if B1 then S1; Ir T1 //await B2 then S2 end; T2 _//

a B2 then S2; Ir await B1 then S1 end; T1 IIT2 _// fi.

In this way, every program text containing parallel constructs is associ
ated to a program text without such constructs (based on Dijkstra's
guarded commands). Hence, the equivalence classes of these sequential
programs include equivalence classes on the parallel programs. The
semantic interpretation of nondeterministic sequential programs (in the
style of Example 5) induces then a (functional) semantics for concurrent
programs.

Again, there are interesting conclusions that can be diawn from this
duality (cf. [5]):

Example 9. Consider the concurrent program (cf. [17, 27])

(C) x, y, z := 0, 0, O; Ir await true then x := 1 end

//while z=0 do y :=y+ 1;
await true then z :=x end od _//.

According to the rules of Example 8 this program corresponds to the
sequential nondeterministic one

x, y, z := 0, 0, O; call q where

proc q = if z = 0 then y : = y + l; [x : = l; z : = x;

(s)
call pOz :=x; call q]

elsex := 1 fi

proc p=-=while z=0 do y := y+ l; z :=x od

where [... a ...] is an abbreviation for if true then ... a true then ... fi. If we

214 M. Broy et al.

are only interested in the final value of y, then we get the associated
expression of (S) by the rules of Example 5 (leaving away the superfluous
call of p):

(E) Yf. ,ly. [y+ 1 Of(y+ 1))(0).

Under the assumption of fairness (C) always terminates and returns some
natural number y > 0. In contrast to this, (E) either terminates and also
yields somey>0 or does not terminate at all. However, an expression with
an infinite number of possible results but without the possibility of non
termination is not continuous in the Egli-Milner ordering (which is needed
to define least fixed points of nondeterminate functions). Hence, general
fairness assumptions are not compatible with our explanation of parallel
programs. (We would get 'computable' functions which are not
continuous). Or, in other words, without any fairness assumptions
concurrent programs with shared variables and sequential nondeterministic
programs are equipollent. Note, however, that fairness assumption even
may be introduced for sequential nondeterministic programs (cf. [211).

5. Formal soundness: order structures and monotonicity

Numerous phenomena of programming and programming languages are
based on order relations. The most widely known of these orderings is
probably the 'less defined' relation used in the fixed point theory
underlying denotational semantics (x k y basically means that x is unde
fined or equal toy). To cope with such issues we have to supplement our
algebraic structures with order structures.

Of course, the order structure has to be compatible with the algebraic
one. As a prominent example for justifying this requirement consider the
relation "A is more efficient than B". This relation can only be useful, if
thereis no context P such that P[A] is less efficient than P[B].

Definition. Let L be a language (i.e. an algebraic type) and let ~ be an
ordering. Then L is said to be formally sound w.r.t. ~, if in each of its
semantic models the following monotonicity is valid for every function f:

Vx,y: x~y~f(x)~f(y).

We may now apply these criteria to some of the more intrinsic problems

On design principles for programming languages 215

of nondeterminism and parallelism. Since here the various design decisions
have rather subtle effects, a formal means for analyzing their mutual
influences is utterly necessary to provide for the desired rigidity. For this
reason, we will stick to the semantic definition of Example 8 throughout
the rest of this chapter.

The natural ordering for nondeterminate programs has already been
introduced in [25]:
P' is a descendant of P, denoted by P' ~ P, if the set of possible outcomes
of P' is contained in that of P. (For convenience let us denote by J. ~ P that
Palso leads to nonterminating computations.)

Example 10. Let us resume the applicative program of example 9:

(E) Yf. Jy. [y + 1 Of(y + l)](O).

The descendants of (E) are given by the nonterminating program l. and by
the programs

(E11) (Jy. n)(O) for nEN\ {0}.

Of course, our semantic definition immediately transfers the notion of
descendant also to parallel programs. Thus, the sequential programs

(S11) x,y,z:= 1,n, 1 for nEN\ {0}

and J. are all descendants of the concurrent program (C) of Example 9.
Unfortunately, there are at least three different views of nondeterminism

that can be found in the literature (cf. [9]). The one we have adapted so far
may be called totally erratic, since it may arbitrarily choose any of the
possible execution paths be it terminating or nonterminating. With the help
of our notion P' ~ P we can now explain the two other ones:

The angelic nondeterminism (as termed by Hoare) is used in [25] and
also in automata theory. Here possible termination is equivalent to guar
anteed termination. In this case, only the programs (S11) are descendants of
(C), which is exactly what fairness conditions shall achieve. In other words,
fairness conditions correspond to angelic nondeterminism.

The demonic nondeterminism (again a term of Hoare) is underlying
Dijkstra's wp-calculus. Here possible nontermination is equivalent to
guaranteed nontermination. In this view, only the program J. is a descend
ant of (C).

216 M. Broy et al.

Example 11. Consider a language construct for unbounded nondetermin
ism (cf. [11]):

some x: p(x).

Assume we intend a demonic semantics for some, but the erratic semantics
for 'll', i.e.

(some x: p(x)) =e ..L if ..L ~ p(a) for some a.

This means that the program

some x: (x equal (Yf. Jex. [1 0f(x)])(O))

is equivalent to ..L . However, if we pass over to a descendant off, the re
sulting program

some x: (x equal (Yf. Ai. 1)(0))

is equivalent to 1. This clearly violates the requirement of formal sound
ness.

6. Structured language design

In the field of abstract data types much emphasis has been given to
questions of a proper modularization. (In fact, this has been one of their
major motivations.) This led to very precise notions of e.g. algebraic
enrichment and hierarchical types (cf. [33]). Our approach to the algebraic
specification of programming languages allows us to apply all these results
to language design.

The enrichment technique, for instance, leads to a structuring of the
language into a small sublanguage representing the conceptual skeleton
and a number of enrichments introducing notational variants.

The hierarchical structure introduces several layers of the language for
each of which the lower ones act as primitive basis (in the same way as the
type INTEGER forms the basis for the type STACK of INTEGER).

Example 12. A classical procedural language can be represented by the
folowing hierarchy of abstract types

On design principles for programming languages 217

type ST A TEMENT =
sort statement,

type EXPRESSION=
sort expression,

type ST ACK OF INTEGER
type INTEGER
type BOOLEAN

procedural language, defines
statements based on the sorts
identifier, expression, boolean,
integer, stack, ...
expression language, defines
expressions based on the sort
identifier, boolean, integer,
stack, ...
hierarchy of data types

Obviously this way a clear structure is induced on the language. For in
stance, we may understand the basic data types (BOOLEAN, INTEGER,
STACK, ...) without knowing anything about expressions or statements.
Similarly we may understand the type EXPRESSION without considering
the type STATEMENT. If the language, however, incorporates expres
sions with side-effects, then the sort expression can no longer be explained
without considering statements. The language 'looses structure'. (Which
again provides a formal justification for an often cited argument.) Note,
that in the case of including parallel programs into the statements, we have
to include nondeterminism both for statements and for expressions to
maintain the hierarchy.

7. Conclusion

A rigorous proceeding along the line described in this paper is applied in
the design of the wide spectrum language CIP-L (cf. [14)), demonstrating
that the algebraic treatment makes also large-sized languages manageable.
But our experience with the language shows that the major effect of the
algebraic approach does not lie in the resulting formal description but
rather in guidelines provided for the design. Although there is still enough
room for decisions that give a language its characteristic appearance, there
exist at least criteria to classify these decisions ('notational variant', 'new
concept' etc.). Above all, the compatibility of the various parts of the
language can be checked, which is particularly important in a wide
spectrum language where different styles are combined within a single
syntactic frame.

218 M. Broy et al.

Acknowledgement

The authors gratefully acknowledge a number of fruitful discussions
with colleagues of the Project CIP, especially with Prof. F.L. Bauer and
the late Prof. K. Samelson.

References

[1] F.L. Bauer and H. Wossner, Algorithmische Sprache und Programmentwicklung
(Springer, Berlin, 1981) to appear.

[2] F.L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Bruckner, H. Partsch, P. Pepper
and H. Wossner, Towards a wide spectrum language to support program specification
and program development, SIGPLAN Notices 13 (12) (December 1978) 15-24.

(3] M. Broy, Transformation parallel ablaufender Programme, Dissertation, Technische
Universitat Miinchen, Fakultiit fur Mathematik (1980).

[4] M. Broy, Transformational semantics for concurrent programs. Inform. Process. Lett.
11 (1980) 87-91.

[5] M. Broy, Are fairness assumptions fair? 2nd Int. Conf. on Distributed Programming
Systems, Paris (April 1981).

[6] M. Broy and M. Wirsing, Algebraic definition of a functional programming language,
TU Miinchen, Techn. Rep. TUM-18008 (1980).

(7] M. Broy and M. Wirsing, Programming languages as abstract data types, 5eme Coll. !es
Arbres en Algebre et Programmation, Lille 1980, Univ. de Lille (1980) pp. 160-177.

[8] M. Broy and M. Wirsing, Partial recursive functions and abstract data types, EATCS
Bull. 11 (1980) 34-41.

[9] M. Broy and M. Wirsing, On the algebraic specification of nondeterministic pro
gramming languages, 6eme Coll. !es Arbes en Algebre et Programmation, Genova
(1981).

(10] M. Broy, P. Pepper and M. Wirsing, On relations between programs, in: B. Robinet
(Ed.), 4th Int. Symp. on Programming, Lecture Notes in Computer Science, Vol. 83
(Springer, Berlin, 1980) pp. 59-78.

[11] M. Broy, R. Gnatz and M. Wirsing, Semantics of nondeterministic and noncontinuous
constructs, in: F.L. Bauer and M. Broy (Eds.), Program Construction, Lecture Notes in
Computer Science, Vol. 69 (Springer, Berlin, 1979) pp. 553-592.

[12] M. Broy, H. Partsch, P. Pepper and M. Wirsing, Semantic relations in programing
languages, IFIP-Congress (1980).

(13] M. Broy, B. Moller, P. Pepper and M. Wirsing, A model-independent approach to
implemema'.ions of abstract data types, in: A. Salwicki (Ed.), Proceedings of the
Symposium on Algorithmic Logic and the Programming Language LOGAN, Lecture
Notes in Computer Science (Springer, Berlin, I 981) to appear.

[14] CIP, Report on a wide spectrum language for program specification and development,
Techn. Universitiit Miinchen, Institut fiir Informatik, TUM-18104 (May 1981).

On design principles for programming languages 219

[15] G. Cousineau, An algebraic definition for control structures, Theoret. Comput. Sci. 12
(1980) 175-192.

[16] R.B.K. Dewar, A. Grand, S. Lin, J.T. Schwartz and E. Schonberg, Programming by
refinement, as exemplefied by the SETL representation sublanguage, ACM TOPLAS l
(I) (1979) 27-49.

[17] E.W. Dijkstra, A discipline of programming (Prentice Hall, Englewood Cliffs, NJ,
I 976).

[18] E.W. Dijkstra, On weak and strong termination, EWD 673, The equivalence of bounded
nondeterminacy and continuity, EWD 675 (1978).

[19] A.P. Ershov, Problems in many-language systems, in: F.L. Bauer and K. Samelson
(Eds.), Language Hierarchies and Interfaces, Lecture Notes in Computer Science, Vol.
46 (Springer, Berlin, 1976) pp. 358-427.

[20] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright, Initial algebra semantics
and continuous algebras, J. Assoc. Comput. Mach. 24 (I) (1977) 68-95.

[21] 0. Grumberg, N. Francez, J.A. Makowsky and W.P. de Roever, A proof rule for fair
termination of guarded commands, Rijksuniversiteit Utrecht, Vakgroep Informatica,
RUU-CS-81-2 (January 1981).

[22] K.E. Iverson, Notation as a tool of thought, Comm. ACM 23 (8) (1980) 444-465.
[23] P. Landin, A correspondence between ALGOL 60 and Church's lambda notation: Part I,

Comm. ACM 8 (2) (1965) 89-101.
[24] A. Laut, Darstellung kontexfreier Grammatiken als Rechenstrukturen und ihre Ver

wendung fur die Transformation von Programmen, Technische Universitat Mlinchen,
Institut fur Informatik, to appear.

[25] J. McCarthy, A basis for a mathematical theory of computation, in: B. Braffort and D.
Hirschberg (Eds.), Computer Programming and Formal Systems (North-Holland,
Amsterdam, 1963).

[26] R. Milner, Fully abstract models of typed lambda-calculi, Theoret. Comput. Sci. 4
(1977) 1-22.

[27] D. Park, On the semantics of fair parallelism, in: D. Bji:imer (Ed.), Abstract Software
Specifications, Lecture Notes in Computer Science, Vol. 86 (Springer, Berlin, 1980)
504-526.

[28] P. Pepper, A study on transformational semantics, in: F.L. Bauer and M. Broy (Eds.),
Program Construction (Proc. Int. Summer School, Marktoberdorf 1978), Lecture Notes
in Computer Science, Vol. 69 (Springer, Berlin, 1979) pp. 322-405. (Also: Dissertation,
Technische Universitat Munchen (1979)).

[29] D. Scott and C. Strachey, Towards a mathematical semantics for computer languages,
in: J. Fox (Ed.), Computers and Automata (John Wiley, New York, 1972).

[30] J. Schoenfield, Mathematical Logic (Addison-Wesley, Reading, MA, 1967).
[31] H.R. Strong, Translating recursion equations into flow charts, in: Proc. 2nd Annual

ACM Symposium on Theory of Computing, New York (1970). Also in J. Comput.
System Sci. 5 (1971} 254-285.

[32] E.G. Wagner, J .W. Thatcher and J.B. Wright, Programming languages as mathematical
objects, in: 7th MFCS, Lecture Notes in Computer Science, Vol. 64 (Springer, Berlin,
1978).

[33] M. Wirsing, P. Pepper, H. Partsch and W. Dosch, On hierarchies of abstract data types,
TU Mlinchen, Techn. Rep. TUM-18007 (1980).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 221-250

Invited Address

The Structured Description of Algorithm Derivations

John Darlington

Department of Computing, Imperial College, London, Great Britain

0. Introduction

The Computer Scientist can gain many benefits from a close study of
algorithms and their development. Not least amongst these are the
intellectual satisfaction gained and the insights such studies give into the
process of programming. However, this activity can be surprisingly
difficult and frustrating. Often one's attention is drawn to some clever
algorithm published in the literature and only after an investment of time
and energy that seems out of all proportion to the actual amount of text
being studied does one begin to understand how the algorithm works, or
even be 'convinced that it does indeed achieve its intended purpose. This
process can often be circumvented by seeking someone who knows the
algorithm in question. Such a person is usually able to convey the basic
ideas underlying the algorithm very quickly and armed with these insights
one is able to return to the code and quickly complete one's understanding.
Often it turns out that the code is in the opaque form it is because of some
relatively unimportant final optimisation.

As it is with the academic discipline of algorithm study so it is with the
humble activity of programming. We have long lamented our inability to
produce correct understandable and efficient programs or to maintain or
modify systematically programs produced elsewhere. It is often
commented that programming is closer to an art than a science and many
of the methods or tools felt necessary in established engineering disciplines
are completely lacking in programming.

The work presented here is aimed at removing some of these difficulties
and deficiencies. We hope to provide a means of describing algorithms and
their development that does not obscure the fundamentals of the algorithm
in question but maintains the level of preciseness and formality that we

221

222 J. Darlington

think is necessary. The crucial point we feel is that if one is just presented
with the code form of an algorithm what one is seeing is the end point of
some quite involved intellectual activity any record of which has been
thrown away. We wish to encourage programmers to 'show their working'
for the benefit of those who follow. We have all made or been the subject
of exhortations to document programs and their 'design'. Quite what is the
status of this object a 'design' has never to our minds been satisfactorily
explained, we hope to provide a notation in which it becomes a formal
object capable of being communicated and studied precisely.

In this endeavour we share many aims with those who have studied the
programming process and conducted many elegant studies of algorithm
developments such as that reported in [11]. However, there are some
crucial differences between the aims of these studies and our own. Firstly
there is the question of discovery versus communication. The intellectual
processes that a programmer goes through when initially developing a new
program or discovering a clever algorithm form a fascinating area for
study but we are primarily interested in the question of how such successful
developments can be communicated or checked. Of course any
methodology that aids communication will probably aid discovery but we
think it is important to separate these two concerns.

Secondly we are interested in using computers themselves to assist
programming. It would be ironic if programming itself was one of the few
'white collar' activities to totally ignore the advances in productivity
achievable by a sensible utilisation of the computing power becoming
increasingly available. At present many of the phases of program
development prior to coding are difficult to mechanise. • We think
computers could assist in making this much more rigorous and systematic
with consequent improvements in reliability, understandability and modifi
ability. Thus we are seeking notations formal enough to communicate to a
machine. Formality though need not imply unintelligability. At the present
state of technology a complete automation of the programming process is
unachievable. A sensible division of labour can be achieved by relying on
the user to supply the main intellectual insights and leaving to the machine
the detailed checking and book keeping that is necessary for accuracy.

The solution that we present to these interrelated problems is based on
the idea of program transformation. Using the transformational approach
to programming a programmer does not attempt to produce directly a
program that is correct, understandable and efficient, rather he initially

The structured description of algorithm derivations 223

concentrates on producing a program that is as clear and understandable as
possible ignoring any question of efficiency. Having satisfied himself that
he has a correct program he successively transforms it to more and more
efficient versions using methods guaranteed not to change the meaning of
the program. Our work on transformation started in collaboration with
R.M. Burstall at Edinburgh University. The need to perform significant
manipulations on programs led us to concentrate on programs written in a
functional language first, NPL [3] and then HOPE [6]. Support is growing
for the thesis that these languages are more suitable tools for program
development than the so-called imperative languages, such as PASCAL or
ALGOL, see [l] and we will confine our discussions to program
developments expressed within these languages. With Burstall we
developed a simple yet powerful methodology for transforming functional
programs that has become known as the unfold/fold system [4]. Many
different types of transformation can be expressed within this formalism
which guarantees that (partial) correctness is maintained. However,
significant transformations became too complex when expressed solely
within this formalism. To overcome this we are developing a meta
language that can be used to explicate transformations in a structured way.
This we feel offers a way to achieve the goals outlined above of providing a
calculus of algorithm development that is both intelligable and formal
enough to be checked by machine.

In Section 1 we introduce our functional language HOPE and the
unfold/fold transformation methodology. In Section 2 we, very briefly,
describe the types of transformations that can be achieved using the
unfold/fold system. Section 3 describes our meta-language and discusses
some of the higher level transformations or transformation 'tactics' that
can be written. Section 4 includes the full development of a well-known
algorithm described using the meta-language, and Section 5 concludes with
a discussion of the style of programming environments that could be
provided in the future.

1. Languages and Transformation Methodology

1.1. HOPE

In this section we will outline enough of HOPE to enable the reader to

224 J. Darlington

understand the examples used. A fuller exposition is contained in [6]. HOPE

is a higher order strongly typed functional language using recursion
equations, first implemented at Edinburgh. We are at present developing a
HOPE compiler at Imperial. The syntax we will use here differs slightly
from that of the current implementation.

A HOPE program is a set of equations defining functions. Separate
equations can be written for separate cases of the input variable. For
example

fib(O) = 1
fib(l)=l
fib(n + 2) = fib(n + 1) + fib(n)

defines the Fibonacci numbers. The cases on the left hand side of a function
definition must be non-overlapping and exhaust all the possibilities for the
types of the arguments involved.

HOPE is strongly typed, thus before being defined a function must have
its type declared, this is done using the dee statement

dee fib:num->num

HOPE employs polymorphic type checking [24] so that type declarations
can involve type variables e.g.

typvar alpha
dee/: alpha->num
f(a) =0

is the stubborn function that returns O whatever you give it. Data structures
in HOPE are represented as terms built up from constructor functions i.e.
functions having no equations. These are introduced using the data
statement. Thus

data listnum ==nil++ cons(num,listnum)

defines the data type list of numbers built up using the constructors nil (the
empty list) and cons. Data statements can also be paramaterised thus

data list(alpha) ==nil++ cons(alpha,list(alpha))

now defines a type constructor list such that list(num) is equivalent to the
type listnum defined earlier.

Thus

The structured description of algorithm derivations

dee length: list(alpha)---->num
length(nil) = 0
length(cons(a, 1)) = l + length(!)

calculates the length of any list whatever its constituents.

225

Running a HOPE program involves reducing an expression until
it is totally composed of constructor functions i.e. no more equations
apply. Thus cons(l, cons(2, cons(3, nil))) is the list of length 3 and
length(cons(l, cons(2, cons(3, nil)))) reduces to 3.

Infix operators are widely used in HOPE, thus we can define : : as an infix
operator for cons and the above equations become

length(nil) = 0
length(a : : 1) = 1 + length(!)

HOPE also allows user defined distfix (distributed-fix) operators, similar to
the traditional if then else. These are introduced using the distfix
statement, e.g.

distfix while _ do _

Underscores mark the places where operands should go. The name of such
an operator, for use in dee statements is the leftmost word in its
declaration.

There are two equivalent forms for the conditional expression. Thus
either

fact(n) = I if n = 0
else n *fact(n -1)

or
fact(n) = n = 0 then l

else n *fact(n - 1)

Local variables may be introduced using either the let or where construct.
Thus

f(x)=let u==x2 in u+u
and

f(x) = u + u where u ==x2

are both equivalent to f (x) = x 2 + x 2.
Being higher order HOPE allows functions to be passed as parameters and

226 J. Darlington

returned as values. Thus

typevar alpha, beta
dee *: (alpha-> beta) # list(alpha)-> list(beta)
infix *: 6
f *nil= nil
f*(a:: l)=f(a)::(f *l)

defines an operator * that applies a function to every element of a list, thus

fact *(l :: 2 :: 3 :: nil) evaluates to 1 :: 2 :: 6 :: nil

Higher order functions are especially useful as they provide iterators which
'package' recursion as in * above and avoid having to write it explicitly
many times. Of particular use are iterators over sets and HOPE has
borrowed the traditional set comprehension schema, thus

primesquares: set(num)->set(num).
primesquares(S) = {n 2 In e S & isprime(n)}

is the set of squares of all primes contained in a given set.

1.2. A transformation methodology

Assume we have the following functions defined

dee length: list(alpha)->num
length(nil) = 0 (1)
length(cons(n, 1)) = 1 + length(!) (2)

dee append: list(alpha) # list(alpha)-> list(alpha)
append(nil, 12) = 12 (3)
append(cons(n, 11), 12) = cons(n, append(l 1, 12)) (4)

(append joins two lists together)

and say we wanted to write a program to join two lists together and
calculate the length of the resulting list. Naively we could write this as

dee lengthof2: list(alpha) # list(alpha)->num
lengthof2(11, 12) = length(append(l 1, 12)) (5)

This is a perfectly adequate program but it contains some avoidable
inefficiency. Let us see if we can improve it. All our manipulations will

The structured description of algorithm derivations 227

take equations and produce further equations that do not change the
meaning of the program.

Firstly we can instantiate (5) by letting 11 be nil getting

lengthof2(nil, 12) = length(append(niL 12))

(3) allows us to rewrite this as

lengthof2(nil, 12) = length(l2)

Returning to (5) we now instantiate 11 to cons(n, 11) getting

lengthof2(cons(n, 11), 12) = length(append(cons(n, 11, 12))

(4) allows us to rewrite this as

lengthof2(cons(n, 11), 12) = length(cons(n, append(! 1, 12)))

(2) allows us to rewrite this as

lengthof2(cons(n, 11), 12) = 1 + length(append(l l, 12))

(6)

Finally (5) allows us to replace the subexpression length(append(l 1, 12)) on
the right hand side by lengthof2(11, 12) getting

lengthof2(cons(n, 11), 12) = 1 + lengthof2(11, 12) (7)

Thus we have produced two new equations, (6) and (7), which are true
statements about lengthof2

lengthof2(nil, 12) = length(12)
lengthof2(cons(n, 11), 12) = 1 + lengthof2(1 l, 12)

what is more these two equations constitute a complete program for
lengthof2 which is more efficient than the one given by (5), so we can
replace (5) by (6) and (7).

More formally we have the following transformation operators which
act on equations and produce further equations

(i) Definition. Introduce a new recursion equation whose left hand
expression is not an instance of the left hand expression of any previous
equation.

(ii) Instantiation. Introduce a substitution instance of an existing
equation.

(iii) Unfolding. If E=E' and F=F' are equations and there is some

228 J. Darlington

occurrence in F' of an instance of E, replace it by the corresponding
instance of E' obtaining F", then add the equation F=F".

(iv) Folding. If E=E' and F=F' are equations and there is some
occurrence in F' of an instance of E', replace it by the corresponding
instance of E obtaining F", then add the equation F=F".

(v) Abstraction. We may introduce a where clause, by deriving from a
previous equation E = E' a new equation

E=E' [ul/Fl, ... , un/Fn]

where (ul, ... ,un) = (Fl, ... ,Fn)

(E[El/£2] means E with all occurrences of subexpressions £2 replaced by
EI.)

(vi) Laws. We may transform an equation by using on its right hand
expression any laws we have about the primitives (associativity,
commutativity, etc.) obtaining a new equation.

Strictly these laws apply only to first order programs in HOPE but their
extension to higher order functions is only technical and we will not use
these extensions in this paper.

These rules, which have become known as the unfold/fold system
preserve the meaning of any program they are applied to except that they
may make a program fail to terminate when it terminated before, i.e. they
preserve partial correctness. [21] contains a theoretical study of this system
and rules for avoiding non-termination.

2. Transformation Capabilities

The transformation system introduced in the previous section is able to
achieve a wide variety of improvements. However, when we come to
consider transformation as a practical software tool, transformations
considered solely in terms of the rules outlined above become very detailed.
In this section we outline several important high level transformation types
in terms of which transformations can be planned and explicated.
However, it is important that all these transformations ultimately rest for
their implementation on the simple rules outlined above. Thus the
correctness of each transformation is ultimately guaranteed by the
correctness of the basic rules.

The structured description of algorithm derivations 229

(i) Loop combinations. Programs written as specifications tend to have
many independent computations kept apart for reasons of clarity. One of
the main transformation tasks is to interweave these separate iterations
whenever possible.

Two main sorts of loop combinations can be identified. We have the case
where one inner loop builds up a data structure that an outer one traverses,
these can often be compressed to a single loop removing the need for the
intermediate structure. Alternatively we may have two or more similar
loops in separate parts of a program which can be brought together and
executed as one loop. Further details of these transformations can be
found in [4,9].

(ii) Automatic implementation of abstract data types. Abstract data types
provide a powerful tool for structuring program development. Guttag [17]
shows how the behaviour of such abstract data types can be specified
equationally before any implementation is considered, allowing programs
to be developed at suitable conceptual levels. The use of a functional
language and transformation allows this technique to be exploited to the
full. Within a functional language the equational specification often
constitutes a preliminary implementation allowing 'abstract' programs
employing the data type (for example priority queues) to be tested in
isolation. When a designer is satisfied with this program and decides to
proceed to an implementation in a more machine oriented data type (say
for example binomial trees) using transformation all he would have to do is
write a simple mapping function showing how he intends to use the lower
data type (binomial trees) to represent the higher (priority queues). Given
this information efficient implementations for all the higher level functions
can be produced automatically using the transformation techniques
outlined in [8], an extended example being given in [25].

(iii) Synthesis. Viewing HOPE as a specification vehicle there is a
continuous spectrum of increasingly inefficient programs. For example
using the set notation one may easily define sets that are of infinite
cardinality or not explicitly constructable. These are however legitimate
HOPE programs and can be converted to runnable versions using the
methods outlined earlier. Another form of specification that is very useful
is that of general equations i.e. equations with several functions on the left
hand side defining some function implicitly. For example say we have a

230 J. Darlington

function f defined normally, then its inverse finv can be defined implicitly
using the equation

finv(f(x)) =x

Such an equation cannot be run in HOPE, however, transformation can be
used to convert it to an explicit definition of jinv that can be run.

Further details of these applications can be found in [7,8].

(iv) Computation sequence re-organisation. Transformation can be used
to re-arrange the order in which operations are performed during a
computation. For example from a version of factorial defined thus

fact(O) = I
fact(n + 1) = (n + 1) *fact(n)

alternative versions can be produced that carry out the computation in
different orders, of these perhaps the most important is the iterative
version viz.

fact(n) = factit(n, 1)
factit(O, ace)= ace
factit(n + 1, ace)= factit(n, n + 1 *ace)

which can be translated directly to an imperative program using a while
loop as explained in [23].

Further details of these transformations are in [4,9].

(v) Structure sharing. Conventional languages that include assignment
and explicit control over storage allocation allow the user to aiter structures
in place and affect changes using side effects. This style of programming is
recognised as being very efficient but also notoriously difficult to
understand and prone to error. Transformation allows this sort of
behaviour to be introduced in a controlled and systematic way. Starting
from a specification in a functional language (which of course cannot
employ side effects) the way storage is used can be considered and
optimised, introducing side-effects guaranteed not to change the meaning
of the program. Details can be found in [25].

The structured description of algorithm derivations 231

3. A Transformation Meta-language

The idea of using a meta-language to control a general theorem proving
system was first used in the LCF Project [15]. Here a meta-language, ML,
was developed to allow the writing of structured plans to assist in the
proving of theorems about programs. This meta-language idea was first
applied in the program transformation context by Feather [12]. Here the
meta-language was not a full programming language but a collection of
methods whereby a user could guide a general transformation system based
on the unfold/fold methodology.

Our approach builds on both these projects. We have chosen HOPE

itself to be our meta-language. Thus the objects manipulated by our HOPE

meta-language are HOPE object programs and the operators of the meta
language, or tactics in the LCF terminology, act on HOPE object programs
and return HOPE object programs.

(This rather reflexive decision has several advantages, not least of which
is the fact that we do not regress into a language definition project. By
defining HOPE abstract structures within HOPE and writing a HOPE parser
in HOPE we have the skeleton of a HOPE compiler. These benefits apart
HOPE has proved a good choice for a meta-language having powerful
structure defining and manipulating facilities.)

3.1. First level tactics

Our basic tactics, out of which all others are written, consist of the basic
rules of the unfold/fold system. Thus we define the following HOPE distfix
operators that work on HOPE object programs

distfix instantiate _ occuring-in _ with _
dee instantiate: variable # equation # expression--> equation
distfix unfold _ using _
dee unfold: equation # equation--> equation
distfix fold _ with _
dee fold: equation # equation--> equation
distfix abstract _ within _
dee abstract: expression # equation-->equation
distfix rewrite _ as _ because _
dee rewrite: equation # equation # rule-->equation
distfix define _ by _

232 J. Darlington

dee define: set(function-name) # set(equation)-->set(equation)
distfix replace _ within _ by _
dee replace: function-name # program # set(equation)--> program

Most of these operators should be understandable from their previous
definition. All work on equations returning equations, except define and
replace. Define is really an identity function just returning the set of
equations defining the functions named in the first argument. Replace is
the only operator that allows us to alter programs. Programs are just sets
of equations and replace acts upon the program given in the second
argument by replacing those equations defining the function named in the
first argument by the equations given in the third argument.

The use of some of these operators can be seen in the following teletype
session showing them being used to perform the optimisation used as a
simple example in [4]. In the meta-language there are two ways one may
refer to object program equations. One may give the whole equation in
quotes and parse it using the function eqparse (available as <: :) distfix
operators) or one may select an equation from a program by giving the
left hand side in quotes using the distfix operator eqn _ within _, e.g.
either

(: "fact(n + 1) = n + 1 *fact(n)" :)
or

eqn "fact(n + 1)" within P

evaluate to the same equation.

let append

in

define {"append", "g "}
by { "append(nil,y) = y ",

'' append(cons(x, y), z) = cons(x, append(y, z)) ",
"g(x,y, z) = append(append(x,y), z)"}

replace "g(x,y,z)" within append
by {unfold

instantiate "x" occuring-in
eqn "g(x,y,z)" within append
with "nil"

using
eqn "append(nil,y)" within append,

The structured description of algorithm derivations

fold
unfold

instantiate "x" occuring-in
eqn "g(x,y,z)" within append
with "cons(u, v)"

using eqn "append(cons(x,y),z)" within append
with eqn "g(x,y,z)" within append};

GIVING
append(nil,y) = y
append(cons(x,y), z) = cons(x, append(y, z))

g(nii y, z) = append(y, z)
g(cons(u, v),y,z) = cons(u,g(v,y,z))

3.2. Second level tactics

233

The operators outlined above are adequate to describe a wide range of
different transformations. However, as explained earlier, significant
transformations expressed solely at this level are very cumbersome. The
next step in expanding the expressive power of our transformation meta
language is to define a set of higher level operators. These correspond to
the different types of transformation outlined in Section 2. The important
point is that these higher level operators are written in terms of the lower
level ones and when applied attempt to construct a transformation step of
the required type in terms of the unfold/fold operators. These tactics can
thus fail in that they are unable to perform the required transformation but
can never produce a wrong program as they are working within a
correctness preserving formalism.

Each of the transformation types in Section 2 has a set of heuristics to
guide the transformation tactic and a set of criteria to judge its success or
failure. Thus they involve a limited amount of search but this search is
confined to within the tactic avoiding a combinatorial explosion. We can
cut down the amount of search needed by giving more information in the
tactic.

Thus for example corresponding to the merge loops of Section 2(i) we
have the following tactic

distfix mergeloops for_ on_ within_
dee mergeloops: equation # variable # program-program

234 J. Darlington

The previous example can now be done with a single meta-language
command

let P==mergeloops for eqn "g(x,y,z)" within append
on "x" within append

The code for mergeloops instantiates the variable mentioned according to
its type and then performs a series of unfolds followed by folds to express
the composition as a single direct recursion.

The syntax of some of the other operations is
(i) Change data type

distfix implement _ within _ using _ name _
dee implement: function _ name # program # function _ name

function _ name-+program.

The first parameter names the 'abstract' function for which a 'concrete'
version is required. The third parameter names the representation function
that shows how one wishes to represent this abstract data type and the final
parameter is the name one wishes to give to the concrete function to be
synthesised. The result, if successful, is the original program augmented
with equations for the concrete function.

Thus using the example from [4] given that the following program, P,
had been defined

data pair== nilp ++ conspi(num,pair) ++ conspp(pair,pair)
data tree== niltree ++ constree(num,tree,tree)

dee rep: pair-+tree
dee twist: tree-+tree

twist(niltree) = niltree
twist(constree(i, tl, !2)) = constree(i, twist(t2), twist(tl))

(Returns mirror image of tree)

rep(nilp) = niltree
rep(conspi(i, conspp(tl, t2))) = constree(i, rep(tl), rep(t2))

(Simple representation of a labelled tree in terms of pairs.)

the meta-language command is

let P == implement twist within P using rep name conctwist

The structured description of algorithm derivations

and the result is P augmented with the equations

conctwist(nilp) = nilp
conctwist(conspi(a, conspp(p 1, p2)))

235

= cons pi(a, cons pp(conctwist(p2), conctwist(p 1)))

(ii) Change computation sequences. The tactic to convert a function
defined recursively into an iterative version is

distfix convert-to-iteration _ within _ using _ name _
dee convert-to-iteration: function_ name # program # equation

function_ name-+program

The first parameter names the function for which an iterative version is
required. The third is the equation defining the iterative form implicitly in
terms of the recursive form, the 'eureka' step of [4], and the last parameter
is the name to be given to the iterative form. The result, if successful, is an
enhanced program containing equations, in iterative form, for the derived
function. Thus given a program, P, for factorial similar to the one defined
in Section 2 the meta-language command to convert this to an iterative
form is

let P == convert-to-iteration factorial within P
using (: "factit(n, ace)= ace* factorial(n)" :)

name factit

(iii) Synthesise. The tactic to produce a runnable program for a function
defined implicitly is

distfix synthesise _ within _ using _
dee synthesise: function _ name # program #

equation -+program

The first parameter names the function which is defined implicitly by the
equation given as the last parameter. The result, if successful, is a program
containing equations for the function that can be run.

For example if a program P contains equations for a function f its
inverse, jinv, can be produced via the meta-language command

let P == synthesise jinv within P using (: "jinv(f(x)) = x" :)

(iv) Structure sharing. This is accomplished via the tactic

distfix make-destructive _ within _ on _ name _

236 J. Darlington

dee make-destructive: function _ name # program # variable
function_ name-+program

The effect of this tactic is to attempt to produce a version of the named
function that overwrites the argument named.

3.3. Paradigm algorithms

It is becoming increasingly recognised that there are not all that many
totally different fundamental algorithms and that many seemingly
different algorithms are just variations on a single theme. Correspondingly
advice on how to program a solution to a particular problem often consists
of simply naming a general technique thought appropriate. Given such
advice programmers are usually fairly adept at instantiating the particular
paradigm to fit their circumstances. It would be nice to be able to instruct
our meta-language system in such a direct way. In this section we will
outline a tentative approach that goes some way towards providing this
capability. The technique we will use owes a great deal to the ideas put
forward by Backus and others concerning the power of higher order
functions, and borrows directly from an example given by Ronan Sleep.
An allied approach is outlined in [14].

We will use as an example binary search. This is perhaps the simplest of
all paradigm algorithms. The central idea is very simple, if one is searching
a structure for an occurrence of an item performing a binary search consists
of splitting the structure in half and deciding after each split that one half
can be discarded as it could not contain the sought after item. The splitting
is continued until the item is found whereupon success is indicated together
with some value computed from the item (e.g. the information stored
under some particular key) or until the structure cannot be decomposed
further whereupon failure is indicated. We see that this algorithm depends
upon being able to split a structure roughly in half and being able to decide
in which half to continue searching. This idea of a generalised binary
search can be captured by the following higher order HOPE function
g_b_s.

dee g_b_s: alpha # beta # (alpha -+truval) # (alpha-+ alpha # alpha)
(alpha # alpha # beta-+truval) #

(alpha # beta-+truval # gamma)

-+truval # gamma

The structured description of algorithm derivations 237

The meaning of the various arguments in

g_b_s(str, s, stop, split, decision, test)
is

str is the structure being searched (of type alpha)
s is the item we are looking for (of type beta)
stop is the test that tells us when we can decompose the

structure no more
split is the function that decomposes our structure
decision is the test that tells us in which of the two structures

resulting from the decomposition to continue
searching

test tells us whether we have found the item we are
looking for and if so returns a computed value (of
type gamma)

g_b_s can be defined thus,

g_b_s(str, s, stop, split, decision, test)=

let tv, v == test(str, s)
in tv, v if tv

else false, undefined if stop(str)
else let strl, str2 == split(str)

in g_b_s(strl, s, stop, split, decision, test)
if decision(strl, str2, s)

else g_b_s(str2, s, stop, split, decision, test)

Producing a particular realisation of this generalised binary search can be
achieved by instantiating the functional parameters. This is a two stage
process. Firstly stop and split depend on the particular structure we wish to
perform binary search over and secondly decision and test are dependent
on the particular problem we are applying binary search to, in particular
what kind of total order we have over the structure. Thus we are expanding
the notion of structure and expect to be able to access within the module
defining the structure the appropriate functions for stop and split, a
concept already present in CLU [19] and CLEAR [5].

Our meta-language command therefore is

distfix use _ over _ on _ within _
dee use: algorithm-name # structure-name # function-name

program->program

238 J. Darlington

The first parameter names some general algorithm for which we have a
generic form as above, the second parameter names a structure appropriate
to this algorithm and the third a function that it is desired to implement
using this algorithm. The result, if successful, is a version of the function
employing an instance of the particular paradigm algorithm. This tactic
would work by first combining the particular generic form with the
structure named instantiating as many of the functions as required and
then fitting the resulting structure specific algorithm to the problem
mentioned.

To return to our example of binary search, say in a program P we had
the following simple function over arrays

search(a, i) =m st 1 :5m:5size(a) & a[m] = i

and we know that a is ordered in ascending sequence. To implement this
using binary search the meta-language command could be

use g_b_s over arrays-with-interval on search within P

arrays-with-interval is the name of a structure consisting of a triple of an
array and two integers, the lower and upper bounds respectively. For this
structure the functions stop and split are

stop(a, i,j) = j :5 i
split(a, i,j) = (a, i, mid), (a, mid,j)

where mid== li~j j
(L n J is n rounded down to the nearest integer)

Having thus specialised g_b_s the implementation of the use meta
language operator must work out decision and test. Test could simply be

test(a, i,j,s) = true, j if a[j] = s
else false, undefined.

To produce decision the operator must first show that searching in one of
the substructures must always return false and then produce code to decide
which it is. It does not require great knowledge of total orderings to come
up with

decision(al, il,j 1, a2, i2,j2, s) = al [j 1) > s

The structured description of algorithm derivations 239

Having produced our required functions in meta-language operator would
replace the body of search in P by a call to g_b_s using the above
functions.

We must again emphasise that the ideas presented in this section are
tentative and we are not yet at the stage to start implementing the use
tactic. However this approach does feel to correspond to our intuitive
notions about algorithms and structures.

3.4. General strategies

The meta-language being a full programming language (HOPE) should
enable us to program development strategies that apply over a wide class of
programs. For example the techniques used by Feather in his program
transformation system [12] can be implemented using the apparatus we
have developed. One could also perhaps program a strategy corresponding
to an applicative version of the Jackson Design Technique [18] that has
been so successful in the area of commercial data processing.

4. An Example, Hamming's Problem

In this section we would like to show some of the apparatus introduced
earlier at work on a simple problem. The one we have chosen is fairly well
known, having been discussed in [11]. We want to produce a list of all the
numbers that can be formed by multiplying 2, 3 and 5 together any number
of times and would like the list to be in ascending sequence.

4.1. Specification

Our initial specification is the following HOPE program,

dee hamming: -> list(num)
dee g: -> set(num)
dee order: set(num)-> list(num)
dee min: set(num)->num
dee -: set(num) # num->set(num)
infix -: 6

hamming = order(g)

g = { 2 ; 3 i 5 k I O :;; i, }, k }

240 J. Darlington

order(S) = min(S):: Order(S - min(S))

min(S) =S st SES & Vsl ES S:5s1

S-s={sllslES&sl:;t:s}

Note that g is an infinite set and hamming an infinite list. Such structures
are perfectly acceptable in languages with lazy evaluation [I 3]. However, in
the above program we ask for the minimum of an infinite set so min would
never terminate. Nevertheless such a program is perfectly acceptable as a
specification.

4.2. Meta-language program

We next present the meta-language program that will take the above
specification and produce a runnable program. Although we are forced to
present things linearly we are not claiming that the development can be
understood solely by examination of the meta-language program. This can
best be gained by examining intermediate forms of the program a process
best aided by a VDU rather than paper.

There are three main steps in the development corresponding to three
main ideas in the final algorithm. We first unfold the definition to produce
the initial value of the list, 1, and re-arrange the set g into the union of
three sets that are multiplied throughout by 2, 3, 5 respectively. We then
promote the ordering process into the creation of these sets. This is done by
introducing two functions: merge a refinement of order that works on
ordered lists instead of sets and * 1 an infix operator over ordered lists
that corresponds to the operation of multiplying every element of a set by a
given number. Merge and * 1 are introduced via equations defining them
implicitly and the last two steps of the meta-language program synthesise
runnable versions of them.

In the following meta-language program we have ommitted type
declarations, all new meta-language operators are used in distfix form.

transformhamming P =

let new hamming== expand hamming within P

in

let newhamming == fold newhamming
with (: "merge(order(S1), order(S2), order(S3))

= order(S1 U S2 U S3)" :)

The structured description of algorithm derivations 241

in

let newhamming == fold new hamming
with(: "n*1 order(S)=order({n,s/seS})" :)

in

let newhamming == fold new hamming with eqn "hamming" within P

in

let P == synthesise merge within P

in

using <: "merge(order(S1), order (S2), order(S3))
=order(S1US2US3)" :)

let P == synthesise * 1 within P
using(: "n *l order(S)=order({n,s/seS})" :)

in replace hamming within P by { newhamming}

expand ham within P =

let ham==

in

unfold
unfold
unfold
unfold ham
using eqn "order" within P

using (: "min(g) = 1" :)
using eqn "g" within P

using eqn "-" within P

fold
rewrite (: "hamming= I ::order({2i3J 5 k IO:::: i,j, k&i,j, k=t= O})" :)

as(: "hamming= 1 :: order(2 *S{2i3J5k I O::::i,j, k} U
3 *S{2i3i 5k /0::::i,j, k} U
5 *S{2i3J5k /0::::i,j, k})

where n *S S = { n, s Is E S}" :)
because setrule.

with eqn "g" within P

242 J. Darlington

4.3. Final program

The program produced by the application of the above meta-language to
the specification of Section 4.1 is essentially the one given in [20). In HOPE

this is,

hamming= 1 : : merge(2 * 1 hamming, 3 * 1 hamming, 5 * I hamming)

merge(ml ::Ll,m2::L2,m3 ::L3)

=min:: merge(remove(min, m I : : L 1),
remove(min, m2:: L2),
remove(min,m3 ::L3))
where min== minof3(ml, m2, m3)

remove(m,n::L)=L if m=n
else n ::L

minof3(ml, m2, m3) = ml if ml :5 m2 & ml :5 m3
else m2 if m2:5m1 & m2:5m3
else m3

The behaviour of this program can best be understood pictorially in terms
of the Kahn, MacQueen communicating processes. Here streams,
corresponding to the list in the above program, connect process boxes.

merge

\ 1

The 2, 3 and 5 boxes remove the number at the head of their input stream
multiply it by 2, 3 or 5 respectively and pass it on. The merge box passes on
the smallest of the numbers at the head of its three input streams removing
any duplicates from the head of the other input stream. Thus if 1 is injected

The structured description of algorithm derivations 243

into the system as shown the required infinite stream of numbers is
produced at A.

4.4. Detailed transformation

In this section we show the detailed transformation induced by the meta
language program of Section 4.2 that takes the specification of Section 4.1
to the runnable program of Section 4.3.

We will write the top-level meta-language command on the left and the
detailed steps of the transformation on the right.

expand hamming within P

hamming= order(g)

= min(g) : : order(g - min(g))
Unfolding order

unfolding g

rewriting min(g) as l
= 1 :: order({2i3J 5 k IO :5 i,j, k & i,j, k, * O})

= 1 : : order(2 *S{ 2; 315 k I O :5 i, j, k} U
3 *S { 2 ; 3 15 k I O :5 i, j, k } U
5 *S{2i3J5klO:s:i,j,k})
where n *S S= {n.sls ES}

unfolding -

rewriting
= 1 : : order(2 *S g U 3 *S g U 5 *S g)

where n *S S = {n. slse S}

fold newhamming
with (: "merge(order(Sl), order(S2), order (S3))

= order(S1 U S2 U S3)" :)

folding with g

hamming = l : : merge(order(2 *S g), order(3 *S g), order(5 *S g))
where n *S S = { n. s Is E S}

fold newhamming
with(: "n *1 order (S)=order({n.slseS})" :)

hamming= 1 ::merge(2 *1 order(g), 3 *1 order(g), 5 *1 order(g))

244 J. Darlington

fold newhamming with eqn "hamming" in P

hamming = 1 : : merge(2 * 1 hamming, 3 * 1 hamming, 5 * 1 hamming)

synthesise merge within P
using (: "merge(order (S1), order(S2), order(S3))

= order(S1 U S2 U S3)" :)

RHS = order(S1 U S2 U S3)

= m:: order((S1 U S2 U S3)- m)
where m == min(S1 U S2 U S3)

= m:: order((S1 - m) U (S2 - m) U (S3 - m))
where m == minof3(min(Sl), min(S2), min(S3))

Unfolding order

Properties of min, U

= m :: merge(order(S1 - m), order(S2- m), order(S3 - m))
where m == minof3(min(Sl), min(S2), min(S3))

Folding with definition of merge

= m:: merge(rem(m, order(Sl)), rem(m, order(S2)), rem(m, order(S3)))
where m == minof3(min(S1), min(S2), min(S3))

Properties of order, min

= m:: merge(rem(m, order(Sl)), rem(m, order(S2)), rem(m, order(S3)))
where m == minof3(head{order(S1)), head(order(S2)),

head(order(S3)))
folding with order (head(n:: 1) = n)

Thus LHS = RHS i.e.

merge(order(Sl), order(S2), order(S3))
= m:: merge(rem(m, order(S1)), rem(m, order(S2)), rem(m, order(S3)))

where m == minof3(head(order(S1)), head(order(S2)),
head(order(S3)))

merge(OSI, 0S2, 0S3)
= m:: merge(rem(m, OSI), rem(m, 0S2), rem(m, 0S3))

where m == minof3(head(OSI), head(OS2), head(OS3))

Generalising

The structured description of algorithm derivations 245

Synthesise * 1 in P
using(: "n *1 order(S)=order({n.slseS})" :)

RHS = order({ n. s I s E S})

= m : : order({ n . s Is E S}) - m)
where m = = min({ n . s Is E S})

= n. m : : order({ n. s Is E S}) - n. m)
where m = = min(S)

= n. min(S) :: order({n. s Is E (S- min(S)))})

= n. min(S):: (n * 1 order(S - min(S)))

Unfolding order

Fact about min

Folding with definition of * 1

LHS =n *1 (min(S)::order(S-min(S)))

Thus

n *1 (min(S)::order(S-min(S)))
= n. min(S):: (n * 1 order(S - min(S)))

n * 1 (m:: OS)= n. m:: (n * 1 OS)

Generalising

Thus when the new equations developed are used to replace the old
equation for hamming in P we have the program given in Section 4.3. We
hope the reader will agree that the detailed derivations shown above
although tedious do not require any great insights once the overall
structure of the development has been set out by the meta-language
program. At a few points rewritings dependent on the properties of the
functions were used but these were not very deep theorems. Although we
could not expect the machine to discover these facts for itself we could
hope that it could verify that they were in fact true. Note the great
similarity in the structure of the transformations for the two synthesise
operations which lends credence to the claim that this level of problem
solving can be largely left to the machine.

246 J. Darlington

5. Advanced Applicative Programming Environments

There is a growing interest in the development of systems to support the
development and maintenance of large software projects [22,26]. A trans
formation system, particularly a meta-language driven one, would seem to
form a natural component of such a system.

One advantage of writing program specifications in a functional
language is that in many cases these specifications can be run, albeit slowly,
to test that they do in fact specify what is required before proceeding to an
implementation. We also consider that it has been demonstrated that the
automatic or semi-automatic verification of programs is much easier if
these programs are written in a functional language, see for example [2]. In
fact within the functional languages there is a continuous spectrum,
running from execution through symbolic execution to formal proof and
we can envisage a set of tools that would enable a user to establish, with
more or less certainty, that his specification has all the desired properties.

Having satisfied himself with the specification the task of the designer
would be to plan the transformations needed to take this specification to a
runnable program and write the meta-language program described earlier.
The system would then carry out the transformation, possibly providing
estimates of the efficiency of the programs produced. After an acceptably
efficient program has been produced the specification and successful meta
language program would be stored. There should never be any need for any
one to examine the code of the final program.

The fact that the specification is written for maximum clarity and under
standability should have important consequences when we come to consider
the question of maintenance, modification and portability. Any changes
required to meet changing circumstances would of course be made to the
specification, which being more modular than conventional programs
should greatly reduce the likelihood of errors being introduced. Unless the
change is a major one it is likely that the original meta-language program
will still achieve an efficient program without further user intervention.
Even if modification is required to the meta-language program there is no
possibility of introducing error. Changes in the implementation of a given
specification, say for the purposes of implementing on a different target
machine, would be achieved by suitably modifying and re-running the
meta-language program.

Just as conventional programs can share functions or procedures so

The structured description of algorithm derivations 247

meta-language programs can share sub-programs or tactics in the LCF
terminology. Thus a 'tool box' of generally applicable tactics can be built
up to collect and codify knowledge about algorithm design, giving the
designer more and more powerful tools for program development. As the
system becomes more powerful so the vocabulary available to the designer
would become more sophisticated.

Another advantage of working totally within applicative languages is
that these are much more suited to the new generation of parallel architec
tures that are being developed (see for example [10, 16]). We feel that the
arrival of these machines would go a long way towards making the
languages and ideas discussed here practical.

In the future we hope to extend the specification/transformation
approach to include earlier parts of the software life cycle. We would do
this by providing specialised user languages and transformation systems.
These would enable an application specialist to state his requirements
precisely, but in his own terms, and then have these converted to runnable
programs. It would be possible to provide such languages and systems, for
particular domains, right now. However, we hope to achieve this in general
by developing ways of systematically extending a general specification
language to a specialised requirements language and at the same time
extending the transformation system to cope with requirements written in
the language provided. Thus we envisage that 'programs' in the future will,
more and more, be written by the people who originally conceive of the
need for these programs and that the work of present day systems analysts
or designers will consist of providing the specialised languages and systems
that enable such programs to be specified and efficiently implemented.

6. Conclusion

At the time of writing, July 1981, the status of the meta-language is that
after only 2 months of work all the first level tactics have been implemented
and design work is proceeding on the second level ones. We have produced
a HOPE in HOPE parser which is being extended to provide various HOPE

compilers particularly one for our parallel machine. We do not see any
great impediment to implementing the second level tactics and we look
forward to using this richer set of operators to conduct experiments in
program development and maintenance. We have conducted studies in

248 J. Darlington

expressing the development of several 'classical' algorithms using the meta
language including topological sort, longest upsequence, and the Fisher
Galler algorithm.

We hope that in this and related papers we have gone some way towards
convincing readers that programming can progress from being an art to a
science and be formalised sufficiently to allow at least semi-automation.
Much remains to be done but we are convinced that the combination of
applicative languages and transformation techniques offers the best hope
for overcoming the problems that plague software development at the
moment.

Acknowledgements

It is a great honour to be invited to present a paper at a conference in
honour of Professor van Wijngaarden. As a relative newcomer I will leave
it to others to document his substantial contributions to the study of
algorithms and the development of higher level languages. As a recent
member of IFIP WG2. l I have very much enjoyed the friendly and
constructive atmosphere he engenders. The work presented here grew out
of the working group's investigations into the feasibility of developing
languages, called 'Abstracto' and 'Constructo' respectively, suitable for
communicating algorithms and their developments although of course it
does not represent the working group's collective view.

This work owes a great deal to the ideas developed in the LCF project by
Michael Gordon, Robin Milner and Christopher Wadsworth. My
colleagues at Imperial College have been directly involved in much of this
work particularly Ian Moor and Victor Wu who have been responsible for
many of the ideas in the meta-language and all the implementation. Our
work on transformation springs from very fruitful earlier collaboration
with Rod Burstall who with David MacQueen and Don Sannella is
responsible for the language HOPE used here. This work has been
consistently supported by the UK SERC.

The structured description of algorithm derivations 249

References

[I] J. Backus, Can programming be liberated from the Von Neumann style? A functional
style and its algebra of programs, Turing lecture, Comm. ACM 21 (8) (1978) 613-641.

[2] R. Boyer and J. Moore, Proving theorems about LISP functions, J. ACM 22 (1975)
129-144.

[3] R.M. Burstall, Design considerations for a functional programming language, Proc. of
Infotech State of the Art Conference, Copenhagen (1977) 54-57.

[4] R.M. Burstall and J. Darlington, A transformation system for developing recursive
programs, J. ACM (1977) 44-67.

[5] R.M. Burstall and J .A. Goguen, Putting theories together to make specifications, Proc
5th Joint Conference on Artificial Intelligence (1977).

(6] R.M. Burstall, D.B. MacQueen and D.T. Sanella, HOPE an experimental applicative
language, Int. Rep. Dept. Computer Science, University of Edinburgh (1980).

[7] J. Darlington, Application of program transformation to program synthesis, Proc. Int.
Symp. on Proving and Improving Programs, Arc et Senans, France (1975).

[8] J. Darlington, Synthesis of implementations for abstract data types, Rep. 80/ 4, Dept. of
Computing, Imperial College London (1980).

[9] J. Darlington, An experimental program transformation and synthesis system, Artificial
Intelligence J. 16 (1981) 1-46.

(10] J. Darlington and M. Reeve, ALICE a multi-processor reduction machine for the parallel
evaluation of applicative languages, Proc. ACM/MIT Conf. on Functional
Programming languages and Computer Architectures (1981).

[11] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ
1976).

[12] M.A. Feather, 'ZAP' program transformation system, primer and users manual, Rep.
No. 54, Dept. of Artificial Intelligence, University of Edinburgh (1979).

[13] D.P. Friedman and D.S. Wise, CONS should not evaluate its arguments, in: S.
Michaelson and R. Milner (Eds.), Automata, Languages and Programming (Edinburgh
University Press, 1976).

[14] G.H. Gannet, A handbook of algorithms and data structures, Rep. CS-80-23, University
of Waterloo, Canada (1980).

[15] M.J. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF, Rep. CSR-11-77, (Part I),
Dept. of Computer Science, Edinburgh University (1977).

[16] J. Gurd, A. Watson and A. Glauert, A multi layered data flow computer architecture,
Int. Rept., Dept. of Computer Science, University of Manchester (1978).

[17] J. V. Guttag, Abstract data types and the development of data structures, Comm. ACM
20 (1977) 397-404.

[18] M.A. Jackson, Principles of Program Design (Academic Press, London, 1975).
[19] B.H. Liskov, E. Moss, C. Schaffert, B. Scheifler and A. Snyder, CLU reference manual,

Techn. Rep. MIT Laboratory for Computer Science (1979).
[20] G. Kahn and D. McQueen, Coroutines and networks of parallel processes, in:

Information Processing 77 (North-Holland, Amsterdam, 1977).
[21] L. Kott, About a transformation system: a theoretical study, Proc. Third Symposium on

Programming, Paris (1971).

250 J. Darlington

[22] M.M. Lehmann, The environment of program development and maintenance-programs,
programming and programming support, Rep. 81/2, Dept. of Computing, Imperial
College London (1981).

[23] J. McCarthy, A basis for a mathematical theory of computation, in: P. Brafford and D.
Hirschuerg (Eds.), Computer Programming and Formal Systems (North-Holland,
Amsterdam, 1963).

[24] R.A. Milner, A theory of type polymorphism in programming, CSR-9-77, Dept. of
Computer Science, University of Edinburgh (1977).

[25] I. Moor and J. Darlington, A formal synthesis of an efficient implementation for an
abstract data type, Int. Rep., Dept. of Computing, Imperial College (1980).

[26] W.E. Riddle and R.E. Fairley, Software development tools, in: Proc. Pingree Park
Workshop (Springer-Verlag, New York, 1980).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 251-269

HYPERLISP

Masahiko Sato and Masami Hagiya

Department of Information Science, Faculty of Science, University of Tokyo,
Bunkyo-ku, Tokyo, Japan

A new programming language called HYPERLISP is presented, whose domain
of symbolic expressions is mathematically neater than that of LISP. The
semantics of HYPERLISP is defined in a strictly constructive manner. The cor
rectness of a meta-circular interpreter for HYPERLISP is also provable by a con
structive method.

0. Introduction

In this paper, we first introduce a new domain S of symbolic expressions
(sexps, for short) which is mathematically neater than the classical domain
of LISP symbolic expressions. All the sexps are constructed from the
initial sexp O by successive applications of two pairing functions cons
and snoc. Moreover, our domain S enjoys the set theoretic isomorphism
S == S x S + S x S, while for that of LISP we have S ==A+ S x S where A is the
set of atoms. It then becomes possible to define car and cdr as total
functions.

We then introduce a programming language which we call HYPERLISP.
The language is LISP-like in the sense that any sexp is a meaningful HYPER
LISP program. Hence, taking into account the possibilities of nontermina
tion of evaluation and erroneous termination, the semantics of HYPERLISP
will be given as a binary relation eval c S x S such that eval(x, y) and
eval(x,z) implies y=z (i.e., eval is a partial function: S-->S). The intended
meaning of eval(x, z) is that the sexp x is evaluated to z. We define eval
formally as the least set satisfying a constructively given set of inductive
clauses. Since inductive definition is the most basic way of definition in
constructive mathematics, we think that, from the foundational point of
view, this is the most unproblematic and fundamental way of defining the
semantics of HYPERLISP. The practical and theoretical usefulness of our
semantics may be well illustrated by the following facts:

251

252 M. Sato and M. Hagiya

(i) The semantics worked as a complete specification of the language in
the implementation of the interpreter.

(ii) The correctness of an interpreter (written in HYPERLISP) is provable
in a constructive manner.

The domain S has an interesting algebraic structure which we cannot
explain here due to the limitation of space. For this, as well as for a more
detailed exposition of the syntax and semantics of HYPERLISP, we refer the
reader to [8].

1. Sexp

1.1. Definition of a sexp

Imagine an infinite leaf-free binary tree like Fig. 1, where a small circle is
drawn at each node. The topmost node is called the root.

Fig. l. Fig. 2. Fig. 3.

Choose a finite number of nodes arbitrarily and mark them black as in
Fig. 2. The resulting figure is called a sexp (for symbolic expression). We
assume those nodes that do not appear in the drawings are not marked.
Since only finitely many nodes are marked, any sexp may be represented as
a finite binary tree. Thus as a sexp, Fig. 2 is equal to Fig. 3.

The sexp with no marked nodes is denoted by 0. Fig. 1, considered as a
sexp, is 0. The sexp whose only marked node is the root is denoted by I.

We use x,y,z, ... , possibly indexed, as variables for sexps.
The set of all the sexps is denoted by S.

1.2. Recognizer

We define the predicate atom:

() [true if the root of x is marked,
atom x

false otherwise

HYPERLISP

e.g. atom(l) is true, but atom(O) is not.
We set

A= {xE SI atom(x)},

M=S-A.

An element of A is called an atom while an element of M, a molecule.

1.3. Selectors

We define car, cdr: S-----+S

e.g.

car(J\)=car (f)=x,

cdr (.j\) = cdr (f) = y,

ca,(;(-)~J\.
cd,(k)~•~!,

car(O) = cdr(O) = car(1) = cdr(1) = 0.

Remark that car and cdr are total functions on S.

1.4. Constructors

We define cons, snoc: S x S-----+S

cons(x, y) = A ,
J:

snoc(x, y) = 1' ,
J:

253

254

e.g.

cons(0, 0) = 0,

snoc(0, 0) = 1.

M. Sato and M. Hagiya

1. 5. Some properties

(l) car(cons(x, y)) = car(snoc(x, y)) =x,
cdr(cons(x, y)) = cdr(snoc(x, y)) = y.

(2) cons(x, y) EM,

snoc(x, y) EA.

(3) x E M __,. x = cons(car(x), cdr(x)),
x EA_,. x =snoc(car(x), cdr(x)).

(4) cons: S x s-M is bijective,

snoc: S x s-A is bijective.

(1)-(3) are obvious from the definition. (4) follows from (1)-(3). By (4) we
have the following set theoretic isomorphisms:

(5) A=S x S,

M:::::::SxS,

S:::::::A+M=A+Sx S==SxS+SxS.

Since in a sexp, only finitely many nodes are marked,

(6) Every sexp can be constructed in terms of 0

and a finite number of applications of cons and snoc.

E.g.

k = snoc(cons(snoc(0, 0), snoc(0, 0)), snoc(0, O)).

By (6) we have the following induction schema:

(7)
A(0) A(x)&A(y)-A(cons(x, y))&A(snoc(x, y))

A(z)

1.6. Notation

Dot notation:

(x. y) = cons(x, y),

[x. y] = snoc(x, y).

List notation:

HYPERLISP

(x, y,z) = (x. (y .(z. 0))),

[x, Y, z] = [x. [y . [z . 0]]].

Particularily,

() = [] =0.

Some auxiliary notations are prepared:

'x= [l,x],

x(.. .) = (x, .. .),

x:y=(x,y).

x[...] = [x, ...],

'x has the highest precedence and x: y, the lowest: e.g.

'O[O, O]: 1

= [l, 01[0, O]: l

= [[l,0],0,0]: 1

= ([[1, OJ, 0, O], 1).

x(...) and x[...] associate to the left: i.e.

x(...)(...) = ((x, . ..), ...),

x(...)[...] = [(x, ...), ...].

The intention of these notations will be clear in Section 2.5.
A semicolon may replace a comma:

[x; y; z] = [x, y, z].

255

256 M. Sato and M. Hagiya

1. 7. Literal

Let L be the set of all the lowercase letters:

abcdefghijklmnopqrstuvwxyz

Let {! be an injection: L--> A. In this paper, we define {! as follows:

e(a) = [l, 1, o, o, o, o, l],

e(b) = [I, 1, 0, 0, 0, I, 0],

e(z)= [l, 1, I, 1,0, 1,0].

(The ascii code of a is 141 in octal, 1100001 in binary.)
A literal is a nonempty string of letters in L. A literal denotes a sexp as

follows: let l = a 1 ···an be a literal, where a; EL, then / denotes

We identify a literal and the sexp it denotes:

ab= [[1, 1,0,o,o,o, 1], [1, 1,0,0,o, 1,0]],

(b. c)=([[l, 1,0,0,o, 1,0]]. [[I, l,0,0,0, 1, 1]]).

Remark that a literal is an atom.

2. Eval

In this section, we define a binary relation on S, denoted by eval. eval
will be a partial map: S--> S, in the sense that eval(x, y) and eval(x, z) implies
y = z. eval(x, z) means that x is evaluated to z. We write x 1- z for eval(x, z).

The definition of eval is 'mutually recursive' with those of apply, evlis
and evcon. apply is a tertiary relation on S and evlis and evcon are binary
relations. apply(!, x, z) means that the function f applied to the argument
list x yields z as its value. As was said in the introduction, their definitions
(or rules) take the form of the inductive definition, so they may be hard to
understand in the first reading. Those who wish to understand our
intention first may skip to Section 2.5 and then come back here.

We assume the extremal clause in each of the following definitions.

HYPERLISP 257

2.1. Eva!

(el) XE A, apply(car(x), cdr(x),z)-+x'r-z,

(e2) XE M, evlis(cdr(x), y), apply(car(x), y, z)-+ X'r-Z.

This corresponds to the following ALGOL-like statement:

eval(x)

= if x EA then apply(car(x), cdr(x))

elif x EM then apply(car(x), evlis(cdr(x))) fi.

2.2. Ev/is

(ell) evlis(0, 0),

(e/2) x=t- 0, car(x) 'r- z
1

, evlis(cdr(x), z
2
)--->evlis(x, cons(z

1
, z2)).

2.3. Apply I

(al) apply(0,x, 0),

(a2) apply(l, x, car(x)),

(a3) car(x) = car(cdr(x))-+apply(eq,x, 1),

(a4) car(x) =I= car(cdr(x))-+apply(eq,x, 0),

(a5) evcon(x, z)-+apply(cond,x, z),

(a6) car(x) E A-+apply(atom,x, 1),

(a7) car(x) E M-+apply(atom,x, 0),

(a8) car(x) = 0-+apply(null, x, 1),

(a9) car(x) =I= 0---->apply(null,x, 0),

(al0) apply(car, x, car(car(x))),

(all) apply(cdr, x, cdr(car(x))),

(a12) apply(cons, x, cons(car(x), car(cdr(x)))),

(a13) apply(snoc, x, snoc(car(x), car(cdr(x)))).

eq, cond, atom, null, car, ... are literals.

258 M. Sato and M. Hagiya

2.4. Evcon

(eel) evcon(O, 0),

(ec2) x-::f:-0, car(car(x)) f- y, y EA, car(cdr(car(x))) f-z-evcon(x, z),

(ec3) x=l=-0, car(car(x)) f- y, y EM, evcon(cdr(x),z)-evcon(x,z).

2.5. Properties and examples

Since car(car([x])) = car(x), we have app/y(car, [x], car(x)) by (alO). From
this and (el) we have car[x] f-car(x), since car(car[x]) = car and
cdr(car[x]) = [x].

(car) car[x] f- car(x).

Likewise

(cdr) cdr[x] f- cdr(x),

(cons) cons[x, y] f- cons(x, y),

(snoc) snoc[x, y] f- snoc(x, y),

(eql) x= y-eq[x, y] f-1,

(eq2) x-=1=-y-eq[x, y] f-0.

Similar for atom and null. By (a2) etc.,

(id) l[x]f-x i.e. 'xf-x

For evlis, we have

(l) Xi f- Y;(l :5 i :5 n)-evlis((X1, ... ,Xn), (Y1,, .. , Yn)).

(e2) says that when the sexp to be evaluated is a molecule, its argument list
(i.e. its cdr) should be evaluated by ev/is:

(e) X;f- Y;(l :5 i :5 n).f[Y1, ... , Ynl f- z- f(Xi, ... , Xn) f- z.

By (al) etc.,

(z) Or-0.

HYPERUSP

For evcon,

---->cond[x1: Y1; ... ; Xn: Ynl f-Z,

(c2) X;f-Z; EM (1:::; i::,:; n)---->cond[x1: Y1; ... ; Xn: Yn1 f-0.

An atom represents truth while a molecule represents falsity.

259

From the above properties, the following evaluations may be obvious:

'af-a,

car[(b . c)] f- b,

cons('a, car[(b. c)]) 1--(a. b),

cond[eq[a, a]: O; '1 : '1] f- 0,

cond[eq[a, b]:O; '1:'l]f-1.

2. 6. Lambda abstraction

Consider Axy. cons(y,x). Let us represent this function by a sexp. First
note that by (cons) in Section 2.5,

cons(y, x] = con~ f- (y. x) = cons(y, x) .

.£

But in cons[y, x], x and y are the variables for which the actual arguments
are to be substituted. We try to represent cons[y,x] by two sexps as in Fig.
4.

Fig. 4.

The right sexp represents the place of the variables, but it does not tell
which variable is where. Remember that xis the first argument and y is the
second. Since the first argument is identified as the car of the argument list,

260 M. Sato and M. Hagiya

it is represented by the sexp

the second argument is represented by

the third by

etc. Adding the information on variables to Fig. 4, we get Fig. 5.

co~

Fig. 5.

Finally, we get our lambda expression, the sexp named xcons in Fig. 6.

xcons=

We expect for x, y E S

xcons[x,y] f-(y.x).

Fig. 6.

To realize this, we add the following rule:

(a,1.) f EM, car(!)= lambda, subst(x, param(f), body(!)) f-Z

--> apply(f, x, z),

HYPERLISP

where param, body and subst are total functions defined as follows:

param(f) = car(cdr(f)),

body(!)= car(cdr(cdr(f))),

subst(x, p, b) = if p = 0 then b

elif p EA then point(x, car(p))

261

elif be M then cons(subst(x, car(p), car(b)),

subst(x, cdr(p), cdr(b)))

elif be A then snoc(subst(x, car(p), car(b)),

subst(x, cdr(p), cdr(b))) fi,

point(x, q) = if q = 0 then 0

elif q e A then x

elif cdr(q) = 0 then point(car(x), car(q))

elif cdr(q) =I= 0 then point(cdr(x), cdr(q)) fi.

We did not define subst and point inductively for the sake of readability.
point(x, q) is used to extract a certain part (specified by q) from the
argument list x. E.g.

subst([a, b], param(xcons), body(xcons)) = cons[b, a].

262 M. Sato and M. Hagiya

Since cons[b, a] f-(b. a), by (aJ) above

apply(xcons, [a, b], (b. a)),

xcons[a, b] f-(b. a).

In our lambda expressions, (bound) variables are literally anonymous so
that the usual problem of avoiding the conflict of variables will never
occur. But to really write down meaningful lambda expressions, the
notation so far is too poor; we need more sophisticated notation to express
lambda expressions. (See Section 2.8.)

2.7. Label

(aA) f EM, car(f) =label,

apply(subst(f, param(f), body(f)), x, z)
->apply(f, x, z).

2. 8. Notation for lambda and label expressions

xcons in Section 2.6 is denoted by

J([X, Y]; cons[Y, X])

where cons[Y, X] expresses the function body and [X, Y] declares that X is
the first argument and Y is the second. X and Y are called metalitera!s. A
metaliteral is an alphanumeric string beginning with an uppercase letter
and plays the role of a bound variable. Obviously

A([X, Y]; cons[Y, X]) = J([U, V]; cons[V, U])

they both denote the same sexp, xcons in Fig. 6.
Examples:

J([X, Y]; cons[Y, X])[a, b]f-(b.a),

J([X, Y]; cons('X, car[Y]))[a, (b. c)] f-(a. b),

(·. • cons('a, car[(b. c)])f-(a. b)),

J([X, Y]; cond[eq[X, Y]:0; '1:'l])[a, a]f-0,

J([X, Y]; cond[eq[X, Y]:0; '1:'l])[a, b]f-1.

[X, Y] above is called a metaterm; a metaterm declares metaliterals.

HYPERLISP 263

Examples of metaterms:

(1) [X],

(2) [X, Y],

(3) [[XI . X2]),

(4) [X=[Xl .X2], Y].

In (3) Xl is the car of the first argument and X2 is the cdr. In (4) Xis the
first argument, XI its car, X2 its cdr and Y is the second argument. a= Pin
a metaterm means that a and fJ occupy the same place in the argument list.

A(...) is for a label expression. E.g.

append= A(APPEND;

).([X, Y];

cond[null[X]: 'Y;

'l : cons(car[X], APPEND(cdr[X], 'Y))]))

which is the ordinary append function; e.g.

append[(a, b, c), (d, e)] f-- (a, b, c, d, e).

Using the metaterm (4) above, let

append2 =A(APPEND;

A([X = [Xl. X2], Y];

cond[null[X]: 'Y;

'l :cons('Xl, APPEND[X2,Y])])).

append and append2 are extensionally equal.
The notations explained so far (in Sections 1.6, 1.7 and 2.8) comprise

what we call the reference language of HYPERLISP. The semantics of the
reference language is given by the rules how a grammatically correct pro
gram is translated to a sexp. The syntax and semantics of the reference
language may be defined in a constructive manner as we are defining eva/,
but here we will not go into details. (See [8].)

264 M. Sato and M. Hagiya

2.9. Function definition

We can give a function definition to an arbitrary atom. E.g. let us give to
append, which is a literal, i.e. an atom, the following definition:

.J.([X = [XI . X2], Y];

cond[null[X]: 'Y;

'I :cons('Xl, append[X2, Y])]).

We expect

append[(a, b, c), (d, e)] I- (a, b, c, d, e).

This will be realized by the rule:

(aLI) f E A,f-:t-1,f-:t-eq, f-:t-cond,

f is defined to bed, apply(d, x, z)
-+apply(f,x,z).

A function definition is written as follows:

Llappend[X = [XI . X2], YJ

= cond[null[X]: 'Y;
'1 :cons('Xl, append[X2, Y])];

Because of (aLI), we seldom need (aA).

2.10. Apply II

We update the definition of apply.

(al)-(a5): as in Section 2.3,

(a.J.): as in Section 2.6,

(aA): as in Section 2. 7,

(aLI): as in Section 2.9,

(acA)

(acM)

f EA, f * 1, f * eq, f * cond, f is not defined,
f 1- g, apply(g, x, z)I

-+ aply(f, x, z),

f EM, car(!)* lambda, car(!)* label,
f I- g, apply(g, X, z)I

-+apply(!, x, z).

HYPERLISP 265

Why we omitted (a6)-(a13) in Section 2.3 will be clear in Section 3.2. (acA)
and (acM) are for computed functions. (See Section 3.6.)

Because of (aL1), eval depends on a set of function definitions. We write
x 1--D z to mean that x is evaluated to z under the set of definitions D.

We could have defined D formally as a sexp like an association list of
LISPl.5 (see [5]). But it would have made the definitions messy.

3. Characteristic Features and Examples

3.1. Quasi-quotation

Let

xcons2 == A([X, Y]; '(Y. X)).

Since '(y. x) 1--rp (y. x), xcons2 is extensionally equal to xcons; i.e.

xcons2[x, y] ~(y. x].

We do not need the constructor cons here.
In lambda expressions, we can write (X. Y), [X. Y], (X) etc. as above.

This is called Quine's quasi-quotation. (See [7].)
Because of the quasi-quotation and the metaterm, we can dispense with

explicit use of constructors and selectors in many cases. Take naive reverse
as an example. In LISP 1.6 (see [6]), we write

(DE REVERSE (X)

(COND ((NULL X) NIL)

In HYPERLISP,

(T (APPEND (REVERSE (CDR X))

(CONS (CAR X) NIL))))).

L1 reverse[X == [Xl . X2]]

== cond[null[X]: O;

'1 :append(reverse[X2], '(Xl))];

3.2. Definability of primitives

L1atom[X] == cond['X: 'l];

266 M. Sato and M. Hagiya

Llnull[X] = eq[X, O];

Llcar[[Xl. X2]] = 'Xl;

Llcdr[[Xl. X2]] = 'X2;

Llcons[X, Y] = '(X. Y);

Llsnoc[X, Y] = '[X. Y];

3.3. Definability of eval and apply

Let D consist of:

Lleval[X] = X;

L1 apply[F, X] = [F . X];

Then for any x, f, z ES,

eval[x]~z iffx~z,

apply[!, x] ~ z iff apply(!, x, z) under D.

3.4. Special form

Since the caller determines whether to evaluate the arguments or not, we
do not have to distinguish between expr andfexpr. Let us define or; let D
consist of:

Llor[. X = [Xl . X2]]

= cond[eq[X, OJ: O;

Xl: 'I;

'I: [or. X2]];

where [. X = [Xl . X2]] means that X is the whole argument list, XI the
first argument and X2 the argument list but the first.

or[eq[a, b], eq[b, b]]~l,

or[eq[a, b], eq[b, cl] ~O.

Another example, list:

Lllist[. X] = 'X;

HYPERLISP 267

3.5. Funarg

Since the arguments are actually substituted in the function body, we
have no funarg problem.

For an example of a functional argument, see Section 3.6.

3.6. Paradoxical combinator

Curry's Y =Ah. (AX. h(xx))(AX. h(xx)) can be easily simulated. (See [2].)
Let D consist of:

Then:

L1y[H] = A([X]; H[X[X]])[Jc([X]; H[X[X]])];

L1null[X] = eq[X, O]; L1cons[X, Y] = '(X. Y);

y[Jc([APPEND];

'Jc([X = [Xl . X2], Y];

cond[null[X]: 'Y;

'1 :cons('Xl, APPEND[X2, Y])]))][(a, b, c), (d, e)]

~ (a, b, C, d, e).

4. Bootstrap

By Section 3.3 we know that eval and apply are easily defined in HYPER

LISP. Here we try a more instructive set of definitions. Let D consist of the
following definitions:

L1eval[E = [F. X]]

= cond[atom[E]: apply[F, X];

'1 :apply('F, evlis[X])]

L1evlis[X = [XI . X2]]

= cond[null[X]: O;

'l :cons(eval[Xl], evlis[X2])]

L1apply[F=[L, P, BJ, X=[Xl, X2]]

268 M. Sato and M. Hagiya

= cond[null[F]: O;

atom[F]:

cond[eq[F,l]: 'Xl;

eq[F, eq]:eq[Xl, X2];

eq[F, cond] : evcon[X];

'1 :apply(eval[F], 'X)];

eq[L, lambda] : eval(subst[X, P, BJ);

eq[L, label]: apply(subst[F, P, Bl, 'X);

'1 : apply(eval[F], 'X)]

Llevcon[X = [[El . E2]. X2]]

= cond[null[X]: O;

atom(eval[El]): eval[E2];

'1 : evcon[X2]]

Llsubst[X, P = [Pl . P2], B = [Bl . B2]]

= cond[null[P]: 'B;

atom[P] ~point[X, Pl];

atom[B]: snoc(subst[X, Pl, Bl], subst[X, P2, B2]);

'l :cons(subst[X, Pl, Bl], subst[X, P2, B2])]

Llpoint[X =[XI. X2], Q = [Ql. Q2]]

= cond[null[Q]: O;

atom[Q]: 'X;

null[Q2] :point[Xl, QI];

'1 : point[X2, Q2]]

Llatom[X] = cond['X: '1];

Llnull[X] = eq[X, OJ;

Llcons[X, Y] = '(X. Y);

Llsnoc[X, Y] = '[X. Y];

Theorem. For any x, z e S

eval[x] 1r5- z iff x '7; z.

HYPERLISP 269

Proof. By induction on the evaluation of x. Refer to [8] for the details.

Compare our constructive approach with that of Gordon [3], where he
proves the correctness of the universal functions of Pure LISP by means of
denotational semantics.

5. Implementation

A tiny interpreter is implemented on PD Pl 1 and V AXl l under UNIX.
The technique in [4] is used to implement S. (See also [l, p. 402].) Function
definitions are semi-compiled so that the arguments are not actually substi
tuted in the body.

It took 17 .2 seconds to compute 92 solutions of the eight queens puzzle
on V AXl 1/780.

References

[I] J. Allen, Anatomy of LISP (McGraw-Hill, New York, 1978).
[2] H.B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North-Holland, Amsterdam, 1968).
[3] M. Gordon, Models of Pure LISP, Department of Machine Intelligence, Experimental

programming reports: No. 30, University of Edinburgh (I 973).
[4] E. Goto, Monocopy and associative algorithms in an extended USP, TR74-03, Informa

tion Science Laboratories, Faculty of Science, University of Tokyo (1974).
[5] J. McCarthy, et al., LISP 1.5 Programmer's Manual (The M.I.T. Press, Cambridge, MA,

1962).
[6] L.H. Quam and W. Diffie, Stanford LISP 1.6 Manual, Stanford Artificial Intelligence

Laboratory Operating Note. No. 28.4 (1968).
[7] W. Quine, Mathematical Logic (Harvard, 1955).
[8] M. Sato, Theory of symbolic expressions, TRS0-16, Department of Information Science,

Faculty of Science, University of Tokyo (1980).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 271-291

Symbolic Evaluation of LISP Functions with Side Effects
for Verification

Dennis de Champeaux and Jos de Bruin

Faculty of Economics, Informatica Department, Jodenbreestraat 23, 1011 NH Amsterdam,
The Netherlands

In this paper we present a symbolic evaluator of USP functions. It can

handle data-altering functions of the RPLACA type, i.e. functions that change
one data-structure by replacing parts of it by other structures that will them
selves not be changed further, at least not permanently. The state description
languages uses first-order predicate calculus. It is argued that symbolic
evaluation in terms of this language, although theoretically adequate, is not
feasible in general, since it may require extremely complicated specifications
for real-life functions with side effects. Examples are given of the specifi
cations needed to verify several versions of SUBSTAD, a non-copying SUBST.

1. Introduction

In 1978 we published SUBSTAD, a non-copying version of SUBST (see
[l]). Comparison of these two functions in the context of a unification
algorithm showed some very favorable results. Two years later we found
out that the results were biased by a bug in our machine implementation of
SUBST.

This experience increased our interest in verification, in particular of
functions with side effects, such as SUBSTAD. These functions pose a
challenge to verifiers. One simple RPLACA can have consequences for
every data-structure around.

Very few practical, ready-to-use techniques are available at present. The
theoreticians of program verification (for an overview, see [5]) are develop
ing languages (Dynamic Logic e.g.) that abstract away from real appli-

271

272 D. de Champeaux and J. de Bruin

cation, concern toy-like programming languages and tend to be considered
as interesting objects by themselves.

More promising seem concrete efforts like that of Topor [8], who
verified the correctness of the Schorr-Waite marking algorithm, an
algorithm somewhat similar to SUBSTAD. His proof by hand is reason
able to follow, but we are interested in actually automating the verification
process as much as possible.

We developed a program that can keep track of the many details
involved when checking all possible branches of computation trees. We
have chosen the method of symbolic evaluation [3, 6], because it guarantees
that every branch is visited and that all preconditions to operations are
considered.

Symbolic evaluation requires the addition of input/ output specifications
to the program code and of invariants to each loop in that code. The code
is evaluated with symbolic input values that conform to the input specifi
cation, producing a symbolic output value for each branch through the
code. The symbolic evaluator should embody the semantics of the
operators used in the code, in our case (at least) the subset of LISP primi
tives used in SUBST AD. For each of those operators it should be able
to transform the description of the state in which this operator is called into
a description of the state it creates.

It has to be verified that all of the output values produced are in
accordance with the output condition. This, as well as checking entry and
loop conditions, can be done 'manually' or by a theorem prover. Although
we have been experimenting with COGITO, our theorem prover (for
results see [2]), our concern here is the automatic updating concerning
functions with side effects, like RPLACA. For details on the actual proofs
(by hand) see [2].

2. The State Description Language

In order to facilitate deduction, the state description language uses first
order predicate calculus. We start off with a countable domain of cells C
and a countable domain of atoms A, where C and A are disjoint. Let D be
their union: D=CUA. We will have the partial functions:
- car and cdr, with domain C and range D; and
- addr, with domain D and range N, the natural numbers.

Symbolic evaluation of LISP functions 273

We will have the partial predicate:
- atom, with domain D, and which, where defined, coincides with the

characteristic predicate of A.
Using the addr-function, we define the relation eqa with:

(d)(e){ eqa(d, e)~addr(d) = addr(e) },

for d, e in D where addr is defined.

Axiom 1.

Axiom 2.

(d)(e){ eqa(d, e)-+ [atom(d)-+d = e]} for d, e in D.

(d)(e){ [-atom(d) & eqa(d, e) &

car(d)=car(e) & cdr(d)=cdr(e)]-+d=e}

ford, e in D.

Axiom 1 ensures that e is also non-atomic.

We define a data object D, to be an element of the power set of D:
(1) with D, of nite size,
(2) with C, an A, the elements of D, respectively in C and A,
(3) with car(C;; and cdr(C,) subsets of D,, and
(4) with a unique element r in Dn the root of D,, which has the property

that all other members of D,can be reached from r by finite car/cdr chains.
From now on we mention data objects by referring to their roots.
Recursive definitions on data objects run the risk of being undefined due

to infinite regress, since data objects may contain cycles - a cell can reach
itself along a car/cdr chain. The finiteness of data objects is the way out of
this problem. Most recursive definitions that we will give in the sequel
apply to data objects that have the special format of a tree. For generaliz
ations to arbitrary data objects, see [2].

Recursive definitions on trees invoke in proofs an appeal to the so-called
car/cdr induction. Whenever a formula P(x) reduces to a formula
P(car(x)) and/or P(cdr(x)) then car/cdr induction allows the conclusion
that P(x) has been inferred. This is justified by the observation that a well
founded relation can be constructed (in most cases the number of cells

274 D. de Champeaux and J. de Bruin

reachable from x) that decreases on each recursive reference. Handled
carefully, this also applies to recursive definitions with non-tree arguments.

Next we give definitions of the predicates partof and loopfree. The
definition of partof works only on trees (+ is the sequentially read dis
junction connective):

(d)(e){partof(d, e)+-+
[partofcar(d, e) + partofcdr(d, e)]},

(d)(e){partofcar(d, e)+-+
[-atom(e) &
(d = car(e) + partof(d, car(e)))]},

(d)(e){partofcdr(d, e)+-+
[-atom(e) &
(d = cdr(e) + partof(d, cdr(e)))]},

(d){loopfree(d)+-+ loopfreel (d, 0)},

(d)(V){loopfreel(d, V)+-+
[atom(d) +
{-(din V) &
loopfreel(car(d), {d} UV) &
loopfreel(cdr(d), {d} UV)}]}.

The expression partof(d, e) signifies that the data object e contains a cell or
atom identical to the root of d. Loopfree defines the property that a data
object does not contain a cycle.

A state description is a conjunction of facts referring to a finite number
of data objects, always containing the data objects nil and t, corresponding
with NIL and T, members of A, for which holds: atom(nil), atom(t) and
-(t= nil).

A state description may refer to 'virtual' data objects, which existed
during earlier states. Two data objects are compatible, if they can co-exist:

(d)(e){ compatible(d, e)+-+

[atom(d) + atom(e) +
(eqa(d,e) & d=e)+
(-eqa(d, e) &
compatible(d, car(e)) & compatible(d, cdr(e)) &
compatible(car(d),e) & compatible(cdr(d),e))]}.

Symbolic evaluation of LISP functions 275

When two data objects are non-compatible at least one has to be virtual.
The RPLACX operations are responsible for making data objects virtual.

Definition. An alist is a finite list of pairs ((ai, r1), ... , (an, r n)) with a; atoms
unequal nil and r; the roots of data objects, while for each pair r;, r1 we
have: compatible(r;, rj).

The alist contains the current bindings of the atoms. A data object is
virtual with respect to an alist if it is non-compatible with an r; from that
alist. An atom may occur more than once as a first element of a pair, for
instance as a consequence of recursion. LISP functions retrieve and update
leftmost occurrences. Side effects may propagate to the right in the alist.
Extensions and contractions, as a consequence of entering a higher or
lower stack level, also occur at the left.

Definition. A state configuration is a pair (AL, FL) with AL an alist and
FL (the factlist) a state description. Atomicity of nil, t and all atoms a; on
the alist is implicitly assumed.

3. The Symbolic Evaluator

When given LISP-code and a state configuration the symbolic evaluator
generates a tree of state configurations, corresponding to all possible
computation paths through the code. The symbolic evaluator works like a
real LISP evaluator. It has a code pointer, corresponding to a program
counter, to that part of the code which has to be executed, it contains
modules which correspond to built-in LISP functions and it knows what to
do with user defined functions.

A non-numerical atomic form is evaluated by retrieving the most recent
(i.e. leftmost) binding from the current alist.

For built-in functions, the recipe consists of checking whether pre
conditions, parametrized for the current arguments, are fulfilled and, if the
check succeeds, updating the state configuration. An exception is made for
COND. The COND-module generates one or more bifurcations of the
current state configuration. The correctness of a bifurcation (satisfiability
of a test expression and its negation) is not proven by means of the
deduction machinery but by constructing or having available two models

276 D. de Champeaux and J. de Bruin

that possess opposite truth values with respect to the test expression but are
both consistent with the current state configuration. To construct these
models one could ask the user to provide several examples, which are
processed concurrently with the symbolic input specification for the code
(not implemented). Testing by running examples and formal verification
should not be seen as mutually exclusive, but should go hand in hand.

Modules are implemented for the following subset of standard LISP
functions: ATOM, CAR, CDR, COND, CONS, EQ, EQUAL, GO, NOT,
NULL,PROG,PROGN,QUOTE,RETURN,RPLACA,RPLACDand
SETQ. The functions COND, GO, PROO, PROGN, QUOTE and SETQ
are of type FSUBR, i.e. evaluation of their arguments is to their own
discretion. The other functions have automatic - left to right - argument
evaluation before module-specific actions are taken.

An essential requirement for the modules is that the compatibility
property of state configurations is preserved. Our only worry is RPLACA,
RPLACD and SETQ because only those functions affect the alist. We will
describe some of the modules.

ATOM. Let the argument of ATOM evaluate to x. A new symbolic value
will be generated, say gl, which will be returned as the value, while the fact
list will be expanded with:

{gl = t & atom(x)} + {gl = nil & ~atom(x)}.

The implemented version deals immediately with the atomicity of x. It
returns t or nil when atomicity or non-atomicity of x can easily be derived
from the given fact list, otherwise the user is asked to indicate whether t, nil
or both possibilities are to be pursued. In this last case, it generates a
bifurcation of the current computation branch with t in one and nil in the
other branch, adding either atom(x) or ~atom(x) to the respective factlist.

CAT (and analogously CDR). Let the argument of CAR evaluate to x. In
contrast with ATOM there is a precondition check for CAR: ~atom(x)
should be derivable from the current fact list. If that derivation succeeds a
new symbolic value, say g2, is generated and returned and g2 = car(x) is •
added to the fact list.

COND. This function leads to bifurcation(s) of the current computation
branch, as described for the implemented version of ATOM.

Symbolic evaluation of LISP functions 277

CONS. Let the arguments of CONS evaluate to x and y. A new symbolic
value, say g3, is generated and will be returned, while the fact list will be
extended with: -atom(g3), car(g3) = c and cdr(g3) = y.

GO. We assume only backward jumps. The loop invariant associated with
the label to which GO refers, provided by the user and parametrized for the
current bindings by the evaluator, should be derivable from the current
fact list. A non-looping check, based on a well founded relation should
also be performed. Because jumps are always backwards, we do not have
to consider the current computation branch any further.

RPLACA (and analogously RPLACD). Let the arguments of RPLACA
evaluate to x and y. The precondition for RPLACA is -atom(x). A new
symbolic value, say g6, is generated and returned, while the fact list is
extended with: eqa(x, g6), car(g6) = y and cdr(g6) = cdr(x).

Any non-atomic binding zl on the alist, identical to x or 'above' x, will
be affected indirectly by the RPLACA operation and has to be replaced by
a new binding z2 for which minimally holds: eqa(zl, z2). In general: when a
RPLACX operation causes xl to be replaced by x2 then each binding on
the alist, yl, will be replaced by a fresh binding, y2, while the fact list will
grow with: eqaupto(yl, y2, xl, x2), which says: y2 is identical with yl unless
there is a substructure of yl that is identical with xl. The predicate eqaupto
is defined as:

(yl)(y2)(xl)(x2){ eqaupto(yl, y2, xl, x2)<--->
[eqa(yl, y2) &
{yl =xl ---->y2= x2} &
{[-(yl =xl) & -atom(yl)]---->

[eqaupto(car(yl), car(y2), xl, x2) &
eqaupto(cdr(yl), cdr(y2), xl, x2)]}]}.

Remark. When the original binding yl is atomic then according to Axiom
l the new binding y2 is identical with yl.

Lemma 1.

{xl =x2 & eqaupto(yl,y2,xl,x2)}-,.yl =y2.

Lemma 2.

{-(xl = yl) & -partof(xl, yl) & eqaupto(yl, y2, xl, x2)}
---->yl =y2.

278 D. de Champeaux and J. de Bruin

These lemmas can be used to curb updating activities. For proofs of
these and other lemma's and theorems, see [2].

Theorem 1. Let yl and zl be old bindings which are respectively replaced
by y2 and z2 due to an RPLACX-operation that caused xl to be changed
into x2, thus with eqa(xl, x2), then compatible(yl, zl), eqaupto(yl, y2, xl, x2)
and eqaupto(zl, z2, xl, x2) implies compatible(y2, z2).

SETQ. Let the second argument evaluate to x. The precondition for SETQ
is that the non-evaluated first argument is atomic, say A. The binding of
the leftmost occurrence of A on the alist will be replaced by x. If A does not
occur on the alist - i.e. when A is a global variable - then (A . x) will be
added at the righthand side of the alist. Preservation of alist-compatability
is ensured when the evaluation of the second argument yields a value
compatible with the current bindings.

The modules not described trigger obvious updatings. (For the equal
predicate needed by the EQUAL module, see [2] .)

3 .1. User junctions

Most LISP functions to be verified will contain functions other than the
above mentioned primitive ones. These are provided either by the user or
are built-in. They can be handled by the evaluator if they are accompanied
by an input and an output condition.

The symbolic evaluator first asks for (and tries to assist with) a check
that the input condition is fulfilled and then looks whether the user wishes
this function to be verified. If so, she will have to provide its body.
Recursive user functions will be opened at most once, for obvious reasons.
A well-founded relation, user provided, should be used when verifying that
arguments of a recursive call score strictly less with respect to that well
founded relation than the arguments at the top level call. This was not
implemented.

An output condition should describe the resulting state in terms of the
values used in the input condition to enable the symbolic evaluator to
update the state configuration in which the function was called. This
updating is straightforward when the function does not have side effects
and just returns a value, but built-in and user functions of RPLACX-type

Symbolic evaluation of LISP functions 279

need even more complicated alist updating schemes than the one given
above for RPLACX.

Suppose we execute (NCONC LIS Sl), where the bindings of LIS and Sl
are respectively lis and sl. The rightmost leaf of LIS, which must be NIL,
will be replaced by a pointer to its second argument Sl. Any data-structure
containing a pointer to lis or to a cell lying on its 'spine' (i.e. the cdr chain
starting at lis) will be changed as a consequence of this NCONC operation.

We will describe an alist update scheme for a class of side effect
generating functions, including NCONC, EFFACE and our SUBSTAD
support functions SUBSTADl and SUBSTAD2. It applies to those
functions which cause replacement of a cell, say xl, by a cell, say x2, (thus
we have eqa(xl, x2)).

Every binding, zl, on the alist is replaced by a fresh binding, z2, and the
fact list is expanded with: transf(zl, z2, xl, x2). The predicate transf and its
supporting predicate trl and tr2 works by double recursion. First, it is
checked whether zl is identical with xl or - using trl - with a cell reach
able from xl. If the trl-case applies the predicate tr2 is invoked to relate zl
and z2. Second, when zl is not identical with xl or a subcell of xl then
transf is called recursively to test whether subcells of zl are affected by the
xl-x2 replacement.

The predicate transf is defined as:

(yl)(y2)(xl)(x2){ transf(yl, y2, xl, x2)+->
[eqa(yl, y2) &
{xl=yl-y2=x2} &
{[-atom(yl) & -(xl =yl) & trl(yl,xl,x2)]
tr2(yl, y2, xl, x2)} &

{[-atom(yl) & -(xl =yl) & -trl(yl,xl,x2)]
[transf(car(yl), car(y2), xl, x2) &
transf(cdr(yl), cdr(y2), xl, x2)]} l},

with trl defined as:

(yl)(xl)(x2){ trl{yl, xl, x2)+->
[-atom(xl) &
eqa(xl, x2) &
{yl =xl +
trl (yl, car(xl), car(x2)) +
trl(yl, cdr(xl), cdr(x2))}]},

280 D. de Champeaux and J. de Bruin

and with tr2 defined as:

(yl)(y2)(xl)(x2){ tr2(y1, y2, xl, x2)+-+
[{yl =xl-➔y2=x2} &
{~(yl =xl)-➔

[{ trl (yl, car(xl), car(x2))-➔

tr2(yl, y2, car(xl), car(x2))} &
{ trl(yl, cdr(xl), cdr(x2))-➔

tr2(yl, y2, cdr(xl), cdr(x2))}]}]}.

The meaning of the transf(zl,z2,xl,x2) formula can be phrased as: let yl
be zl or a subcell of zl, let ul be xl or a subcell of xl, while ul has been
replaced by u2 (so u2 is identical with x2 or with a subcell of x2), then,
when yl is identical with ul, there is a corresponding cell in z2, which is
identical with u2.

In analogy with Lemma 1 and Lemma 2, we have:

Lemma 3.

Lemma 4.

{xl =x2 & transf(yl,y2,xl,x2)}-➔ y1 =y2.

[(z){ [z = xl + partof(z, xl)]-➔

[~(z = yl) & ~partof(z, yl)]} &
transf(yl, y2, xl, x2)]-➔

yl = y2.

Theorem 2. Let yl and zl be old bindings which are respectively replaced
by y2 and z2 due to a side-effect operation causing xl to be changed into
x2, thus with eqa(xl, x2), then compatible(yl, zl), transf(yl, y2, xl, x2) and
transf(zl, z2, xl, x2) implies compatible (y2, z2).

The limitations of this updating scheme can be seen from the function
NCONC2, defined as:

(NCONC2(LAMBDA(LIS1 LIS2 Sl)
(NCONC LISl(NCONC LIS2 S1)))).

A binding referring to the 'spine' of the input binding of LIS2 cannot be
recognized and therefore will not be updated, although it is not up-to-date
anymore.

Symbolic evaluation of LISP functions 281

We conclude that the user must be given the option to specify a specific,
idiosyncratic alist update mechanism for any function having side effects.
This will considerably increase the verification burden, since it will have to
be shown that the compatibility requirement for the updated alist is
fulfilled.

4. Evaluating SUBST AD

To give an impression of the feasibility of the method of symbolic
evaluation as introduced above, we will discuss our effort to verify
SUBSTAD. This function is called with three arguments: SI, LAT and S3.
It replaces all occurrences of LAT in S3 by SI. The value of LAT should be
a non-numeric atom. This is checked by SUBST AD, which also handles the
case that S3 is atomic. Otherwise it calls a support function with one
argument, S3.

The support function published in [l] uses pointer reversal to avoid the
use of a stack, as is done in garbage collectors. Before discussing this
function, we will make some remarks on the verification of two simpler
versions, to show how the method works and to illustrate how a slight
modification in a program can lead to substantial differences in its verifi
cation.

4.1. SUBSTADJ

First of all, the recursive SUBST AD 1:

(SUBST AD 1 (LAMBDA(S3)(PROG2
(COND((ATOM(CAR S3))

))).

(COND((EQ LAT(CAR S3))(RPLACA S3 S1))))
(T(SUBSTADl(CAR S3))))

(COND((ATOM(CDR S3))
(COND((EQ LAT(CDR S3))(RPLACD S3 Sl))))

(T(SUBSTADl(CDR S3))))

The preconditions are:
- the binding of S3, say vs3, is not atomic;
- the binding of LAT, say lat, is atomic; and

282 D. de Champeaux and J. de Bruin

- lat is not a leaf of the binding of S1, say vsl. This last precondition is
meant to prevent the introduction of cycles.

To simplify the proofs, we will assume that vsl does not share sub
structure with vs3. Consequently, Lemma 4 will apply and therefore
updating of the S1 binding will never happen. (When vsl does share
structure we can still invoke Lemma 2, since lat is not a leaf of vsl .)

Since we assume the preconditions to hold, the fact list will (implicitly)
contain:

atom(lat) & ~atom(vs3) & ~partof(lat, vsl).

The input alist is:

((Sl. vsl)(LAT. lat)(S3. vs3)).

Assume the output alist to be:

((Sl. vsl)(LAT. lat)(S3. nvs3)).

The output assertion to be verified will be:

replacedd(vsl, lat, vs3, nvs3),

with replacedd (replacement with potential destruction of vs3) defined as:

(xl)(x2)(x3)(ot){ replacedd(xl, x2, x3, ot)~
[eqa(x3, ot) &
{ atom(car(x3))-+

[(x2 = car(x3)-+car(ot) = xl) &
(~(x2= car(x3))-+car(ot) = car(x3))]} &

{~atom(car(x3))-+replacedd(xl, x2, car(x3), car(ot))} &
{ atom(cdr(x3))-+

[(x2 = cdr(x3)-+cdr(ot) = xl) &
{~(x2 = cdr(x3))-+cdr(ot) = cdr(x3))]} &

{ ~ atom(cdr(x3))-+replacedd(xl, x2, cdr(x3), cdr(ot))}]}.

There are nine different paths through the code. We will work our way
along one of the paths.

Initially the fact list contains:

atom(lat) & ~atom(vs3) & ~partof(lat, vsl).

Assuming that (ATOM(CAR S3)) yields T we get in addition:

xa = car(vs3) & atom(xa).

Symbolic evaluation of LISP functions

Assuming that (EQ LAT(CAR S3)) yields T we get:

lat= xa.

RPLACA generates a new value, say nvl, adding:

eqa(nvl, vs3) & car(nvl) = vsl & cdr(nvl) = cdr(vs3).

283

The alist update scheme for RPLACA generates a new binding for S3, say
ivs3, so the alist becomes:

((Sl. vsl)(LAT. lat)(S3. ivs3)),

while the fact list grows with:

eqaupto(vs3, ivs3, vs3, nvl).

Assuming that (ATOM(CDR S3)) yields NIL we get:

xd = cdr(ivs3) & -atom(xd).

The next action concerns the recursive call on the CDR. Its parametrized
and simplified input condition:

-atom(xd) & atom(lat) & -partof(lat, vsl),

is trivially satisfied. The function will not be opened, but instead the fact
list grows with:

replacedd(vsl, lat, xd, nxd) & transf(ivs3,jvs3, xd, nxd),

while the alist changes into:

((Sl . vsl)(LAT. lat)(S3. jvs3)).

The output assertion to be proven for this particular path is:

replacedd(vsl, lat, vs3, jvs3).

We will not give proofs. The general strategy in this and following cases
is a combination of subproblem recognition, case reasoning, expansion of
recursive definitions and application of car/cdr induction.

4.2. SUBSTAD2

The treatment of SUBST AD 1 is given above was slightly incorrect,
although this did not affect the result. Upon entry of SUBSTADI the alist
is in fact:

((S3. vs3)(Sl. vsl)(LAT. lat)(S3. vs3)),

284 D. de Champeaux and J. de Bruin

where the first occurrence of S3 comes from SUBSTADl and the second
one from SUBSTAD. The output assertion of SUBSTADl did refer to the
second occurrence of vs3. This more subtle treatment of the alist is
essential for the half recursive half iterative support function SUBST AD2.

(SUBST AD2(LAMBDA(S3)(PROG(HH)
AGAIN

)))

(COND((ATOM(SETQ HH(CAR S3)))
(COND((EQ LAT HH)(RPLACA S3 Sl))))

(T(SUBST AD2 HH)))
(COND((ATOM(SETQ HH(CDR S3)))

(COND((EQ LAT HH)(RPLACD S3 SI))))
(T(SETQ S3 HH)

(GO AGAIN)))

Because of the assignment of the local S3 to its CDR just before the
loop, we no longer have a handle on the data-structure as a whole, to which
we must be able to refer in order to specify the loop invariant and to enable
a correct update of the calling environment after existing SUBST AD2. The
problem is solved by refering to the global S3, the argument with which
SUBST AD2 is called. (In general a pre-processor should take care that all
arguments given to user defined functions are explicitly assigned on the
alist.)

Verifying SUBSTAD2 requires deducing the loop invariant when control
reaches the label AGAIN upon entering the function, deducing the output
assertion for six paths through the code and deducing the loop invariant
for three paths.

The input alist is as given above. The output alist, after exiting from
SUBST AD2 will be:

((S1. vsl)(LAT. lat)(S3. nvs3)).

The input and output assertion are the same as for SUBSTADl. We have
to provide a loop invariant with the label AGAIN. This loop assertion will
refer to the current bindings of the variables, so we also have to specify an
alist at the label:

((HH. vhh)(S3 .1s3)(S1. vsl)(LAT. lat)(S3. gs3)).

The value 1s3 is the local value of S3, and gs3 is the global value of S3. The

Symbolic evaluation of LISP functions

loop assertion will be:

atom(lat) & -atom(ls3) & -atom(vs3) & -partof(lat, vsl)
& spine(vsl, lat, vs3, gs3, ls3).

285

We will not give the definitions of spine and other support predicates.
Giving a general description of the situation at the label is rather compli
cated, since it is not enough to say that every tree hanging off the spine
above the local S3 has been checked and replaced if necessary. Structure
sharing may have led to changes in the part of the tree that is still to be
investigated. It may even have caused the replacement of the right most
leaf of vs3 by a pointer to vsl, so S3 may eventually point to a cell for
which there is no corresponding cell in the original vs3.

We will just give one definition as an example, for the others we again
refer to [2]. The predicate sidefct is used to describe that xp and xq, which
are parts of the not yet visited subtrees x3 and xl of the original (xo) and
current (xn) incarnation, are the same unless structure sharing has led to
side effects.

(xo)(xn)(x3)(xso)(xsn)(xp)(xq)
{ sidefct(xo, xn, x3, xso, xsn, xp, xq) <->

[eqa(xp, xq) &
{xso =x3->

[{ atom(car(xp))->car(xp) = car(xq)} &
{-atom(car(xp))->
sidefct(xo, xn, x3, xo, xn, car(xp), car(xq))} &

{ atom(cdr(xp))->cdr(xp) = cdr(xq}} &
{-atom(cdr(xp))->
sidefct(xo, xn, x3, xo, xn, cdr(xp), cdr(xq))}]} &

{-(xso=x3)->
[{ car(xso) = xp->car(xsn) = xq} &
{-(car(xso) = xp)->

[{ trl(xp, car(xso), car(xsn))->
tr2(xp, xq, car(xso), car(xsn))} &

{-trl(xp, car(xso), car(xsn))-~
sidefct(xo, xn, x3, cdr(xso), cdr(xsn), xp, xq)}]}]}]}.

Symbolic evaluation of SUBST AD2 generates fact lists that are much
longer than those generated for SUBST AD l, since the alist in this case
contains three arguments (HH, local S3 and global S3) that have to be

286 D. de Champeaux and J. de Bruin

updated after an RPLACX or a recursive call to SUBST AD2. This, and the
greater amount of predicates needed to specify the loop invariant, made
verification of this function just barely feasible. The great difference in
verification effort caused by a slight change in the code, challenges the
claim that once a program is verified, modifications will require very little
additional effort.

4.3. SUBSTADP

The disparity between amount of code and amount of ad hoc definitions
is e".en worse for SUBSTADP:

(SUBST ADP(LAMBDA(S3)(PROG(EX HH)
(SETQ EX$)

L2
(SETQ HH(CAR S3))
(COND((NOT(ATOM HH))

(MARK S3 1)
(RPLACA S3 EX)
(SETQ EX S3)
(SETQ S3 HH)
(GO L2))

((EQ LAT HH)(RPLACA S3 S1)))
L4

L5

(SETQ HH(CDR S3))
(COND((ATOM HH))

((NOT(EQ EX $))
(REPLACD S3 EX)
(SETQ EX S3)
(SETQ S3 HH)
(GO L2))

(T(SETQ S3 HH)
(GO L2)))

(COND((EQ LAT HH)(RPLACD S3 Sl)))
(COND((EQ EX $)(RETURN)))

(SETQ HH S3)
(SETQ S3 EX)
(COND((MARKB S3)

Symbolic evaluation of LISP functions

(MARK S3 0)
(SETQ EX(CAR S3))
(RPLACA S3 HH)
(GO L4)))

(SETQ EX(CDR S3))
(RPLACD S3 HH)
(GO L5)

)))?end of the pointer reversal SUBSTADP?

287

In this version, the use of a stack is avoided by reversing pointers, i.e.
when the car or cdr part of a cell is non-atomic, this part is saved, while the
car or cdr is replaced by a pointer back to the parent cell immediately above
it. Marking is used to indicate whether the car or the cdr part of the cell
contains the reversed pointer. The tree is searched in a depth first manner.

The code contains three labels, so in addition to the input and output
assertion we have to set up three loop invariants. Describing the situation
at the various loops is extremely complicated because of the much greater
number of (temporary) replacements.

We defined the predicates that are necessary to describe the situation at
one label, L2, assuming that vsl is atomic. Even with this drastic simplifi
cation, we needed a staggering amount of definitions: eleven predicates,
several of them with seven arguments and totalling nearly 200 lines of text
(see [2]). To get an impression of what is involved, glance at the definitions
of two predicates, lb2at3 and its support lb2at5. They describe the subtrees
hanging off the spine above the inverted pointer chain.

(vsl)(lat)(ex)(l3)(ol)(nw)
{lb2at3(vsl, lat, ex, 13, ol, nw)~

[eqa(ol, nw) &
{ onichain(ex, nw)--> lb2at5(vsl, lat, ex, 13, ol, nw)} &
{-onichain(ex, nw)-->
[{ atom(car(ol))-->

[{car(ol) = lat-->car(nw) =vsl} &
{-(car(ol) = lat)-->car(nw) = car(ol)}]} &

{-atom(car(ol))-->
lb2at3(vsl, lat, ex, 13, car(ol), car(nw))} &

{ atom(cdr(ol))-->
[{ cdr(ol) = lat-->cdr(nw) = vsl} &
{-(cdr(ol) = lat)-->cdr(nw) = cdr(ol)}]} &

{ - atom(cdr(ol))-->
lb2at3(vsl, lat, ex, 13, cdr(ol), cdr(nw))}]}]}.

288 D. de Champeaux and J. de Bruin

This predicate mainly looks whether nw - which is already visited - is
residing on the inverted pointer chain, which may be caused by structure
sharing. If so the predicate lb2at5 will describe the situation.

(vsl)(lat)(ex)(l3)(ol)(nw)
{lb2at5(vsl, lat, ex, 13, ol, nw)<->

[eqa(ol,nw) &
{ex=nw->

[{markb(nw)->
[replacedd(vsl, lat, car(ol), 13) &
{ atom(cdr(ol))->

[{ cdr(ol) = lat->cdr(nw) = vsl} &
{ ~(cdr(ol) = lat)->cdr(nw) = cdr(ol)} l} &

{ ~atom(cdr(ol))->
replacedd(vsl, lat, cdr(ol), cdr(nw))}]} &

{ ~markb(nw)->
{ atom(car(ol))->

[{ car(ol) = lat->car(nw) = vsl} &
{ ~(car(ol) = lat)->car(nw) = car(ol)}]} &

{ ~atom(car(ol))->
replacedd(vsl, lat, car(ol), car(nw))} &

replacedd(vs 1, lat, cdr(ol), 13)]}]} &
{~(ex= nw)->

[{ markb(nw)->
[{ atom(cdr(ol))->

[{ cdr(ol) = lat->cdr(nw) = vsl} &
{ ~(cdr(ol) = lat)->cdr(nw) = cdr(ol)}]} &

{ ~atom(cdr(ol))->
lb2at3(vsl, lat, ex, 13, cdr(ol), cdr(nw))} &

(3 ice!){ onichain(ex, icel) &
lb2at5(vs 1, lat, ex, 13, car(ol), ice!) &
[markb(icel)->car(icel) = nw] &
[~markb(icel)->cdr(icel) = nw]}]} &

{ ~markb(nw)->
[{ atom(car(ol))->

[{car(ol)=lat->car(nw)=vsl} &
{ ~(car(ol) = lat)->car(nw) = car(ol)}]} &

{ ~atom(car(ol))->

Symbolic evaluation of LISP functions

lb2at3(vsl, lat, ex, 13, car(ol), car(nw))} &
(3 icel){ onichain(ex, icel) &

lb2at5(vs 1, lat, ex, 13, cdr(ol), icel) &
[markb(icel)-+car(icel) = nw] &
[-markb(icel)-+cdr(icel) = nw]}]}]}]}.

289

When nw = ex, we can describe it with replacedd, keeping in mind
whether its car (markb) or its cdr (-markb) contains the back pointer.

If nw lies somewhere else on the inverted pointer chain and the non
reversed pointer points to an atomic structure, describing this part is
straightforward. However, if it is non-atomic, we have to recursively
invoke lb2at3, because structure sharing between that part of nw and the
reversed pointer chain is again possible.

To describe the part originally pointed to by the now reversed pointer,
we have to use existential quantification. We do not have a direct pointer to
it, but we know were to start (at EX) and we know its unique identification:
eqa(icel, car(ol)). This identification is part of lb2at5.

Possible structure sharing similarly complicates the description of
subtrees on the inverted pointer chain, under 13 or to the right of the
inverted pointer chain.

5. Discussion

Although we were able to write a symbolic evaluator that can handle the
functions we were interested in (and no doubt a host of others), it was not
possible to give a completely general update algorithm to handle all
RPLACX-type functions. We defined one for a common class, in which
one data-structure is changed by replacing certain subparts by other data
structures that will not themselves be mutated before the function is exited
(at least not permanently). To make the verifier a general one, it should
allow the user to specify her own update procedures in other cases. Since
compatibility will have to be proven by the user in those cases, this places a
rather heavy burden on her.

The algorithm given is extremely careful, replacing all bindings on the
alist after every call to an RPLACX-type function. This has its price.
Updated bindings need potentially complicated proofs to show their
invariance, even though it may be very obvious (to us) that in fact they

290 D. de Champeaux and J. de Bruin

could not have been changed at all. Of course one could keep the number
of updated bindings down by incorporating the lemma's given above and
other specific knowledge into the evaluator, but this would amount to
pushing the problem around.

The attempt to give correctness proofs for several versions of SUBST AD
revealed that the method of symbolic evaluation - although theoretically
adequate - flounders in some cases on a practical problem: formal
description of input/output statements as well as loop invariants leads to a
proliferation of ad hoc definitions. We expect this to hold for all currently
available verification techniques. If so, verification specialists may be
adviced to give more attention to the practical implications of their
theories, instead of devoting all their energies to esoteric refinements, or
even to the design of logics that become an end in themselves.

The bottle-neck lies in the necessity to specify in state-description terms
what a function is supposed to do. Whether a function is recursive or not is
not even explicitly expressible in such a specification. Somehow people feel
more akin to a definition in procedural terms, such as "the terminals equal
to la~ will be replaced by vsl" and "the tree will be visited from left to
right". Proving correctness of a function would then 'reduce' to showing
that the function behaves according to expectations rather than that
input/output description pairs conform to a certain relation.

The technique we have developed for describing evolving states using an
alist, a fact list and predicates like equaupto and transf that capture
specific side effects, may be of interest to other areas of A.I. The alist can
be considered a collection of individual concepts, where the bindings are
the actual extensions. A new situation differs primarily in that some
concepts have different extensions, which are described by fresh facts.
Outdated facts do not have to be deleted but merely become invisible since
they contain arguments not residing on the alist any longer.

This more procedural approach to the frame problem seems to have
advantages over the strictly declarative method given in [7]. There is no
need for wieldy axioms to express that when P(x, ... , z, sl) holds in situation
sl and some conditions are fulfilled, the fact P(x, ... ,z, s2) can be inferred
in s2. Instead we have a different problem. A fact may seem to be obsolete
(since an argument has been removed from the alist) while an analogous
fact can be inferred for a newly introduced extension. We have
encountered this in Lemmas 1-4, where particular circumstances allow one
to equate the old and new binding.

Symbolic evaluation of LISP functions 291

Since updatings and the recognition of identities are object centered and
therefore may affect many facts simultaneously, this problem seems less
obstructive than the original one, but more thinking and/ or experimenting
is needed to validate this suggestion.

Although we agree with De Millo et al. [4] that the present verification
tools do not lend themselves to practical use, we do not share their
conclusion that the whole effort should be abandoned. Verifiers will
probably always run into resource limitations, but to assume that they will
never be able to use mechanisms similar to those that enable humans to
circumvent some of these limitations for certain tasks (without sacrificing
preciseness) seems premature.

Finally, it pays to have a second look at one's program from a verifi
cation perspective. Writing this paper forced us to reconsider the
conditions under which the function SUBST AD is applicable. The specifi
cation that we published 5 years ago turned out to be too liberal!

References

[1] D. de Champeaux, SUBSTAD: For fast substitution in LISP, with an application on
unification, Inform. Process. Lett. 7(1) (January 1978) 58-62.

[2] D. de Champeaux, Algorithms in AI, Ph.D. Thesis, Economische Faculteit, Universiteit
van Amsterdam (1981).

[3] J.A. Darringer and J.C. King, Applications of symbolic execution to program testing,
IBM Report RC 6965 (January 1977).

[4] R.A. De Milla et al., Social processes and proofs of theorems and programs, Comm.
ACM 22 (5) (May 1979) 271-280.

[5] D. Hare!, Proving the correctness of regular deterministic programs: A unifying survey
using dynamic logic, IBM Report 7557 (March 1979).

[6] J.C. King, Symbolic execution and program testing, Comm. ACM, 19 (7) (July 1976)
385-394.

[7] J. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of
artificial intelligence, in: B. Meltzer and D. Michie (Eds.), Machine Intelligence 4 (Else
vier, New York, 1969) 463-502.

[8] R.W. Topor, The correctness of the Schorr-Waite list marking algorithm, Acta Informat.
11 (1979) 211-221.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 293-304

Invited Address

Aad van Wijngaarden's Contributions to ALGOL 60

Peter Naur

Copenhagen University, Copenhagen, Denmark

The events of 1959-1960 leading to the development of the programming
language ALGOL 60, with special attention to the contributions of Aad van
Wijngaarden, are outlined. While Van Wijngaarden contributed actively to the
shaping of most of the central concepts of the language, in particular block
structure and procedures, his main influence appears to have been in less
tangible aspects of discussion manner and mental style.

Trying to describe and clarify the events that led to the development of
ALGOL 60 is a precarious undertaking. Many people and incidents were
involved, and many of the views on ALGOL 60 held then and now are
emotionally charged. As shown by the discussion provoked by an earlier
report on these events by the present writer [5] the likelihood is that a
description that goes into the details of the events will be met with angry
protests. It should therefore be made clear that the present attempt to
identify the particular contributions of Aad van Wijngaarden to ALGOL 60
has been written in response to a specific invitation from the program
committee of the International Symposium on Algorithmic Languages,
1981, Amsterdam. Further, although the account will make extensive use
of original documents, in many respects it can only present a personal view
of the events.

ALGOL 60 was developed by an effort as truly collective as could be
conceived. This means that the contribution of each participant in the
effort can at best only be understood in connection with, and in relation to,
the efforts of a number of other participants. In many cases the contri
bution of each individual merges with those of others to such an extent that
only the collective result can be identified. In the case of the contributions
of Aad van Wijngaarden, observed from Copenhagen, it must be clear
from the outset that in many cases a further merging will take place with

293

294 P.Naur

the contributions of other active workers in Amsterdam, in particular those
of Edsger Dijkstra and J .A. Zonneveld. What may be noted in this context
is that Van Wijngaarden, being the senior member of the Amsterdam team
around 1959, will have been the one who set the direction of the effort and
who set up the working conditions that gave the younger members the
opportunity to make the contributions for which they are individually
recognized.

Van Wijngaarden's contributions to ALGOL 60 belong to the last phase
of the development of the language. The first contact of the Amsterdam
team with the language development activity, as far as I know, was
Dijkstra's participation in a discussion of implementation problems in
Mainz, Federal Republic of Germany, on 21 November 1958. At this time
ALGOL 58 had already been described in the Zurich report [3], worked out
as a result of the meeting in Zurich on 27 May to 2 June 1958, the
European participants being F.L. Bauer, H. Bottenbruch, and K.
Samelson, of the Federal Republic of Germany, and H. Rutishauser of
Switzerland. Van Wijngaarden's name appears first in the official records
as participant, together with Dijkstra, in the meeting in Copenhagen,
26-28 February 1959. Thus, like many other Europeans in the final phase
of the development, including myself, Van Wijngaarden entered the
activity in response to the deliberate effort of the original language
committee, centered around GAMM in the Federal Republic of Germany,
to expand the geographical basis for the support of the new language.

The meetings in Mainz in November 1958 and in Copenhagen in
February 1959 aimed primarily at the discussion of implementation
problems, the language described in the Zurich report being taken, at this
stage, as essentially final. This is reflected in the fact that the Algol Bulletin
[2] that was set up at the meeting in Copenhagen initially addressed
''computing centres, who are all actively engaged on using the ALGOL

language for facilitating the programming for their respective computers"
in order to "facilitate the continued collaboration of these computing
centres in all questions related to the practical use of the ALGOL". In the
face of the adoption of the Zurich language as virtually established the
Amsterdam team remained sceptical and independent, and in fact did not
at first join the collaboration chanelled by the Algol Bulletin.

The status of the language as such was taken up for discussion by several
groups, including American participants, at the UNESCO Conference on
Data Processing in Paris, June 1959. An ad-hoc sub-committee, members

Aad van Wijngaarden 's contributions to ALGOL 60 295

E.W. Dijkstra (The Netherlands), W. Heise (Denmark), A.J. Perlis
(U.S.A.), and K. Samelson (Federal Republic of Germany), proposed a
time schedule for the preparations of a first, definitive version of the
language, and made some specific language proposals. This action
extended the scope of the Algol Bulletin so as to include the official
European discussion of language modifications. At this time the
Amsterdam team entered the mailing list of the Algol Bulletin.

The time schedule for the discussion set November 1 1959 as the last date
for acceptance of proposals for the first, definitive version of the language.
This deadline brought forth proposals from many sides, collected in the
Algol Bulletin (abbreviated AB) 7, mailed on 3 November 1959. The
Amsterdam team, Van Wijngaarden and Dijkstra, contributed a series of
suggestions, AB 7.31 to 7.35, covering a wide range of topics. The first
group, AB 7.31 to 7.33, was concerned mostly with the meaning of names
and the dynamics of declarations. These issues had already been the subject
of several contributions to the Algol Bulletin, as viewed from two different
sides, the first being the need for arrays of dynamically varying sizes and
the second the need for some way to control the accessibility of names of
the surrounding progam from inside procedure bodies. The Amsterdam
proposals in AB 7 brought fresh insight into the discussion, most strikingly
in the proposal for level declarations old, new:

We suggest that the level declaration

new (/,I, ...)

has the effect that, the named entities have no relationship to
identically named entities before in the following text, until
the level declaration

old (/,I, ...)

which attributes to the entities named herein the meaning
that they had before. These level declarations may be nested
and form the only way to introduce a new meaning to a
name. In particular in a procedure to be compiled along with
the main program all variables that should have no relation
ship etc. should be declared new before they have appeared
and declared old before the end.

The declarations do not only solve the problem of having

296 P.Naur

"old" and "new" variables alongside in a procedure, but are
also extremely useful in an ordinary program. It should be
noted that after new(x) the new xis fully independent of the
old x and, therefore, type declarations, if necessary, have to
be given anew. On the other hand after old(x) the type
declarations of the old x are still valid.

In AB 7 .34 van Wijngaarden and Dijkstra made a proposal for introducing
dummy as a type declaration:

This permits among other things to discern between different
dummies and apply other declarations to them. Example:

dummy integer (e, d) ...

A7le,d] =A[d,e] ...

defines the transpose of a matrix. In here, and this is the next
suggestion, the misleading symbol := in the function declar
ation is replaced by the non-operational symbol =.

Further, in AB 7.35 they suggested that

It should be possible to declare entities to be other things
than real variables, e.g. complex numbers, vectors, matrices,
lists (sets) of quantities. A quantity defined by such a declar
ation may enjoy well defined properties which make it
possible to apply operators like +, - , x, etc. ''in the
conventional meaning", i.e. in the meaning that is con
ventional for such types of quantities.

The next step in the European preparation for ALGOL 60 was the meeting
in Paris, 12-14 November 1959, attended by 49 persons from nine
countries. The findings of this meeting are collected in the reports of five
sub-committees, published in AB 8, issued on 12 December 1959. Van
Wijngaarden was a member of sub-committee 1, dealing with the identifi
cation of objects, which, essentially, recommended that the Amsterdam
proposals on dummy variables and on the form of function declarations be
considered carefully by the final conference. Sub-committee 2, including
Dijkstra as member, dealt with several questions related to declarations.
On the dynamic behaviour of declarations the sub-committee report has
the following foretelling remark:

Aad van Wijngaarden 's contributions to ALGOL 60

The principal problem is considered to be the range within
which a declaration should be valid. The extreme possibilities
are the strict limiting by write-up or alternatively by time
succession. A further possibility is that of permitting
dynamic declarations only when those two extremes are
coincident.

297

Van Wijngaarden was the chairman of the sub-committee 3 concerning
for and if statements, the other active members being K. Samelson and P.
Naur. The report of the sub-committee proposes an explanation of the
effect of a for statement in terms of more elementary statement forms
that evaluates all expressions of the for clause once before the first
repetition, in other words according to a static view. The existence of this
report, written by the members named above, is a telling comment on the
curious claim made by K. Samelson in 1978 [5, Appendix 7] that certain
features of ALGOL 60, including the dynamic for clause, were included as a
result of the pressure from a party of 'liberalists' or 'trickologists' having
as 'hard core' Naur, Perlis, and Van Wijngaarden, against a party of
'restrictionists' that included Samelson himself. As I have explained
elsewhere in more detail [5, Appendix 8] I find no support for the claim
that such a 'liberalist' party existed, neither in my memory nor in the
recorded facts, and the report of sub-committee 3 indicates perfect
willingness on the part of two 'hard core liberalists', Van Wijngaarden and
myself, to adopt a static for clause. If one looks for the explanation why
this view of the for clause did not prevail in the final version of ALGOL 60
one will find that at the final conference in Paris the for statement became
predominantly an American issue into which the European members felt it
would be tactically unwise to enter strongly.

As a further result of the meeting in Paris, 12-14 November 1959, the
European members of the final Algol committee, F.L. Bauer, P. Naur, H.
Rutishauser, K. Samelson, B. Vauquois, A. van Wijngaarden, and M.
Woodger, were appointed. This group of seven met in Mainz on 14-16
December 1959. During this meeting, in a small group engaged for several
days on discussing difficult problems that had already engaged the
members for several months previously, the personalities of all participants
emerged strongly, although this is not visible from any of the technical
documents produced at the time [l, document 2]. Right at the beginning of
this meeting, while we were still walking among the university buildings on
the way to the room of the meeting, Van Wijngaarden made a move which

298 P. Naur

in its friendly and polite manner and its subtle significance is highly
characteristic of him. He simply said: "I think we should introduce
ourselves, I am Aad." For an understanding of the significance of this
suggestion it should be realized, first, that in the previous meetings the
mode of personal address had conformed to the central European tradition
of using surnames, and even titles, as 'Professor So-and-So'. The
suggestion to use a more informal mode was therefore a general suggestion
to be less formal, more direct and personal. But the suggestion had a more
important implication. Until the meeting in Mainz, ALGOL in Europe was
the result of the work of the GAMM-centered committee, and was felt to
be, in a sense, the intellectual property of that committee. By making his
polite suggestion, which conforms more to an Anglo-Saxon than to a
central European style of address, Van Wijngaarden made it clear to
everyone that from now on the influence. on the language was shared
equally by all seven members of the European group.

In accordance with the tone set by Van Wijngaarden's proposal of
informality and equality the Mainz meeting became a highly effective
collective effort. He himself fought valiantly for dynamic declarations
based on the new-old idea, but with characteristic alertness dropped them
when the arguments in favour of a block structure gathered force. From
that moment he contributed cheerfully and actively to the shaping of the
details of the block structure, the main result of the meeting [1, document
2].

At the final ALGOL 60 conference in Paris, 11-16 January 1960, Van
Wijngaarden was first entrusted, together with Samelson, the important
task of convincing the Americans of the merits of the European proposal
for block structure. This took place in a committee of four, having Backus
and Green as the American members. The result [1, document 11] was a
unanimous recommendation of the European proposal with a few minor
modifications, a decisive turning point of the conference, brought about,
undoubtedly to a large extent by Van Wijngaarden's friendly and polite
manner and his flexible intelligence.

The report of the sub-committee [1, document 11], in addition to the
notes on block structure has a separate, concluding paragraph saying:

The Committee recognizes the need for syntactically alter
ing programs in various ways, and recommends that the
present Algol Committee meets in Rome in May 1960 to con
sider the specification of a Meta Algol and Processor.

Aad van Wijngaarden 's contributions to ALGOL 60 299

Needless to say, this recommendation was not followed. It is, however, an
interesting evidence of the optimism with regard to the speed with which
programming language ideas could be developed, held by some of the
members of the ALGOL 60 Committee.

At the later stages of the ALGOL 60 conference in Paris Van Wijngaarden
was a member of several sub-committees that had decisive influence on the
shaping of the procedure concept. During the early stages of the conference
several proposals for the semantics of procedure parameters, based on a
distinction between input and output parameters, had been considered and
rejected by the full committee. As a result a new sub-committee, having
Katz, Van Wijngaarden, and Woodger, as members, was given the task to
consider procedure calls with only one list of parameters. The main part of
their report [l, document 17] reads as follows:

For the successful use of a procedure, its purpose must be
understood, and parameters appearing in a call of the pro
cedure must be in accordance with the expressed intentions
of the author. For this reason no formal rules governing
admissible actual parameters should be made. In particular,
we need not even specify which are input and which are
output parameters, and then the rules for replacement of
formal by actual parameters on page 53 of DOCUMENT 4B
(line 7-20) [quoted below] continue to apply for simple
variables. A procedure may conceivably make use as para
meters of all kinds of identifiable entities, and for each of
these appropriate replacement rules must be given, whether
the proposal to amalgamate input and output parameters is
accepted or not.

DOCUMENT 4B (the Zurich report [2, p. 53, line 7-20]) says:

Within a program, a procedure statement causes execution
of the procedure called by the statement. The execution,
however, is effected as though all formal parameters listed in
the procedure declaration heading were replaced, throughout
the procedure, by the actual parameters listed, in the corres
ponding position, in the procedure statement.

This replacement may be considered to be a replacement
of every occurence within the procedure of the symbols, or
sets of symbols, listed as formal parameters, by the symbols,

300 P. Naur

or sets of symbols, listed as actual parameters in the corres
ponding positions of the procedure statement, after
enclosing in parentheses every expression not enclosed com
pletely in parentheses already.

Furthermore, any return statement is to be replaced by a
go to statement referring, by its label, to the statement
following the procedure statement, which, if originally
unlabled, is treated as having been assigned a (unique) label
during the replacement process.

While these formulations, which were adopted by the ALGOL 60
committee, leave many aspects of procedures open, they do make it clear
that the adoption in ALGOL 60 of the parameter replacement mechanism of
ALGOL 58, and the rejection of the input/output distinction, was made
knowingly and deliberately.

The final decisions concerning procedures were based on a report [l,
documents 26 and 27] submitted by a sub-committee whose members seem
not to have been recorded, but which I believe included Perlis and Van
Wijngaarden. The report on procedure statements describes the handling
of parameters as follows:

The execution is effected as though the values or names
respectively of all formal parameters listed in the formal part
of the procedure declaration heading were replaced through
out the procedure compound by the values or the names
respectively of the actual parameters in the corresponding
positions in the procedure statement.

The correspondence between the actual parameter and the
formal one is by list position, i.e. list position defines corres
pondents. The treatment of the correspondents is determined
by the name list associated with the formal parameter list in
the procedure heading. A name is taken if the corresponding
formal parameter appears in the name list; otherwise the
value is taken. A procedure statement is only defined if the
correspondents are compatible, i.e. when the correspondent
is specified by value or name respectively that the types or
kinds respectively correspond. The value or name - which
ever is indicated - of each of the actual parameters is sub
stituted appropriately in the procedure compound - includ-

Aad van Wijngaarden 's contributions fo ALGOL 60

ing declarations - according to the following prescription: if
specification is made by name, the name of the actual para
meter is substituted for all occurrences of the corresponding
formal parameter in the procedure compound. If specifi
cation is made by value, the value of the actual parameter is
assigned to the corresponding formal parameter as an
initialisation of the procedure compound. If the parameter is
a label by assignment is meant the same as replacement. If
the parameter is an array, the consequences of mismatch of
the dimensions of the correspondents are undefined.

301

As a further help to understanding these rules an addition to the draft
report [1, document 31, item 174] was submitted by, I believe, Van
Wijngaarden:

2.7. Names
The name of an identifier is that identifier.
The name of a variable or expression is the (name of the)

identifier associated with that variable or expression, respec
tively.

The name of an array, function or procedure is that
function [sic.] identifier, procedure [sic.] identifier or pro
cedure identifier associated with that array, function or
procedure, respectively.

As has been described elsewhere [5] the adoption of these proposals by the
full ALGOL 60 committee did not clarify the procedure concept sufficiently
for the final formulation, and another round of exchanges of proposals, by
letter, followed the ALGOL 60 meeting in Paris, during the time 17 to 25
January 1960.

Although most of the formulations quoted above have authors in
addition to Van Wijngaarden, I think they can serve as support of a
characterization of his distinctive contribution to ALGOL 60. Running
through the proposals in which he has a hand is a keen openness to new
solutions, which, however, are always characterized by being based on few,
very general notions, and described briefly and elegantly. When this is said
it must also be admitted by in pursuing this direction there is a risk that the
simplicity and elegance may be deceptive, may cover complications and
obscurities. This risk was demonstrated by the discussion and feeling of

302 P. Naur

uncertainty that was provoked in the ALGOL 60 committee by Van
Wijngaarden's description of the concept of name.

At this point we may also note some proposals from the Amsterdam
team that were upheld during the Paris meeting by Van Wijngaarden but
rejected by the full committee. The most remarkable such proposal was the
one for having the possibility to declare dummy variables explicitly, as
presented in Algol Bulletin 7 .34 quoted above. The trouble about this
proposal, and the main reason why it was rejected, was that it was never
developed beyond the initial suggestion. It was just an intriguing idea, but
one whose concrete implications and relation to other parts of the pro
gramming language remained obscure.

The situation with respect to the Amsterdam proposal (AB 7.35, quoted
above) for admitting an extended range of types, including complex
numbers, vectors, matrices, and lists, was similar. In this case the general,
mathematical notions behind the proposal were of course well known, but
at the same time is was increasingly clear that it requires a lot more than
just a mathematically well-defined notion to achieve a data type notion
that is adequate for inclusion in a common programming language.
Indeed, even just the clarification of the handling of integers and reals in
ALGOL 60 required extensive discussion in a sub-committee of the ALGOL

60 meeting in Paris [l, documents 15, 16].
For use as illustrations in the final ALGOL 60 Report all members of the

committee were urged to submit sample programs. Only Van Wijngaarden
and Rutishauser responded to this, Van Wijngaarden on 4 February 1960
sending in the procedure euler that appears as Example 1 in the ALGOL 60
Report [4] and also a procedure similar in operation to the one submitted a
few weeks later by Rutishauser, which appears as Example 2. Thus if we
disregard the examples in the main section of the report, Van Wijngaarden
must be the first person to have a numerical algorithm written in ALGOL 60
published.

The final contribution of Van Wijngaarden to the formulation of the
ALGOL 60 Report was his and Dijktra's suggestion, made in a telephone
call from Amsterdam to Copenhagen on about 10 February 1960, that a
sentence be added to the draft report so as to make it clear that the
language admits recursive procedure calls. This particular issue has been
dealt with at length in an earlier study [6, pp. 159-160] from which it
should be clear that the members of the ALGOL 60 committee do not agree
on the significance of this incident. However, as far as Van Wijngaarden

Aad van Wijngaarden 's contributions to ALGOL 60 303

himself is concerned it is quite clear that he regarded this action, by
Dijkstra and himself, as a contribution to the clarity and completeness of
description of the language already fully defined in the draft report, not as
a reversal of a committee decision to disallow recursive procedure acti
vations. In any case, the concrete proposal itself, due, I believe, to
Dijkstra, is a highly characteristic piece of brevity and elegance:

Any occurrence of the procedure identifier within the body
of the procedure other than in a left part in an assignment
statement denotes activation of the procedure.

While the publication of the ALGOL 60 Report [4] in March 1960 may
be said to terminate the creation of the language itself, when consider
ing the contributions of the Amsterdam team to establishing the language
in a wider sense the field of ALGOL 60 compiler construction must be
mentioned. The fact is that only a few months after the final definition of
the new language, in June 1960, Van Wijngaarden could announce the
successful completion, by Dijkstra and Zonneveld, of the first compiler for
the language, working on the Electrologica XI computer. This result had
an enormous impact as a support of ALGOL 60, both in terms of the actual
compiler techniques employed, which were subsequently used and adapted
widely, but perhaps even more as a proof that the language could be imple
mented almost in its entirety by a team of quite modest capital resources. It
was, in very concrete terms, a confirmation of the benefits that may be
gained from insisting on simplicity and generality in programming
language design.

As the conclusion of these notes, although Van Wijngaarden contributed
actively to all the central parts of ALGOL 60, it is difficult to identify any
definite part of the language as contributed particularly by him. In fact, it
is much easier to point to ideas that he proposed for the language, but that
were eventually rejected in the language design process. The point is that
his main influence on ALGOL 60 was less tangible, but not less strong for
that reason. Van Wijngaarden's manner, his friendliness, politeness,
cheerfulness, quick comprehension, flexibility of mind, all of these were
exceedingly helpful in shaping the concepts and in smoothing the dis
cussion. And the direction of his influence, his mental style, his striving for
simplicity and generality, certainly have left their mark on the final
language. For these reasons all of us who have benefitted from ALGOL 60,
in any way whatever, owe him our recognition and gratitude.

304 P.Naur

References

[l] ALGOL 60 documents 1959-60. (Unpublished technical memoranda prepared in con
nection with the ALGOL 60 conference in Paris, 11-16 January 1960.)
2: European representatives to the ALGOL 60 conference 14-16 December 1959. Meeting

of the European representatives to the Algol conference, Mainz, 4 pp.
11: J. Backus, J. Green, K. Samelson and A. van Wijngaarden, 13 January 1960, Report

of the committee on local, etc., I p.
15: P. Naur and A. Perlis, Meaning of types and assignments, 1 p.
16: P. Naur and A. Perlis, 13 January 1960, Types of expressions - assignments, 3 pp.
17: C. Katz, A. van Wijngaarden and M. Woodger, 14 January 1960, Report of the

committee on procedure declarations and procedure calls with only one list of para
meters, I p.

26: Procedure statements, 16 January 1960, 2 pp.
27: Procedure declarations, 16 January 1960, 2 pp.
31: ALGOL 60 committee, 13- I 6 January 1960, First and second list of suggested changes

in document 5. Each item is authored by a member of the committee. The items are
numbered IOI to 175, followed by 173-175 (used again) and oo-1, 33 pp.

[2] Algol Bulletin, P. Naur (Ed.), Mimeographed discussion letters, No. 7, 3 November 1959,
21 pp. No. 8, 12 December 1959, 15 pp. Regnecentralen, Copenhagen.

[3] J.W. Backus, F.L. Bauer, H. Bottenbruch, C. Katz, A.J. Perlis (Ed.), H. Rutishauser,
K. Samelson (Ed.), and J.H. Wegstein, Report on the algorithmic language ALGOL, Num.
Math. I (1959) 41-60. Also: Preliminary report - international algebraic language,
Comm. ACM l (12) (1958) 8-22.

[4] J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (Ed.), A.J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. van Wijngaarden and
M. Woodger, Report on the algorithmic language ALGOL 60, Num. Math. 2 (1960) 106-
136. Also: Comm. ACM 3 (5) (1960) 299-314.

[5] P. Naur, The European side of the last phase of the development of ALGOL 60. In: R.L.
Wexelblat (Ed.), History of Programming Languages (Academic Press, New York, 1981)
pp. 92-139.

[6] R.L. Wexelblat (Ed.), History of Programming Languages (Academic Press, New York,
1981) 758 pp.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 305-319

On the Notion of Strong Typing

Maarten M. Fokkinga

Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands

The usefulness of strong typing is formalized in the following way. Strong
typing is a syntactic means to restrict the class of programs so that a pleasant
semantic property holds. More precisely, a semantic equivalence of strongly
typed programs is proved independent of the representation used to implement
abstract entities like numbers, truth values and predefined ones.

Thus a formal content is given to phrases like "typing prevents to employ
unintended properties of representations" and "semantically types are
redundant".

1. Introduction

It seems widely accepted that so-called strong typing has some
undeniable benefits. E.g. the ALGOL 68 designers claim that" ALGOL 68 has
been designed in such a way that most syntactic errors and many others can
be detected easily before they lead to calamitous results" [19, Section
0.1.3]. Undoubtly it is its mode discipline which plays a major role in this
error detection (see [6, 8]). Indeed, "one often pays a price for [the absence
of a type system] in the time taken to find rather inscrutable bugs - anyone
who mistakenly applies CDR to an atom in LISP, and finds himself
absurdly adding a property list to an integer, will know the symptoms"
[11 l.

It is therefore not surprising that the following requirement is included in
STEELMAN [2]:

"3A. Strong Typing. The language shall be strongly typed. The type
of each variable, array, record, expression, function and parameter
shall be determinable during translation".

But STEELMAN neither provides a formal definition of strong typing, nor

305

306 M.M. Fokkinga

does it give any semantic property aimed at in requiring strong typing. So
how could one prove that ADA meets the requirements or desiderata?

In this paper we investigate what formally the usefulness of strong typing
might be. To this end we view typing as a purely syntactic way of restricting
the class of programs so that a pleasant semantic property holds for that
class, and we thus formalize the interplay between the syntactic typing and
the semantic properties of programs. This view is in accordance with [13]
and [12], and seems consistent with practical implementations of strongly
typed languages. Nevertheless one mostly finds types motivated in a setting
where semantic entities (like retracts [16] and [3], downward closed
directed c.p.o.'s [11] and so on) are assigned to types.

Our paper might be viewed as a continuation of [15] and [3]. They both
present a theorem which we call the Correspondence Theorem. Informally
this theorem asserts that there is a relation, called correspondence, which
relates for any strongly typed program the values denoted under different
implementations. However, both assign a semantics to types. We are glad
to improve their results in that we show types to be semantically redundant.
Moreover we prove a nicer theorem (Theorem 3 .10) which asserts that a
semantic equivalence of programs is independent of the implementation.

The formalization and proofs are carried out in the framework of the
typed J-notation. We define two expressions equivalent with respect to
some type t if their values, when used according to t, are the same function
- or constant.

The remainder of the paper is organized as follows. In Section 2, we
formally define syntactic concepts of the language, and define some
axioms which are to characterize the semantics. In Section 3, the formaliz
ation of the usefulness of strong typing is presented. Thereafter, in Section
4, we give a specific semantics of the language, satisfying the axioms; that
section only serves to provide a concrete example. Finally we conclude with
Section 5, discussing the results obtained.

2. The Language

We choose a simple language to illustrate the essential ideas. Obviously,
then, the language has to have a construct where type checking is involved,
say function application or assignment. Moreover the language has to have
a construct for user controlled creation of new values; were this not the case

On the notion of strong typing 307

there would be no problems at all, because one must of course assume that
all 'predefined' values behave well. In view of its simple semantics we are
led to consider the A-notation; A-abstraction is the construct to create new
values.

Definition 2.1 (Expressions and Types). Let X be a countably infinite set
of normal identifiers and let Z be a set of type identifiers. Throughout the
paper we let x and y vary over X and z over Z. Specific elements of X are
e.g.

zero, one, succ, pred, true, false, ...

and specific elements of Z are

int, boo!,

The set T of types is defined thus

t::=zlU-t').

The set E of expressions is defined thus

e ::=xi (AX: t. e) I e(e').

Throughout the paper we let e vary over E and t over T; we sometimes
suffix them with digits, primes and letters f, a and b (for function,
argument and body). According to common usage we omit parentheses
when they are clear from the context; in particular the scope of A extends as
far as possible, and -> associates to the right, so that tl ->t2->t3 =
tl->(t2->t3).

Notice that there are no constants like 0, 1, 2, ... ; predefined identifiers
like zero, one, two, ... (or even zero and succ alone) should enable the
programmer to use numbers. Other interesting predefined identifiers may
be the so-called fixed point operators, fixpointu of type ((!-> t')->
(t->t'))->(t->t'), to enable recursive definitions.

Syntactic sugar might be added to make the language more practical.
E.g. non-recursive definitions can be introduced as an abbreviation:

let x: t=e' in e
and

e where x: t = e'

308 M.M. Fokkinga

abbreviate (Ax: t. e)(e'). Also conditional expressions can be introduced:

if e then e 1 else e2

where both el and e2 have type t, abbreviates

cond1(e)(Ax: null. e l)(Ax: null. e2)

where cond1 has type bool--+(null--+t)-->(null-->t)-->t. All this is well known,
see e.g. [17].

We now define what expressions are well typed. The formal term used is
strong typing. Informally it means that for each application the type of the
argument must match the parameter type of the function. In our simple
language two types match iff they are equal; in a more elaborate language a
less trivial relation may hold.

The type of identifiers depends on the context in which they occur. We
model that context by a so-called syntactic environment. Formally, the set
S of syntactic environments is the set of partial functions X-> T. Through
out the paper we lets vary over S. For each s we assume that there exists an
identifier x which has not yet a type associated with it; we say that new(x, s)
holds in that case. In view of the infinity of X this is no strong requirement.

As usual the suffix [p+-q] denotes updating of a function; in particular

s[x+- t] (x') = if x = x' then t else s(x').

This notation will also be used for semantic environments r, to be intro
duced below.

Definition 2.2 (Strong Typing). The relations I- e: t ("e has type tins") is
the smallest relation satisfying

(a) if s(x) = t, thens 1- x: t;
(b) if s[x+-ta] 1- eb: tb, thens 1- (AX: ta. eb) : (ta--> tb);
(c) if for some ta, st-ef: ta-->tb and st-ea: ta, then st- ef(ea): tb.
We say e is strongly typed in s if for some t, s 1- e: t.

Now we turn to the semantics of the language. Let Vbe the set of values
which serve as meanings for expressions, and let R = X--> V be the set of
semantic environments giving the meaning of the predefined identifiers.
(Throughout we let v and w vary over Vand rover R.) The meaning of an
expression e is then given by M(e, r), where Me Ex R--> V is the so-called
meaning function (a partial function).

On the notion of strong typing 309

Usually the meaning of expressions are taken to be some abstract
entities, like numbers, truth values or functions. Accordingly the domain
of numbers is associated with the type identifier int, the domain of truth
values is associated to boo!, and - sometimes mathematically quite
sophisticated - functional domains are associated to types t--+ t'. Actually,
however, expressions yield bit patterns, or the like, which in some way or
another represent those abstract entities. And accordingly, from the bit
pattern alone, say concrete value, one can not tell whether it is meant as a
number, truth value or function. It is indeed quite possible to execute a bit
pattern meant as a number as if it represents a function. Thus semantically
types do not enter the picture.

Admittedly, mostly the abstract entities are of interest. But the interpre
tation of the concrete values cannot be the task of the language designer,
i.e. is not incorporated into M. Even if M would produce numbers, then
still these numbers represent some more abstract entities like year of birth,
salary and so on. The interpretation is really outside the grip of M, and is
left to the individual programmer and creator of the standard environ
ment.

Consequently the value denoted by an expression is possibly untyped.
We will however not burden the reader/programmer with details of the
value space V, but instead specify the meaning of expressions by the
axioms which we need in the proofs below.

Definition 2.3 (Axioms for M). For strongly typed expressions the
meaning function satisfies the following axioms.

(a) M(x, r) = r(x);
(b) if v=M(ea,r), then M((,lx: ta. eb)(ea),r)=M(eb,r[x+--v]);
(c) ifynot freeine, thenM((,lx: ta. e)(ea),r) =M((Ji,y: ta. e[xly])(ea),r);
(d) if v = M(e', r) and x does not occur free in the scope of some Ji, within

e, then M(e[x/e'],r)=M(e,r[x+--v]).

Above, and in the sequel, we use the postfix [x/e'] to denote substitution
of e' for x - taking care to rename bound identifiers in order to avoid clash
of names.

Notice that M(Ji,x: t. e, r) need not be a function. All we require is that it
can be used as a function in the sense of axioms (b) and (c). Indeed, the M
given in Section 4 will yield some code of a function, so that e.g.
M(,lx: t. e, r) differs from M(Ji,y: ! . e[x/y], r). Actually in Section 4 we take

310 M.M. Fokkinga

Vto be a set of untyped values, so that any value may be used in any way,
and M even satisfies the axioms for not strongly typed expressions.

In the sequel we will use the following abbreviations.
(1) 'v(w)' abbreviates M(x(y),r[x+-v,y+-w]), and is thus a concise way

of expressing that v is to be used as a function with argument w.
(2) el =,e2 abbreviates M(el,r)=M(e2,r); el and e2 yield the same

value in r.

3. Formalizing the Usefulness of Strong Typing

We will first introduce the syntactic concept of primitive expressions.
These denote what one might call predefined values and they are used to
state assumptions on alternative representations for the same set of
abstract entities. Secondly we define the semantic relation of correspon
dence and some properties of it. The correspondence relation is used in the
proof of Theorem 3.10 which expresses our view on the usefulness of
strong typing.

Suppose that the standard environment r provides via zero: int and
succ: int-+int an implementation for numbers. Of course, the concrete
value denoted by zero is not the number zero, but merely represents it in
some way or another. We may also consider an alternative implementation
f. Surely r(zero) and f(zero) need not be equal, although they both
represent the same abstract entity. E.g. the expressions

zero, succ(zero), succ(succ(zero)), ...

constitute the - unknown - representation of numbers. And if e.g.
pred: int-+ int is also present, then

pred(zero), pred(succ(zero)), succ(pred(zero)), ...

might also contribute to the representation. However note that abstractions
like AX: int. x or AX: int. zero do not contribute to the representation of
abstract entities as far as determined by the environment. Thus we are led
to the following definition to get some grip on the representations of
abstract entities.

Definition 3.1 (Primitive expressions). For any s the set P of primitive
expressions consists of all strongly typed expressions p generable by

On the notion of strong typing 311

P ::=x jp(p).

In the sequel p varies over P.

It will turn out that, for fixed s and r, the primitive expressions of type z
constitute all expressible 'z-values'. Thus they play the role usually played
by constants. However we do not restrict the types of the given function
identifiers to first order; a function identifier mk-int:((t-+ t)-+ int) may
occur in the primitive expressions and so contribute to the values repre
senting 'int's.

Given two environments r and f, we wish to define a correspondence
relation - 1 on Vx V, relating those values which wrt r resp f represent the
same abstract entity. As one concrete value may represent a variety of
abstract entities (e.g. 001 may represent both the number one and the truth
value true, and many more), we need to indicate with respect to what
interpretation the correspondence is to be understood. The type t serves
that purpose. Of course we want M(p, r) -zM(p, f) for p of elementary type
z; thus the relation also depends on s.

Definition 3.2 (Correspondence). For any s, r, f and t the relation s,r,ff-
v - 1 v (''v and v represent the same abstract entity") is defined by induction
on t as follows:

(a) t = z: s, r, fr- M(p, r)-zM(p, f) for any p withs f- p: z;
(b) t=ta-+tb: s,r,ef--V-1V iff for all w, W with s,r,ff--W-1aW, also

S, r, fr- 'V(W) '-lb 'V(W) '.

We cannot expect to derive any interesting property for the corres
pondence relation unless we assume consistency between the two environ
ments. In particular the following predicate Correct- (s, r, f) is reasonable.

Definition 3.3 (Correct-). Correct- (s, r, f) holds iff for all x, t with
Sf--X:t

s, r, f r-M(x, r)- 1M(x, f).

The following lemma shows that a seemingly stronger requirement for
Correct- (s, r, f) actually already follows from the given definition.

Lemma 3.4. Let s, r, f satisfy Correct - (s, r, f). Then, for any p, t with

312 M.M. Fokkinga

sf--p: t,

s, r, f f--M(p, r) ~ 1M(p, f).

Proof. By induction on the structure of p.

The following lemma is needed to prove the Stability of Correspondence
Lemma below, which in turn is needed in the Correspondence Theorem
following it. Both lemmata are of a rather technical nature. They show that
updating of s, r, f to s[x+-- t], r[x+--v], f[x+--v] under certain circumstances
does not change the relation ~ 1.

Lemma 3.5. Lets, r, f satisfy Correct~ (s, r, i'); let w, w, ty satisfy s, r, i'f-
w ~ 1y w; let y be new ins, i.e. new(y,s). Then for any p, t withs' f--p: t,

s, r, i' f-- M(p, r') ~ 1M(p, f')

wheres'= s[y+--ty], r' = r[y+--w], f' = f[y+--w].

Proof. By induction on the structure of p.

Lemma 3.6 (Stability of Correspondence). Lets, r, i' satisfy Correct~
(s,r,f); let w, w, ty satisfy s,r,ff--w~ 1y w; let y be new ins, new(y,s). Then
for any v, v, t

s,r,i'f--v~ 1v iff s',r',f'f--v~ 1v

wheres'=s[y+--ty], r'=r[y+--w], f'=f[y+--w].

Proof. By induction on the structure oft.
Case t=z, ⇒. Assume s,r,i'f--V~zV. By definition, for some p with

sf-p: z, v = M(p, r) and v = M(p, i'). Because new(y, s), y does not occur
free in p, hence v = M(p, r') and v = M(p, f') and s' f-- p : z. So by definition
s', r', i'' f- V ~z v.

Case t=z, <=. Apply Lemma 3.5.
Case t= ta-+tb. Use the definition of correspondence and the induction

hypotheses for both ta and tb.

Theorem 3. 7 (Correspondence). Lets, r, f satisfy Correct~ (s, r, f). Then
for any e, t with sf-- e: t

s, r, f f--M(e, r) ~ 1M(e, f).

On the notion of strong typing

Proof. By induction on the structure of e.
Case e = x. Immediate from the assumption.
Case e = ef(ea). Straightforward by induction.

313

Case e =).x:ta. eb. Then for some tb, t = ta-+ tb and s[x+-ta] 1- eb:tb.
Now let w, w be arbitrary satisfying s, r, f I- w-10 w. One may easily verify
that 'M(e, r)(w)'= 'M(Jx: ta. eb, r)(w)' =M(eb[x/y], r[y+-w]) where y is
chosen such that new(y,s). Setting s'=s[y+-ta], r'=r[y+-w] and f'=
f[y+-w], we can show Correct- (s', r',f') from the Stability of Corres
pondence Lemma. Hence we may apply the induction hypothesis and find

s', r', f' 1-M(eb[xly], r')- 1b M(eb[x/y], f').

As above M(eb[xly],f') = 'M(e, f)(w) ', so that

s', r', f' 1- 'M(e, r)(w)' - 1b 'M(e, f)(w)'.

Using once more the Stability of Correspondence Lemma we find

s, r, fl- 'M(e, r)(w)' - 1b 'M(e, f)(w) '.

We conclude therefore s, r, f 1-M(e, r)- 1M(e, f).

Reynolds [15] and Donahue [3] give more or less this theorem as the
effect strong typing has on the semantics of expressions. One may interpret
the theorem that an implementor of the predefined values, accessible via
the predefined identifiers, may freely switch from one representation r to
another f, provided Correct- (s, r, f), without essentially affecting the value
denoted by an expression: the two values do correspond and therefore do
represent the same abstract entity; in particular if the expression has a non
composite type we know that the two values M(e, r) and M(e, f) arise from
the same primitive expression.

Yet we feel a bit unhappy with this result; it involves too much hand
waving to convince an unwilling listener of the importance. Fortunately
there is a more appealing semantic property of strongly typed expressions.
Switching from one representation to another does not affect the meaning
of expressions in the sense that semantic equivalence is unaffected.
Semantic equivalence need be defined precisely, because there are several
reasonable choices, which in general do not coincide (see e.g. [1]). We
choose the one in which two expressions e and e' are said equivalent with
respect to a type t1-+ t2-+ • • •-+ tn-+ z if there is no context of the form
[···](el)(e2)···(en) with el:tl, ... ,en:tn which discriminates between e

314 M.M. Fokkinga

and e'; i.e. e(e1)(e2) ••• (en) and e'(el)(e2) •·· (en) yield the same value.
Formally, we define this notion by induction on t.

Definition 3.8 (Equivalence). For any s, r, el, e2 we define s,n-el ==1e2
("el and e2 are equivalent wrt t") as follows.

(a) for t=z: s,n-el ==ze2 if el =,e2;
(b) for t=ta+-tb: s,n-el == 1e2 if for all e with s1-e: ta, s,r1-el(e):::::1b

e2(e).

Notice that s,rl-e1==1e2 in itself does not require that sl-e1,e2:t.
Hence it makes sense to consider the question whether any e 1 and e2 are
equivalent. In particular we may consider expressions which are not
strongly typed, but are weakly typed according to [3]. Some simple
examples are treated after Theorem 3.10.

An alternative notion of equivalence is the following. Two expressions
el and e2 are said equivalent wrt type t if there is no strongly typed context
C[• • ·] with a hole of type t and as a whole of type z, for some z, such that
C[el] and C[e2] have different values; cf. [IO]. Our Theorem 3.10 fails for
this notion because of possible pathological values for higher order
function identifiers. We might exclude such values by suitable assumptions
about r, but we will not pursue this alternative here.

We can of course not expect to prove that equivalence is independent of
the environment, unless we assume some consistency requirements between
the environments under consideration. In particular the following
predicate Correct== (s, r, f) seems reasonable.

Definition 3.9 (Correct=). Correct= (s, r, f) holds iff for all pl, p2, z with
sl-pl,p2: z

s,rl-pl=zp2 iff s,fl-plc:::zp2.

Theorem 3.10 (Representational Independence of Equivalence). Lets, r, f
satisfy Correct- (s, r, f) and Correct= (s, r, f). Then for any e 1, e2, t with
s1-e1,e2: t

Proof. By induction on t.

On the notion of strong typing 315

Case t=z, =>. Froms,n-el :::::ze2 we find el =re2 (1)

From s,r,f1--M(el,r)-zM(el,f) (by the Correspondence Theorem) and
similarly for e2, we find by the Correspondence Definition

forsomepl withs1--pl:z, el=rPl andpl=,el,

for some p2 with s 1--p2: z, e2 =, p2 and p2 =; e2.

Hence by (1) pl =, p2, so s, r 1--p 1 ==-z p2, so by Correct=:::. (s, r,f) also s,f 1-
pl =zp2, so pl =,p2 and hence el =,e2, i.e. s,f 1--el ==:ze2.

Case t = z, <=. Similar.
Case t = ta-> tb. Easy by induction.

It is not difficult to construct counter examples to the conclusion of the
theorem in case the condition s 1-- el, e2: t is not met. E.g. consider the
syntactic environment with zero: int and true,false: boo!. Now let the
representation of booleans be a subset of the representation of the integers.
In particular choose r and f such that

r(zero) = r(true) * r(false),

f(zero) = f(false)-:f.= f(true).
Clearly

s, f 1-- zero :t::- 1 true for all noncomposite t E Z,
but yet

s, r 1-- zero ==- 1 true for all t.

Donahue [3] defines a notion of weak typing so that e =(AX: boo!. x)(zero)

is weakly typed and has type boo!. Again we find s, r 1-- e==-boot true but
s, f 1-- e *boot true. Thus relaxing the requirements 1-- e 1, e2: tin the theorem
to "el and e2 must be weakly typed, with type t say, ins" invalidates the
conclusion.

4. A concrete semantics for the language

This section only serves to show that untyped values and coinciding
representations are quite reasonable. We will work out the set V and
function M, without any sophisticated mathematical constructions as
commonly used in the field of denotational semantics, cf. [3, 9, 15, 16].

316 M.M. Fokkinga

Our starting point is that values are untyped, like bit patterns, and that
each value may be used in any way. This is just the opposite of Definition
2.1.1.2.c of the ALGOL 68 Report [19], and of the postulation by [5]. For
ease of presentation we choose a set V which suits our purpose very well.

Definition 4.1 (The value space V). Let C be a fixed set of constants,
disjoint from X. The set U of pseudo-values is defined by BNF:

u ::=x I (AX. u) I u(u') I c.

The set V of values is defined thus

V = { u E U I no x EX occurs free in u}.

Throughout v and w vary over V; specific elements of C are
c0,c1, ... ,S,P,

Values may be thought to model states of a machine. Possible state
transitions are modelled by transformation or reduction rules. A com
pleted transformation of some initial state v into a final state is called the
elaboration of v. We choose here a deterministic transformation in
applicative order ('call by value'), cf. the SECD machine of [7].

Definition 4.2 (Transformation rules and Elaboration). The deterministic
transformation v➔ w is defined thus:

(a) if v➔ v', then v(w)➔ v'(w);

(b) if Vv'. v~v' and w➔ w', then v(w)➔ v(w');

(c) if Vw'. w~w', then (.h. v)(w)➔ v[xlw];

(d) for each c E C there is a fixed set of rules

c(vl)(v2) •·· (vn)➔ w

which respects the deterministic applicative order.
The elaboration elab E v➔ V (a partial function) is given by

elab(v) = w if v-!..... wand Vw'. w~w'.

In the above framework "fatal errors during elaboration" may be
modelled by nontermination. To this end let error EC with error➔error.

Abstract entities like natural numbers N or truth values may be repre
sented in Vin a variety of ways, as shown in the next example.

On the notion of strong typing 317

Example 4.3 (Representations of natural numbers). One way is to let
c0, c 1, c2, ... E C and to represent n EN by the obvious constant, say en.

Further, let S, PE C represent the successor and predecessor function. The
following rules are needed: for all n

Alternatively, we may represent n by

(AX. Ay. xn(y)) =AX. Ay. x(x(• • • x(y) • • •)),

and the successor by AX. AY.).z. y(x(y)(z)) and the predecessor either by

PE C with P(h. Ay. xn+ 1(y))->).x. Ay. xn(y)

or by
AZ. (z(AX. Ay. y((AX. Ay. AZ. y(x(y)(z)))(x(Ax. Ay. x)))

(x(AX. Ay. x)))(Az. z(Ax. Ay. y)(Ax. Ay. y)))(AX. Ay. y),

from [17]. There are various other representations with constant-free
values, and which have a lower elaboration complexity (see [14)).

In particular the last representation in the above example shows that
values are untyped. Ax. Ay. y represents the number zero, but it may be
applied to any value. In fact it also represents any function f EA-> B-> B
with

f(a) = identity function on B.

Finally we define M. The role of types is to single out the strongly typed
expressions, i.e., those for which Theorems 3. 7 and 3 .10 hold. Semanti
cally "types are redundant."

Definition 4.4 (The meaning function M). The compilation - EE-> U is
defined thus (it throws away all types):

(a) X=X,

(b) (AX: t. e) =(AX. e),
(c) e(e') = e(e').
The meaning function MEE x R-> V is defined

M(e, r) = elab(e[x/r(x), for each x free in el).

318 M.M. Fokkinga

It should be easy to verify the axioms assumed in Definition 2.3, and to
construct suitable values for the identifiersfixpoint1, 1, and cond1 mentioned
in Section 2.

5. Conclusion

We have shown that strong typing may be viewed as a purely syntactic
means to restrict the class of expressions so that a nice semantic property
holds. This view is consistent with practice where types are semantically
(i.e. during run-time) redundant and values are really untyped.

The explicit formulation of the usefulness of strong typing makes it
possible to discuss formally whether strong typing is desirable, provides a
clear goal to aim at in the design of a type system, and enables a formal
proof that a language, which claims to be strongly typed, satisfies that
property. Thus we have a framework to discuss the type systems of [15], of
ALGOL 68 and of modern languages with highly advanced type systems like
LAWINE [18].

For example, [15] extends the A-notation with a facility to pass types as a
parameter. It presents no problems at all to extend our definitions,
theorems and proofs to cover that extension too, see [4]. On the other hand
the decision in ALGOL 68 that struct(real re, im) and struct(real rho,phi) are
not equivalent seems irrelevant to maintain the representational indepen
dence of equivalence. Here, we think the ALGOL 68 designers have
(mis)used the concept of strong typing in order to achieve in this particular
case and in an ad-hoc way that those modes are more or less primitive. A
facility to declare a type primitive, as in [15], would provide a more general
solution, with no need to break the full structural equivalence of modes.

Of course, before we can make precise the above claims, further investi
gation is needed to extend the concepts of this paper to other language
features. The introduction of cartesian product and discriminated union,
and of variables and assignment, seems to be straightforward. More
attention is needed for subtypes. And recursively defined types are
problematic. E.g. the definitions cannot easily be adapted for the type
z = z-> z. However, we conjecture that adaptations are possible for
reducing types [1] like

f ct= jct x int-> int

On the notion of strong typing 319

which may be used to define the factorial function in the following way.

J :Jct= Ag :Jct, i: int. if i = 0 then 1 else i *g(g, i- 1);

J act: int- int= Ai: int. J(j, i).

Acknowledgement

I am grateful to Joost Engelfriet for stimulating and helpful discussions.
He has also pointed out a serious error in earlier versions of this paper.

References

[!] E. Astesiano and G. Costa, Languages with reducing reflexive types, in: J.W. de Bakker
and J. van Leeuwen (Eds.), Automata Languages and Programming, Lecture Notes in
Computer Science, Vol. 85 (Springer, Berlin, 1980) pp. 38-50.

[2] Department of Defense (U.S.A.), Requirements for high order computer programming
languages (197 8).

[3] J. Donahue, On the semantics of "data type", Siam J. Comput. 8 (4) (1979) 546-560.
[4] M.M. Fokkinga, in preparation.
[5] C.A.R. Hoare, Notes on data structuring, in: 0.-J. Dahl, E.W. Dijkstra and C.A.R.

Hoare (Eds.), Structured Programming (Academic Press, London, 1972).

[6] C.H.A. Koster, The mode-system in ALGOL 68, in: S.A. Shuman (Ed.), New Directions
in Algorithmic Languages 1975 (!RIA, 78150 Le Chesnay, 1975) pp. 99-114.

[7] P.J. Landin, The mechanical evaluation of expressions, Comput. J. 6 (1964) 308-320.

[8] L. Meertens, Mode and meaning, in: S.A. Shuman (Ed.), New Directions in Algorithmic
Languages 1975 (IRIA, 78150 Le Chesnay, 1975) pp. 125-138.

[9] R.E. Milne and C. Strachey, A Theory of Programming Language Semantics (Chapman
& Hall, London, 1976).

[10] R. Milner, Fully abstract models of typed A-calculi, Theor. Comput. Sci. 4 (1977) 1-22.

[11] R. Milner, A theory of type polymorphism in programming, J. Com put. System Sci. 17
(3) (1978) 348-375.

[12] J.H. Morris, Types are not sets, in: Proc. ACM Symp. on Principles of Programming
Languages, Boston, IL (1973) pp. 120-124.

[13] J .H. Morris, Towards more flexible type systems, in: B. Robinet (Ed.), Proc. Program
ming Symposium, Lecture Notes in Computer Science, Vol. 19 (Springer, Berlin, 1974)
pp. 377-384.

[14] W.J. van der Poe!, C.C. Schaap and G. van der Mey, New arithmetical operators in the
theory of combinators, lndag. Math. 42 (1980) 3.

[15] J.C. Reynolds, Towards a theory of type structure, in: Proc. Programming Symposium,
Lecture Notes in Computer Science Vol. l 9 (Springer, Berlin, 1974) pp. 408-425.

320

(16] D. Scott, Data types as lattices, SIAM J. Comput. 5 (3) (1976) 522-587.
[17] J.E. Stoy, Denotational Semantics - The Scott-Strachey Approach to Programming

Language Theory (MIT Press, Cambridge, MA, 1977).
[18] S.D. Swierstra, Lawine, an experiment in language and machine design, Doctoral Thesis

(Twente University of Technology, The Netherlands, 1981).
[19] A. van Wijngaarden et al., Revised report on the algorithmic language ALGOL 68, Acta

Informat. 5 (1975) Fasc 1-3.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 321-343

Abstract Storage Structures

H.B.M. Jonkers

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

A novel model for the description of storage structures is presented. It is
based on the consideration that a storage structure is completely characterized
by two things: the collection of its access paths and a relation which indicates
whether two access paths access the same substructure. The model, called a
'structure', is abstract in the sense that it is free of low level concepts such as
pointers and garbage, while at the same time it is general in that it allows the
description of storage structures with arbitrary sharing and circularities.
Operations on structures (such as creation and replacement) can be described
very naturally in terms of three primitive operations. These primitive
operations are defined using a special partial order, which turns the set of all
structures into a complete lattice.

1. Introduction

The question what a 'data structure' is has been a point of dispute for
several years. Though not all powder smoke has drifted away yet, a
beginning of agreement can now be observed. A data structure is a class of
objects which is fully characterized by the operations which can be applied
to those objects. There are two aspects to this characterization: an external
and an internal aspect. The external aspect deals with the question what the
effect of the operations is. The concept of an 'abstract data type' [11],
which is essentially a heterogeneous algebra [3], has been introduced to
model this aspect of a data structure. The internal aspect is concerned with
the question how the effect of the operations is accomplished. This aspect
is usually dealt with by choosing a 'representation' for the data structure
and 'implementing' each operation in terms of the well-known operations
on the representation. It is generally agreed that the internal aspect of a
data structure should be hidden ('encapsulated' [16]) to the user.

The above agreement on what a data structure is does not carry over to

321

322 H.B.M. Jonkers

an other crucial question: How should data structures be described, or
'specified'? It is important, both to the user and to the implementer, that a
specification of a data structure describes only the external aspect of the
data structure. The meaning (in the semantical sense) of a specification of a
data structure must therefore be an abstract data type. There are basically
two ways to specify data structures (or abstract data types, if you like) [12].

The first, and apparently the most attractive, is the axiomatic (or
'implicit') method [6, 7]. In this method the essential properties of the
operations are described through axioms. The major advantage of this
method is that it is not necessary to commit oneself to a representation for
the data structure. There are also two severe drawbacks, however. Apart
from very simple data structures, it is very difficult to construct complete
and consistent axiomatic specifications. Specifically data structures
involving 'dynamic' and 'shared' data, which are frequently encountered
in practice, are very hard to specify. Moreover, axiomatic specifications
are usually far from easy to comprehend.

The second way of specifying abstract data types is the 'abstract model'
approach [1]. In this approach an abstract representation for the data
structure to be specified is chosen. The operations of the data structure are
then specified in terms of this representation. This method clearly contrasts
the axiomatic method as to its advantages and disadvantages. First of all,
specifications are more easily constructed. If the possibility of dynamic
creation and sharing is already included in the abstract representations
chosen, data structures featuring these properties are readily specified. The
specifications also tend to be more readable than axiomatic specifications.
The salient disadvantage, of course, is the fact that specifications are not
representation-independent. If one is not very careful, details of the
representation chosen may permeate into the external world and lead to an
'overspecification' of the data structure. (Contrast this with the problem of
writing complete axiomatic specifications.)

It is my firm belief that for realistic applications the future lies in the
abstract model approach. A precondition is, however, that the problem of
representation-dependence is solved satisfactorily. The key to a solution of
this problem lies in the observation that the choice of a representation need
not depend on efficiency considerations. The only criteria in choosing a
representation should be the clarity and naturalness of the specification.
This implies first of all that the representations themselves must be free of
implementation detail, or in other words, they should be as abstract as

Abstract storage structures 323

possible. In particular they should not include such things as pointers,
fixed size storage cells, etc. On the other hand, the possibility of dynamic
creation and sharing should be inherent (otherwise many applications are
ruled out). If we had such abstract representations at our disposal, data
structures could be specified relatively representation-independent. The
sole purpose of the representation would be to increase the compre
hensibility of the specification, and not to suggest a certain imple
mentation.

In this paper representations will be described which are believed to
satisfy the requirements mentioned above. These representations can be
viewed as abstract 'storage structures'. They can be used as the basis for a
specification method, which allows the specification of realistic data
structures in a comprehensible and unambiguous way, without undue
effort and at various levels of abstraction. Their use is not restricted to
specification languages, however. It is envisaged that they can successfully
be used in definitions of programming languages as well, especially in
definitions of those programming languages which feature sharing
('aliasing') and dynamic creation of data.

The representations, which will be called 'structures', are introduced in
the next section, together with some related concepts. In Section 3 three
primitive operations which can be applied to structures are defined. For
their definition a partial order, which turns the set of all structures into a
complete lattice, is introduced first.

2. Structures

The purpose of this section is to define the concept of a 'structure'. A
structure can be viewed as an abstract 'storage structure', which can be
'accessed' through special keys called 'accessors'. Accessors will be con
sidered as primitive concepts, usually denoted by strings of letters and
digits. By repeatedly applying accessors to a structure one can follow an
'access path'.

An accessor is a primitive concept.

s1 is the set of all accessors.

s1* is the set of all finite sequences of accessors.

324 H.B.M. Jonkers

sf+ is the set of all finite nonempty sequences of accessors.

A is the empty sequence of accessors.

The sequence A 1, ... , An of accessors will be denoted as A 1 ···An.
The following definition of the concept of a structure is based on the

consideration that a (storage) structure is completely characterized by two
things: First, the collection of all of its access paths and second, a relation
which indicates whether two access paths access the same 'substructure'.
(Notice that the latter is necessarily an equivalence relation.) Taking into
account the properties of access paths as well we arrive at the following
definition:

A structure S is a pair (fJJ, =), where fJJ C .w* and = is an equivalence
relation on 9 such that
(l)AEfJJ;

(2)PAEfJJ~PEfJJ (PEsf*,AEsf);

(3) PAE fJJ /\P= Q~ QA E fJJ /\PA= QA (P, QE fJJ,A E sf).

A PE fJJ will be called a path of S.

An XE fJJ I =, i.e. an equivalence class of =, will be called an object of S .

.'7 is the set of all structures.

Property 1 states that the empty sequence of accessors is a path of S (hence
fJJ *0). Property 2 implies that any head piece of a path of Sis also a path
of S. Property 3 states that equivalent paths have equivalent continuations.
This property of an equivalence relation is known as 'right-invariance'.
The paths of a structure can be viewed as 'names' for the objects which
they represent. As will be seen later, the concept of an object as introduced
above is closely related to the intuitive concept of an object.

There are three trivial examples of a structure, which will be called the
'empty structure', the 'convergent structure' and the 'divergent structure'
respectively:

..1 = ({A}, { (A, A)}) is a structure called the empty structure.

Tc= (sf*, sf* x sf*) is a structure called the convergent structure.

To= (sf*, { (P,P) I PE sf*}) is a structure called the divergent structure.

Abstract storage structures 325

Notice that ..L and Tc contain only a single object, while TO contains an
infinite number of objects (i.e. if sf =t:0, which we will from now on
assume). Other examples of structures will be discussed below.

Example 1. Let S = (?I,=>, where

.OfJ = {A, a, b, ba },

= = { (A,A), (a, a), (a, ba), (ba, a), (ba, ba), (b, b)},

then Sis a structure containing the following objects:

:YI== { {A}, {a,ba}, {b} }.

Notice that the paths a and ba are 'aliases' for one and the same object.

Before continuing some notations have to be introduced. First, if
S = (?I,=) is a structure, then ?Is and =swill denote ?I and = respectively.
Second, if X is an object of a structure S and P is a path of S such that
PE X, then, if no confusion can arise, P will denote X. This convention fits
in with the common mathematical practice of denoting equivalence classes
by their representatives. Definitions and lemmas which use this notation
for objects must be proved to be independent of the choice of the repre
sentatives for the objects.

The definition of a structure does not preclude that structures use an
infinite number of accessors or have an infinite number of objects.
Structures that use only a finite number of accessors and have a finite
number of objects constitute an important subclass. The structures in this
subclass will be called the 'finite structures'.

Let S be a structure.

The accessor set of S is defined as:

{A E sf 13 PE ?15 [PA E ?l's]},

S is called finite iff the accessor set and the set of objects of S are finite;
otherwise S is called infinite.

The empty structure ..L is an example of a finite structure, and the divergent
structure TO is an example of an infinite structure. The convergent
structure Tc is infinite if and only if sf is infinite.

Finite structures can be pictured in a systematic way as follows:

326

For each object P
!Draw a circle <t'p.

H.B.M. Jonkers

For each pair of objects (P, Q)
and each accessor A with PAE Q

)Draw an arrow labeled by A from <t' p to 't' Q·

Label 't' A by A.

Notice that this drawing algorithm is independent of the choice of the paths
for the objects and that it would never terminate if applied to an infinite
structure. It is easy to see that the picture thus associated to a finite
structure is unique.

Example 2. The empty structure J_ has the following picture:

" 0
Fig. I.

If st= { a, b}, then the picture of the convergent structure Tc is:

Fig. 2.

If we try the impossible and apply the drawing algorithm to the divergent
structure TO with st = { a, b}, then we get:

/I

b

b

a b a a

~
Fig. 3.

Abstract storage structures 327

The picture of the structure S from Example 1 is:

A a

Fig. 4.

The above may raise the question what the difference is between a
structure and a rooted graph with labeled edges. At first sight there may
not seem to be any difference, yet there is. There are two crucial
differences. First, the concept of 'unreachability' is meaningless in a
structure. Each object has at least one access path. Second, objects do not
have a separate identity. An object simply is the collection of its access
paths. These two facts will be seen to have a number of important conse
quences.

An other important observation is that the paths of a structure should
not be considered as 'pointers': Though a path can be viewed as a name for
an object, paths are not objects themselves. Instead, the arrows in the
picture of a structure should be regarded as denoting physical inclusion.
Since arbitrary kinds of physical inclusion (such as sharing and circularity)
can be modeled in a structure, the need to introduce pointers will nowhere
arise. The concept of physical inclusion will be made more precise by
introducing three relations on the set of objects of a structure:

Let S be a structure.
Let P and Q be objects of S.

P is a direct component of Q iff there is an A Es/ such that QA E P.

Pis a component of Q iff there is an RE .st+ such that QR E P.

P is contained in Q iff there is an R Ed* such that QR E P.

Check that these definitions are independent of the choice of P and Q.
The relations 'be a component of' and 'be contained in' are both transitive,
while the latter is also reflexive. Neither of them need be an (irreflexive or
reflexive) partial order (see Example 3). The meaning of the fact that an
object is 'cyclic' can be defined as follows:

328 H.B.M. Jonkers

I An object of a structure is cyclic iff it is a component of itself.

It is easy to see that cyclic objects contain an infinite number of paths.

Example 3. Consider the structure S of Fig. 5.

The objects of S are:

A={A},

li= {a},

5= {ab,b},

a

Fig. 5.

aa = {P(ba)n In "?.01\PE {aa, abba, bba} },

bb= {P(abr I n"?.O1\PE {aab,abb,bb} }.

The three inclusion relations which are defined between these objects can
be described schematically as follows (the plus sign indicates where the
relation holds):

Pis a direct component of Q:

p

A
a
5
aa
bb

Q A a 5 aa bb

+
+ +

+ +
+ +

Abstract storage structures 329

Pis a component of Q:

Q
A ii 5 aa bb p

A
a +
5 + +
aa + + + + +
bb + + + + +

Pis contained in Q:

Q
A a 5 aa bb p

A +
a + +
5 + + +
aa + + + + +
bb + + + + +

The relation 'be a component of' is not an irreflexive partial order here,
because it is not irreflexive: aa is a component of itself. The relation 'be
contained in' is not a reflexive partial order because it is not antisymmetric:
aa is contained in bb and bb is contained in aa, but aa ,t:. bb. This, of
course, is caused by the fact that aa and bb are cyclic objects.

The above example (and especially the expressions for the objects aa and
bb) suggests that there is a relation between structures and regular
languages. Indeed, the objects of finite structures are regular languages:

Lemma 1. Let S be a finite structure, then each object of S is a regular
language over sf.

This can be understood intuitively by considering the picture of a finite
structure as the state diagram of a finite state machine and recalling the
correspondence between finite state machines and regular languages. A
straightforward proof can be obtained by using the fact that each
equivalence class of a right-invariant equivalence relation of finite index is
a regular language [8]. Another way to prove Lemma 1 is to use the relation

330 H.B.M. Jonkers

between left-linear grammars and regular languages. (Check that a left
linear grammar, where each nonterminal symbol 'produces' an object, can
be associated to each structure.) Due to Lemma I a regular expression
notation can now be used for the objects of all finite structures.

Example 4. The objects of the structures of Figs. 1, 2, 4 and 5 can be
denoted by regular expressions as follows:

Fig. 1: A =A.

Fig. 2: A= (a+ b)*.

Fig. 4: A =A, ii=a+ba, 5=b.

Fig. 5: A =A, ii= a, 5 =ab+ b, aa = (aa + abba + bba)(ba)*, bb =
(aab +abb + bb)(ab)*.

The concept of an object as we introduced it is closely related to the
concept of a 'dynamic object', as it is normally conceived in computer
science. Dynamic objects are usually considered as 'instances' of 'values'.
Two dynamic objects may be instances of the same value and still be
different. In mathematical models for dynamic objects this problem is
usually solved by associating an 'identity', which is an explicit value, to
dynamic objects. As stated before, objects in structures do not have an
explicit identity. It is interesting to see how the identity problem for them is
solved. The objects in a structure can be viewed as instances of structures
(so 'structures' correspond to the 'values' of dynamic objects). This is
made more precise by the following definition of the 'structure' of an
object:

Let S be a structure.
Let P be an object of S.
The structure of P, which will be denoted as S[P], is the structure T
which is defined as follows:

.9'T={Qed*IPQe 9 8 },

Q=TR#PQ=sPR (Q,Re .9'T).

The proof that T is indeed a structure and that T is independent of the
choice of P is simple. Two different objects can have the same structure
(see Example 5). Hence they can be viewed as instances of that structure.

Example 5. Consider the structure S of Fig. 6.

Abstract storage structures

II

Fig. 6.

In this figure we have (using regular expression notation):

A=A,
ii =a,
5=b,
aa= aa+ aba + ba+ bba,
bb=ab+bb.

The structure of ii is:

S[ii] = (£Ylo, =o),
where

£Ylo= {QE st* I aQE £Yls} = {A,a, ba, b},

Q=0 R#aQ=saR (Q,RE 9 0),
hence

9o I =o = {{A}, { a, ba }, { b}}.

The structure of 5 is:

where

hence

9 1 = {QE s1*1 bQE 9s} = {A,a, ba, b},

Q=,R#bQ=sbR (Q,RE 9i),

91 I = 1 = { { A } , { a, ba}, { b}}.

So ii and 5 have the same structure (the structure of Fig. 4).

Example 6. Consider the structure S of Fig. 7.

331

332 H.B.M. Jonkers

A b

Fig. 7.

All objects have the same structure:

S[.if] = S[5] = S[bb] = S.

3. Operations on Structures

In this section three primitive operations on structures will be defined.
They constitute a sufficient set in the sense that all other useful operations
on structures can be defined in terms of them. For their definition a special
partial order on the set !I' of all structures will be introduced first.

!The partial order Con !I' is defined as follows:

SCT# fYlsC fYlrA=sC=r (S, Te !I').

The fact that C is indeed a (reflexive) partial order on !I' is trivial. In
intuitive terms the fact that SC T means that all paths of Sare also paths of
T and that all paths which are 'identified' in Sare also identified in T.

Example 7. The structures of Fig. 8 form an ascending sequence.

/I
/I

/I I A .L 0 C C C

/I
/I

A C a C aQDb C TC

a

a
Fig. 8.

Abstract storage structures 333

Example 8. If we define the partial order Lo on !I' as:

then the fact that SLo T means that S is a 'partial expansion' of T, as
illustrated in Fig. 9.

a

b a

a
a b

/I c.
b

b

/I ~ co
a

a

/I o::=n
b

Fig. 9.

Notice that the partial orders L and Lo are much harder to describe in
terms of graphs.

The relation L is more than just a partial order: It turns !I' into a
complete lattice. (A complete lattice is a partially ordered set where each
subset has a greatest lower bound.) This is stated in:

Lemma 2. (S, L) is a complete lattice.

334 H.B.M. Jonkers

The proof of Lemma 2 is simple. First prove that, if Sand Tare structures,
(q.,5n q>T, =sn =T> is also a structure. It is then easy to prove that the
greatest lower bound of a set :T of structures is given by < nTE .r q>T,

nTE.r=T), where nTE.'Tq.,T=d*and nTE:r=T=sl*xsl*if :T=0. Notice
that the empty structure .L and the convergent structure Tc are the
'bottom' and 'top' of the complete lattice < Y, C), i.e . .l CSC Tc for each
Se !/. A simple theorem from lattice theory states that apart from a
greatest lower bound, each subset also has a least upper bound [2]. The
following definitions are therefore in order:

For each set :T of structures, the structures inf :T and sup :T are defined
as follows:

inf :T = greatest lower bound of :T with respect to C,

sup :T = least upper bound of :T with respect to C.

The above will enable us to define the result of operations on structures in
terms of inf's and sup's or arbitrary sets of structures without having to
worry over the existence of the inf's and sup's.

Example 9. If

I\

S= and T=

Fig. !Oa. Fig. !Ob.

then I\

inf{S, T} = and sup{S, T} =

Fig. !Oc. Fig. IOd.

Before defining the primitive operations on structures a remark should
be made about an other interesting partial order on Y. The definition of C

Abstract storage structures 335

can be written as:

If we reverse the implication sign in this definition we still have a (reflexive)
partial order, call it C: 1 :

SC:1 T# fY5 C fYT/\ VP, Qe fY5 [P=TQ=>P=sQl (S, Te Y).

Intuitively SC: 1 T means that all paths of Sare also paths of T and that all
paths which are 'distinguished' in Sare also distinguished in T. The partial
order C: 1 has both a bottom (the empty structure .l) and a top (the
divergent structure T 0). Yet, in contrast with C, it does not turn Y into a
complete lattice (see Example 10).

Example 10. Consider the structures in Fig. 11.

I\ I\

S: A T: A
I\

I\

-([), V: A 'w:

Fig. 11.

Suppose Sand T have a greatest lower bound X with respect to C:1 . Since
VC:1 Sand VC:1 T, we have that VC 1X. This implies that a,ce Y'x and,
since a,tvc, also that a,txc, WC:1 Sand WC:1 Timply that WC:1X, hence
b E ,rJJ>x, XC: 1 Sand a=sb imply that a=xb, Analogously, XC:1 Tand b=TC
imply that b=xC, Using the transitivity of =x we get a=xc, which is a
contradiction. Hence < Y, C: 1) is not a complete lattice.

All operations which will be introduced below are considered as partial
operators on structures. They may have a number of parameters (usually
objects in the structure to which they are applied, or accessors). The result

336 H.B.M. Jonkers

of applying the operation F with parameters Xi, ... ,Xm to the structure
S will be denoted as {S}F(X1, ... ,Xm). The notation F(Xi, ... ,Xm) will
be used to denote the (partial) operator AsE ,.{S}F(X1, ... ,Xm),
Concatenation is used to denote functional composition of operators, e.g.
F(Xi, ... ,Xm)G(Yi, ... , Yn) denotes AsEY{ {S}F(X1, ... ,Xm)}G(Yi, ... , Yn)-

The first primitive operation on structures which will be introduced
amounts to the 'creation' of an object in a structure. The created object has
.l as its structure and is added as a direct component to a given object. The
operation, called CRE, has two parameters P and A. Pis an object in the
structure S to which CRE is applied and A is an accessor such that PA is
not a path of S. The effect of CRE(P,A) is pictured in Fig. 12.

I\ I\

p CREIP,AI p

0

Fig. 12.

The definition of CRE reads:

Let S be a structure. If Pis an object of Sand A Est such that PA$ fY>s,
then {S}CRE(P,A)is the following structure:

inf{TE Y 1s CTAVR E 9"s[R =sP~RA E .'J"r]}.

It should be clear that CRE(P,A) does what Fig. 12 suggests. The fact
that 'less' in the partial order C implies 'less identification' guarantees that
a new object is created and not some old object is taken as the new
component of P.

Example 11. A binary tree can be generated from the empty structure by a
sequence of operations such as:

{ .l }CRE(A,a)CRE(A,b)CRE(5,a)CRE(ba,a)CRE(ba,b).

Abstract storage structures 337

The intermediate and final results of this sequence of operations are
pictured in Fig. 13.

/I /I /I /I /I

0 IA
Fig. 13.

The second primitive operation on structures is like CRE, except that it
adds an already existing object as a direct component to an object. The
operation, called ADD, takes three parameters P, A and Q. P and Qare
objects in the structure S to which ADD is applied and A is an accessor
such that PA is not a path of S. The effect of ADD(P,A, Q) is pictured in
Fig. 14.

/I

ADD(P,A.Eil
p

0
Q

0

Fig. 14.

The definition of ADD is given below:

Let S be a structure. If P and Q are objects of S and A E sf such that
PA El: 9 5 , then {S}ADD(P,A, Q) is the following structure:

inf{TE YI SC Tl\ V RE £1'5 [R=sP~RA E :J'T/\RA =TQ]}.

338 H.B.M. Jonkers

The greatest lower bound of the same set of structures as in the
definition of CRE is taken here, except that the set is restricted to those
structures in which the paths RA with R =sP and Q are identified. This
guarantees that not a new object is created, but that Q is added as a new
component to P. Notice that, in contrast with CRE, it is not simple to
define ADD without the use of the partial order C:::. This is due to the fact
that ADD may introduce circularities in a structure.

Example 12. Let S be the structure of Fig. 15, then { S} ADD(5, a, A) is the
structure of Fig. 16.

(\ (\

I aob

Fig. 15. Fig. 16.

The third and final primitive operation can be viewed somehow as the
(right) inverse of the other two primitive operations. It amounts to
removing a direct component of an object. The operation, called REM, has
two parameters P and A.Pis an object in the structure S to which REM is
applied and A is an accessor such that PA is a path of S. Fig. 17 pictures
the effect of REM(P,A).

(\ (\

p REM(P,Al p

~
0

,-,
I I ,_,

Fig. 17.

Abstract storage structures 339

The definition of REM is:

Let S be a structure. If Pis an object of Sand A E sl such that PAE fYs,
then {S}REM(P,A) is the following structure:

sup{TE Y' I TCS/1. V RE ff's[R=sP=RA $,if'Tl}.

Notice that, due to the fact that objects may be shared, REM(P,A) need
not remove the object PA from a structure. That is why this object is
represented by a dotted circle in the right part of Fig. 17. (Strictly speaking
the path name P should also be dotted, because the path P (but not the
object P) may be removed from the structure by REM(P,A).) In general,
REM(P,A) may reduce the number of objects in a structure by a number
varying from zero to all but one (see Example 13).

Example 13. Consider the structure S of Fig. 18.

a b

Fig. 18.

The effect of REM(a, a) on S is:

I\

a b

Fig. 19.

340 H.B.M. Jonkers

Notice: the number of objects has not changed. If REM(ab, b) is applied
subsequently to the structure of Fig. 19, we get:

/\

A b

Fig. 20.

Notice: two objects have 'vanished'.

When choosing structures as the basis of the definition of a specification
or programming language, the above three primitive operations are suffi
cient in the sense that all more complex operations can be expressed in
terms of them. In order to illustrate this we shall sketch briefly how the
meaning of language constructs can be described in terms of the primitive
operations. The idea is to represent all values as structures (and their
'instances' as objects of structures). If we consider the variables X 1, ... ,Xn
of an algorithm as accessors, then the 'state' of the algorithm can be
represented by a structure as pictured in Fig. 21. In this figure the variables
Xi, ... , Xn of the algorithm are represented by the paths loc. X 1, ... , loc. Xn
(dots are used to separate accessors here). The values of the variables are
(the structures of) the objects loc. Xi, ... , loc. Xn, Since the latter objects

/\

Fig. 21.

Abstract storage structures 341

may share components, things such as 'aliasing' can readily be described.
The component loc of the state constitutes what might be called the 'local
environment'. Apart from a local effect an algorithm may also have a
global effect ('side effect'). This is modeled by the component glo (the
'global environment') of the state, which is supposed to contain all infor
mation global to the algorithm. Since glo and loc may share components,
local operations with global side effects can be described very naturally this
way.

The meaning of a 'statement' of an algorithm can now be defined as a
mapping from states on states, where a state is a structure as in Fig. 21. As
an example consider the assignment statement. This statement might have
the form "P. A:= Q", where A is an accessor and PA and Qare paths
within the local environment. (The statement should be read as "replace
the A-component of P by Q ".) The meaning of the assignment statement
could be defined as:

.,if(P. A:= Q) = ADD(.iI,p, loc. P)ADD(.iI, q, loc. Q)

REM(p,A)ADD(p,A,q)

REM(.iI,p)REM(.iI, q).

Notice that the following definition would not be correct:

.,if(P. A:= Q) = REM(loc. P,A)ADD(loc. P,A, loc. Q).

The reason is that after REM(loc . P, A) both the object Joe . Q and the path
loc . P need no longer exist. The meaning of language constructs other than
the assignment statement can be described in a similar way. For more
details about this the reader is referred to [9].

4. Conclusion

In this paper a novel method of characterizing storage structures was
discussed. The concept of a 'structure' was introduced, which is basically a
simple mathematical model of the access properties of a storage structure.
Using this model storage structures with arbitrary sharing and circularities
can be characterized without the need to introduce pointers. Creation and
replacement become very natural operations which cannot produce any

342 H.B.M. Jonkers

'garbage', since the concept of unreachability is nonexistent in a structure.
Due to the fact that structures are general and yet free of such low level
concepts as pointers and garbage, they lend themselves very well as the
basis of definitions of realistic specification and programming languages.
This is illustrated in [9], in which a specification language for abstract data
types is discussed, which is used (in a somewhat informal way) in [10].

The concept of a structure as defined in this paper is believed to
characterize storage structures in a way more abstract than other methods.
In order to support this assertion let us give a short comparison of
structures with some of these other methods. 'Vienna objects' [14) are
basically trees with labeled branches. Sharing and circularity can only be
modeled by introducing a pointer concept. This is done by allowing
'composite selectors' (which correspond to 'paths') to be used as objects.
'Graphs' [13) were already discussed in Section 2. Graphs are easily seen to
be less abstract than structures, because each structure corresponds to
many graphs. Also, the unnatural choice of an already existing node as the
new node when creating a node in a graph is not necessary in a structure.
'Relational objects' [5] are set-theoretic models of storage structures.
They are built from atomic values using set and tuple constructors.
Relational objects are more general than graphs (each graph can be
described as a relational object), but they inherit many of the dis
advantages of graphs. E.g., sharing can only be modeled by representing
objects in some way as primitive values (which correspond to the nodes of a
graph). The programming language SETL [4] even has a special atomic
data type for this purpose. A more comprehensive comparison of struc
tures with other methods of characterizing storage structures can be found
in [9].

References

[I] V.A. Berzins, Abstract mode! specifications for data abstractions, Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA (1979).

[2] G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications,
Vol. XXV (Am. Math. Soc., Providence, RI, 1967).

[3] G. Birkhoff and J.D. Lipson, Heterogeneous algebras, J. Combin. Theory 8 (A) (1970)
115-133.

[4] R.B.K. Dewar, The SETL programming language, to appear.
[5] J. Earley, Relational level data structures for programming languages, Acta Inform. 2

(1973) 293-309.

Abstract storage structures 343

[6] J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the
specification, correctness and implementation of abstract data types, in: R. Yeh (Ed.),
Current Trends in Programming Methodology, Vol. IV (Prentice Hall, Englewood
Cliffs, NJ, 1978).

[7] J. V. Guttag and J. J. Horning, The algebraic specification of abstract data types, Acta
Inform. 10 (1978) 27-52.

[8] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation (Addison-Wesley Publishing Company, Reading, MA, 1979).

[9] H.B.M. Jonkers, Abstract storage structures and the specification of abstract data types,
Mathematical Centre, Amsterdam, to appear.

[10] H.B.M. Jonkers, Abstraction, specification and implementation techniques, with an
application to garbage collection, Ph.D. Thesis, Mathematical Centre, Amsterdam, to
appear.

[11] B. Liskov and S. Zilles, Programming with abstract data types, in: Proc. Symp. on Very
High Level Languages, SIGPLAN Notices 9 (4) (1974) 50-59.

(12] B. Liskov and S. Zilles, Specification techniques for data abstractions, IEEE Trans.
Software Engrg. SE-1 (1975) 7-19.

(13] M.E. Majster, Extended directed graphs, a formalism for structured data and data
structures, Acta Inform. 8 (1977) 37-59.

[14] P. Wegner, The Vienna definition language, Comput. Surveys 4 (1972) 5-63.
[15] R. Yeh (Ed.), Current Trends in Programming Methodology, Vol. IV (Prentice Hall,

Englewood Cliffs, NJ, 1978).
[16] S. Zilles, Procedural encapsulation: A linguistic protection technique, in Proc. ACM

SIGPLAN-SIGOPS Interface Meeting, SIGPLAN Notices 8 (9) (1973) 140-146.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 345-372

Invited Address

The Essence of ALGOL*

John C. Reynolds

Syracuse University, Syracuse, NY, U.S.A.

Although ALGOL 60 has been uniquely influential in programming language
design, its descendents have been significantly different than their prototype.
In this paper, we enumerate the principles that we believe embody the essence
of ALGOL, describe a model that satisfies these principles, and illustrate this
model with a language that, while more uniform and general, retains the
character of ALGOL.

1. The Influence of Models of ALGOL

Among programming languages, ALGOL 60 [1] has been uniquely
influential in the theory and practice of language design. It has inspired a
variety of models which have in turn inspired a multitude of languages.
Yet, almost without exception, the character of these languages has been
quite different than that of ALGOL itself. To some extent, the models failed
to capture the essence of ALGOL and gave rise to languages that reflected
that failure.

On main line of development centered around the work of Landin, who
devised an abstract language of applicative expressions [2] and showed that
ALGOL could be translated into this language [3]. This work was influenced
by McCarthy's LISP [4] and probably by unpublished ideas of C. Strachey;
in turn it led to more elaborate models such as those of the Vienna group
[5]. Later many of its basic ideas, often considerably transformed,
reappeared in the denotational semantics of Scott and Strachey [6].

In [2], after giving a functional description of applicative expressions,

Work supported by National Science Foundation Grant MCS-8017577 and U.S. Army
Contract DAAKS0-80-C-0529.

345

346 J.C. Reynolds

Landin presented a state-transition machine, called the SECD machine, for
their evaluation. Then in [3] he extended applicative expressions to
'imperative applicative expressions' by introducing assignment and a label
like mechanism called the J-operator. The imperative applicative
expressions were not described functionally, but by an extension of the
SECD machine called the 'sharing machine'. In later models, such as that
of the Vienna group, sharing was elucidated by introducting a state
component usually called the 'store' or 'memory'.

For our present concerns, three aspects of Landin's model are especially
significant. First, the variety of values that can be assigned to variables is
the same as the variety that can be denoted by identifiers or passed as
parameters. Landin does not emphasize this fact; it is simply a direct
consequence of the typelessness of imperative applicative expressions.
Second, no distinction is made between assignments to variables and
assignments to locations embedded within data structures. Again, this is
inherent in the nature of the model, in which variables themselves are
locations embedded within the data structures of the sharing machine.

Finally, since operands are evaluated before operators, the basic method
of parameter passing is call by value, and call by name is described in terms
of call by value using parameterless functions (in contrast to the ALGOL 60
report [1], where call by value is described in terms of call by name using
appropriately initialized local variables). This approach apparently stems
from the view that undefined values do not 'exist', so that a function
cannot map an undefined value into a defined value (as in LISP, where the
conditional must be regarded as a special form rather than a function).
This is in contrast with the more recent view of Scott that an undefined
value is as legitimate as any other; its only peculiarity is being least in a
partial ordering that must be respected by functions.

Directly or indirectly, Landin's model was the basis for a number of
programming languages, including his own !SWIM [7], Evans and
Wosencraft's PAL [8], and my GEDANKEN [9]. Less obviously, the model
influenced ALGOL 68 [10], despite the significant distinction that this
language is highly typed. All of these languages inherited from the model
the characteristics described above: Anything that can be passed as a
parameter can be assigned to a variable, there is no fundamental
distinction between assignments to variables and to components of data
structures, and call by value is either the only or the basic mode of
parameter transmission.

The essence of ALGOL 347

As a consequence, all of these languages are significantly different from
ALGOL; in certain respects they are closer to the spirit of LISP. They are all
subject to the criticism of references made by Hoare [11]. (Strictly
speaking, only ALGOL68 and GEDANKEN use the reference concept, but
Hoare's criticism is equally applicable to the sharing or L-value approach
used in I SWIM and p AL.)

Moreover, except for ALGOL 68, none of these languages obey a stack
discipline. It would require a clever compiler to make any use of a stack
during program execution, and even then it would be difficult for a
programmer to foresee when such use would occur.

In ALGOL 68, a stack discipline is obtained by imposing the restriction
that a procedure value becomes undefined upon exit from any block in
which a global variable of the procedure is declared. However, this
restriction is imposed for the specific purpose of rescuing the stack; a stack
discipline is not a natural consequence of the basic character of the
language.

Another line of development stemming from ALGOL 60 has led to
languages such as PASCAL [121] and its\descendents, e.g. EUCLID [13], MESA

[14], and ADA [15], which are significantly lower-level than ALGOL. Each of
these languages seriously restricts the block or procedure mechanism of
ALGOL by eliminating features such as call by name, dynamic arrays, or
procedure parameters.

I am not familiar enough with the history of these languages to do more
than speculate about the influence of models. However, a desire to be
'closer to the machine' than ALGOL 60 seems evident from the
abandonment of features requiring inefficient or 'clever' implementations.
In this respect, implementations themselves can be thought of as models
influencing language design.

In addition, the influence of program-proving formalisms, particularly
the work of Hoare [16], is clear. An axiomatic definition of PASCAL [17]
seems to have influenced that language, and the axiomatization of EUCLID

[13] was a major goal of its design.
Since Hoare's treatment of procedures [18] does not encompass call by

name, procedure parameters, or aliasing, it may account for the weakening
of the procedure mechanism in some of these languages. Certainly the view
of procedures given by this kind of axiomatization is profoundly different
than the copy rule.

348 J.C. Reynolds

2. Some Principles

The preceding somewhat biased history is intended to motivate a new
model that I believe captures the essence of ALGOL and can be used to
develop a more uniform and general 'Idealized ALGOL' retaining the
character of its prototype. Although its genesis lies in the definition of the
simple imperative language given in [19], the crux of the model is a
treatment of procedures and block structure developed by F .J. Oles and
myself.

This paper only describes the basic nature of the model, and it avoids the
mathematical sophistication, involving universal algebra and category
theory, that is needed to reveal its elegance. A complete and
mathematically literate description is given in [20).

It should also be emphasized that the description of 'Idealized ALGOL' in
this paper is extremely tentative and only intended to illustrate the model.

Before delving into the details, we state the principles that we believe
embody the essence of ALGOL:

(1) ALGOL is obtained from the simple imperative language by imposing
a procedure mechanism based on a fully typed, call-by-name lambda
calculus.

In other words, Landin was right in perceiving the lambda calculus
underlying ALGOL, but wrong in embracing call by value rather than call
by name.

The qualification 'fully typed' indicates agreement with Van
Wijngaarden that all type errors should be syntactic errors, and that this
goal requires a syntax with an infinite number of phrase classes, themselves
possessing grammatical or (more abstractly) algebraic structure. (I believe
that this characteristic will be the most influential and long lasting aspect of
ALGOL 68.) The failure of this property for ALGOL 60 is a design mistake,
not part of its essence.

When carried to the extreme, this principle suggests that the lambda
calculus is the source of all identifier binding. More precisely, except for
syntactic sugar (language constructs than can be defined as abbreviations
in terms of more basic constructs, as the for statement is defined in the
ALGOL60 Report), the only binding mechanism should be the lambda
expression.

The essence of ALGOL 349

(2) There are two fundamentally different kinds of type: data types,
each of which denotes a set of values appropriate for certain variables and
expressions, and phrase types, each of which denotes a set of meanings
appropriate for certain identifiers and phrases.

This syntactic distinction reflects that fact that in ALGOL values (which
can be assigned to variables) are inherently different from meanings (which
can be denoted by identifiers and phrases, and passed as parameters). Thus
ALGOL-like languages contradict the principle of completeness [9].

Moreover, in ALGOL itself data types are limited to unstructured types
such as integer or Boolean, while structuring mechanisms such as
procedures and arrays are only applicable to phrase types.

(3) The order of evaluation for parts of expressions, and of implicit
conversions between data or phrase types, should be indeterminate, but the
meaning of the language, at an appropriate level of abstraction, should be
independent of this indeterminacy.

By 'appropriate' we mean a level of abstraction where overflow and
roundoff are ignored and termination with an error message is regarded as
equivalent to nontermination. This principle prohibits expressions with
side effects such as assignments to nonlocal variables or jumps to nonlocal
labels, but not expressions that cause error stops.

If types are described grammatically, the indeterminacy of implicit
conversions will cause ambiguity. For example, in a context calling for a
real expression, 3 + 4 might be parsed as either

(real exp)

I
(integer exp)

/I~
(integer exp) + (integer exp)

or

(real exp)

~1-~
(real exp) + (real exp)

I I
(integer exp) (integer exp)

Except for overflow and (with unfortunate hardware) roundoff, both
parses should have the same meaning.

(4) Facilities such as procedure definition, recursion, and conditional
and case constructions should be uniformly applicable to all phrase types.

350 J.C. Reynolds

This principle leads to procedures whose calls are procedures, but under
a call-by-name regime such procedures do not violate a stack discipline in
the way that, for example, function-returning functions in GEDANKEN

violate such a discipline. More interestingly, this principle leads to
conditional variables and procedures whose calls are variables; indeed
arrays can be regarded as a special case of the latter.

(57 The language should obey a stack discipline, and its definition
should make this discipline obvious.

Almost any form of language definition can be divided into primary and
secondary parts, e.g. Table 1.

Table I

Denotational semantics

Algebraic semantics

Operational semantics

Primary

Domain equations

Definition of the target
algebra carrier

Definition of the set of
states of the interpreter

Secondary

Semantic equations

Definition of the target
algebra operations

Definition of the state
transition function

By "should make the stack discipline obvious" we mean that the stack
discipline should be a consequence of the primary part of the language
definition. Specifically, the primary part should show that the execution of
a statement never changes the 'shape' of the store, i.e. the aspect of the
store that reflects storage allocation.

3. Data Types and Expressions

To stay close to ALGOL 60, we take {integer, real, Boolean} as the set of
data types. To introduce an implicit conversion from integer to real, we
define the partial ordering

• real

I • Boolean

• integer

The essence of ALGOL 351

and say that r is a subtype of r' when r ::5 r'.
For each data type r there is a phrase type r exp(ression), and these

phrase types inherit the subtype relation of the data types:

• real exp

I
• Boolean exp

• integer exp

When 0::5 0' we again say that 0 is a subtype of 0', now meaning that any
phrase of type 0 can appear in any context requiring a phrase type 0', e.g.
any integer expression can occur in any context requiring a real expression.

A type assignment is a function from some finite set of identifiers to
phrase types. To describe the syntax of our language we will use phrase
class names of the form (0, n), where 0 is a phrase type and rr is a type
assignment, to denote the set of phrases P such that

(1) The identifiers occurring free in P belong to the domain of n.
(2) :When its free identifiers are given the phrase types indicated by n, P

has phrase type 0.
We will describe syntax by production schemas (in the spirit though not

the notation of Van Wijngaarden) in which the metavariables r, 0, n, and 1

range over data types, phrase types, type assignments, and identifiers
respectively. A fragment of an appropriate syntax for expressions is

(0, n > :: = (0', n > when 0'::5 B,

(B,n)::=1 when zEdom(n) and n(1)=B,

(integer exp, n) : : = 0 I l I (integer exp, n) + (integer exp, n >,
(real exp, n > : : = 0. 5 I (real exp, n) + (real exp, n > ,

(Boolean exp, n):: = true I false I (r exp, n) = (r exp, n)

I (Boolean exp, n) and (Boolean exp, n) .

(Here dom(n) denotes the domain of the type assignment n.)
This is an abstract syntax to the extent that precedence considerations

are ignored. One could 'concretize' it by adding parentheses around the
right side of each production, but a realistic concrete syntax would require
far fewer parentheses. In fact, we will use fewer parentheses in our
examples of programs, trusting the reader's intuition to supply the missing
ones sensibly.

352 J.C. Reynolds

In the first two production schemas 0 ranges over all phrase types, not
just the types of expressions introduced so far. The first schema shows the
purpose of the subtype relationship. The second shows that an identifier
assigned some phrase type can always be used as a phrase of that type.

In accordance with Principle 3, the syntax is ambiguous (aside from
parenthesization considerations), but this ambiguity must not result in
ambiguous meanings. An appropriate method for insuring this
requirement is described in [19); it requires that the syntax possess a
property that might be called 'minimal typing':

For any phrase P and type assignment rr, if there is any 0 such that
PE (0, n) , then there is a minimal 00 such that PE (0, n) if and only if
0o-:50.

(When a phrase class name is used as a set it stands for the set of all
phrases that can be derived from that phrase class name.)

To prohibit expressions with side effects, we will forbid any occurrence
of statements within expressions (except in vacuous contexts such as
parameters of constant procedures) and insist that the bodies of function
procedures be expressions. Actually, this is unnecessarily Draconian; one
would like to permit block expressions, as in ALGOL W [22], but restricted
to avoid side effects. However, this topic is beyond the scope of this paper.

4. The Simple Imperative Language

The next step is to introduce variables for each data type. But here we
encounter a surprising complication. As a consequence of Principle 4, we
want to have conditional variables. For example, when n is an integer
variable and x is a real variable, we should be able to write if p then n else
x on either side of an assignment statement. When used on the right side,
this phrase must be considered as a real expression, since when p is false it
can produce a noninteger value. But when used on the left side, it must be
considered an integer variable, since when p is true it cannot accept a
noninteger value. Thus there are variables that accept a different data type
than they produce.

The first step in dealing with this situation is to realize that, in addition
to variables, which accept and produce values, and expressions, which only

The essence of ALGOL 353

produce values, it is natural to introduce phrases called acceptors, which
only accept values. Thus for each data typer, we will have the phrase typer
acc(eptor). The subtype relation for acceptors is the dual of the subtype
relation for data types. For example, since integer is a subtype of real,
integer values can be implicitly converted into real values, so that a real
acceptor can be used in any context requiring an integer acceptor, i.e. real
ace::;; integer acc.

The second step is to categorize variables separately by the data types
that they accept and produce. Thus for each pair of data types r 1 and r2 , we
have the phrase type r1 (accepting) r2 (producing) var(iable), which is a
subtype of r'1 ,; var when r 1 ace is a subtype of r'1 ace and r2 exp is a sub
type of,; exp, i.e. when the data types satisfy r'1 s r 1 and , 2 ::;; ,;.

subtype of ,; exp, i.e. when the data types satisfy r'
1

::;; r
1

and r
2

::;; r'
2

.

The case construction for variables raises the same difficulty as the
conditional. But a further problem arises if the empty construction case n
of () is permitted. Of course, it would not be unreasonable to prohibit this
construction, but it is consistent to view it as a phrase whose phrase type
univ(ersal) is a subtype of all phrase types. All phrases of this type have the
meaning 'undefined', which implicitly converts into the undefined element
of the domain of meanings of any other phrase type.

The only other phrase type needed to describe the simple imperative
language is comm(and). (Throughout this paper, we will speak of
commands rather than statements.) In summary, the phrase types of the
simple imperative language, which we will call primitive phrase types, are

r exp

race

r 1 r2 var

comm

univ

and the subtype relation is the least partial ordering such that

,::;; r' implies r exp::;; r' exp,

r's r implies r ace::;; r' ace,

r'
1

::;; r
1

and ,
2

::;; ,; implies r
1
r

2
vars r'

1
,; var

r
1
r

2
var::; r

1
ace,

r1 r2 var::; r2 exp,

univ::;;0.

354 J.C. Reynolds

An appropriate syntax is:

(comm, n) : : = skip I (r ace, n) : = (r exp, n) I (comm, n) ; (comm, n)

I while (Boolean exp, n) do (comm, n) ,

(0,n)::=if (Booleanexp,n) then (0,n) else (0,n)

lease (integer exp,n) of (<0,n), ... ,(0,n)).

In the last two lines, 0 stands for any phrase type, including the
nonprimitive types to be introduced later. The minimal typing property
holds for these productions if, in the partial ordering of phrase types, every
finite set with an upper bound has a least upper bound. In fact, the
achievement of this property for primitive phrase types was the real goal of
the arguments about acceptors, variables, and univ at the beginning of this
section.

For mathematical simplicity, it is tempting to make the partial ordering
of phrase types into a lattice by introducing a phrase type ns (nonsense), of
which all phrase types are subtypes. However, although a nonsense type
simplifies certain theoretical techniques, as in [19], it is not germaine to the
purposes of this paper.

A complete semantic definition of the simple imperative language is
given in (19]; here we will only delineate the basic nature of such a
definition by giving its domain equations. For each phrase type 0, there is a
domain of meanings D0 , and for each type assignment n, there is a domain
of environments Env71 , which is the product TI ,ectom(n) Dn(,) of the domains
for the type of each identifier in dom(n). Then for each phrase class (0, n)
there is a semantic function from phrases to environments to meanings, i.e.
µe,n E (0, n)---->(Env71 ---->D0).

For direct semantics Dcomm is a domain of state transitions, i.e. S----> SJ.. ,
where Sis the set of states of the store (hereafter simply called states), and
SJ.. indicates the formation of a domain by adding an undefined element .l
(denoting nontermination) to the set S. Similarly D,exp is S---->(V,) J.., where
Vinteger is the set of integers, V,eal is the set of real numbers, and V8001ean is
the set { true, false}.

There are two ways of treating variables. The more conventional is to say
that, for each data type, a state has a component mapping an appropriate
set of 'L-values' (or 'names' or 'references' or 'abstract addresses') into
values of that data type, i.e.

The essence of ALGOL 355

S = (Linteger-> Vinteger) X (Lreal-> V,eal) X (Lsoolean-> Vsoolean).

Then Dr var is S->(Lr) .L.
A preferable approach, however, avoids any commitment to a notion

such as L-values or references, and more clearly reveals the relationship
among variables, acceptors, and expressions. One regards the meaning of
an acceptor as a function mapping each value into the state transformation
caused by assigning that value to the acceptor, so that
Dace= Vr->(S->S .L). Then the meaning of a variable is a pair of functions
describing its meanings in its dual roles of acceptor and expression, so that
Dr r var= Dr ace X Dr exp. The implicit conversion functions from variables

1 2 I 2

to acceptors and expressions are the projections from Dr r var to Dr ace and
I 2 I

Dr2 exp•

These two views of variables provide a nice example of the way in which
formal definition can influence language design. As long as we do not
impose any structure involving L-values or references upon states, there is
no danger of defining anyting, such as call by reference, that involves these
concepts. On the other hand, the more abstract approach opens the door to
features, such as doublets in P0P-2 [21] or implicit 'references' in
GEDANKEN [9], that define a variable by giving arbitrary procedures for
accepting and producing values.

In fact, the more abstract treatment of variables makes no commitment
at all to the structure of states; S is a parameter of the semantics that can
sensibly stand for any set at all. To emphasize this generality, we make San
explicit argument of D0 and Env 11 , and regard the semantics of a phrase as
a family of functions, indexed by S, from environments to meanings:

if PE (0, n), then µ 0, 11 (P)(S) E Env 11 (S)-> D 0(S),

where

Env11 (S) = IT 1Edom(rr) Drr(1)(S),

Dcomm(S)=S->S.L,

Dr, r2 var (S) = Dr, ace (S) X Dr2 exp (S).

However, although the semantics of a phrase is a family of environment-

356 J.C. Reynolds

to-meaning functions, the members of this family must bear a close
relationship to one another. Roughly speaking, whenever a state set S can
be 'expanded' into another state set S', the semantics of a phrase for S must
be related to its semantics for S'.

To make the notion of expansion precise, we first introduce some useful
notation:

(Identity and composition of functions) We write ls for the identity
function on S, and • for functional composition in diagrammatic order (so
that (f-g)(x)=g(f(x))).

(Strict extension) When f E S-+S'1-, we write Jo for the .l-preserving
extension of f to S 1- -> S'1- . When f ES-> S', we write f 1- for the .l -
preserving extension of Jto S 1- -+S'1- .

(Identity and composition of state-transition functions) We write ls for
the identity injection from S to S 1- . When f, g ES-> S 1- , we write f * g for
f • (g O) E S-> S 1_ .

(Diagonalization) We write Ds for the continuous function from
S-+S-+S 1- to S-+S 1- such that Ds(h)(a) = h(a)(a).

In the last definition (and later in this paper) we assume that -> is right
associative and that function (and procedure) application is left
associative.

Then we define an expansion of S to S' to be a pair (g, G) of functions
gES'-+S, GE(S->S1_)->(S'->S 11_) such that

(1) G is continuous and .l -preserving.
(2) G(ls) =ls,.

(3) Whenf1J2ES->S1-, G(f1 *f2)=G(fi)*Gif2)
(4) WhenfES->S1-, g•f=G(f)·(g1_)-
(5) When h E S-+S->S 1-, G(Ds(h)) =Ds,(g• h· G).
Intuitively, g maps each state in S' into the member of S that is

'embedded' within it, while G maps each state-transition function in S-+S 1-
into the state-transition function in S'-> S'1- that 'simulates' it.

More precisely, an expansion of S to S' induces, for each phrase type 0, a
function in D 0(S)-+D0(S') that maps meanings appropriate to S into
meanings appropriate to S'. If we write D 0 ((g, G)) for the function in
D 0(S)-+D0(S') induced by (g,G), then

Dcomm((g, G)) = G,

D,exp((g, G))(eE S-+(V,))=g• e,

The essence of ALGOL 357

Dracc((g, G))(a E VT -+Dcomm(S)) = a· G,

Drr va,((g,G))((a,e))=Dr acc((g,G))(a),Dr exp((g,G))(e)).
I 2 I 2

By pointwise extension, an expansion of S to S' induces, for each type
assignment rr, a function in Env 71 (S)-+ Env 71 (S') that maps environments
appropriate to S into environments appropriate to S'. If we write
Env11 ((g,G)) for the function in Env11 (S)-+Env11 (S') induced by (g,G),
then

Env 11 ((g, G))(1'/ E Env 11 (S))(1) = D11 (,) ((g, G))(1'/(1)).

We can now state the fundamental relationship between the semantics of
a phrase for different state sets: If Pis a phrase in < 0, rr) and ((g, G)) is a,:
expansion of S to S', then

(In fact, properties (1) to (5) of expansions are sufficient to make this
relationship hold for all phrases of the simple imperative language.)

As shown in [20], this development can be described succinctly in the
language of category theory. State sets and expansions form a category J.:,
with Us, /3_,3) as the identity on Sand (g, G) • (g', G') = (g' • g, G· G')

" as composition. Then each D0 and Env 11 is a functor from J; to the category
Dom of domains and continuous functions, and the fundamental relation
ship given above is that µ0, 11 (P) is a natural transformation from Env 71 to
De,

5. Procedures and Their Declarations

To provide procedures, we introduce a binary operation -+ upon phrase
types. A phrase of type 01 -+ 02 denotes a procedure whose calls are phrases
of type 02 containing an actual parameter of type 01 . Multiple parameters
will be treated by Currying, i.e.

P(A 1, ... ,An) means P(A 1) • .. (An)
and

A (F1 : 01, ... , Fn : 0n) • B means AF1 : 01 • • .. • AFn : 0n • B.

This way of desugaring multiple parameters is sufficiently well known that
we will not formalize it.

358 J.C. Reynolds

Thus what would conventionally be called a proper procedure (or r
function procedure) accepting parameters of types 01, ... , 0n is regarded as a
phrase of type 0 1 ->·••-+0n-+comm (or 0 1 -+•••-+0n-+r exp). Note that
parameterless proper procedures are simply commands (as was recognized
in ALGOL W [22), where an actual parameter of this type could be any
command), and parameterless function procedures are simply expressions
(which is a natural and pleasant consequence of call by name).

It is easy to see that if 02 $ 0;, then 01 -+ 02 $ 01 -+ 0;. Less obviously, if
0; $ 01 , then 01 -+ 02 $ 0; -+ 02 . For example, since an integer expression can
appear in any context requiring a real expression, a proper procedure
accepting a real expression can also accept any integer expression and is
therefore meaningful in any context requiring a proper procedure accepting
an integer expression. Thus real exp-+comm$integer exp-+comm.

In summary, the set of phrase types is the smallest set containing the
primitive phrase types and closed under the binary operation -+. Its
subtype relation is the least partial ordering satisfying the properties given
earlier plus

In brief, -+ is antimonotone in its first operand and monotone in its second
operand.

A suitable syntax for application (procedure statements and function
designators), abstraction (lambda expressions), and least fixed-points
(recursion) is

(02, n: > : := (01 -+ 02, n: > (< 01' n: >),

(01 --,.02, n: >::=Al: 01. (02, [n: I l: 0i]),

(0, n) ::= rec(0->0, n:).

Here [n: I 1: 01] denotes the type assignment similar to n except that it maps 1

into 01, i.e.

dom([n: I 1: 01]) = dom(n:) U {1 },

[n: I 1: 01)(1) = 01'

[n: I 1: 0i](1') = 1r.(1') when 1' * 1.

For later developments, it will be convenient to extend this notation by

The essence of ALGOL

using the following abbreviations:

[n I 11: 01 I· .. I ln: 0n] = [· .. [n! l1: 0iJ··· I ln: 0n],

[11: 01 I··· I ln: 0n] = [el 11: 01 I··· I ln: 0nJ

359

where e is the type assignment with empty domain. Note that the latter
form can be used to notate any type assignment explicitly.

The obvious approach to semantics is to take the meanings of phrases of
type 01 ➔ 02 to be continuous functions from meanings of phrases of type 01

to meanings of phrases of type 02 , i.e. D 0 -. 0 (S) =De (S)-+De (S).
I 2 1 2

However, when we consider variable declarations in the next section we
will find that this approach conflicts with Principle 5.

Even in the absence of a definite semantics, meaning can be clarified by
equivalences. We write P=e,rr Q to indicate that µ0,rr(P) =µ 0,rr(Q), i.e. that
P and Q have the same meaning when regarded as phrases in (0, n) .

First we have the standard equivalences of the (typed) lambda calculus.
If PE (02, [n I 1: 0i]) and QE (0i, n), then

(beta reduction)

where Pl,➔ Q denotes the result of substituting Q for the free occurrences of
1 in P, with appropriate renaming of bound identifiers in P. If
PE (01 -+02, n > and 1$ dom(n), then

(eta reduction)

Next, an obvious equivalence describes the fixed-point property of rec.
If PE (0->0, n;), then

rec P=e,rcP(rec P).

Finally, two equivalences relate procedures to the conditional construc
tion. If PE (Boolean exp, n), Q, RE (01 -+02 , rr) and SE (01, n >, then

(if P then Q else R)(S)=e2,rrif P then Q(S) else R(S).

If PE (Boolean exp, n), Q, RE (02 , [n I 1: Bi]), and 1 $ dom(n), then

Al: 01 • if P then Q else R =e, -e2, rr if P then Al: 01 • Q else Al: 01 • R.

For the declaration of procedures, we prefer the let and letrec notation
of Landin [3] to that of ALGOL 60; it is uniformly applicable to all phrase
types (not just procedures), it distinguishes clearly between nonrecursive

360 J.C. Reynolds

and recursive cases, and it doesn't make declarations look like commands.
The syntax is

(0,n) ::=let i1 be (0i,n) &···& ln be (0n,rc) in (0,n')

I letrec 11 : 01 be (e,' TC I > & ••• & ln : en be (0n, TC I > in (0, TC I >

where n' = [n I 11 : e, I ... I ln: en]. (Note that the types 01, ••. ' en must be stated
explicitly for letrec but not let.)

This notation can be defined as syntactic sugar in terms of application,
abstraction, and rec. The nonrecursive let construction is straightforward.
If P 1 E (01, re), ... ,Pn E (0m n), and PE (0, re'), then

let 11 be P 1 & ... & ln be Pn in P=-0, 11

(.l.11 : 0, • • .. ·Aln: 0n • P)(P1) • • • (Pn).

This equivalence can be used to remove all occurrences of let from a
program without changing its meaning. Although it is formally similar to
the equivalence given by Landin [3], it has a different import since call by
name is being used instead of call by value. For example, if Eis an integer
expression, then let x be E in 3 has the same meaning as (.l.x: integer exp. 3)
(E) which, by beta reduction, has the same meaning as 3, even when Eis
nonterminating. If x and y are integer variables, let z be x in (x := 4; y: = z)
has the same meaning as (.l.z: integer integer var· (x := 4; y: = z))(x) which,
by beta reduction, has the same meaning as x := 4; y: =x.

To treat the recursive letrec construction, we will first define the
nonmultiple case and then show how multiple declarations can be
reduced to this case. For the nonmultiple case we follow Landin: If
P1 E (01, [re I 11: 0i]) and PE (0, [n I i1: 0i]), then

letrec 11 : 01 be P1 in P=-0, 11

(.l.11 : 01 • P)(rec .l.11 : 01 • P1).

For the multiple case we give an equivalence, suggested by F.J. Oles, that
avoids the use of products of phrase types. If P1 E (01, re'), ... ,Pn E (0m re'),

and PE (0, n'), where re'= [re I 11: 01 I··· I ln: Bnl. then

letrec 11 :01 be P1 &···& ln:0n be Pn inP=e,rr

letrec 11 : 01 be

(letrec 12 : 02 be P2 & • • • & ln: 0n be Pn in P1)

in (lectrec 12 : 02 be P2 & ••• & ln : en be Pn in P).

The essence of ALGOL 361

6. Variable Declarations

To declare variables, we use the syntax

(comm, n) ::= new r var 1 in (comm, [n I 1: r r var])

(Note that declared variables always accept and produce the same data
type.) However, since this construction involves binding we want to
desugar it into a form in which the binding is done by a lambda expression.
The solution is to introduce the more basic construction

(comm, n) ::= newvar(r)(r r var-comm, n)

and to define

new r var I in P =comm, rr newvar(r) Al: r r var· P,

where Pe (comm, [n I 1: r r var]).
Semantically, variable declarations raise a serious problem. The

conventional approach is to permit the set S of store states to contain states
with different numbers of L-values, and to define variable declaration to
be an operation that adds an L-value to the state. For example, one might
take a state to be a collection of strings of values for each data type

S = Vi!teger X V,!a1 X Vi!oolean ,

and define the declaration of a r variable to be an operation that adds one
more component of the string of values of type r.

The problem with this view is that it violates Principle 5 by obscuring the
stack discipline. Execution of a command containing variable declarations
permanently alters the shape of the store, i.e. the number of L-values or the
length of the component strings. In effect, the store is a heap without a
garbage collector, rather than a stack. H is hardly surprising that this kind
of model inspired languages that are closer to LISP than to ALGOL.

Our solution to this difficulty takes advantage of the fact that the
semantics of a phrase is a family of environment-to-meaning functions for
different sets of states. Instead of using a single set containing states of
different shapes and regarding variable declaration as changing the shape
of a state, we use sets of states with the same shape and regard variable
declaration as changing the set of states. Specifically, if C is new r var I in
C', then the semantics of C for a state set S depends upon the semantics of
C' for the state set S x Vr. Thus, since the semantics of C for S maps an

362 J.C. Reynolds

environment into a mapping in Dcomm (S) = S-+S J., it is obvious that
executing C will not change the shape of a state.

To make this precise, suppose C'e (comm, [nlz:r r var]), so that
CE (comm, ;rr) • We first note that S and S x VT are related by the
expansion (g, G) in which g is the function from S x VT to S such that
g((a, v)) = a and G is the function from S-+S J. to (S x Vr)-+(S x VT) _j_ such
that

G(c)((a,v))=ifc(a)= J_ then J_ else (c(a),v).

This expansion induces a function Env,,((g, G)) from Env,,(S) to
Env,,(Sx VT).

Let e be the function from S x VT to (VT) 1. such that e((a, v)) = v, and a
be a function from VT to (Sx VT)-+(Sx VT)J. such that
a(v')((a,v))=(a,v'). Then (a,e)EDrrva,(SxVT) is an appropriate
meaning for the variable being declared.

To obtain the meaning of new r var 1 in C' for the state set S and an
environment 1'/ E Env,, (S), we use Env,, ((g, G)) to map 1'/ into Env,, (S x V,)
and then alter the resulting environment to map I into (a, e), obtaining

Then we take the meaning of C' for the state set S x VT and the environment
1'/', and compose this meaning, which is a state-transition function from
S x VT to (S x VT) J. , with a function that initializes the new variable to
some standard initial value initT E VT, and a function which forgets the
final value of the variable:

µcomm,,r(new i var l in C')(S)(l'/) =

= (Ja • (a, initT)) • µcomm, [rr I,: rrvar] (C')(S X Vt)(1'/') • (g J.).

(Our unALG0L-like use of a standard initialization is the simplest way to
avoid the abyss of nondeterminate semantics.)

However, this approach to variable declaration has a radical effect on
the notion of what procedures mean that forces us to abandon the
conventional idea that D 0 -. 0 (S) = D 0 (S)-+ D 0 (S). The problem is that

I 2 1 2

variable declarations may intervene between the point of definition of a
procedure and its point of call, so that the state set S' relevant to the call is
different than the state set S at the point of definition, though there must
be an expansion from S to S'.

The essence of ALGOL 363

As a consequence, a member p of D01 ➔ 02 (S) must be a family of
functions describing the meaning of a procedure for different S'. More
over, each of these functions, in addition to accepting the usual argument
in D0 (S') must also accept an expansion from S to S' that shows how the

I

states of S are embedded in the richer states of S'.
As one might expect, the members of the family p must satisfy a

stringent relationship (which can be expressed by saying that p is an
appropriate kind of natural transformation). A precise definition is the
following (where expand(S, S') is the set of expansions from S to S'):
p E D 01 ➔ ez(S) if and only if pis a state-set-indexed family of functions,

p(S') E expand(S, S') x D 0 (S')-+ D 0 (S'),
I 2

such that, for all (g, G > E expand(S, S'), (g', G') E expand(S', S"), and
aED01 (S').

D02 ((g', G'))(p(S')((g, G), a))=

= p(S")((g' • g, G • G'),De ((g', G'))(a)).
I

To make D01 ➔02 (S) into a domain, its members are ordered pointwise, i.e.
Af;;;P2 if and only if (VS') p 1 (S')!:P2(S').

Finally, we must say how an expansion from S to S' induces a function
from D0 -+O (S) to D0 ➔e (S'): If (g, G) E expand(S, S') and p E D0 _, 0 (S),

I 2 I 2 I 2

then D0 _, 0 ((g, G))(p) E D0 ➔e (S') is the family p' of functions such that,
I 2 I 2

for all S", (g', G') E expand(S', S"), and a E D01 (S"),

p'(S")((g', G'), a)= p(S")((g' • g, G • G'), a).

A full description of this kind of semantics is presented in [20]; in
particular abstraction and application are defined and the validity of beta
and eta reduction is proved. This is done by showing that the above
definition of -+ makes Doml: (the category of functors and natural
transformations from Ito Dom) into a Cartesian closed category, which is
an extremely general model of the typed lambda calculus.

Despite its apparent complexity, much of which is due to our avoidance
of category theory in this exposition, this kind of semantics shows that our
language is obtained by adding the typed lambda calculus to the simple
imperative language in a way that imposes a stack discipline. The essential
idea is that the procedure mechanism involves a 'hidden abstraction' over a
family of semantics indexed by state sets.

364 J.C. Reynolds

We suspect that this kind of hidden abstraction may arise in other
situations where a formal language is extended by adding a procedural or
definitional mechanism based on the lambda calculus. The generality of
the idea is indicated by the fact that the definition of ➔ and the proof that
DomI is Cartesian closed do not depend upon the nature of the category I.

7. Call by Value

In the ALGOL 60 report, call by value is explained in terms of call by
name by saying that a value specification is equivalent to a certain modifi
cation of the procedure body. In fact, however, this modification involves
only the body and not the formal parameter list, so that it is equally
applicable to commands that are not procedure bodies. In essence, call by
value is really an operation on commands rather than parameters.

To capture this idea, we introduce the syntax

(comm, [n I 1: r exp])::= r value I in (comm, [n I 1: rrvar])

which is desugared by the equivalence

t value l in C=comm, [rrl1:rexp]

new r var 1' in (1' := 1; (Al: r r var• C)(1')),

where CE (comm, [n I 1: r r var]) and d ~ dom(n) U { 1}. (This is only a
generalization of call by value for proper procedures; an analogous general
ization for function procedures would require block expressions.)

Notice that r value 1 in C has a peculiar binding structure: the first
occurrence of I is a binder whose scope is C, yet this occurrence is itself
free. (A similar phenomenon occurs in the conventional notation for
indefinite integration.)

Call by result, as in ALGOL W [22], can obviously be treated similarly.

8. Arrays

Arrays of the kind used in ALGOL 60 can be viewed as procedures whose
calls are variables. Thus an n-dimensional r array is a phrase of type

integer exp-+ •·· ➔integer exp➔r r var.

n times

The essence of ALGOL 365

(Notice that this is a phrase type. If arrays were introduced as a data type,
one could assign to entire array variables (as in APL) but not to their
elements.)

The declaration of such arrays is a straightforward generalization of
variable declarations, and can be desugared similarly. The details are left to
the reader.

Unfortunately, this kind of array, like that of ALGOL, has the short
coming that it does not carry its own bounds information. A possible
solution is to introduce, for each n ~ 1, a phrase type array (n, r) that is a
subtype of the type displayed above, and to provide bound-extraction
operations that act upon these new phrase types. The concept of array in
[28] could be treated similarly.

9. Labels

Since all one can do with a label I is to jump to it, its meaning can be
taken to be the meaning of goto 1. Thus labels can be viewed as identifiers
of phrase type comm, and goto I can simply be written as 1.

However, as suggested in ALGOL 68, labels denote a special kind of
command, which we will call a completion, that has the property that it
never returns control to its successor. If completions are not distinguished
as a separate phrase type, it becomes difficult for either a human reader or
a compiler to analyze control flow, particularly when procedure
parameters denoting completions are only specified to be commands. To
avoid this, we introduce compl(etion) as an additional phrase type that is a
subtype of comm (so that completions can always be used as commands
but not vice-versa).

Thus labels are identifiers of phrase type compl. Moreover, the
production schemas for conditional and case constructions, procedure
application, and recursion provide a variety of compound phrases of type
compl. This variety can be enriched by the following syntax, in which
various ways of forming commands are used to form completions:

(compl, n) ::= (comm, n); (compl, n)

I new r var 1 in (compl, [n I 1: rrvar])

llnewvar (r) (r r var➔compl, n)

(compL [n I 1: r exp])::= r value 1 in (compl, [n I 1: r r var]).

366 J.C. Reynolds

Two more schemas suffice to describe commands and completions in
which labels are declared in an ALGOL-like notation:

(comm, n) ::= (comm, n'); 11 : (comm, n') ; ···; ln: (comm, n')

where 11, ... , ln are distinct and n' = [n I 11 : com pl I··· I 1n: com pl];

(compL n) ::= (comm, n'); 11 : (compL n') ; ... ; ln: (compL n')

where 11, ... , ln are distinct and n' = [n I 11 : comp! I· .. I ln: comp!].

Since these declarative constructions involve binding, we must desugar
them into more basic forms. For this purpose, we introduce an escape
operation that is a paremeterless variant of Landin's J-operator [3].

(comm,n) ::=escape (compl-->comm,n).

This operation can be described in terms of a conventional label
declaration: If PE (compl-->comm, n) and r $ dom(n), then

escape P=comm, 71 (P(1); l: skip).

Our present goal, however, is the reverse. To describe label declarations
in terms of escapes, we proceed in two steps. First, we describe a label
declaring command in terms of a label-declaring completion by adding a
final jump to an enclosing escape: If 11, ... , In, 1 are distinct identifiers,
n'= [n I 11 :comp! I··· I 1n :compl], C0 , •.. , Cn E (comm, n'), and 1E!,dom(n),
then

escape At: compl. (C0; 11 : C1 ; ... ; ln: (Cn: 1)).

Then we describe a label-declaring completion in terms of recursive defini
tions: If 11, ... , ln are distinct identifiers, n' = [n I 11 : compl I··· I ln: com pl],
C0 , ... ,Cn_ 1 E(comm, n'), andKE(compLn'), then

Co; 11:C, ; ... ;tn:K=compl,n

letrec 1J: compl be (C1 ; 12) & .. • & ln- I: compl be (Cn- I; ln)

& ln :compl be K

in (C0 ; 1i).

We have chosen to desugar the ALGOL notation for declaring labels

The essence of ALGOL 367

because of its familiarity. Other, possibly preferable notations can be
treated similarly; for example, Zahn's event facility [29] can be described
by escapes without recursion. Actually, the wisest approach might be to
avoid all syntactic sugar and simply provide escapes.

Semantically, the introduction of labels requires a change from direct to
continuation semantics, which will not be discussed here. In [20] it is shown
that hidden abstraction on state sets can be extended to continuation
semantics, though with a different notion of expansion.

10. Products and Sums

Although procedures and arrays are the only ways of building
compound phrase types in ALGOL, most newer languages provide some
kind of product of types, such as records in ALGOL W or class members in
Simula 67 [26], and often some kind of sum of types, such as unions in
ALGOL 68 or variant records in PASCAL. In this section we will explore the
addition of such mechanisms to our illustrative language.

Since we distinguish two kinds of type, we must decide whether to have
products of data types or phrase types (or both). Products of data types
would be record-like entities, except that one would always assign to entire
records rather than their components. (Complex numbers are a good
example of a simple product of data type.) On the other hand, products of
phrase types are more like members of SIMULA classes than like records;
one can never assign to the entire object, but only to components that are
variables; other types of components, such as procedures, are also
possible. In this paper, we will only consider products (and sums) of phrase
types, thereby retaining the ALGOL characteristic that data types are never
compound.

We must also decide between numbered and named products, i.e.
between selecting components by an ordinal or by an identifier (i.e. field
name). In this paper we will explore named products, since they are more
commonly used than numbered products, and also since they are amenable
to a richer subtype relationship.

To introduct named products of phrase types, we expand the set of
phrase types to include

prod n,

368 The essence of ALGOL

where 7r is a type assignment. Usually we will write products in the form
prod [1, : 01 I··· I tn: 0n], where 11, ... , ln are distinct identifiers. However, it
should be understood that the phrase type denoted by this expression is
independent of the ordering of the pairs 1k: 0k.

For a subtype ordering, one at least wants a component-wise ordering.
But a more interesting and useful structure arises if we permit implicit
conversions that drop components, e.g.

prod [age: integer exp I sex: Boolean exp I salary: integer var]
::5 prod [age: integer exp I salary: integer var].

In general, we have

prod 1r ::5 prod n' if and only if

dom(n')!;:dom(n) and (V1edom(n')) n(1):51r'(1).

Next we introduce the syntax of phrases for constructing products and
selecting their components:

where 11, ... , ln are distinct identifiers

(0, 1r) ::=(prod[,: 0], 1r) • ,.

In the second production, notice that our subtype ordering permits us to
write [1: 0] instead of[··· I 1: 01 ···].

The semantics of products is explicated by the following equivalences:
When P1 E (01, 7r), ... ,Pn E (0n, 7r), 11, ... ,ln are distinct, and l :5k:5n,

(11 :Pi, ... , ln :Pn) • lk=ek,npk

When Pe (prod n', n) and dom(n') = {11, ... , ln },

(11: (P· zi), ... , ln: (P· ln))=prod n',n P

We have mentioned that this kind of product is closely related to the
class concept of SIMULA 67. In [25] it is shown that class declarations (in
the reference-free sense of Hoare [27] rather than of SIMULA itself) can be
desugared into constructions using such products.

Finally, we introduce named sums of phrase types. (Roughly speaking,
type sums are disjoint unions.) We expand the set of phrase types to
include

sum n,

The essence of ALGOL

where rc is a type assignment. The subtype relation is

sum rc ::5 sum n' if and only if

dom(rc)c;;;dom(rc') and (V1Edom(rc)) rc(t)::5n'(t).

369

In contrast to the situation with products, a subtype of a sum can contain
fewer (rather than more) alternatives.

To construct sums and to do case analysis, we introduce the syntax

(sum[r: 0], rc) ::= tag 1: (0, rc),

(0, rr) ::=sumcase I is (sum[11 : 01 I··· I ln: 0n], rc)

in (11 : (0, [rr I 1: 0i]), ... , ln: (0, [rr I 1: 0n]))

where 11, ... , In are distinct identifiers.
Again, the semantics can be explicated by equivalences. When 11, ... , In

are distinct, 1 ::5k::5n, P1 E (0, [rc I 1: Bi]), ... ,Pn E (0, [rc I 1: BnJ>, and
A E (0b rr),

sumcase I is tag lk :A in (11 : P1, ... , ln: Pn) =0, 11

let I be A in Pk.

When SE (sum n', rc > and dom(rc') = {11, ... ,In},

sumcase I is Sin (11 : tag 11 : 1, ... , In: tag ln: 1) =sum rr', 11 S.

Since sumcase is a binding operation, Principle 1 requires us to express it
in terms of a construction in which the binding is done by lambda
expressions. For this purpose, we introduce the idea of 'source-tupling'.
Suppose P1, ... , Pn are procedures of phrase types 01 ----J, 0, ... , 0n-+ 0
respectively. Then sourcetuple(11 : P1, ... , In : Pn) is a procedure of type
sum[11 : 01 I··· I In: 0n 1----J, 0 that will behave like Pk when applied to a
parameter tagged with zk.

To make this precise we use the syntax

(sum[11: 01 I· .. I in: BnJ----J,0, n) ::=

sourcetuple(11 : (01 -0, n), ... , l n : (0n-> 0, n))

where 11, ... , ln are distinct identifiers.
Then sumcase is desugared by the following equivalence: If 11, ... , ln are

distinct, SE (sum[11 : 01 I· .. I ln: Bnl, n), P1 E (0, [rc I 1: Bi]), ... ,

370 J.C. Reynolds

sourcetuple(,, : Al: 0, ·Pi, ... , ln : Al: On· Pn)(S).

It should be noted that sums of phrase types do not introduce any failure
of typing such as the 'mutant variable record problem' of PASCAL,

since one cannot change the tag of a sum by assignment. On the other
hand, sums of data types would also avoid these problems since a branch
on the tag of a value would not imply any assumption that a variable with
that value would continue to possess the same tag. This suggests that the
type-safety problem with sum-like constructions is due to a failure to
distinguish data and phrase types.

11. Final Remarks

I have neglected the topic of program proving since I have discussed it
elsewhere at length. Although Hoare's work on proving procedures is
incompatible with call by name and procedure parameters, an alternative
approach called specification logic appears promising. In [23] this logic is
formulated for a subset of ALGOL W; in [24] it is given for a language
closer to that described here.

Like ALGOL itself, our illustrative language raises problems of inter
ference, i.e. variable aliasing and interfering side effects of statements and
proper procedures. The language is rich enough that an assertion that two
phrases do not interfere must be proved (as in specification logic) rather
than derived syntactically. Several years ago in [25], I attempted to restrict
a language like that described here to permit interference to be detected
syntactically. Unfortunately, this work led to some nasty syntactic compli
cations (described at the end of [25]) that have yet to be resolved. Still, I
have hopes for the future of this approach.

Although this paper has dealt with nearly all the significant aspects of
ALGOL 60, it has not gone much beyond the scope of that language. More
for lack of understanding than space, I have avoided block expressions,
user-defined types, polymorphic procedures, recursively defined types,
indeterminate and concurrent computation, references, and compound
data types.

The essence of ALGOL 371

It remains to be seen whether our model can be extended to cover these
topics. Of course, some of them could reasonably be labelled unALG0L
like. But the essence of ALGOL is not a straightjacket. It is a conceptual
universe for language design that one hopes will encompass languages far
more general than its progenitor.

References

[I] P. Naur et al., Revised report on the algorithmic language ALGOL 60, Comm. ACM 6 (1)
(January 1963) l-17.

[2] P.J. Landin, A ..l-calculus approach, in: L. Fox (Ed.), Advances in Programming and
Non-Numerical Computation (Pergamon Press, Oxford, I 966) pp. 97-141.

[3] P.J. Landin, A correspondence between ALGOL 60 and Church's lambda-notation,
Comm. ACM 8 (2,3) (February-March 1965) 89-101 and 158-165.

[4] J. McCarthy, Recursive functions of symbolic expressions and their computation by
machine, Part I, Comm. ACM 3 (4) (April 1960) 184-195.

[5] P. Lucas, P. Lauer and H. Stigleitner, Method and notation for the formal definition of
programming languages, TR 25.087, IBM Laboratory Vienna. (June 1968).

[6] D. Scott and C. Strachey, Toward a mathematical semantics for computer languages,
Proc. Symposium on Computers and Automata, Polytechnic Inst. of Brooklyn, Vol. 21,
pp. 19-46. (Also: Technical Monograph PRG-6, Oxford Univ. Computing Lab.,
Programming Research Group (1971).)

[7] P.J. Landin, The next 700 programming languages, Comm. ACM 9 (3) (March 1966)
157-166.

[8] A. Evans, PAL - A language designed for teaching programming linguistics, Proc. ACM
23rd Natl. Conf., 1968 (Brandin Systems Press, Princeton, NJ) pp. 395-403.

[9] J.C. Reynolds, GEDANKEN - A simple typeless language based on the principle of
completeness and the reference concept, Comm. ACM 13 (5) (May 1970) 308-319.

[10] A. van Wijngaarden (Ed.), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster, Report on
the algorithmic language ALGOL 68, MR 101, Mathematisch Centrum, Amsterdam
(February 1969), also Numer. Math. 14 (1969) 79-218.

[11] C.A.R. Hoare, Recursive data structures, Int. J. Comput. Information Sci. 4 (2) (June
1975) 105-132.

[12] N. Wirth, The programming language PASCAL, Acta Inform. l (1) (1971) 35-63.
[13] R.L. London, J.V. Guttag, J.J. Horning, B.W. Lampson, J.G. Mitchell and G.J.

Popek, Proof rules for the programming language EUCLID, Acta Inform. lO (l) (1978)
1-26.

[14] C.M. Geschke, J .H. Morris, and E.H. Satterthwaite, Early experience with MESA,

Comm. ACM 20 (8) (August 1977) 540-553.
[15] J.D. Ichbiah, J.C. Heliard, 0. Roubine, J.G.P. Barnes, B. Krieg-Brueckner and B.A.

Wichmann, Preliminary ADA reference manual and Rationale for the design of the ADA

programming language, SIGPLAN Notices 14 (6) (June 1979).

372 J.C. Reynolds

[16] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (10)
(October 1969) 576-580 and 583.

[17] C.A.R. Hoare and N. Wirth, An axiomatic definition of the programming language
PASCAL, Acta Inform. 2 (4) (1973) 335-355.

[18] C.A.R. Hoare, Procedures and parameters: An axiomatic approach, in E. Engeler (Ed.),
Symposium on Semantics of Algorithmic Languages, Lecture Notes in Mathematics Vol.
188 (Springer-Verlag, Berlin, 1971) pp. 102-116.

[19] J.C. Reynolds, Using category theory to design implicit conversions and generic
operators, in: N.D. Jones (Ed.), Semantics-Directed Compiler Generation, Proceedings
of a Workshop, Aarhus, Denmark, January 14-18, 1980, Lecture Notes in Computer
Science, Vol. 94 (Springer-Verlag, Berlin, 1980) pp. 211-258.

[20] F.J. Oles, A category-theoretic approach to the semantics of programming languages,
Ph.D. Dissertation (in progress), Syracuse University.

[21] R.M. Burstall, J.S. Collins and R.J. Popplestone, Programming in POP-2 (Edinburgh
University Press, 1971).

[22] N. Wirth and C.A.R. Hoare, A contribution to the development of ALGOL, Comm.
ACM 9 (6) (June 1966) 413-432.

[23] J.C. Reynolds, The Craft of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1981).
[24] J.C. Reynolds, Idealized ALGOL and its specification logic, Computer and information

Science, Syracuse University, Report 1-81 (July 1981).
[25] J.C. Reynolds, Syntactic control of interference, Conference Record of the Fifth Annual

Symposium on Principles of Programming Languages, Tucson, January 1978 (Associ
ation for Computing Machinery, New York, 1978) pp. 39-46.

[26] 0.-J. Dahl, B. Myhrhaug and K. Nygaard, Simula 67 Common Base Language,
Norwegian Computing Centre, Oslo (1968).

[27] C.A.R. Hoare, Proof of correctness of data representations, Acta Inform. 1 (4) (1972)
271-281.

[28] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ,
1976).

[29] C.T. Zahn, A control statement for natural top-down structured programming,
Proceedings, Programming Symposium, Paris, April 9-11, 1974, Lecture Notes in
Computer Science, Vol. 19 (Springer-Verlag, Berlin, 1974) pp. 170-180.

Algorithmic Languages, de Bakker/van Vliet (eds.)

© IFIP, North-Holland Publishing Company, 1981, 373-398

An Operational Semantics for Bounded Nondeterminism
Equivalent to a Denotational One

R. Kuiper

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Dyadic nondeterministic choice is added to the programming language with
recursive procedures as used in de Bakker's monograph on program correct
ness [5]. This leads to considerable changes in the operational semantics. The
possible result of the execution of a program is no more given as a single state,
but as a set of possible states. Furthermore, the execution of a program is no
more given as a computation sequence but as a set of possible computation
sequences with tree-like properties.

We present a 'natural' operational semantics t! defined by means of a
function 01uu, where •tru121 yields for each program ii£ and each state a a set
of computation sequences, characterized by equations in the style of Cook [7].
For this set of equations we prove, in a topological setting, the existence of a
unique solution and the equivalence of the operational semantics to the usual
denotational one, defined by fixed point techniques.

0. Introduction

The subject of this paper is to investigate the effects of adding bounded
nondeterministic choice to a simple language with recursive procedures on
the definition and properties of the operational semantics.

The motivation to introduce an operational semantics is the following
usual one. A method for proving program correctness is to abstract to a
more mathematical level by defining a denotational semantics and to give a
proof system on that level. A way to justify this abstraction is to define an
operational semantics such that on the one hand it is intuitively close to the
actual program execution and on the other hand can be proved to be

373

374 R. Kuiper

equivalent to the denotational semantics. We provide a 'natural' oper
ational semantics; its justification and the proof of its equivalence to a
denotational one are the main aims of this paper.

The reasons to add dyadic nondeterministic choice - as will be seen later,
extension to finite choice introduces no extra problems - are twofold.
Firstly, in practice nondeterministic choice enters the scene directly, cf.
Dijkstra's guarded command [9], as well as indirectly, cf. parallellism and
concurrency [12], where one process is selected to proceed, or one
communication is selected to be executed. Secondly, in theory nondeter
ministic choice is a fairly easy setting in which tree-like structures appear
instead of computation sequences as when dealing with deterministic
sequential programs. This phenomenon also occurs as soon as parallel pro
gramming and concurrent processes are concerned and introduces con
siderable changes in the theoretical treatment. Contrary to the deterministic
case, justification of the defined operational semantics in view of existence
and uniqueness of the described function is not a clear case, and thus grew
into a next-important aim in itself.

The framework we use is that developed in De Bakker's monograph on
program correctness [5, especially Chapters 5 and 7]. The (ultra)metric
distances defined between sets, and convergence with respect to such
metrics we use, are also extensively employed by Nivat and Arnold ([13]
and [2]) considering, among other subjects, infinite trees and nondeter
minism. In their approach, trees are essentially programs, whereas we use
trees of states, i.e. traces of program executions. Furthermore, Arnold and
Nivat obtain the set of all trees by completion of the set of all finite trees.
We describe a tree by the set of all paths in the tree; the set of all trees is the
set of all paths restricted in a suitable way (cf. Definition 9).

It appears that at three stages of the development we are forced to make
the same restriction on the set of sequences used. This restriction amounts
to require a tree-like property with respect to the occurrence of infinite
branches.

This central tree-like property already was observed by Back in [3]
treating unbounded nondeterminism.

The setup of the paper is as follows. After this introduction, in Section 1
the syntax and some preliminary information are given. Section 2 starts
with the definition of an operational semantics by means of the function
<ef'tUt!Y, which in turn is defined by a set of equations. The main result here is
the existence proof of a unique solution <ef'eJJt!Y of this set of equations. In

Semantics for bounded nondeterminism 375

Section 3 a denotational semantics is described concisely. Finally, in
Section 4 we prove the equivalence of the operational semantics to the
denotational one.

1. Syntax and Preliminaries

Recursive procedures and finite nondeterministic choice are the key
characteristics of the chosen language. Note, that subscripted variables are
not treated (i.e., no arrays are present). Including these would necessitate a
more complicated framework and only obscure our intentions. A straight
forward extension is possible. The phrase "Let (a E)C be specified by
a::= qr lxl a1 a2 is to be understood as: All a or a;, i E / in the sequel are
assumed to be elements of the set C; a is of the form qr or x or a1a2 , where
a1, a2 are elements of C already.

We now define the sets of the syntactic entities we use.

Definition 1 (Syntax). Let (xE) .h.wH be the set of integer variables. Let
(m E) .hrtA be the set of constants. Let (PE) 9t.w:YI be the set of procedure
variables.

Let (t E) .frSX'Y be the set of integer expressions specified by

t ::=xi m I t1 + t2 I ... I if b then t1 else 12 fi.

Let (b E) f!g1,'::rY' be the set of boolean expressions specified by

b : : = true I false I t 1 = t 2 I • • · I , b I b 1 -::> b2.

Let (SE) Y'.1~w:Y be the set of statements, specified by

S::=x:=t1S,;S2 IS1vS2 1 if b then S1 else S2 filP.

Let (EE) 91J 00'.Y be the set of declarations, specified by

E::=(P;,;:.S;)7~ 1, n?:0, P;'$P1, 1-s,i<J-s,n.

Let (RE) ::f>:?W,/J be the set of programs, specified by

R ::= (El S), for all Pin Sor S;, i= 1, ... ,n, there exists},
1-s,j ~ n such that P= P;.

Note, that bounded choice now can be obtained by applying (S 1 v S2) v S3 .

376 R. Kuiper

The instances left open in .Jiff!JTJ and f!UY& can be filled in with analogous
expressions. Note that fJ>gun is defined such, that all programs are closed,
i.e. only these procedure variables occur in a program, for which the
procedure body is given in the declaration E.

The following definitions concern assigning meaning to syntactic
objects, i.e. semantics. At this stage, there is no distinction between
operational and denotational semantics. Meaning is assigned by way of
functions, defined by cases, from a syntactic domain to a domain of
interpretation. To enable us later to define the rest of the denotational
semantics we design the domains of interpretation as complete partial
orders (cpo's).

Definition 2. (C, [;::) is a cpo iff
(i) [;:: is a partial order on C,

(ii) there is an element .1 EC such that, for all c E C, .1 [;:: c,
(iii) each chain (c;) ;=: 1 has a least upper bound IJ t~ 1 c; E C.

Definition 3 (Domains of interpretation). Vo= IN, natural numbers; Wo =
{tt,ff}, truth values; I 0=Yr#,W--+V0, functions assigning meaning to
variables.

Let (a E) V = Vo U { .1 v }, cpo by a1 i;;;;:a2 iff a1 = .1 v or a1 = a2.
Let (PE) W = Wo U { .1 w}, cpo analogously.
Let (a E)I= 1:0 U { .1 } , cpo analogously.

Definition 4. For C cpo, c1, c2, .1 cE C

if p = tt,
if fJ =ff,

if /J=.lw,

We now define the meaning functions for integer and boolean expres
sions which yield, by cases, for each of the expressions and a state a a value
in one of the domains of interpretation.

Definition 5.

(a) Y: Ylif-1'--+ (I-+ V),

1/(t)(J_)= .lv,

For aeL0

(b)

For aeL0

Semantics for bounded nondeterminism 377

Y(x)(a) = a(x)

Y(m)(a)=a where a is the integer denoted by m,

1/ (if b then t 1 else t2 fi)(a)=if W(b)(a) then V(t1)(a)
else V(t2)(a) fi.

Jf'(b)(l..) = 1. w•

ff(true)(a) = tt,

1P' (false)(a) = ff,

fl1 (t1 = t2)(a) = (r(t1)(a) = r(tz)(a)),

1/1(,b)(a) =, ff(b)(a),

"If' (b 1 => b2)(a) = (1/1 (b 1)(a)=> fr (b2)(a)) .

We end this chapter by introducing the notion variant of a state. The
purpose of this is to be able to indicate the effect of executing a statement,
for instance an assignment statement x := t by a change in the state. The
following definition enables us to change in a state a the value a assigns to
a particular x.

Definition 6.

l. {alx} = 1.,

a{ alxi}(x2) = I a
(a(x2)

if X1 =X2,

ifx1a,!;X2,

378 R. Kuiper

2. The Operational Semantics

The aim here is to define an operational semantics which is intuitively
close to the actual program execution.

In the deterministic case a well-known way to achieve this is by way of a
Cook semantics [7]. A function CftUifJ' yields for each program Rand each
state a a, possibly infinite, computation sequence of states, Cft1...1t:Y(R)(a) =
< a 1, a2 , ...) . Intuitively, these states correspond to the states a computer
goes through when executing R, starting in a. The operational semantics
then is a function (I} which yields for each program R and each state a the
state K(Cfcu1.cy(R)(a)), this being the last element of Cfcu1.cy(R)(a) if this
sequence is finite and the special state J_ otherwise.

Now intuitively CftJil.cy should be defined by rules, stepwise generating the
computation sequences; a Cook semantics does so by cases, the cases being
possible program forms. For example,

CftU#((EI S1; S2))(a)= (a)' CfrU'J"((EIS,))(ar

Cfeu1.0"((EI S2))(K(Cftt11.rJ'((EI S1))(a))).

The (a) is motivated as to indicate the operation of splitting up S 1; S2, or
as a means to make induction arguments later on go through.

Adding nondeterminism necessitates CftUl.':f! to yield for each R and a not
the corresponding computation sequence, but the set of computation
sequences covering all possible alternatives depending on the different
possible choices. We now define computation sequences and a set of rules
to describe CftU.cf'.

Definition 7 (Computation sequences). (a)

Iw = { (a 1, ... , a i, ...) I a; EI, i E N } ,

I 00 = fo, ... } =I+ UI00 •

Note, that the empty sequence is excluded.
(b) • :I°' xI00 --+I°", concatenation, is defined by

Semantics for bounded nondeterminism

with the extension t({e;f iEI} = {e'o;f iEI}.
(c) K : l:' 00 ----> 17 is defined by

K {!)= . ([
last element of{! if (2 E 17+,

J_ otherwise

with the extension: K({e; Ii EI})= {K(Q;) Ii EI}.
(d)

length(R) =) n if{!= <_ai, ... , an>,
(oo otherwise.

(e) e' is initial segment of 12 (i.s.o.) iff e = 12'· e" ore= e'.

In the sequel, P(l:' 00) ={AI A CZ"'}, the powerset of l:' 00 •

379

Definition 8 (Rules for generating computation sequences). '6f!.ft0r: (!!y;r1:1---->

(17----> ,cJJ(l:' 00)) by: For all RE for a= J_, \1ruo1(R)(J_) = { (J_)}, for
aEl:'0 :

(i) '6rutcr((EI x := t))(a)= { (a{ Y(t)(a)lx})},

(ii) 'ifrur.JJ((EI S1; S2))(a)

= LJ { (a)·{!· 'ifru1'1'((EI S2))(K({!)) ! Q E 'tf'ru1C!'((EI S1))(a)},

(iii) 'tf'o:49"((EI S1 v S2))(a)

= (a)· '604.0'((EI S1))(a) U (a)· '61,n((EI S2))(a),

(iv) 'G'rut.Y'((EI if b then S1 else S2 fi))(a)= if 1fl(b)(a)

then (a)· lfru.'11((EI S1))(a) else (a)· \fo:,11,>'((EI S2))(a) fi,

(v) '6(U.9'((EI P))(a)= (a)· 'G'ru:Y'((EIS;))(a),

Intuitively, these rules are sufficient to describe generating the set of
computation sequences for given R and a. However the concept
'generating' is too fuzzy to be mathematically satisfying. A well-known
way out of this problem is to regard this set of rules as a set of equations,
for which '6f!JIY' should be a solution. From now on we take this approach:
Definition 8 is regarded as a set of equations. Now it is dear that then a
proof is required that a solution 'G'r!U.0' exists, and moreover that it is

380 R. Kuiper

unique. For the deterministic case this id done in various ways by De Bruin
in [6]. For the nondeterministic case we now show that an extra equation is
needed to ensure uniqueness. We then prove the existence of a unique
solution 't/(Ui,'f' by extending the techniques of [6]. Then finally we define
the operation semantics.

The following examples show, that in general, Definition 8 regarded as a
set of equations does not ensure a solution to be unique and provide
intuition as to which kind of extra equation might solve this deficiency.

Example 1. <ttut.o/((P¢=.P IP))(a). Intuitively, this should generate
{<a, a, ...) } . However, regarded as an equation, this program gives rise to

'??tUt!J'((EI P))(a)= (a)· '??i:t~.'3'((EI P))(a).

Now both { (a, a, ...)} and 0 satisfy this equation, as Definition 7b implies
Q 0 0 = 0, so uniqueness is violated. Both practice (the program will loop)
and theory (the rules generate (a, a, ...)) suggest preference for the first
alternative.

The above example suggests the extra equation to be of the form
'ef/tJjfcY(R)(a) * 0. However, the following example shows that a stronger
requirement is needed.

Example 2.

'??1U.o/((P¢=.x :=xv PIP))(a).

Intuitively, this should generate { (a, a, a), (a, a, a, a, a), ... , (a, a, ...)}= C
respectively for x: = x chosen the first time possible, the second time, ... ,
never. However, regarded as an equation this program gives rise to

'??MY'((EI P))(a)= (a)· '?/o..i'.'>'((EI x :=xV P))(a)

=(a)· (a)· '?/o~Y'((EI x :=x>)(a)

U (a)· (a)· '?/01.o/((EI P))(a)

= { (a, a, a)} U (a, a)· '?/o~Y'((E IP))(a).

Now both C and C \ { (a, a, ...)} satisfy this equation, so uniqueness of the
solution is violated. Both practice and theory indicate which one should be
preferred. Considering practice, a cycle that halts or is repeated according

Semantics for bounded nondeterminism 381

to nondeterministic choice potentially can be repeated any finite amount of
time, and also can be repeated forever. So this suggests preference for the
first alternative. Considering theory, for the obvious representation of the
set of computation sequences by trees, finite nondeterministic choice gives
rise to finitely branching trees. By Konig's lemma then follows that a tree
containing infinitely many finite branches, i.e. finite computation
sequences, also contains an infinite one, so this also suggests preference for
the first alternative.

The above examples suggest the entire equation to be of the form:
'G',uu1(R)(a)E 'l/, where 'll = {GE ,o/'(I 00) I G:;t:0, if (Q;);': 1 such that

(i) for all i, (2; E G,
(ii) for all i, (2; i.s.o. {};+ 1,

(iii) sup;{length(QJ} = oo,

then 3(2 E G such that for all i, (!i, i.s.o. (2 }.

However, the following example shows that an even more subtle require
ment is needed.

Example 3.

'G'fUN'((P<=x := 1 v PIP))(a).

Intuitively, this should generate { (a, a, a{ 1/x}), (a, a, a, a, a{ 1/x}), ... ,
< a, a, ...)}= C'. However, regarded as an equation, like in Example 2,
C' \ { (a, a, ...)} is also possible. Again, the first alternative is to be
preferred.

This example suggests the following strengthening of the above chosen
requirement described by '§.

Definition 9. :lt'={He .o/'(I°")!H=t=0, if ({!;);': 1 , {!;EI00 , such that
(i) for all i, 3(21 EH such that (2; i.s.o. (21,

(ii) for all i, (2; i.s.o. (2;+ 1,

(iii) sup{length(g,)} = oo,
then 3(2 e H such that for all i, (2; i.s.o. {!}.

Remark. In the different setting of unbounded nondeterminism, this is the
closedness property to be found in [3].

382 R. Kuiper

We claim that the following extension of Definition 8 ensures the
existence of a unique solution.

Definition 10. 't'tUfff': q,>@0,1->(I->£) is defined by the following set of
equations:

(a) The equations of Definition 8.
(b) ForallRE aEI, 'ef'fi.4ff'(R)(a)E£.

In De Bruin [6] for the deterministic case four methods to prove the
existence of a unique solution are presented. We have chosen to adapt to
our case the most topological one, as this seems the best one to extend to
sets of sequences. The idea is the following. Consider the set of functions
q,>Jf/'7'.'1-> (I->£); the solution '6'tUtff' we seek to find is, if it exists, an
element of this set. Now as the left parts of the equations in part (a) of
Definition 10 all contain only 'efocitff'(R)(a), a solution of this set of
equations can be interpreted as a fixed point of an endomorphic operator
on q,>@(J,4->(I->.lf) defined directly by these equations (cf. Definition 20).
To ensure existence of a unique fixed point, from topology it is known that
it is sufficient that firstly the space is complete metric, i.e. a space with a
metric distance function defined on it such that every Cauchy sequence
converges, and secondly, that the operator is a contraction mapping, i.e.
the distance between the image of any two points is less than or equal to the
distance between the original points multiplied by a fixed constant smaller
than 1.

The operator as well as the elements of the domain are given: respec
tively by the equations and by the type of 'ef'tUtff', Left to choose is the
metric. As usual, we choose the distance between two functions to be the
supremum over the elements in the domain of the distance between the two
images of such an element. To do so, we first define a distance between
computation sequences, next between sets of them and finally between the
functions. All of these will have to be complete metrics.

We start by considering computation sequences, i.e. 1:'00 • A natural
distance is the following.

Definition 11.

if e= (a1, ... ,an> andj;::::n,

otherwise.

Semantics for bounded nondeterminism 383

Definition 12. Distance on .E00

Definition 13. For a Cauchy sequence (Q;) '(: 1 define the limit lim;_, 00 (};

as follows. As ({2;) '(: 1 has the Cauchy property, \/ e > 0 3Ne V l,
m?::.Ned({l1,f2m)<e, or, equivalently, V kE fN 3Nk V /, m?::.Nkd(121,em)<
2-k.

By Definition 12 this implies VkerN 3NkVl, m?::.Nk6!Nk[k]=t21[k]=
em[k]. Now define lim;-oo (]; by (lim;_,oo (};)[k] = llN.[k].

Lemma 1. (17 00, if) is a complete metric space.

Proof. d evidently is a metric. d is complete iff every Cauchy sequence
converges. Clearly, every Cauchy sequence([!;)'(: 1 converges to lim; ➔ oo (};.

Next, we proceed to sets of computation sequences. Note, that defining
the distance if enables us to give a much easier definition of ff~

Lemma 2. £={HE i?'(l:"00) I H * 0, for each Cauchy sequence (Q;) '(: 1 in
H, lim;-ooQ;EH}.

Proof. Evident by Definitions 9, 12 and 13.

Remark. (1) Here the topological approach allows an easier solution of the
problem than the cpo approach, where it is more difficult to handle cases
like Example 3 as may be seen by the difference between the two definitions
of .ff.

(2) For .E00 with the topology J{d) induced by J, _;,If' can be defined by

.1t = {HE :Y>(L' 00) I H * 0, H closed in f(d)}.

A natural distance on iff is defined as follows.

Definition 14.

H[Jl = {eUl I e e H}.

384 R. Kuiper

Definition 15. Distance on £.

a(H H) = rz-k if k=sup{j I H1[j] =H2[jl} < oo,

1, 2 (O otherwise.

Definition 16. For a Cauchy sequence (Hi) i= 1 define the limit lim;- 00 H; as
follows. As (H;) i= 1 has the Cauchy property, V e > 0 3 Ne V /, m?::.
Nea(H1,Hm)<e, or, equivalently, V ke N 3Nk Vl,m?::.Nka(H1,Hm)<2-k.
By definition 15 this implies VkeN3NkV/, m?::.NkHNk[k]=Hk[k]=
Hm[k]. Now define lim;- 00 H; as follows (using Lemma 2).

Lemma 3. (£, a) is a complete metric space.

Proof. The first requirement to be a metric space is a(Hi, H2) = 0 # H
1
=

H2. Let a(H1,H2)=0, QEH
1

. If geL+, then 3Jg=Q[j]=Q[j+l]. As
a(Hi,H2)=0, Q=e[j]=Q[}+l]eH2 [j+l]. Consequently, QEH2 . If
Q eLw, then either Q eH2 or Q[i] eH2 [i], i= 1,2, In the latter case, there
exist Qf e H 2, i = 1, 2, ... , such that a[i] = g'[i], i = 1, 2, Now clearly
(aD1= 1 is a Cauchy sequence in H 2 , and by Definition 13 lim;___.ocQ[=Q.
Consequently, (by Lemma 2) QEH

2
. Conversely let H

1
=H

2
. Then

VJ H
1
[j] = H

2
[j], so d(H

1
, H 2) = 0. The other requirements of being a

metric space are evidently fulfilled. a is complete iff every Cauchy sequence
converges. Let (H;)1= 1 be a Cauchy sequence. By Definition 15, (H;)'('= 1

clearly converges to lim;-+oo H;, by Definition 16, clearly lim;- 00 H; E £.

Remark. The reasons to restrict .01'(L00) to ff' in the beginning of this
section that did arise when regarding Definition 8 as a set of equations here
have their topological counterpart: Should distance a be defined on .01'(L 00)

instead of £, then the sets C and C \ { (a, a, ...) } of Example 2 (and like
wise C' and C' \ { (a, a, ...) } of Example 3) would have distance O but not
be equal.

This violates the metric requirement a(C
1

, C2) =0# C1 = C2 . Now
disregard knowledge of the previously defined restriction of ,'?'(L 00) to ff'

Semantics for bounded nondeterminism 385

caused by ambiguities with regard to solutions of the equations in
Definition 1 and indicated by the Examples 1-3. (Note, that at that stage
no distance between sets was even defined.) A natural solution of the
present problem then, is the following.

Restrict SW(l: 00) to only those subsets of L'°", that contain their limit
points in the topology induced by a. Lemma 3 states that this solves the
problem. Not surprisingly, the tree-likeness requirement stated in Y't is
equivalent to this restriction, as stated in Lemma 2.

By now, we arrive at our first aim, turning ,'7',!i'(J'1-->(L'->£) into a
complete metric space by defining the following natural distance.

Definition 17.

Definition 18. Distance on C.

d(<f;i, (/Ji)= sup { a(q; 1 (R)(a), ¢ 2(R)(a))}.
R,a

Definition 19. For a Cauchy sequence (</J;)'l°c 1 define the limit Hm;- 00 ¢; as
follows. As (¢;)'l°c 1 has the Cauchy property, Ve>03Ni;Vl, m'2:.
N 0 d(¢1,¢m)<e. By Definition 18 holds

Ve>O 3Ne V /, m"?.Ne VR Vad(¢1(R)(a),¢ 171(R)(a))<£.

Then VR Va, (¢;(R)(a))1= 1 is a Cauchy sequence. By Lemma 3, VR Va

(¢;(R)(a))'l°c 1 converges to lim;- 00 ¢;(R)(a). Now define lim;- 00 17'.!; as
follows.

Lemma 4. (C, d) is a complete metric space.

Proof. By standard techniques, e.g. see [8, Chapter 14, Theorem 2.6].

Definition 20. t1J: c-c is defined by

386 R. Kuiper

R= (EI x := t) ➔{ ({ r(t)(a)/x}<},

R = (E I S1 ; S2)

U { (a) v.{! v.</)((EI S2))(K({!)) I{! E </)(<EI S1))(a)}

R =(EI S1 v S2> ➔ (a)·</)((El S1))(a)U (a)·</)((EI S2))(a),

R =(EI if b then S
1
else S

2
fi)

➔if W(b)(a) then (a) A</)((EI S1))(a)

else (a).</)((£1 S2))(a),

R =(EI P) ➔ (a) A</)((E I S1)), where P=P;, P1 -.=S1 in E.

Note, that <Pis well defined, i.e. V</) <P(</)) e C, as can be easily seen from
the definition.

Lemma 5. <Pis a contraction mapping, namely V ¢
1

, ¢
2
d(<P(¢

1
), <P(</)2)):5.

½d(</)1, </Ji).

Proof. Each of the following cases is trivial for a= .L, so from here on
aeI0 .

Case 1: R =(EI x := t). By Definition 20

V ¢ 1, ¢ 2
Va <P(</) 1)(R)(a) = (a{ r(t)(a)lx})} = <P(¢2)(R)(a).

So by Definitions 15 and 18, a(<P(</)1), <P(</)2)) = 0 :5. ta(</)i, ¢
2
).

Case 2: R~(Efx:=t), R~(E[S1;S2). By Definition 20, V¢Va
<P(</))(R)(a) = (a) '¢(R')(a), R' as given by the right hand part of
Definition 20.

So
d(<P(</)1), <P(</)2)) = sup{ a(<P(¢>1)(R)(a), <P(¢2)(R)(a))}

R,a by Definition 18

= sup{ a((a). </J1(R')(a), (a) A</J2(R')(a))}
R,a

=½ sup{a(¢ 1(R')(a),</)z(R')(a))}
R,a by Definition 15

=½d(</)i,</h) by Definition 18.

Semantics for bounded nondeterminism 387

Case 3. R =(EIS
1

; S
2
), analogously to Case 2.

By now we can, by using well-known topology, justify our claim made
above.

Lemma 6. <P has a unique fixpoint.

Proof. By Lemmas 4 and 5, using standard techniques from topology. Cf.
[8, p. 305] and [6, p. 27].

Theorem 1. The set of equations of Definition 10 has a unique solution
'trlll.cJJ'.

Proof. Directly from Definitions 10 and 20 and Lemma 6.

Finally, having justified the definition of 'tfr1.1rr, we define the oper
ational semantics.

Definition 21. Operational semantics. eJ: ff1'4'r1'.1->(L-+L) is defined by:
For all R, for all a, o(R)(a) = K(<truo'(R)(a)).

For later use we here state the following lemma.

Lemma 7.
(i) o(<EI S1; S2>)(a)= @((El S2)) 0 o(<EI S1))(a),

(ii) o((EI S1 v S
2

))(a)= o(<EI S
1
>)(a) U eJ(<EI S

2
))(a),

(iii) o((EI if b then S
1

else S
2

fi))(a)= if W(b)(a)

then ti((EI S1))(a) else ID'((EI S2))(a) fi,

(iv) IO((Ef P))(a)=@((EfS1))(a), whereP=P1, P1;;:S1inE.

Proof. Evident from Definitions 10 and 21.

3. The Denotational Semantics

We here present the denotational semantics for which the operational
one, treated in Section 2, was designed to serve as an intuitive counterpart.

388 R. Kuiper

The method used is the fixed point approach in a cpo setting, as can be
found in [15]. The denotational semantics we use greatly resembles the one
in [5, Chapters 5 and 7], so only a very concise treatment is given, just
defining the notions and stating the results we need for the equivalence
proof in Section 4.

We start by defining a domain, consisting of a selection of subsets of
.!Jl(I) with the Egli-Milner ordering, cf. [10]. Note the resemblance to the
domain of results in Section 2, with regard to ff being the outcome domain
of <t'iU(:f!.

Definition 22.

(re)T= {rE .9'(L) Ir finite or _1_ Er}.

Definition 23 (Egli-Milner ordering).

'I[: '2 iff J_ E 'l and 'I \ { ..L} ~ T2

or l. ~ r 1 and r 1 = rz.

Lemma 8. (T, [:) is a cpo.

We now give the domain of strict functions L-"5 T.

Definition 24. 1/f: l:'-"5 T, i.e. 1/f is strict iff 1/f(.l.) = { .l. }.

Definition 25.

(I/IE)M=I-"5 T

with the extension: For each I.fl :I-->5 T, ![I: T-->5 Tby 1/f =Ar· UaEr\V(a) and

1/11 ° i/12 =).a· \111 (l/12(a)),

1/11 U 1/12 =la· (1/11 (a) U l/f2(a)).

Lemma 9. (M, [:) is a cpo.

We now introduce y EI', where y gives meaning to procedure variables;
furthermore we define variant of y.

Semantics for bounded nondeterminism

Definition 27. (yE)I'= tf'1711 ➔lvf.

Definition 28.

y{\IJ/P}(P') = \If/
- lY(P')

if P'=P,

otherwise.

The following is needed from the theory of cpo's.

Definition 29. (C, l;;;-) cpo,J: c➔ c.

(a) xis a fixed point off iff f(x) = x.
(b) x is the least fixed point µf off iff:

(i) x is a fixed point off;
(ii) for ally, y fixed point off, xl:y.

Definition 30. (C, [), (C', l:) cpo; f: C➔ C' is continuous iff:
(i) Xi l:x2 => f(x 1) l:'J(x2) (monotonicity);

(ii) for each chain (x;) f: 0 in C,

.r(9o x) = ;go f(x;).

Notation: fE [C➔ C'].

Lemma 10. C;cpo,J;E[Cn ➔ c], i=I, ... ,n

by

Then
00

µ(Ji, ... Jn) = LJ (Ji, ... Jn/((.l, ... , .l)).
k~I

389

After these preparations we define the denotational semantics as
follows.

Definition 31 (Denotational semantics). (a) JV: YY~c/Y➔ (I'-> M) is defined
by

(i) JV(x := t)(y) =A.a· { a{ Y(t)(a)lx} },

390 R. Kuiper

(ii) A!(S1; S2)(y) = A"(S2)(y) 0 A"(S 1)(y),

(iii} uf/(S1 V S2)(y) = ,!V(S1)(y) U A"(S2)(y),

(iv) A" (if b then S1 else S2 fi)(y) = Aa • if 1f(b)(a)
then A/(Si)(y)(a) else A"(S2)(y)(a) fi.

(b) j(: 9111:,1-> (I'-+ M) is defined by

where (l/11, ... ,1/Jn)=µ('Pi, ... ,'Pn) and

'l'J = A 1/11, ... , A 1/1~ A"(Sj)(y{ l/lt IP;} 7 = 1),

j = l, ... , n.

Lemma 11.

Theorem 2. j/ is well defined.

Proof. Essentially from Lemmas 10 and 11.

For later use, in Section 4, we here state the following lemmas.

Lemma 12. ACT• A"(S)(y)(a) is monotone.

4. The Equivalence of the Operational and the Denotational Semantics

The set-up of the equivalence proof for the two semantics defined in the
foregoing sections, i.e. o(R) = Jt(R)(y), is as follows.

A natural way to proceed might seem to apply induction on the length of
individual computation sequences in ~rur:Y'(R)(a) proving a' e o(R)(a)""'
a' E Ji (R)(y)(a). However, it is only possible to prove this for a' such that
~ru1Y'(R)(a) e :Y'(I+). Namely, if there is an infinite computation sequence
in 'G'O:A'Y'(R)(a), then l. e o(R)(a), as can be directly inferred from
Definitions 7 and 21. It is by no means clear, that in this case also

Semantics for bounded nondeterminism 391

.l. E vi'(R)(y)(a), as the concept of computation sequence belongs to the
realm of operational semantics. So using set inclusion /IJ(R)(a) ~
vi'(R)(y)(a) is not feasible. Choosing the Egli-Milner ordering
/IJ(R)(a)!;:vi'(R)(y)(a) with this induction is also impossible, as for this
ordering it is required to prove /IJ(R)(a)=.~(R)(y)(a) if .l. $ O(R)(a).

The way out we have chosen is to apply, in case 'G'tJJtrY'(R)(a) E q,'(..[+),

induction on the sum of the lengths of the computation sequences in
'G'r1utrY'(R)(a), thus proving /IJ(R)(a) = vi' (R)(y)(a) in this case. In case there
is an infinite computation sequence in 'G'eUtY'(R)(a), and so, by Definition
21, .LE /IJ(R)(a), we prove tJ(R)(a) \ {.1.} ~ vi'(R)(y)(a) elementwise by
the above mentioned induction on the length of individual computation
sequences. Thus we yield tJ(R) !;: vi' (R)(y). Proving vi' (R)(y) !;: /IJ(R) by
standard techniques then completes the proof.

In order to apply induction to the sum of the lengths of the computation
sequences in case 'G'tJjt.!Y'(R)(a) E ,q'J(..[+) we have to prove that this sum is
finite. This is made explicit by a careful application of an analogue of
Konig's lemma. One of the well-known formulations of Konig's lemma is
the following:

Lemma (Konig's). A finitely branching tree where all branches are of
finite length contains only finitely many nodes.

As we work in the realm of sets of (computation) sequences instead of
trees, we want to restate this lemma using these notions. Restate "finitely
branching'' by ''there are only finitely many different initial segments of
length n, for all n E N ", "all branches are of finite length" by "a set of
finite sequences", and finally "finitely many nodes" by "finitely many
different sequences".

So the analogue to Konig's lemma seems to be

If in a set of finite sequences there are only finitely many different initial
segments of length n, for all n E N, then there are only finitely many
different sequences.

Now this is not true! Counter example: { (0), (0,0), ... }. The reason for
this is, that the tree structure does not allow { (0), (0, 0), ... } as a set of
branches in a finitely branching tree but forces to add (0, 0, ...) :

392 R. Kuiper

For a set of finite sequences this is not the case. So an extra requirement of
such a set is to be added. Not surprisingly, taking the set to have a property
analogeous to £ for computation sequences is sufficient, as this reflected
the tree-like way in which <trut!Y' generated a 'set of computation
sequences'.

We now give the analogue of Konig's lemma.

Lemma 14. If in a set C of finite sequences {r, ... }, r=(si,s2, ... ,sn>,
n E fN, there are only finitely many different initial segments of length n for
all n E fN, and C has the foil owing property: C is tree-like i.e. if there is a
row of sequences (r;)'l: 1, not necessarily r; EC, such that

(i) for all i, 3 r;E C: r; i.s.o. r;,
(ii) for all i, r; i.s. o. r; + 1,

(iii) sup;{length(r;)} = oo,

then lim;__. 00 r; EC, then there are only finitely many sequences in C.

Proof. By contradiction. Suppose there are infinitely many different
sequences. Let G(n) = {r I length(r) = n, i.s.o. infinitely many different
sequences}. We show by induction that G(n) * 0 for all n E fN. Induction
basis: To prove G(l)-:t:-0. As there are only finitely many different initial
segments of length 1 and infinitely many different sequences, G(l)-:t:-0.
Induction step: To prove G(k+ l)-:t:-0. As there are infinitely many
different sequences but only finitely many different initial segments of
length k or k+ I, and G(k)-:t:-0 (Ind. hyp.), G(k+ 1)-:t:-0. So G(n)-:t:-0 for all
n E rN. Now clearly, for all n E rN every element of G(n) is initial segment of
at least one of the elements of G(n + 1). So by the axiom of choice there are
f; E G(i) such that f; i. s. o. f; + 1, i = I, 2, As C is tree-like, this implies that
there is an infinite sequence in C. Contradiction.

Remark. Note that the property 'tree-like' had to be brought to the surface
on three fully independent occasions where it was more or less hidden in
the structure of the concepts under consideration:

Semantics for bounded nondeterminism 393

(1) In Definition 10 to select tree-like solutions of the equations.
(2) In Definition 15, restricting the distance a to a space consisting of

only tree-like sets.
(3) In Lemma 14 to select sets sufficiently tree-like to prove an analogue

of Konig's lemma for them.

We now show, that for all R and all a, 'teU."Y'(R)(a) satisfies the
requirements of Lemma 14. The only requirement left to prove is, that
't@jt:J(R)(a) gives only rise to finitely many different initial segments. This
is done in the following lemma.

Lemma 15. For all R and all a the following holds for 'tru1."Y'(R)(a): There
are only finitely many different initial segments of length n, for all n E IN,
in 'G'o:.11£J(R)(a).

Proof. Let R =(EIS). Proof by cases, applying induction on the length of
the initial segment. Let

/(n)('t1u1.'?"(R)(a))

= fo' I[!' i.s.o. {! E 'teuN(R)(a), length([!')= n }.

Induction basis: To prove #(/(1)('t1U1#(R)(a))) < oo.
By cases:
(i) S=x := t. Then 'teUt'?"(R)(a) = { (a{ r(t)(a)/x}) }. Consequently,

#(/(1)('ifftU!.9'(R)(a))) = 1 < oo.
(ii) S=S1; S2 . Then

'it!Ui.1'(R)(a)

= U {(a), e' 'it(U/0'((EI S2))(K({!)) I{! E 'iffeu1,((EI S1))(a)},

so /(1)('ifftz.11.<f'(R)(a)) = {(a)}. Consequently, #(/(1)('tf1u.9'(R)(a))) = 1 < oo.
Cases (iii), (iv) and (v) of Definition 10 analogeously to (ii) lead to

#(/(1)('tft!ll.9'(R)(a)) = 1 < oo. Induction hypothesis: Assume

#(/(/)('iffo:,l:Y(R)(a))) < oo,

for 1 :5. I :5. k. Induction step: To prove #(l(k + 1)('tf1uu(R)(a))) < oo.
By cases:
(i) S=x := t. Then l(k+ 1)('tfo:.11:Y(R)(a)) = l(k+ 1)({ (a{ r(t)(a)lx})}) =

0. Consequently, #(l(k+ 1)('iffM.'Y'(R)(a))) = 0< oo.

394 R. Kuiper

(ii) S= S1; S2 . Then

't't1..11Y'(R)(a)

= {<a)· g· 't't1..11Y'((EI S2))(K(g)) I e E 't'tt..llY'((EI S1))(a)}.

Consequently,

#(l(k + 1)('t't1..11Y'(R)(a))) = #(l(k)('t't1..11Y'((EI S1))(a)))

+ X{ #(l(k + 1 - (1 + length(e)))('t't1..11Y'(<EI S2))(K({!)))) I

{!E 't'0.4'.9'((EI S1))(a), length(e)<k} <oo (Ind. hyp.)

Cases (iii), (iv) and (v) of Definition 10 analogously to (ii) lead to
#(l(k + 1)('t'tUY'(R)(a))) < oo. So #(J(n)('t'1U.'?'(R)(a))) < oo for all R, all a,

all n E fN.

After these preparations, we can state Lemma 16, which enables us to
apply induction on the sum of the lengths of the computation sequences in
't'tUtY'(R)(a) in case 't'tu.9'(R)(a) E ?(X+).

Lemma 16. For all R and all a for which 't'o.11.o/'(R)(a) E ?(X+),
't'ru.if'(R)(a) is a finite set.

Proof. It is given that all computation sequences in 't'o.11Y'(R)(a) are finite.
By Lemma 15 there are only finitely many different initial segments of
length n, for all n E fN. By Definition lO(b), and Definition 9, 't't1.11.9'(R)(a)

has the tree-like property as required in Lemma 14. Consequently, by
Lemma 14, 't'rUN'(R)(a) in this case is finite.

Finally, we arrive at the main theorem of this chapter, stating
equivalence of tJ(R) and vd' (R)(y).

Definition 32. For

A E ?(l:'00), length(A)

= rxoo{length(e)leEA} if#(A)<oo and VeEA,{!EL+,
l otherwise.

Theorem 3. For all R and ally, tJ(R) = vd' (R)(y).

Semantics for bounded nondeterminism 395

Proof. Let R=<EIS). We prove VRVyVatJ(R)(a)=cit(R)(y)(a). As
this holds trivially for a= l., in the sequel assume a E .I:0 . We prove Egli
Milner inclusion in both directions.

(1) tJ(R)(a)l:~(R)(y)(a) as follows.
Case A: If Rand a are such that <{ru1.JJ(R)(a) E g')(J;+), then tJ(R)(a) =

~ (R)(y)(a) proof by cases, applying induction on the sum of the lengths of
the computation sequences. (Justified by Lemma 16.)

(i) S=X:= t.

tJ((EI x := t))(a)= K('ef;,UY((EI x := t))(a))

= K({ (a{ Y(t)(a)/x})})

=a{ r(t)(a)lx}

= ~ ((£Ix:= t))(y)(a).

N.B. This result holds for all a, as 't1:u1Y'(<EI x := t))(a) E g')(J;+). By
Definition 10 only a= l. or S = x : = t lead to length ('trur.<JJ(R)(a)) = 1, so
the induction basis is provided.

(ii) S=S1; S2. By Definition 10 and Lemma 16,

length('ttuM((E I S1))(a))< length('ef;ruM((EI S1; S2))(a))< oo
and

length('ef;cUt.o/"((£ I S2))(K('trut,J'((EI S1))(a))))

< length('t,u1q,((EI S1; S2))(a))< oo.

So by induction

and
tJ(<EI S2))(K('ttJ.lltf'((EI S1))(a)))

= ~ ((£I S2))(y)(K(<{rut.I'((EI S1))(a))).

Consequently,

tJ((EI S1; S2))(a)= tJ((EI S2)) 0 tJ((EI S1))(a) by Lemma 7

= tJ((EI S2))(K('te?..4.'?"((£ I S1))(a)))
by Definition 21

396 R. Kuiper

= 1 ((EI S2))(y)(K(Y?(U.9'((EI S1))(a)))

= 1((EI S2))(y)(/0((EI S1))(a))
by Definition 21

= 1((£1 S2))(y) 0 1((EI S1))(y)(a)

= 1 ((EI S1; S2))(y)(a) by Definition 31.

Cases (iii), (iv) and (v) of Definition 10 can be treated analogously to
(ii), applying Lemma 13 when treating Case 5.

Case B: If R and a are such that l. E O(R)(a) then a'* l.,
a' E e'J((EIS))(a) implies a' E j(((EIS))(y)(a), proof by cases, applying
induction on the length of the computation sequence corresponding to that
outcome. There may be more than one sequence satisfying this require
ment; in that case choose one arbitrary. We again distinguish the following
cases.

(i) S = x: = t. Immediately by the above proved equivalence

0((EI x := t))(a)= 1 ((EI x := t))(y)(a).

By Definition 10 this is the only case pertaining to length (g) = 1,
()E 'G'ttd.9'((£1 S))(a) so the induction basis is provided.

(ii) S = S 1; S2 . Consider a computation sequence

By Definition 10 there is an intermediate state aj * l. in this sequence such
that (a2, ... , a1> E 'G'eU/9'((EI S1))(a) and (aJ, ... , an> E 'G'O:,.k.o/((EI S2))(a1).
As length ((a2, ... ,a1))<length((a1, .. ,,an)) and length((a1, .. ,,an))<
length((a 1, ... , an>), by induction a; E 1 ((EI S1))(y)(a) and

a' E 1((EI S2))(y)(aj).

Consequently, by Definition 31 a' E 1((EI S1; S2))(y)(a).
Cases (iii), (iv) and (v) of Definition 10 can be treated analogeously to

(ii), applying Lemma 13 when treating Case 5.
Now combining A and B yields VR Vy Va O(R)(a)[;;;1(R)(y)(a).
(2) Conversely, we prove 1(R)(y)[:o(R) as follows:

By Definition 31, it is equivalent to show JV(S)(Y{l/f/P;}7= 1)[:0((EIS)).
By Definition 31 and Lemma 10, 1/f; can be defined as follows. Let
(1/f?, ... , 1/f~) =(A.a· l., ... , A.a· l. >

k+ 1 k+ 1 'P k k) 'P (k k) (l/f1 , ... ,1/fn)=(1((1/fi, .. ,,l/fn) , ... , n (l/fi, .. ,,1/fn)),

k=O, 1, ...

Semantics for bounded nondeterminism 397

then 1/f;= LJk=olfl7, i=l, ... ,n.
By Lemma 11, JV(S)(Y{lfl7 IP;}t=1)= LJk=oJV(S)(Y{lfl7IP;}7=1). There

fore it is sufficient to show that for all k, JV(S)(y{ lfl7 IP;} 7= 1) l;;;; Cl((EIS)).
We apply induction on (k, l(S)), where /(S) is the length of S, i.e. the
number of symbols of S with ordering (ki,/1)<(k2,/2) iff k 1<k2 or
k 1 =k2 and /1 <12 .

JV(S)(y{ !fl? IP;} i= 1) = A/(S)(y{Aa • 1- IP} 7= i) l;;;; Cl((EIS)),

so the induction basis is satisfied.
We again distinguish the following cases:

(i) S=X := t.

JV(x := t)(y{ lfl7 IP;};= 1) = Aa • a{ -r(t)(a)lx} = Cl((EI x := t)).

(ii) S=S1;Sz. l(Sj)<l(S1;S2), so (k,/(S1))<(k,/(S1;S2)>, j=l,2. So
by induction JV(S)(y{ lfl7 IP7} i= 1) l;;;; Cl((EI S1)), j = 1, 2. Consequently, by
Lemma 9, 12 and Definition 31,

Jll(S1; S2)(y{ lfl7 IP;} i= 1) r;;;; Cl((EI S1; S2)).

Cases (iii) and (iv) of Definition 10 can be treated analogeously to (ii).
(v) S=P.

By Definition 10, P=P1, P1<;=.S1 in E. By Lemma 10, o((EIP))=
o((EI S1)). If k = 0 there is nothing to prove. Otherwise

JV(Sj)(y{ lfl7 IP7}t= 1 = lfl} = lfl1(!fl}- 1, ... , 1/f~-I)

=JV(Sj)(Y{lfl7- 1IP;}7= 1) by Definition 31

l;;;; 0((EI S1>)

= o(<EIP>).

Combining these results yields Jl (R)(y) !;;;; o(R), i.e.

V k Vy Va Jl (R)(y)(a) l;;;; o(R)(y)(a).

Acknowledgements

I wish to thank Jaco de Bakker for his stimulating remarks and Arie de
Bruin for his fruitful cooperation during the process of writing this paper.
To Linda Brown and Susan Carolan I am grateful for the efficient typing
of the manuscript. The referees I thank for their constructive remarks.

398 R. Kuiper

References

[I) K.R. Apt and G. Plotkin, A Cook's tour of countable nondeterminism, in: Proc. 8th Int.
Colloq. on Automata, Languages and Programming (Springer, Berlin, 1981) to appear.

[2] A. Arnold and M. Nivat, Metric interpretations of infinite trees and semantics of non
deterministic recursive programs, Theoret. Comput. Sci. II (1980) 108-205.

[3] R.-J. Back, Semantics of unbounded nondeterminism, in: J. W. de Bakker and J. van
Leeuwen, (Eds.), Proc. 7th Int. Colloq. on Automata, Languages and Programming,
Lecture Notes in Computer Science, Vol. 85 (Springer, Berlin, 1980) 51-63.

[4) J.W. de Bakker, Semantics of infinite processes using generalized trees, in: J. Grusk
(Ed.), Mathematical Foundations of Computer Science 1977, Lecture Notes in Com
puter Science, Vol. 53 (Springer, Berlin, 1977) 240-252.

[5] J.W. de Bakker, Mathematical Theory of Program Correctness (Prentice Hall,
Englewood Cliffs, NJ, 1980).

[6) A. de Bruin, On the existence of Cook semantics, Mathematical Centre Report, IW
163/81 (1981).

[7] S.A. Cook, Soundness and completeness of an axiom system for program verification,
SIAM J. Com put. 7 (1978) 70-90.

[8] J. Dugundji, Topology (Allyn and Bacon, Boston, IL, 1966).
[9] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivations of

programs, Comm. ACM 18 (1975) 453-457.
[IOI H. Egli, A mathematical model for nondeterministic computations, ETH, Zurich (1975).
[11) E.A. Emerson and E.M. Clarke, Characterizing correctness properties of parallel

programs using fixed points, in: J. W. de Bakker and J. van Leeuwen (Eds.), Proc. 7th
Int. Colloq. on Automata, Languages and Programming, Lecture Notes in Computer
Science Vol. 85 (Springer, Berlin, 1980) 169- I 81.

[12) C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.
[13] M. Nivat, Infinite words, infinite trees, infinite computations, in: J.W. de Bakker and

J. van Leeuwen (Eds.), Foundations of Computer Science III, Part 2, Mathematical
Centre Tract 109 (1979) 1-52.

[14] D. Park, On the semantics of fair parallelism, in: D. Bj11frner (Ed.), Proc. 1979
Copenhagen Winter School, Lecture Notes in Computer Science Vol. 86 (Springer,
Berlin, 1979) 504-526.

[15) J. Stoy, Denotational Semantics, The Scott-Strachey Approach to Programming
Language Theory (MIT Press, Cambridge, MA, 1977).

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 399-416

A Proof Rule for Fair Termination of Guarded Commands*

Orna Griimberg, Nissim Francez, Johann A. Makowsky
and Willem P. de Roever t

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
t Vakgroep Informatika, Rijksuniversiteit Utrecht, Utrecht, The Netherlands

We present a proof rule for fairly terminating guarded commands based on
a well-foundedness argument. The rule is applied to several examples, and
proved to be sound and complete w.r.t. an operational semantics of compu
tation trees. The rule is related to another rule suggested by Pnueli, Stavi and
Lehmann by showing that the (semantic) completeness of the PSL-rule follows
from the completeness of ours'.

1. Introduction

The use of well-ordered sets to prove termination of programs originates
from Floyd [3] and remained prominent ever since. After the appearance
of non-deterministic and concurrent programming language constructs,
the notion of termination was generalized to the notion of liveness [10],
which also covers properties such as eventual occurrence of events during
program execution. One way of specifying and proving such properties is
by applying temporal reasoning [4]. This may be formalized by using
Temporal Logic [12], a tool suitable for expressing such eventualities.

* Preliminary work regarding this problem was carried out while the 2nd author visited the
University of Utrecht, sponsored by a grant from The Netherlands Organization for the
Advancement of Pure Research (Z.W.O.); the work was completed while the 4th author
visited the Technion sponsored by the Technion; the 2nd author was partly sponsored by an
IBM-Israel Research grant. The third author was supported by Swiss National Science
Foundation grant No. 82.820.0.80.

399

400 0. Grum berg et al.

Within this framework, one of the more interesting concepts that can be
studied is the concept of fairness [6]. However, application of temporal
reasoning does not appeal to a direct use of well-foundedness arguments
(see e.g. [11]). Recently, there is a revival of the interest in such direct
appeals (see e.g. [l]), generalizing arguments hitherto involving finite non
determinism to a context of infinite non-determinism, and [13], generaliz
ing sequential well-foundedness arguments to the context of concurrency
(using a shared variable model).

A common property of well-foundedness arguments for more compli
cated types of termination is the use of higher countably infinite ordinals,
which can be traced back to [8], this in contrast to the fact that for deter
ministic programs (or programs displaying finite non-determinism) natural
numbers suffice.

In this paper, we propose a rule for proving/air termination of guarded
loops using well-foundedness arguments.

We chose guarded commands [2] since it is relatively well known and
simple, has as a natural extension to the language Communicating
Sequential Processes (CSP) [9] and the proof rule proposed in this paper
extends equally naturally to CSP. This extension is the subject of a
companion paper.

The ideas in this paper were developed mostly independent of [13), in
which a similar situation is dealt with. We shall describe the influence of
[13] on our work in the last section.

In Section 2, we introduce the proof rule for termination and apply it to
several examples. In Section 3 we present soundness and semantic
completeness proofs of the suggested rule w .r. t. an operational semantics
using computation trees. Section 4 ends with a reduction of the semantic
completeness of the rule of (13] to the present one.*

2. A Proof Rule for Fair Termination

Basic notions and definitions

We consider the language GC, with the following syntax:

* Note added in proof: Conversely, Daniel Lehmann recently reduced the completeness
proof of our rule to that of [13]. Consequently, the two rules are equivalent.

Fair termination of guarded commands 401

(statement)::= (assignment statement) I (skip) I (selection)
I (repetition) I (composition)

(assignment statement)::= (variable):= (expression)
(skip) ::=skip
(selection) : := [(boolean-expression)--> (statement)

{□

(boolean-expression)--> (statement)}*

l
(repetition)::= *(selection)
(composition)::= (statement); (statement).

Boolean expressions are also called guards.
Its semantics follows from the usual definition of computation sequence

n: .;0.;1 ... , where all .;;'s denote states (mappings from variables to values).
In the sequel we consider programs of the form of repetitions

C :: *[B1 -->C1 □ ... □ Bn-->Cnl.

also abbreviated to *[D;Ep, ... ,n}B;-->C;].
C; is enabled in.; iff B;(c;) holds.

Definition. (1) An execution sequence n of C is fair iff it is finite, or it is
infinite and for every I 5' i 5' n, if C; is infinitely often enabled along n, it is
also infinitely often chosen along n.

(2) C is fairly terminating iff all its infinite execution sequences are not
fair, i.e., unfair.

Thus, a fairly terminating program has finite computation sequences
(terminating computations), and unfair infinite computation sequences,
but may not have infinite fair computation sequences.

For a given initial state .;, we consider the tree of all possible
computation sequences, T~. In case of a selection, [B1 -->C1 □ ··· □ Bn-->Cnl,
a state (node) 17 in T~ has subtrees for every i, 15'i5'n s.t. B;(17) holds.
Observe that in case of fair termination, T~ contains finite and unfair
infinite computation paths.

Example. Consider Dijkstra's example for a random generator of natural
numbers [2]; this is a possibly non-terminating program, its only infinite
computation sequence being unfair. Hence this program fairly terminates:

402 • 0. Griimberg et al.

C::x:=0; b:=true;
*[b--+x:=x+ 1
□b--+b :=false].

Notice that by restricting the underlying semantics of the language of
guarded commands to fair computation sequences only, a fairly termin
ating repetition as defined above becomes a terminating one, possibly
displaying countably infinite nondeterminism.

Our goal is to characterize deductively the class of all fairly terminating
GC programs. The characterization suggested does carry over directly to
concurrent programs with shared variables; a companion paper extends it
to CSP.

We use the notation ((r))C((q)) to express that C fairly terminates in
all initial states satisfying r, and that q holds upon termination.

The intuition behind the suggested proof rule is as follows: For an
always terminating nondeterministic program, there exists a well-founded
quantity which decreases along every computation sequence, i.e., along
every direction in the computation tree.

Now, let us choose the directions along which a certain well-founded
quantity decreases, taking care that these directions (certain moves C;) are
always eventually enabled, until they are taken. Let the other directions be
non-increasing. Then by the fairness assumption eventually a decreasing
move has to occur. Thus all fair computation sequences are guaranteed to
be finite.

The proof rule

Choose a well-ordered set (W, :5) (without loss of generality we can
assume that Wis an initial sequence of the countable ordinals, as shown by
the completeness proof). Also choose a predicate

p: W--+ [States--+ {true.false}],

assigning a truth value to every pair (w,~).
For each we W, w>O (or, in general, any non-minimal element in W)

choose a partition Dw, Sw of {l, ... ,n}, with Dw=#:0. (D stands for
decreasing, S for steady.)

Let the following clauses hold:

(1) ((p(w)/\ w>OABj))CJ<(3v< w • p(v))) for all}EDw,

Fair termination of guarded commands

(2) ((p(w)/\w>0/\Bi))C;((3v:s;w-p(v))) for all iESw,

(3) ((p(w) /\ w >0)) * [D B;/\--, . V B1-+ C;j ((true))
IESw JEDw

n
(4) P(0)~q/\ I\ ,B;,

i=I

Then, we conclude

((r))C((q)),

n

w>0Ap(w)~ VB;,
l=l

i.e., repetition C fairly terminates.

Explanation

r~ 3v- p(v).

403

(ad 1) This clause guarantees that along every direction in Dw, if it is
enabled and taken, then there is a decrease in the well-ordering. (Note
again that we use a unique minimal element, denoted by 0, to keep the
notation simple.) Note also that at least one decreasing direction is
required.

(ad 2) This clause guarantees that along every direction in Sw, if enabled
and taken, there is no increase in the well-ordering. Thus, an infinite
computation proceeding along Sw direction only, and not decreasing, is
possible. We have to assure that such a sequence is unfair. Whence clause
(3).

(ad 3) This clause imposes a recursive application of the rule to an
auxiliary program Cw, and hence requires a subproof. Cw terminates
because of one of two reasons:

(a) /\esw--, Biis true, hence no Sw-move is possible and only Dw-moves
are left.

(b) For somejEDw, B1is true, i.e., a Dw-move is enabled. Hence, this
clause guarantees that along infinite Sw-computations, Dw-moves are
infinitely often enabled, that is, such computations are unfair. By
convention, Cw= skip if Sw = 0.

(ad 4) This clause guarantees that the program terminates only when
reaching a minimal element of (W, <).

Remarks. (1) If we take Sw = 0 (and hence Dw = { 1, ... , n}) for all w E W,
the rule reduces to the usual termination rule for GC (see e.g. [7]).

404 0. Griimberg et al.

(2) In proving clauses (1)-(4) of the rule, application of the ordinary
rules (for assignments, etc.) is allowed.

Example 1. First, consider again Dijkstra's example for a random gener
ator of natural numbers [2], which is a possibly non~terminating program,
its only infinite computation sequence being unfair. Hence, this program
terminates fairly.

C::x:=0; b:=true;
*(b->x:=x+ 1
Db->b :=false

] .
We prove ((true))C((true)). Choose as well-ordering {0,1} with 0<1,

as S1 = { l }, D 1 = {2}, and as ranking predicate

p(w)(x,b)~(w= 1 ::Jb)A(w=0::J ,b).

As to clause (1): b changes from true to false upon move b := false, and
hence w drops from 1 to 0.

As to clause (2): b remains true under x :=x+ 1, andp(w) is independent
of x, sow stays 1.

As to clause (3): C1 :: *[bA ,b->···] which obviously terminates.

Example 2. In Example l, a D-move is always enabled (in the terminology
of [13], that program is just). Next, consider a program, in which D-moves
are only eventually enabled, and clause (3) is less trivially satisfied.

C:: b := true; c := true;
*[b->c := -, c
□bAc->b :=false
] .

Again we prove ((true))C((true)). Choose W, p, S1, D 1 as above. The
difference lies in clause (3), with auxiliary program

Ci:: *[bA-, (bAc)->c:= ,c],

which terminates after one step at most.

This example is still trivial, but is should give the reader a feeling for the
spirit of the rule, which captures eventual enabling of a D-move by means
of a proof of termination of the auxiliary program.

Fair termination of guarded commands 405

Example 3. Next, we show that the natural numbers N are not sufficient
for fair termination proofs, since there is no bound on the length of finite
computations.

Let x, y, z range over N.

C::x:=0; y:=0;
*[x=0---->y:=y+l □x=0---->x:=l

□x;c0/\y;c0---->y:=y-1 □x;c0/\y;c0---->z:=z+l

] .

To prove ((true)) C((true)), choose W = NU { oo},

p(w)(x,y,z) ~r (w = oo ::Jx = 0) A (w:;c oo---->x:;c O /\y = w),

S00 ={1,3,4},

For clause (3) we get as auxiliary programs:

C 00 :: *[x=0/\x:;c:0---->···
□x;c0/\y;c0---->y:=y-1

□x;c:0/\y;c0---->z :=z+ 1
] .

Cn::*[x=0---->···
□x=0---->··· □x;c:0/\y;c0/\, (x;c:0/\y=t=0)---->···].

To prove ((p(n) An> 0)) Cn ((true)) is trivial since p(n) ::Jx;c 0, and hence
C n terminates immediately.

To prove «x = 0)) C00 «true)), choose W' = N, and let S~ = { 1, 3}, D~ =
{2}, nEN, and p(n)(x,y,z)~ry=n/\x;c:O. Note that the alternatives are
renumbered.

Clause (1) is satisfied since y := y-1 decreases y, and clause (2) is
satisfied since p(n) is independent of z. As to clause (3), we again construct
an auxiliary program, Coo,n,

which trivially terminates.
Finally, consider the following program:

C::y:=1; b:=true;

*(b---->y:=y+l

□bAprime(y)Aprime(y+ 2)---->b :=false

] .

406 0. Griimberg et al.

This program fairly terminates iff the conjecture that there exist
infinitely many 'twin' primes is true.

3. Soundness and Semantic Completeness

In this section we prove the soundness of the suggested proof rule w.r.t.
the semantics of computation trees consisting of fairly terminating
sequences, and its semantic completeness. We shall not deal in this paper
with the specification language needed to express p(w) and the partitions,
an issue dealt with elsewhere [15).

(a) Soundness. We have to prove that if all premises of the rule hold, so
does its conclusion.

Assume that for program C we found a well-ordered set (W, ::5), a
partition Sw, Dw for each w>O s.t. Dw=F-0, and a predicate p, satisfying
clauses (1)-(4) of the rule.

Assume by way of contradiction, that for some state <;0 , Te0 contains an
infinite fair path (<;;);': 0 . Consider the corresponding sequence of moves
(d;);': 0 . It cannot contain an infinite subsequence (d;)J=O of D-moves,
since by clause (1) this would imply the existence of an infinite decreasing
sequence of elements in W, contradicting W's well-foundedness. Thus,
from some k onwards, p(w)(<;k) holds, and all moves dj for j>k are Sw
moves (by clause (2)). By clause (3) there is some deDw which is infinitely
often enabled and not taken, contradicting the assumption that (<;;) ;': 0 is
fair.

(b) Completeness. This is the harder part. Assume ((r))C((q)) holds.
Then we have to find a well-ordered set (W, ::5), partitions Sw, Dw for each
w>O s.t. Dw=F-0, and a predicate p (given by a collection of pairs (w,<;))
such that clauses (1)-(4) hold.

Since all we 'have at hand' is the computation tree, we have to derive
everything needed from that tree (compare also [14] for another well
foundedness argument based on the 'operational' object ~ the compu
tation stack, for nondeterministic recursive procedures).

We are given that the computation tree Te0 , for every state <;0 satisfying r,
is either well-founded, or contains at least one infinite, hence unfair,
computation sequence. The basic idea is to construct another (possibly

Fair termination of guarded commands 407

infinitely wide) tree Tl, some of whose nodes are obtained by collapsing
certain infinite families of nodes in Tr,0 , all lying on unfair sequences
originating in nodes ¢" e Tr,0 , such that Tl is well founded, i.e., contains
finite paths only. Then we use a standard ranking of T/0 by means of
ordinals. A move which leaves ¢" and remains in the same infinite family
belongs to Sw for the corresponding rank. A move which exits such a
family belongs to Dw, Special care must be taken that these partitions do
not depend on ¢"0 , the root of the computation tree.

We now present the details of the construction. Let T/',0 be given.
Case (a): Tr,0 is well founded (this means that C always terminates in ¢"0).

Choose a ranking of the nodes by means of an initial segment of the
ordinals, ranking leaves by 0, and proceeding inductively level by level
from leaves till root (a standard set-theoretical construction); furthermore,
choose uniformly Sw = 0, Dw = { 1, ... , n}. It is easy to verify that clauses
(1)-(4) of the rule hold.

Case (b): Tr,0 contains at least one unfair, hence infinite, computation
path n. This case is dealt with below.

Definition. (1) A computation sequence n is d-unfair (1 5 d 5 n) iff along n
Cd was infinitely often enabled, but only finitely often chosen.

(2) Let¢" e Tr,0 , Define ¢"'s d-cone CONEd(¢") as follows:

CONEd(¢°) = the set of all occurrences of states in Tf.o residing
on infinite computation sequences which contain
only finitely many d-moves and which start in
¢".

(Obviously, all occurrences of states on d-unfair sequences starting in ¢"
belong to its d-cone.)

Lemma 1. Let ¢" e Tr,0 , and let r/ e CONEd(¢°), for some 15 d :5 n. Then
every computation sequence leaving CONEd(¢°), say at node r/, is either
finite or contains a d-move.

Proof. Suppose not. Then an infinite path n starts in r/ and does not
contain any d-move. Since r/ e CONEd(¢°), there is some finite path n'
joining¢" tor/, along which ad-move was taken at most a finite number of
times. Hence the concatenation n'n of n' and n is contained in CONEd(e),
contradicting the assumption that n leaves CONEd(¢°).

408 0. Griimberg et al.

The situation is described in Fig. 1, where a triangle denotes a well
founded tree.

d

Fig. 1.

Observation. If state¢" resides on ad-unfair sequence, then CONEd(¢°) -=I=

0.
Our candidates for families 'to be collapsed into a node in T{o' are such

d-cones.
Next we define inductively a hierarchy of d-cones.
Base step: Since by assumption T1:,0 contains an unfair sequence, fix some

1 :5. d0 :5. n s. t. there exists a d0 -unfair sequence in ¢0 , and let CONEd/¢0) be
defined as above. It is not empty by the observation above. We say that
CONEd/¢0) is at level 0.

Induction step: Suppose at level i- 1 ad-cone CONEd(¢;_ 1) was defined,
and let TC be some path leaving CONEi¢;_ 1). By Lemma 1 either TC is finite,
or there is ad-move on path TC resulting in state¢";. If TC is finite we finish
the construction as far as TC is concerned. So assuming state ¢"; as above,
construct CONEd,(O at level i, where d' is determined as follows:

If there is a moved' not appearing in ¢0 ... ¢1 ... ¢";_ 1 ... ¢";, and there is an
infinite sequence with a finite number of occurrences of d' starting in ¢";,
choose move d'. Otherwise, choose the index of the move which did not
appear longest in ¢0 .. • ¢";, for which there is an infinite sequence containing
finitely many occurrence of that move, starting in¢";.

Fair termination of guarded commands 409

Thus, when iterating the cone construction, we vary the move-indices of
the cones maximally.

Lemma 2. There does not exist an infinite sequence of cones CONEd;(<;;)
s. t. (<;;) 't=o is an infinite path of T1:,0 ,

Remark. If we describe the construction of cones as in Fig. 2, we have by
Lemma 2 only finite chains of cones.

I

~ -

~ ~----------------

(, (~Jco:c,,u,J_

d2

Fig. 2.

Proof. Suppose such an infinite sequence (<;;) exists. Then it is unfair by
definition of T1:,0 , Thus; there is some 1 ::5.a::5.n s.t. (<;;) is a-unfair. Then
there is an i0 s.t. at <;;0 either a did not occur on <;0 .. • <;;0 or it occurred less
recently than any other move. Hence a= d;0 in the inductive construction of
CONEd;/<;;0), and <O would have been contained in CONEd;/<;;0),

contrary to assumption.

410 0. Griimberg et al.

Now we define Tl as suggested above. Its nodes are all the nodes in T1;0

not belonging to any cone, and the set of all cones. Its edges are either
edges entering cones, or edges leaving cones, and, otherwise, edges outside
cones. By Lemmas 1 and 2, the tree Tl is well founded.

In order to get rid of unwanted c;0-dependence of Sw and Dw as suggested
above, we do one more construction: Combine all Tl s.t. r(c;0) holds into
one infinitary well-founded tree Tt;:

Next, rank the nodes of Tt;. However, we must take care that if c; occurs
in two places in Tt; with the same rank, it determines some (S, D) partition
uniquely.*

In order to achieve this we perform a rank-shift: Suppose that at some
level of the ranking, say),_, there are equiranked occurrences of a state c;,
say of ordertype a. Then rerank these consecutively by),_+ 1, ... ,),_+a, and
proceed to the next level),_ + a+ I.

Let e denote the ranking function of Tt;. Then we define predicate p and
partitions (Sw,Dw), As W we chose the ordinals ranking Tt;, an initial
segment of the countable ordinals.

p(w)c; DEF 311, d • c; E CONEd(l1) l\e(CONEd(11)) = w

V

V 11, d • c; $ CONEd(11) l\{l(c;) = w.

For w>O:

S = \Sd if 311, d • e(CONEd(c;)) = w,
w /__0 otherwise

where Sd={l, ... ,n}-{d}. Hence, Dw={d}, a singleton set, or Dw=
{ 1, ... , n }.

• Note added in proof: Due to technical considerations, all non-leave nodes should be
ranked differently.

Fair termination of guarded commands 411

Note that the rank-shift of T"t; assures that Sw is well defined.
Next, we show that clauses (2)-(4) of the rule hold; and thereafter we

refine the cone-construction so as to satisfy clause (1), too.

Lemma 3.1. W, p, (Sw,Dw) satisfy clause (2)-(4) of the rule. (As we shall
see clause (1) need not hold.)

Proof. Clause (2): Assume p(w) I\ w>OJ\B; holds in e, for i E Sw. Without
loss of generality (by the rank-shift), assume e E Tt,0 and r(eo) holds. Then
eeCONEd(1J) for some 17 and d (since, otherwise, Sw=0), and d=l=i. If
move C; remains in the cone, by construction the rank remains the same.
Otherwise, it leaves the cone, and hence, since T"t; is ranked from bottom
leaves to top-root, the rank decreases.

Clause (3): Assume again p(w) I\ w> 0 holds in r We have to demon
strate that Cw fairly terminates. Since Sw =I= 0 ::> Sw = Sd for some d, the guards
of Cw are B;I\Bd. Again, assume we are in T,0 as above. Let n: be a fair
computation sequence of Cw starting in e. Then n: can be extended in front
to a fair computation sequence starting in eo, and hence is finite. Thus Cw
fairly terminates. (At this point it should be clear to the reader that the
whole proof proceeds by induction on the number of alternatives of C.)

Clause (4): By construction, in Tt holds Q(e) = O+-+e is a leaf of T"t;.

To see that condition (1) does not hold, consider the case:

CONEd (f;i)
--~. 0

Le., d0d'(labels a d0-unfair computation sequence, contained in
CONEd0(e1), and let Q(CONEd0(e1)) = w. Then p(w)e11\ w>OI\Bo holds,
and hence, ((p(w)e1Aw>OABo»Co«P(w)ez», that is, w need not
necessarily decrease under the C0 move as indicated.

Finally, we modify our construction of cones so as to satisfy clause (1) of
the rule, too. This modification affects the collapsing of ad-cone; instead
of collapsing such a cone to a node of T!o, we collapse it to a well-founded
subtree of Tl.

412 0. Griimberg et al.

Let CONEd(<;) be given. Now repeat the inductive construction, but
modified by defining subcones within CONEa(<;) which include only
infinite computation sequences containing no occurrences of d at all, and <;
itself (hence never being empty).

Definition. For 11 E CONEd(<;), let S-CONEd(l'/) = (the set of all occur
rences of states along infinite paths in CONEd(<;) starting in 11 and
containing no occurrence of ad-move) U { 11}.

By an argument similar to the one in the proof of Lemma 1 we establish:

Lemma 4. Every computation sequence leaving S-CONEd(l'/) is either
finite or contains a d-move.

The inductive construction of subcones of CONEj(<;) goes as follows: At
level 0, define S-CONEd(l'/o) with 110=<;. Suppose S-CONEd(l'/i-i) is
defined (at level i- 1).

Case (1): There exists a computation sequence leaving S-CONEd(l'/i-d
which does not leave CONEd(<;), thereby being infinite. Let Cd denote the
first occurrence of a d-move along that computation sequence. Such a d
move exists by Lemma 4, since we exclude finite sequences (as these left the
'big' CONEd(<;) already). In case S-CONEd(l'/i-i)= {11;-i}, a computation
sequence 'leaving' S-CONEil'/i-i) starts in l'/i-I• Let l'/i denote the
resulting occurrence of a state. Then define the descendant S-CONEd(l'/i) at
level i.

Case (2): There does not exist a computation sequence leaving S
CONEd(l'/ ;- 1). Then this S-CONE has no descendant.

Lemma 5. There does not exist an infinite chain of S-CONEd(l'/i)'s with
110=<;.

Proof. Suppose such a chain exists. Then there exists an infinite compu
tation sequence starting in <; with an infinite number of occurrences of d
moves, contained in CONEd(e), contradicting the definition of CONEd(<;).

Thus, we now collapse each CONEd(<;) into a well-founded subtree, with
subcones S-CONEd(17) collapsed to nodes. By Lemma 5 this subtree is well
founded, and hence, the whole tree Tl is well founded. Now repeat the
previous ranking procedure to Tl so obtained.

Fair termination of guarded commands 413

Now, clause (1) holds, too, because every d-move either leads to a lower
ranked node corresponding to a subcone, or leaves the whole cone, there
fore also leading to a lower ranked node. Satisfaction of the other clauses is
not affected by the modification described above. Hence we established:

Theorem. If C fairly terminates, (W, :5), p, ((Sw,Dw)>wE w,w>O• exist
satisfying all the clauses appearing as premises in our rule for proving fair
termination of guarded loops.

Comparing the construction in the completeness proof with the state
ment of the rule itself, one cannot help noticing that there is a certain
discrepancy between the two. In the construction, we always end up with
IDw= II for collapsed nodes, whereas the rule itself allows IDwl > 1. We
would like to give some semantic significance to the case IDwl > 1 in the
light of the previous construction.

Suppose in rr there exist infinite computation sequences rri, ... , rrk> not
containing, respectively, moves di, ... , dk an infinite number of times. Then
Jr;E U}=l CONEd;(~).

Define CONE{d1, ... ,d.}(~)=LJ;=1, ... ,kcoNEdJO, where {di, ... ,dk} is
the maximal set of moves s.t. CONEd;(r) =f:. 0, i = 1, ... , k. Next, one verifies:

Lemma 6. Every infinite sequence leaving CONE{d1, ... A}(~) contains
movesdi, ... ,dk.

Then, one modifies the iterative cone construction in that a new
(generalized) cone is constructed after all moves di, ... , dk occurred.
Observe that the analogue of Lemma 2 holds again.

Now, generalize the construction of subcones to maximal sets of moves.
Assume k = 2, for simplicity of notation (the construction generalizes to
k:5n). In order to satisfy clause (1), we refine our ranking, as in Fig. 3.

Split S-CONE{d1,dz}(~) into three parts:

S-CONEd1(~)- S-CONEd2(e),

S-CONEd/~)- S-CONEd1({),

414

and

ranked w",w'>w"

S-CONEd (0-
1

S-CONEd (n
2

0. Griimberg et al.

ranked w'

S-CONE d (~)
n 1

S-CONEd (0
2

~

Fig. 3.

ranked w'", w' >W'"

S-CONEd (;)-
2

S-CONEd (;)
1

and rank them, respectively, w", w'", w' with w'> w", w'> w"'. (This can be
easily accomplished by superposing a lexicographical order on[!.)

Choose Dw,= {d1,d2}, Dw,= {di}, Dwm= {d2}. Now clause (1) is
satisfied (as suggested in Fig. 3).

4. Relation to Other Work

As already mentioned in the introduction, our work is closely related to
[13). In [13] three fairness-like notions are introduced:

(1) Impartial execution: along infinite computation sequences all moves
appear infinitely often (no reference to being enabled or not).

(2) Just execution: along infinite computation sequences enabled moves,
which once enabled remain enabled until taken (i.e., are continuously
enabled), are eventually taken.

(3) Fair execution: along infinite computations sequences, moves
infinitely often enabled are eventually taken.

This distinction influenced clause (3) of our rule. Without clause (3), our

Fair termination of guarded commands 415

rule is sound and complete for impartial execution.* The difference
between just termination and fair termination is reflected in Examples 1
and 2 in Section 2.

A notable difference between our rule and the one in [13], called method
F, is that we partition the moves in an ordinal-dependent way, whereas in
[13] state predicates play a crucial rule in determining decreasing moves.

Now we show that our rule implies method F, and hence the semantic
completeness of our rule implies the semantic completeness of method F.

Assume that for program C we found (W, :5), p, ((Sw,Dw)>wE w, w>O
satisfying clauses (1)-(4) of our rule, relative to precondition r, and that
IDwl == 1.

In order to apply method F, we have to:
(i) Find a partial ranking function{!: States--> W', where W' is ordered

by a well-founded ordering, 2:.

(ii) Find predicates Q;, i == 1, ... , n over states, where Q == V? = 1 Q;,
satisfying:

(0) Q(() implies e(() is defined,
(1) r(()::)Q((),
(2) Q(¢) A 11 E C;(()::) (Q(11) A e(¢) 2: e(11)),

(3) Q;(()/\17ECj(()Ae(()==e(17)::)Q;(1J) for i::;t:j,
(4) Q;(() /\ 1J EC;(()::) (e(()?;. e(11)) (thus the Q; determine the decreasing

directions),
(5) Program C' :: *[DJ= 1, ... ,nB1/\, B;---->C1] satisfies ((Q;))C'((true)).
To satisfy method F, take W' == W (using the same ordering), and define

e(() == minwp(w)(, Q; == i E De<O · Hence Q(() = 3 w • p(wK
Next, we verify conditions (0)-(5) of method F.
Condition (0): 3w-p(w)(::){wjp(w)¢}:;t:0, and the minimum of

{ w lp(w)¢} exists by a property of the ordinals.
Condition (1): r(()::) 3w, p(w)(holds by clause (4).
Condition (2): follows from clauses (1), (2) of our rule, guaranteeing that

p(v) holds for v:5 w; hence the minimal v s.t. p(v) does not increase, either.

* Note added in proof: Daniel Lehmann informed us that a sound and complete version of
our rule for just execution is obtained by replacing clause (3) by

(3')
n

p(w)II ,Bf::>, VB; for j E Dw-
1= I

The resulting rule is complete for programs terminating under the following assumption upon
the underlying semantics: each of the computation sequences generated is either finite or every
guard is infinitely often tried.

416 0. Griimberg et al.

Condition (3): Q;(~)/\11 E Cj(~), i-:t:.j, implies that an S-move is taken,
and since em is the minimal w s. t. p(w)~, this S-move does not decrease the
ordinal, hence Q;(~) still holds.

Condition (4): follows directly from clause (1), since 11 EC;(~) and Q;(~)
imply a D-move is taken.

Condition (5): reduces to clause (3).

Acknowledgements

Amir Pnueli and Shmuel Katz are thanked for helpful discussions.
Daniel Lehmann suggested the reduction of the [PSL]-rule to ours'.

References

[I] K.R. Apt and G. Plotkin, A Cook's tour of countable non-determinism, Proc. ICALP
81, Haifa (July 1981).

[2] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ,
1976).

[3] R.W. Floyd, Assigning meaning to programs, in: J.T. Schwartz (Ed.), Math. Aspects of
Computer Science, Proc. Symp. in Appl. Math. (AMS, Providence, RI, 1967).

[4] N. Francez and A. Pnueli, A proof method for cyclic programs, Acta Informat. 9 (1978).
[5] N. Francez and W.P. de Roever, Fairness in communicating processes, University of

Utrecht (1980).
[6] D. Gabbay, A. Pneuli, S. Shelah and Y. Stavi, On the temporal analysis of fairness,

Proc. 7th POPL Conf. (1980).
[7] D. Hare!, First Order Dynamic Logic, Lecture Notes in Computer Science, Vol. 68

(Springer, Berlin, 1979).
[8] P. Hitchcock and D. Park, Induction rules and termination proofs, in: M. Nivat (Ed.),

Automata, Languages and Programming, IRIA (North-Holland, Amsterdam, 1973).
[9] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (8) (1978).

(10] L. Lamport, Proving the correctness of multiprocess programs, IEEE Trans. Software
Engrg. 3 (2) (1977).

[11] L. Lamport and S. Owicki, Proving liveness properties of concurrent programs, SRI-TR
(1980).

[12] A. Pnueli, The temporal semantics of concurrent programs, Theoret. Comput. Sci. 13
(I) (1981).

(13] A. Pnueli, Y. Stavi and D. Lehmann, Impartiality, justice and fairness: the ethics of
concurrent termination, Proc. ICALP 81, Haifa (July 1981).

[14] W.P. de Roever, Dijkstra's Predicate Transformer, Non-determinism, Recursion and
Termination, MFCS, 1976, Lecture Notes in Computer Science, Vol. 45 (Springer,
Berlin).

[15] W.P. de Roever, A formalism for reasoning about fair termination, in: D. Kozen (Ed.),
Proc. of the Workshop on Programming Logics, Lecture Notes in Computer Science
(Springer, Berlin, 1981) to appear.

Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981, 417-431

Invited Address

ALGOL 68 Revisited Twelve Years Later or from AAD to ADA

Wladyslaw M. Turski*

Warsaw University, Warsaw, Poland

• This paper has been omitted from the Participants' Edition at the explicit request of the
author.

417

