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Editors' Preface 

Adriaan van Wijngaarden, mathematician and computer scientist, was 
born in Rotterdam, November 2, 1916. He was educated at the 
Gymnasium Erasmianum in Rotterdam, and studied at the Delft Techno
logical University, where he obtained his Ph.D. in Mechanical Engineering 
in 1945. The title of his thesis was 'Some applications of Fourier integrals 
to elastic problems'. His first positions were with the Delft Technological 
University - during the war years - and, during 1946, with the National 
Aerospace Laboratory. 

In February 1946, the Mathematisch Centrum (MC) was founded in 
Amsterdam as a research institute in pure and applied mathematics by a 
number of far-sighted scientists who foresaw the importance of mathemat
ics for the Dutch post-war society. On January 1, 1947, Van Wijngaarden 
started his work at the MC as founder of its Department of Computation. 
It was the beginning of his eminent career at our Institute. In the ensuing 
years, the MC grew from a handful of people to a staff or more than 150 
employees. Moreover, computer science in the Netherlands was born, grew 
up and came of age, all due to the inspiring leadership and great scientific 
achievements of Van Wijngaarden. 

We shall try to briefly outline the main events of Van Wijngaarden's 
years at the Mathematisch Centrum. Immediately after his appointment he 
left for an extensive tour - taking most of 1947 - of the UK and the USA. 
He visited many of the places and people involved in the fascinating 
development of the first computers and their applications, including 
Wilkes in Cambridge, Turing and Wilkinson at the National Physical 
Laboratory, and Goldstine and Von Neumann at the Institute for 
Advanced Study. Then, upon his return to Holland, Van Wijngaarden 
initiated the work on the construction of the first Dutch computers. In the 
early fifties, primarily at the Mathematisch Centrum and, later, also in a 
number of industrial laboratories, the first electronic computers of the 
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Netherlands were built. The ARRA was completed at the MC in 1952, and 
was one of the first machines on the continent. Members of the group 
headed by Van Wijngaarden were B.J. Loopstra and C.S. Scholten, 
G.A. Blaauw for a somewhat shorter period, and, at a later stage 
E.W. Dijkstra and W.L. van der Poel. The latter was employed at that 
time by the Dutch PTT Laboratory, but worked in close contact with the 
MC and was actually Van Wijngaarden's first Ph.D. student. (See also the 
list of Van Wijngaarden's Ph.D. students below.) After the ARRA, the 
MC constructed the ARMAC and the Xl, the first fully transistorized 
machine. In the late fifties, it was felt that further manufacturing of com
puters was more appropriate in an industrial environment, rather than in a 
research institute, and the Electrologica company was founded as an 
independent firm for this purpose. Later, Electrologica was to become part 
of the Philips concern. 

In the years of his involvement in the development of Dutch computers, 
Van Wijngaarden also worked very actively as a mathematician, publishing 
numerous papers on a variety of topics in applied and numerical mathe
matics, and a few in number theory as well. In fact, the first published 
algorithm in ALGOL 60 (the procedure euler of the Report on the Algo
rithmic Language ALGOL 60, cf. Peter Naur's invited lecture in these Pro
ceedings) was based on Van Wijngaarden's publication [17] (see the list of 
publications to follow), one of his main contributions to numerical mathe
matics. 

In the meantime, the importance of Van Wijngaarden's work was 
recognized by the Dutch scientific community in a number of ways. In 
1952, he was appointed 'Bijzonder hoogleraar' at the University of 
Amsterdam. (This is a part-time appointment with the rank of full 
professor, financed, e.g., by a research foundation.) In the same year, he 
became a member of the Board of the Mathematisch Centrum. In 1958 he 
was appointed as 'Buitengewoon hoogleraar' at the University of 
Amsterdam (the difference with 'Bijzonder hoogleraar' being that the 
position is paid by the university) to teach Applied Mathematics. In 1959 
he was elected member of the Koninklijke Nederlandse Akademie van 
Wetenschappen (the Royal Dutch Academy of Sciences), and he also 
received the 'Medaille d'argent de la ville de Paris'. In 1960 he was elected 
as a Senior Member of the Institute of Radio Engineers (now IEEE). 

In the late fifties - after the termination of the MC's involvement in the 
construction of computers - Van Wijngaarden's scientific interest 
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changed direction, and turned to the design of machine independent, 
general purpose algorithmic languages. It is in this area that the contribu
tions of Van Wijngaarden have probably been the most profound. For this 
reason, the organizers of the Symposium have selected the theme Algo
rithmic Languages as an appropriate topic for a conference in his honour. 
We are very glad that these proceedings contain the excellent papers by 
Peter Naur and Wladyslaw Turski describing Van Wijngaarden's share in 
the design of ALGOL 60, and his monumental efforts in the design of 
ALGOL 68. ALGOL 68 being essentially an IFIP project, it is only to be 
expected that in Professor Zemanek's impressive address on Van 
Wijngarden's role in the history of IFIP, a major part is played by the 
ALGOL 68 developments. The final judgement on Van Wijngaarden's 
work on algorithmic languages is in the hands of history. The editors 
cannot but admire its mathematical depth, conceptual richness and 
elegance, and sheer intellectual power, recognize its lasting influence on the 
theory and teaching of programming languages, and, at the same time, 
admit that the complete implementation of ALGOL 68 has posed serious 
problems, and its practical use has spread little outside the academic world. 

In 1961, Van Wijngaarden was appointed director of the Mathematisch 
Centrum. Besides the demands of his scientific work, he now also carried 
the responsibility for our Institute - helped by the associate directors 
F.J.M. Barning and, later, J. Nuis. We feel that it has been a privilege for 
us to be led by a great scientist. The example he has set us by his outstand
ing research, his love for mathematics in general - and for the Mathema
tisch Centrum in particular - , and the way in which he has represented our 
Institute in national and international bodies concerned with the organiza
tion of scientific work have been vital for the MC, and, through this, for 
the whole Dutch mathematical community. Internationally, most of Van 
Wijngaarden's organizational contributions have been through IFIP, and 
we are grateful to Professor Zemanek for his splendid laudatio of Van 
Wijngaarden's IFIP work. In the Netherlands, Van Wijngaarden has been 
involved in so many organizations that we cannot begin to describe his 
contributions in full. He was founder and for many years member of the 
Board of the Nederlands Rekenmachine Genootschap, i.e., the Dutch 
Computer Society, which appointed him an honoary member in 1972. He 
was a member of the Board of the Wiskundig Genootschap (the Dutch 
Mathematical Society), and for many years chairman of its Committee for 
Scientific Computing. For many years, again, he was chairman of the 



X Editors' Preface 

Academische Raad Sectie Informatica (the committee coordinating 
university education in computer science in the Netherlands). He was one 
of the founders of SARA, the joint computer centre of the Mathematisch 
Centrum, the University of Amsterdam and the Free University at 
Amsterdam. And, to close this very incomplete list with an activity which 
has always been precious to Van Wijngaarden: through the years he has 
taken a lively interest in computational linguistics, exemplified here by his 
membership of the committee for Frequency Investigations of the Dutch 
Language. 

For almost thirty years now Van Wijngaarden has been a Professor of 
Applied Mathematics at the University of Amsterdam. During those years 
his teaching covered a wide spectrum of topics ranging from, e.g., numeri
cal mathematics through the design and application of ALGOL 60 and 
ALGOL 68 to the art of two-level grammars. Numerous students have 
received their first introduction to computer programming through his 
lectures. The quest for elegance has always been one of Van Wijngaarden's 
driving forces, and often his audience marveled at the crystal beauty of the 
algorithms he taught them. Present day teaching of computer science in the 
Netherlands owes an immense debt to Van Wijngaarden. Virtually all 
Dutch professors of computer science were either his Ph.D. students (see 
list below), or spent some years at the Mathematisch Centrum, profiting 
from its stimulating research conditions. Besides his lectures at the 
Amsterdam University, Van Wijngaarden has given innumerable lectures 
in the Netherlands and abroad. Some impression of the scope of his 
travelling can be obtained by Professor Zemanek's listing of his partici
pation in IFIP meetings. The full list of all his trips extends over ten pages. 
It includes prolonged stays as visiting professor at New York University, 
the University of California at Berkeley, and the University of Chicago. 
Further many invited lectures at important conferences - at the IFIP 
Congress 68 on ALGOL 68, to mention just one example-, special honours 
such as the first Fibonacci lecture in Pisa, 1967, and countless talks at 
universities around the world. 

The importance of Van Wijngaarden's work for the Dutch society in 
general was recognized by his being honoured in 1973 as Ridder in de Orde 
van de Nederlandse Leeuw (one of the orders in the Queen's list of 
honours). In 1974, his international work was honoured by the Inter
national Federation for Information Processing which awarded him its 
Silver Core. In 1978, he was awarded an honorary doctorate by the Institut 
National Polytechnique in Grenoble. 
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Having started our brief description of Van Wijngaarden's scientific 
career with mentioning his Ph.D. at the Delft Technological University, we 
now come to a very appropriate ending: In 1979, Van Wijngaarden was 
awarded the Doctorate Honoris Causa by the Delft Technological 
University. W.L. van der Poe!, his first Ph.D. student, was now his 
promotor. 

On September 1, 1980, Van Wijngaarden retired as director of the 
Mathematisch Centrum, and became advisor to the Board of Trustees and 
the Directorate of our Institute. His complete retirement from the MC will 
take place in the fall of 1981. We know that the last years have been hard 
for him, due to the untimely death of his beloved wife Willeke. She is 
remembered in sorrow by countless friends and colleagues of Van 
Wijngaarden. 

Algorithmic - and other - languages continue to be central interests of 
Van Wijngaarden's scientific life. 'Languageless programming' is the 
intriguing title of his latest publication, and he remains enticed by the 
charms of etymology; we are eagerly looking forward to the results of his 
further studies. 

Having reached the end of our Preface, we express our deepest gratitude 
for everything done for our Institute and for the world of science by 
Adriaan van Wijngaarden, Dutch mathematician and computer scientist. 

The Editors 
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Foreword 

The International Symposium on Algorithmic Languages is an event 
which, while dealing timely with a wide selection of appropriate topics in 
the field, brings also back memories from earlier years when this subject 
caught first the interest of scientists. In fact the advent of computers posed 
almost immediately the problem how one could best describe the algo
rithms that one wanted to be performed with the help of these machines. 
K. Zuse developed already during the year 1945 for this purpose his 
'Plankalkiil' which allowed him to formulate algorithms, albeit in a form 
which was mostly machine oriented. 

An important step forward was made when, apart from the mere de
scriptive details, research about the fundamental concepts of programming 
began. Strong impulses in this direction were given in 1951 by H. Rutis
hauer in his paper on automatic design of calculating plans for 
programmable computers. Influenced by this work one of the fundamental 
discoveries was made by F.L. Bauer and K. Samelson when they detected 
the cellar principle. Through it the parsing of bracket structures became 
very transparent, easily understandable, and efficiently implementable. 
The latter being the most apparent and immediate aim since it allowed an 
important part of compiler writing to be handled in a very satisfactory 
way, the then new principle really goes much deeper than this. It marks in 
truth the discovery of a basic equivalence: the equivalence of the abstract 
data structure cellar (resp. push-down-store or LIFO-list) with trees in their 
depth-first interpretation and consequently, therefore, among many others 
with block- and bracket-structures in programming languages. This 
principle has led the authors of the Report on the Algorithmic Language 
ALGOL 60 to introduce rigorously the block structure for controlling the 
scope of variables; moreover it was also used dynamically insofar as the 
hierarchies of incarnations of procedure-bodies invoked by procedure calls 
followed the same principle: the tree structure of hierarchies formed by 

XX! 
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procedure calls allows the storage allocation to be handled by a cellar. 
Without the equivalence mentioned above stated explicitly at that time, for 
some working in this field the run-time stack was then seen as something 
completely different from the operator-cellar for parsers of block- and 
bracket-structures. Samelson's suggestions for the design of ALGOL, 
however, were guided by his fully understanding the equivalence principle. 

Meanwhile new challenges for the dealing with algorithmic languages 
developed. Especially recursive data structures had become more impor
tant the more computer applications went into non-numerical computa
tions on a broader scale. List structures by J. McCarthy and the record 
structures - abstract and concrete - by C.A.R. Hoare were the appropri
ate answer given to this challenge in the design of programming languages. 
However, the greatest challenge for algorithmic languages in the 1960ies 
came, when computing scientists felt utterly distressed by the fact that 
programming and writing programs in an algorithmic language was 
becoming so complex that it was extremely error-prone and had developed 
into a hardly manageable engineering discipline. 

These sorrows were openly discussed at the famous Garmisch 
Conference on Software Engineering. One decisive step towards making 
programming more reliable was the introduction of the axiomatic method 
by R. W. Floyd and C.A.R. Hoare. With it programs written in an algo
rithmic language could be proved to be correct; but this approach was 
really reaching much further than that in as far as it laid the foundations 
for research in the field of constructing correct programs. It had a strongly 
stimulating effect for work in this direction. The latter came about with the 
predicate transformers introduced by E.W. Dijkstra, an idea that must be 
considered as fundamental in the design and evolution of correct programs 
starting from correct specifications of given problems. Considering this 
important area makes clear that studying algorithmic languages involves 
the investigation not only of data structures and function applications but 
also of the process of designing algorithms. In fact this latter aspect has 
recently drawn at least as much interest as the former, and it will become 
even more demanding with application programs being required for 
further and larger problem areas. 

Another great challenge in dealing with algorithmic languages is 
presented by distributed processing which has arrived in the wake of the 
technological progress achieved with microprocessors and microprogram
ming. There is a host of research work going on at present in this field with 
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regard to establishing principles and finding basic concepts for interacting 
processes and their mutual communications. Much has been achieved 
already if we consider concepts like semaphores, monitors, critical regions, 
tasks, or if we look at models like Petrinets and data-flow machines. 
However, much more remains to be done if we want to understand and 
keep under control the enormous complexity of parallel programming 
which is needed with distributed systems. 

The development of algorithmic languages and typical research areas 
connected with them as indicated above is reflected to a considerable extent 
in the definition of high-level programming languages beginning with the 
publication of FORTRAN in 1956 and ALGOL in 1958. It can be said in 
regard of this line of languages and research areas that many members of 
working groups under IFIP /TC 2 have had a great impact and influence 
upon this evolution, thereby making a number of important steps toward 
the point where we stand today. ALGOL 60 was the first of these steps, 
and that language has played an important part as a stimulus for many 
research projects in programming and compiling just as much as it was and 
is used as a programming language. 

Starting from ALGOL 60, within WG 2.1, ALGOL 68 was developed, 
and new ideas (e.g. records, concise parameter linkage) went into that 
language. It is known that ALGOL 68, unlike ALGOL 60, is controversial 
in many details, and has by far not found the widespread use of ALGOL 
60. It has, however, again served as a focus for interesting and stimulating 
discussions in the field of programming languages. Furthermore, in the 
Report on the Algorithmic Language ALGOL 68 a powerful and adaptable 
form of grammar, which A. van Wijngaarden had introduced, was used 
for the definition of the language. It were this class of two-level-grammars 
and the class of VOL-languages which served as a starting point for 
discussions in WG 2.2 which had been founded as a result of the succesful 
Working Conference on Formal Language Definition Languages, 1964 in 
Baden near Vienna. The controversies over ALGOL 68 had on one hand 
the deplorable effect of splitting WG 2.1 but, as it turned out, also the very 
positive effect of creating WG 2.3 on Programming Methodology on the 
other. 

All three working groups mentioned and, since 1973, WG 2.4 on Systems 
Implementation Languages have had a sizeable share in creating a better 
understanding of algorithmic languages, their concepts, their definition, 
and their use in writing programs. TC 2 has therefore good reasons to 
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appreciate that, under its auspices, an International Symposium on 
Algorithmic Languages is organized by the Mathematical Centre as a 
tribute to A. van Wijngaarden. The submitted papers which have been 
selected deal with most of the areas which were mentioned above. In 
addition, the program committee has invited speakers who will give talks 
about selected topics on algorithmic languages as well as about A. van 
Wijngaarden's contributions to ALGOL and his work for IFIP. 

With great thankfulness to the authors and to the organizers from the 
Mathematical Centre I express, also on behalf of IFIP /TC 2, my belief that 
this Symposium deserves to be well received. 

Miinchen, September 1981 M. Paul, 
Chairman Program Committee 
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Invited Opening Address 

The Role of Professor A. van Wijngaarden in the History of IFIP 

Heinz Zemanek 

University of Technology, Vienna, Austria 

Speaking of the role of Professor van Wijngaarden means speaking of 
the European history of computing and of programming languages from 
EDSAC to the present day. It also means speaking about the history of 
IFIP. It is impossible to separate these subjects. 

It is, however, equally impossible for me to treat this compound as a 
whole or tell the entire Van Wijngaarden story. I would never dare to 
embark on such a giant enterprise. What I can do and what I have been 
asked to do is to give a description of what I have seen and experienced in 
25 years of my acquaintance with him and leave out the formal, the 
seriously scientific part, which is much better reflected by the symphony of 
papers that is to follow in this week. My personal view will resemble a 
shadow showing the contours, but never acquiring the full splendour of a 
portrait painted in colours. 

Before 1959 

I am not entirely sure about when our relationship began, but I believe 
that I first met Professor van Wijngaarden in Darmstadt at the first 
European computer conference with some international flavour which I 
had an opportunity to assist. From the very beginning I have sensed the 
dual character of his unique personality: the large mind which has always 
extended beyond my horizon, and the sharp brain that can suddenly focus 
on the smallest detail, but will illustrate by it some general aspect; the 
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'generalizer' who generalized even a general purpose programming 
language, and the 'specializer' whose production of sentences and 
questions has often reminded me of a pencil sharpener. 

At the Darmstadt GAMM-NTG-Fachtagung in October 1955 on 
Electronic Digital Computers and Information Processing, organized by 
Professor Alwin Walther, Professor van Wijngaarden gave a survey on 
Scientific computing in The Netherlands [1]. It started with the observation 
made by someone during the conference that the per capita number of 
computers in The Netherlands was astonishingly high, maybe the highest -
at that time - in Europe. Professor van Wijngaarden left some doubts 
whether this was really true, but he stressed the vivid activity in computer 
research in his country. 

Apart from a Ferranti computer in the Shell Laboratories, there were at 
that time four computers that had been developed by and realized for 
research in The Netherlands as well as several others still in planning stage, 
and in all these cases - he himself did not say that clearly - he and his 
students played a leading role: there was PTERA in PTT, which had been 
developed by Kosten and Van der Poel and was running already for some 
years, and there was ARRA, an electronic replacement of the earlier relay 
computer of the same name, at the Mathematisch Centrum. This 
institution had cooperated with Fokker to copy this machine for them - it 
was then called FERTA - and a second, faster machine, ARMAC. The 
paper included many slides of all those computers. 

Two years later we met again in Cambridge, MA, at Howard Aiken's 
conference of 1957 where Professor van Wijngaarden's paper was on The 
state of computer circuits containing memory elements [2], giving his 
version of sequential switching algebra and elementary automata theory. 

Another two years later we were together at the ALGOL conference in 
Copenhagen in February 1959, which was devoted to the exchange of ideas 
and experiences with this new language. The prehistory is the following. 
After the Darmstadt Fachtagung GAMM established a committee for 
programming, and when in April 1958 they compared their work with the 
results of a similar committee of ACM, they found that there was a lot in 
common. It was therefore easy for both sides to accept cooperation. A 
joint ACM-GAMM Committee was appointed and met in Zurich in May 
1958. They formulated a preliminary report on an International 
Algorithmic Language [10], first abbreviated by IAL and later called 
ALGOL (58). The members of the Joint Committee were, for ACM, 
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D. Arden, J. Backus, P. Desilets, D.C. Evans, R. Goodman, S. Gorn, H. 
Huskey, C. Katz, J. McCarthy, A. Orden, A.J. Perlis, R. Rich, S. Rosen, 
W. Turanski and J.H. Wegstein, and for GAMM, F.L. Bauer, H. 
Bottenbruch, P. Graeff, P. Lauchli, M. Paul, F. Penzlin, H. Rutishauser 
and K. Samelson. 

As an ACM-GAMM-creation, ALGOL was an achievement of two sub
societies of the later IFIP member organizations AFIPS and DARA, and 
since the 13 ALGOL fathers decided to bring ALGOL under the umbrella of 
IFIP, ALGOL is a keyword of this paper, in particular because Professor 
van Wijngaarden is the father of ALGOL 68. I will come back later to this 
stream of events. 

1959: ICIP 

The meetings I have so far mentioned can be seen today as events leading 
to the big bang in international information processing: to ICIP, the 
International Conference on Information Processing organized under the 
auspices and at the headquarters of UNESCO in Paris, in August 1959. 
Professor van Wijngaarden was a leading figure in this extremely 
important gathering, not only because he had the honouring title 
Vicepresident of the Congress, but mainly because of his contributions to 
the congress organization and programme. It is impossible to evaluate or 
estimate the number of acquaintances, friendships, events and 
developments which this first large-scale international computer 
conference initiated. It is fascinating to read today, 22 years later, the 
proceedings of that conference, including the paper by Backus on the 
definition of ALGOL syntax by production rules, a paper by Bauer and 
Samelson on ALGOL (58) and a paper with the famous title Processing data 
in bits and pieces by Brooks, Blaauw and Buchholz. It is equally impressive 
to read the list of participants; hardly any name famous in our field is 
missing. 

1960: IFIP 

The main consequence of the UNESCO Congress was the foundation of 
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IFIP, the International Federation of Information Processing, which had 
been prepared in parallel and completed in 1960 by essentially the same 
group of people, with LL. Auerbach of the U.S.A. and J.A. Mussard of 
UNESCO as the main driving forces. IFIP should not only continue to 
organize international computer congresses, it should become the basis of 
international cooperation in all fields of information processing and the 
clearinghouse of ideas and activities. In 1959 nobody in Paris would have 
dared to predict that within 20 years IFIP would have 40 member nations, 
10 Technical Committees, 30 Working Groups and half a thousand 
members making up all those committees. This is certainly no reason to 
congratulate ourselves, and critical judgement does not only come from the 
outside - IFIP is well aware of its shortcomings and is continuously 
reviewing its structure and its activities, its policies and motivations. 

Sometimes critical remarks and reorganization proposals have been 
unrealistic or naive. IFIP is largely bound by the nature and quality of its 
member organizations and by the delegates commissioned by them; IFIP 
can hardly be better than the sum or the average of its constituents. IFIP 
has lost less time and effort by fruitless political discussions than any other 
similar organization I know. It would be a good thing to cut down on its 
administration and to have fewer non-scientific and more scientific and 
technical meetings. But it is easier to propose such a reduction than to 
realize it without any damage to positive work. The people who installed 
IFIP, and Professor van Wijngaarden is one of them, knew very well to 
balance administrative needs and technical work and to build up a high level 
and a climate of mutual confidence which are not easy to improve. In a 
universe of increasing diversification of information processing, of 
reduced resources in funds and manpower, of less support for events and 
travelling, it is not easy to maintain the standard of the past, when 
increasing duties and more problems call for increasing scopes and 
achievements. IFIP needs the contributions and the sympathy of everyone 
in the field. Professor van Wijngaarden is an admirable example for all of 
us; in a seafaring country like Holland you might be reminded of a ship's 
figurehead, a smiling, mythical beauty who is constantly ahead of the crew 
and the passengers buried in the entrails of the ship. 

Professor van Wijngaarden was not simply the representative of The 
Netherlands in the IFIP Council and later in the General Assembly. In the 
early years of IFIP he assumed almost all possible positions and 
participated in nearly all events, not with the intention to obtain fame and 
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Table I 
Professor van Wijngaarden in IFIP 

ICIP 59: Congress Vicepresident 

IFIP COUNCIL/GENERAL ASSEMBLY: Member 1960-1971 
IFIP Vice-President: 1962-1964 
IFIP Trustee (elected COUNCIL member): 1967-1970 
CHAIRMAN TC 1: 1967-1974->hibernated 
Member WO I.I: 1967-1974->hibernated 
Member TC 2: 1962-1971---+Koffeman 
Member WO 2.1: since 1962 
Member WO 2.2: since 1965 
CHAIRMAN Future Policy Committee: 1963-1967 
CHAIRMAN Publications Committee: 1965-1969 
Finance Committee, Member: 1961-1962 
Statutes and Bylaws Committee: 1969-1971 
Member Congress Programme Committee: 1962 
Member Working Conference Organizing Committee 1963/64 
Chairman and Organizer IFIP 10 Years Anniversary 1969/70 
SILVERCORE Recipient 1974 

Table 2 
Professor van Wijngaarden at IFIP events (and before) 
Explanations: 
[I] Paper read and published; see literature. 

5 

[76] Report of the Mathematisch Centrum, distributed before or at WO 2.1 meetings; see 

[::] 
[Q] 

OCT 
APR 
FEB 
AUG 
NOV 
JAN 
JUN 
FEB 
OCT 
FEB 
MAR 
MAR 
MAR 
AUG 
AUG 

literature. 
Paper read but not published. 
Excused at that meeting - only 4 meetings! 

1955 DARMSTADT GAMM-NTG-Tagung 
1957 CAMBRIDGE MA Aiken Conference 
1959 COPENHAGEN ALGOL Conference 
1959 PARIS !C!P 59 
1959 PARIS ALGOL Conference 
1960 PARIS ALGOL 60 Conference 
1960 ROME 1st IFIP COUNCIL 
1961 DARMSTADT 2nd IFIP COUNCIL 
1961 COPENHAGEN 3rd IFIP COUNCIL 
1962 SUNNYVALE CA Aiken Conference 
1962 MUNICH-FELDAFING 1st TC 2 Meeting 
1962 MUNICH-FELDAFING 4th IFIP COUNCIL 
1962 ROME ICC Conference 
1962 MUNICH 1st WG 2.1 Meeting 
1962 MUNICH 2nd TC 2 Meeting 

[!] 

[2] 

[.Q] 

[3] 

[4] 
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AUG 1962 MUNICH 5th IFIP COUNCIL 
AUG 1962 MUNICH 2nd IFIP CONGRESS 
SEP 1963 DELFT 2nd IFIP WG 2.1 
SEP 1963 OSLO 3rd TC 2 MEETING 
SEP 1963 OSLO-GOLA 6th IFIP COUNCIL 
MAR 1964 MUNICH-TUTZING 3rd WG 2.1 Meeting 
MAY 1964 PRAGUE-LIBLICE 4th TC 2 Meeting 
MAY 1964 PRAGUE-LIBLICE 7th IFIP COUNCIL 
SEP 1964 VIENNA-BADEN 4th WG 2.1 Meeting 
SEP 1964 VIENNA-BADEN 1st IFIP WORKING CONFERENCE [5] 
NOV 1964 ROME 8th IFIP COUNCIL 
MAY 1965 PRINCETON NJ 5th WG 2.1 Meeting 
MAY 1965 NEW YORK CITY 5th TC 2 Meeting 
MAY 1965 NEW YORK CITY 9th IFIP COUNCIL 
MAY 1965 NEW YORK CITY 3rd IFIP CONGRESS 
OCT 1965 St. PIERRE 6th WG 2.1 Meeting [76] 
NOV 1965 NICE 10th IFIP COUNCIL/GENERAL ASSEMBLY 
APR 1966 KOOTWIJK Subcommittee Meeting 

APR 1966 LONDON 7th TC 2 Meeting [.Q] 

APR 1966 LONDON 10.5 IFIP COUNCIL [.Q] 

JUN 1966 PISA 2nd IFIP WORKING CONFERENCE 
OCT 1966 WARSAW 7th WG 2.1 Meeting 
NOV 1966 JERUSALEM I Ith IFIP GENERAL ASSEMBLY 
APR 1967 MADRID I 1.5 IFIP COUNCIL 

APR 1967 ZANDVOORT 8th WG 2.1 Meeting [88] 
MAY 1967 OSLO 8th TC 2 Meeting 
MAY 1967 OSLO 3rd TC 2 WORKING CONFERENCE 
SEP 1967 ALGHERO SARDINIA 1st WG 2.2 Meeting 
OCT 1967 MEXICO CITY 12th IFIP GENERAL ASSEMBLY [.Q] 

APR 1968 TBILISI USSR 12.5 !FIP COUNCIL 
JUN 1968 ZURICH ALGOL 10 YEARS Anniversary 
JUN 1968 PISA-TIRRENIA 9th WG 2.1 Meeting [93] 
JUL 1968 COPENHAGEN-VEDBAEK 2nd WG 2.2 Meeting 
JUL 1968 NORTH BERWICK 10th WG 2.1 Meeting [95] 
AUG 1968 EDINBURGH 2nd WG 1.1 Meeting 

AUG 1968 EDINBURGH I st TC I Meeting 
AUG 1968 EDINBURGH 9th TC 2 Meeting 

AUG 1968 EDINBURGH 13th IFIP GENERAL ASSEMBLY 
AUG 1968 EDINBURGH 4th IFIP CONGRESS [::] 

DEC 1968 MUNICH 11th WG 2.1 Meeting [100] 

JAN 1969 LONDON-GUILDFORD 10th TC 2 Meeting 

MAR 1969 BRUSSELS 13.5 IFIP COUNCIL [.Q] 

APR 1969 HILVERSUM 3rd W G I.I Meeting 
APR 1969 HILVERSUM 2nd TC I Meeting 
SEP 1969 CALGARY-BANFF 13th WG 2.1 Meeting 
OCT 1969 PRAGUE 11th TC 2 Meeting 

OCT 1969 PRAGUE 14th IFIP GENERAL ASSEMBLY 
JAN 1970 LONDON 4th WG I.I Meeting 
MAY 1970 ATLANTIC CITY NJ 14.5 IFIP COUNCIL 
JUN 1970 MUNICH 4th TC 2 WORKING CONFERENCE ALGOL 68 
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JUL 1970 HABAY-LA-NEUVE 13th WG 2.1 Meeting 

AUG 1970 EINDHOVEN 12th TC 2 Meeting 

SEP 1970 NEW HAVEN 5th WG 2.2 Meeting 

OCT 1970 AMSTERDAM 15th IFIP GENERAL ASSEMBLY 

OCT 1970 AMSTERDAM IFIP 10 YEARS Celebrations [::] 

Table 3 
25 Years of Professor van Wijngaarden: I 955- I 980 

1955 DARMSTADT GAMM-NTG-Fachtagung [I] 

1956 
1957 CAMBRIDGE MA Aiken Conference [2] 
1958 
1959 PARIS ICIP 59 
1960 ROME 1st lFIP COUNCIL 

1961 !st TC 2 Meeting 

1962 1st WG 2.1 Meeting, lFIP Vice-President 
ROME Paper on Generalized ALGOL [4] 

1963 GOLA Chairman of Future Policy Committee 
1964 VIENNA-BADEN I st IFIP Working Conference [5] 
1965 PRINCETON ALGOL X begins 

NEW YORK CITY Chairman of Publications Committee till 1968: 
hard development work 

1966 
1967 Chairman TC I 

1968 EDINBURGH ALGOL 68 lecture at 4th IFIP Congress 
1969 Chairman of Statutes and Bylaws Committee 

1970 AMSTERDAM JO YEARS ANNIVERSARY CELEBRATIONS 
1971 Resignation from General Assembly and TC 2 
1972 
1973 Resignation from TC I and WG 1.1 
1974 STOCKHOLM SIL VER CORE at 6th JFIP Congress 
1975 Revised ALGOL 68 Report 
1976 
1977 
1978 
1979 URGENCH Lecture at Symposium on Algorithms 

1980 
1981 AMSTERDAM Honored by Symposium 



8 H. Zemanek 

Table 4 
Professor van Wijngaarden and IFIP 

1960 1961 1962 1963 1964 
LI.I z ;;;: LI.I 
0 Cl 
00: .,: 

o:i 

IFIP 
VICE-PRESIDENT 

1965 1966 1967 1968 1969 
:i: 
Cl 
00: 
:::, 
o:i z 
i5 
LI.I 

IFIP 
TRUSTEE 

IFIP COUNCIL/GENERAL ASSEMBLY MEMBER 

1970 1971 1972 
;;;: 
.,: 
Cl 
00: 
LI.I 
I-
VJ 
;;;: 
.,: 

AUDI- FINANCE FUTURE POLICY STATUTES AND 
BYLAWS COMMITTEE TOR COMMITTEE COMMITTEE 

CONGR WORKING 
PC CONFERENCE 

CHAIRMAN 
PUBLICATIONS COMMITTEE 

MEMBER TC 2 

10 YEARS 
CELEBRATIONS 

CHAIRMAN TC ! 

MEMBER WG 1.1 

MEMBER WG 2.1 I ALGOL 68 EFFORT I UNTIL 
TODAY MEMBER WG 2.2 

1973 1974 
;;;: 
...l 
0 
:i: 
::a,: 
u 
0 
I-
VJ 

SILVER 
CORE 

honours, but working hard to make his contributions worthwhile. Tables 1 
and 2 show the quasi syntactical size of his efforts in the form of a list of 
positions and a list of events in which he participated. The semantical size 
of his contributions is not so easy to show, but I will try. When I wrote this 
paper, I realized very soon that I should have started a year ago on a full 
research project including interviews with people all over the world; thus I 
might have done a really good job. But I doubt that Professor van 
Wijngaarden would like such an enterprise and I hope that he prefers my 
imperfect achievements and will forgive me for everything I do not know 
or forget to mention. 

Professor van Wijngaarden was IFIP Vicepresident from 1962 to 1964, 
IFIP Trustee (i.e. an elected Council member) from 1967 to 1970, and he 
served on many IFIP committees. His first job was that of an auditor for 
the first IFIP accounts, and his second was in the IFIP Finance Committee. 
He chaired the first IFIP Future Policy Committee, then called Committee 
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for Future Operations and Policies, and there he laid the foundation for all 
future planning activities. 

In those early days the IFIP family was much smaller and each national 
representative was a kind of general-purpose officer. The programme for 
IFIP Congress 62 was made up much along the same lines as it is being 
done today, but the Programme Committee consisted mainly of Council 
members. Since I had also been included - although Austria was not yet an 
IFIP member - Van Wijngaarden and I met in Copenhagen in October 
1961, where the final programme was established, and we met of course at 
the Munich IFIP Congress 62. This was the first real IFIP congress, but 
still got the number '2' (the ICIP congress was considered number 1). This 
made it possible to go in parallel with our sister organizations - IFAC, 
IFORS, IMEKO and (then) AICA, which were later coordinated by 
FIACC, the Five International Organizations Coordinating Committee -
which all accepted the 3-year cycle and have the same counting within one 
cycle as IFIP. Naturally we met again at the congresses in New York City in 
1965 and in Edinburgh 1968 - the General Assembly is always held in the 
week before the congress and there are often committee meetings arranged 
at the same time in order to save on travel expenses. 

1962: Rome and TC 2 

This is the point to turn back to the stream of ALGOL events, since 1962 
was a key year for both ALGOL and Professor van Wijngaarden. That year 
we first met in Sunnyvale, CA, where Howard Aiken had organized a 
conference on Switching Theory in Space Technology - but actually it had 
not too much to do with space travelling, Aiken had simply found a way to 
gather computer people in California with the remarkable support of the 
local industry. Professor van Wijngaarden read a paper on Switching and 
programming [3] which began as follows: 

In switching theory much attention has been paid to the analysis and 
simplification of circuits and systems, and to properties of networks. The 
objective has been to provide network structures using rather simple 
components. 

In the programs for automatic computers, similar structures are found, 
although on another scale. These programs consist of sequences of 
statements performing certain operations and are connected by transfers 
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for control into a complicated network. Executing the statement means 
moving along the paths of the circuits, seemingly completely different 
structures may be more or less the same functionally, and the problem of 
simplification arises immediately. 

This was not simply an argumentation to make a paper on programming 
fit into a conference on switching, this was the indication of a path and the 
discovery of an equivalence the use and advantages of which have not yet 
been fully recognized today. We are all too preoccupied with daily work to 
dig deeper into such proposals and so were we in those days. 

Already one month later we met again in Feldafing near Munich in order 
to start IFIP TC 2. 

ALGOL, as I have already mentioned, was originally an ACM-GAMM 
creation, but after the publication of the Preliminary Report, the interest 
went up very steeply. Professor van Wijngaarden joined the enterprise in 
1959, after an, in ALGOL 68 terminology, lengthened to long stay in Scot
land. After the Copenhagen meeting in February there was another one in 
Paris in December, and after the ICIP Congress in Paris the last 
preparations were made for the Paris Conference in January 1960, where 
the Report on the Algorithmic Language ALGOL 60 [11] worked out by a 
committee originally planned to consist of seven ACM and seven GAMM 
members, but since William Turanski was killed in a car accident shortly 
before the conference, the number of 13 ALGOL fathers emerged: J. W. 
Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (editor), 
A.J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. 
van Wijngaarden and M. Woodger. Thus Professor van Wijngaarden is 
one of the 13 ALGOL fathers and Peter Naur will describe his contributions 
to ALGOL 60 in the course of this symposium. 

The best way to follow the development is to study the ALGOL Bulletin, 
which was founded by Peter Naur at the Paris conference in February 1959 
and was later taken over with ALGOL under the IFIP umbrella. Professor 
van Wijngaarden, by the way, not only supported the Bulletin over long 
periods in general and by special contributions, but also gave substantial 
aid to its production and distribution. 

Practically all the ALGOL authors (fathers) who were interested in the 
continuation of the work suggested to transfer the responsibility for the 
language to IFIP, which means to the Federation of National Computer 
Societies. And it was clear that the work should continue. To make this 
possible, IFIP had to create the necessary structure. After many 
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discussions the idea was presented and then realized in order to better 
match the ALGOL crew with its rather unequal national composition to the 
IFIP Council which necessarily was nationally structured. A two-level 
solution was found: a Technical Committee, into which each member 
society, i.e. each nation, could delegate one and only one member, and a 
Working Group, formally reporting to the Technical Committee, where 
membership was personal, only based on competency and the interest to 
cooperate, but accepted only in concordance with the TC, if necessary by a 
vote. 

Naturally, there were also personal difficulties - the nomination or 
election of the two chairmen was a delicate problem. The solution was a 
diplomatic compromise. It was proposed that I chair TC 2, even if Austria 
was not yet an IFIP member, and Professor W.L. van der Poel was to chair 
WG 2.1. Thus the two bodies started work, TC 2 in Feldafing near 
Munich in March 1962, and WG 2.1 in Munich in August 1962; Professor 
van Wijngaarden was a member of both. TC 2 and WG 2.1 not only 
fulfilled their ALGOL 60 duties by producing and forwarding to ISO (which 
had also requested them) one proposal for ALGOL 60 Input/Output and 
one proposal for an ALGOL 60 subset, both published in 1964 [12]. A 
revised ALGOL 60 report was passed and published in 1963 [13]. Then work 
on the successor language was started. The working names were ALGOL X 

for the future programming language and ALGOL Y for the meta language. 
I will come back to this development a little later. 

A few days after the March meeting in Germany, the IFIP programming 
language crew met again in Rome, where the International Computing 
Center - today the Intergovernmental Bureau for Informatics, IBI - had 
organized a symposium on Symbolic Languages in Data Processing. There 
Professor van Wijngaarden presented his famous paper on Generalized 
ALGOL [4], which contained most of the basic ideas he later incorporated in 
ALGOL X, which became ALGOL 68. Let me quote a paragraph of the 
introduction to this paper, a paragraph which those people who criticized 
ALGOL 68 later on - although they had been members of WG 2.1 - should 
have read more carefully. It is a kind of scientific programme of Professor 
van Wijngaarden's language work, his philosophy of programming, 
implemented by ALGOL 68 and crowned by his US paper 1981 [18]. 

The title "Generalized ALGOL" of this paper needs an explanation. The 
word ALGOL is used because of the fact that many of the concepts of the 
language to be described can be found, partially at least, in ALGOL. On the 
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other hand, the generalization goes to such an extent that the connection 
with ALGOL can only be appreciated by those who know ALGOL quite well. 

Thus a certain alienation is clearly announced and declared to belong to 
the development programme. The introduction continues: 

The main idea in constructing a general language, I think, is that the 
language should not be burdened by syntactical rules which define 
meaningful texts. On the contrary, the definition of the language should be 
the description of an automatism, a set of axioms, a machine or whatever 
one likes to call it, that reads and interprets a text or a program, any text 
for that matter, i.e. produces during the reading another text, called the 
value of the text so far read. This value is a text which changes 
continuously during the process of reading and intermediate states are just 
as important to know as the final value. Indeed this final value may be 
empty. 

In order that such a language be powerful and elegant, it should not 
contain many concepts and it should not be defined with many words. On 
the contrary, by saying less one can say more, at least say more general 
things. Each definition in the language may restrict the set of meaningful 
texts. Without any definitions, however, one can only be silent in full 
generality. Of course, some compromise must be made in practice. This 
compromise has been made in ALGOL in a certain way. There are other 
ways, however, by which a better defined and more general language can 
be obtained using fewer concepts. 

The paper continues with a discussion of the description of such a 
syntax-free language. It is seen as a machine MO the working of which is 
described on the lid of the machine so that the user can easily find out how 
the language is used. If he should have doubts, he can open the machine 
and inspect its precise working. To his surprise, he finds that there are 
actually two machines inside, a preprocessor Pl and a more basic machine 
Ml - and so it goes on. Each machine Pl and Ml may again be made up of 
a preprocessor and a processor. This continues until the user finally finds a 
machine that cannot be opened, which is the most primitive machine for 
which there is no better explanation than the wording on the lid. 

It is a systems theory of programming languages, elegant, general and 
powerful, but obviously for a certain price. Not everyone is ready to pay 
this price, as the course of history has shown. 
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1963 and 1964 

In 1963, there was only one IFIP Council meeting which took place in 
Norway, but no spring meeting. TC 2 met in downtown Oslo, but the 
Council took place in the country at Gola, a typical Norwegian summer 
and winter resort. After a reception in Oslo the delegates went by train via 
Lillehammer to Harpefoss and continued by bus to the meeting place. Our 
Norwegian delegate, Jan Garwick, had come in his own Citroen car and 
took Professor van Wijngaarden, Academician Dorodnicyn and me for a 
ride through the beautiful, slightly rough countryside. When you compare 
Norway to Austria you will find that a mountain region of a certain 
character that might be placed, say, at 2000 min Austria, will be found in 
Norway 1000 m lower, though the gulf stream makes up for much of the 
northern latitude. We enjoyed our ride thoroughly and had an amusing 
adventure. 

As may happen to the best driver when he gives a lot of explanations 
instead of concentrating on the way he is going, Jan Garwick got lost. Since 
we could not loose too much time in order to reach our group again, Jan 
stopped at the first person we saw - there are not many in that region -
and asked how we could best get back to the road to Oslo. It was not 
difficult to understand that obvious question in Norwegian. "You go 
straight ahead for a mile and then turn right," said the farmer - and 
pointed with his finger to the left. None of us doubted that left was the 
right direction. One easily says the opposite word to the one you want to 
say, but one rarely makes the opposite gesture. I like to tell this story to all 
those computer enthusiasts who propose to turn to oral input without 
making sure that the computer also registers the accompanying gestures. 

In that year 1963, Professor van Wijngaarden joined me in a venture 
which should become the most frequently used model in IFIP. On the 
instigation of TC 2 the IFIP Council of Gola had approved the first 
Working Conference on Formal Language Definition Languages. The 
model envisaged that a TC should work out a list of some 50 to 80 
specialists working in a field that was still new and yet developed enough 
for many people to work in it and to make it possible for discussions and 
working conferences to bring progress and consensus. In order to establish 
the vocabulary and to base the discussions on solid ground, there should be 
about 20 invited papers, distributed to the participants before or during the 
meeting, which constituted the essence of the proceedings. At this first 
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conference we also included the publication of the discussions. For this 
purpose there were a number of portable tape recorders in addition to the 
master tape on which the speakers were recorded; whoever wanted to 
contribute to the discussion had to wait for one of the conference assistants 
to come up with the recorder. That assistant pronounced the name of the 
speaker so that all names were recorded without exception. The auxiliary 
tapes were then copied onto the master tape which was then sent to the 
Rand Corporation in Santa Monica, where Tom Steel Jr. headed the job of 
transcription and editing. The proceedings appeared in 1966 and a large 
number was sold. 

This proves the success of this first IFIP Working Conference. It is not 
easy to judge how much the participants profited from it. For the 
collaborators of the Vienna IBM Laboratory it was, however, a 
magnificent opportunity to meet all the people active in the field of formal 
definition. The contents of the papers (of course some more than others) 
were the basis for the development of the Vienna Definition Method to be 
applied for the formal definition of PL/I, not only the syntax, but also the 
semantics. 

Professor van Wijngaarden's paper at the first IFIP Working 
Conference had the title Recursive definition of syntax and semantics [3]. 
Recursion was a key issue at that time and we teased him by proposing to 
him the title and official address His high recursivity Professor van 
Wijngaarden. Actually, the paper did not once use the word recursive 
except in the title. The paper was a kind of elaboration of an aspect of the 
Rome Paper on Generalized ALGOL and its notion of an interpreting 
machine consisting of preprocessor and processor, an investigation and a 
closer definition of their properties and their power to reduce the many 
concepts usually included in ALGOL-like languages to a few basic ones. 
ALGOL-like, by the way, was also a word that became a fashion at and 
through this conference with the culminating proposal or joke - the 
distinction between proposal and joke was not always clear in WO 2.1 and 
TC 2 - that ALGOL was not an ALGOL-like language. 

A characteristic trait of the mood and spirit of WO 2.1 was the famous 
extension of the voting possibilities - I am of course not submitting that it 
was Professor van Wijngaarden's invention - from yes, no and abstention 
to a fourth choice: I did not understand the question, the semantics of 
which was essentially that the voting member for tactical reasons pretended 
not to understand the subject of the vote. 
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WG 2.1 and TC 2 were both a crew of old friends and enemies who 
enjoyed meeting and fighting and who gained, everyone from everyone, a 
lot from the official and inofficial discussions. You have only to read 
Duncan Fraser's closing banquet talk of the Working Conference which 
the editor, Tom Steel, very appropriately included in the proceedings. It 
had the title: Our ultimate metalanguage, which was a quotation from a 
paper by Peter Naur. This ultimate metalanguage is of course English, the 
computer language and the IFIP language. The Fraser talk was composed 
of a series of witty remarks on the subject and on the conference, out of 
which I quote only one sentence: "Is your Chomsky really necessary?" 

From 1965 to 1968 the main work of both WG 2.1 and TC 2 was the 
development of the ALGOL successor language, first called ALGOL X, 
once ALGOL 67 [88], and finally ALGOL 68. It is not my intention to treat 
here the history of ALGOL 68. Let me proceed in comfortable disorder. 

Princeton and St. Pierre 

This summer the chairman of a TC 3 Working Conference in Vienna 
explained that they choose their meeting places according to certain 
parameters of which the most important were culture and food. Looking at 
the list of TC 2 and WG 2.1 meetings I find retrospectively that Professor 
van der Poel and I must have used similar parameters - restricted later by 
the Van Wijngaarden principle (a principle which he had submitted in IFIP 
several times and which said that there should never be a meeting in a place 
more than one hour's driving away from the next international airport). 
Maybe it was Princeton that he found too far away, maybe it was St. Pierre 
de Chartreuse, the two WG 2.1 places of 1965. For many other parameters 
they were fine places. Princeton recommended itself by its University and 
the Institute for Advanced Studies, while St. Pierre offered the opportunity 
to visit the distillery of the Chartreuse monks where we learned, among 
other things, that only four monks were introduced at one time into the 
secret of which and how many plants to use in the production of the 
Chartreuse essence from which the yellow, the green and the 72-degree 
Chartreuse liqueurs are made. 

St. Pierre was also the starting point for another adventure with 
Professor van Wijngaarden. 

The St. Pierre meeting was immediately prior to the last old-style 
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Council (from then on the spring IFIP meeting was only the Council 
meeting, i.e. Executive Body plus a number of trustees, while in autumn 
both the Council and the General Assembly had their meetings). The 
General Assembly was scheduled for Nice - and St. Pierre certainly did not 
correspond to the van Wijngaarden principle. I turned the disadvantage 
into an advantage: I flew to Nice and rented a car of the make I have 
owned since I first got a car - a Citroen. In that car I drove from Nice to 
Grenoble and spent 2 days with vacationing and sightseeing; I visited the 
Dames Coiffees, bizarre rocks, and the small town of Barcelonette and 
took in much of the landscape described by the French writer Jean Giono, 
which is the valley of the Durance. I stayed in a hotel down in Grenoble 
and drove up to St. Pierre several times. This, of course, was noticed by 
some WG 2.1 members and Aad van Wijngaarden and Fritz Bauer 
proposed to me to go together from St. Pierre to Nice to the General 
Assembly. I told them that I wanted to visit Avignon, the city of the popes, 
which I had never seen before. They quite agreed to this and said they 
would come along, if only we went together to Nice. Can you resist such a 
cordial invitation? No, you cannot. And with two mathematicians you 
cannot start off at six in the morning, as I had intended, but at 9:30, which 
is the proper time, and not in the middle of the night. Thus I picked them 
up at St. Pierre on October 30, the Saturday before a long weekend -
November 1 (which was a Monday) being a holiday in France, which will 
be important for my story - and we headed for Avignon. 

We went down the main road to the Rhone valley and again and again 
passed signposts indicating the roads to passes which are called 'col' in 
Southern France. "Let us go up to one col," Bauer and Van Wijngaarden 
said. ''I want to go to Avignon,'' I answered, ''and a detour will cost a lot of 
time." "Alright, alright," they tried to calm me, "but a little detour will 
not take that much time.'' They consulted a map and saw that one of the 
next cols would permit us to continue our way to Avignon in a relatively 
straight line. Who was I to point out that the map did not show the minor 
details such as bends and gradients? We turned left and mounted to the col. 
The weather was fine, the air was clear, the view was splendid. We 
collected alpine plants and had a coffee after we had passed the tunnel at 
the top. 

But at the first bend on our way downwards a red light appeared on the 
dashboard of the Citroen: hydraulic trouble. It disappeared, but 
reappeared again after some time. When we had negotiated half the way 
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down it was more often on than off and steering became harder and 
harder. Being in France, the hope of finding a Citroen repairshop was a 
logical one, and indeed we saw a sign directing us to a repairshop in a town 
called Die - which was not really in our direction, but was it not better to 
aim for the nearest mechanic? The red light was on all the time, but our 
luck held and we not only found Die but also the repairshop immediately. 
"It can't be anything serious, please help us as fast as you can, because we 
want to reach Avignon in time,'' we asked him. The face of the man 
indicated delay. At that moment Aad gave a cry: he had seen the hydraulic 
liquid escape in a stream as thick as a finger. "No chance," said the 
mechanic. "And there is a long weekend to come. My son has already gone 
and I will close in five minutes. We will start on the car on Tuesday 
morning." All our entreaties did not help. We left the car at the shop and 
started looking for a hotel room. I must explain that Die owes its fame to 
the single fact that it is the place where Hannibal started out on his treck 
across the Alps. Nothing spectacular has happened since then and thus the 
hotel situation is somewhat unlike Grenoble or Nice; the few inns we found 
were practically sold out. Only by extraordinary good luck and with the 
help of the mechanic we finally got a single and a double room. Can you 
imagine how happy I was? No more hope to see Avignon, and perhaps we 
would even be too late for a part of the meetings. I was furious and 
apathetic at the same time. This was the moment when Van Wijngaarden 
showed his strength. He gave me a three-sentence lecture after which I was 
neither furious nor apathetic any more - all the three of us were ready for a 
nice weekend in Die. We visited the ruins dating back to Hannibal's time, 
drank wine called Clairette de Die, and had a fine dinner. The next 
morning, Professor van Wijngaarden developed the algorithm for the Fly 
and the Spider on the paper cover of the breakfast table - a copy is shown 
on the next page. 

Then we walked back to our mechanic and with a lot of good words we 
could convince him to start working on the car despite the holiday and 
without his son. 

Avignon was lost for me, and I have not seen it to the present day, but 
we drove gaily down to Nice, that is with the exception of one incident. 
Bauer - being also a Citroen fan - wanted to drive for a while, not to Van 
Wijngaarden's pleasure, by the way. Suddenly Bauer was stopped by a 
policeman who wanted to give him a ticket; he said that Bauer would have 
passed another car, hadn't he seen the gendarme at the very last moment. 





Professor van Wijngaarden 's role in the history of IFIP 19 

Then he started to grumble over the car papers. This was the point where I 
joined the discussion. "You shut up", I was told by the gendarme. "But it 
is I who has rented the car,'' I retorted, and with carefully selected 
Austrian arguments I managed to convince him in my very best French to 
forget the ticket. And so we arrived in Nice in due time for the first evening 
gathering. 

1965 to 1969: ALGOL 68 

I must repeat: it is not the intention of this paper to give a technical 
history of ALGOL 68. This would be a scientific project of quite some extent 
- a job somebody should undertake, however, before it is too late to 
collect the material completely (I invite you to submit a comprehensive 
paper for the Annals for the History of Computing). 

Professor Turski will revisit ALGOL 68 in his closing lecture and he will 
certainly do more than only paraphrase the thin skeleton of the 
development I intend to sketch here. 

The intensive development work of ALGOL 68 extended over the years 
from 1965 to 1969. At the Princeton meeting of W G 2. l in May 1965, an 
invitation for written descriptions of a language proposal was extended. At 
the meeting in St. Pierre three full descriptions were presented, by Niklaus 
Wirth, by Gerhard Seegmiiller and by Professor van Wijngaarden [76]. 
Tony Hoare and Peter Naur presented significant papers. A four-man 
subcommittee consisting of Professor van Wijngaarden, Tony Hoare, 
Gerhard Seegmiiller and Peter Naur was charged to bring the proposal into 
one common shape. The subcommittee met at Kootwijk in April and WG 
2.1 in Warsaw in October, but the balance they had wanted was not 
achieved. From 1967 onwards it became clear that the Amsterdam group 
was gaining the absolute leadership, with one of the reasons being the 
amount of work they were investing into the new language. They had 
prepared a draft proposal for the May meeting in Zandvoort [88] which 
was followed by a next version distributed in November [92]. 1968 brought 
the culmination both of the work and of the number of meetings. The June 
meeting in Tirrenia near Pisa had an Amsterdam draft of January [93], the 
July meeting in North Berwick its follower from July [95], and in October 
the Mathematisch Centrum issued already the next version [99]; on the 
table of the December meeting in Munich the final version was presented 
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[100]. Only those who participated in this giant effort can judge the 
intensity and strain of the work. But at the same time criticism and tension 
spread, there was more fighting than agreement, and it was easy to predict 
that the December meeting in Munich would be a decisive and shaken 
event. In a circular letter to TC 2 and WG 2.1 of October 18 I tried to point 
out very clearly the situation and the responsibilities of the two bodies. I 
indicated the choices I saw for the Munich meeting: 

(1) The language produced and described in the MRs would have to be 
the next ALGOL, or else WG 2.1 would have to decide that the editor and 
the authors had essentially failed to carry out their commission; 

(2) WG 2.1 might decide that the editor and the authors had carried out 
their commission, but that the whole enterprise had become a failure; 

(3) WG 2.1 might decide that the content of the language was 
acceptable, but that its description was unacceptable. In that case, another 
description would have to be produced; 

(4) WG 2.1 might decide that the final document of the editor was a first 
edition and that a further edition should appear; 

(5) WG 2.1 might decide that the final document of the editor was 
without any restriction the report on the new ALGOL. 

These choices indicate the controversy within WG 2.1 and the criticism 
from outside. WG 2.1 in Munich accepted ALGOL 68, but there was an 
opposing minority report and TC 2 presented the language to IFIP for 
acceptance with an extremely carefully worded cover letter. This letter 
appreciated the magnitude and difficulty of the task, but mentioned the 
minority report and added that the language was submitted to IFIP for 
publication as one of the possible approaches to the subject rather than a 
final answer; it said, however, that the work had reached the proper stage 
for submission to the crucial tests of implementation and subsequent use 
by the computing community. With this cover letter ALGOL 68 became 
official, but the group split. WG 2.1 continued to take care of ALGOL 68. 
In June 1970 TC 2 and WG 2.1 set up a Working Conference on ALGOL 68 
Implementation [7], and a few year later WG 2.1 presented a revised 
edition of the ALGOL 68 Report [8] it had produced, again under the 
leadership of Professor van Wijngaarden. The WG 2.1 dissidents formed, 
in response to an invitation of TC 2, Working Group 2.3, constituted 
under the chairmanship of Mike Woodger in 1969 with the name of 
Programming Methodology and with the scope Support and Tools for 
Program Composition. 
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At the spring Council a paper on ALGOL 68 was invited for the 
Edinburgh Congress 68, and this lecture by Professor van Wijngaarden 
found so much interest that more people had to go away than found room 
in the lecture hall. 

What had happened in the late fifties, namely that the programming 
community was split into the FORTRAN and ALGOL cultures, and later in 
addition into the COBOL culture - in a simplified manner one might 
speak of the industrial, academic and commercial subfields of 
programming in spite of the considerable overlaps - was repeated within 
the university community and today we have ALGOL 60, ALGOL 68 and 
PASCAL in parallel (with unequal shares). 

The story of the Babylonian language confusion is as contemporary as 
can be. It is a basic law of human thinking that giant enterprises - and 
computer programming is a giant enterprise - develop different mentalities 
which in turn and in feedback lead to the development of different 
languages. This multitude is a fact of life. We must accept the diversity. 
Every language must be judged by its merits. It is beyond doubt that ALGOL 

68 has, in certain aspects, more power than any other language. Why 
ALGOL 68 did not have the impetus of ALGOL 60 will be judged - in 
appropriate distance - by history. The unique and outstanding role of 
Professor van Wijngaarden, the incredibly concentrated and immense 
amount of work done by him and his collaborators at the Mathematisch 
Centrum, with Professor Peck, Professor Mailloux and other Canadian 
'guest workers', has already now filled many pages in the books of history. 

1967: TC 1 and WG 1.1 

In 1967 Professor van Wijngaarden took over TC 1, which - under the 
chairmanship of G. Tootill and A.R. Wilde - had tried since 1962 to carry 
out what had looked like a superidea of Ike Auerbach: the compilation of a 
multilingual glossary for information processing systems and related 
subjects. The proposal was that a collection of definitions and concepts 
and terms should be produced, the keywords being arranged in a kind of 
decimal classification. Then, for the different languages, it was simply 
necessary to establish the translations of the keywords and so the 
information processing community would soon and easily have a 
multilingual, well-defined dictionary. It would be sufficient to buy the 
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English glossary and the keyword translations for, say Spanish and 
Hungarian, to get the correct translation of technical texts [14]. 

It was indeed very astonishing that this idea should proceed so slowly, in 
particular in the early years, where the number of terms was not yet as large 
as it is today, and where not very many specialized dictionaries were on the 
market. The member societies obviously did not support the project 
strongly enough, only very few attempts of translations of keywords 
became known, and most of them did not follow the rules. North-Holland 
have only one non-English dictionary on their list, the German 
Fachworterbuch of 1968 [15]. 

Thus it seemed a reasonable step that a General Assembly member that 
had chaired the Publications Committee should try to save the enterprise. 
Professor van Wijngaarden let himself be convinced to do it, although he 
realized how bad the situation was. He separated the Technical Committee 
and its general scope from the direct definition work and for the latter 
purpose created WG 1. I. 

But in spite of his efforts, the situation did not improve. In 1973 he 
submitted the following letter of resignation to the General Assembly: 

TC I Terminology 

Since the General Assembly Meeting in Sofia in October 1972, the 
progress in the translation, by national groups, of the terms in the 
2nd Volume of the IFIP Guide to Concepts and Terms in Data 
Processing has been regrettably small. Although a request has been 
sent out to all national representatives of IFIP and to all TC I 
members to supply TC 1 with the translations of the terms, so far 
only the translations into Finnish, Dutch, Swedish, Czech, French 
and Slovak have been received. Obviously, with languages as 
German, Italian, Russian, Spanish, and so on, missing, Volume 2 
cannot appear. 

Since the chairman of TC 1 obviously has failed to raise sufficient 
cooperation in IFIP circles he offers his resignation as such. 

A. van Wijngaarden 

In order to check on its own operations, IFIP had set up review 
committees for its various bodies, and at that time it happened that such a 
committee was reviewing TC I. In its report to the next IFIP Council, 
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Professor van Wijngaarden's proposal to hibernate both TC 1 and WG 
1.1, that is to inactivate them, but keep them in the lists so that they might 
be revived when needed, was brought forward. Unfortunately, the General 
Assembly in Stockholm did not follow this proposal; the bodies were 
discontinued. IFIP would now need a new edition of the glossary. If they 
had followed Professor van Wijngaarden's proposal they might simply 
dehibernate TC 1 and WG 1.1 and the work would probably proceed much 
faster. 

Professor van Wijngaarden, just to mention this, was also in the Site 
Selection Committee for IFIP Congresses that recommended Stockholm as 
the site for Congress 74. 

1970: 10 Years of IFIP 

Dov Chevion considers it his duty to remind IFIP of its anniversaries; he 
brought up the proposal to celebrate the 10th anniversary and he put the 
20th on the agenda. The real job, however, is to find somebody to organize 
the celebration, which is long and hard work. For the 20th anniversary 
IFIP failed to find a volunteer; and in view of the extraordinary event of 
1980, namely the 8th Congress which was carried through as a Pacific event 
in two hemispheres, in two seasons, on two continents and in two big 
countries, it was decided not to insist too strongly on the anniversary idea 
and rather to celebrate the 25th anniversary. A volunteer has been found in 
the meantime: Professor Bauer in Munich. 

The volunteer for 1970 was Professor van Wijngaarden, the location was 
Amsterdam, and the time a day during the General Assembly 1970. 

What Professor van Wijngaarden achieved was an event of national and 
international importance, impressive and a model for the future. The 
programme included two opening addresses by representatives of the 
United Nations, Mr. Malecki of UNESCO and Mr. Gresford of UN New 
York, seven papers by active or past IFIP officers and two papers by 
representative managers of the industry. 

Academician Dorodnicyn gave an overview over the first 10 years of 
IFIP and then announced the election of LL. Auerbach, the first IFIP 
President, as IFIP Honorary Member. 

The six other IFIP speakers were Professor Speiser, second IFIP 
President, Dov Chevion, Professor Bauer, E.L. Harder, Professor van 
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Wijngaarden and myself. The outside papers were by G.E. Jones, Senior 
Vicepresident of IBM, and by Professor Casimir of Philips. 

Almost all the papers have been published in the volume The Skyline of 
Information Processing [16], so I need not describe their contents. But I 
want to add two remarks. One is a quotation from Professor Speiser's 
paper which seems to me as worth of being quoted as often as possible. He 
mentioned the blackout which in 1965 deprived the entire North-East of 
the United States of electricity for several hours. The sequence of events 
which led to the disaster has been reconstructed with great accuracy. In the 
course of these studies it was learned that in systems of this high degree of 
complexity there can occur conditions of instability, even under perfectly 
normal operating circumstances, in which an almost arbitrarily small 
perturbation can have catastrophic effects [16, p. 32]. The second remark 
is also concerned with a perturbation. Into my own contribution on Some 
philosophical aspects I should have invested a lot of the effort I put into it 
afterwards before the lecture. The main effect of such a state of affairs is, 
of course, that your manuscript becomes much too long: all of you know 
the excuse - I had not the time to write a short letter, so you get a long one. 
The General Assembly is more than a full-time job for the members of the 
Executive Body, and there was no chance to do in Amsterdam what I 
should have done in Vienna. Knowing all this, I fell into the second of the 
two alternatives that wait for the speaker: to fly above the manuscript, or 
to swim behind it. I did not only swim, I drowned. In doing so I lagged 
hopelessly behind the speaking time allotted to me, and upset Professor 
van Wijngaarden, his speech (which came next), and his time schedule 
completely. 

Eleven years later, I apologize once more and regret my imperfection. 
And since I have embarked on apologies, I want to generalize them on 
behalf of IFIP: we are all imperfect and on many occasions we have made 
our distinguished member and friend Professor van Wijngaarden angry. 
This is the opportunity to present our apologies to him. But I am sure he 
will wave them aside. Not only because he realizes that he, too, has 
occasionally upset others, but mainly because he forgives immediately. 

1979: Urgench 

This account started with conferences outside the range of IFIP. Let me 
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begin also the last chapter with a conference outside IFIP, the last one 
where we met before this symposium. It was the meeting on Algorithms in 
Modern Mathematics and its Applications, dedicated to al-Khorezmi, in 
Urgench, the capital of Khorezm, a region in Uzbekistan. The place was 
chosen because the Arab mathematician al-Khorezmi, from whose name 
the term algorithm was derived, was of Khorezmian origin. You can be 
sure that it is only the absolute time limit that prevents me from 
summarizing my speech on al-Khorezmi and his country, which I gave in 
Urgench; the countryside is spectacular and the city of Khiva near Urgench 
is the most impressive and best-preserved Central Asian town (we saw it 
during an excursion in the course of the symposium). Fortunately, the 
proceedings of the Urgench conference will appear soon, and thus you 
cannot only read my paper but also that of Professor van Wijngaarden [17] * 

which he read at that conference and which I consider just as important as 
his paper on Generalized ALGOL, although it was more a sketch than a 
completed paper (which I hope to see in not too distant a future). 

The basic idea of the Urgench paper was that by a further step of 
generalization one and the same, but highly general language structure 
permits not only, like Generalized ALGOL, the formulation of the problem 
and the gestaltung of the language in which one wants to formulate the 
problem - choosing, of course, the best formulation and language one can 
think of within the general structure, but also forming the automaton, the 
particular computing structure, on which the given problem is processed -
again matched to the optimum. 

In this latest step of intellectual development of a computer pioneer, one 
can recognize the superpower of generalization, but also the disadvantage 
by which one has to buy extreme generalization. The computer, whether we 
like it or not, has also the contrary tendency to particularize, to save the 
user from what a generalizer of the academic strength of Professor van 
Wijngaarden considers the essence of computing work: the narrowing 
down from the most general possibilities of the general purpose computer 
to the particular language, algorithm and computer, which finally carries 
out the job. In the daily life of today people expect the computer to even 
press the button for them which starts the execution of the job. 

If ALGOL 60 was a programming language for computer professors, 
ALGOL 68 was a language for language professors and the latest proposal 

* Note by the editors: The paper referred to here will not appear in ref. [17] but in ref. [18]. 
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of highest generality is a language for generalization professors, a very small 
class, of which Professor van Wijngaarden is one of the most prominent 
representatives. Progress in science has never come from particularization, 
but from generalization, from the recognition of common and general 
properties and laws, from reduction to the ultimate invariables. All his 
life Professor van Wijngaarden has contributed to this progress, by hard 
work in many more fields than IFIP, of which I have described here only 
what I was able to see and remember. 

Professor van Wijngaarden 

I am extremely proud that the Silvercore, the symbol of recognition and 
service award of IFIP, bestowed on Professor van Wijngaarden in 1974, 
carries my signature. The plaque is certainly very modest, an all too modest 
sign compared to everything Professor van Wijngaarden has done for 
IFIP, for the examples he has set, for the model and challenge his presence 
and contributions in the many IFIP bodies have meant for all of us. 

All abstraction and formalization that finally make up the body of 
science and technology separate themselves from the people who have 
created them. Maybe that a name remains attached to a law or a language 
- after less than one generation, the name is not much more than a 
keyword. The real importance, however, of human life and its 
incorporation in a field of science and technology, is not on the abstract 
and formal side, but in the personal style and accent, in the human and 
heartfelt involvement which distinguishes, for example, a teacher from a 
teaching machine. The next generation cannot find this dimension in the 
papers and programs, in the minutes and protocols. But the friends and 
students know it better than they can ever express: they are aware of a 
distributed monument of Professor van Wijngaarden which no sculpture in 
front of the Amsterdam railway station or the Schiphol airport building 
can bring to light. 

This symposium is part of the distributed abstract monument just as well 
as the many documents and publications he has produced and by which he 
has influenced IFIP. 

Professor van Wijngaarden can look back at a giant lifework extending 
far beyond the IFIP universe I have described. There are the mathematical 
contributions and there is the Mathematisch Centrum with its industrial 
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impact. There are the many people, students, friends and readers whose 
thoughts and achievements he has influenced, coined and sped on. AH 
descriptions must remain behind reality, all words imperfect. 

And yet it is appropriate to use this opportunity to express on behalf of 
IFIP as well as on my own behalf the infinite thanks and appreciation to a 
man of the first hour, and of 25 subsequent years in IFIP, to enumerate 
once more his contributions and to wish him a pleasant and successful 
evening of his life. 

Retirement from a position or job for Professor van Wijngaarden has 
never been transition to inactivity, and will never be inactivity. 

We are looking forward at this meeting to all the things by which he will 
continue to surprise us. 
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The programming language PLAIN has been designed to provide an effective 
tool for the systematic construction of interactive information systems. To 
achieve this goal, PLAIN started with a PASCAL-like framework and incorpor
ated features for the construction of interactive programs, including string 
handling, pattern specification and matching, input/output, exception 
handling, and relational data base definition and management. Additional 
features have also been incorporated to support a systematic approach to 
programming, with particular attention given to issues of modularity and data 
abstraction. This paper describes some of the innovative aspects of PLAIN, 
shows how they have been synthesized into the language, and illustrates how 
they are used in the creation of interactive information systems. 

1. The Design Context of PLAIN 

The User Software Engineering (USE) project [25, 27, 29] was under
taken in 1975 with the goal of providing application developers with a 
methodology and programming environment to support the systematic 
creation of interactive information systems. Interactive information 
systems may be characterized in the following way: 

(1) the user repeatedly types some input, e.g., a command; 

• This work was supported in part by National Science Foundation grant MCS78-26287 
and by The Netherlands Organization for the Advancement of Pure Research (ZWO) (grant 
00-62-139). Computing support for text preparation was provided by U.S. National Institutes 
of Health grant RR-1081 to the UCSF Computer Graphics Laboratory, Principal 
Investigator: Prof. Robert Langridge. 
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(2) this input is decoded and parsed; if it is incorrect, a diagnostic 
message is presented to the user, who then provides alternative input; 

(3) the input is subjected to various semantic checks, which may also 
produce diagnostic messages; 

(4) if the input is validated, then some program action is taken, typically 
an access to or modification of some item(s) in a database, during which 
time output messages may be provided to the user. 

A study of languages and systems available for the construction of 
interactive programs [23] led to the conclusion that "the programming 
languages designed explicitly for interaction do not [have the structure] for 
creating modular, well-structured software". With that in mind, the pro
gramming language PLAIN (Programming LAnguage for INteraction) 
became the first tool to be designed in the USE environment. 

The design of PLAIN was carried out in parallel with many other 
language designs, including CLU [11], ALPHARD [34], GYPSY [3], EUCLID 

[9], and ADA [8]. These languages all have similar objectives (though with 
differing emphases) of support for data abstraction, support for system 
modularity, support for program readability, support for testing and/or 
verification of programs, and the imposition of greater discipline on the 
programmer. In addition, each of these languages draws heavily on the 
ALGOL family of languages, particularly PASCAL [33], and on one another. 
Of these languages, though, only PLAIN addresses the application area of 
interactive programs and their need for database facilities. 

2. PLAIN Design Goals and Features for Interactive Programs 

From the outset, the contribution of PLAIN was seen to be not so much 
the introduction of new language features, but rather a synthesis of 
features whose interrelationships would lead to a useful tool for such appli
cation programs. The approach was to make innovations to support 
interactive programs and to adhere closely to well-understood approaches 
for other features. 

Essential capabilities for the creation of interactive programs were 
identified, including: 

(1) Data base management. The language must deal with data bases and 
with operations performed on data bases, as well as with more primitive 
file concepts. 
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(2) String handling. Interactive programs involve large amounts of text 
processing, particularly user-program dialogue. 

(3) Exception handling. User errors must be expected, but the user 
should not be adversely affected. 

(4) Pattern specification and matching. Many interactive programs 
depend on a specific text pattern, e.g., a command, to determine program 
action. 

PLAIN provides these capabilities by synthesizing a PASCAL-like frame
work with necessary features for interactive programs, including the 
following: 

( 1) data of type relation and associated relational algebra-like operators 
that provide a data base management facility; 

(2) data of type char and type string, providing for both fixed and 
variable length strings; 

(3) procedure-oriented exception handling, including a time exception; 
(4) pattern specification primitives and pattern matching operations; 
(5) sequential and direct access files; 
(6) input/output operations, possibly involving patterns and files; 
(7) access to external objects, such as data bases. 
Space limitations make it impossible to give a complete description of 

the language or even the above features. A complete language description 
may be found in the Revised Report [30], and explanations of various other 
aspects of PLAIN may be found in [26,28,31,32]. In this paper, we wish to 
summarize the motivations behind the design of features for database 
management, string handling, pattern specification and matching, and 
exception handling, and then to show how they work together in the 
construction of interactive information systems. 

3. Database Management in PLAIN 

A key design goal for PLAIN was to support database management 
explicitly, rather than working with the lower-level concept of a file as it 
exists in many languages or relying on traditional approaches to program
ming languages/data base interfaces. Problems with embedded query 
languages and with host language interfaces were noted and the need for a 
unified approach to programming languages and data base management 
was emphasized, so that "it becomes possible to achieve a level of con-
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sistency in syntax and semantics" and so that "both type checking and 
data independence can be achieved" [24]. 

Other efforts have been made to extend programming language with 
database notions [1, 2, 20, 21, 22], but these suffer from one or more of the 
unpleasant problems of language/ data management interaction identified 
in [17], including the difficulty of performing type checking, the tradeoffs 
between interpretation and compilation, the need to support data 
abstractions in the database environment, and the unattractive nature of 
combining nonprocedural data management sublanguages in procedural 
programming languages. 

Two key goals were established for the data definition and management 
facilities of PLAIN: 

(1) Use existing language structures wherever possible. Uniformity of 
syntax is important so that the data management operations will blend 
cleanly with other language features. Thus, traditional programming 
concepts of types and variables should be applicable to database declar
ations, and the operations on databases should be procedural, in keeping 
with the procedural nature of the language. 

(2) Minimize the number of features added to the language specifically 
for database management. This objective follows directly from the first 
objective. Instead of providing a large set of database operations, the 
decision was made to strive for a compact, yet complete, set of operations. 
This decision was made with the understanding that the price of the 
language simplicity would be an increase in the amount of text needed to 
express complicated data management operations. 

These goals pointed clearly toward use of the relational model of data [5] 
as the basis for database management in PLAIN. From a syntax standpoint, 
it is possible to exploit the similarity in notation between records and 
tuples, as was also done by Schmidt [21]. From a language axiomatization 
standpoint, relations were also the best choice because of their mathe
matical foundations. Although it was recognized that the relational model 
is weak in specifying the semantics of the database, it seemed that the 
potential advantages of the model greatly outweighed the disadvantages 
for programming language design and implementation. 

A data base type definition specifies a structure consisting of an 
arbitrary number of record occurrences (each called a 'tuple') where each 
tuple consists of a fixed number of components (called 'attributes'). PLAIN 

supports two kinds of data base type declarations: relation and marking. A 
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relation is a set of tuples and has the property that all tuples are unique; the 
definition of a relation includes the specification of a non-null set of key 
attributes that uniquely identifies a tuple. A marking is a set of referenced 
tuples from one or more relations. Markings are used to store intermediate 
results during operations on relations. They play much the same role in 
database management that temporary variables play in complicated 
arithmetic calculations. Thus, one may declare variables to be of type 
relation, using a syntax similar to that for records in PASCAL, or of type 
marking. Similarly, all attributes must be declared of some type; 
permissible types are simple types, including scalars, fixed length strings 
(type char[n]), and variable length strings (type string). Database manage
ment operations are provided at the item (attribute) level, the tuple level, 
and the relation level. 

3.1. Item level operations 

At the lowest level of relation access and manipulation, it is possible to 
name individual tuples within a relation through a tuple designator. If a 
relation of degree N (N attributes) has M key attributes, where M ~N, 
specification of values for the M key attributes designates a unique tuple of 
the relation ( or no tuple at all). The syntax for a tuple designator is of the 
form 

relation-name [key-value-list] 

which permits an attribute of a relation to be designated with the notation 

relation-name [key-value-list]. attribute-name. 

This mechanism provides two important benefits. First, it is an 
associative addressing mechanism for databases that can be used to obtain 
single tuples and single attribute values from relations, yielding a clean 
solution to the problem of converting objects from type relation to the 
underlying attribute type. This makes it possible to perform complete type 
checking on items in the database, since each attribute must be declared 
with a type. 

Second, it achieves integration at the lowest level between language 
concepts and database concepts, since the attribute designator may be used 
in arbitrary expressions throughout a program. Information stored in a 
relation can be used to declare the dimensions of arrays, to provide a 
bound on the number of iterations in a loop, or to supply the text for an 
output message. 



34 A.I. Wasserman et al. 

3.2. Tuple operations 

At the tuple level, it is possible to insert tuples and to remove tuples one 
at a time from a relation. One may simply construct a new tuple by 
designating a record variable or by specifying values for the attributes of 
the tuple. The tuple insertion assignment is designated by':+', while tuple 
deletion is given by ':-'. 

One may also iterate over the tuples of a relation or marking by use of 
the foreach clause in a loop statement. The effect of the foreach is to 
permit access to individual tuples in much the same way that iteration is 
performed over other types of variables. 

3.3. Relation level operations 

High level operations on relations and markings permit the construction 
of database expressions and the assignment of the expression to a relation 
or marking variable. The operations supported are selection on a condition 
(where), projection ( ⇒ ), natural join on two attributes of the same type 
(join), and the set-oriented operations of intersection, union, and 
difference. The language syntax limits the complexity of database 
expressions, making it necessary to decompose complicated operations into 
several steps (perhaps creating markings). The rationalization for this 
approach is presented in detail in [19]. 

In summary, PLAIN makes a number of advances toward achieving an 
effective integration between modern notions of programming languages 
and facilities for database definition and manipulation. In particular, the 
procedurality of the operations, the ability to perform type checking on 
database objects, and the associative access feature are the principal 
unifying ideas. 

4. String Handling and Pattern Matching 

Features for string handling and pattern matching were also seen as 
essential for PLAIN. In addition to providing strings as a data type, it is also 
necessary to provide tools for checking the conformity of strings to 
predetermined patterns, particularly for user input. User input must be 
checked for conformity to the syntactic rules and must then be checked to 
see that it is meaningful in the context of the input. A numeric input might 
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fail not only for reasons of invalid characters, but also for arithmetic over
flow, arithmetic underflow, or because the numeric value was not a 
meaningful value for the corresponding data element. 

PLAIN provides for the built~in simple type char (as in PASCAL, ADA, and 
other similar languages) and for the built-in structured type string. 
Variables of type char or array of char permit fixed length string 
processing, while variables of type string provide for variable length 
strings. String concatenation is provided with the binary operator '++' 
returning an array of type char or a string, depending on the operands. 
String contains is provided with the operator '$'; for strings a and b, the 
value of a$b is true iff the string b is contained in a. String follows (lexical 
ordering) is provided with the operator'>>'; for strings a and b, the value 
of a>> b is true iff the lexicographic order of a follows b in the ASCII 
collating sequence. The remaining string operations are provided through 
functions, including length, string searching, substring extraction, 
insertion, deletion, and replacement. 

The key observation for successful handling of user input was to see user 
inputs as languages subject to various kinds of syntactic and semantic 
rules. In short, one can define a grammar that describes the valid syntax 
for a given user input. 

From that point, it became possible to identify some goals for the 
inclusion of pattern processing mechanisms in PLAIN, including the 
following: 

(1) simplicity, comparable to that of MUMPS patterns, rather than to the 
more powerful and general SNOBOL 4 patterns; 

(2) the pattern facilities should simplify not only the syntactic checking 
of user input, but also any subsequent semantic checking; 

(3) certain common patterns should be predefined, i.e., 'built into' the 
language; 

(4) the pattern facilities should be usable for control of program output 
as well, so that it would not be necessary to include a totally separate 
output management mechanism; 

(5) the power of the pattern specification and pattern matching should 
make it possible to recognize a large class of possible user inputs, such as 
specified by a context-free (Type II) grammar. 

The key idea behind pattern specification and matching in PLAIN was to 
provide a simple mechanism whereby the programmer could define the 
grammar for a language, and then use built-in operators to determine the 
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match between a pattern and a string defined by the grammar. 
The pattern declaration facility permits patterns and pattern sets to be 

declared. In a pattern, all elements are required for pattern matching, while 
in a pattern set, only one of an alternative list of patterns is required for 
matching. In both cases, the declarations are static and, unlike SNOBOL4, it 
is not possible to create patterns dynamically. 

A pattern is composed of a list of pattern elements, which may be string 
literals, subranges of characters, or the name(s) of other patterns, 
including pattern sets. Each pattern element may be preceded by a 
repetition count, which may be definite (a positive integer), or indefinite. 
The indefinite cases are '*' for zero or more instances, and '.' for one or 
more instances. In the absence of a repetition count, a default count of one 
is assumed. 

Many common pattern matching cases are covered by predefined 
patterns in PLAIN. These patterns include A for alphabetic characters, N 
for numerics, P for punctuation, I for a (signed) integer, X for blank, and 
S for string, which matches anything. 

A simple example of a pattern definition is given by the patterns 

bookid = (ION); 
chkout =('out',. X, bookid, '/',I) 

they would match the string 'out 9023633407 /12554'. Note that chkout 
contains the name of another pattern, bookid, as well as string literals and 
predefined pattern names. 

Such pattern names can be combined into other patterns and pattern 
sets. Thus, the pattern chkout might be an alternative in the pattern set 

command= [chkout, checkin, reserve, status, quit] 

where each of the patterns represents the permissible user input for the 
various commands in the system. (If a string matches more than one 
pattern in the pattern set, the leftmost matching alternative is selected.) 

A more complex example can be given by combining patterns and 
pattern sets to define a class of strings representing permissible ways to 
input a date, showing that patterns and pattern sets may be nested. 

date= [form 1, form2, form3]; 
forml = (one-or-two, sep, one-or-two, sep, two-or-four); 
form2 = (one-or-two, lX, month, IX, two-or-four); 
form3 = (month, X, one-or-two,',', X, 4N); 
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one-or-two= [IN, 2N]; 
two-or-four= [2N,4N]; 
sep= ['/','-','.']; 

month= [longenglish, shortenglish]; 

{ intermediate months omitted in the next two pattern sets} 
longenglish =['January', 'February', ... , 'December']; 
shortenglish = ['Jan', 'Feb', ... , 'Dec']; 

Note that, from a syntactic standpoint, this pattern specification handles 
most of the forms of giving the date in the English language. Among the 
strings accepted by date are '2/2/1972' and '27 .08.80', corresponding to 
forml, '4 July 1778' and '22 Nov 63', corresponding to form2, and 'June 
6, 1944', corresponding to form3. 

Two more observations may be made about this scheme: 
(1) the availability of the built-in patterns and the ability to include string 

literals eliminates the need for a separate lexical analysis tool; primitive text 
units, i.e., tokens, can be placed within the patterns and pattern sets; 

(2) the pattern declaration mechanism permits one to specify an arbitrary 
context free language, since patterns may contain arbitrarily many patterns 
and pattern sets with a completely recursive capability; 

PLAIN contains two pattern matching operators: one for determining the 
exact match between a string and the pattern specification, and one for 
determining whether the pattern can be found anywhere in the string. 
Accordingly, two binary pattern matching operators, pattern match (?=) 
and pattern contains (?) were defined. The left-hand operand for each is a 
string; the right-hand operand is the name of a pattern. The pattern match 
operator '?=' returns true iff the pattern matches the entire string. The 
pattern contains operator '?' returns true iff the pattern matches a 
substring. 

For example, if one uses the patterns forml and form2 declared in 
conjunction with the date example above with the variables sa, sb, and sc 
as follows: 

var sa, sb: string; sc: char[l6]; 

with the following assignments 

sa := '04/02/77'; 
sb := '27 Aug 72'; 
sc := 'Received 6-11-66'; 
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then sa? = forml is true, sc? = forml is false, sb?form2 is true, sa? = form2 
is false, and sc?forml is true. 

The binary operators match and contains are used with the case state
ment to allow branching based on pattern matching. These operations 
return a pattern name if the case expression, which must be of type string 
or array of char, is successfully found in the designated pattern set. The 
pattern name is then used as the case selector, as follows: 

case input match month of { assume input declared of type string} 
when longenglish, shortenglish: english-date (display) 
when others: unknown-date (display) 

end case 

The remaining necessary capabilities are to be able to split a given string 
into its components and to combine two or more shorter strings into a 
longer string, based on patterns. The split and combine operations, respec
tively, provide these capabilities in PLAIN. The split operation apportions a 
string value to one or more variables, possibly discarding part of the string. 
The combine operation assembles two or more expressions into a single 
string value according to a specific pattern. The assembled string value is 
then assigned to a variable. A given string may be split or combined 
according to different patterns as necessary at any level of the pattern 
matching. Such a facility is particularly useful for processing of command 
languages. 

With this set of pattern matching capabilities, it is possible to make 
effective use of the pattern facility in conjunction with the string handling 
features and to carry out the input/ output and string processing that is 
essential to the effective construction of interactive programs. These string
handling and pattern matching features are described at greater length in 
[31]. 

5. Exception Handling 

The ability to anticipate and to handle non-standard situations is 
essential to the construction of reliable systems. Thus, the specification for 
a system may provide not only for 'normal' conditions, such as proper 
operation of the hardware and meaningful user input, but also for 
abnormal conditions, such as hardware errors and arithmetic overflow, 
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describing the action to be taken if these conditions arise during system 
operation. 

Accordingly, exception-handling mechanisms have been designed and 
implemented in many programming languages, including PL/I [14], MESA 

[16], CLU [12], and ADA [13]. Also, there have been proposals made for the 
inclusion of exception-handling mechanisms in languages and systems, and 
for the specification and implementation of exceptions [4, 7, 10, 15, 18]. 

The goals established for the exception-handling features of PLAIN are 
the following: 

(1) Association of exceptions - it should be possible to associate 
exception handlers with specific exceptions and to bind this association at 
the statement level in the source program; it should also be possible to 
attach this association to a group of statements, such as a procedure body. 

(2) Fielding of exceptions - it should be possible to pass an exception 
from the environment in which it was signalled to any previous level of 
invocation for handling. 

(3) Orderliness - it should be possible to carry out normal shutdown 
procedures in the event of a fatal error, permitting, insofar as possible, the 
closure of open files, and the generation of messages. 

(4) Grouping of exceptions - it should be possible to define a group of 
exceptions that are to be treated similarly under certain conditions. 

(5) Programmer-defined vs. built-in exceptions - the exception-handling 
scheme should support both the handling of built-in exceptions and the 
definition, signalling, and handling of programmer-defined exceptions. 

We designed a procedure-oriented approach to exception-handling for 
several reasons: 

(1) the use of a call provides a constraint upon control flow, since control 
can return from the handler to its invocation point; 

(2) the same handler can be invoked for several different exceptions or 
for several different instances of the same exception; 

(3) the use of procedures serves to separate the exception-handling code 
from the remainder of the code; 

(4) data coupling is made more visible through the parameter passing 
mechanism of procedure calls. 

PLAIN provides built-in exceptions for commonly occurring exceptional 
program conditions, and permits the declaration of user-defined 
exceptions. Built-in exceptions are raised automatically by the runtime 
system, while user-defined exceptions must be explicitly raised. The signal 
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statement is used to signal a condition or event that needs special handling. 
The execution of a signal statement causes the program unit being executed 
to be immediately terminated at the point of the signal, with control 
returned to the invoker of the unit with the named exception as an active 
exception in the invoking context. 

Program statements may optionally contain an exception part, which 
contains a list of exceptions and the names of associated exception
handling routines, called handlers. A handler is like a procedure in that it 
may be invoked from numerous places within a program and that standard 
parameter passing rules apply. Handlers are also like procedures in that 
there are no restrictions upon declarations or statement types; in other 
words, any type of computation may be performed within a handler. 

The handler attempts to perform whatever actions are necessary to take 
care of the exception that caused it to be invoked and then returns to the 
point of invocation. There are four possible ways in which the computation 
may then proceed: 

(1) the exception has been cleared and normal program execution may 
continue; 

(2) the exception has not been handled completely and is then passed to 
the invoker of the routine in which the exception occurred, causing the 
termination of the routine; 

(3) the exception has been cleared and the program segment (statement 
or compound statement) associated with the exception is retried; 

(4) a different exception is returned to the location where the first 
exception occurred, which must be handled before handling of the first 
exception can be completed. 

This mechanism permits exceptions to be passed up the activation chain 
and permits them to be handled at each level until they are cleared or until 
the absence of a programmer-defined handler causes the system-defined 
default handler to be invoked, thereby causing program termination. 

The clear statement clears the exception that caused the invocation of the 
handler. The retry statement clears the active exception and then returns 
control to the beginning of the statement from which the handler was 
invoked, attempting to restore the environment which then existed. (Note 
that not all these effects, e.g., input/output and database updates, can be 
feasibly undone.) The clear and retry statements may only be used within a 
handler. 

There are three built-in user-callable handlers that facilitate the use of 
this mechanism: 
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(1) abort, which signals the unclearable fail exception to the invoker of 
the currently executing routine; 

(2) continue, which clears the active exception and results in continued 
execution of the currently executing routine; 

(3) pass, which passes the active exception to the invoker of the currently 
executing routine. 

Although this mechanism is more complex than some of those provided 
by other languages, it also provides some facilities that are not present in 
other exception-handling schemes, but that are important for interactive 
programs, including: 

(1) exception handling is preemptive so that executions may be inter
rupted and stacked, making it possible to react to an exception while 
handling another; 

(2) the pass handler makes it possible to pass exceptions through 
successive function/procedure invocation levels to a point at which the 
exception is meaningful in terms of the intended function; a low-level 
exception may or may not signify an error condition; 

(3) the retry statement (see above) makes it very easy to program the 
common situation of asking the user to repeat input that does not conform 
to expected patterns. 

These features may be illustrated by considering an example of user/ 
program dialogue, such as asking the user to type in a valid bookid as 
defined above. In this example, the program reads a variable input 
according to the bookid pattern. An exception part is associated with the 
read statement to handle the various exceptional conditions that might 
arise. If the user transmits the break or the escape character, the handler 
break-message will be invoked. An exception can then arise while executing 
the read statement in break-message. 1 

var input: char[IO]; 
limit: integer; 

{ limit is set to the number of tries we are willing to make} 

read[bookid]: input! [ioerr: abort; patform: ask-again; 
break, escape: break-message]; 

1 The exception parts shown in this example are intentionally thorough. In practice, the 
thoroughness of the exception parts would depend on the desired robustness of the program. 
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{ ask-again and break-message are user-defined handlers} 

handler yes-or-no; 
imports limit: modified; 
begin 

if limit> 0 then 
write 'Please answer yes or no'; 
limit:= limit-I; 
retry { causes read in break-message to be repeated} 

end if; 
write 'The program is being terminated'; 
signal fail; 

end yes-or-no; 

handler break-message; 
var answer: string; 
pattern yes-no= ['yes', 'no']; 
begin 

write 'Do you wish to terminate the program? .. .'; 
read [yes-no]: answer![patform, time: yes-or-no]; 
if answer= 'yes' then signal fail end if; 
retry { causes read in main program to be repeated} 

end break-message; 

handler ask-again; 
begin 

write 'Invalid book number. Please try again.', \ n; 
retry { causes read in main program to be repeated} 

end ask-again; 

It can be seen from this example that a significant portion of the code in 
an interactive system must be devoted to management of the user/program 
dialogue, particularly if one wishes to create user-centered systems that are 
easy to learn and easy to use [29]. Because careful handling of user errors is 
critical in such an environment, the exception-handling mechanism is 
particularly important, and the exception handling features of PLAIN were 
designed with this requirement in mind. 
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6. Interactive Information Systems in PLAIN 

The combination of database management, string handling, pattern 
matching, and exception handling within the framework of a language to 
support and encourage systematic programming is the most significant 
contribution made by PLAIN. These features work together most effectively 
in the construction of interactive information systems. 

A program schema for the typical interactive information system 
characterized in the introduction is as follows: 

program iisschema; 
external { names of external objects used by program, such 

as databases and files} 
var input: string; 

{ other global declarations, including exceptions} 
pattern cmdset = [coml, com2, com3, ... , comN, quit]; 

coml=( ... ); 
com2=( ... ); 

comN = ( ... ); 
quit= ('quit'); 

begin 
loop 

read input! [ioerr: abort]; 
{ terminate on hardware I/0 error} 
case cmdset match input of 

when coml: actionl ( ... ) {parameter list} 
when com2: action2 ( ... ) 

when comN: actionN ( ... ) 
when quit: exit 
when others: write 'illegal command' {pattern match failed} 

end case; 
repeat; 
write 'byebye' 

end iisschema. 
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Each of the actions associated with the commands may perform 
additional decoding or analysis of the command, perhaps splitting the 
command string into substrings via the string functions or the split 
operation, and will then carry out the action implied by the user command. 

Consider the example of a library information system using the pattern 
set command and the pattern chkout shown above. The procedure book
checkout would include the following code: 

procedure bookcheckout (input: string); 
imports book, cardholder: readonly; checkout: modified; 

{book cardholder, and checkout defined external to bookcheckout 
as relations in library data base} 

var booknum: char [IO]; copyno: 1..100; datedue: char [4]; 
oldcount, person: integer; 

{handlers bad-book, bad-card, bad-copy, and dberr not shown} 

begin 
(#, #, booknum, #,person):= split [chkout]: input; 
{ check validity of ISBN number and cardholder} 
assert book [boo kn um] in book ! [assertion: bad-book]; 
assert cardholder [person] in cardholder ! [assertion: bad-card]; 
write 'Copy number:'; 
read copyno ! [patform, range: bad-copy]; 
write copyno; 
{ compute due date and save in variable datedue} 

{ update set of checkouts} 
checkout :+ [ ( boo kn um, person, copyno, datedue)] ! [fail, duplicate: 

dberr]; 
end bookcheckout; 

This brief example shows how these features combine to incorporate the 
facilities for interactive systems with such important features as assertion 
checking for semantic integrity of databases and powerful control 
structures. These features are easily used in a similar fashion for other 
similar kinds of examples and greatly simplify the problems of writing this 
class of programs. 
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Because of space limitations, we have omitted discussion of the PLAIN 

module facility, which provides facilities for data abstraction. The module 
facility is extremely useful in PLAIN, since it permits type extension of data
base types as well as other types. It is similar in most other respects to 
data abstraction facilities found in other modern languages, e.g., CLU. 

7. Conclusion 

The design of PLAIN combines modern programming language design 
concepts for creating well-structured programs with an integrated set of 
innovative features to support the implementation of interactive infor
mation systems. 

Among the most significant aspects of these innovative features are: 
(1) the associative addressing capability of relations, making it possible 

to access and modify individual data base items, to use data base items 
routinely throughout the program text, and to perform conversion between 
data base types and the underlying types of their attributes; 

(2) the pattern and pattern set specification facility, making it possible to 
specify a context-free grammar, using the pattern-matching features to 
carry out the lexical and syntactic aspects of the text processing; 

(3) the procedure-oriented exception-handling scheme, which makes it 
practical for the programmer to anticipate user errors and to build robust 
programs that handle these errors. 

These features are largely orthogonal and do not interfere with one 
another in using or implementing the language, even though they are 
typically used together in practice. 

Experience with PLAIN and with other modern programming languages 
indicates, subjectively at least, that it is much easier to implement inter
active information systems with PLAIN than with any of the languages 
previously used for such applications or any of the other modern languages 
designed to support systematic programming. Work is continuing to use 
PLAIN to implement various application systems and software tools, as well 
as to develop implementations of PLAIN for a variety of execution environ
ments. 
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PORTAL - A PASCAL-Based Real-Time Programming Language 

Rudolf Schild 

Central Research Laboratory, LGZ Landis & Cyr Zug AG, CH-6301 Zug, Switzerland 

The high level programming language PORTAL was developed to alleviate the 
problems experienced in programming complex real-time process control 
systems. It is based on PASCAL and includes facilities for breaking a task up 
into modules (information hiding), for describing and synchronising parallel 
processes, and for handling peripheral devices and interrupts. It has been used 
in actual systems with excellent results. 

1. Introduction 

1. 1. Motivation 

The programming language PORTAL (for Process Oriented Real-Time 
Algorithmic Language) was developed for the efficient production of 
reliable real-time software. 

In process control software parallel processes as well as real-time events 
play an eminent part. This, of course, makes the programming of such 
systems especially difficult. We know by now that the design of sequential 
programs is in itself a difficult task. The difficulties are compounded when 
several activities go on concurrently, but each at its own speed, and when 
asynchronous external events must be taken into account. 

In view of the possibly severe costs of a failure in a real-time system, it is 
extremely important to detect errors as early in the development process as 
possible. If the manner in which the system is designed and the tools used 
for this task can prevent a number of errors from being committed in the 
first place then quite a lot has been gained. 

If we are furthermore able to reduce the complexity of what we are 
dealing with at any given moment, so that we can comprehend the 
(sub)task and stay in control, then there is hope for building complex yet 
reliable systems. 
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Thus, to attack the problem of producing efficient and reliable systems 
we found these two means essential: structuring - to keep within 
manageable limits - and redundancy - to reduce the number of errors. 

1.2. Achieving the goal 

Originally we did not set out to produce a new language. The project 
started in 1974 with a study that was to find tools for proving real-time 
software correct. We did find that there were quite a number of efforts 
going in that direction, but we also found that the general consensus was: it 
is more difficult than we expected, and beyond the current state of the art. 

Our next thrust - in 1975 - was in the direction of finding an existing 
programming language which would allow us to build our systems in such a 
way that we could be reasonably certain the job had been done well, and 
which would be amenable to program proofs if there ever was a way of 
automatically proving programs. 

Again we did not find what we were looking for. To be sure there were a 
number of candidates, but some existed only on paper, while for others we 
could not obtain a compiler that would fill our needs. 

Thus our final step was to design our own language. Throughout our 
effort we remained in contact with Niklaus Wirth and his collaborators at 
the Swiss Federal Institute of Technology (ETH Zurich), who were then 
developing Modula. 

1. 3. Language design 

As a basis we chose PASCAL, augmented with constructs for parallel 
processing. Since the study of programming languages in the early 
seventies had pointed out the desirability or undesirability of a number of 
language constructs, we decided to make use of that knowledge, rather 
than try to invent new features. 

2. The PORTAL Language 

2.1. Structuring 

In order to manage the complexity of a system, there are two ways of 
structuring it: 
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(a) The entire system is divided into several processes, each of which 
runs at its own speed, perhaps driven by some sort of external signal. Each 
of these processes can then be viewed separately, with occasional 
interaction with some of the others, and totally ignorant of the existence of 
the remainder of them. 

(b) There is also a static division of the system into modules. Modules 
serve as information hiding devices; they can be used to implement certain 
structures or even entire subsystems. The internal implementation of a 
module need not be known to the outside, i.e. to the user of the module; 
access to it is solely through the interface. 

2.2. Synchronisation 

In order to make up a coherent system, the parallel processes must 
somehow be able to synchronise with one another. 

We chose the well-known monitor and signal concept [1]. The monitor 
guarentees exclusive access to the routines and therefore to the data within 
it. A process that is active within a monitor may find that it is unable to 
proceed because some condition is not present or some event has not 
happened. In this case it frees the monitor by waiting for a signal. This 
signal must subsequently be given by another process, which must be active 
within the monitor .to do so. It creates the condition desired by the waiting 
process and sends the signal. 

It seemed important to us to assure that this condition is in fact still true 
when the first (the waiting) process receives control, since any kind of 
proof or even plausibility argument would have to be able to rely on that. 
For this reason we decided to switch processes immediately after the send 
statement. This means that the sending process is suspended until the 
waiting - and now reawakened - process frees the monitor again, either by 
leaving it for good, or by going into another wait state. 

2.3. Synchronisation with the clock 

A rather simple device was introduced to permit access to a clock. A 
process may wait for a signal and at the same time specify a maximum 
delay (in some predefined units such as ticks). This is often useful in 
connection with external interrupts (Section 2.4), which might be lost and 
thus keep a process waiting forever. 

Normally, in accordance with Hoare's ideas, processes are unidentified, 
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which means that a process cannot tell who woke it up. But when the wait 
with delay is used, it may well be important to know that the delay has 
elapsed and the expected signal did not come, which might e.g. indicate 
some equipment malfunction. Therefore there is another parameter 
accessible if the wait is used with a delay, which indicates whether the clock 
or some other process sent the signal. 

The abilily to recover from lost interrupts was in fact the principal 
reason for introducing the wait with delay. But it can also be used to wait 
for a dummy signal, which will never be sent by any other process and 
which therefore causes the waiting process to be awakened by the clock, 
after the specified delay has elapsed. 

2.4. Interrupts 

Real-time systems generally comprise a number of peripheral hardware 
devices that usually communicate via interrupt with the central processor. 
It seemed important to us that the system designer be able to handle 
interrupts without having to take recourse to assembler language 
programming. 

The method we chose was to represent interrupts as signals given by a 
hidden process. Once a signal is defined as belonging to an interrupt, it is 
then used in exactly the same way as any other signal. 

2.5. Safety 

Since our goal included preventing errors from being committed (if 
possible) the criteria for inclusion of a certain construct in the language 
were: 
- it must aid the designer in constructing reliable software, 
- it should not be inherently dangerous to use, 
- it must be implementable in a clear and fairly straightforward way .. 

According to these criteria we did not include pointers or record variants 
(dangerous) nor exception handling (difficult). 

It was felt, however, that thereby we restricted ourselves too much, and 
we introduced different, safer versions of pointers and record variants. 
(We do not yet have an answer to the problem of exceptions.) 

Pointers for linked lists, say, can be had by our index type. This is always 
tied to a specific array type, can only be used with an existing variable, and 
thus avoids the problem of dangling references at least partially. 
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Pointers to an element of a data structure, say from inside a module, can 
be realised with the resource function, which in effect returns a pointer. 
The syntax ensures that this result pointer is only used while access to the 
structure, and in particular to that element, is guaranteed. 

The case type represents a restricted form of the record variants, similar 
to ALGOL 68's union. The syntax was chosen such that the specific variant 
being processed must be indicated at compile time, either as a constant if it 
is known, or in a case statement if it must be selected. Either way the 
language guarantees that in fact the fields for the actual variant are being 
accessed and none other. 

3. Implementation 

3.1. Synchronisation 

The methods used to implement monitors and signals are quite straight
forward. At run time the PORTAL nucleus manages all the processes and 
their synchronisation. The state of each process is recorded in a process 
descriptor. Calls of monitor routines - i.e. routines which can be viewed as 
indivisible actions - are not executed directly but via the nucleus, which 
keeps track of the availability of each monitor and maintains the entry 
queues. 

The signals are implemented as queues also, with the execution of a wait 
statement causing the process descriptor to be entered into that queue. The 
execution of a send statement puts the executing process's descriptor in a 
stack and removes the first item from the signal queue. 

A process leaving a monitor will cause the send stack to be popped. If it 
is empty, i.e. if there are no more processes suspended because of sending a 
signal, then the first process from the entry queue (if there is one) enters the 
monitor. 

Processes waiting with a maximum delay are additionally linked in a 
time-out list, since they may be removed from inside their respective signal 
queues. 

Interrupts are caught by the nucleus, which then removes the first 
descriptor from the corresponding signal queue, just as if a signal had been 
sent by another process. 'Normal' send's, i.e. those executed by processes, 
may be performed on an empty queue, in which case no other process is 
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started. The sent signal is thus lost without any other effect. In case of an 
interrupt, however, there must be exactly one process waiting for it, 
otherwise a run-time error occurs. This seems to be a reasonable 
interpretation of interrupts as hidden processes. 

3.2. Priorities 

Each process is given, at compile time, a fixed priority under which it 
runs. The assignment of priorities is up to the programmer; if none is given 
the compiler uses a default value of zero (lowest). 

In addition, monitors are also assigned priorities, also fixed at compile 
time (default 3). While a process is active within a monitor, it runs under 
the monitor's priority. To avoid the possibility of resulting confusion, 
processes may only enter monitors of at least the same priority as their own 
current priority. Thus it is possible to cell a routine in another monitor 
from within one, but only if this would not lower the process's priority. 

Monitors whose routines deal with hardware interrupts must be assigned 
the priority of the hardware device the handle in order to run correctly. 

3.3. Checks 

3.3.1. Run-time checks 
The usual run-time checks for overflow, assignment to subrange 

variables, access to array elements, selection of case statements, are of 
course included. 

3.3.2. Computation of the stack lengths 
Since all routines are reentrant, i.e. they can be executed by several 

processes at once, their local data are stored on a stack. Each process has 
its own stack whose size increases and decreases during the system's 
operation. In most process control applications it is considered quite 
unacceptable to have the system signal a memory overflow, and perhaps 
stop, simply because one of the process stacks has overflown. To avoid 
this, the PORTAL compiler contains a pass which computes the maximum 
stack length for each process, taking into account all routine calls. Each 
process is then assigned a portion of memory for its stack, and it can be 
guaranteed that this will suffice for any possible control flow, yet it will not 
be more than can actually be required. 

If routines call each other recursively, this is no longer possible, 
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however, and the compiler issues a warning message. The programmer in 
this case has the option of introducing a special test with the recursive calls, 
allowing the program to handle imminent stack overflow itself. 

The stack length computation has been found very useful, in particular 
by users who had had access to an earlier version with a fixed allocation of 
stack storage. 

4. Examples 

Two examples should serve to illustrate the experience made with the 
language in different areas. Details will not be considered. 

4. 1. A process control example 

The system consists of two identical PDP-11/04's that work together as 
a master/standby system. The two CPU's are connected by a watchdog unit 
for changing the standby machine to master, and a single data line for 
transmission of certain operator input from one machine to the other, for 
updating purposes. Attached to each machine are a teletype, a magtape 
unit, and up to six communication interfaces connected to telephone lines 
for dialling, and for sending and receiving information from outlying 
stations. 

Roughly, the specifications for the system are as follows. Every day at a 
specified time the master unit calls the outlying stations according to a list 
and requests information from them. This information is then stored on 
magnetic tape for later off-line processing. The standby unit listens in 
continuously and stores the data it receives on its own magnetic tape. Thus,· 
if all is well, master and standby always have the same data on their 
respective tapes. 

The time at which the calling sequence is to start, the list of stations, as 
well as a list of messages which the system may print out, can all be 
changed on-line by the operator. Furthermore, the operator is able to call 
up stations individually as well as retrieve selected information from either 
magtape. 

The system was programmed entirely in PORTAL, with the exception of 
the nucleus (about 1 K bytes). In particular, all drivers were programmed 
without using assembly language. 
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Our experience with this system was extremely encouraging. The 
deadline for the acceptance test was easily met; and neither the acceptance 
test nor the subsequent operations (the system has been in continuous use 
since March 1979) have turned up any software errors. 

4. 2. A simulation example 

In simulating a polyvalent heating system, full use could be made of the 
possibilities for parallelism as well as of the modular approach. 

Physically, such a system consists of a number of elements such as heat 
stores, heat consumers and producers, etc., which are interconnected in a 
pipe network. For each element there exists a corresponding PORTAL 

module containing a process representing the dynamics of the element. A 
complete system is configured during a dialogue with the computer, 
determining the elements and the actual pipe-layout. This makes the 
program very flexible and easy to use. Each type of element constitutes a 
different simulation problem, but by this separation they are easy to 
handle. Once the framework of the program had been completed, different 
people were able to implement elements without any deep knowledge of the 
intricacies of the rest of the program; only the interface definitions had to 
be observed. 

Furthermore, if desired, true concurrency can be achieved by running a 
number of modules on a second processor. Thus all the calculations for 
solving the differential equations for the elements are done on one 
machine, while the remainder of the program (the simulation control, the 
plotting, etc.) run on another processor. To achieve this separation, only a 
small number of quite localised changes have to be made, essentially 
stretching the interface between two modules across machine boundaries. 

5. Programming and Debugging Support 

Two programs to support the PORTAL system have been written in 
PORTAL: an editor and a post-mortem-dump analyser. 

5.1. The editor 

The editor provides the usual functions for editing files, with the user 
moving a cursor on the display screen to indicate the place where a change 
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is to be made. But in addition to the normal editing mode, this editor also 
checks the PORTAL program being edited for syntactical correctness (line by 
line). 

If so desired, keywords may be entered by pressing just one functional 
key. When the program is displayed or listed, all keywords are (optionally) 
converted to lower case letters for better readability of the program. 

For easier structuring, the program lines are automatically indented. 
Structures (statements, routines, modules) can be properly terminated by 
just pressing the special end-key. 

5.2. The post-mortem analyser 

The post-mortem-dump analyser lets the user request information about 
the values of variables, the status of processes and the calling sequence of 
routines, after a run-time error has occurred. After the error, the entire 
memory partition used by the program is dumped onto a file, e.g. on a 
floppy disk. This file, together with files generated during compilation, are 
then used to produce the required formation interactively. 

It is important to note that the code of the program itself is in no way 
changed by the fact that a PMD analyser is being used. All the information 
the analyser needs to find names and types of variables, line-numbers of 
statements, etc. is contained in the files produced during compilation; they 
provide the connection between the source program and the machine 
representation. 

Depending on the actual system configuration it is also possible to set 
triggers, referring to line numbers. Whenever control passes such a trigger, 
the system is stopped and may be analysed on-line, then execution can be 
resumed. 

6. Conclusion 

Great care has been taken in the design of PORTAL to produce a language 
that will provide the necessary tools and constructs for the efficient 
development of process control software with special emphasis on the 
reliability of the finished product. A great deal of thought and debate has 
gone into it, especially where compromises had to be made between 'pure' 
and 'practical', which sometimes seem to lie at opposite ends of the 
spectrum. 
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Whether it is for the production of a real-time system with physically 
concurrent processes, or for writing an essentially sequential program, 
experience has shown us that we are on the right track and that our new 
development tool is a useful one. 

Acknowledgement 

I would like to thank my friends and colleagues at Landis & Gyr for their 
work on PORTAL, which would not exist without them. 

I would also like to thank Klaus Wirth for numerous fruitful discussions 
and for introducing me to compilers in the first place. 

And finally I would like to thank the referees for their helpful 
suggestions on the first draft of this paper. 

References 

[1] C.A.R. Hoare, Monitors: An operating systems structuring concept. Comm. ACM 17 
(10) (1974) 549-557. 



Algorithmic Languages, de Bakker/van Vliet (eds.) 
© IFIP, North-Holland Publishing Company, 1981, 59-76 

Naming by Colours: A Graph-Theoretic Approach 
to Distributed Structure 

J.D. Roberts 
University of Reading, Reading, U.K 

The use of relative or 'local' naming which is already significant in many 
programming languages is developed further by the concept of a directed 
graph (called a 'name-graph') with labelled nodes and coloured arcs. Such 
name-graphs enable remote objects to be named by 'colour' rather than by 
globally valid labels, and their use is illustrated by systems incorporating both 
active and passive components. Various ways of generating name-graphs are 
explored, as finally also is their application to specifying type and visibility. 

1. Introduction 

In the 1960's Dijkstra [2] suggested the possibility "that a confrontation 
with the intricacies of Multiprogramming [could] give us a clearer under
standing of what Uniprogramming is all about". Another question which 
we might ask in the 1980's is whether a confrontation with Distributed 
Computing might give us a clearer understanding of some of the funda
mental problems of data structure and type. 

In the exploration which follows answers are sought to the following 
questions. 

Should a programming language allow communication 
structure to be described independently of the other details 
of the program? 

Should it be possible for a process to reference neighbours 
other than through global identifiers or formal parameters? 

Can regular but non-rectangular communication structures 
be described concisely by generally applicable methods? 

How can synonymous references be prohibited? 

59 



60 J.D. Roberts 

This study has also been motivated by a longer term wish to understand 
various fundamental problems of how sharing and recursivity in data 
structures should be handled and of how far references can be removed by 
abstraction. 

Eventually perhaps the study will be presented starting with passive data 
structures and working towards distributed activities; but here the 
questions are taken in the opposite order, for the simple reason that this is 
how the exploration has so far taken place. 

2. Naming by Colours 

The basic principle developed here is that the naming of objects in some 
localized context needs only to distinguish between members of that set of 
objects to which reference needs to be made. As such, the principle is 
already well established in programming languages. In the context of an 
ALGOL 60 block, a variable is specified uniquely by its identifier, whereas in 
a global context it would be necessary to specify somehow which instance 
of the block was intended. Although it is not to be found in ALGOL 60, such 
extra-contextual reference to local names is an important feature of more 
recent languages exemplified by the 'inspect' feature of Simula or the 
'with' construction of PASCAL. What does not seem to be found currently 
is the use of local or relative naming in a situation where a fairly large 
number of (active or passive) objects coexist at the same scope level, but 
where in the context of each object, reference needs to be made to only a 
very small number of other objects; yet in distributed computing this seems 
to be a highly realistic requirement. The reasons for this lie in: 

(i) the economic desirability of localizing communication, 
(ii) the fact that many problems do admit solutions having such 

structure, and 
(iii) the simplicity and uniformity of programs which provide such 

solutions. 
In graph-theoretic terminology, the information required to specify such 

a relative or local naming scheme corresponds to a directed graph with 
labelled nodes and coloured arcs. Such a graph we shall call a 'name
graph'. The nodes correspond to the objects, and their labels correspond to 
global identifiers. An arc is directed from an object A to an object B if and 
only if reference has to be made to B in the context of A, and the colour of 
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the arc corresponds to the local name by which reference is made. The 
labels (so-called because they have to be all different) attached to the nodes 
are all strings of symbols over some alphabet, and the developments in the 
later sections will actually use this structure. This is perhaps the only not 
entirely standard graph-theoretic concept. The colours (so-called because 
the same colour may be used on man~ arcs) are treated as symbols with no 
internal structure. As it is sometimes quite natural for an object to be called 
by the same name by more than one process, there is no requirement for 
name-graphs to be properly in-coloured (i.e. have at most one arc of any 
colour directed into any node); but they will normally be properly out
coloured. To violate the latter restriction would lead to non-deterministic 
references to variables which we shall, provisionally at least, avoid. Most 
ways of expressing communication between two activities seem to require 
each to be able to reference the other. For this reason name-graphs related 
to systems of active objects are typically symmetric digraphs but this is not 
an essential property. 

The use of relative names of this kind is analogous to the use of 
pronouns in natural language (see Fig. 1), or the use of logical numbers of 
devices in computing systems. 

thou I 

john 

thou 

here now now 

Fig. I. Hypothetical application of relative names in natural language. 

3. Two Examples 

The applicability of the 'name-graph' concept is not confined to any 
particular communication or synchronization mechanism. To illustrate this 
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fact two examples of asynchronous processing have been chosen which use 
contrasting primitive mechanisms. Both have been described previously 
using global names and here the original mechanism of each is represented 
but in terms of relative names (i.e. the colours of the arcs in a name-graph). 
They are: 

(1) matrix x vector multiplication pipeline [6], using the handshaking 
communication primitives '?' (input) and'!' (output), and 

(2) the dining philosophers [4] using 'p' 'v' operations on semaphores 
and a subroutine calling mechanism. 

3.1. Matrix x vector multiplication 

In this example a stream of 3-vectors is multiplied by a constant matrix 
using a system of 21 processors which are arranged on a rectangular array 

OJ 

s n 

0 
Fig. 2. Name-graphs applied to distributed computing. (a) Matrix x vector pipeline. 
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Fig. 2 (continued). (b) The dining philosophers. 

and the programs which they execute are divided into 5 classes, instances of 
which are located respectively at the north, south, east and west borders 
and centre square of the system. 

In the original description, the definition of each process class referred 
to its neighbouring processes by use of globally recognizable pairs of 
subscripts; but in the context of the name-graph shown in Fig. 2a those 
processes with which direct communication takes place can be identified 
more simply by their relative positions which are denoted by the arc colours 
n, s, e, w. Each node is labelled with a string of length 2 of symbols taken 
from 0, ... , 4, which serves to determine the class of process attached. 

The program below shows how this system could be represented in a 
form which relates to this name-graph but which follows Hoare's original 
version in other details. 
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"matrix x vector multiplication": 
begin 

end 

"Fig. 2a"; 
{This brings into the scope of this block the colours and labels of 

Fig. 2a and the connections between them and also provides the 
environment for defining classes of activity at each of the labelled 
nodes} 
formal j, k: 1, ... , 3; 

{This restricts the classes of symbol for whichj, k may stand when 
used as name parameters delimited by the meta-symbols ( , ) } 
at 'O(k)' : "north"; at '4(k)' : "south(k)"; 
at '(j)4' : "east"; at 'j(O)' : "west"; 
at '(j, k)' : "centre"; 
"north" : *[true--->s !O] 
"south(k)" : "process consuming output(k)" 
"east" : *[x: real; w?x--+skip] 
"west(j)" : "process supplying input(j)"; 
"centre(j, k)": [a: real; "initialize a depending on (j, k)"; 

{ which can be performed prior to run-time 
possibly even when the hardware is being built} 

*[x: real; w? x--+e!x; 
sum: real; n?sum; s!(a*x+sum) 

]] 

3.2. The dining philosophers 

In this classical example the sustenance of each philosopher depends on 
the non-eating state of his left and right neighbours. By using the name
graph shown in Fig. 2b, these neighbours can be denoted by/, r in identical 
routines for each philosopher, and the original identities 0, 1, 2, 3, 4 cease 
to serve any purpose. The solution give here, closely follows that recom
mended in Dijkstra's original discussion [4]. This made use of a routine 
named test(i) for testing and if appropriate stimulating a particular 
philosopher i into eating. In the distributed representation, each potential 
activation of this routine is realized as a separate activity connected directly 
to the philosopher (denoted relatively by the colour ph) being tested. A 
specified test activation is invoked by an occurrence in the program text of 
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a statement of the form 'call ( ( routine activation name))'. It may be 
conceptually useful to regard this as a coroutine call; but in practice the 
simplest of subroutine calling mechanisms will suffice, since the use of the 
global mutual exclusion semaphore in this example ensures that no already 
active routine will be re-entered. 

"5 dining philosophers": 
begin 

end 

"Fig. 2b"; 
formal i: 0, ... , 4; 
at '(i)' : "philosopher"; 
at 'rou(i)' : "test routine"; 
"philosopher" : *[true 

--+p(mut); s := hungry; call(test); 
v(mut); p(pri); 

l; 

"eat"; 
p(mut); s := thinking; 

call(!. test); call(r. test); 
v(mut); 
''think'' 

"test routine" : [ph. s = hungry and eating(; {ph. l. s,ph. r. s} 
--> ph. s := eating; v(ph. pri) 
□ ... {else-condition} ... 
--+skip 

l 

4. Description of name-graphs 

Although each of the name-graphs illustrated in Fig. 2 is intended to be 
an essential part of a computer program, we have not yet proposed any 
notation which would be acceptable to a computer for describing them; nor 
is there any fundamentally urgent reason to do so. I suggest in principle, 
that Figs. 2a, b be considered provisionally as examples of a perfectly 
acceptable 'publication language', and that any sequential text containing 
equivalent information be regarded as analogous to what in the ALGOL 60 
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report was called a 'hardware representation'. Nevertheless, the systematic 
and repetitive structure of the examples does suggest that it would be of 
value (and indeed necessary in larger scale examples) to identify principles 
for describing large regular structures concisely. This is in fact one of the 
distinctive features of Hoare's proposal [6] which is intended as a neutral 
description suitable for realizing either on distributed systems or by 
sequential operations on vectors; but this particular notation is restricted to 
rectangular arrays and we would require different notations to describe 
non-rectangular structures. 

Fig. 3. Fast discrete fourier transform pipeline. 
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One example of a regular but non-rectangular structure has already been 
given in Fig. 2b. Another pattern is exhibited by the fast discrete fourier 
transform pipeline illustrated in Fig. 3. Further examples of communi
cation structure are offered by the hexagonal mesh systems and the 
hierarchical configurations (which map onto Peano-like curves) of Kung 
[8]. Some applications may require the description of structures which 
combine a varied collection of symmetric substructures in this way. One 
example of this would be the use of asynchronous machines to implement 
finite element methods (as described by Loendorf [9]), which would require 
the specification of name-graphs corresponding in structure to the finite 
element decomposition; and these, as has been illustrated by Zienkiewicz 
[13], can be highly complex and irregular. These represent a very wide 
variety indeed and indicate the need for a fundamental approach which 
does not favour any particular type of structure. 

Three basic methods will be explored for describing name-graphs: 
(i) enumeration of nodes and arcs (with their labels and colours), 

(ii) functional description of the maps (over the domain of nodes) 
defined by each colour, 

(iii) generation from smaller name-graphs by means of the operations U 
(union) and x (Cartesian product) supplemented by appropriate joining 
and contracting principles. 

4.1. Enumerative and functional descriptions 

Simple name graphs are readily describable by enumeration of the pairs 
of nodes connected by arcs of each colour e.g. 

"Fig. l": 
name graph 
nodes '1981', 'amsterdam', 'john', 'mary'; 
arcs I : 'john'-> 'john', 'mary'-> 'mary'; 

end 

thou: 'john'-> 'mary', 'mary'-> 'john'; 
here : 'john', 'mary'-> 'amsterdam'; 
now: 'john', 'mary'->'1981' 

The description of a systematically constructed larger graph can 
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alternatively be achieved by defining the underlying functions which it 
describes. This requires some means of indexing whole families of nodes 
with formal parameters, as has already been used viz: 

"Fig. 2a": 
name graph 
formal i: 0, ... ,3; j: I, ... ,3; k: 1, ... ,4; /:0, ... ,4; 
nodes '0(j)', '4(j)', '(j, I)'; 
arcs n: '(k,j)' -+'(k-1,j)'; 

end 

s: '(i,j)'-> '(i + l,j)'; 
e: '(j, i)'-> '(j, i + 1)'; 
w: '(j, k)'-+'(j, k-1)' 

4. 2. Composition from simpler graphs 

Three composition operations on name-graphs are proposed namely: 
union (denoted by U ), Cartesian product (denoted by x) and directed 
coloured join (denoted by 4 where c is a colour); and these are supple
mented by colour contraction operation (denoted by mod). 

The union s1 U !!il of two name-graphs s1 and !!iJ is simply the union of 
the nodes and arcs of s1 and !!iJ with similarly labelled vertices contracted 
to a single vertex and redundant repeated edges with same name removed. 
e.g. 

In\ "-.r":\ s --f::\ 
~ 

~-··SJ:'\ 
\V ~v ~ 

If none of the labels in sl occur in !!iJ, then the structure of the union thus 
defined is equivalent to the conventional union of two unlabelled graphs. 

The product sf x !!iJ is formed by constructing the conventional 
Cartesian product and labelling each vertex with a string formed by con
catenating the strings used to label the corresponding vertices of the 
original graphs. All the edges retain their original colours. E.g. 
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X 

The pair of operators U and x satisfy the normal associative and distri
butive laws of the algebra of sets. 

Using these composition operators, the name-graph of Fig. 2a can be 
expressed as 

I 

~) 
ZJ w u) u) 

(0 0 0)) 

Here the factor graphs could quite reasonably be regarded as 'standard' 
graphs or alternatively they could be decomposed by further recursive 
formulae to even simpler forms. 

An example of a regular but non-rectangular structure is offered by a 
hypothetical pipeline for the fast discrete fourier transform. This was used 
by Dijkstra [3] as an example of how to 'build elephants out of mosquitoes' 
and further considered by the writer [ 11]. A name graph which leads to 
concise and uniform coding at the nodes is shown in Fig. 3 for the case of 
order 8. The nodes are labelled by strings of symbols taken from the 
alphabet { 0, 1, •}. This order-8 graph contains two order-4 graphs as sub
graphs (on the left and right of the picture) in which the vertex labels are 
prefixed by 0 and 1 respectively. These are joined by four order-2 graphs 
which can be generated respectively by appending the strings 00 01 10 11 to 
all the node labels of the basic order-2 fourier transform graph (shown 
below). The order-4 graph is similarly decomposable and more generally 
the name-graph .5'n for the transform pipeline of order 2 n can be generated 
by the recursive formula 

,'?n=(@Xffn-1)U(YiX@n-l) (n>l) 



70 J.D. Roberts 

where 

and 

To describe the kind of name-graph shown in Fig. 2b (for the dining 
philosophers) we introduce the directed coloured join st 4 f!8 which is 
generated by augmenting the union st U f!8 with c-coloured arcs directed 
from every node of f!8 to every node of st. Fig. 2b can thus be expressed as 
follows. 

(e mut 
++ 

sem 0 
G) G) 

0 G 
) 

As with the operation U, if st and f!8 share no labels in common, the 
structure of the graph st 4 f!8 is that of the ordinary undirected join 
st + fJd. In the most general case the join so defined could contain loops 
and multiple edges; but we neither use nor (for the time being) formally 
prohibit such constructions. 

The fact that we are working with labelled graphs actually enhances the 
versatility of the union and join operations. In fact the graph obtained by 
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removing all labels colours and edge directions from Fig. 2b has the kind of 
structure described by Akiyama and Harary [1] in terms of a ternary 
composition operation based on the ordinary join (denoted by'+') already 
mentioned and a more complex corona operation (denoted by ' 0'). 

Finally, we show how the union operation on labelled graphs plays an 
important role in building systems by connecting prefabricated modules; 
but for this purpose we also need a contraction operation. To construct the 
graph denoted by sl mod c (where c is a colour) we proceed as follows. For 
each arc a in sf of colour c we note the originating node a0 and the desti
nation node a I and redirect all arcs pointing to a0 to point to a 1; then we 
remove the c-coloured arcs. E.g. 

mod c 

For the application to the linking of modules we refer to Fig. 4. The graphs 
sf, 86 shown in Figs. 4a and 4b represent classes of activity with unspecified 
input and output. The graph shown in Fig. 4c represents two communi
cating instances of sf and 86 (respectively named X and Y) and can be 
generated by the formula 

((,q[xsf)U('21/ x f!l )U rt) mod link) modparam 
where 

link 

ct~~ 
link 

'211~@ 

(b) 
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oup 

ip 

8 8 (c) 

Fig. 4. (a), (b) Graphs showing classes of activity.wand :'.i. (c) Graph of program formed by 
linking instances of ,w and .JJ. 

5. Some Problems Concerning 'Type' 

5.1. Prohibition of synonyms 

Research into reasoning processes which underlies the composition of 
programs indicates that it is important to avoid any situation in which the 
same object can be called by more than one name. The formal reason for 
this is found in the axiomatic description of the semantics of the assign
ment statement; for whether this be expressed in terms of post-conditions 
implied by pre-conditions [7] or in terms of weakest pre-conditions 
required for given post-conditions [5] the description involves the concept 
of a 'predicate transformer' which substitutes an expression for every 
occurrence of a variable with a given name. If the possibility exists of a 
variable being called by more than one name then the reasoning process 
becomes complicated and prone to error, and it would be difficult for 
example to see the way to automating the verification of assertions under 
such conditions. 

Not every programming language has been designed to meet this 
criterion. To achieve it even in sequential programming involves restriction, 
which is why in the design of PASCAL [7] the substitution of actual var 
parameters is carefully restricted, and variables accessible via pointers are 
segregated from those which are declared 'directly'. These precautions 
indicate the importance which has been attached to the principle of 
prohibiting synonymous names. 



Naming by colours 73 

Unfortunately, name-graphs as described so far do allow multiple 
naming. The problem is not that different processes use different names 
for the same object (as reasoning about a parallel processing environment 
is bound in any case to extend beyond the application of simple predicate 
transformers to sequential sub-programs): it is the more serious problem 
that the same object can be accessed by the same process via different 
naming routes. In the code which drives a dining philosopher, for example, 
the names 

pri, I. r. pri, I. I. l. I. I. pri 

would be synonymous, and to attain the criterion of unique naming it is 
necessary to prohibit all but one of these. In the general case we need some 
principle restricting the use of the name-graph just sufficiently to provide 
one and only naming route to each object to which access is required. 

5.2. Visibility of attributes 

The kind of restriction required on the use of names is comparable to the 
control of visibility of the attributes of an object which is already estab
lished and manifest in several well-known programming languages, such as 
SIMULA (in later versions), PASCAL PLUS and ADA. These languages allow 
the programmer to select which attributes should be accessible from out
side and in some cases to discriminate between read access and write access 
and even (with enumerated types) which constant values of a given type 
may be used; but to prohibit synonyms, such visibility control would in 
general need to be specified individually for each accessing process. The 
collection of attributes of and operations acting upon an object as seen 
through such an individually restricted view is what we shall call the 
apparent type of the object (i.e. how its type appears to the accessing 
process). 

In the dining philosophers configuration for example (Fig. 2b) the main 
code for each philosopher needs only to access the attributes s and test of 
its neighbours, but the 'test' activity requires access to the/ and r attributes 
of the philosopher with which it is associated and these neighbours should 
have an apparent type which allows access to the attributes s, pri, I. s, r. s 
but in a way which prevents synonyms like l. r. s from being formed. To 
achieve all the objectives, three different apparent types of philosopher 
need to be distinguished, namely: 
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philosopher= (s: state; pri: sem; mut: mutex; test: test routine; 
I, r: neighbour); 

neighbour= (test: test routine; s: state) 
{prohibiting synonyms like/. mut (for mut), 
I. r.s (for s) etc._}; 

tested phil = (s: state, pri: sem; I, r: neighbour) 
{ describing how the type of a philosopher 
appears from inside its test routine and 
prohibiting ph. test. ph as a synonym for 
ph}. 

5.3. Graphs of apparent type 

It is convenient to embed visibility restrictions of the kind just described 
in a separate name graph called a graph of apparent type. In such a graph, 
each node is labelled with either a class name or the name of an apparent 
type and the colours of the arcs are taken from those of the main name
graph. Its use is to check the naming route for every reference in a class 
body (at compile-time) by following it through the graph of apparent type 
starting at the node labelled with the class name. The examples shown in 
Figs. 5a and 5b prohibit synonyms while providing all naming needs for the 
programs associated with Figs. 2a and 2b respectively. 

A further use for a type-name-graph is to combine it with the main 
name-graph by directing arcs coloured to denote class from each class 

Fig. 5. Graphs of 'apparent type'. (a) Matrix x vector multiplication. (b) Dining 
philosophers. 
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instance to the node in the type graph with the appropriate class label. Such 
a combined graph would then include the information contained in the 'at' 
statements in the program examples of Sections 3 .1 and 3 .2. 

Finally we could ask the question: ''ls it always possible to prohibit 
unwanted synonyms by using a suitable graph of apparent type?" and this 
can be answered almost trivially 'yes'; for as a last resort we could 
construct a 'forest' of trees where each tree would describe a set of unique 
naming routes for each node in the original name graph. Indeed, we could 
resolve the problem of synonym prohibition by constructing any spanning 
tree of the main name-graph; but in the examples already considered this 
would lead to close neighbours being addressed by circuitous routes and to 
totally unsystematic and irregular coding. The main questions here are 
pragmatic rather than graph-theoretic. 

6. Conclusion 

Affirmative answers to the first three questions posed are, I believe, 
indicated by the examples studied; for although the first two questions 
were subjective in character, it has been shown that the use of name-graphs 
has allowed subscripted references to give way to simple names and more
over to do so in a way which narrows the gap between language and 
machine. The operations defined on name-graphs of union, Cartesian 
product, coloured directed join and colour contraction seem to be useful 
and versatile tools for describing name-graphs. The question of whether 
proof techniques using global invariants will lend themselves to 'naming by 
colour' remains an open topic for further study. 

The last question also seems to be answered by the use of name-graphs to 
define apparent type. In this way it seems practicable to describe and study 
a degree of finely selective visibility which is sufficient to avoid the 
possibility of 'synonyms'. 
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Optimization of Inductive Assertions 

Henry S. Warren Jr. 

IBM Thomas J. Watson Research Center, Yorktown Heights, NY i0598, U.S.A. 

Inductive assertions are assertions placed in the loops of a program, pri
marily to aid a mechanical correctness prover. Here we assume that the asser
tions in a program are executed along with the program. That is, the predicate 
expression of each assertion is evaluated when encountered during program 
execution, to verify that its value is true. 

Inductive assertions are particularly expensive to execute. This is not only 
because they are in loops, but also because they are frequently themselves 
loops (quantified expressions). Thus executing them can slow a program's 
execution by a factor that can be indefinitely large. 

We investigate the possibility of optimizing such quantified inductive asser
tions by substantially reducing the range of quantification. Many inductive 
assertions encountered in practice fall into a simple pattern in which the 
quantifier may, essentially, be removed. This restores the execution time of the 
program to the same order of magnitude that it would have been if the induc
tive assertions were not executed. 

We emphasize methods that are no more costly in compiler size and execu
tion time than conventional global optimization techniques. 

1. Introduction 

This paper explores ways to optimize inductive assertions in computer 
programs. The orientation is toward conventional high level languages 
(PL/I, ALGOL, PASCAL, etc.) that have been augmented to include an 
'assertion' statement. The assertion statement allows simple bounded 
quantifiers over the predicates of the base language. Such quantifiers are 
the minimal equipment necessary to make significant statements about the 
facts alleged to hold at various points in a program, e.g., "array A is 
sorted," "xis the greatest common divisor of y," etc. 

Inductive assertions are, of course, contained in loops. Frequently they 
are quantified expressions, and thus the quantified expression is a loop 
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within one or more containing loops. It is this pattern that we seek to 
optimize: a quantified expression contained in a loop. We are not really 
concerned with whether or not the quantified expression forms part of an 
inductive proof. We will show that little is gained by considering only 
assertions, and, if quantifiers are allowed in contexts other than in asser
tions, much would be lost. 

We emphasize methods paralleling those found in conventional globally 
optimizing compilers. We restrict our attention to the use of transitive 
closure-like processes such as are found in data flow analysis and strength 
reduction problems, and we avoid 'theorem proving' methods, such as 
proving the equivalence or non-equivalence of expressions, and inventing 
inductive proofs. Although what constitutes a 'theorem proving' method is 
ill-defined, we mean to minimize complicated (long) algorithms unless they 
are likely to be in the compiler anyway, and we mean to completely avoid 
algorithms with exponential worst-case running time. 

We first discuss two simple examples. Then we make necessary quali
fying remarks about the assertion language. Next we discuss the important 
issue of safety, and lastly we give two methods for doing the optimization, 
and discuss their relative merits. 

This paper is a summary of work done as a thesis at New York Uni
versity's Courant Institute of Mathematical.Sciences. It stems from work 
done there on algorithmic differentiation [2, 3]. The interested reader is 
referred to the thesis [4] for a more complete development. 

2. Basic Examples 

The optimization we are looking for is illustrated by the program below. 
This program searches a vector A, of length n, for the first component 
equal to a given item x. If found, it returns its index, and otherwise it 
returns zero. 

function searchl(A, n,x); 

do i=l ton; 
if A(i) =x then go to out; 
end; 

return O; 
out: return i; 

end search]; 

"Not found." 
"Found." 
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The main assertions for this program are (1) at the 'not found' exit, all 
components of A are not equal to x, and (2) at the 'found' exit, i indexes 
the first component of A that is equal to x. The inductive assertion asserts 
that all components checked thus far are not equal to x. No entry assertion 
is necessary, but for completeness we write 'assert true' at the entry point. 
The fully annotated program is shown below. 

function searchl(A, n,x); 

Al: assert true; 
do i = I ton; 

if A(i) =x then go to A4; 
A2: assert 1 :5 Vk:5i: A(k)=t=x; 

end; 
A3: assert I :5 Vk:5n: A(k)=t=x; 

return O; "Not found." 
A4: assert (1:5 Vk<i: A(k)=t=x) &A(i)=x; 

return i; "Found." 
end search]; 

A2': assert A(i)=t=x; 

We wish to optimize assertion A2, as it is iterative and is in a loop. 
Observe that the only variable occurring in this assertion that varies in the 
loop is i: the upper limit of the quantifier. Furthermore, observe that i 
increases by one each time around the loop. Therefore, if the assertion was 
true on one pass around the loop, then on the next pass it is certainly true 
that 

l:5Vk:5i-1: A(k)=t=x, 

and so the assertion will be true iff A(i)=t=x. Hence the assertion may be re
placed by A2' shown in the box below the program. Replacing A2 by A2' 
restores the program from O(n2) back to the O(n) execution time character
istic that the program would have without the assertions. 

This is the basic pattern that is studied here. We will speak of this trans
formation as 'differentiating' the program; A2' is the derivative of the 
original assertion with respect to the change i +- i + 1. 

Although there are several unstated assumptions in the above reasoning 
(e.g., we have used the fact that i~ 1 in the loop, and have assumed that 
execution terminates if the assertion ever evaluates to false), this basic 
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pattern occurs in many programs. The pattern is: 
(1) there is a quantified expression in a loop, 
(2) the range of quantification increases or decreases monotonically, and 
(3) the free variables in the quantified expression are loop constants. 
For our methods to be practical, it is also necessary that we can easily 

detect when these conditions are satisfied. It is desirable and possible to 
relax condition (3) slightly, by allowing indexed array assignments in the 
loop. 

Now let us consider another equally simple example, but one that uses 3 
quantifiers rather than V (although V quantifiers seem to be more common 
than II, with the expressions in prenex normal form). The program below is 
a somewhat contrived variation of search] for which the assertions would 
most naturally be writen with II quantifiers. It searches a vector A for an 
arbitrary occurrence of a component equal to a given item x, and it is given 
the fact that A is certain to contain some component equal to x. 

function search2(A, n,x); 

Al: assert I -5.Ilk-5.n: A(k) =x; 
do i = l ton; 

if A(i) =X then go to A4; 
A2: assert i + l -5. Ilk-5. n: A(k) = x; 

end; 
A3: assert false; 

return O; 
A4: assert A(i) =x; 

return i; 
end search2; 

A2': if i = 1 VA(i) =x then 

"Not found." 

"Found." 

assert i + 1 -5.Ilk-5.n: A(k)=x; 

The program itself is identical to search]. The assertions, however, are 
entirely different. The input assertion specifies that some component of A 
is equal to x. The inductive assertion says that some component in the 
unexamined portion of A is equal to x. 

Loop fall-through should never occur; 'assert false' is appropriate there. 
The assertion we wish to optimize is A2. Notice that the range of the 

quantifier, i + 1 ton, gets smaller and smaller as control flows around the 
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loop. One would expect this for existential quantifiers, and the opposite for 
universal quantifiers, as this makes them get stronger and stronger with 
successive loop iterations. (However, this is not always the situation.) 

To optimize A2, consider the usual case in which A2 is executed, i.e., the 
case in which it has been executed before. If A(i) =;;x, then there is no need 
to check the assertion: its truth follows from the previous iteration. On the 
other hand, if A(i) =x, then the assertion must be checked for the whole 
range from i + 1 ton. (Of course if A(i) =x, assertion A2 is not reached, 
but our optimizer would not know this. Furthermore, in more general 
situations, particularly when the program has bugs or incomplete 
assertions, the assertion must be fully checked.) Thus for the usual loop 
iteration, assertion A2 can be replaced by: 

if A(i) =x then assert i + l $.Jlk$.n: A(k)=x; 

However, if that were all that were done, the revised program would not be 
the same as the original on first time through the loop. To properly handle 
this case, the assertion must be executed on first time through. The correct 
replacement for A2 is shown as A2' above. 

Our 'optimization' has, unfortunately, made the program larger. 
However, it is a bona fide optimization in time, because the quantified part 
of the assertion is only executed on first time through the loop. One would 
expect that in more general situations, also, the quantifier would not 
usually be executed. 

The two methods to be described transform the program quite differ
ently from what was just illustrated. However, they retain the property that 
the range of quantification executed is substantially reduced. 

3. The Assertion Language 

We require that the evaluation of assertions be without side effects, and 
this is an unpoliced rule. (The program must function in the same way with 
or without correct assertions being compiled with it.) 

Bound variables are of strictly local significance, i.e., in: 

k=O; 

assert 1 < Vk< n ... 

print k; 
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the value printed will be zero. 
It will be helpful for the optimizer to know what happens if an assertion 

evaluates to false: Does the program terminate or does it continue to run? 
Must all the variables be available for dumping with the values set as if no 
optimization had been done? The greatest optimization is possible if false 
assertions result in termination, as will be seen. However, we do not make 
this assumption. The reason is that we wish to be able to optimize 
assertions of forms such as "assert PVQ"; after such an assertion it is not 
necessarily the case that P is true, or that Q is true. 

We assume that the order of evaluation of Vand 3may be reversed, i.e., 
m?!. Vk?!.n may be replaced with ns Vksm. This is not essential but is a 
convenience for the optimization algorithms. It is used to bring quantifier 
expressions into a 'standard form', which is described in Section 5. 

We also assume that the implementation of the language is free to 
evaluate quantifier expressions over their entire range of quantification, 
even if the value of the expression is apparent before the range is ex
hausted. 

Lastly, we assume the implementation is free to evaluate all sub
expressions of a quantified expression (i.e., the 'left-to-right rule' for 
Boolean expression is not used). This assumption is not essential, but it per
mits breaking up a quantifier expression to consider its parts separately for 
optimization. For example, in ''assert P & Q '', it may be that no optimiza
tion can be done, because variables of P are assigned to in the region of 
optimization. We allow breaking this up (if necessary) into t 1 =P; t2 = Q; 
assert t1 & t2 , and then consider separately P and Q for optimization. This 
'breaking up' is not discussed here (see [41). 

4. Safety 

There is no generally accepted and unambigous definition of 'safe' 
transformation. We take a fairly conservative position, and consider any 
of the following ill-defined operations to be unsafe: 

(a) division by zero ('divide check'), 
(b) fixed point overflow, 
(c) subscript or substring range check, and 
(d) use of an uninitialized value. 
Following Kennedy [I], we allow the optimized program to execute 
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fewer ill-defined operations, and to execute them in different places and in 
a different order, but it must not execute any new ill-defined operations. 

In searching for reasonably general and simple ways to optimize 
inductive assertions, problems of safety were frequently encountered. For 
example, let us see what happens if we apply the 'strength reduction' 
technique to the search] program. This technique will be reviewed in a later 
section; suffice it to say here that the technique is to maintain the current 
value of the expression being optimized in a variable t. The variable t is 
initialized at loop entry and is updated wherever the value of the expression 
being optimized might change. This transforms search] to the code below, 
where we explicitly show the loop control steps. 

function searchl(A, n,x); 

i = 1; 
t= 1 ::5 Vk:;;i: A(k):;t=x; "Inserted". 

Ll: if i >n then go to L2; 
if A(i) =x then go to out; 

Al: assert t; 
i=i+l; 
t=t & (A(i)=t=x); 
go to Ll; 

L2: return O; 
out: return i; 

end search]; 

''Inserted.'' 

A safety problem should be suspected, because we have inserted code at 
points which are not necessarily executed either before or after the point 
(Al) from which the code came. In fact both inserted evaluations of 
"A(i) :;t=x" are unsafe. A subscript range check could occur at the first if 
n =0. The second will evaluate A(n + 1), which could also cause a subscript 
range check. 

These safety problems in search] are relatively easy to fix, because they 
merely involve illegal computations that "don't matter". That is, if they 
don't cause an interrupt (because of insufficient checking on the machine), 
then the program will still work correctly. If they do cause an interrupt, the 
proper fix is to simply ignore it. (This is not entirely trivial, because the 
language implementation must discern which interrupts can safely be 
ignored.) 
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However, there are more difficult situations. Since we are manipulating 
iterative expressions, we must take care not to inadvertently insert a near
infinite iteration. This could happen in connection with interchanging the 
order of quantifiers, which is sometimes desirable to do to optimize nested 
quantifiers [4]. Suppose we change the expression 

1 :5 Vi :5m: [P(i)Vl :5 VJ :5n: Q(i,j)] (1) 

where m,P, and Qare loop invariant, but n is varying, to: 

1 :5 Vj :5n: 1 :5 Vi :5 m: [P(i)VQ(i, j)] (2) 

to simplify differentiating it with respect to changes in n. Then the 
possibility exists that when m = 0, n is undefined (uninitialized). An attempt 
to evaluate (2) could then cause an enormous value to be used for n, which 
would cause the 'optimized' program to loop nearly indefinitely. The 
proper fix for this depends upon the details of the optimizing transforma
tion being used. For example, in the strength reduction technique, we 
should insert (1) at loop entry, not (2), even though it is (2) that we are 
differentiating. However, the point being made is that no system that 
detects errors by means of interrupts can fix this type of safety problem (we 
assume that the language implementation does not include a check for uses 
of uninitialized data, which is usually the case with conventional HLL's). 

We develop two methods of optimizing quantified expressions in loops, 
which observe the safety requirement in different ways. In the first, the 
'min-k' method, we avoid safety problems by limiting ourselves to trans
formations that adhere to the principle that for every expression e inserted 
into the program in the course of optimizing it, the original program would 
evaluate e, either before or after the point at which we inserted e, for the 
same values of the arguments of e. Thus if the optimized program 
interrupts or loops indefinitely in evaluating e, the original program would 
also, although possibly sooner or later than the optimized program. 

We will, however, find it necessary to allow minor violations of this, for 
example introducing an evaluation of e + 1 in the neighborhood of an 
evaluation of e in the original program. 

The second method uses the technique of strength reduction. We avoid 
this method's safety problems by (1) avoiding the use of uninitialized 
variables, and (2) by monitoring interrupts via a mechanism such as the 
PL/I 'ON' statement. If an interrupt occurs in an expression that was 
inserted by the optimizer, then a switch variable is set that causes re-
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evaluation of the expression being optimized when it is reached at its 
original position in the program. 

5. The 'min-k' Method 

In this method we keep track of the index k1 of the least false value of 
P(k) in the expression being optimized, 

q=m$ Vk$n: P(k), (3) 

or equivalently the first true value in the corresponding existential predi
cate. If (3) is true, we record this fact with a special value of k1 . 

Reduced to its bare essentials, the method is to transform the program: 

do while ... ; 

end; 

where m and P(k) are loop-invariant, to: 

k1 =m; 
do while ... ; 

The value of 

k1=k1$min k$n:,P(k); 
q=(k1 >n); 

end; 

m$min k$n: P(k) 

is the least k in the range m to n inclusive for which P(k) is true, if such a k 
exists, or n + 1 if m $ n and all P(k) in the indicated range are false, or m if 
m>n. 
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This method has the following virtues: 
(1) It does not require any code to be inserted at the points where n is 

assigned to, and thus avoids the safety problems that this would bring on. 
(2) It gives the correct result and the evaluation of P(k) is safe regardless 

of the value of n1, i.e., regardless of how n varies with each loop iteration. 
(3) It gives the correct result if initially m > n (simpler methods break 

down in this case). 
(4) Since no code is inserted at the assignments to n, these may be in a 

strongly connected region strictly contained in the strongly connected 
region containing the assignment to q, and the transformation is still an 
optimization. 

(5) The method is correct and there is no safety problem if the assign
ment to q is conditionally executed in the loop. 

(6) The optimization is particularly 'strong' in that if n1 li> I and q is 
false, P(k) is evaluated only once per iteration. 

However, the method should be extended to handle indexed assignments 
to arrays that occur in the quantified expression. A more complete descrip
tion of the min-k method, that allows such array assignments, follows. 
This description is simplified from that in [4], in that here we assume that 
the quantifier being optimized is the outermost position (is not nested), and 
here we do not independently consider for optimization P and Q in the 
form "assert P & Q". 

The optimization may be applied when the following conditions are met: 
(1) A quantifier expression Q occurs in a strongly connected region R. Q 

is of one of the sixteen forms: 

m:5,.Vk:5,.n: P(k), 

m $. :il'k $. n: P(k), 

or 

m>Vk~n: P(k), 

etc., where m and n are integer-valued expressions independent of k, and P 
is a predicate expression possibly dependent on k. 

(2) Q is free of side effects, and the order of evaluation of the quantifier 
may be reversed. 

(3) At most one of the range limits m and n varies in R. ([4] shows how 
to remove this restriction, at some cost in compiler complexity.) 
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(4) All the free variables of P that are assigned to in R must be array 
variables, and the assignments must be array assignments satisfying: 

(a) Each such assignment is of the form A(xJ = ... , where xi is an 
arbitrary integer-values expression (possibly involving A), except X(=F - oo, 
the maximum negative number of the machine, and A is a vector (one
dimensional array) occurring in P only in the form A(±k+c1), where k is 
the bound variable of Q, and each c1 is invariant in R. 

(b) The control flow is such that an assignment to A(xJ cannot be 
executed twice without an intervening execution of Q. 

Observe that there are few control flow restrictions. We require that Q 
be in an SCR, but the structure of the SCR is arbitrary. The assignment to 
the variables of morn, if any, may be in an SCR that is properly contained 
in R and does not contain Q. However, restriction (4(b)) implies that any 
relevant array assignments are not in such an SCR. 

Restriction (4) implies that P does not contain a free occurrence of the 
varying range limit. 

If the above conditions are met, the quantifier Q is optimized by the 
transformations given below. 

(1) Convert the quantifier to 'standard form' as follows: 
(a) If the quantifier is 3, replace it with -, V,. 
(b) Replace 'decrementing' quantifiers with 'incrementing' ones, e.g., 

replace "m> Vk?:.n" with "n$ Vk<m", etc. 
(c) Replace "m<Vk<n" with "m+l$Vk$n-1", etc., so that 

only '$' remains. 
(d) If the lower limit m varies (while the upper limit n is constant), 

replace "m$ Vk$n: P(k)" with "-n$ Vk5'-m: P(-k)". 
The quantifier is now in the form 

m$ Vk$n: P(k), 

with m invariant in R. We will refer to this 'standard form' quantifier as 
Qs. 

(2) At each entry to R, insert the code (outside of R): 

k1 =-oo; 
t1 = -oo; 

t,=-oo; 

where there are r array element assignments in R as described in restriction 
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(4) above, and -o:i denotes the maximum negative number representable 
on the machine. 

(3) Replace each such assignment A(x;) = ... with 

A(t;) = ... ; 

(This is simply to capture the subscript value in the variable t;.) 
(4) Replace the quantifier in standard form, 

q=m5 Vk5n: P(k), 

with the following code: 

if m5n then do; 
if k1 =-o:i then k1 =m; 

if t; * -o:i then do; 

[
kd= ±(t;-cj); 
if m5kd<k1 & kd5n 
then if ,P(kd) then k1 = kd; 
f;=-o:i; 

end if t;; 
k1=k15min k5n; ,P(k); 
q=(k1>n); 
end; 

else q = true; 

where the code indicated by the inner bracket is repeated for each 
j = 1, 2, ... ,s, wheres is the number of occurrences of A(±k+ c1) in P, and 
the code indicated by the outer bracket is repeated for each i = 1, 2, ... , r 
(giving (3s + 3)r lines of code represented by the six bracketed lines). In the 
assignment "kd = ± (t; - cj)", the ± is to be taken in the same sense as the 
± in the corresponding term A(±k+c1) occurring in Q5 • 

The main idea of this transformation is that whenever an array assign
ment 

A(x)= ... ; 

occurs that can affect P(k) in Q5 , we reduce the value of kr, if necessary, to 
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maintain the truth of: 

k1 ?:.m & ms Vksk1 - l: P(k), 

which is the invariant that makes the method work. If P(k) contains a 
reference to A(k + c1 ), the assignment to A(x) might affect the value of P(k) 
for x=k+c1, i.e., for k=x-c1. Therefore, before evaluating the mink 
functional that replaces Q5 , we reduce k1 to x- c1 if (1) m ~ x - c1 < k1, 
(2) x-c1s n (for reasons of safety) and (3) P(x- c) is false. 

We do not attempt to 'correct' Q5 at the point of the assignment 
A(xi) = ... ; this would lead to safety problems. Instead, at the point of the 
assignment we save the value of the subscript X;, and use it to correct Q5 at 
the point where Q appeared in the original program. Since we have intro
duced only one temporary t; for each assignment A(x) = ; .. , it is necessary 
that this temporary be used (if the quantification ranges are such that it will 
be used) to update Q5 before the assignment is reached again. That is the 
reason we require that the control flow be such that an assignment to A(x;) 
cannot be executed twice without an intervening execution of Q (restriction 
(4(b))). 

The test "if m ~ n ... " may seem unnecessary. However, it provides a 
valuable safety check. Without it, there would be a possibility of evaluating 
c1 when the original program would not. This would cause trouble in a 
quantifier expression such as 

Is Vksn: ... A(k+ lie) ... 

The optimized program without the ''if ms n ... '' test would cause a divide 
check if conditions are such that when n < 1, c = 0. 

Reference [4] contains a proof that the transformation is correct, and is 
safe within limits that are defined there. 

Below is a sample program, the 'insertion sort', before and after optimi
zation by the min-k method. Assertion Al is optimized. Assertion A2 is not 
optimizable because an unbounded number of elements of A get assigned 
to between two successive times that control reaches A2 (restriction (4(b)) is 
not satisfied for any SCR that contains A2). 



90 Henry S. Warren Jr. 

procedure insort(A, n); 
doj=2 ton; 

i=j-1; 
x=A(j); 

L: if x<A(i) then do; 
A(i + 1) =A(i); 

Al: assert i < Vk-5.j: [A(k-1)-5.A(k) &x<A(k)]; 
i=i-1; 
if i >0 then go to L; 
end if x; 

A(i + I) =x; 
A2: assert 1 -5. Vk<j: A(k)-5.A(k+ 1); 

end do j; 
end insort: 

1. procedure insort(A, n); 
2. do j = 2 ton; 
3. i=j-1; 
4. x=A(j); 
5. k1=-oo; 
6. t1 = -oo; 
7. L: if x<A(i) then do; 
8. t1=i+l; 
9. A(t1) =A(i); 

10. Al: 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

if i <j then do; 
if k1 =-oo then k1 =-j; 
if t 1 * -oo then do; 

kd= -(ti+ l); 
if -j -5. kd-5. k1 & kd-5.-(i + 1) then if 
,[A(-kd- l)-5.A(-kd) &x<A(-kd)J then k1 =kd; 
kd= -ti; 
if -j-5. kd< k1 & kd-5.-(i + 1) then if 
,[A(-kd-1)-5.A(-kd) &x<A(-kd)l then k1 =kd; 
!1=-00; 

end if t1; 

k1 =k1 -5.min k-5.-(i + l); 
,[A(-k- l)-5.A(-k) & x<A(-k)] 
q=(k1>-(i+ I); 
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25. 
26. 
27. 
28. 

Optimization of inductive assertions 

end; 
else q = true; 
assert q; 
i=i-1; 
if i >0 then go to L; 

29. end if x; 
30. A(i + I) =x; 
31. A2: assert l:::; Vk<J: A(k)::5A(k+ l); 
32. end do j; 
33. end insort; 

6. The Strength Reduction Method 
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In this section we show how to apply the strength reduction, or 'formal 
differentiation', technique of Paige and Schwartz [3] to the optimization of 
inductive assertions. 

We will replace V and ti with arithmetic summation, with the quantified 
expression having true treated as 1 and false treated as 0. The assignment: 

q=m::5 Vk::sn: P(k); 

is replaced with: 

n 

C= L ,P(k); 
k=m 

q=(C=0); 

where C is a compiler-generated integer-valued temporary. We transform 
ti-expressions similarly. The expression to optimize now is the summation. 

We make this transformation for two reasons. First, it permits differ
entiation with respect to both increasing and decreasing changes in the 
range of quantification. Second, it is necessary to handle differentiating 
with respect to array element assignments by the Paige-Schwartz method, 
which requires a subtractive correction followed by an additive correction 
to the expression being differentiated. 

The optimization in a typical situation is illustrated in Table 1. 
The assignment "C=C-[A(i)<x]" is evaluated by evaluating the 

predicate, converting true or false to 1 or 0, respectively, and subtracting 
the I or O from C. 
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Table I 

Original 

do i = I ton; 

A(i)= ... ; 

end; 

Henry S. Warren Jr. 

Optimized 

i =I; 
C= I:~~I [A(k)<x]; 
L: if i > n then go to out; 

C= C- [A(i)<x]; 
A(i) = ... ; 
C=C+ [A(i)<x]; 

(no code). 

C= C+ [A(i + l)<x]; 
i=i+l; 
go to L; 

out: ... 

The transformation has several safety problems: 
(1) If n:$;0, the optimized program evaluates "A(l)<x" (second line), 

whereas the original program does not. Possibly in this case neither A nor x 
is defined, e.g., they might have the PL/I BASED storage attribute, and the 
base pointers may not be initialized. Then the attempt to evaluate 
"A(l) <x" can cause an addressing exception. Also, if n :$; 0, array A might 
be of zero extent, in which case the reference to A(l) would cause a sub
script range check. If these interruptions do not occur, there might be an 
overflow interruption if ' <' is implemented by subtraction (because of the 
reference to an undefined quantity). 

(2) If n >0, the optimized program evaluates A(n + 1) (in the term 
[A(i + 1) <x], on the last loop iteration), whereas the original program does 
not. This could cause a subscript range check or overflow interruption. 

(3) Even if the reference to A(n + 1) does not in itself cause an interrup
tion (e.g., if subscript range checking is disabled), it can cause another 
problem. It causes the optimized program to calculate a slightly larger 
maximum value of C than the original. This is not a serious problem for 
the above program (surely C < 231 ), but there are probably analogous situa
tions involving other functionals, such as the L of real numbers, where 
this problem (possibility of overflow) cannot be ignored. 

(4) A(i) in the fourth line, and also A(i + 1) in the term [A(i + l)<x], 
may be undefined (for any i), as the statement ''A (l) = ... '' may be initializ
ing the array. These references to an undefined quantity might cause an 
overflow interruption, etc. 
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These safety problems may be solved as follows. Problem (1) is caused 
by evaluating the expression being optimized at loop entry, when the loop 
may in fact not be executed at all. The interrupt cannot be simply ignored, 
because it may be a 'legitimate' one that would have occurred in the 
original program (if the loop is executed one or more times). We solve this 
problem by leaving the expression being optimized where it was in the 
original program, but conditionally executing it under control of a Boolean 
switch variable sw. At loop entry, we set sw to true, which causes C to be 
initialized when it is first encountered in the loop. Then, sw is set to false, 
so that subsequently C will be calculated in the more efficient, strength 
reduced, way. 

The second problem, that the optimized program evaluates A(n + 1) on 
the last loop iteration, is solved in a similar way (note that a 'legitimate' 
interrupt could also occur at this point). We replace the code 

i = i + 1, 

with the following: 

on error sw = true; 
C= C+ [A(i + 1) <x]; 
revert error; 
i=i+l; 

The 'on error' statement signals the operating system to execute the code 
"sw =true;" if any type of interrupt should occur after execution of the 
'on error' statement. After applying the differential correction to C, the 
program executes 'revert error'. This signals the operating system to cancel 
the last executed 'on error', and to revert to the previous error action, 
whatever it was. If no interrupt occurs, C is differentially updated. If an 
interrupt occurs, the value of C is undefined, but sw is set to true. If control 
never reaches the point of the original expression being optimized, then the 
interrupt is in effect ignored, as it should be. If control does reach the point 
of the original expression, then the expression will be reevaluated in its 
original form, and the interrupt will occur, as it should. 

Problem 3 above (that the optimized program calculates a slightly larger 
value of C than the original) is also solved by this technique. 

Problem 4, that the first reference to A(i) in the code: 

C=C-[A(i)<x]; 
A(i)= ... ; 
C=C+[A(i)<x]; 
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may be undefined, is solved in a similar way. We surround the first and last 
of the three statements above with 'on error - revert error.' 

The complete transformation of our skeletal example is shown in Table 
2. 

Table 2 

Original 

do i = 1 to n; 

A(i)= ... ; 

end; 

Optimized 

i = 1; 
sw=true; 
L: if i > n then go to out; 

on error sw = true; 
C= C- [A(i)<x]; 
revert error; 
A(i)= ... ; 
on error sw = true; 
C=C+[A(i)<x]; 
revert error; 

if sw then do; 
C= L~~i [A(k)<x]; 
sw=false; 
end; 

on error sw = true; 
C=C+[A(i+l)<x]; 
revert error; 
i=i+l; 
go to L; 

out: ... 

The 'on' and 'revert' statements may be implemented in a way that has 
practically no cost in execution time, as long as interrupts do not occur. 
The technique involves the creation of tables that define the beginning and 
ending addresses of the machine code that is bracketed by 'on' and 'revert'; 
see [4] for details. 

The reader is also referred to [4] for a detailed description of when this 
transformation may be applied, exactly how to do it, a proof that it is 
correct, and a proof that it is safe, with minor qualifications. 

Below we show the 'insertion sort' program after optimization by the 
strength reduction method. 
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I. procedure insort(A, n); 
2. doj=2ton; 
3. i=j-1; 
4. x=A(j); 
5. sw=true; 

6. L: if x<A(i) then do; 
7. 
8. 
9. 

10. 
11. 

12. 
13. 
14. 
15. 
16. 

17. 
18. 

19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 

Al: 

on error sw = true; 
if i + 1 ::5 (i + l) - ( -1) ::5 j then C = C -

---, [A ( ( (i + 1) - ( -1)) - I) ::5 A ((i + 1) -- (-1)) 

& x<A((i + 1)-(-1))]; 
if i + l ::5 (i + 1) - 0 ::5j then C = C -

,[A(((i + l)-0)-1)::5A((i + 1)-0) 
& x<A((i + 1)-0)]; 

revert error; 
A(i + I) =A(i), 
on error sw = true; 
if i+l::5(i+l)-(-l)::5j then C=C+ 

,[A(((i + 1)-(-l))- l)::5A((i + 1)-(-1)) 
& x<A((i + 1)- (-1))); 

if i+l::5(i+l)-0:::::j then C=C+ 
,[A(((i + 1)-0)-l)::5A((i + 1)-0) 

& x<A((i + 1)-0)); 
revert error; 
if i <j then do; 

t=i+l; 
on error sw = true; 
C= C+ [Z,~n}m-1,J)-, [A(k- l)::5A(k) & x<A(k)]; 
revert error; 
m=t; 
if sw then do; 

C= [{=m---, [A(k- l)::5A(k) & x<A(k)]; 
sw=false; 
end; 

q=(C=0); 
end; 

else q = true; 
assert q; 
i=i-1; 

95 
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35. if i >0 then go to L; 
36. end if x; 
37. A(i+l)=x; 
38. A2: assert 1::; Vk<): A(k)::;A(k+ 1); 
39. end do); 
40. end insort; 

7. Summary 

We have studied a number of examples of inductive assertions. We have 
observed that they frequently involve quantifier expressions, and that there 
are many opportunities to substantially optimize these quantifier express
ions. In many cases these optimizations can be done by straightforward 
extensions of the facilities that are normally found in globally optimizing 
compilers. 

We believe the optimization methods described fit in well with a conven
tional globally optimizing compiler. The main functions that are normally 
included in such a compiler, and that are used by our optimizing methods, 
are control flow analysis and data flow analysis. Either interval analysis or 
SCR analysis would be adequate for our purposes. In the 'min-k' method, 
we use data flow analysis only to the minor extent of detecting which 
variables and expressions are invariant in each region. In the strengh 
reduction method, we use data flow analysis for this and also for a map 
that gives all the 'definition' (assignment) points that reach a given use. 

A sampling of programs was obtained from various sources in the litera
ture, which contained a total of 38 inductive assertions. In this sample, it 
was found that about 70% of the inductive assertions could be optimized 
by some algorithmic differentiation technique. The methods we have des
cribed get about 70% of these, which amounts to about 50% of all the 
quantifiers appearing in loops. When the optimization does apply, it fre
quently gives an 'order of magnitude' improvement in execution speed. 

The table below compares the two methods of optimizing inductive 
assertions that were given. The methods are compared as regards range of 
applicability, output code volume, and complexity added to the compiler. 
Both methods are approximately equal in output code execution time. 

In Table 3, R is the strongly connected region with respect to which 
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Table 3 

Min-k Strength reduction 

Easily handles only one varying range limit Both range limits may vary 

No restriction on placement of assignments No assignment to a range limit may be in an 
to range limits in R SCR that is wholly contained in R and that 

does not contain Q 

All array references in Q that undergo assign
ments in R must be of the form A (±k + c) 
with cJ invariant in R 

Arbitrary assignments to range limits are al
lowed 

All array references in Q that undergo assign
ments in R must be of the form A (±k + c) 
with cJ a constant (known at compile-time) 
and all signs of k the same 

Range limits must be recursively additive or 
monotonically increasing (upper limit) or de
creasing (lower limit) 

Optimized code does not generate interrupts Optimized code may generate interrupts; 
some sort of interface with the operating sys
tem, such as 'on units', is required to allow 
execution to continue 

Inserted code volume is large at the point of l nserted code volume is large at assignments 
Q, small at other points to range limits and to arrays that appear in 

Q, small at other points 

Complexity added to compiler is 509 SETL Complexity added to compiler is 687 SETL 
source lines of code source lines of code 

optimization is being done, Q is the quantified expression being optimized, 
and A is an array that is referenced in Q and that is assigned to in R. 
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Current vector computers such as the Cray-1, Cyber 205 SI, DAP or BSP 
pose a special challenge to the software designer as the available software tools 
and techniques are far behind the hardware developments, and the goals of 
efficient vector programming seem to conflict with some of the basic principles 
of good software engineering. After studying some properties of these 
computers, with particular emphasis on the Cray-!, we purport to show that a 
systematic approach to vector programming is possible and fruitful; the 
proposed methods are applied to the systematic, proof-oriented derivation of 
several vector algorithms. Language aspects are also considered. 

1. Introduction 

The advent of 'second-generation' vector processors [8] such as the 
Cray-I, CDC Cyber 205, Lawrence Livermore Laboratory SI, ICL DAP 
and Burroughs BSP, is one more piece of evidence for the fact that soft
ware lags far behind hardware as far as practical industrial usage is 
concerned. These computers, built with the latest LSI or VLSI technology 
in highly optimized architectures, are capable of achieving speeds which 
were unheard of before: for example, a Cray-1 computer will in good 
conditions carry out more than 100 million 'actual' operations, excluding 
control, per second. On the other hand, a look at the software provided 
with these 'super-computers' will show them to be what may be called 
Fortran machines: even though processors for other languages may exist, 
these computers are obviously tailored to a philosophy of programming 
which has the static array as its only data structure and the DO-loop as its 
main control structure. Recipes given for writing efficient programs in that 
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framework [6], seem at first glance to be very far from modern ideas about 
programming, if not incompatible with them. 

Vector programming thus appears as a challenge for the software 
specialist. Areas where advances are needed include the following inter
related topics: 

(1) algorithmics (algorithms for vector processing, and methods for 
finding such algorithms); 

(2) program design (how to find program and data structures which will 
lead to efficient use of supercomputers while ensuring other program 
qualities such as reliability, clarity, portability, modularity, etc.); 

(3) program transformation (methods for adapting existing programs to 
efficient execution on vector computers); 

(4) languages for vector programming; 
(5) proof methods. 
The aim of this paper is to lay some foundations for a systematic treat

ment of vector programming. It is mostly concerned with (1) and (2), with 
a brief discussion of (4). 

The particular machine which motivated this study is the Cray-1 
computer, which seems to be the most widely available among the 'second 
generation' vector machines, and is quoted as the fastest currently avail
able computer, even in scalar mode [4, 8]. Most of the discussion is, 
however, also valid for the other machines. 

In Section 2, we give a software interpretation of the rules which must be 
obeyed by a computation in order to be able to use the vectorization 
capabilities of the hardware. In Section 3, we give a more abstract interpre
tation of these rules in terms of the data types involved. Section 4 discusses 
language problems. Section 5 is devoted to a study of systematic program 
construction techniques applied to vector programming; several 
algorithms, in particular a 'vector Cholesky', are derived. 

2. Rules for Vectorization 

Vector machines require that a program satisfy certain conditions in 
order to be vectorizable, i.e. amenable to processing in vector, as opposed 
to scalar, mode. The study of these conditions is particularly interesting in 
the case of vector computers such as the Cray-I or BSP which accept 
standard FORTRAN, so that vectorization rests with the compiler rather 
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than the programmer. Abstracting from machine peculiarities, five basic 
conditions appear as necessary and sufficient: 
- repetitive series of operations; 
- primitive operations only; 
- regularity; 
- no backward dependency; 
- no cross dependency. 

These conditions are studied in [12] for the Cray case. We shall outline 
them here in general terms. 

2.1. Repetitive series of operations 

The only sequences amenable to vectorization are loops, and, more 
precisely, for loops, i.e. counter loops with a number of executions known 
at the outset. The/or loop control structure, associated with the array data 
structure, is the software representative of the so-called SIMD (Single 
Instruction stream, Multiple Data stream) mode of restricted parallelism. 

2.2. Primitive operations only 

With some slight extensions, only assignments and numerical or boolean 
operations are allowed in a vector loop. This precludes in particular jumps, 
thence conditional statements other than conditional assignments. The 
Cray-1 Fortran compiler (CFT) will also inhibit vectorization of a loop 
containing a subprogram call (except the subprogram is known to CFT as 
having a vector version) or another loop (thus restricting vectorization to 
the innermost loops). 

2.3. Regularity 

For a loop to be vectorizable, it must involve only 'regular' array 
elements, i.e. elements whose indices follow a strictly defined pattern, so 
that they can be fetched in advance for vector operations. On the Cyber 
205, the only regular elements are those which are stored contiguously; on 
the Cray-I, a sequence is regular iff the distance between successive 
elements is constant (but not necessarily 1). Thus only certain types of 
subarrays may be processed in vector mode. 
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2.4. No backward dependency 

Let a loop with i as a counter contain the following array element assign
ment: 

where ,ALGOL-like brackets are used for array elements, op is some 
numerical or logical operation, the f/s are linear functions (from the 
regularity rule), and all arrays are considered as one-dimensional (which is 
always possible on a machine with a linear store). 

This assignment has a backward dependency, which will inhibit vectori
zation, iff for some k (1 :5 k:5 m) bk is a, and for some pair of values p, q in 
the range of i, the following holds: 

In other words, the computation of a[f0(q)] will use the value of another 
element of a, which was fetched for updating in some previous iteration. 
For example, the assignment a[i] := a[i- 1] + 1 introduces a backward 
dependency. 

The reason for this rule is that the vector interpretation of such a compu
tation would use the old value of the array element, not the new one as in 
the standard (sequential) interpretation of the loop. 

Note that the vector interpretation makes perfect sense; it is only 
different from the sequential one. 

On the Cray-1 the condition is less stringent; a backward dependency 
will actually arise only if the above condition holds together with 

q-64<p 

where 64 is the length of the vector registers, which on the Cray must be 
used for the operands and results of vector operations (in contrast, the 
Cyber 205 and BSP work directly on vectors stored in memory). Vector 
processing on the Cray-1 may be considered, for all practical purposes, as 
successive processing of 64-element vector slices, all elements in a slice 
being processed in parallel. 

An important case of backward dependency occurs when the dependency 
affects a simple variable (which may be considered as a one-element array, 
whose index is constant through the loop), i.e. when the loop contains an 
assignment of the form 
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Such an operation is called a reduction; it is particularly unfortunate that 
it should not vectorize, since it corresponds to the very common case of 
accumulating a result into a variable, as in the computation of the sum of 
the elements of a vector, or of the scalar (inner) product of two vectors. In 
practice, techniques exist for reducing the loss of efficiency of reductions 
as compared to truly vectorizable operations; reductions may thus be 
thought of as 'pseudo-vectorizable' operations who execute more slowly 
than vectorizable operations but faster than scalar ones. 

2.5. No cross dependency 

Let a loop contain the following assignments: 

a[/o(i)] := op( ... ); 

c[g0(i)] :=op'( ... , a[gi(i)], ... ). 

They induce a cross dependency, which will inhibit vectorization, iff for 
some pair of values p, q in the range of i, the following holds: 

g,(p) =fo(q) 

with lq-pl <64 (on the Cray-I). 
For example, the following statements in a loop on i will cause a cross 

dependency: 

a[i] := l; c[i] :=a[i+ l]. 

The rule stems from the fact that, due to the limited size of the 
instruction buffers, long loops may have to be split into several shorter 
ones in order to be vectorized (by slices of 64 on the Cray); thus the two 
assignments might end up in two different loops, giving a different 
semantics for the program. In our example, assuming a was initially all 0, 
then c would receive the previous null values in the sequential case and the 
new unity values in the vector case. 

3. Basic Thoughts for a Vector Programming Methodology 

Considering the preceding rules, even though they do not include many 
details which may be found in manufacturers' documentation, it is quite 
tempting to dismiss them as too low-level and machine-dependent, and 
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assert that vector programming is just programming with objects of data 
type 'vector'. Although we will use this definition as the basis for our 
approach to vector program construction, it should be pointed out that it is 
not quite sufficient and that the previous rules, especially the last ones on 
dependency, must also be taken into account for practical purposes. 

Let us illustrate this point with an important vector algorithm: matrix 
multiplication. Assume c is initialized to zero; a, b, c have dimensions 
(m, n), (n,p) and (m,p) respectively. The ordinary algorithm will not 
vectorize (notations are mostly taken from [11]): 

for i in 1, ... , m do 

for j in 1, ... ,p do 

fork in 1, ... ,n do 

I c[i,j] := c[i,j] + a[i, k] * b[k,j] 

(3.1) 

In terms of the preceding rules, we may say that c[i,j) has a backward 
dependency on itself (the last line is a reduction). Now if we reverse the 
loops on j and k, the program becomes vectorizable. This in fact means 
that instead of the 'element' formula which forms the basis for algorithm 
(3.1): 

n 

c[i,j] = L a[i, k] * b[ k,j] 
k=l 

one relies on the 'vector' formula 

n 

c[i, *] = L a[i,k] *b[k, *] 
k=l 

(where x[i, *] and x[ *,j] respectively denote the ith line and jth column of 
matrixx). 

However, ifwe applied a purely functional view of vector programming, 
i.e. obtained a program directly from an 'abstract data type' specification 
of matrix multiplication, the initial version of our program, as deduced 
from the last formula, would require, for each line i, n vector variables: 

C1 [i, *] := a[i, 1) * b[l, *]; 

c2[i, *] := a[i, 2) * b[2, *] + c1 [i, *]; 

Cm[i, *] :=a[i,m] *b[m, *] +cm-1[i, *]; 

c[i, *] :=cmU, *]. 
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For practical reasons (storage) this is excluded; the same variable c[i, *] 
has to be used all along. This programming simplification is correct 
because it does not conflict with the no backward dependency rule, as every 
operation of the form 

c[i, *] := op(c[i, *D 

will be implemented as a counter loop whose body is c[i,j] := op(c[i,j]) 
without any reference to c[i, /] for I* j (note that the loop counter here is j). 
This condition guarantees that the vectorized form of the new version (i.e. 
the standard program where loops on j and k have been interchanged) is 
indeed semantically equivalent to the standard program. 

Such a condition, which is more restrictive but conceptually simpler than 
the no backward dependency rule, may be used as a replacement for it in a 
systematic approach. It can be formalized in the following way, inspired 
from the presentation of sequences in the specification language Z [1]. Let 
VEC X[(n)], for n E rN (the set of n-vectors of elements of X) be defined as 
the set of all total functions from 1, ... , n to X. Let & be the functional 
binary operator such that, if f and g are two functions with the same 
domain Y, thenf &g is the function h such that, for any ye Y, h(y) is the 
pair (f(y),g(y)). Then for any binary operation p on X (p: XxX-+Z for 
some Z) we may define a vector extension of p, ext(p): VEC[X](n) x 
VEC[X](n)-+ VEC[Z](n), whose value for any two vectors v and w in 
vec[X](n) is 

ext(p)(v, w) =p 0 (v&w) 

where O is functional composition; in other words, for any i E 1, ... , n, 

ext(p)(v, w)(i) = p(v(i), w(i}). 

It is possible to define in the same way (at least if p is associative) a 
vector reduction of functionality 

red(p) : VEC[X]-+ X 

where red(+)= I:, etc. 
We shall interpret the rules of Section 2 as implying that, in designing 

programs for vector computers, one should work on objects of data type 
vector, restricting oneself to extension operations as much as possible. 
When an extension operation cannot be applied, a reduction will still be 
preferable to operations which would perform arbitrary shifting of indices 
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(e.g. p 0 ((v 0 pred)&w), where pred is the predecessor function on integers, 
which would give p(v(i- 1), w(i)) for any i); such operations would 
introduce hopeless backward dependencies. 

The situation may be depicted using a hierarchy of abstract machines 
(Fig. 1). At the matrix level, machine MAT offers the operations of matrix 
algebra: multiplication, inversion, etc. At the vector level, several machines 
are available to implement these operations: the extension machine EXT, 
the reduction machine RED, and others. Choosing one of them will lead to 
a definite algorithm , the scalar machine SCAL, which corresponds to 
conventional programming languages. It is clear that the standard matrix 
multiplication algorithm given above (3 .1) stems from the RED machine, 
while its vectorizable counterpart will come out naturally if one uses the 
EXT machine. 

Data Type Abstract machines 

Matrix MAT 

r- ~...._ _______ : 
Vector i 

I I 

L - --=--------' 

Scalar SCAL 

Fig. I. Hierarchy of types and virtual machines. 

Using the above approach, we will derive vector algorithms by working 
on vector objects from the beginning. This should lead to programs which 
are both properly structured and efficient on a vector processor. This 
should be contrasted with the results obtained through more 'ad hoc' 
methods. For example Higbie [6], in a paper on how to write code which 
will vectorize on the Cray, warns that 'overly modular or structured 
programs' will not be vectorizable (because of the rule which we called 
'primitive operations only', precluding subprogram calls inside a vectoriz
able loop). If this were true, the situation might be considered quite sad for 
the programmer, forced to choose between structure and vectorization. On 
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the other hand, if one agrees that a program is 'structured' at least as much 
from its proper adequation of control structure to data structure as from 
its observance of rules regarding control structure only (e.g. many sub
programs, etc.), then the answer is clear: rather than in-line expansion of 
subprogram calls in loop bodies, ·one should strive to write subprograms 
working on entire arrays (to use expressions found in Cray publications, 
"put the loop in the subroutine rather than the subroutine in the loop"). 
This will, in effect, implement the 'vector' data type abstraction. If the 
program is indeed vectorizable, i.e. if it does have vectors as its principal 
objects, there is a good chance that the version thus 'vectorized' will be 
clearer and better 'structured' independently of any machine consider
ation. 

4. Language Considerations 

Before we turn to the derivation of a few vector algorithms, we must pay 
some attention to language issues. The Cray approach uses a standard 
language, FORTRAN, and places the task of detecting vectorizable portions 
of code upon the compiler. The BSP also has a 'vectorizer' for standard 
FORTRAN code (an introduction to the techniques used for such program 
transformations may be found in [10]). Other methods have been used or 
suggested (see [9] or [14] for a survey); for example, the Cyber 205 super
computer only vectorizes calls to special array processing subroutines. 
Perrott [14, 15, 16] has argued repeatedly in favor of using a language 
designed specifically for vector programming; he describes such a 
language, ACTUS, based on PASCAL. This approach can be justified on 
several grounds: 
- In the Cray and BSP approach to optimization, the programmer has to 

present his code in a 'favorable' way so that the compiler will be able to 
detect vectorizable pieces of code; he thus has to know the compiler's 
idiosyncracies in this respect. This, however, has to be balanced with the 
considerations on program structuring expressed above. 

- The search for vectorizable code amounts to de-compilation (recon
structing higher-level vector constructs, such as they might be expressed 
in ALGOL 68, PL/I or APL, from lower-level FORTRAN scalar operations), 
which is a rather silly activity; 

- It is quite natural to specify the amount of allowable parallelism in 
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connection with the data structure definition rather than with the 
description of the operations performed on it. 
On the other hand, the 'vector language' approach seems extremely 

difficult to implement in the context of a large scientific computing center 
(the typical target for supercomputers), where it is not realistic to imagine 
that programmers will turn to a new language for every new kind of appli
cation and every new machine - especially at a time when concerns for 
portability are at last making their way into the scientific programming 
community. 

Given the failures experienced by all previous efforts to impose 
languages other than FORTRAN to this community, it is doubtful that a 
proposal applying to vector computers would succeed. In view of the 
current state of the art, the Cray approach seems sensible as far as program 
coding is concerned. Languages such as ACTUS may, however, be very 
useful as intermediary notations for vector program design, and we shall 
use similar ways of expression in the examples which follow. 

5. Examples of Systematic Vector Program Construction 

We turn now to the application of the principles expounded in Section 3 
to the construction of some practical programs. We shall use a method and 
set of heuristics for constructing programs from specifications which were 
exposed in [13]. A similar approach was applied to classical (scalar) 
numerical algorithms in [2]. 

The following notation will be used in addition to the ones defined in 
Section 3: 
- VEC(n) stands for VEC[REAL](n), the set of vectors of n real elements; 
- MTR(m, n) is the set of (m, n) real matrices; 
- P1v, where VE VEC(n) and ls.n, is the projection of v on VEC(I). 

For a matrix s E MTR(m, n),.if is. m and} s. n, we will consider line s[i, *] 
and columns[*,}] as vectors in VEC(m) and VEC(n) respectively. 

5 .1. Triangular systems 

We saw in Section 3 a vector algorithm for matrix multiplication. Let us 
proceed with the inverse operation: solving linear systems. We first 
examine triangular systems. This will be a simple example of top-down 
synthesis of a numerical algorithm. 
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The first step in the design of the program (called trisolv) is to express it 
as a matrix algorithm (which could run on the virtual machine MAT): 

ins: MTR(n, n), b: VEC(n); out x: VEC(n); 
(P) { 1 ::5 i ::5 n =}Pi_ 1 s[ *, i] = 0 and s[i, i] =t= 0} 

trisolv 
(Q) {sx=b, i.e. EZ= 1 s[*,k]*X[k]=b} 

We must refine trisolv into a predicate transformer (on the vector 
machine EXT) from the precondition (P) to the postcondition (Q). Let us 
try twice the heuristic called 'uncoupling' [13], i.e. add an auxiliary vector 
variable y, and an integer one I, noticing that 

(Q) # b =Ls[*, k] *X[k] # (y + LksnS[ *, k] *X[k] =band Y = 0) 

#(y+ LkstS[*,k] *X[k] =bandP1y=0) 

and l=n. 

So (Q) # (/(/) and I= n) if we set /(/)=the first term of the and above. 
Here, /(/) is a 'weakening' of the exit condition (Q) (which is /(n)). We 
notice that /(0) can be trivially obtained. Thus a refinement of trisolv, 
using /(/) as an invariant and / = n as the goal ( exit condition) will be: 

var/: Integer; 
/ := 0; y := b{/(l)} 
while l<n do 

/:=/+1; 
reestablish /(/); 

{ / = n and I(!)} 

This program is correct (by construction): /(/) being a loop invariant, it is 
true after the completion of the loop, and the exit condition / = n is also 
true, hence l(n). The statement reestablish is now (just as trisolv was, one 
step backwards) a specification for what is to be done. 

Next step: develop reestablish. One must go from/(/- 1), i.e. 

Y + Lk<ts[ *, k] *X[k] =band P1_ iY = 0 

to /(/), i.e. 
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Without modifying b, which is part of the input, we must use the assign
ment y := y-s[ *, /] *X[/] after an x[/] such that P1(y- s[ *, /] *X[/]) = 0 has 
been found. But P1_ 1s[ *, /] = 0 by hypothesis, and P1_ 1y = 0 also. The 
equation thus becomes y(/] - s[ *, /] *X[/] = 0, thence x[/]. The final version 
of the program is: 

l:=0; c:=b; /(0) 
while l<n do 

l:=l+I; 
{ reestablish /(/) : } 

I x[/] :=y[*,/]/s[/,/] 
y:=y-S[*,/]*X[/] 

Starting from a matrix specification and aiming at the EXT vector target 
machine, we have just synthesized a program which must be, by con
struction, vectorizable. 

5.2. Vectorized Choleski 

We shall now introduce a more difficult algorithm, Choleski factoriz
ation: given a symmetric positive-definite matrix A, find a lower triangular 
S such that SS1 =A (in view of the resolution in two easy steps, using e.g. 
the above program, of the linear system Ax= b ). What follows is also valid 
for the LU factorization. 

We again apply systematic top-down synthesis. Here are the successive 
steps. First the specification, expressed in terms of MAT objects: 

in a: MTR(n, n); outs: MTR(n, n); 
(R) {symmetric(a) and positive-definite(a)} 

Choleski 
{l Si::5n=>P;_ 1[*,i] =0} 

(S) {A =SSt, i.e. a= LksnS[*,k] *S[*,k]} 

As before, we uncouple (S), after introducing the auxiliary variable c of 
type MTR(n, n): 

(S) ~ ((c+ Lks1s[ *, k] *S[ *, k] = a and P1c = 0) and I= n) 

(I(/) and I= n ). 
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The next refinement is, quite naturally: 

l:=0; c:=a; {/(0)} 
while l<n do 

l:=l+ 1; {c+ Lk<t=a and P,_ 1c=0} 
reestablish J(l); 
{c+ Lk<t=a-s[*,!] *S[*,/] and P1c=0}. 

111 

To reestablish J(l), one must perform the assignment c:=c-S[*,/] *S[*,/] 
once an s[ *, /] such that P1 _ 1s1 = 0 and 

has been found. As P 1_ 1c=0, row I is the only one concerned, and must 
satisfy l-column(c - s[ *, /] * s[ *, /]) = 0, that is to say c[/, *] - s[/, /] * s[ *, /] = 0, 
which implies (/ component) 

c[l, /] = (s[/, /]) 2. 

Thence the two instructions for reestablish I(/): 

s[/, /] := sqrt(c[l, /])); s[ *,!] := c[/, * ]/ s[/, /]. 

As c is symmetric (this fact is itself a loop invariant), P1_ 1 c[ *, /] = 0 implies 
P1_ 1c[l, *] = 0, therefore P1_ 1s[ *, /] = 0. 

The final version will thus be: 

l:=0; c:=a; 
while l<n do 

l:=l+l; 
pivot:= sqrt(c[l, /]); 
s[*,/] :=c[/, *]/pivot; 
c := c-s[ *, /] *S[ *, /] 

A FORTRAN translation appears on Fig. 2 and 3. It exhibits some of the nice 
properties of programs resulting from top-down design (high-level built-in 
documentation, etc.) and the safety guaranteed by the systematic synthesis 
method. 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE 

C H D V E C 
IN, A, S, NDP) 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C C 
r" Fl.If/POSE, C, 
r- r-
r- FACTORIZATION OF A SYMMETRIC MATRIX, VECTORIZABLF VERSION. r 
C C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 
C INFUT 
C 

(' 

r· 
C 
C 
("' 

C 

C 
C 
("' 

C 
("' 

C 
C 
("' 

OUTPUT 

INTEGER 

f!EAL.. 

f\EAL 

INTEGEf{ 

N 

A 

s 

NDP 

( l. ) 

( l. ) 

Order of ttte matrix A 

Array of the er1tries of A. Aij is at 
the position l(J l.)(2N - J) + 21)/2 
c•colurnn--syrnmetric stc)rage mode•) 

Arr·oy of the entries of A. Aj.j i.s at 
the position (CJ - 1)(2N - J) + 21)/2 
On exit, if NDP = N, A= S tr(S)RT 

Number of columns actually taken into 
accot1nt during the factorl.2ation. 
If NDP < N, a non-positive rodl.x ap
peared i.n the treatment of column 
NDP t 1 

C 
C 
C 
C 

LOCAL VARIABLES, 

C 

JNTEGEF; l.., NNPH,?, AflRLL, ADR.JL, ADFU . .J, I, . .J, LF'l 
REAL. PIVOT, Ml.IL, RADIC 

C ARITHMETIC FUNCTION, 
C 

I NTEGEF; ADDF!ESS, 
ADRESS(I, ,)) •0 ((,) •• U*<Z*N ••• ,J) t 2*Un 

C 

Fig. 2. Head of the vectorizable Choleski program (FORTRAN). 

6. Conclusion 

The field of numerical and scientific programming, although the oldest 
and one of the best established among the application domains of 
computers, has shown strong resistance to the practical implementation of 
software research and advances in programming methodology. With the 
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c-----------------------------------------------------------------------
c 

NDP 0 
i (----· 0 

l.. •= O• 
(" C (-·-·- A 

NNP1S2 = cN,cN + 1))/2 
DO 1 I = 1, NNP1S2 

:1. Sill = AIII 
(~ -- The array S contains both C and A. 
r while i ( n do 

IF IL 'GE' NI GOTO 7 
r i (---- i + l. ; 

l.. = l.. + 1 
ADRl..l.. = ADRESSIL, LI 

C pivot (------ sqrt I Cll) ; 

C 

FiADIC •= SIADRLU 
IF CRADIC 'LE' 0'1 GOTO 7 

-- Exception if A is not positive definite 
PIVOT= SQRTCRADIC) 
NDF' •= L. 

Sl C--- Cl/pivot; 
DD 3 I = L., N 

SC ADFU .. l.. + I 
CC--- C Sl * Sl 

L.F" 1 = L. + 1 

L.) 

IF CL.Pl ' EQ' Nl GOTO 6 
DO 5 ,J '" l..F'1, N 

SCADRLL. t I - LI/PIVOT 

ADRJJ = ADRESSIJ, JI 
ADRJL = ADRESSCJ, LI 
MUL. = SI ADFUU 
[IQ 4 I c, J, N 

S(A[IRJJ+I-Jl = S(A[IRJJ+I-J) - MUL.*SIA[IRJL.tl-Jl 
r -- This loop is the only vectorizable one 
4 CONTINUE 

CONTINUE 
6 CONTINUE 

GOTO ,, 
7 RETLmN 

END 

Fig. 3. Body of the Choleski program. 

popularization of new 'number-crunching' machines, there is again a 
strong temptation to go back to low-level, machine-dependent, program
ming techniques, and to dismiss any attempts at better software engineer
ing as incompatible with the efficient use of these very fast computers. We 
hope to have shown that such an attitude has no justification, and that 
systematic methods can be applied for the rational and efficient use of this 
new technology. 
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Formal Language Definitions Can Be Made Practical 

Paul Klint 

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

If some formal method is used to define a programming language, the 
problem arises that individuals with different backgrounds and intentions have 
to learn a notation and definition method they are unfamiliar with. The 
various uses of formal definitions are summarized in this paper and an 
improved method for operational language definitions is presented. This 
method aims at language descriptions that are understandable and useful for 
both designer, implementor and user of a defined language. The method has 
been used in the definition of the SUMMER programming language. Various 
examples of that definition are given and the method as a whole is assessed. 

The metalanguage of a formal definition must not become a language 
known to only the priests of the cult. Tempering science with magic is a sure 
way to return to the Dark Ages." [6] 

1. The Problem 

Programming languages are being designed using pre-scientific methods. 
Of course, there is no substitute for experience, taste, style and intuition 
but a scientific design methodology to support them is lacking. Methods 
for describing programming languages are somewhat more developed, but 
most definitions are either ambiguous and inaccurate, or excessively 
formal and unreadable. In general, a language definition method should: 

(1) help the language designer by giving insight in the language he or she 
is designing and by exposing interactions that might exist between language 
features. The definition should at the same time be a pilot implementation 
of the defined language or it should at least be convertible into one. It is 
assumed here, that design and definition can best be carried out simul
taneously. 

(2) help the language implementor by providing him with an unam-

115 
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biguous and complete definition that is capable of "executing" small 
programs in cases where the implementor is in doubt about the meaning of 
a particular language feature. 

(3) help the user by providing him with a precise definition in a language 
he is not too unfamiliar with. 

These three goals impose different and to a certain extent contradictory 
requirements on the definition method to be used. In particular, it seems 
difficult to combine precision and readability in one method, since a 
precise definition has to use some formalism to which the reader has to be 
initiated and such a definition will have a tendency to become long and 
unreadable. This paper reports on an experiment with a language definition 
method that may be considered as a first step in satisfying the above 
requirements. 

The defined language is SUMMER [3, 4] an object-oriented string pro
cessing language. The definition method is similar in spirit to the SECD 
method [5], i.e. it is an operational language definition method which uses 
recursive functions and syntactic recognition functions to define a finite 
state machine that associates semantic actions with all constructs in the 
grammar of the language. In the method presented in this paper readability 
has been considerably enhanced by using a few imperative constructs and 
by introducing a very concise notation for parsing and decomposing the 
source-text of programs in the defined language. SUMMER, extended with 
such parsing and decomposing operations, is used as defining language. 
The definition is hence circular (see Sections 2.1 and 3). 

A complete description of the definition method can be found in [4]. The 
next section gives only a birds-eye view of the description method and 
shows some illustrative examples from the SUMMER definition. In Section 3 
the method as a whole and its application to SUMMER are assessed. 

2. The Method 

2.1. Introduction 

An evaluation process or interpreter (with the name "eval") will be 
defined that takes an arbitrary source text ("the source program") as input 
and either computes the result of the execution of that program (if it is a 
legal program in the defined language) or detects a syntactic or semantic 
error. The evaluation process operates directly on the text of the source 
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program and the process as a whole may be viewed as performing a series 
of string transformations on that text. During this process a global 
environment may be inspected or updated. An environment is a mapping 
from identifiers in the source program to their actual values during the 
evaluation process. Environments are used to describe concepts such as 
variables, assignment and scope rules. 

A fundamental question arises here: in which language do we write the 
definition? Several choices can be made, such as the formalism used in 
denotational semantics ([1], this boils down to mathematical notation for 
recursive functions and domains) or the Vienna Definition Language ([8], a 
programming language designed for the manipulation of trees). This is not 
the right place to discuss the merits of these formalisms, but none has the 
desired combination of properties as described in the previous paragraph. 
Instead of designing yet another definition language, the defined language 
itself (this is SUMMER in the examples given in this paper) will be used as 
definition language. This choice has the obvious disadvantage that the 
definition is circular, but it has the practical advantage that readers who 
have only a moderate familiarity with the defined language will be able to 
read the definition without great difficulty. An extensive discussion of 
circular language definitions can be found in [7]. It should be emphasized 
that there is no fundamental reason to make the definition circular. The 
definition method described here would also work if, for example, ALGOL 

68 was used as defining language. In any case, it is essential that the 
defining language has powerful string operations and allows the creation of 
data structures (of dynamically determined sizes). This requirement makes, 
for example, PASCAL less suited as defining language. Choosing SUMMER 

as defining language gave us the opportunity to investigate the suitability 
of that language in the area of language definition (see Section 3). 

In the following sections the definition method and an example of its 
application (in the SUMMER definition) are described simultaneously. In 
Section 2.2 some aspects of the use of SUMMER as a metalanguage are 
described. The definition method can be subdivided in the definition of 
semantic domains (Section 2.3) and of the evaluation process (Section 2.4). 
Some more detailed examples from the SUMMER definition are given in 
Section 2.5. 

2.2. SUMMER as metalanguage 

This paragraph focuses on some aspects of SUMMER that are used in the 
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formal definition. Most of these constructs have some similarity with 
constructs in, for instance, PASCAL and are assumed to be self-explanatory. 
Only less obvious constructs that are essential for the understanding of the 
definition are mentioned here. 

SUMMER is an object-oriented language with pointer semantics. This 
means that an object can be modified by assignment and that such modifi
cations are visible through all access paths to that object. For example, 

s :=stack(lO) 

assigns a stack object of size 10 to the variable s, and 

s.push(v) 

pushes the value of v on the stack s. As a side-effect the stack sis modified 
such that subsequent operations on s may perceive the effect of that 
modification. In the formal definition this is relevant for the concepts 
"state" and "environment", which are modified in this way. 

The language is dynamically typed, i.e. the type of variables is not fixed 
statically (as in PASCAL) but is only determined during the execution of the 
program (as in LISP or SNOBOL4). Moreover, generic operations on data 
structures are allowed. If an operation is defined on several data types, 
then the procedure to be executed when that operation occurs is determined 
by the type of the (left) operand of that operation. 

Control structures and data structures are self-explanatory except 
possibly arrays and for-statements. 

Arrays are vectors of values, indexed by 0, ... , N -1, where N is the 
number of elements in the array. If A is an array then the operation A . size 
will yield the number of elements in the array. A new array is created by 

or 
array(N, V). 

In the former case, an array of size N is created and initialized to the values 
V0, ... , VN- 1. In the latter case, an array of size N is created and all 
elements are initialized to the value V. Array denotations are also allowed 
as left hand side of assignments. This provides a convenient notation for 
multiple assignments. For example, 

[x,y, zJ := [10, 20, 30] 
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is completely equivalent with 

X := 10; y := 20; Z := 30 

and, more generally, 

is equivalent with 

The general form of a for-statement is: 

for V in G do S od 
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where Vis a variable, G is an expression that has as value an object capable 
of generating a sequence of values VAL; and where S is an arbitrary state
ment. For each VAL; the assignment V:= VAL; is performed and S is 
evaluated. In this paper, the expression G will be used in two forms: the 
value of G is either an array (in which case consecutive array elements are 
generated) or G is an array on which the operation index has been 
performed (in which case all indices of consecutive array elements are 
generated). For example, in 

a:= (144, 13, 7]; 
for x in a do print(x) od 

an array object is assigned to the variable a and the values 144, 13 and 7 
will be printed, while 

for i in a. index do print(r) od 

will print the values 0, 1 and 2. Further examples of for-statements will be 
found in the following paragraphs. 

2.3. Semantic domains 

A semantic domain is a set, whose elements either describe a primitive 
notion in the defined language (like "variable" or "procedure 
declaration") or have some common properties as far as the language 
definition is concerned. The relationship between these domains is given by 
a series of domain equations. 

In the remainder of this paragraph the domains in the SUMMER definition 
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are briefly described. The abstract properties of these domains are given in 
[4]. Here, they are only introduced informally. First, the domain equations 
are given. Next, the meaning of each domain is described. 

The relationship between the domains BASIC-VALVES, DENOTABLE
V ALUES, STORABLE-VALUES, ENVIRONMENT, LOCATIONS, 
STATE, PROC, CLASS and INSTANCE is as follows 

BASIC-VALVES = STRING U INTEGER U UNDEFINED 
DENOTABLE-VALVES= LOCATIONS U INSTANCE U PROC 

U CLASS U BASIC-VALVES 
STORABLE-VALVES = INSTANCE U BASIC-VALVES 
ENVIRONMENT = ID➔ DENOTABLE-VALVES 
STATE =LOCATIONS➔(STORABLE-VALUES 

U {unused}) 
PROC = PROC-DECL x ENVIRONMENT 
CLASS = ID x CLASS-DECL 
INSTANCE = ID x CLASS-DECL x ENVIRONMENT 

Here, ID, PROC-DECL and CLASS-DECL are the sets of string values 
that can be derived from the syntactic notions (identifier), (procedure
declaration > and (class-declaration) in the SUMMER grammar. BASIC
V ALVES is the domain of primitive values in the language.DENOTABLE
V ALVES is the domain of values which can be manipulated by the evalu
ation process. STORABLE-VALUES is the domain of values which can be 
assigned to variables in the source program. The domain LOCATIONS is 
used to model the notion "address of a cell capable of containing a value". 
Inspection of the contents of a location does not affect the contents of that 
location itself or of any other location. Modification of the contents of a 
location does not affect the contents of any other location. ST A TE is the 
domain that consists of functions that map locations on actual values or 
unused. 

PROC is the domain of procedures. Each element of this domain 
describes a procedure declaration and contains a literal copy of the text of 
the procedure declaration itself and an environment that reflects all names 
and values available at the point of declaration. 

CLASS is the domain of classes. Each element of this domain describes 
one class declaration and contains the name of the class and a literal copy 
of the text of the class declaration. INSTANCE is the domain of class 
instances. All values that are created by a SUMMER program are instances 
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of some class. An instance consists of the name of the class to which it 
belongs, the literal text of the declaration of that class and an environment 
that has to be used to inspect or update components from the instance. 
Operations are defined on elements in PROC, CLASS and INSTANCE to 
manipulate the components of an element in these domains. For complete
ness, these domains are mentioned here, but they will not be used in the 
remainder of this paper. 

STRING, INTEGER and UNDEFINED are the domains modeling the 
values and operations for the built-in types string, integer and undefined 
respectively. UNDEFINED is the domain consisting of undefined values. 
All variables are initialized to an undefined value. Operations are defined 
on elements in STRING, INTEGER and UNDEFINED that model the 
primitive operations on the data types string, integer and undefined. 

ENVIRONMENT is the domain of environments. Environments 
administrate the binding between names and values and the introduction of 
new scopes (i.e. ranges in the program where names may be declared). The 
operations defined on environments modify, in general, the environment 
to which they are applied. 

The definitions given in following sections are centered around 
operations on elements of these semantic domains, but we will see 
relatively few of them in the examples. Operations will only be explained 
when they occur in an example. 

2.4. Evaluation process 

An extended form of BNF notation is used to describe the syntax of the 
defined language. The extensions aim at providing a concise notation for 
the description of repeated or optional syntactic notions. A syntactic 
notion suffixed with '' + '' means one or more repetitions of that notion. A 
notion suffixed with "*" stands for zero or more repetitions of that 
notion. The notation 

{ notion separator} replicator 

i.e. a notion followed by a separator enclosed in braces followed by a 
replicator, is used to describe a list of notions separated by the given 
separator. A replicator is either '' + '' or '' *''. The replicator '' + '' indicates 
that the list consists of one or more notions. The list begins and ends with a 
notion. The replicator "*" indicates that the list consists of zero or more 
notions. 
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An optional syntactic notion is indicated by enclosing that notion in 
square brackets, e.g. "[notion]". The terminal symbols of the grammar 
are either enclosed in single quotes (for example: ',' or ':=') or written in 
upper case letters if the terminal symbol consists solely of letters (for 
example: IF may be used to denote the terminal symbol if). Where 
necessary, parentheses are used for grouping. 

Some parts of a syntax rule may be labeled with a (tag); their meaning 
will become clear below. 

The evaluation process is described in SUMMER extended with parse 
expressions1 of the form 

'{{'(identifier)'==' (syntax-rule)'}}' 

which are used as a very concise notation for parsing and extracting infor
mation from the text of the source program. A parse expression succeeds if 
the identifier at the left hand side of the'==' sign has a string as value and 
if this string is of the form described by the (syntax-rule) at the right hand 
side of the'==' sign. All (tag)s occurring in the (syntax-rule) should have 
been declared as variables in the program containing the parse expression, 
in this case the evaluation process. Substrings of the parsed text are 
assigned to these variables. If the recognized part of the text is a list or 
repetition, then an array of string values is assigned to the variable corres
ponding with the tag. Consider, for example, the following program 
fragment: 

if { {e== WHILE t: (test) DO b: (body) OD}} 
then 

put ( 'e is a while expression') 
fi 

The parse expression will succeed if e has the form of a while expression; 
the literal text of the ( test) is then assigned to variable t and the text of the 
(body) is assigned to variable b. Repetition occurs in 

if {{e== VAR list: (test) DO b: (body) OD}} 

1 There is no fundamental reason to introduce this language extension. However, the 
disadvantage of introducing such an ad-hoc extension is more than compensated by the fact 
that we use a notation which is sufficiently similar to BNF notation to be almost self
explanatory. The effect of introducing a language extension as proposed here is interesting in 
its own right but falls outside the scope of the current discussion. 
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put('e is a variable declaration containing:'); 
for l in list do put (!) od 
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The parse expression succeeds if e has the form of a ''variable declaration'' 
(i.e. the keyword var followed by a list of (identifier)s separated by 
commas) and in that case an array of string values corresponding to the 
< identifier)s occurring in the declaration is assigned to the variable list, 
which is printed subsequently. 

Parse expressions may be used as test in if statements or may stand on 
their own. In the latter case, the string to be parsed has to be of the form 
described by the parse expression. In this way, parse expressions can be 
used to decompose a string with a known form into substrings. 

In the case of the SUMMER definition, the overall structure of the evalu-
ation process is: 

var E; 
var S; 
var varinit; 
proc ERROR 

proc eval(e) 
(var value, signal, ... ; 
if { { e == (program-declaration)}} 
then 

return([value, signal]) 
fi; 
if { { e == <variable-declaration)}} 
then 

return([ value, signal]) 
fi; 

if {{e==(empty)}} 
then 

return([ value, signal]) 
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fi; 
ERROR 

); 

P. Klint 

The variable E has as value the current environment and S has as value the 
current state. The variable varinit has as value a string consisting of the text 
of all (variable-initialization)s in the current (block). 

The procedure ERROR is called when a syntactic or semantic error is 
detected during evaluation. In that case, the whole evaluation process is 
aborted immediately. The main defining procedure is eval, which selects an 
appropriate case depending on the syntactic form of its argument e. Some 
examples of these various cases will be given in Section 2.5. Note that each 
of these cases involves a complete syntactic analysis of the string e. The 
evaluation process is initiated by creating an initial, empty environment E 
and by calling eva/ with the text of the source program as argument. If the 
evaluation process is not terminated prematurely (by the detection of a 
semantic error) the result of the evaluation of the source program can be 
obtained by inspecting the resulting environment E. Note how syntactically 
incorrect programs are intercepted in eval by ERROR, which is called if 
none of the listed cases applies. 

The procedure eval delivers as result an array of the form [ value, signal], 
where value is the actual result of the procedure and signal is a success/fail 
flag that indicates how value should be interpreted. SUMMER uses a success
directed evaluation scheme: an expression can either fail or succeed. These 
success/ fail signals are used by language constructs like (if-expression) 
and < while-expression) to determine the flow-of-control. The signal 
delivered by eval is used to model this evaluation mechanism. This signal 
may have the following values: 
N: evaluation terminated normally. 
F: evaluation failed. 
NR: normal return; a (return-expression) was encountered during evalu
ation. 
FR: failure return; a failure return was encountered during evaluation. 
The signal is tested after each (recursive) invocation of eval. In most cases 
eval performs an immediate return if the signal is not equal to N after the 
evaluation of a subexpression. Exceptions are cases such as (if-expression> 
and (return-expression) in which the signal is used to determine how 
evaluation should proceed. This organization has the effect that aborting 
the evaluation of the "current" expression, which is necessary if failure 
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occurs in a deeply nested subexpression, can be achieved by passing a signal 
upwards until it reaches an incarnation of eval that can take appropriate 
measures. The difference between F and FR lies in the language constructs 
that handle these cases. For example, consider <if-expression)s. An F 
signal generated in the (test) part of an <if-expression) can be treated by 
the semantic rule associated with <if-expression)s. But an FR signal 
generated during the evaluation of the ( test) can only be treated by the 
semantic rule associated with the invocation of the procedure in which the 
(if-expression) occurs. In general, the signals NR and FR are only 
generated by return-expressions and are only handled by the semantic rules 
associated with procedure calls. The latter rules turn NR into N and FR 
into F before the evaluation process is resumed at the point where it left off 
to perform the (now completed) procedure call. All other semantic rules 
return immediately when an NR or FR signal occurs. 

Note that the [value, signal] artifact is induced by the specific form of 
expression evaluation in SUMMER and has nothing to do with the definition 
method itself. We have just chosen one particular way to describe a form 
of goto statement. 

2.5. Some examples 

2. 5.1. If expressions 
<if-expression)s correspond to the if-then-else statement found in most 

programming languages. If evaluation of the (test) immediately contained 
in the (if-expression) terminates successfully, the (block) following then 
is evaluated. Otherwise, the successive (test)s following subsequent elifs 
are evaluated until one such evaluation terminates successfully (in which 
case the following ( block) is evaluated) or the list is exhausted. In the 
latter case, the (if-expression) may contain an else and then the (block) 
following that else is evaluated. The formal definition is: 

J if { {e==lF t: (test) THEN b: (block) 
2 elifpart: (ELIF ( test) THEN (block))* 
3 e/separt: [ELSE (block)] Fl}} 
4 then 
5 [v,sig] :=eval(t); 
6 if sig=N then return(eval(b)) 
7 elif sig :;t: F then return([ v, sig]) 
8 else 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 fi; 

fi 
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for ei in elif part 
do { {ei==ELIF t: (test) THEN b: (block)}}; 

[v,sigJ :=eval(t); 
if sig = N then return( eval( b)) 

elif sig * F then return( [ v, sig]) fi 
od; 
if { {elsepart==ELSE b: (block)}} 
then 

return(eval(b)) 
else 

return([a _ undefined, NJ) 
fi 

The parse expression in lines 1-3 decomposes the string value of e in 
several parts. In line 5 the (test) of the <if-expression) is evaluated. Note 
how the occurrence of non-standard (i.e. sig=NR or sig=FR) signals 
terminates the evaluation of the <if-expression) (lines 7, 13). This is 
particularly relevant for the evaluation of the ( test) part. SUMMER allows 
the occurrence of a return statement in a (test). This is reflected in the 
above definition. 

For a better understanding of the above definition, it may be useful to 
note that parts of the source program are parsed repeatedly during one 
evaluation of a given <if-expression). For example, the (block) following 
an elif is parsed both in lines 2 and 10. (This explains, by the way, why the 
parse expression in line JO needs not be contained in an if statement, see 
Section 2.4.) In general, the source text of the <if-expression) is parsed 
each time that it is evaluated. 

2. 5. 2. Variable declarations 
A (variable-declaration) introduces in the current environment a series 

of new variables, i.e. names of locations whose contents may be inspected 
and/or modified. The declaration may contain (expression)s whose value 
is to be used for the initialization of the declared variables. First, these 
initializing expressions are evaluated. Next, the (expression)s following 
the ( variable-declaration)s are evaluated. In the formal definition this is 
described by appending all variable initializations in the current ( block) to 
the variable varinit and by evaluating the string value of that variable 
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before the evaluation of the subsequent <expression) s in the <block). The 
formal definition of (variable-declaration) s is: 

1 if { { e == VAR vi: { (variable-initialization) 
2 then 
3 for v in vi 

','}+';'}} 

4 
5 
6 

do if { { v == x: ( identifier) ':=' <expression)}} then 
varinit : = varinit II v II ';' ; 
E. bind(x, S. extend(a _ undefined)); 

7 else 
8 {{ v ==x: (identifier)}}; 
9 E. bind(x, S. extend(a _ undefined)) 

JO fi 
11 od; 
12 return( [a_ undefined, N]) 
13 fi; 

In line 1, e is decomposed into an array of strings which have the form of a 
<variable-initialization>. These string values are considered in succession 
in the for loop in lines 3-11. If the (variable-initialization) contains an 
initializing expression, that expression is appended to varinit (line 5) using 
the string concatenation operator "II". In both cases, the state S is 
extended with a location containing an undefined value, and that new 
location is bound, in the current environment E, to the identifier being 
declared. Note that, in line 8, v is known to have the form of an 
(identifier). 

2.5.3. Blocks 
A (block) introduces a new scope to be used for the declaration of new 

variables and constants. It consists of a (perhaps empty) list of declarations 
followed by a sequence of expressions separated by semicolons. A (block) 
is evaluated as follows: 

(1) Evaluate all declarations. 
(2) Evaluate all variable-initializations resulting from the evaluation of 

the declarations. 
(3) Evaluate the sequence of expressions in the (block). (Note that 

SUMMER forbids the failure of an expression inside a sequence of expres
sions. Only the last expression in a sequence is allowed to fail; this failure is 
passed upwards to enclosing language constructs.) 
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The formal definition is: 

1 if { { e == dlist: <variable-declaration)* 
2 elist: {[(expression)] ';' }*}} 
3 then 
4 var El, varinitl; 

5 El :=E; 
6 E. new_ inner_ scope; 
7 varinitl := varinit; 
8 varinit := '' ; 
9 for d in dlist 

JO do [v,sig] :=eval(d); 
11 if sig=t=N then ERROR fi 
12 od; 
13 [v,sig] :=eval(varinit); 
14 varinit := varinitl; 
15 if sig =t= N then E := E 1; return([ v, sig]) fi; 
16 for i in elist . index 
17 do 
18 [v,sig] :=eval(elist[i]); 

19 case sig of 
20 N:, 
21 F: if i =t= elist. size - 1 then ERROR fi, 
22 NR: FR: (E:=El; return([v,sig])) 
23 esac 
24 od; 
25 E:=EI; 
26 return([ v, sig]) 
27 fi; 

In lines 5-8 local copies are made of E and varinit and new values are 
assigned to them. In lines 9-13 the list of (variable-declaration)s in the 
( block) and the resulting ( variable-initia/ization)s are evaluated. In lines 
16-24 the list of (expression)s in the (block) are evaluated. Note how 
failure of an expression in the middle of the list is treated (line 21, see 
above). 
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3. Assessment 

The formal language definition presented in the previous section will 
now be assessed. It is tempting to try to get statements like: 

or 

"Users can answer 87% of their questions on language issues 
within Jive minutes if they have access to a formal language 
definition of the kind described in this article. " 

"35% of all run-time errors in user programs are directly 
related to anomalies in the language definition". 

In the absence of such results and with the methods to obtain them lacking, 
we have to live with qualitative and more or less speculative observations. 

A rough indication for the conciseness of the definition can be obtained 
by comparing various sizes as they apply to the SUMMER definition: 

formal definition 
reference manual 
implementation 

20 pages 
100 pages 
200 pages 

These figures show that the implementation is ten times larger than the 
formal definition. This is not surprising, since the implementation has to 
be efficient while the formal definition does not have to be. In this light the 
"a-language-is-defined-by-its-implementation" approach can be rephrased 
as: "if a language is defined by its implementation, then that implemen
tation had better be small". 

The definition is precise and complete, in the sense that all semantic 
operations associated with a particular language construct have to be 
specified to allow the construction of an executable version of the 
definition. The number of operational details, i.e. details in the definition 
which stem from the chosen definition method and have no inherent 
meaning in the defined language, is surprisingly small. This is a conse
quence of the choice of the defining language (which should have powerful 
data types and string manipulation operations) and the choice of high-level 
environment manipulation primitives which correspond directly to 
operations in the defined language and which are not (yet) perverted by 
implementational details. SUMMER extended with parse expressions seems a 
quite reasonable vehicle for language definition. It is, however, not 
possible to make continuation-style (see [11) definitions, since higher-order 
functions are lacking. 
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It is difficult to give an objective judgement on the readability of the 
definition, but we have observed that only a moderate effort (a few days) is 
required on the part of a programmer without any training in formal 
semantics and without any previous exposure to the language to learn 
SUMMER using only the (annotated) formal definition. 

The advantages and disadvantages of the formal definition for designer, 
implementor and user will now be discussed in some detail. 

The advantages for the designer are: 
(1) Anomalies in the design are magnified. It is a general rule that ill

formed entities can only be described by ill-formed descriptions or by 
descriptions which list many exceptional cases. It is easier to locate such 
exceptions or anomalies in a concise formal definition than in an 
ambiguous natural language definition or in a bulky implementation. In 
the SUMMER definition, for example, a very specific operation on environ
ments is needed ("partial-state-copy") to accommodate the definition of 
just one language feature ("try-expression"). It turned out that a slight 
modification of that feature would at the same time simplify the definition 
and improve the feature. 

(2) Exhaustive enumeration of language features. A formal definition 
method forces the designer to enumerate all language features in the same 
framework and this may help him to find omissions in the design. 

(3) Interactions between language features can be studied. In the 
SUMMER definition, for example, the designer is forced to decide what 
happens when a <return-expression> is evaluated during the evaluation of 
any other expression. There is, however, no guarantee that all interactions 
can be found, since the formal definition may still contain hidden inter
actions between language features. The use of auxiliary functions in the 
definition is an aid in making interactions explicit. One may even apply 
techniques such as calling graph analysis and data flow analysis to the 
definition to discover clusters of interacting features and to establish 
certain properties of the definition. 

(4) An executable formal definition can be tested and used. This may 
help eliminate clerical and gross errors from the definition. An executable 
definition allows the designer to play with (toy) programs written in the 
language he is designing. Here is, however, a problem with circular 
definitions: some implementation of the defined language has to exist 
before the definition itself can be made executable. 



Formal language definitions can be made practical 131 

Disadvantages for the designer are: 
(1) A considerable effort is required to construct a formal definition. 
(2) A general problem is that there are no canned, satisfactory definition 

methods available and that the designer has to begin with either creating a 
new method or adapting and extending an existing one. 

Advantages for the implementor are: 
(1) Unambiguous language definition. 
(2) The implementor may be in doubt as to the meaning of a certain 

combination of features. Such cases can be executed both by the implemen
tation and by the definition and the results can be compared. 

Disadvantages for the implementor are: 
(1) The implementor must be familiar with the definition method or 

become acquainted with it. This is only a minor effort if one compares it 
with the total effort required to implement the language. 

(2) It is non-trivial to derive an implementation strategy from the 
language definition. This is a problem shared by all "abstract" language 
definitions, in which no attempt is made to use primitives in the definition 
with a direct counterpart in an implementation. This leads to the con
clusion that such abstract definitions should be accompanied by an 
"annotation for implementors", which states where well-known imple
mentation techniques can be used and where certain optimizations are 
possible. 

Advantages for the user are: 
(1) Unambiguous and concise language definition. 
(2) The user is used to reading programs and the formal definition can be 

read as such. In the case of a circular definition, the formal definition may 
be considered as a very informative example program. 

Disadvantages for the user are: 
(I) The user must be exposed to the definition method. 
(2) A formal definition is harder to read than a "natural language" 

definition. 
(3) In the case of the SUMMER definition, the circularity may be con

fusing for the naive user. 
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In retrospect, it seems justified to conclude that the method presented in 
this paper is a first step in satisfying the requirements given in Section 1. 
However, many problems remain to be investigated. Does the given 
method lend itself to mathematical analysis? How can the "complexity" of 
a language be derived from its definition? Is it possible to "optimize" the 
executable version of definitions? (Attempts in this direction can be found 
in [2].) What is the relationship between this definition method and 
extensible languages? Answers to these questions will provide more insight 
in the structure of programming languages and the methods for defining 
them. 
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1. Introduction 

1.1. The Von Neumann concept of 'program' 

Ever since John von Neumann and others proposed the machine we call 
the Von Neumann computer, programmers have been writing 'Von 
Neumann style' programs. Originally these programs were written in 
machine language, then in assembly language, then in FORTRAN, and then 
in a great variety of so-called higher level languages. The units of action 
specified by a program element grew as these languages evolved, but all of 
these programs were primarily concerned with two things: (1) the trans
mission of input and output between the 'store' and the outside world, and 
(2) the transformation of the store from its state at input to some new state 
in which the desired output was available. (Of course, the concept of the 
'store' also evolved from a device to an abstract entity comprising a set of 
'cells' each with a 'name' and 'contents'.) Additionally these languages 
allowed one to make various assertions or declarations about the contents 
of the store, for example, that a certain cell contains an integer. 

The variety and dynamic nature of input-output operations in the great 
assortment of Von Neumann languages make it difficult to include these 
operations in a uniform concept of 'program' that is common to all these 
languages over the past 30 years. So, following the example of ALGOL 60, 
we shall not attempt to do so. 

Having dismissed the question of input-output, we are left with what 
may be considered the most fundamental concept of 'program': a 
'program' is a mapping of some domain of 'stores' into itself. Each store in 
the domain of a machine language is a set of pairs, each pair being the 
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number of a cell and the contents of that cell. In assembly language the cell 
names of a store can be symbols; in higher level languages the cell names 
can be more complicated, and some languages permit stores whose 'cells' 
can hold 'contents' of more than one 'word'. But in all cases a 'store' is an 
association between 'names' and 'objects', each 'name' denoting a 'cell' in 
the store having a certain 'object' as its 'contents'. 

Thus, neglecting input-output behavior, when any Von Neumann 
'program' is given a store s in its domain, it will 'execute' and either the 
execution will go on forever or it will stop and yield some new store s' in its 
domain (it may happen that s=s'). 

At this point we must confess that our simple notion of 'program' as a 
mapping of 'stores' into 'stores' differs from various precise notions to be 
found in works on denotational semantics ([18], e.g. [16,19, 20]), even 
though our simple notion reflects the spirit of these precise ones. To 
explain the details of how a program achieves a store-to-store mapping, or 
to explain dynamic storage reallocation, scope rules for variables, GOTOs, 
side effects, error stops, or other such issues, 'programs' are assigned 
mappings in denotational semantics that are more complex than store-to
store mappings. These mappings often involve 'environments' and 
'continuations' as well as 'stores'. 

In spite of the detailed explanations and language complications that 
force denotational semantics to represent 'programs' as more complex 
mappings, I submit that the single concept that is closest to our intuitive 
understanding and to all the various detailed concepts embodied in 
different Von Neumann languages is that 'programs' represent mappings 
of 'stores' into 'stores'. (For each particular notion of 'program' we must 
suitably choose the 'names' and 'contents' needed to construct the domain 
of its 'stores'.) 

1.2. A more general concept of 'program'; a basic question about the 
conventional concept 

To make it easier to consider a wider range of concepts of 'program', 
some of which are non-Von Neumann, let us define a more general 
property of 'programs' and then define what we mean by 'Von Neumann 
programs': 

(A) A 'program' represents a mapping of some domain D into itself. 
(B) The domain associated with 'Von Neumann programs' is some 

domain of 'stores'. 
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Thus for each notion of 'program' there is associated a particular 
domain D; and for each kind of 'Von Neumann program' there is a 
particular domain of 'stores' built from certain 'names' and certain 
'contents'. Of course such a domain includes each possible association of 
'names' with 'contents' in one of its 'stores'. 

If you accept these notions as fundamental elements of the concept of 
'program' and of 'Von Neumann program', then the question I should like 
to raise for your consideration is an important one, one which, oddly 
enough, seems to have received little attention. The question is this: is the 
choice of 'stores' as the domain for 'programs' the correct choice? That is, 
is there perhaps some other domain such that, if the notion of 'program' 
were associated with mappings of this new domain into itself, then the 
resulting concept of 'program' could be simpler, more powerful and 
elegant than the Von Neumann concept? 

1.3. Evolution of the Von Neumann concept; psychological barriers to 
adoption of non-Von Neumann concepts 

Before we consider notions of 'program' founded on other ~~.,,,u.,u~ let 
us review some of the reasons why 'stores' were chosen for the domain of 
conventional programs. Of course, in the first place the Von Neumann 
computer itself required programs based on the domain of stores. And 
when 'higher level' languages began to evolve it was important that their 
programs correspond closely with machine programs, therefore they 
naturally adopted an abstract notion of 'store' quite close to that of the 
machine. Thus the evolution of programming languages from machine 
languages is a natural and basic reason for the choice of 'stores' as the 
domain for 'programs'. But I believe there is another, deeper reason. 

In natural language and in mathematics one of the most universal and 
deeply ingrained practices in thinking and writing is the use of names to 
stand in place of their referents. In every natural language sentence or 
mathematical expression most symbols denote something other than 
themselves. Thus in 'a+ b' it is universally understood that we are to add, 
not the letters 'a' and 'b', but some numbers to which they refer. The store 
that is implicit in every conventional program is the repository of this 
name-referent association that is so much a part of our traditional way of 
thinking. 

If we choose any domain other than 'stores' for our concept of 
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'program', then it may no longer be possible for the programmer to use a 
'name' or 'variable' to refer to an object. Thus non-Von Neumann 
concepts of 'program', those employing domains other than 'stores', 
threaten to violate deep-rooted traditions of thought, therefore such 
concepts tend to confuse and disturb programmers. 

Because the conventional concept of 'program' is so closely linked by its 
use of 'stores' to the traditional use of names in natural language and 
mathematics, the adoption of new concepts may cause many computer 
scientists a certain amount of anguish. But if we are to consider new 
concepts of 'program' that may yield a more profound order in the realm 
of programs, it is important that we be aware of the psychological 
difficulties we may face in dealing with such new ideas. 

Alternative concepts of 'program' not based on the domain of 'stores' 
have been evolving over a long period. Their evolution has been confused 
because many developers of the new view have been unable to free 
themselves from the old one and have sought to find a viable mixture of the 
two. Thus there is as yet no consensus on the key elements of a new 
concept. Pure LISP was the first language whose program domain was not 
'stores'. But most versions of LISP, other 'applicative' languages such as 
GEDANKEN [17], as well as others emphasizing functional elements, such as 
APL [11], all tend to incorporate the traditional notion that programs 
transform stores. 

1.4. The object level and the Junction level viewpoints 

One important consequence of the conventional concept of 'program' is 
an emphasis on the 'object level' view of programming. Since stores hold 
'objects in their cells, programming becomes a process of describing how 
to combine objects to form other objects, a program being a description of 
how to combine the 'input objects', which are found in given cells, to form 
the desired 'output objects' and deposit them in the proper output cells. 

Even the traditional applicative languages such as pure LISP and ISWIM 

[14] emphasize the object level view of programming. Though their 
programs do not map stores into stores, they do use names for objects and 
their basic semantics automatically builds a kind of store (during the 
execution of a program) in which the values of variables mentioned in the 
program are kept. And, like conventional programs, these programs are 
primarily concerned with combining objects. For example, consider the 
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following definition of the object-to-object function fin the style of the 
lambda calculus [6]: 

f = AX· h(x,g(x)). 
I 

We are given the functions g and hand we wish to build the functionf. We 
do this at the object level by introducing the object x, forming the object 
g(x) and then the 'result object' h(x,g(x)); we then use the principal 
program-forming operation of the lambda calculus, lambda abstraction, to 
abstract the object variable x and convert the result object into the function 
f. Thus we see that the object level definition off does not directly combine 
the functions g and h from which/ is to be built, but instead this definition 
descends from the function level of g and h to the object level of x, g(x), 
and h(x,g(x)), then ascends again to the function level off. This down
then-up-again style is characteristic of the object level approach. (For 
further discussion of 'functional' object level programs see [4]). 

As we shall see later, there is a 'function level' approach to programming 
that defines a new function in terms of given ones without descending to 
the object level. For example, the function level definition off as above 
would use two program-forming operations to build/from the functions g 
and h and the identity function; no object or object variable would appear 
in the definition. In general the function level approach uses program
forming operations (functionals) to combine given functions directly to 
form the desired new one. ('Constants' in an object level definition are 
'lifted' to constant-valued functions in the corresponding function level 
definition.) Object level definitions all correspond to some isomorphic 
function level one, but there are many function level definitions that have 
no isomorph at the object level, although of course there is some 
nonisomorphic object level definition for the defined function. 

Of the various 'functional' or non-Von Neumann approaches to 
programming, we shall argue that it is this function level approach that 
offers the best possibility to have a universe of 'programs' with a deeper 
mathematical order than can be found in the universe of Von Neumann 
programs. It is also an approach that departs the farthest from the 
traditional use of names and variables for objects, hence it is also an 
approach that will be likely to cause the kind of deep unease I have tried to 
indicate above. 
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1.5. Goals of the function level approach to programming 

In the area of data types, as in e.g. [5,9,21,24]. we have already gone far 
in moving from the object level viewpoint to a function level one. We have 
moved from focussing on the objects of a data type and on their 'structure' 
to an emphasis on (a) the operations used to build and manipulate those 
objects and their structure, and on (b) the algebraic properties of these 
operations as expressed in various 'axioms'. 

The non-Von Neumann, function level approach to 'programs' seeks to 
shift our viewpoint similarly, to introduce the kind of order into the 
universe of 'programs' that the abstract, algebraic approach to data types 
has introduced into the universe of objects, an order represented by axioms 
or laws about the operations over the given universe (of objects or of 
'programs'). With data types, we are concerned with objects (data) and 
with operations on them; with 'programs' we are concerned with objects 
(data), operations on objects (programs), and operations on programs 
(program-forming operations or PFOs). 

For a long time we regarded programs as a kind of yard-goods pieced 
together by semicolons and begin/ends, just as we used to regard data 
structures as pieced together by commas and brackets. More recently, in 
the era of 'structured programs', we noticed that semicolons, if-then-elses, 
and while-do's were 'control operations' that served to 'structure' 
programs. 

The goal of the function level approach to a concept of 'programs' is to 
move now to an emphasis on the operations (PFOs) used to construct 
programs and on the algebraic properties of those operations. For 
example, in this approach if-then-else becomes a program-forming 
operation, not a 'control' operation; it maps three given programs into one 
new one and it has important algebraic properties with respect to other 
PFOs, just as 'addition' in a ring has important properties with respect to 
the other ring operation, 'multiplication'. It is these algebraic properties 
that make it possible to transform programs from one form to another and 
to solve equations for programs, just as it is the properties of the ring 
operations that enable us to transform ordinary algebraic expressions and 
to solve equations. 

1.6. Incompatibility of the Von Neumann concept of 'program' and the 
function level approach to programming 

The choice of 'stores' as the domain for Von Neumann programs has 
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two immediate, harmful consequences for our ability to write general, 
composable programs (we discuss these in the next section). But it is an 
indirect consequence of that choice that blocks the use of a function level 
style in Von Neumann programming: the choice of 'stores' as the domain 
of programs limits our choice of program-forming operations, apparently 
to PFOs lacking the required algebraic properties. (Again, we shall see later 
why this is so.) 

1. 7. Requirements and prospects jor the Junction level view of 
'programs' 

We shall show that by enlarging the domain for 'programs' beyond that 
of 'stores' that we can form domains for a new concept of 'programs' and 
that, using this new concept, we have a wider choice of program-forming 
operations from which we can then choose a set of PFOs with a strong 
algebraic structure. 

If we adopt both the new concept of 'program' (with its new domain) 
and the new PFOs that become available with it, then we can move from an 
object-centered view of programming to a function-centered one (or 
perhaps a relation-centered one) - despite the temporary trauma this may 
cause. Already there are signs that a more profound order can be found in 
the universe of the new 'programs' than we have found in the universe of 
the old, but the concept and the form of its programs, being new, are very 
much open to change. Having incubated for 20 years, the non-Von 
Neumann concepts of 'program' are just beginning to develop a function 
level view and 'programs' built by PFOs with algebraic structure. 

Much work remains to be done before a definite function level or other 
extended concept of 'program' (with its accompanying methodology and 
implementations) can be developed and achieve some form of consensus. 
Finding the 'best' concept of 'program' and achieving such a consensus 
would be aided by a larger abstract theory concerning the effect of various 
representations of programs over various domains on the properties of 
such systems. Much will depend on our ability to exploit the algebraic 
structure of PFOs to optimize programs. It will also be important to 
develop new computer architectures that directly implement both the PFOs 
and the composite data objects of the new concept and that exploit the 
inherent parallelism of its programs. 

Of course, as with any new approach, we may find difficulties with the 
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function level view that make it unsuitable, but that too can only become 
clear after a lot of further work. 

1.8. Organization of this paper 

Section 2 discusses two difficulties associated directly with the choice of 
'stores' as the domain for programs. Section 3 indicates how the Von 
Neumann concept of 'program' can be extended to a non-Von Neumann 
concept by enlarging the domain for programs. It discusses the advantages 
of this extension; it does so by describing a 'typical' Von Neumann 
language called L and its non-Von Neumann extension, called L *, and 
comparing the two. The rest of the paper is best outlined by giving the 
section and subsection titles: 

2. Two fundamental problems with the Von Neumann concept of 
'program' 

2.1. Problem domains are not program domains 
2.2. The principal program-forming operation, composition, is 

ineffective for building Von Neumann programs 

3. The extension of the Von Neumann concept of 'program' to a simpler, 
non-Von Neumann concept 

3 .1. Introduction 
3 .2. Program domains 
3.3. Abstract programs and PFOs versus concrete programs and PFOs 
3 .4. Algebraic structure of a set of operations 
3.5. The Von Neumann language L 
3.6. The structure of L-programs 
3.7. An extension of L: the non-Von Neumann language L* 
3 .8. The structure of L *-programs 
3.9. L *-images of L-expressions and L-programs 
3.10. The algebraic structure of the PFOs of L* and L 

4. Comparison of L and L * 
4.1. Problem domains and program domains 
4.2. Composition of programs 
4.3. Relationship between a composite program and its subprograms 
4.4. Complexity of program structure and of language structure 
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4.5. The relationship between languages and machines, serial versus 
parallel 
4.6. Object level and function level programs 

5. Conclusions 

2. Two fundamental problems with the Von Neumann concept of 
'program' 

2.1. Problem domains are not program domains 

Programmers are never approached with the following request: "I have 
a set of stores of this kind and I want you to write a program that will 
transform them into stores of this other kind." Instead they are asked, 
given a set of files and transactions, to write a program to transform a file
transaction pair into a new file and a response. Or they are asked to write a 
program that inverts matrices, and so on. But 'programs' can only map 
stores into stores. 

Thus the primary difficulty with the Von Neumann idea of 'program' is 
that the solution of a problem is never a program. For example, there is no 
program for finding square roots. We tend to think this last statement is 
wrong because we regard as insignificant the 'explanation' needed to 
connect a so-called 'square-root program' with the actual mapping that 
carries numbers into their square roots. Thus a 'square root program', to 
be meaningful, actually consists of a program (that maps stores into stores) 
plus a storage plan, the 'explanation', without which the program proper is 
useless. If the program takes its input from, say, cell a and deposits its 
output in cell b of the store, then the storage plan is a statement of these 
facts. To compute the square root of some number n then requires two 
other mappings in addition to that of the program itself: an input mapping 
that creates a store with n in cell a and an output mapping that maps a store 
into the contents of cell b; then the composition output0 program 0 input is a 
function that maps numbers into their square roots, where 'input' and 
'output' depend on the storage plan of 'program'. (In practice the use of a 
square root program as a subroutine employs mechanisms to conform the 
storage plan of the program to that of its context or vice versa, according 
as it is called by name or by value.) 
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The choice of 'stores' as the domain of Von Neumann programs means 
that a typical program has a 'purpose', that is, to map some domain D into 
another domain E (possibly the same), which it can achieve only partially 
and indirectly; it can be interpreted as accomplishing its 'purpose' only by 
a mental transformation that requires full knowledge of its storage plan. 
This storage plan constitutes a kind of artificial representation of the 
domains of the program's 'purpose', D and E, in terms of stores. 

The representation problem that is intrinsic in the Von Neumann 
approach, representing problem data by stores, greatly complicates 
programming by interposing storage plans between the straightforward 
'purpose' of a program itself. This makes it impossible for a Von Neumann 
program to achieve its 'purpose' directly. 

2.2. The principal program-forming operation, composition, is ineffective 
for building Von Neumann programs 

The Von Neumann requirement for representing data by stores is also 
the main reason we have found it so difficult to effectively build new 
programs from existing ones. The principal program-forming operation 
for building programs is composition, thus from programs p and q we can 
form the new program p;q. But if p and q are Von Neumann programs 
written independently, then p; q is almost certain to be meaningless. That 
is, the program p; q will not achieve the 'purpose' of p followed by the 
'purpose' of q (even in the indirect sense in which programs achieve their 
'purpose') except in the unlikely event that q happens to take its inputs 
from just those cells in which p places its outputs. 

Thus the Von Neumann concept of 'program' assures that composition 
is useful only for piecing together programs that are written together under 
a unified storage plan, whereas in mathematics and in a proper universe of 
'programs', composition is the primary, most powerful operation for 
building functions or programs. 

Some readers will complain that the above remarks about composition 
fail to take into account the existence of procedure declarations, since these 
enable one to make specific programs into general ones whose storage 
plans can be varied. Suppose one wishes to compose two procedure calls so 
as to obtain the composition of their 'purposes'. If they are P(x, y, z, w) 
and Q(x,y,z, w), where in each case x and y are inputs and z and ware 
outputs, then P(a, b, c, d); Q(c, d, e,f) transforms a and b into e and/. Here 
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we have merely simplified the storage planning problem: that of designing 
two problems to be composed so that the storage plan for the first is 
appropriate for that of the second. For ordinary programs the 'store' they 
operate on is large and hence storage plans involve much detail; in the case 
of our procedure calls their 'stores' have effectively only four 'cells' that 
require planning (the other, local cells being isolated from all other cells in 
the basic store). Thus P(a, b, c, d) becomes an actual program only after a, 
b, c, and dare chosen; once chosen the chance that P(a, b, c, d) is meaning
fully composable with another independent program is as slight as ever. 

Thus by the use of procedure declarations we make it possible to plan 
storage at the time of use, rather than the time of writing a procedure. This 
means that storage plans can be more local and flexible when using 
procedure calls in place of 'programs'. But that still means that p; q is 
almost always meaningless unless p and q have a common storage plan. 
Compare this situation with the composition of functions in mathematics. 
In that context a function and its 'purpose' are the same: a function maps 
its intended domain directly into its intended range without any intervening 
representations. Thus the composition of two functions is always 
meaningful if the composition of their 'purposes' is meaningful. 

The contrast between composition of Von Neumann programs and that 
of functions is perhaps best seen by an example. If feet-inch is a program to 
convert feet to inches and inch-yard is one to convert inches to yards, then 

feet-inch; inch-yard 

is a program, but it will almost certainly not convert feet to yards. On the 
other hand if the same names denote two conversion functions, then 

inch-yard 0 feet-inch 

is a function that will convert feed to yards. The difference follows from 
the fact that the program feet-inch maps stores into stores whereas the 
function feet-inch maps numbers (in feet) into numbers (in inches). 

Of course Von Neumann languages provide functions for use within 
expressions, and these can be composed meaningfully within individual 
expressions. Here we are addressing the problem of building programs 
from pre-existing ones by composition, a more central issue. 
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3. The extension of the Von Neumann concept of 'program' to a simpler, 
non-Von Neumann concept 

3.1. Introduction 

We have considered two important defects in the Von Neumann concept 
of 'program' that are direct consequences of choosing 'stores' as the 
domain for programs. These defects can be understood without examining 
the structure of 'programs' determined by the operations used to build 
them. But the most fundamental difficulties of Von Neumann programs 
and the languages used to express them lie in their unnecessarily complex 
structure, in our inability to use a powerful set of program-forming 
operations to build programs, and in the fact that the PFOs that we do use 
lack the algebraic properties that would allow us to prove useful general 
theorems about large classes of programs. 

In order to illustrate these difficulties we propose to describe the 
elements of a typical, but oversimplified Von Neumann language, L. Since 
our purpose is to expose defects in the simplest conventional concepts of 
'program', it will not be necessary to include in L many of the complica
tions that appear in real languages. That complexity is very well illustrated 
in the descriptions of real languages in the literature of denotational 
semantics [19,20]. It will become apparent that the defects we discuss in L 
can only become worse with the addition of further features. 

The complexity of real languages revealed in denotational semantics can 
be viewed in two different ways. The notion of 'continuations', for 
example, can be viewed as an ingenious invention that makes it possible to 
cope formally with various features of conventional languages. On the 
other hand, continuations can be regarded as yet one more level of 
mathematical obfuscation and complexity that is essential to shore up a 
failing concept of 'program', a concept tottering under its own weight. 

In the following we shall briefly examine the structure of L-programs in 
terms of the operations used to build them and to build their components. 
We shall then describe a non-Von Neumann language L* that is an 
extension of L in the sense that (a) the domain for L *-programs contains 
that for L-programs and (b) every L-program has an exact image within a 
small subset of the programs of L *. 

Up to this point we have emphasized the association of the concept of 
'program' with the domain that programs operate on. In the following we 
shall give equal emphasis to the second, independent element that is central 
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to the concept: the program-forming operations used to construct 
'programs' and the properties of those PFOs. 

We shall see that L *-programs can be built with a set of PFOs different 
from that used to build L-programs, that these PFOs have a strong 
algebraic structure where those of L do not, and that L *-programs have a 
simpler structure than L-programs. We shall see that L *-programs 
represent a function level approach to programming and L-programs an 
object level one. But first we must discuss a few issues that have been dealt 
with only vaguely, and then describe L and L *. We will then be able to 
compare the two approaches in more detail. 

3.2. Program domains 

By definition we have assumed that 'programs' map some domain D into 
itself. We do so because, if 'programs' mapped D into E, then, unless Eis 
contained in D, it would not make sense to compose two such programs. 

3.3. Abstract programs and PFOs versus concrete programs and PFOs 

'Programs' can be regarded either as mappings (infinite entities) or as 
representations {finite expressions) for such mappings, that is, as 'abstract' 
or 'concrete' programs. In our discussions of 'expressions' in L (store-to
object mappings) and of programs in L and L * we do not want to 
constantly distinguish between their abstract (mapping) and concrete 
(representation) aspects. Even more, we want to speak of expression
forming and program-forming operations without saying whether we mean 
operations that form abstract expressions or programs, or that form 
concrete ones. We sketch informally how this can be done without 
confusion. 

Let us consider only programs, since the treatment of expressions is 
similar. Let us agree that all concrete programs that represent one abstract 
program are 'equivalent' and that when we speak of a 'program' we may 
be referring either to the abstract program (mapping) or to one of the 
concrete programs that represent it or to the entire equivalence class of 
concrete programs. This gives us, at least, a clear understanding of the 
ambiguity we shall allow ourselves in the use of the term 'program'. 

Now consider an abstract program-forming operation n that builds, for 
example, the abstract program n (p, q) from the abstract programs p and q. 
Then there is a corresponding concrete program-forming operation ii such 
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that, for any concrete program-representations p and q for p and q. then 
ft(jj, q) builds a concrete program that represents n(p, q). Of course, 
concrete program-forming operations must be blind to the particular 
choice of concrete program jj used to represent some abstract p; replacing 
an argument of a concrete PFO by an equivalent one must give equivalent 
results. Again, for each abstract PFO n there are many corresponding 
('equivalent') concrete PFOs ft that differ in the representations they 
produce for an abstract program. 

As with the term 'program', we shall use the term 'program-forming 
operation' or 'PFO' to mean either some abstract PFO n or some 
corresponding concrete PFO ft or the entire equivalence class of concrete 
PFOs that correspond to n. 

3.4. Algebraic structure of a set of operations 

We have referred to a set of operations as having a 'strong algebraic 
structure'; although we do not intend the phrase to have a precise meaning, 
it deserves some explanation. To the extent that pairs or tuples of 
operations in the set are related by algebraic laws, we think of the set as 
being structured by those laws. Thus the set of operations, addition and 
multiplication, has a strong algebraic structure since the only pair in the set 
is related by the distributive law (a+ b )c = ac + be, which expresses a multi
plication involving addition as an addition involving multiplications. It is 
this kind of law, with this kind of 'symmetry' that has the greatest intuitive 
'strength' in our notion of algebraic structure. Thus, for example, the 
recursive definition of while-do using condition and composition lacks this 
'symmetry' and hence is not as 'strong' a law. 

The intent of our notion of algebraic structure of a set of operations is 
that strong structure goes with strong theorems about the operations and 
their domains and weak structure with weak theorems. We do not pretend 
that the notion is precise or that it always achieves this intent. In the case of 
the set comprising addition and multiplication our informal notion does 
work: it has a strong algebraic structure and there are strong theorems 
about the operations and their domain of numbers, e.g., the general 
solution of quadratic equations. 

A similar example, but with weak structure, is the set of operations of 
addition and square root. Without the introduction of multiplication there 
are no strong laws relating addition and square root, therefore there are no 
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strong, general theorems about systems with just these two operations, 
only particular ones like sqrt(4) + sqrt(9) = 5. 

I believe it will turn out that the reason we find so few strong, general 
theorems about conventional programs is that their program-forming 
operations have a weak algebraic structure. We shall see that the PFOs of L 
have a weak structure; but those of L * have a strong structure and, in 
accordance with the above notion, there are beginning to emerge some 
general theorems about programs of this new kind (see [2,3,13,22]) and l 
believe we shall see more theorems and stronger ones. We shall examine the 
algebraic structure of the PFOs of both L and L * in more detail later on. 

3.5. The Von Neumann language L 

Our typical but oversimplified Von Neumann language L has the 
following elements: 

(1) A set of L-programs that map £-stores into L-stores. 
(2) A set of L-stores, each store being a set of cells, each cell a 

'name' and 'contents'. 
(3) A set of L-objects that includes all the 'names' and 'contents' found 

in any L-store. We assume that the set of L-objects is a rich one-~··"~'""'""" 
objects built from elementary objects such as 'true', 'false', 
symbols, etc., by constructions such as sequences, arrays, files, etc. 

(4) A set of L-expressions that map L-stores into L-objects. 
A set of object-forming operations such as +, square root, as well as 

more complex operations on more complex objects. 
(6) A set of program-forming operations that build 'structured' L

programs from L-expressions and L-programs. These are: composition 
(semicolon), if-then-else, and while-do. 

3.6. The structure of L-programs 

£-programs are built on three planes. On the highest plane are L
programs; these are built from elementary L-programs by PFOs. On the 
middle plane are the elementary L-programs (assignments); these are built 
from 'names' and L-expressions by the 'assignment-forming operation'. 
On the lowest plane are £-expressions; these are built by object-forming 
operations (actually, by operations isomorphic to these) from elementary 
L-expressions, which are L-objects and £-variables. £-programs map L
stores into L-stores. £-expressions map L-stores into L-objects. 
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3.6.1. Elementary L-expressions map stores into objects. An L-object, 
serving as an L-expression, maps any store into the object itself. Thus 3 
maps any stores into 3 (we write 3: s = 3). An L-variable ft (associated with 
'name' n) maps a stores into the contents, ins, of cell n (fl: s = contents cell 
n ins). (We do not deal with the question of subscripted variables or other 
compound cell names, nor with the necessary distinction between 'names' 
(objects n) and 'variables' (expressions fl).) 

3.6.2. Constructing L-expressions with object-forming operations. 
Actually, expressions are built with expression-forming operations that are 
derived from object-forming ones as follows. If o(x1, ... ,Xn) is an object
forming operation of L, then oe(ei, ... ,en) is the corresponding expression
forming one, where the store-to-object mapping of the latter is 

for any stores. For example +e builds an expression from the expressions a 
and b, where (a+e b) :s = a :s+ b :s for any stores. 

Having noted the isomorphic relationship between the object-forming 
and expression-forming operations of L, from here on we can pretend they 
are identical. 

3.6.3. Properties of L-expressions. The points to notice about expressions 
are these: 

(a) They are object level constructions describing the combination of 
objects to produce others. 

(b) They represent the principal 'work' of a program. 
(c) Laws concerning object-forming operations are suitable for proving 

facts about objects, whereas we often want to prove facts about programs 
rather than objects. 

(d) Expressions cannot be built by composition since their domain 
(stores) and range (objects) differ. 

3.6.4. Elementary L-programs are assignments; these are built by an 
assignment-forming operation, :=, from a name n and an expression e, 
yielding the assignment n := e. The store-to-store mapping of this 
assignment satisfies the following two equations: 

fl :s' = e :s, (1) 
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fi':s' = n':s for an n' * n (2) 

wheres'= (n := e) :s for all stores s. Thus (1) asserts that the contents of cell 
n ins' (obtained from s by 'executing' the assignment) is the value of e with 
respect to s, and (2) asserts that the contents of other cells in s' are the same 
as ins. 

3.6.5. Constructing L-programs with PFOs. The PFOs of L are 
composition (; ), if-then-else and while-do; these are used to build 
programs from elementary ones. Thus if p and q are L-programs and b an 
L-expression, then 

p;q 

if b then p else q 

while b do p 

are L-programs. Note that here we are emphasizing the operational 
character of PFOs as operations on program-mappings. For example, if
then-else is not to be seen as a kind of punctuation used to divide up the 
text of if b then p else q into the subtexts of b, p and q. Instead, we see it as 
an operation with three operands: b, a mapping of stores into objects, and 
p and q, mappings of stores into stores. The result of applying if-then-else 
to these operands is a store-to-store mapping we denote by if b then p else 
q. 

Of course, as discussed earlier, there are many equivalent concrete
program-forming operations for if-then-else that map three concrete 
representations for the mappings b, p, q into some concrete representation 
for the mapping if b then p else q; as agreed earlier we have lumped the one 
abstract PFO and the many concrete PFOs for if-then-else into the one 
term 'if-then-else'. For this 'lumping' to be valid one must check that, if 
one equivalent concrete program is substituted for another in a program 
built by a PFO, then the resulting program will be equivalent to the 
original. This will be true for any PFO if every program built by it only 
applies the constituent programs in obtaining its result, since equivalent 
programs are indistinguishable in that case. Every PFO we shall use has 
this property. 

The mappings associated with each of the PFOs of L are given by the 
following definitions, for all stores s: 
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composition (p;q):s=q:(p:s); 

if-then-else (if b then p else q) : s = p : s if b:s= 'true', 

=q:s if b:s='false', 

while-do 

= undefined otherwise 

(while b do p) :s=s if b:s= 'false', 

=(while b dop):(p:s) if b:s='true', 

= undefined otherwise. 

3.6.6. Properties of L-programs. The main discussion of properties of L
programs is best left until we have described L *-programs and can compare 
the two. For the present the main thing to note about L-programs is their 
three-plane construction that divides them into expressions (that do most 
of the work, and whose object-forming operations may have good 
algebraic properties), assignments (that are built from expressions and 
change one cell of a store), and programs (that are built from assignments). 
Thus the power and possible algebraic elegance to be found in L-programs 
is confined to expressions whose individual effect in a program is restricted 
to changing one cell. (We shall examine the algebraic structure of the PFOs 
of L later on.) 

3.7. An extension of L: the non-Von Neumann language L* 

The language L * has the following elements: 
(1) A set of L *-programs that map L *-objects into L *-objects. 
(2) A set of L *-objects (that contain all L-stores and L-objects as 

described below). 
(3) A set of program-forming operations. 
The set of L *-objects contains all L-stores and all L-objects and hence 

every 'name' and 'contents' found in any L-store. Furthermore, the set of 
L *-objects is closed under sequence-formation; thus if Xi, ... , Xn are L *
objects then so is the sequence (Xi, ... ,x,, ). We shall see that enlarging the 
domain for 'programs' from 'stores' as in L to the domain of L *-objects 
results in a surprising simplification in the concept of 'program' (already it 
is evident that L * has fewer elements than L ). 
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3. 8. The structure of L *-programs 

L*-programs are built on one plane; they are built from elementary L*
programs by PFOs. 

3.8.1. Elementary L *-programs. These are the given, primitive programs 
of L *. They, and all L *-programs, have a single argument; they are 
functions from L *-objects into L *-objects. They include the object-forming 
operations of L, such as + and square root, and various functions and 
predicates for accessing, rearranging and testing sequences, as well as 
functions for dealing with whatever special data types are included in the 
set of L *-objects. For example, +: (3, 4) = 7, null: < ) ='true', 
equal: (A,B) ='false', length: (A,B, C) = 3. Note that A and Bare simply 
objects, they do not name other objects. 

3.8.2. Constructing L*-programs with PFOs. Having chosen a domain for 
programs does not determine the program-forming operations that can be 
used to build them. In L we have used the traditional PFOs for 'structured' 
programs. However, since L *-programs have a larger domain and a simpler 
structure than L-programs, we shall use a somewhat different set of PFOs 
to build L *-programs. We want this new set to have a strong algebraic 
structure; as it turns out the following three PFOs for L * have such a 
structure (we describe for each one the program it constructs in terms of its 
argument-programs): 

composition builds the program p 0 q from programs p and q, where 

p 0 q:x=p:(q:x) for all L*-objects x,. 

condition builds the program p-+q;r from the programs p, q and r, 
where 

(p-q:r):x=q:x ifp:x='true', 

= r:x if p:x= 'false', 

= undefined otherwise. 

for all L *-objects x. 
construction builds the program [pi, .. ,,Pnl from programs p 1, ... ,pn, 

where 

[Pi, ... , Pnl :x= (p,: x, ... , Pn :x) for all L *-objects x. 
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Composition is essentially the same as the PFO used in L except for its 
domain, notation, and the order of its arguments. Condition is slightly 
different from the if-then-else of L in that all three arguments are L *

programs; this difference improves its algebraic relationship to 
composition. Construction is entirely new; in fact, it cannot be used in L 
since the mapping it builds from L-programs would map a store into a 
sequence of stores, and a sequence of stores is never a store, hence this 
mapping cannot be an L-program and construction cannot be used to build 
L-programs. 

A fourth program-forming operation that is essential in L * is 'constant', 
one that is different in that it builds a program from an object. 

constant builds the program x from the object x, where 

x:y=x forallL*-objectsy. 

The reader may wonder at this point why there is no PFO in L * 
analogous to while-do. Of course we could introduce one without 
difficulty. But the three principal PFOs above have a strong algebraic 
structure whereas there are no strong algebraic laws relating while-do to 
these (other than the function level defining equation for while-do, which 
relates it to composition and condition, a 'weak' law). Furthermore, the 
algebraic structure of the principal PFOs allows us to formally solve and 
reason about a much larger class of recursive equations than the class of 
tail recursive ones for which while-do represents solutions (see [3,22] for a 
discussion of such formal solutions). 

Since recursive equations comprise a more powerful and expressive way 
of defining programs than while-do, we shall allow them as program 
definitions in L *; thus we have no need for while-do and can retain the 
strong algebraic structure of the PFOs of L *. 

One of the major benefits of the L * approach is that one can use a great 
many operations for building programs in L *. Their analogues can be used 
in L only to build object-forming operations, operations that are then used 
to build L-expressions. Adopting this approach introduces a fourth plane 
into the structure of L-programs: (1) build object-forming operations from 
elementary ones using 'operation-forming operations', (2) build 
expressions from object-forming operations, (3) build assignments from 
variables and expressions, and (4) build programs from assignments with 
PFOs. This structure is found in APL [11]. 

A few other PFOs we might use in L * are the following. 
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insert builds / p from p, where 

lp:(x1)=X1, 

Ip: <x1,X2,···,Xn) =p: <x1, Ip: (X2, ... ,Xn) ); 

apply-to-all builds ap from p, where 

fetch builds ix from the object x where 

ix: s = contents of cell x in store s for any store s: 

store builds lx from object x where 

lx: (y,s) =s' 

where s' is s with contents of cell x now equal y. 

3.9. L*-images of L-expressions and L-programs 

153 

By the 'image' p in L * of an L-program or an L-expression p we mean 
the L *-program j5 such that p: s = p: s for all L-stores s; we shall not be 
concerned whether pis minimal, i.e., undefined for all non-stores. Because 
of the defects of L-programs, their images in L * are perhaps the least 
interesting and least useful programs in L *. But it may be of interest to 
some readers, as an exercise in programming in L *, to see how expressions 
and programs of L can be built (as programs) in L * using its different set of 
PFOs. (This section is not essential to understanding later ones and may be 
skipped.) 

3.9. l. Elementary L-expressions. We illustrate images by examples and 
consider the L *-images of the two kinds of elementary L-expressions, that 
of the L-object 3 and that of the L-variable v. The L *-image of 3 is 3"; if we 
take v to be an L *-object, then the L *-image of v is iv. To back up this 
claim we must show that each entity and its image is, one in L and the other 
in L*, the same mapping of stores into objects: 

3:s=3 in L, 

3 :s= 3 in L*, 

v: s = contents of cell v of s in L, 

iv: s = contents of cell v of s in L * (see the PFO fetch). 
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3.9.2. Composite L-expressions. If a and bare L-expressions and a and b 
are their L *-images, then + 0 [a, bJ is the L *-image of the L-expression 
a+eb; sqrt 0 a is the image of sqrte(a), since, for all stores s: 

(a+eb):s=a:s+b:s in L, 

+ 0 [a,b]:s= +:(ii:s,fi:s)=a:s+b:s inL*, 

sqrte(a):s=sqrt (a:s) in L, 

sqrt 0 a:s=sqrt:(fi:s)=sqrt(a:s) in L*. 

3.9.3. Elementary £-programs (assignments). The L*-image of v:=e is 
lv 0 [e, id], where e is the image of e and id is the identity function: 

(v:=e):s=s' in L, where contents of cell v ins' is e:s. 

lv 0 [e,id]:s=lv:(e:s,s)=s' in L*, wheres' is the same as 
above, since e:s=e:s (see PFO 'store'). 

3.9.4. Composite L-programs. The L*-image of p;q in Lis {j 0fi. The L*
image of if b then p else q is b-+ fi; {j. The L *-image of while b do p is the 
solution f of the equation 

J= b-+f 0fi; id. 

(To apply fas defined above to any object, apply the right side.) I leave it 
to the interested reader to verify that these L *-images represent the same 
store-to-store mappings as the original L-programs. 

3.10. The algebraic structure of the PFOs of L * and L 

The principal three PFOs of L * have a strong algebraic structure as 
shown by the following 'strong' laws that relate each pair (with two laws 
for one of the pairs). For all programs p, J~ g, h, Ji,... the following 
function level identities hold: 

Composition and condition 

fo(p-.g; h) =p-+fog; 

(p->g; h) of =pof-+gof; h of. (2) 
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Composition and construction 

(3) 

Construction and condition 

[· •• (p---+g; h)· • ·] = p---+ [· •• g· • • ]; [·· • h •• ·]. (4) 

(4) holds either in the domain for which pis boolean -valued or always if 
the sequence constructor is strict. 

Each of the above laws relates two PFOs, call them A and B, where each 
law expresses a program built by A (involving a program built by B) as an 
equivalent program built by B (involving programs built by A). 

Many other algebraic laws hold in L *, some relating other PFOs to the 
principal ones and each other, and others that involve primitive L*
programs. But most of these laws are less symmetric, 'weaker' than those 
above. For example, the law relating the PFOs insert, composition and 
construction. 

is a 'function level' version of the second part of the object level 
description of If given earlier under the PFO insert. 

Since any abstract L*-program can be represented by programs built 
from suitable primitive programs by the three principal PFOs and recursive 
equations, the strength of their algebraic structure indicates that there 
should be a lot of strong general theorems involving these PFOs whose 
universally quantified variables range over L*-programs. 

Now consider the PFOs of L. They satisfy only one symmetric law, 
which relates composition and if-then-else: 

(if b thenp else g);r=if b then (p;r) else (q;r). 

This is the analogue of (1); the analogue of (2) fails because one cannot 
compose a program and an expression to form an expression (even if this is 
allowed there are other complications). There are no symmetric laws 
relating while-do with either composition or if-then-else (the function level 
definition of while-do is a 'weak' law that relates all three PFOs of L ). 

The weak algebraic structure of the PFOs of L is consistent with the 
existence of few general theorems about the programs of L; instead we 
tend to find theorems about particular programs (' 'my program is 
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correct") or small classes of programs ("this program, where o is any 
associative operation, is equivalent to that one"). One can (and should) ask 
whether there are better sets of PFOs for building £-programs. The answer 
is unclear; at this point all we can say is that construction, which relates 
well to composition and condition (which is close to if-then-else) to form a 
strongly algebraic triad, cannot be used as a PFO for any programs that 
have 'stores' as their domain. Since it is hard to do without the PFOs for 
composition and condition, or something similar, this does not bode well 
for finding PFOs for L with a good algebraic structure. 

Not only does L * have a strong algebraic structure in its major PFOs but 
also it has, as noted above, weaker laws relating these to lesser PFOs such 
as insert and apply-to-all, and to primitive £*-programs, such as those that 
select the nth element of a sequence or rearrange various data structures. 
These lesser PFOs and primitive L *-programs could only be used within 
expressions of L, therefore theorems relating all of these elements would be 
blocked in L by the barrier between programs and expressions. In L*, on 
the other hand, we can expect to obtain theorems that interrelate both 
major elements of a program-scheme (corresponding to the program plane 
in L) and minor elements (corresponding to the expression plane in L), 
since all these are programs in L * and are all put together by PFOs that are 
related by algebraic laws, either weak or strong. 

4. Comparison of Land L* 

4.1. Problem domains and program domains 

We noted earlier that £-programs never solve problems directly since 
they are store-to-store mappings and real problems require other kinds of 
mappings. Provided the data types of a problem are in the set of L *
objects, there is an L*-program that is a rather direct solution. Thus there 
are L *-programs for square root, matrix inversion and file updating that do 
not require storage plans to be useable, programs that map numbers into 
their square roots, matrices into their inverses, and so on. 

4.2. Composition of programs 

Again we observed earlier that in L the composition p; q of two 
independent programs has little chance of achieving a meaningful program 
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that represents the composite purpose of p and q. Thus if the purpose of p 

is to transform A's into B's, and that of q is to transform B's into C's, 
then p; q will almost certainly not transform A's into C's unless p and q 
have a common storage plan. 

On the other hand, if p and q are L*-programs for the same purposes, 
then the results of p will be B's, as will the arguments of q, and q 0p is an 
L*-program to map A's into C's. 

4.3. Relationship between a composite program and its subprograms 

We have observed that composition cannot assemble independent 
programs in L into a meaningful composite program. That observation 
applies equally well to the other two PFOs of L, if-then-else and while-do. 
If we wish to use if-then-else to build a program from expression b and 
programs p and q, then p and q must, in most cases, use corresponding 
input and output cells, otherwise the composite program is likely to be 
meaningless. Thus again p and q must have a common storage plan. 

In contrast, in L * the PFO condition easily assembles appropriate 
independent programs into a meaningful composite. For example, if b tests 
whether its argument is an A or a B, and p maps A's into C's and q maps 
B's into C's, then b-+p;q is a program that maps A UB into Cina way 
that is evident from its structure. 

Again in the case of the program while b do p the expression b and the 
program p must have a common storage plan for the composite to be 
meaningful. The recursive definition in L * corresponding to while-do can, 
like the other PFOs of L*, easily combine its constituent programs into a 
meaningful composite. 

The PFOs of L * that are not in L also have this important ability to 
create meaningful programs from existing, independent programs. Thus, 
for example, from programs p, q and r, all defined on the domain A, the 
PFO construction builds the program [p, q, r] that maps A into Bx C x D, 
where B, C, D are the ranges of p, q, r. 

It is important to note that the inability of the PFOs of L to assemble 
independent programs into meaningful new ones comes from the choice of 
'stores' as the domain for its programs and the barrier this poses between 
the purpose of a program and what it actually does: map stores into stores. 
In L *, on the other hand, there is no such barrier; if the purpose of a 
program is to map A's into B's, then that is what it does. (Within L* there 
are 'Von Neumann programs' that map stores into stores, but we do not 
have to use them.) 
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The most important property of any system of programming is its ability 
to build new programs from existing ones at any level. The lack of this 
ability is the primary weakness of L and the Von Neumann concept of 
'program'; having this ability is one of the primary strengths of the L * 
concept of 'program'. 

4.4. Complexity of program structure and of language structure 

It is obvious that £*-programs have a much simpler structure than£
programs. The latter have a three-plane structure (expressions, assignments 
- the interface between expressions and programs, and programs), each 
plane having its own entity-forming operation(s). (The structure of real 
Von Neumann programs is generally more complex than those of L and 
their domain is usually more complex than 'stores'.) 

L *-programs have a one-plane structure; they are built from primitive 
ones by PFOs. 

The term 'structured programming language' is often applied to 
languages with PFOs like those of L in which the use of GOTOs is 
restricted (if it is not, it is hard to define the effect of PFOs). This use of the 
term is trivial and misleading: if programs are built by any PFOs at all, 
then they are 'structured' by those PFOs, the only 'non-structured' 
programs being those that are not built exclusively by well-defined PFOs. 
But the fact that a language uses PFOs to build programs does not mean 
that the language is structured, only its programs are. 

If programs are 'structured' by the way they are built by PFOs, then 
what is a reasonable notion of 'structure' for a language? Since the PFOs 
of a language are one of its principal elements and since PFOs may be 
'structured' by their interrelating algebraic laws, I propose that a 
programming language should be considered 'structured' to the extent that 
its PFOs have an algebraic structure. In this sense L and other Von 
Neumann languages are very weakly structured, whereas the language L * is 
strongly structured. 

4.5. The relationship between languages and machines, serial versus 
parallel 

As outlined earlier, ·languages like L evolved from the Von Neumann 
computer and its machine language; this is the basic reason behind the 
choice of 'stores' as the domain for its programs. Therefore there is a 
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relatively small 'distance' between L-programs and machine programs. 
Hence it is relatively easy to (a) convert one into the other. (b) project a 
notion of efficiency from one to the other, and (c) retain the efficiency of 
one in converting it into the other. But, like their machine counterparts, L
programs are hard to transform, to optimize, and to reason about. 

The 'distance' between L*-programs and Von Neumann machine 
programs is relatively large and therefore it is more difficult to convert 
one to the other, and (b) project notions of efficiency onto L *-programs. 

The symbiosis between conventional programs and Von Neumann 
machine architecture, in which each needs the other, has kept the concepts 
of 'program' and 'computer' all too static over the last 30 years. Originally 
the Von Neumann concept of machine design was an elegant and beautiful 
one that matched, in a design of great economy, the economics of circuitry 
and the object level ideas about programming that where then current. 
Those basic circuit economics persisted over several generations of new 
circuitry, so there was little pressure for radical changes in machine design. 
Now, however, VLSI circuitry has changed those economics and the Von 
Neumann designs does not seem able to exploit the new economics nearly 
as well as it did the old. 

At the same time, VLSI is making computers so cheap that programming 
costs are becoming far greater than equipment costs. Ever larger and more 
complicated Von Neumann languages have been produced in response to 
the resulting pressure to reduce programming costs, but they have not 
succeeded in making a satisfactory reduction. 

Thus there are twin pressures to find radical new designs that exploit 
VLSI better and to find radical new languages that reduce the cost of 
programming so that cheap machines can be cheaply and conveniently 
programmed. It may be that non-Von Neumann languages such as L* and 
others can offer some help in both areas. 

There is now a race underway to find new architectures to exploit VLSI 
to the full. One of the main concerns is to achieve a high degree of parallel 
operation and to do so without paying the penalty (paid by some earlier 
parallel designs) of greatly increasing the already soaring costs of 
programming. On the contrary, it is vital to reduce programming costs 
drastically while at the same time exploiting VLSI. This will require finding 
parallel designs that are relatively 'close' to new non-Von Neumann 
concepts of 'program' that appear to offer greater programming power. 

Therefore many machine designers are studying non-Von Neumann 
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languages and attempting to find designs that correspond, that minimize 
the 'distance' between their design and their chosen language model. Some 
are looking at 'object level' functional languages, such as LISP, others at 
'function level' ones, such as FP [2] or L* (plus other language models that 
are hard to classify). (Here is a small sample of papers on representative 
machine designs: [1,7,8,10,12,15].) 

The resulting machine designs vary widely and, until their economics are 
better understood, we can only wait to see what their cost-performance 
turns out to be and what the 'distance' is between each design and the 
various concepts of 'program'. (Of course that 'distance' is short for some 
designs built around specific languages, e.g., the 'Scheme-79' machine and 
the Scheme variant of LISP [10], Mago's machine and FP.) 

One of the principal challenges in designing machines based on any of 
the non-Von Neumann languages is to find economical machine techniques 
to store, manage and operate on data having a hierarchical structure (such 
as lists or sequences). Another challenge in designing machines based on 
function level languages like L * is to implement a variety of PFOs in 
hardware, thereby making the machine language 'higher level' in some 
sense than today's 'higher level languages', and thereby helping to make 
programs for such machines easier and cheaper to produce. 

In the effort to find machine designs for parallel operation, languages 
like L are poor guides. Basically this is because all of its PFOs combine 
programs in a serial fashion, and having 'stores' as the domain for 
programs greatly complicates the problems of introducing parallel PFOs. 
In contrast, the one PFO of L * that cannot be used in L, construction, is 
the one that combines L *-programs in parallel. Thus [p, q, r] is a program 
all of whose subprograms, p, q, and r, can be applied in parallel to its 
argument. Other PFOs can be used in L * that introduce parallel 
operations, such as 'tree', which serves the same purpose as 'insert' [24]. 
Thus L * allows a programmer to naturally express parallel operation where 
that is called for. 

4.6. Object level and function level programs 

The essence of an object level definition of a function or program is the 
description, for every possible set of input objects, of how to build a 
succession of objects (by applying given object-forming operations or 
given programs) until the desired result-objects have been constructed. But 
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what are the 'ingredients' from which we build some desired program? 
They are not the objects we construct in an object level definition. They are 
in fact the object-forming operations and programs we use in laboriously 
building the succession of objects that culminates in the 'results'. 

In contrast, the function level approach to defining a program is to build 
it directly from the given 'ingredients', the given operations and programs 
that must be used in either an object level or a function level definition. 
Instead of applying the given operations to objects, a function level 
definition applies functionals (PFOs) to the given operations; instead of 
building a succession of objects to obtain the 'result-objects', it builds a 
succession of programs to produce the desired program. 

For example, consider the problem of defining a program that 
transforms x into sqrt(x) + square(x), given the object-forming operations 
(in L) or programs (in L *) for + , sqrt, and square. A program in L is 

y := sqrt(x) + square(x). (1) 

If this object level program is applied to a stores in which the input number 
is in cell x, then the result is a store s' in which the result is in cell y. The 
expression on the right causes sqrt and square to be applied to the number 
x :s, giving two intermediate objects that are added to form the result
object. 

The corresponding L *-program is 

+ 0 [sqrt, square]. (2) 

This program maps numbers directly into the desired result. When it is 
used it will construct the same intermediate and final results that (1) does: 

+ 0 [sqrt, square] :x= +: (sqrt:x, square:x). 

But (1) and (2) differ in that (1) applies sqrt and square to the ('abstract') 
object x., giving two objects, whereas (2) applies the functional 'construc
tion' to the programs sqrt and square, giving a program, [sqrt, square], 
and so on. 

While L-programs focus on combining objects, L *-programs focus on 
combining programs. Thus L-programs draw attention to object-forming 
operations whereas L*-programs draw attention to PFOs. The algebraic 
properties of object-forming operations are the basis for general theorems 
about objects, whereas the algebraic properties of PFOs are the basis for 
general theorems about programs. 
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Thus if we want to have a concept of 'program' in which the set of 
programs themselves, together with some set of PFOs, form an elegant 
mathematical space for which there are strong, interesting theorems, then 
it behooves us to pursue a function level approach to the concept of 
'program', the approach that is founded on just this viewpoint. 

5. Conclusions 

Powerful forces now threaten the Von Neumann concept of 'program': 
The ever greater need to reduce programming costs and the continuing 
failure of ever more gigantic Von Neumann languages to bring about 
significant reductions. The drive to find non-Von Neumann architectures 
that better exploit VLSI. These forces will continue to grow. 

It is unclear what new concept of 'program' will emerge in response to 
these forces, but I think it will become increasingly clear that the answer to 
the question in the title of this paper is 'yes', that we, computer scientists, 
need to work hard to develop a new concept of 'program'. And if we are to 
succeed we need to be aware of and free ourselves from the psychological 
barriers, the ancient traditions of language that keep us trying to modify 
the Von Neumann concept based on 'stores' rather than develop something 
new. 

The new concept of 'program' that finally is developed may not turn out 
to be of the function level kind that I have tried to sketch by describing L *, 
but I believe the L * approach does at least bring out several properties that 
will be important in any new concept of 'program'. First, and of the most 
practical and immediate importance, is the ability to combine independent 
programs to form new, meaningful programs at all levels, and to use a rich 
set of operations in doing so. This essential element of programming power 
is just the property that the Von Neumann concept of 'program' lacks, and 
it is the one that the L * approach is designed to provide. 

But perhaps the most important property for the success of the new 
concept is that it should make possible an elegant and powerful 
mathematics of 'programs'. Just as numbers, under the operations of 
addition and multiplication, form a mathematical system called a ring, so 
should 'programs', under their program-forming operations, form a 
mathematical system of a similar kind. Just as there are hundreds of 
important theorems about numbers and about the solutions of equations in 
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the ring of numbers, so there should be hundreds of important theorems 
about 'programs' and about the solutions of equations in the mathematical 
system of 'programs'. Just as theorems about numbers and their equations 
represent a great body of deep understanding and knowledge that saves an 
immense amount of work for mathematicians, so should theorems about 
the mathematical system of 'programs' contain a deep understanding going 
far beyond what has already been achieved, and save programmers an 
immense amount of work. 

The Von Neumann concept of 'program' has not given us a powerful 
mathematics of its programs with a large body of useful general theorems. 
The best mathematicians and logicians in computer science still struggle 
hard to prove (often from first principles) that one single program does 
what is claimed for it. Often they find it necessary to use elaborate 
programs to help them. One has only to look at the voluminous formal 
description of any Von Neumann language to realize that its programs do 
not form a system one can regard as 'mathematical' any more than one can 
regard a system with many pages of axioms as a useful mathematical one. 

I believe that the fundamental reason behind the scarcity of general 
theorems about conventional programs is the lack of algebraic structure of 
their program-forming operations. The mutual properties of their PFOs 
probably guarantee the non-existence of such theorems, just as the mutual 
properties of addition and square root probably guarantee the lack of 
interesting general theorems about a system of numbers having only these 
two operations. But whatever the underlying reasons, it seems time to 
abandon hope that the Von Neumann concept of 'program' can be the 
basis of a mathematical system of programs, since 20 years of effort by the 
best computer scientists have failed to produce the body of general 
theorems that one expects of such a system. 

The work to discover general theorems about function level 'programs' 
of the sort belonging to L * has just begun, thus it is too early to predict 
whether it can produce a large number of theorems, some of which are of 
general practical importance and others, perhaps, which provide new 
fundamental insights. But at least the outlook is brighter, since we begin 
with PFOs having a strong algebraic structure and have the possibility of 
discovering others that may strengthen it further. The laws relating the 
principal PFOs of L * are themselves already useful and very general 
identities and from them a small number of general theorems have been 
obtained [2,3,13,22]. 
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The kind of mathematical system represented by L * is somewhat new in 
having a relatively large number of operations (PFOs) on a single domain 
(of L*-programs) and an even larger number of laws relating these 
operations. I believe this may turn out to be an exciting new area for study, 
a relatively unexplored one that invites adjustment, exploration and classi
fication by mathematicians. I believe it is such studies that give the best 
hope for a mathematics of 'programs', one that can guide us toward the 
rapid development of a program by using its accumulated knowledge and 
one that will provide the general tools for concisely proving a program 
correct and for optimizing it. 
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Issues in the Design of a Beginners' Programming 
Language 

Lambert Meertens 

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

Some problems are related that have been encountered in the design of a 
programming language for beginners. The solutions were sometimes unex
pected, and required doing away with preconceptions. The use of systematic 
methods has been of some help. 

1. Introduction 

Of the commonly available algorithmic languages, some are definitely 
better suited to convey the algorithmic thoughts of the programmer than 
others. Whatever the preferred point of view, be it structured program
ming, provability of correctness or the expressibility of abstraction, some 
languages stand out for their excellence, some for their abomination. 

The latter should not worry us for languages in disuse. It should, for 
languages used widely. The relatively abominable FORTRAN, though far 
from dead, seems on its way out. Reasonable alternatives for FORTRAN 

exist. That absolute champion, BASIC, however, is steadily marching on. 
Moreover, BASIC has it attractive points, from the viewpoint of the casual, 
non-professional user. 

An attempt is under way to redress that situation, by issuing a rival 
language, provisionally referred to as 'B' (no relation to the precursor of 
C; the 'B' is only a language-name name referring to the yet unknown 
language name). For a language to beat a rival, more is involved than 
language issues. The example of FORTRAN more than goes to show this 
point. This paper will be restricted, however, to linguistic points. It is not 
intended as an introduction to B, but as an exposition of some of the 
choices and problems encountered in the process of designing an algor
ithmic language. The attempt has been to base the solutions, in a rational 
way, on the design objectives. 

167 
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Bis designed as the limit of a sequence: B0 , Bi, .... The most recent ap
proximation, B2, is the joint effort of Robert Dewar of the Courant Insti
tute of Mathematical Sciences, New York University, Leo Geurts of the 
Mathematical Centre, and the author. Contributions have been made by 
Peter King of the University of Manitoba, Jack Schwartz of the Courant 
Institute, and Dick Grune and Paul Klint of the Mathematical Centre. The 
responsibility for the opinions expressed is solely that of the author. 

2. The Design Objectives for B 

The idea underlying the design objectives for B are: beat the enemy at its 
strong points. The same idea has governed the design of ELAN [5]. There is 
one important difference: ELAN aims primarily at the 'market' of 
(introductory) education in computer science, whereas B aims first of all at 
personal computing. The latter has not always been the case. The first 
approximation of B (see [3]) was designed when personal computing was in 
its infancy. Although the design objectives themselves have remained the 
same, their impact on the design has changed quite drastically. 

The design objectives for B are: 
- simplicity; 
- suitability for conversational use; 
- inclusion of structured-programming tools. 

These objectives are elaborated upon in [3]. The change referred to 
above is mostly concerned with the objective of simplicity. In [3], this is 
interpreted as simplicity not only for the user, but also for the 
implementer. It is stated that "B should be implementable on small mini
computers". 

The latter reflects our awareness, at the time, of the onset and future 
importance of personal computing. At the same time, it reveals a lack of 
perception of the torrent of hardware evolution. Tomorrow's hand-held 
computers are yesterday's main-frames. Designing a language to run 
smoothly on eight bit SK machines is designing for the past. In designing 
B2, it was decided to ignore implementation issues completely. Not that we 
do not care about implementation complexity; for the time being we have 
merely disregarded the feelings of prospective implementers and concen
trated on the happiness of the user. Once sufficient implementation experi
ence is available, it may be decided to revise features that pose undue 
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implementation problems in exchange for little or no gain in language 
appeal. The impact of ALGOL 68R on the revision of ALGOL 68 reveals that 
this may even help to improve the language from the user's point of view. 

3. The Types of B2 

In B0 and B1, the types were INT, REAL. STRING and 'RANGE' types 
(similar to the scalar types of PASCAL), and ARRAYs of scalar elements 
indexed by a compound of RANGE values (but without the PASCAL 
restriction of compile-time fixed bounds). The type system had not really 
been given much thought, and was the first thing tackled again in the 
design of B2. 

The type system of B2 has been designed in a new way that is, in itself, of 
interest. If a sufficiently powerful collection of types is available (where 
'type' includes type constructors as 'array'), any desired type (e.g., deque, 
or ternary tree) can be 'simulated' or implemented by the user. The type 
could also be added as a 'standard' type to the language. This may increase 
the ease of use of the language. Not all types, however, are equally helpful 
in this respect. Moreover, the language is made more complex, and 
possibly much so. A type system is competitive only if it is better than each 
other type system in at least one respect (ease of use, simplicity). 

So we compiled a list of candidate types (including, e.g., bag, deque, 
enumerated types, map, multi-valued map, queue, sequence, set, stack and 
tree), constructed various schemes for implementing these types in terms of 
other types, and assigned numerical values for (relative) algorithmic 
importance and learning complexity of each type and for implementation 
complexity of each scheme. The values took into account, of course, that 
the user we have in mind is not a computer scientist. This made it possible, 
with the assistance of a program, to weed out the non-competitive type 
systems from the rather large powerset of the candidate types. The result
ing list of competitive systems was quite small, and it was easy, using old
fashioned human taste, to settle on one for use in B2 . 

If B1 might be called ALGOL 60 in BASIC-like disguise (the abstract of [3] 
reads: "FORTRAN: ALGOL 60 = PL/I :ALGOL 68 =BASIC:?"), B2 came out 
like SETL [1] in sheep's clothing. The result is that the types of B2 are 
'number', 'text', 'compound', 'list' and 'table'. 

Numbers come in two kinds, 'exact' (i.e., rational) and 'approximate' 
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(i.e., floating point). The distinction is made at run time. This choice 
attempts to combine the following desiderata: 

(a) The user must be allowed control over quantities that should not be 
subject to rounding errors. (The choice for rational numbers, rather than 
integers, is mainly a nicety. But there is some obvious advantage in having, 
e.g., 1.25, represent an exact number.) 

(b) The user should have no need to worry about the distinction if it is 
not important. (E.g., adding exact and approximate numbers is allowed.) 

(c) The language has strong typing. 
(d) Coercions, i.e., automatic implicit type conversions, are deemed 

undesirable. 
(e} Approximateness propagates upwards in evaluating arithmetic ex

pressions. 
(This list is not really exhaustive. It implies, among others, the presup

position that there should be some built-in treatment of approximate 
numbers.) 

The approach taken satisfies these five desiderata almost perfectly. 
Almost ... ; in conformance with Murphy's Eighth Law, there is one ugly 
snag. If xis approximate, xix does not equal 1. For approximateness pro
pagates, and the approximate number xix cannot be equal to the exact 
number 1. It is, presumably, equal to the approximate number -1. 

In fact, no proper solution satisfying the desiderata (a) through (e) 
exists. As soon as one of these is lifted, a full solution becomes possible. 
The fact that 1 does not equal ~1 is a violation of (b): sometimes the user 
does have to worry. We choose this solution because we felt that the user 
should be careful anyway when comparing approximate numbers and has 
no business to expect exact answers. Moreover, it is still possible to define 
the comparison 1 = ~ 1 to succeed, even though the values are not 'identi
cal'. The solution of allowing one coercion, from exact to approximate 
numbers (and coercions in its wake on composite values), is still under con
sideration. 

Texts are quite ordinary strings. (The term 'text', instead of the esoteric 
'string', was taken from [5] .) No character values are provided; a text of 
length one will do. Two subtext operators are available. If the value oft is 
the sequence of characters c1, ... ,cm then the expression t@p, with 
ls ps n + 1, stands for cP' ... , cn and the value oft J q, with O sq sn, is 
c1, ... , Cq. A common combination will be t@p J q. If t I q't@(q + 1) is 
defined c·• is concatenation), its value is t. 
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These subtext operators may also be applied to text variables in target 
('l.h.s.') positions. The replacing text need not have the same length as the 
text replaced. 

Compounds (tuples) are like structured values ('records'), but without 
tags for selecting the fields. If, e.g., u and v are variables, then u,v may be 
used in a target position. This allows decomposition of compounds. 

Lists exist for values of any type (e.g., list of list of text). A list is simply 
a multi-set, or bag. In an algorithmic context, given the choice between sets 
and multi-sets, the latter are more useful. Having both is unnecessarily 
complex, and even a potential source of confusion. Since we do not expect 
the user to be familiar with the concept of a multi-set, the semantics are 
explained in terms of ordered lists. A consequence is that a total ordering 
has to be defined on the values of any given type. This can be done in a 
reasonably natural way. 

Tables are like SETL maps: generalized arrays whose domain is variable 
and not necessarily a range of consecutive values. In contrast to SETL, 

tables are a genuine type, not a syntactic sugaring for interpreting a set of 
pairs as a map. In particular, a table cannot be a 'multi-valued' map. 

Originally, there were many restrictions in this type system. For 
example, the elements of a compound, list or table could only be numbers 
or texts. Table keys (indices) were numbers, texts or compounds. 
Especially the compounds had a special status. Although we thought we 
had good reasons for these restrictions (at the time the decision to ignore 
the ease of implementation had not been fully mentally digested), one by 
one better reasons appeared to relax these constraints. At first, the 
relaxations tended to make the complexity worse, until we took the step 
that, in hindsight, seems so obvious: the type system was made completely 
orthogonal: tables may be indexed with tables, and so on. (This decision 
nevertheless required reworking most of the provisional language defini
tion.) 

As the type system stands now, we are quite pleased by it. The types 
appear in some way to span together the space of needs, as was the purpose 
of the exercise. A carefully tamed 'free' type was at some time included, 
but abandoned later on. 

4. Command Syntax 

Commands (statements) in B are rather wordy. Each command begins 
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with a keyword, and keywords are also used to separate the parameters of a 
command. For example, the following is an assignment command: 

PUTa+1INa. 

The philosophy behind this approach is given in [3]. An obvious draw
back of verbose syntax is that the user has to key in so many symbols. 
However, as is already stated in [3], the language is embedded in a system 
that is dedicated to B. In particular, the editor knows the syntax of B. If 
this is combined with screen-editing facilities, it is possible to reduce the 
number of key strokes drastically. As soon as the editor knows (or maybe 
guesses) that a PUT command is intended, it may already display the IN 
and position the cursor at the first parameter. 

In [4] it is remarked that the keyword approach makes it possible to have 
user-defined commands. This option has indeed been chosen for B2 . Such 
command definitions take the role of procedures. For example, the user 
may define 

HOW'TO INCR x: PUT x+1 IN x 

and next use this INCR command as though it had been part of the 
language all of the time. 

Since programs are entered through a B-dedicated editor, it is realistic to 
consider program lay-out as an integral part of the syntax. In particular, 
indentation is used to indicate grouping of commands. Although this was 
already so in [3], it took us quite some time to disengage ourselves 
completely from the idea that programs are prepared on one system and 
parsed by a second one that need not trust its input. The fact that there is 
no distinction between editor and parser means that no special delimiters 
like BEGIN and END are needed. That BEGIN was superfluous, we had 
already realized; but this was true anyway. But for quite some time, we 
required END lines, as in 

FOR p IN feasible: 
IF pin cand: 

REMOVE p FROM cand 
INSERT p IN chosen 

END IF 
END FOR 
RETURN chosen, cand. 



Beginners' programming language 173 

But the lines with END are pure noise. Once one gets used to it, the 
following is much more legible: 

FOR p IN feasible: 
IF pin cand: 

REMOVE p FROM cand 
INSERT p IN chosen 

RETURN chosen, cand. 

5. Strong Typing without Declarations 

It has been clear from the beginning that B should have strong typing. 
Not for efficiency reasons, but to aid the user in spotting silly errors as 
soon as possible. It seemed to us that this calls for declarations revealing 
the type of identifiers. (The FORTRAN 57 solution of restricting the choice 
of identifiers for a given type is unacceptable, as is the addition of special 
symbols as in BASIC.) 

One of the attractive features of BASIC is the lack of declarations. 
Therefore, without really believing in it, we have searched for a system that 
allows strong typing without declarations. (The advantage of declarations 
that they provide a redundancy protecting against typos can be taken over 
by checks against the use of uninitialized variables and warnings for 
assignment to dead variables.) In some languages with strong typing, it is 
essential that the type of identifiers is revealed through a declaration. For 
ALGOL 68, e.g., the value yielded by 

(amode block= ( "abc", "def"); 
2 upb block 

) 

is 3 if amode is [ , ] char, but I if amode is [ , , ] char. But this is clearly a 
peculiarity. In almost all cases one can reconstruct the types from the con
text in which identifiers are used. 

This has led us to finding a system for B2 in which it is always possible to 
reconstruct the type of identifiers from the context. This statement should 
be slightly weakened in two respects. 

The first is that it may be possible to assign types to the identifiers con
sistently in more than one way. This happens, for example, in 
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PUT{} IN x 
IF x= {}: WRITE 'yes'. 

Here x could be an empty list of numbers, but it could equally well be an 
empty list of texts or anything else, or, in fact, an empty table (assuming x 
is not used otherwise). In such cases the net effect is always the same for 
each type assignment, so we do not care. It also happens in 

PUT a IN a, 

if no other assignments to a are made. But then a is not initialized, which is 
illegal by itself (and is checked statically). 

The second is that commands defined with HOW'TO may be truly 
generic. The definition 

HOW'TO SWAP a AND b: PUT b, a IN a, b 

will work for any type, as long as the two parameters have the same type. 
So no type can be assigned to a and b. Instead, the requirement is that if 
HOW'TOs are expanded as macros to an arbitrary depth, consistent type 
assignment remains possible. This raises some hard questions, and unde
cidability is lurking around the corner [2, 6]. Nevertheless, for B2 this 
appears to be decidable without undue restrictions. Only after the last 
sentence was written down, did the author become aware of the work on 
type polymorphism by Milner [10]. Although this is described for an ap
plicative language, it appears equally applicable for a language as B. In 
fact, the situation is simpler there, since the items carrying a polymorphic 
type are not treated as values in B. 

There is one point where an unconventional step had to be taken to 
uphold the system. If a value comes into being through an operation on 
other values, it is sufficient if the result type is only dependent on the 
operand types, which is the case in B2 . We may thus concentrate on the 
spots where values appear directly. This can happen in two ways. 

One is through a constant denotation (literal). This is no problem, since 
constants in B2 immediately reveal their types, with one exception: for 
empty lists or tables. This case has been treated above. 

The other case is when a value is obtained through interactive input. 
There is no a priori way to determine the type. Therefore, it is required that 
the READ command reveal the type of the (expected) input. A first attempt 
required the presence of a 'type specifier', where the size of the syntax for 
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specifiers turned out not unsubstantial. This was not very satisfying; it 
meant the user had to learn a lot of (relatively weird) syntax for this one 
purpose. Luckily, we found another solution, made possible by the fact 
that for each value an explicit notation can be given. The type is now 
specified by providing a 'sample': an expression of the same type. So one 
has to write, e.g., 

READ n, v EG 0, { "} 

if n is a number variable and v is a list of texts. (The constant {} will not 
do in this case.) 

6. Formulas 

Just like 'procedure calls' and 'commands' are unified in B2, so are 
'function calls' and 'formulas'. A new operator or function is introduced 
by a YIELD unit: 

YIELD fac n: 
PUT 1 IN f 
FOR i IN {1 .. n}: PUT f*i IN f 
RETURN f. 

The compound mechanism gives a natural way to introduce more para
meters: 

YIELD abs (x, y): RETURN sqrt(X*X+Y*YI. 

The parentheses are only required since the formal parameter is an explicit 
compound; the definition might also have run: 

YIELD abs z: 
PUT z IN x, y 

RETURN sqrt(X*X+Y*V), 

These two definitions are functionally completely equivalent. 
For some reason or other, the priorities of operators are a trouble spot in 

algorithmic languages. An extreme solution as in APL is not attractive; the 
more so since B2 is not really expression-oriented. Anyway, it is unaccept
able if2*n + 1 really means 2*(n + 1) (although it certainly helps in making 
the users feel they belong to an esoteric cult). The MABEL solution of re-
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quiring parentheses as soon as several operators are involved [7], combines 
the virtues of simplicity and error resistance. Still, it seems a bit harsh to 
require parenthesizing of 2*m*n. 

The solution that has been adopted for B2 is to require parenthesizing 
whenever the priorities are not established by standing convention and 
might matter. This is achieved by not assigning simple priorities to 
operators, but a priority interval instead. This interval represents a 'fuzzy' 
priority. If the precedence decision is independent of the choice of 
priorities from the intervals, the expression is acceptable. Otherwise, 
parentheses must be inserted. User-defined operators are always assigned 
the maximal interval. 

Acceptable expressions are, e.g., m *n/d + c + 1, a - b + 1 and 2*sqrt x. 
Unacceptable are a/2*b, a/2/b and sqrt 2*X, to give just a few examples. 
Of course, the editor warns the user on the spot that parentheses must 
resolve the ambiguity. 

It was a bit surprising that such a simple device as priority intervals could 
be tuned to give such reasonable results. 

7. Generators 

Lists are only useful if there is some easy way to step through them. 
Originally, there were two ways for stepping through a list, one (OVER 
alist) in the normal, and one (REVO alist) in reversed order (word play in
tended). The second form followed an idea from [9], and was connected to 
the scalar type requirement for table domains in B0 . Once this requirement 
is relaxed, the convenience of the additional form no longer justifies the 
extra complexity. 

The keyword OVER was changed to IN for B2. For example, the 
command 

FOR i IN a: INSERT i IN b 

merges list a into b. This was done after it had already been decided to 
allow quantified tests: the test 

SOME i IN a HAS i<O 

succeeds if a contains a negative element (and sets i to stand for the value 
of the first such element, if any). Instead of SOME, also EACH and NO 
are allowed. 
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In B0, the domain of a table had to be defined as a RANGE type in order 
to create the table. With a dynamic domain, this no longer applies. But 
there should be some way for the user to go through a table domain. As a 
first attempt, a domain operator was introduced: keys t (during some time 
written []t) gives the list of keys i such that t[i] is defined. So we could 
write: 

FOR i IN keys t: .... 

Switching to a seemingly unrelated topic, we wanted some simple but 
powerful mechanism for text parsing. A first attempt was a 'FITS test' of 
the form 

with e a text expression, V; variables and t; tests. (The keyword FITS keeps 
appearing and disappearing in the design of B, each time with a different 
meaning.) The whole test succeeds if an assignment of texts to Vi, ... , vn is 
possible, such that e = v 1 A ••• Av n and all of the tests t; succeed. If several 
successful assignments were possible, the lexicographically first one would 
be returned. 

Now this would have filled an appreciable part of the syntax for one 
specialized capability. Moreover, it was unlike anything else in the 
language. Then we realized that we almost had the capability already there, 
right under our hands. For the semantics were exactly those of 

SOME V1, ... ,vn IN??? HAS lt1 AND ···AND tnl, 

provided some suitable expression for the ??? could be substituted. This 
expression should be a list of all compounds s1, ... , Sn such that 
e=s1A· • •Asn. A provisional notation for this list was e/n (e divided inn 
parts). This raises the problem that the type of e/n is dynamically 
dependent on n, which is incompatible with strong typing. If the form were 
only allowed in this context, the problem would disappear; in fact, the n is 
then redundant, since there are exactly n bound variables. 

This triggered the solution adopted now. It is illustrated by the following 
example: 

WHILE SOME h, s, t PARSING sent HAS s= ',': 
INSERT h IN words 
PUT t IN sent. 
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If sent contains a comma, the parsing will be found that positions s at the 
first comma (so h will not contain a comma). If sent does not con
tain a comma, the test fails. If sent originally held the text 
'hickory,dickory,dock', the effect is that of 

INSERT 'hickory' IN words 
INSERT 'dickory' IN words 
PUT 'dock' IN sent. 

This is the most complicated feature in B2; it is, however, quite powerful. 
Its semantics can be explained in already familiar terms. At the same time, 
it takes away the nagging problem that a simple command as 

PUT 'memory is becoming cheap' /24 IN m 

threatens to blow up even gigabyte systems. 
When OVER and REVO were originally introduced, and when they were 

replaced by IN, we did not think of the construction as a generator. With 
PARSING, we clearly have a generator. It is quite natural then to have a 
generator INDEXING to go through all keys of a table. For example, 

PUT0 IN s 
FOR i INDEXING t: PUT s+ t[i] IN s 

sums the elements of t. 
Such a decision may seem simple. But it has many ramifications. One is 

that the function keys should be abolished. Inspection of programs shows 
that in practice it is never used in a command like 

PUT keys t IN kt. 

But the function is used in other ways, such as 

PUT min keys t IN mt, 

which finds the smallest key in the domain of t. The meaningful test 

i in keys t 

would also have to be replaced by some new notation. Instead, it was 
decide to leave keys alone, not to introduce INDEXING, but to generalize 
FOR ... IN ... to iterate also over the characters of a text and the elements 
of a table. Summing the elements of a table may thus be written: 
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PUTO IN s 
FOR e IN t: PUT s+e IN t. 

The same generalization applies, of course, to SOME ... IN ... , but also 
to all functions and tests previously only defined on lists (such as min and 
in). 

8. The final composition 

As has been clear from the exposition, composing a language is not 
merely a matter of putting ingredients together and stirring till the result is 
a smooth paste. It would be helpful to language designers, if some top
down design method existed for algorithmic languages. If such a method 
exists, it has escaped our attention. The requirement for applying a method 
as 'separation of concerns' is that the relevant concerns be separable. The 
whole experience of language design points in a different direction: ap
parently innocent minor decisions may quite unexpectedly work major 
havoc in seemingly unrelated corners. A well-composed language is one in 
which the 'features', although orthogonal, lend themselves to easy com
bination in many natural modes of expressing algorithmic thought. This 
means that the whole language is a tightly knit fabric, threatened by loose 
ends. 

The best aid to systematic language design, until now, is the paradigm of 
orthogonality, that derives its name from the title of Van Wijngaarden's 
[14), but whose essence can already be found in his [13). Experience shows 
that its application requires skill, if not expertise. It is interesting to see that 
the evolution of B has been in the direction of more orthogonality, mainly 
by virtue of the quest for simplicity. 

For part of the work in designing B2, a new systematic approach has 
been used: the method described in Section 3 to select the type system. This 
method is more widely applicable; it can be used, e.g., to find a proper 
system of string operations from a large set of candidates. Work is in pro
gress to apply another systematic method for the final polishing of the 
whole language. 

The idea has been used before by the author in a composition exercise of 
a different nature: composing a string quartet with traditional harmony 
[8]. The same idea is applicable here. In its bare essence, it boils down to 



180 L. Meertens 

considering all combinations of all alternatives for the microscopic design 
decisions. For each combination, a check list is inspected of potential unac
ceptable or undesirable consequences. For each transgression, a fine is 
imposed. The combination that collects the minimal total fine, comes out 
as the winner. 

The method is, of course, NP-complete. In practice, however, it is 
expected to be feasible with the aid of some heuristics, since many design 
decisions form relatively independent small clusters. Still, this computa
tional complexity is indicative of how hard it is to design a language. The 
example of the five reasonable desiderata for the numbers, only four of 
which could be satisfied simultaneously, is just one example of the 
problems a language designer may run across. 

It would be misleading to call such methods 'language design by com
puter'. The real skill goes into identifying the decisions, weighing the 
importance and merits of various approaches, and identifying harmful 
combinations. Only a dumb, but hard, part of the work is left to brute 
force. It is expected that the first-time 'winner' will mainly serve to show 
deficiencies in the input to the program, and that several iterations will be 
needed to come up with a nice product. Indeed, the exercise may point out 
directions we have overlooked. If anything, the method requires that 
human prejudice is made explicit. The algorithm itself is, like Justice, 
blind-folded. 
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Appendix A: a B0 and a B2 Program for the Sieve of Eratosthenes 

The following B0 program is copied from [3]. 

BEGIN 
CONST n IS 1999 
RANGE sievesize FROM 2 TO n 
RANGE primality HAS prime, nonprime 
ARRAY (sievesize) a TYPE primality 
FOR i OVER sievesize PUT prime IN a(il 
VAR k TYPE int, kmult TYPE sievesize 
PUT 2 IN k 
WHILE k*k FITS kmult 

BEGIN 
VAR k1 TYPE sievesize 
IF k FITS k1, a(k1) = prime DO sieve 
PUT k+1 IN k 
END 

sieve: 
BEGIN 
PUT nonprime IN a(kmult) 
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WHILE km ult+ k FITS kmult PUT nonprime IN a(kmult) 
END 

FOR i OVER sievesize 
IF a(i) = prime 

BEGIN 
NEWLINE 
PRINTi 
END 

END 

This problem was certainly not selected in [3] to show the cluminess of 
B0. The algorithmic thought is captured more easily, though, in B2: 

HOW'TO SIEVE n: 
PUT {2 .. n}, 2 IN primes, k 
WHILE k*k<=n: 

PUT k•k IN kmult 
WHILE kmult<=n: 

IF kmult in primes: REMOVE kmult FROM primes 
PUT km ult+ k IN km ult 

PUT k min primes IN k 
WRITE primes 

SIEVE 1999 

Note that this program is algorithmically slightly different from the B0 

program given above. The formula k min primes yields the smallest 
element of the list primes exceeding k. 

Appendix B: a BASIC and a B2 Program for Tabulating a Recurrent 
Sequence 

The following program is copied from [12]. It has been selected because 
for this problem none of the 'strong' points of B2, such as manipulation of 
lists, apply. For purposes of fair comparison, non-keywords have been 
rendered in lower case. 

10 REM This program computes a table of Fibonacci 
numbers 

20 PRINT 'Enter first term' 
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30 INPUT a 
40 PRINT 'Enter second term' 
50 INPUT b 
60 PRINT 'Maximum number of terms =' 

70 INPUT n 
80 PRINT 
90 PRINT 'Table of Fibonacci numbers' 

100 PRINT 'Term no.','Fibonacci number' 
110 LET k= 1 
120 PRINT k,a 
130 LET k=2 
140 PRINT k,b 
150 LET k = k + 1 
160 LET q =a+ b 
170 PRINT k,q 
180 LET a= b 
190 LET b= q 
200 IF k>= n THEN 220 
210 GOTO 150 
220 PRINT 'Maximum numbers of terms reached' 
230 PRINT 
240 PRINT 'Type 1 to continue, 0 to stop' 
250 INPUT/ 
260 IF I= 1 THEN 280 
270 STOP 
280 PRINT 
290 GOTO 20 
300 END 
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The following B2 program is not an exact transliteration; it contains an 
obvious improvement that might also be applied to the BASIC version. As 
to the question if this is fair in making a comparison, it should be con
sidered that part of the thesis motivating the development of B is that BASIC 

invites clumsy programming. 

HOW'TO TABULATE'FIBONACCl'NUMBERS: 
PUT 'yes' IN cont 
WHILE cont\ 1 = 'y': 

WRITE / 'Enter first term: ' 
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READ a EG 0 
WRITE / 'Enter second term: • 
READ b EG 0 
WRITE / 'Maximum number of terms=' 
READ n EG 0 
WRITE / / 'Table of Fibonacci numbers' 
WRITE / 'Term no. Fibonacci number' 
FOR k IN { 1 .. n}: 

WRITE/ k> >5, a> >15 
PUT k+1, b, a+b IN k, a, b 

WRITE / 'Maximum number of terms reached' 
WRITE/ 'Do you want another table?' 
READ cont EG " 

This program shows some 'formatting': the formula x > > n yields a text 
of length n representing the value of x, right adjusted (left-padded with 
blanks). 
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From VW-grammar to ALEPH 

D. Grune 

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

This paper gives an exposition of the designing of ALEPH. ALEPH (acronym 
for A Language Encouraging Program Hierarchy) is a programming language 
developed at the Mathematical Centre; it is unusual in that it originates from 
the world of grammars rather than from the world of programming languages. 
It has the interesting property that it is large enough not to be dismissed as a 
toy language and small enough to keep the task of designing it intellectually 
manageable. 

An account of the design of ALEPH is interesting not only because of its 
results, a language with a very simple but powerful flow-of-control in which 
the uninitialized-variable problem is solved and in which side effects are under 
full control, but also because the way in which these results are obtained lies 
open to examination. 

1. Introduction 

ALEPH (acronym for A Language Encouraging Program Hierarchy) [6] 
is a programming language developed at the Mathematical Centre; it is 
unusual in that it originates from the world of grammars rather than from 
the world of programming languages. It has the interesting property that it 
is large enough not to be dismissed as a toy language and small enough to 
keep the task of designing it intellectually manageable (although barely so). 

Therefore an account of the design of ALEPH is interesting not only 
because of its results, a language with a very simple but powerful flow-of
control in which the uninitialized-variable problem is solved and in which 
side effects are under full control, but also because of the fact that the way 
in which these results are obtained lies open to examination. 

In this paper we shall give an exposition of the designing of ALEPH. Little 
is known about design rules for programming languages. In essence design 
rules serve to reduce the intellectual complexity of a task. Traditional 
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means are: imposing a structure, divide-and-conquer, defining interfaces, 
etc. Hardly any of these applies to the design of programming languages. 
The most successful principle is still orthogonality, which also has its 
problems. It does not allow the designer to distinguish between the cheap 
and the expensive, and its consistent application is difficult. 

1. 1. Vocabulary 

Our discussion leads us from VW-grammars through affix grammars to 
ALEPH and conventional programming languages. A VW-grammar (2.1) 
can be seen as a recipe for generating an (infinite) grammar capable of 
generating the context-sensitive language we want. An affix-grammar (2.4) 
can be seen as a parametrized context-free grammar where the context is 
stored in the parameters (affixes). 

Different terminology is (traditionally) used in these different fields, and 
it may be helpful for the reader to refer to Table 1. 

Table I 

VW-grammars 

grammar 

hyper-rule 

may produce 
empty 

is a blind alley 
hypernotion 

metarule 
metanotion 

Affix-grammars 

grammar 
initial symbol 
rule 
primitive predicate 
left-hand-side, LHS 
right-hand-side, 

RHS 
may produce e 

produces w 
affix expression 

affix rule 
affix 
bound affix 
free affix 

ALEPH Conventional 
programming languages 

program program 
root 
rule procedure 
external rule built-in function 
rule head procedure heading 
rule body procedure body 

always succeeds always yields true 

fails yields false 
affix form, call 

rule call 
data type 

affix parameter 
formal affix formal parameter 
local affix local parameter 
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2. Turning a VW-grammar into a Programming Language 

2.1. VW-grammars 

A VW-grammar (named after its originator, A. van Wijngaarden [9, 10]) 
is a special type of context-sensitive (CS) grammar which has many 
properties of a context-free (CF) grammar. It is based on the observation 
that we can use a CF grammar to describe a CS language, provided that 
this grammar has infinitely many production rules; every actual production 
of a desired sentence in the CS language, however, needs only a finite 
number of them. In essence a VW-grammar is a recipe for generating such 
an infinity of CF production rules. For an extensive explanation see [2]. 

A VW-grammar has the following main constituents: 
- the metarules, a collection of (interrelated) CF grammars, each pro

ducing a language for a specific metanotion, 
- the hyper-rules, a collection of templates from which to form (an infinity 

of) CF production rules. 
A CF production rule is derived from a hyper-rule by replacing 

consistently each of the metanotions it contains by a terminal production 
of that metanotion. For an example see TCGl below. 

2.2. Two-colour grammars 

Let me now introduce the notion of a 'two-colour' VW-grammar. We 
start from a VW-grammar R, which produces sequences of symbols in red. 
We then take a second VW-grammar P, which shares part or all of its 
metarules with R and which produces its symbols in blue (or in a different 
alphabet if you will). We now combine the two grammars and insert 
hypernotions of Pin hyperalternatives of rules of R: the resulting grammar 
produces sentences in mixed red and blue text. 

If it now so happens that a hypernotion of P shares one or more meta
notions with its neighbours that belonged to R, then the production of blue 
text is controlled by the same choice of metanotion substitutions as that of 
the red text, and the red and blue pieces of text will become correlated. 

As an example we shall now rewrite grammar Q from [2, p. 64] as a two
colour grammar. 
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TCGl: 

N :: Nn; 
ABC:: a; b; c. 

text: red N a, blue N b, blue N c. 

red N ABC: 
red symbol ABC, red NI ABC, where rd NI plus one is N; 
where rd N is zero. 

red symbol ABC: red letter ABC symbol. 
where rd N plus one is N n: where true. 
where rd is zero: where true. 

blue N ABC: 
where bl N is zero; 
blue symbol ABC, where bl NI is N minus one, blue NI ABC. 

blue symbol ABC: blue letter ABC symbol. 
where bl N is N n minus one: where true. 
where bl is zero: where true. 

where true: . 

A possible production is (with N = nnn in 'text'): 

red-a red-a red-a blue-b blue-b blue-b blue-c blue-c blue-c. 

2.3. A top-down parser 

It is well known that a CF grammar can be turned into a recognizer for 
the language it produces. In the case of an unrestricted CF grammar such a 
recognizer has to do extensive backtracking, which is painful in terms of 
space and time, but if enough restrictions are put on the CF grammar, neat 
recognizers result. Specifically, the LL(I) restriction leads to an efficient 
top-down parser, which, as a program, has virtually the same form as the 
original grammar. 

This suggests that it may be possible to consider the red part of the two
colour grammar TCGI (which, in a sense, is LL(l)) as a top-down parser 
for the red text, while at the same time retaining the producing nature of 
the blue part. If we do this, we are led to consider the occurrences of 
metanotions in hypernotions as parameters. We shall not worry at the 
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moment about the exact parameter-passing mechanism; for the time being 
it can be thought of as 'call-by-name'. This brings us to the following 
grammar /program: 

Pl: 

text: read N a, print N b, print N c. 

read N ABC: 
read symbol ABC, read Nl ABC, where rd Nl plus one is N; 
where rd N is zero. 

read symbol ABC: absorb letter ABC. 
where rd Nl plus one is N: set N to NI plus one. 
where rd N is zero: set N to zero. 

print N ABC: 
where pt N is zero; 
print symbol ABC, where pt Nl is N minus one, print Nl ABC. 

print symbol ABC: produce letter ABC. 
where pt Nl is N minus one: set Nl to N minus one. 
where pt N is zero: is N zero. 

When we read this with the firm conviction that it is a program, 
semantics begins to attach itself to various constructs. To perform 'text', 
read Na's, then print Nb's, then print N e's. To read N ABC's, we have 
the choice between two alternatives which we shall try in order. We attempt 
to read a symbol ABC, and if we succeed we read Nl ABC's and set N to 
NI plus one; otherwise (if we cannot read a symbol ABC) we set N to zero. 
In this same vein we can understand the rest of the program, which prints 
N b's and N e's. 

At this point the reader will have gathered that we have cheated. The 
above example was rigged so that its interpretation as a program suggested 
itself. A general VW-grammar does not exhibit such a nice structure, and 
the parsing problem cannot in general be solved. There is, however, a type 
of CS grammar related to VW-grammars for which the parsing problem 
can be solved: the affix grammars. 

2.4. Affix grammars 

Affix grammars are defined by Koster [7]; this definition is slightly 
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corrected and explained well in [1]. Koster shows that if an affix grammar 
is 'well-formed' (see below) it is possible to construct a parser for the 
language it generates. Most constituents of a VW-grammar also exist in an 
affix-grammar. For a list of correspondences see Table 1. The principal 
differences between affix grammars and VW-grammars are: 
- a hypernotion consists of a characteristic name, its 'handle', followed by 

one or more metanotions, called 'affixes', and 
- context conditions are enforced by special rules called 'primitive 

predicates'; they can be thought of as affix checkers. 
A 'primitive predicate' is similar to a (normal) rule in that it has affixes; 

but rather than producing its output by specifying affix forms and terminal 
symbols, it contains a total recursive function T which, depending on the 
affixes, will produce either 'empty' (e) or the forbidden symbol (w ). We 
shall call T the 'test' of the primitive predicate. 

The well-formedness criterion requires (among other things) that all 
occurrences of affixes be divided into two groups, the 'derived' (c5) and the 
'inherited' (1) affixes, in such a way that they can properly be interpreted as 
output and input parameters, respectively. Moreover, for each primitive 
predicate with derived affixes D, inherited affixes I and test T, a total 
recursive function must be given which will calculate D from I such that 
T(I,D) succeeds (i.e., produces e); this requirement marks the transition 
from a specification language to an algorithmic language. 

We shall now show an affix-grammar equivalent to TCGI (some 
comment is given between { { and } } ): 

AGl: 

( { {V[n]:}} (text, red, red symbol, blue, blue symbol), 
{ {V[t]:}} (red-a, red-b, red-c, blue-a, blue-b, blue-c), 
{{A[n]:}} (N, Nl, ABC, ABCl), 
{ {A[t]:}} (n, a, b, c), 
{ { Q:}} (where rd plus one is, where rd is zero, where is, 

where bl is minus one, where bl is zero 
), 

{ {E:}} text, 
{{R:}} (N: N n;. 

NI: N. 
ABC: a; b; c. , 
ABCl: ABC. 

), 
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{{S:}} ((text, 0, (/J, (/), ¢), 
(red, 2, (J, 1), (N, ABC), (/J), 

(red symbol, 1, (1), (ABC), ¢), 
(where rd plus one is, 2, (1, J), (N, Nl), 

AX Ay: (x+ 1 = y-+e, x+ 1 * y-+w)), 
(where rd is zero, 1, (o), (N), 

AX: (x=O-+e, x*O-+w)), 
(where is, 2, (ABC, ABCl), (1, 1), 

AX Ay: (x=y-+e, x*y-+w)), 
(blue, 2, (1, 1), (N, ABC),¢), 
(blue symbol, 1, (1), (ABC),¢), 
(where bl is minus one, 2, (r, o), (N, Nl), 

AXAy: (x=y-1-+e,x*y-l-+w)), 
(where bl is zero, 1, (1), (N), 

AX: (x=O-+e, x*O-+w)> 
), 

{{P:}} (text: red+N+a, blue+N+b, blue+N+c. 
red+N+ABC: 

> 

red symbol+ ABC, red+ Nl + ABC, 
where rd plus one is+ NI + N; 

where rd is zero+ N. 
red symbol+ ABC: 

where is+ ABC+ a, red-a; 
where is+ ABC+ b, red-b; 
where is+ ABC+ c, red-c. 

blue+ N + ABC: 
where bl is zero+ N; 
blue symbol+ ABC, where bl is minus one+ Nl + N, 

blue+ Nl + ABC. 
blue symbol+ ABC: 

where is+ ABC+ a, blue-a; 
where is+ ABC+ b, blue-b; 
where is+ ABC+ c, blue-c. 

191 

To satisfy the well-formedness requirement this text must be augmented 
by a list of functions, one for each primitive predicate, that calculate the 
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derived affixes from the inherited ones. Since lambda-notation does not 
allow output-parameters, these functions cannot be written down here. 
They correspond to the "set N to •··" in Pl. 

3. From Affix Grammar to ALEPH 

Although the affix grammar AG 1 can be converted easily into a 
program, it will be clear that affix grammars are still a far cry from a 
usable programming language. We have 'primitive predicates' which form 
a kind of language inside the language. The global flow-of-control may be 
obvious but details about the local flow-of-control (i.e., inside a rule) have 
to be decided. The exact nature of affixes is open to negotiation. The affix 
rules describe data structures, but their form will depend on decisions 
about the affixes. 

There are of course many ways to approach these problems. One such 
approach has led to the Compiler Description Language CDL, designed by 
Koster [8], and its successor CDL2 [4]. We shall follow here a different way 
which leads to ALEPH. 

Like in CDL we shall restrict ourselves to top-down (recursive descent) 
parsers, since they lead more easily to programming languages than 
bottom-up parsers. Bottom-up parsers for affix grammars have been con
structed by Crowe [3] and Bohm [I]. 

3.1. Global flow-of-control 

The global flow-of-control relies completely on rules calling rules 
(recursively); since there is only one level of rules and rules cannot occur as 
parameters (nor be assigned to 'rule variables'), the program is a directed 
graph; the starting point is the root. This has the great advantage that 
many properties of the program can be decided mechanically (recursion 
check, automatic cross-referencing). On the other hand it means that the 
rule-calling and affix-passing mechanism will be used heavily and that 
efficiency will be an important factor in the design of both. 

3.2. Finding a place for the primitive predicates 

We shall incorporate the 1/ <> affix information in the rule heads; an 1-

affix (input affix) is marked by a prefixed ), a <>-affix (output affix) by a 
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postfixed ) . We shall postpone the decision about the affix-passing 
mechanism to Section 4.1. 

The number of primitive predicates can often be greatly reduced by 
describing their effect (producing e or w) in hyper-rules. Many full-size 
examples of this technique can be found in [10, Ch. 7] and in [5]. This 
suggests the possibility of using a fixed set of metarules for every grammar, 
i.e., to supply a fixed set of data-types in the programming language. These 
data-types are then supported by a predefined set of predicates on them, 
the 'externals'. 

The RHS of a rule may contain both affix forms and terminal symbols; 
we shall simplify this situation by introducing two rules, 'absorb+ ABC' 
and 'produce+ ABC'. 'Absorb+ ABC' looks at the next character in the 
input stream; if it is equal to ABC, 'absorb' absorbs it and succeeds; 
otherwise it fails. 'Produce+ ABC' produces the character ABC. They 
replace the absorption and production mechanism implied in the function
ing of a two-colour grammar. 

Our program now has the form (character constants are quoted with 
l's): 

P2: 

root text. 

external set to plus one+ N) +) Nl = 'INCR', 
set+) N + Nl) ='SET', 
set to minus one+ N) +) Nl = 'DECR', 
equal+ )N + )Nl = 'EQUAL'. 

text: read+N+/a/, print+N+/b/, print+N+/c/. 

read+N) + )ABC: 
read symbol+ ABC, read+ Nl + ABC, where rd plus one is+ Nl + N; 
where rd is zero+ N. 

read symbol+ )ABC: absorb+ABC. 
where rd plus one is+) Nl +) N: set to plus one+ N +NI. 
where rd is zero+N): set+0+N. 

print+ )N + )ABC: 
where pt is zero+ N; 
print symbol+ ABC, where pt is minus one+ Nl + N, 

print+ Nl + ABC. 
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print symbol+ ) ABC: produce+ ABC. 
where pt is minus one+ NI)+ )N: set to minus one+ N + NL 
where pt is zero+ ) N: equal+ N + 0. 

end 

Note that characteristic strings have been supplied in the external 
declarations, which enable the compiler to find the proper routines outside 
the program. 

3.3. Local flow-of-control 

Local flow-of-control is the flow-of-control inside a rule once it is called 
due to global flow-of-control rules. Since global flow-of-control is trivial, 
we shall use simply 'flow-of-control' for 'local flow-of-control'. 

The parsing problem for affix grammars can be solved by a general top
down parser [7, par. 8], at the expense of extensive back-tracking. Now 
ALEPH is intended for the writing of production soft-ware; here any back
track problems should be solved once at the writing desk, rather than over 
and over again when the program is run. A traditional way to avoid back
tracking is to require the grammar to be of type LL(l). 

What does it mean for an affix grammar to be LL(l)? It should be borne 
in mind that the LL(l)-property is important only because it allows simple 
flow-of-control rules for a backtrack-free deterministic parser. We shall 
therefore take these rules as a starting point: 

LL(l) rules: 
- call the initial rule; iff it succeeds, the input belongs to the language; 
- a rule is 'called' by trying the alternatives in its RHS for applicability and 

calling an applicable alternative (there can only be one such alternative); 
- an alternative is 'applicable' iff its first rule call succeeds; 
- an alternative is 'called' by calling its rules in textual order as long as 

these rule calls succeed; 
- an alternative 'succeeds' iff all of its rule calls succeed; 
- a rule call 'succeeds' iff the rule called has an applicable alternative that 

succeeds. 
Moreover we have an error condition: 

- if any applicable alternative fails, the input does not belong to the gener
ated language (i.e., if an alternative is applicable it is the correct one). 
We want to take over these rules as much as possible. After some experi

mentation we have come to the following flow-of-control rules: 
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ALEPH rules: 
- execute the affix form in the root; it must succeed; 
- an affix form is 'executed' by trying the alternatives in the RHS of its 

rule for applicability and executing the first applicable alternative; 
- an alternative is 'applicable' iff its first affix form succeeds; 
- an alternative is 'executed' by executing its affix forms in textual order 

as long as these affix forms succeed; 
- an alternative 'succeeds' iff all of its affix forms succeed; 
- an affix form 'succeeds' iff the rule called has an applicable alternative 

that succeeds. 
These flow-of-control rules allow us to view the first affix form as an 

'entrance key': you enter the first alternative to which you have the right 
key. Once you enter this alternative no others can be reached any more. An 
important consequence is that there is only one way to reach a given affix 
form. This leads immediately to the Central Theorem of ALEPH: 

Central Theorem. When the Nth affix form in the Mth alternative is 
reached, the entrance keys of alternatives 1 through M - 1 have failed, and 
affix forms I through N - l in this alternative have succeeded. 

This Central Theorem is a great help in deriving assertions (see below). 
We still have to investigate the error condition inherited from the LL(l) 

flow-of-control rules; we shall postpone this until Section 3.5. 
The above rules are (almost) all the flow-of-control ALEPH has: there are 

no case-, while-, do-, repeat-, until-, or exit-clauses. Rather than 
emphasizing repetition, ALEPH emphasizes decomposition: each problem is 
decomposed into several alternatives with entrance keys and each 
alternative is decomposed into a sequence of sub-problems (which may, of 
course, be congruent to the original problem). In short, every problem is 
attacked by recursive descent. 

Often a problem that requires a complicated application of the 
traditional if's and while's can be formulated simply in ALEPH. A good 
example is searching a list for a given name; the search process stops in one 
of two ways; the list is empty, or we found the name. We want to do 
different things in both cases. Here we would need a multi-exit loop or a 
global toggle; or we would have to perform the same test twice. In ALEPH 

we simply state the alternatives and tell what to do: 
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find name + ) name+ ) list + entry): 
is empty+ list, insert+ name + list + entry; 
is name on top+ name+ list, top of+ list+ entry; 
next of+ list+ list I, find name+ name+ listl +entry. 

3.4. Success/failure 

We have assumed in the above that any rule can fail (but we have not 
based any conclusions on that). It soon becomes clear, however, that some 
rules cannot fail, e.g., because a rule produces e regardless of the values of 
its affixes. 

The Central Theorem shows us immediately that if any alternative but 
the last one in a rule has an entrance key that cannot fail, part of the RHS 
is inaccessible. 

3.5. Side effects 

It is the error condition for LL(l)-parsing in Section 3.3 that allows us to 
avoid back-tracking, in the following way. When a rule call fails, it has 
only called other rules that failed. Now since the only terminal rule is 
'absorb', and since 'absorb' has no side effect when it fails (Section 3.2), 
no rule call that fails will have had side effects (by induction). So nothing is 
modified on failure, and no back-track is necessary. This is the 'No cure -
no pay' principle: you may order something, but if you don't get it, you 
don't pay. 

We would certainly like to carry this nice feature of LL(l) parsing over 
into our programming language. This is done trivially by forbidding any 
applicable alternative to fail (either statically or dynamically). But we can 
do better than this. 

Where a CF grammar only has rules (which have side effects on success), 
we have rules (which also have side effects on success) and primitive 
predicates (which never have side effects). Moreover, some of our rules 
derive entirely from primitive predicates (see Section 3.2). So in ALEPH a 
successful affix form does not necessarily imply side effects. 

Consequently it is perfectly safe to allow failure of an applicable 
alternative, provided no affix form with side effects has yet succeeded in 
the alternative. 

Under this regime the 'No cure - no pay' principle holds: 

If an affix form fails, it has had no side effects. 
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In Section 3.4 we have divided the rules into two groups, those that can 
fail and those that can't. Now we have a second division, in those that can 
have side effects (on success) and those that can't. These divisions are 
independent, so four classes (rule types) result: 

can have side effects 

cannot have side effects 

can fail 

predicate 

question 

cannot fail 

action 

function 

This classification allows us to give a proper place to 'absorb' and 
'produce': their rule types are external predicate and external action, 
respectively. 

In principle the compiler could assess these properties, but it is much 
more useful to have the programmer specify his intentions (opinions) and 
have the compiler check them. The non-trivial redundancy obtained is 
exploited for error detection. 

Our program is now (affixes are written in small letters): 

P3: 

root text. 

external function set to plus one+ n) + ) nl = 'INCR', 
function set+ )n + nl) ='SET', 
function set to minus one+n) + )nl = 'DECR', 
question equal+ )n+ )nl = 'EQUAL', 
predicate absorb + ) abc = 'ABS', 
action produce+ ) abc = 'PROD'. 

action text: read+ n +/a/, print+ n + /b/, print+ n + / c/. 

action read+ n) + )abc: 
read symbol+ abc, read+ nl + abc, where rd plus one is+ nl + n; 
where rd is zero+ n. 

predicate read symbol+ )abc: absorb+ abc. 
function where rd plus one is+ )nl + )n: set to plus one+ n + nl. 
function where rd is zero+ n): set+ 0 + n. 
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action print+ )n + )abc: 
where pt is zero+ n; 

D. Grune 

print symbol+ abc, where pt is minus one+ nl + n, 
print+ nl + abc. 

action print symbol+ )abc: produce+ abc. 
function where pt is minus one+ nl) + ) n: set to minus one+ n + nl. 
question where pt is zero+ ) n: equal+ n + 0. 

end 

We see the impact the rule type classification has on the program: for 
each rule it is lo~ally clear what to expect of it in terms of flow-of-control. 
The consistency of the indications is checked by the compiler; we have here 
strong type checking, not for data types but for rule types. 

As with strong type checking on data the errors detected originate from 
inconsistencies on behalf of the programmer. Suppose there is a rule 'xyz' 
which has e as one of its alternatives and which is used for testing the 
presence of an 'xyz'. Now, if 'xyz' is declared as a predicate, the empty 
alternative will cause an error message, and if it is declared as an action, its 
use as a test will be noticed. 

4. Affixes 

Rules in an affix grammar can have bound affixes (those that occur in 
the LHS and in the RHS) and free affixes (that occur in the RHS only). In 
ALEPH these correspond to formal and local affixes, or 'formals' and 
'locals'. There are 'input' and 'output' formals; an input formal has a 
value upon entry to the rule an output formal must have received a value 
when the rule ends. 

Of course it is necessary that all input affixes of an affix form have 
obtained a value when the affix form is executed. Now, since 
- the Central Theorem states that there is only one path from rule entrance 

to a given affix form, and the Central Theorem gives that path; 
- the initial states of all formals and locals at rule entrance are known 

from the LHS; and 
- for each affix form A on the path the effect on the affixes passed to it is 

known from the LHS of A, 



From VW-grammar to ALEPH 199 

the compiler can ascertain in an efficient way that never the value of an 
affix will be used before that affix has received a value. No run-time 
checking is necessary. A similar test can ensure that an output formal will 
always receive a value. 

The details of this test depend on the affix-passing mechanism. 

4.1. The affix-passing mechanism 

The affix-passing mechanism has to obey two conditions: the value of an 
inherited affix must be available inside the rule, and the value obtained by 
a derived affix inside the rule must be made available to the caller. 

If we do not allow the value of an affix to be changed ( once it has 
obtained a value), then the story ends here: all affix-passing mechanisms 
that conform to the above conditions are indistinguishable (except, 
perhaps, as to efficiency). 

Little is known, however, about the possibility of programming with 
initializable constants only, and we felt that variables are indispensable. 
This decision has led to an interesting extension of the 'No cure - no pay' 
principle to local variables. 

Since rules need the possibility to change values of affixes of calling 
rules, it seems that we need at least call-by-reference (or a more general 
mechanism). Call-by-reference, however, can surprise the programmer 
painfully with invisible aliases, as in: 

action produce a or b + p) + q): 
set+p+/a/, set+q+/b/, produce+p. 

where a call 'produce a or b + x + x' produces /b/. Moreover, back-track 
rears its ugly head again when a rule fails after having changed the value of 
an (output) affix. 

On the other hand it is clear that call-by-value is insufficient. 
A good in-between is found in 'copy-restore': upon rule entry all input 

affixes are copied to a local work space, and upon rule exit all output 
affixes are restored from that local work space. If we now suppress the 
restoring if the rule fails ('copy-maybe-restore'), no effects on affixes will 
propagate upwards upon failure, and a failing rule will never spoil infor
mation: the 'No cure - no pay' principle also holds for affixes. 

Under these circumstances we can easily introduce 'inout-affixes', which 
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must have a value upon entrance and which return the (possibly changed) 
value; notation: +)tag). 

The copy-maybe-restore mechanism allows us to view the (formal and 
local) affixes as local variables, some of which are already initialized upon 
rule entrance and some of will be returned to the caller if and when the rule 
succeeds. This mechanism is easy to explain and efficient to implement. It 
aids programming in that it supplies automatic back-tracking on local 
variables. 

The introduction of variables allows the following shorter form of our 
program: 

P4: 

root text. 

external function increment by one+ ) n) = 'INCR', 
function set+ )n+nl) ='SET', 
function decrement by one+ )n) = 'DECR', 
question equal+ )n + )nl ='EQUAL', 
predicate absorb + ) abc = 'ABS', 
action produce+ > abc = 'PROD'. 

action text - n: $ a 'local' 
read+n+/a/, print+n+/b/, print+n+/c/. 

action read+ n) + )abc: 
read symbol+ abc, read+ n + abc, where rd plus one+ n; 
where rd is zero+ n. 

predicate read symbol+ )abc: absorb+ abc. 
function where rd plus one+ ) n): increment by one+ n. 
function where rd is zero+ n): set+ 0 + n. 

action print+ )n + )abc: 
where pt is zero+ n; 
print symbol+ abc, where pt minus one+ n, print+ n + abc. 

action print symbol+ ) abc: produce+ abc. 
function where pt minus one+ ) n): decrement by one+ n. 
question where pt is zero+ )n: equal+ n + 0. 

end 
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5. Other Features 

Program P4 is correct ALEPH and, given suitable external routines 
INCR , .. PROD, it will run. However, a number of externals have been 
predefined in ALEPH; there are other data types besides the integers used 
here; there are abbreviations for right-recursive rule calls; and there are 
other features. All these allow the program to be simplified. For lack of 
space we shall not treat them here. Details can be found in the ALEPH 

Manual [6]. 

6. Conclusion 

We have shown that by drawing heavily on the analogy between 
grammars and programs, and between parsing and problem solving, a 
practical language can be designed that has some properties not generally 
found in programming languages. 

Among these properties are: 
- a simple and effective flow-of-control based solely on selection, de

composition and procedure calling; 
- a Central Theorem which states in simple terms the conditions that apply 

when a given construct is reached; 
- an efficient compile-time check on the initialization of variables; 
- a firm and compiler-checkable concept of side effects. 
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Based on the technique of the algebraic specification of programming lan
guages a number of design principles for programming languages are formally 
characterized and discussed. The notions covered in this article are abstract
ness, independence and duality of concepts, expressive power, coherence and 
formal soundness. 

Although these notions cannot be used as a complete methodology for the 
design of programming languages, they allow for important insights into the 
semantic structures of programming languages including their comparisons, 
such that design alternatives can be compared and evaluated. 

1. Introduction 

The design of a programming language is an intricate task requiring 
careful reflection and sophisticated decisions. Since questions of taste, 
personal styles and individual perceptional habits are intermingled with 
formal considerations and technical requirements, discussions on pro
gramming languages are not only challenging and pleasurable but also 
subjective and quarrelsome topics. In addition, such discussions are all too 
often based by the use of impressive, yet undefined, slogans and catch
words like 'coherence', 'abstractness', 'high-level', 'very-high-level' and so 
on. 
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With the gradual development of more and more rigorous methods for 
the definition of programming languages there should also emerge a way of 
formally characterizing and justifying such catchwords. Accordingly, we 
will investigate in this paper some consequences that can be drawn from a 
particular formal view of programming languages. In doing so, our aim is 
twofold: On the one hand we try to isolate and discuss some basic design 
principles, and on the other hand we try to give a formal background for 
obtaining a more precise definition of these principles. Consequently, we 
will only look at those principles here, for which we can offer some kind of 
formal characterization. 

The approach that we are taking for the specification of programming 
languages emerged from investigations on a 'wide spectrum language'. 
This language (cf. [2, 14]) was designed in the course of the project CIP 
under the joint guidance of Professor F.L. Bauer and the late Professor K. 
Samelson. Although being a general purpose language, it is devoted to a 
particular view and methodology of programming: The language is used 
for the formal specification of software and its stepwise development by 
applying verified transformation rules. The formalization of this approach 
led us to consider programming languages as algebraic theories (or more 
technically as abstract types). This point of view now allows us to conceive 
a number of general principles for (the design of) programming languages. 

Note: As to the theoretical foundation of our algebraic approach, we 
will try to burden this article as little as possible with heavy mathematics. 
Detailed elaborations can be found in the papers listed in the references. 

2. Abstractness 

In recent years' computer science 'abstractness' has become one of the 
most popular notions. Indicatively, it is used in various senses and too 
often without a proper definition. Here we adapt the following idea 
(leading to the definition given below): Abstractness means to describe 
phenomena or concepts independent of particular representations. More 
mathematically speaking, this means that we are dealing with the whole 
class of structures in which the respective phenomena occur. This clearly 
leads to algebraic theories (which are nowadays often presented in the form 
of abstract data types). 
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Definition. The abstract syntax of a programming language is the 
signature of a type. The basic nonterminals are represented by sorts, the 
individual productions by Junctions over these sorts (cf. [20]). 

Example 1. Let the sorts id and expr representing identifiers and expres
sions, respectively, be given. Then we may have the following correspond
ence between a concrete BNF-syntax and a signature: 

(stat)::= (id):= (expr) 

(stat)::= skip 

assign: id x expr -> stat 

skip: ->stat 

(stat)::= (stat); (stat) semi: stat x stat ->stat 

( stat) : := if ( expr) then ( stat) fi cond: expr x stat ->stat 

(stat) ::=while (expr) do (stat) od while:exprxstat->stat 

(stat) ::=do (stat) until (expr) od until:exprxstat ->stat 

The term algebra W(L) (also called the word algebra) of such a signature 
L provides the set of abstract programs. Each concrete syntax can be con
sidered as an initial model of the type T' = (L, 0) having the signature L 
and an empty set of axioms. Hence, each concrete syntax (in particular the 
most common one of parsing trees) is isomorphic to the abstract syntax. 
(For a deeper analysis see [24].) The next step is now straightforward: 

Definition. The abstract semantics of a language is given by a set ,w of 
axioms, which are added to the abstract syntax L. 

In this way, the complete syntactic and semantic specification of a 
language is given by the pair T= (L,A), the meanwhile classical presenta
tion of an abstract data type. 

In this setting, the context conditions (sometimes also called static 
semantics) may be given by a set of definedness predicates; the requirement 
that context conditions must be checkable at compile time therefore means 
that the definedness predicates must be specified 'sufficiently complete' 
and must be decidable. 

The (dynamic) semantics causes more intrinsic problems. For termina
tion (i.e. least fixed point properties) cannot be expressed 'sufficiently 
completely' by first order conditional equations. There are two solutions to 
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this issue: Either one designates a sufficiently powerful kernel of the 
language with its, say mathematical or operational semantics, and reduces 
all other language constructs to this kernel ('transformational semantics' 
[28]), or one extends the theory of abstract types by considering special 
homomorphisms (cf. [6, 7, 8]). 

Example 2. Given the signaure of Example 1, the essential axioms for alge
braically specifying the language are: 

semi(skip, s) = s = semi(s, skip), 

cond(true,s) =s, cond(false, s) = skip, 

while(e, s) = cond(e, semi(s, while(e, s))), 

until(e, s) = semi(s, cond(, e, until(e,s))). 

The rest of the specification centers around the assignment. For example, 
in the 'transformational semantics' version one uses axioms like 

semi(assign(x, e), assign(x,f)) = assign(x,f_;) 

in order to transform every statement into the 'normal form' of a single 
collective assignment (cf. also Example 5). Then a rule such as 

1x:=E;xj =E 

associates an input/output relation (based on the semantics of expressions) 
to each statement. 

In the other approach, one introduces a semantic function like 

value: stat x expr-+data 

that gives the value of an expression after executing a statement. This 
requires axioms such as 

value(semi(s, assign(x, e)),f) = value(s,f;). 

The extended theory of abstract types is needed in order to cope with the 
possibly arising infinite reduction sequences. 

In contrast to e.g. denotational semantics, where one particular model is 
fixed, our algebraic specifications characterize in general whole classes of 
semantic models. In these classes there are models corresponding to mathe-
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matical semantics as well as models corresponding to various possibilities 
of operational semantics. With the help of order relations induced by the 
different homorphisms one can then compare these different semantic 
structures. To elucidate this further, we will cite here one result (that stems 
from [6]): 

The minimal model in the aforementioned ordering is called 'weakly 
terminal model'. In [26] the notion of 'fully abstract semantics' is 
introduced, which means informally that two programs are equivalent (i.e. 
equally interpreted in the semantic model) if and only if they can be substi
tuted for each other in any 'primitive' context without effecting any 
changes (i.e. considered as black boxes they are indistinguishable). The 
weakly terminal model - if it exists - provides such a fully abstract 
semantics, and we call two programs extensionally equivalent1 if they are 
equal in this model. (For instance, in Example 2 the programs until(-, e, s) 
and semi(s, while(e,s)) are extensionally equivalent.) 

To conclude this brief exposition of the algebraic specification of pro
gramming languages we would like to mention a general property (shown 
in [12]): Every formal definition of a language induces some extensional 
equivalence, and vice versa every equivalence relation (when considered as 
being extensional) induces a formal semantics. 

The abstraction achieved by the algebraic approach encourages one to 
design languages in terms of concepts and their properties rather than by 
giving meanings to notations. 

The following sections are now devoted to conclusions that can be drawn 
from this algebraic view. 

3. Expressive power 

Expressive power is not an absolute measure but rather a means for com
paring languages. Hence, we will only define the expressive power of one 
language relative to another language. Though concerning mainly the 
number and strength of the concepts of a language this notion is sometimes 
also used in connection with a mere syntactical richness ('notational 
variants'). 

As to the latter point, our notion of abstractness allows us to get rid of 

1 Sometimes also called 'observably equivalent' or 'visibly equivalent'. 
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such notational variants. For instance, the two iterative constructs of the 
previous section are related to each other by means of the equation 

until(e, s) = semi(s, while(, e, s)) 

leaving only the concept of 'iteration'. Analogously, the concept of a 
'recursive function' is independent from its presentation as an ALGOL-like 
declaration 

functf = (mx)r:E(x,f) 

or as a fixed point expression in the style of the types A-calculus 

Y f: [m->r]. Ax: m. E(x,f). 

Example 3. This syntactic richness becomes most apparent in languages 
that provide a huge collection of special operators. Consider the operator 
'I' of APL ( cf. [22]); its effect is given by the functional 

funct slash= (vector x, funct(real, real) real op) real: 

if length(x) = I then first(x) 

I length(x) > I then op(first(x), slash(rest(x, op)) fi. 

Similar operators, which are oriented towards special data structures, can 
be found in SETL (cf. [16]). 

These considerations may be formalized as follows (cf. also the notation 
of 'extensions by definitions' in [30]). 

Definition. Let L be a language (i.e. an abstract type). A new construct g 
(i.e. a new function) can be added to L as a notational variant by specifying 
an axiom of the form 

g(Xi, ... ,Xn) =E 

where Eis a term of L in the free variables Xi, ... ,Xn (and of course the 
operation g must not occur in E). 

The classical way of comparing the expressive power of two languages is 
to map both onto the same semantic model. This is rather straightforward 
for two applicative languages, say LISP and the Backus-language, or for 



On design principles for programming languages 209 

two procedural languages, say ALGOL 60 and PASCAL; but it becomes quite 
artificial, when an applicative language is to be compared with a pro
cedural one. 

In order to get a more direct mode of comparison, we employ again our 
algebraic techniques. As a prerequisite we need a common basis, viz. a 
common set of primitive data types. (We will consider this basis as an 
unspecified parameter, both for gaining flexibility and for avoiding 
'simple' translations via Godelization.) 

Definition. A language L 1 is interpretable in a language L2 , if there is a 
mapping (morphism) </J: W(L 1 )----> W(L2 ), which associates to each term of 
L1 a term of L2 (and which is the identity on the 'primitive terms' of the 
common basis) such that congruent terms of L 1 are mapped to congruent 
terms of L2 , i.e. 

In other words, the equivalence classes constituting the semantics of L 1 are 
mapped to equivalence classes of L2 . Two languages are called equipollent, 
if each of them is interpretable in the other one. This renders the notion of 
a 'coherent family of languages' [19] more precise. 

The above definition still contains a certain degree of freedom, viz. the 
congruence relations to be chosen. For instance, if in both cases the exten
sional equivalence (cf. Section 2) is taken, then the expressive power refers 
to the mathematical semantics, i.e. to the input/output behaviour. Other 
equivalence relations allow us to compare versions of operational 
semantics. 

Example 4. Consider a language Lm with collective assignments and a 
language Ls with only single assignments. The correspondence 

</):(x,y):=(e,f)- 1varh:=e;y:=f;x:=hJ 

establishes the interpretation of Lm in Ls (the converse is trivial). Hence, 
both languages are equipollent, if we consider the extensional equivalence. 
However, if we consider an 'operational' equivalence, where the number of 
used variables plays a role, then the equivalence classes of Lm are not 
necessarily mapped to equivalence classes of Ls. 
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Similarly, without blockstructure the above translation does not work. 
For there exists always an environment in which the auxiliary identifier h 
occurs. In this case Ls is definitely 'weaker' than Lm. 

4. On the duality of styles 

In programming, we distinguish two major 'styles', viz. applicative 
languages and procedural languages. The former comprise expressions and 
possibly also declarations of constants and functions, the latter are made 
up of assignments, loops, procedures and even goto's. 

As an example, we will now give an interpretation of the procedural 
language of Example 1 in the following applicative language (for reasons 
of easier readability we use concrete syntax and let x stand for a whole 
tuple of identifiers): 

function abstraction: AX .E, 

function application: (AX. E 1 )(£2), 

conditional expression: (B-> E), 

fixed point: Yf. AX. E 

where (Ax. false-> E) = id. 
To each statement S of a procedural language we can now define its 

associated expression Es by induction on the structure of the language. 

Example 5. The language of Example 1 can be associated to the above 
expression language as follows: 

skip -> id(x) 

x:=E ->E 

S; T ->(AX. ET)(Es) 

if B then S fi ->(B->Es) 

while B do S od->(Yf. AX. B-> f(Es))(x). 

In this way, every statement containing the variable x corresponds to an 
expression where x (in general) occurs freely. 
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Now it remains to show that the translation is compatible with the equi
valences characterizing the semantics of the languages. We will consider 
here only two examples: First, the associativity of the semicolon requires 
the equivalence of the expressions 

This equivalence is indeed valid for usual expression languages (both under 
call-by-value and call-by-name semantics). As the second example, we con
sider the recursive characterization of the while-loop, viz. the equivalence. 

while B do S od = if B then S; while B do S od fi; 

this is compatible with the applicative language because of the 
characteristic fixed point property 

Yf. AX. E =AX. Efl · h • E. 

In the above translation the image of every construct of the statement 
language is a notational variant of an expression. 

Definition. Let the language L 1 be interpretable in L 2 wrt. the mapping</). 
A construct g of L 1 is representable in the style of L2 if </)(g) can be specified 
by 

where E is a term of L2 in the free 'variables' </)(xi), ... , </)(xn), If all 
constructs of L 1 are representable in L2 and vice versa, then L 1 and L2 are 
called 'dual in style'. 

E.g. the while-statement is represented in the expression language by 
'tail recursion'. The procedural language is representable in the style of the 
applicative language, but the converse is not true (cf. [31]). 

A number of interesting results on the equipollence of certain recursion 
and iteration mechanisms are well known from the literature: 

(i) Counted iteration (for i to n do ... od) and primitive recursion are 
equipollent and even mutually representable in the other style. 

(ii) General goto-systems as well as nested loops with multiple-level 
exits are equipollent to systems of (mutually) tail-recursive functions (cf. 
[14, 15]), but are not dual in style. 

(iii) Parallel programs with processes described by simple tail-recursion 
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(for instance by while-loops) are equipollent to mutually recursive, tail
recursive sequential nondeterministic programs (see [4]), but are not dual 
in style (note, that this holds only for closed parallel programs but not for 
single processes). 

The translation of Example 5 may be used to clarify relationships 
between a number of other semantic properties. We will exemplify this by 
two observations on call-by-value and call-by-name semantics, showing the 
close relationships of different topics. 

Example 6. Consider the trivial procedural program 

( P) while true do x :=x od; x := 1 

and its associated expression 

( E) (AX. l)((Yf. AX. true-+ f(x))(x)). 

In call-by-value semantics the applicative program (E) does not terminate 
and so does the procedural program (P) in classical languages. In a call-by
name semantics, however, the program (E) does terminate and yields I; the 
same is intended for the program (P) in procedural data flow semantics. 

Example 7. Consider the program part 

vary; varx:=a, while b(x) doy:=g(x); x:=h(x,y) od 

although the variable y is not initialized, this program may have a perfect 
meaning. We can capture this meaning and also the possible failure by the 
expression. 

(Yf. AX, y. if b(x) then (h(x,g(x)), g(x)) else (x, y) fi)(a, error), 

provided that we assume a call-by-name semantics for functions such that 
the argument error does not harm. There is no direct way of representing 
the above procedural program under a call-by-value semantics, which is, 
however, necessary for explaining e.g. the semicolon by the composition of 
function applications (the only way out is to introduce some artificial value 
'still not initialized'). 

Besides the duality of applicative and procedural styles, there is a second 
major duality between two different conceptual issues, viz. the corres
pondence of concurrent program and nondeterministic sequential pro-
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grams. (This correspondence was put into formal transformation rules in 
[3, 4].) 

Example 8. The semantics of conditional critical regions may be explained 
by axioms like 

Ir await B1 then S1 end; T1 //await B2 then S2 end; T2 _// 

= if B1 then S1; Ir T1 //await B2 then S2 end; T2 _// 

a B2 then S2; Ir await B1 then S1 end; T1 IIT2 _// fi. 

In this way, every program text containing parallel constructs is associ
ated to a program text without such constructs (based on Dijkstra's 
guarded commands). Hence, the equivalence classes of these sequential 
programs include equivalence classes on the parallel programs. The 
semantic interpretation of nondeterministic sequential programs (in the 
style of Example 5) induces then a (functional) semantics for concurrent 
programs. 

Again, there are interesting conclusions that can be diawn from this 
duality (cf. [5]): 

Example 9. Consider the concurrent program (cf. [17, 27]) 

( C ) x, y, z := 0, 0, O; Ir await true then x := 1 end 

//while z=0 do y :=y+ 1; 
await true then z :=x end od _//. 

According to the rules of Example 8 this program corresponds to the 
sequential nondeterministic one 

x, y, z := 0, 0, O; call q where 

proc q = if z = 0 then y : = y + l; [x : = l; z : = x; 

( s ) 
call pOz :=x; call q] 

elsex := 1 fi 

proc p=-=while z=0 do y := y+ l; z :=x od 

where [ ... a ... ] is an abbreviation for if true then ... a true then ... fi. If we 
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are only interested in the final value of y, then we get the associated 
expression of (S) by the rules of Example 5 (leaving away the superfluous 
call of p): 

(E) Yf. ,ly. [y+ 1 Of(y+ 1))(0). 

Under the assumption of fairness (C) always terminates and returns some 
natural number y > 0. In contrast to this, (E) either terminates and also 
yields somey>0 or does not terminate at all. However, an expression with 
an infinite number of possible results but without the possibility of non
termination is not continuous in the Egli-Milner ordering (which is needed 
to define least fixed points of nondeterminate functions). Hence, general 
fairness assumptions are not compatible with our explanation of parallel 
programs. (We would get 'computable' functions which are not 
continuous). Or, in other words, without any fairness assumptions 
concurrent programs with shared variables and sequential nondeterministic 
programs are equipollent. Note, however, that fairness assumption even 
may be introduced for sequential nondeterministic programs (cf. [211). 

5. Formal soundness: order structures and monotonicity 

Numerous phenomena of programming and programming languages are 
based on order relations. The most widely known of these orderings is 
probably the 'less defined' relation used in the fixed point theory 
underlying denotational semantics (x k y basically means that x is unde
fined or equal toy). To cope with such issues we have to supplement our 
algebraic structures with order structures. 

Of course, the order structure has to be compatible with the algebraic 
one. As a prominent example for justifying this requirement consider the 
relation "A is more efficient than B". This relation can only be useful, if 
thereis no context P such that P[A] is less efficient than P[B]. 

Definition. Let L be a language (i.e. an algebraic type) and let ~ be an 
ordering. Then L is said to be formally sound w.r.t. ~, if in each of its 
semantic models the following monotonicity is valid for every function f: 

Vx,y: x~y~f(x)~f(y). 

We may now apply these criteria to some of the more intrinsic problems 
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of nondeterminism and parallelism. Since here the various design decisions 
have rather subtle effects, a formal means for analyzing their mutual 
influences is utterly necessary to provide for the desired rigidity. For this 
reason, we will stick to the semantic definition of Example 8 throughout 
the rest of this chapter. 

The natural ordering for nondeterminate programs has already been 
introduced in [25]: 
P' is a descendant of P, denoted by P' ~ P, if the set of possible outcomes 
of P' is contained in that of P. (For convenience let us denote by J. ~ P that 
Palso leads to nonterminating computations.) 

Example 10. Let us resume the applicative program of example 9: 

(E) Yf. Jy. [y + 1 Of(y + l)](O). 

The descendants of (E) are given by the nonterminating program l. and by 
the programs 

(E11 ) (Jy. n)(O) for nEN\ {0}. 

Of course, our semantic definition immediately transfers the notion of 
descendant also to parallel programs. Thus, the sequential programs 

(S11 ) x,y,z:= 1,n, 1 for nEN\ {0} 

and J. are all descendants of the concurrent program (C) of Example 9. 
Unfortunately, there are at least three different views of nondeterminism 

that can be found in the literature (cf. [9]). The one we have adapted so far 
may be called totally erratic, since it may arbitrarily choose any of the 
possible execution paths be it terminating or nonterminating. With the help 
of our notion P' ~ P we can now explain the two other ones: 

The angelic nondeterminism (as termed by Hoare) is used in [25] and 
also in automata theory. Here possible termination is equivalent to guar
anteed termination. In this case, only the programs (S11 ) are descendants of 
(C), which is exactly what fairness conditions shall achieve. In other words, 
fairness conditions correspond to angelic nondeterminism. 

The demonic nondeterminism (again a term of Hoare) is underlying 
Dijkstra's wp-calculus. Here possible nontermination is equivalent to 
guaranteed nontermination. In this view, only the program J. is a descend
ant of (C). 
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Example 11. Consider a language construct for unbounded nondetermin
ism (cf. [11]): 

some x: p(x). 

Assume we intend a demonic semantics for some, but the erratic semantics 
for 'll', i.e. 

(some x: p(x)) =e ..L if ..L ~ p(a) for some a. 

This means that the program 

some x: (x equal (Yf. Jex. [1 0f(x)])(O)) 

is equivalent to ..L . However, if we pass over to a descendant off, the re
sulting program 

some x: (x equal (Yf. Ai. 1)(0)) 

is equivalent to 1. This clearly violates the requirement of formal sound
ness. 

6. Structured language design 

In the field of abstract data types much emphasis has been given to 
questions of a proper modularization. (In fact, this has been one of their 
major motivations.) This led to very precise notions of e.g. algebraic 
enrichment and hierarchical types (cf. [33]). Our approach to the algebraic 
specification of programming languages allows us to apply all these results 
to language design. 

The enrichment technique, for instance, leads to a structuring of the 
language into a small sublanguage representing the conceptual skeleton 
and a number of enrichments introducing notational variants. 

The hierarchical structure introduces several layers of the language for 
each of which the lower ones act as primitive basis (in the same way as the 
type INTEGER forms the basis for the type STACK of INTEGER). 

Example 12. A classical procedural language can be represented by the 
folowing hierarchy of abstract types 
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type ST A TEMENT = 
sort statement, 

type EXPRESSION= 
sort expression, 

type ST ACK OF INTEGER 
type INTEGER 
type BOOLEAN 

procedural language, defines 
statements based on the sorts 
identifier, expression, boolean, 
integer, stack, ... 
expression language, defines 
expressions based on the sort 
identifier, boolean, integer, 
stack, ... 
hierarchy of data types 

Obviously this way a clear structure is induced on the language. For in
stance, we may understand the basic data types (BOOLEAN, INTEGER, 
STACK, ... ) without knowing anything about expressions or statements. 
Similarly we may understand the type EXPRESSION without considering 
the type STATEMENT. If the language, however, incorporates expres
sions with side-effects, then the sort expression can no longer be explained 
without considering statements. The language 'looses structure'. (Which 
again provides a formal justification for an often cited argument.) Note, 
that in the case of including parallel programs into the statements, we have 
to include nondeterminism both for statements and for expressions to 
maintain the hierarchy. 

7. Conclusion 

A rigorous proceeding along the line described in this paper is applied in 
the design of the wide spectrum language CIP-L (cf. [14)), demonstrating 
that the algebraic treatment makes also large-sized languages manageable. 
But our experience with the language shows that the major effect of the 
algebraic approach does not lie in the resulting formal description but 
rather in guidelines provided for the design. Although there is still enough 
room for decisions that give a language its characteristic appearance, there 
exist at least criteria to classify these decisions ('notational variant', 'new 
concept' etc.). Above all, the compatibility of the various parts of the 
language can be checked, which is particularly important in a wide 
spectrum language where different styles are combined within a single 
syntactic frame. 
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0. Introduction 

The Computer Scientist can gain many benefits from a close study of 
algorithms and their development. Not least amongst these are the 
intellectual satisfaction gained and the insights such studies give into the 
process of programming. However, this activity can be surprisingly 
difficult and frustrating. Often one's attention is drawn to some clever 
algorithm published in the literature and only after an investment of time 
and energy that seems out of all proportion to the actual amount of text 
being studied does one begin to understand how the algorithm works, or 
even be 'convinced that it does indeed achieve its intended purpose. This 
process can often be circumvented by seeking someone who knows the 
algorithm in question. Such a person is usually able to convey the basic 
ideas underlying the algorithm very quickly and armed with these insights 
one is able to return to the code and quickly complete one's understanding. 
Often it turns out that the code is in the opaque form it is because of some 
relatively unimportant final optimisation. 

As it is with the academic discipline of algorithm study so it is with the 
humble activity of programming. We have long lamented our inability to 
produce correct understandable and efficient programs or to maintain or 
modify systematically programs produced elsewhere. It is often 
commented that programming is closer to an art than a science and many 
of the methods or tools felt necessary in established engineering disciplines 
are completely lacking in programming. 

The work presented here is aimed at removing some of these difficulties 
and deficiencies. We hope to provide a means of describing algorithms and 
their development that does not obscure the fundamentals of the algorithm 
in question but maintains the level of preciseness and formality that we 
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think is necessary. The crucial point we feel is that if one is just presented 
with the code form of an algorithm what one is seeing is the end point of 
some quite involved intellectual activity any record of which has been 
thrown away. We wish to encourage programmers to 'show their working' 
for the benefit of those who follow. We have all made or been the subject 
of exhortations to document programs and their 'design'. Quite what is the 
status of this object a 'design' has never to our minds been satisfactorily 
explained, we hope to provide a notation in which it becomes a formal 
object capable of being communicated and studied precisely. 

In this endeavour we share many aims with those who have studied the 
programming process and conducted many elegant studies of algorithm 
developments such as that reported in [11]. However, there are some 
crucial differences between the aims of these studies and our own. Firstly 
there is the question of discovery versus communication. The intellectual 
processes that a programmer goes through when initially developing a new 
program or discovering a clever algorithm form a fascinating area for 
study but we are primarily interested in the question of how such successful 
developments can be communicated or checked. Of course any 
methodology that aids communication will probably aid discovery but we 
think it is important to separate these two concerns. 

Secondly we are interested in using computers themselves to assist 
programming. It would be ironic if programming itself was one of the few 
'white collar' activities to totally ignore the advances in productivity 
achievable by a sensible utilisation of the computing power becoming 
increasingly available. At present many of the phases of program 
development prior to coding are difficult to mechanise. • We think 
computers could assist in making this much more rigorous and systematic 
with consequent improvements in reliability, understandability and modifi
ability. Thus we are seeking notations formal enough to communicate to a 
machine. Formality though need not imply unintelligability. At the present 
state of technology a complete automation of the programming process is 
unachievable. A sensible division of labour can be achieved by relying on 
the user to supply the main intellectual insights and leaving to the machine 
the detailed checking and book keeping that is necessary for accuracy. 

The solution that we present to these interrelated problems is based on 
the idea of program transformation. Using the transformational approach 
to programming a programmer does not attempt to produce directly a 
program that is correct, understandable and efficient, rather he initially 
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concentrates on producing a program that is as clear and understandable as 
possible ignoring any question of efficiency. Having satisfied himself that 
he has a correct program he successively transforms it to more and more 
efficient versions using methods guaranteed not to change the meaning of 
the program. Our work on transformation started in collaboration with 
R.M. Burstall at Edinburgh University. The need to perform significant 
manipulations on programs led us to concentrate on programs written in a 
functional language first, NPL [3] and then HOPE [6]. Support is growing 
for the thesis that these languages are more suitable tools for program 
development than the so-called imperative languages, such as PASCAL or 
ALGOL, see [l] and we will confine our discussions to program 
developments expressed within these languages. With Burstall we 
developed a simple yet powerful methodology for transforming functional 
programs that has become known as the unfold/fold system [4]. Many 
different types of transformation can be expressed within this formalism 
which guarantees that (partial) correctness is maintained. However, 
significant transformations became too complex when expressed solely 
within this formalism. To overcome this we are developing a meta
language that can be used to explicate transformations in a structured way. 
This we feel offers a way to achieve the goals outlined above of providing a 
calculus of algorithm development that is both intelligable and formal 
enough to be checked by machine. 

In Section 1 we introduce our functional language HOPE and the 
unfold/fold transformation methodology. In Section 2 we, very briefly, 
describe the types of transformations that can be achieved using the 
unfold/fold system. Section 3 describes our meta-language and discusses 
some of the higher level transformations or transformation 'tactics' that 
can be written. Section 4 includes the full development of a well-known 
algorithm described using the meta-language, and Section 5 concludes with 
a discussion of the style of programming environments that could be 
provided in the future. 

1. Languages and Transformation Methodology 

1.1. HOPE 

In this section we will outline enough of HOPE to enable the reader to 
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understand the examples used. A fuller exposition is contained in [6]. HOPE 

is a higher order strongly typed functional language using recursion 
equations, first implemented at Edinburgh. We are at present developing a 
HOPE compiler at Imperial. The syntax we will use here differs slightly 
from that of the current implementation. 

A HOPE program is a set of equations defining functions. Separate 
equations can be written for separate cases of the input variable. For 
example 

fib(O) = 1 
fib(l)=l 
fib(n + 2) = fib(n + 1) + fib(n) 

defines the Fibonacci numbers. The cases on the left hand side of a function 
definition must be non-overlapping and exhaust all the possibilities for the 
types of the arguments involved. 

HOPE is strongly typed, thus before being defined a function must have 
its type declared, this is done using the dee statement 

dee fib:num->num 

HOPE employs polymorphic type checking [24] so that type declarations 
can involve type variables e.g. 

typvar alpha 
dee/: alpha->num 
f(a) =0 

is the stubborn function that returns O whatever you give it. Data structures 
in HOPE are represented as terms built up from constructor functions i.e. 
functions having no equations. These are introduced using the data 
statement. Thus 

data listnum ==nil++ cons(num,listnum) 

defines the data type list of numbers built up using the constructors nil (the 
empty list) and cons. Data statements can also be paramaterised thus 

data list(alpha) ==nil++ cons(alpha,list(alpha)) 

now defines a type constructor list such that list(num) is equivalent to the 
type listnum defined earlier. 

Thus 
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dee length: list(alpha)---->num 
length(nil) = 0 
length(cons(a, 1)) = l + length(!) 

calculates the length of any list whatever its constituents. 
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Running a HOPE program involves reducing an expression until 
it is totally composed of constructor functions i.e. no more equations 
apply. Thus cons(l, cons(2, cons(3, nil))) is the list of length 3 and 
length(cons(l, cons(2, cons(3, nil)))) reduces to 3. 

Infix operators are widely used in HOPE, thus we can define : : as an infix 
operator for cons and the above equations become 

length(nil) = 0 
length( a : : 1) = 1 + length(!) 

HOPE also allows user defined distfix (distributed-fix) operators, similar to 
the traditional if then else. These are introduced using the distfix 
statement, e.g. 

distfix while _ do _ 

Underscores mark the places where operands should go. The name of such 
an operator, for use in dee statements is the leftmost word in its 
declaration. 

There are two equivalent forms for the conditional expression. Thus 
either 

fact(n) = I if n = 0 
else n *fact(n -1) 

or 
fact(n) = n = 0 then l 

else n *fact(n - 1) 

Local variables may be introduced using either the let or where construct. 
Thus 

f(x)=let u==x2 in u+u 
and 

f(x) = u + u where u ==x2 

are both equivalent to f (x) = x 2 + x 2. 
Being higher order HOPE allows functions to be passed as parameters and 
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returned as values. Thus 

typevar alpha, beta 
dee *: (alpha-> beta) # list(alpha)-> list(beta) 
infix *: 6 
f *nil= nil 
f*(a:: l)=f(a)::(f *l) 

defines an operator * that applies a function to every element of a list, thus 

fact *(l :: 2 :: 3 :: nil) evaluates to 1 :: 2 :: 6 :: nil 

Higher order functions are especially useful as they provide iterators which 
'package' recursion as in * above and avoid having to write it explicitly 
many times. Of particular use are iterators over sets and HOPE has 
borrowed the traditional set comprehension schema, thus 

primesquares: set(num)->set(num). 
primesquares(S) = {n 2 In e S & isprime(n)} 

is the set of squares of all primes contained in a given set. 

1.2. A transformation methodology 

Assume we have the following functions defined 

dee length: list(alpha)->num 
length(nil) = 0 (1) 
length(cons(n, 1)) = 1 + length(!) (2) 

dee append: list(alpha) # list(alpha)-> list(alpha) 
append(nil, 12) = 12 (3) 
append(cons(n, 11), 12) = cons(n, append(l 1, 12)) (4) 

(append joins two lists together) 

and say we wanted to write a program to join two lists together and 
calculate the length of the resulting list. Naively we could write this as 

dee lengthof2: list(alpha) # list(alpha)->num 
lengthof2(11, 12) = length(append(l 1, 12)) (5) 

This is a perfectly adequate program but it contains some avoidable 
inefficiency. Let us see if we can improve it. All our manipulations will 
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take equations and produce further equations that do not change the 
meaning of the program. 

Firstly we can instantiate (5) by letting 11 be nil getting 

lengthof2(nil, 12) = length(append(niL 12)) 

(3) allows us to rewrite this as 

lengthof2(nil, 12) = length(l2) 

Returning to (5) we now instantiate 11 to cons(n, 11) getting 

lengthof2(cons(n, 11), 12) = length(append(cons(n, 11, 12)) 

(4) allows us to rewrite this as 

lengthof2(cons(n, 11), 12) = length(cons(n, append(! 1, 12))) 

(2) allows us to rewrite this as 

lengthof2(cons(n, 11), 12) = 1 + length(append(l l, 12)) 

(6) 

Finally (5) allows us to replace the subexpression length(append(l 1, 12)) on 
the right hand side by lengthof2(11, 12) getting 

lengthof2(cons(n, 11), 12) = 1 + lengthof2(11, 12) (7) 

Thus we have produced two new equations, (6) and (7), which are true 
statements about lengthof2 

lengthof2(nil, 12) = length(12) 
lengthof2(cons(n, 11), 12) = 1 + lengthof2(1 l, 12) 

what is more these two equations constitute a complete program for 
lengthof2 which is more efficient than the one given by (5), so we can 
replace (5) by (6) and (7). 

More formally we have the following transformation operators which 
act on equations and produce further equations 

(i) Definition. Introduce a new recursion equation whose left hand 
expression is not an instance of the left hand expression of any previous 
equation. 

(ii) Instantiation. Introduce a substitution instance of an existing 
equation. 

(iii) Unfolding. If E=E' and F=F' are equations and there is some 
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occurrence in F' of an instance of E, replace it by the corresponding 
instance of E' obtaining F", then add the equation F=F". 

(iv) Folding. If E=E' and F=F' are equations and there is some 
occurrence in F' of an instance of E', replace it by the corresponding 
instance of E obtaining F", then add the equation F=F". 

(v) Abstraction. We may introduce a where clause, by deriving from a 
previous equation E = E' a new equation 

E=E' [ul/Fl, ... , un/Fn] 

where (ul, ... ,un) = (Fl, ... ,Fn) 

(E[El/£2] means E with all occurrences of subexpressions £2 replaced by 
EI.) 

(vi) Laws. We may transform an equation by using on its right hand 
expression any laws we have about the primitives (associativity, 
commutativity, etc.) obtaining a new equation. 

Strictly these laws apply only to first order programs in HOPE but their 
extension to higher order functions is only technical and we will not use 
these extensions in this paper. 

These rules, which have become known as the unfold/fold system 
preserve the meaning of any program they are applied to except that they 
may make a program fail to terminate when it terminated before, i.e. they 
preserve partial correctness. [21] contains a theoretical study of this system 
and rules for avoiding non-termination. 

2. Transformation Capabilities 

The transformation system introduced in the previous section is able to 
achieve a wide variety of improvements. However, when we come to 
consider transformation as a practical software tool, transformations 
considered solely in terms of the rules outlined above become very detailed. 
In this section we outline several important high level transformation types 
in terms of which transformations can be planned and explicated. 
However, it is important that all these transformations ultimately rest for 
their implementation on the simple rules outlined above. Thus the 
correctness of each transformation is ultimately guaranteed by the 
correctness of the basic rules. 
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(i) Loop combinations. Programs written as specifications tend to have 
many independent computations kept apart for reasons of clarity. One of 
the main transformation tasks is to interweave these separate iterations 
whenever possible. 

Two main sorts of loop combinations can be identified. We have the case 
where one inner loop builds up a data structure that an outer one traverses, 
these can often be compressed to a single loop removing the need for the 
intermediate structure. Alternatively we may have two or more similar 
loops in separate parts of a program which can be brought together and 
executed as one loop. Further details of these transformations can be 
found in [4,9]. 

(ii) Automatic implementation of abstract data types. Abstract data types 
provide a powerful tool for structuring program development. Guttag [17] 
shows how the behaviour of such abstract data types can be specified 
equationally before any implementation is considered, allowing programs 
to be developed at suitable conceptual levels. The use of a functional 
language and transformation allows this technique to be exploited to the 
full. Within a functional language the equational specification often 
constitutes a preliminary implementation allowing 'abstract' programs 
employing the data type (for example priority queues) to be tested in 
isolation. When a designer is satisfied with this program and decides to 
proceed to an implementation in a more machine oriented data type (say 
for example binomial trees) using transformation all he would have to do is 
write a simple mapping function showing how he intends to use the lower 
data type (binomial trees) to represent the higher (priority queues). Given 
this information efficient implementations for all the higher level functions 
can be produced automatically using the transformation techniques 
outlined in [8], an extended example being given in [25]. 

(iii) Synthesis. Viewing HOPE as a specification vehicle there is a 
continuous spectrum of increasingly inefficient programs. For example 
using the set notation one may easily define sets that are of infinite 
cardinality or not explicitly constructable. These are however legitimate 
HOPE programs and can be converted to runnable versions using the 
methods outlined earlier. Another form of specification that is very useful 
is that of general equations i.e. equations with several functions on the left 
hand side defining some function implicitly. For example say we have a 
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function f defined normally, then its inverse finv can be defined implicitly 
using the equation 

finv(f(x)) =x 

Such an equation cannot be run in HOPE, however, transformation can be 
used to convert it to an explicit definition of jinv that can be run. 

Further details of these applications can be found in [7,8]. 

(iv) Computation sequence re-organisation. Transformation can be used 
to re-arrange the order in which operations are performed during a 
computation. For example from a version of factorial defined thus 

fact(O) = I 
fact(n + 1) = (n + 1) *fact(n) 

alternative versions can be produced that carry out the computation in 
different orders, of these perhaps the most important is the iterative 
version viz. 

fact(n) = factit(n, 1) 
factit(O, ace)= ace 
factit(n + 1, ace)= factit(n, n + 1 *ace) 

which can be translated directly to an imperative program using a while 
loop as explained in [23]. 

Further details of these transformations are in [4,9]. 

(v) Structure sharing. Conventional languages that include assignment 
and explicit control over storage allocation allow the user to aiter structures 
in place and affect changes using side effects. This style of programming is 
recognised as being very efficient but also notoriously difficult to 
understand and prone to error. Transformation allows this sort of 
behaviour to be introduced in a controlled and systematic way. Starting 
from a specification in a functional language (which of course cannot 
employ side effects) the way storage is used can be considered and 
optimised, introducing side-effects guaranteed not to change the meaning 
of the program. Details can be found in [25]. 
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3. A Transformation Meta-language 

The idea of using a meta-language to control a general theorem proving 
system was first used in the LCF Project [15]. Here a meta-language, ML, 
was developed to allow the writing of structured plans to assist in the 
proving of theorems about programs. This meta-language idea was first 
applied in the program transformation context by Feather [12]. Here the 
meta-language was not a full programming language but a collection of 
methods whereby a user could guide a general transformation system based 
on the unfold/fold methodology. 

Our approach builds on both these projects. We have chosen HOPE 

itself to be our meta-language. Thus the objects manipulated by our HOPE 

meta-language are HOPE object programs and the operators of the meta
language, or tactics in the LCF terminology, act on HOPE object programs 
and return HOPE object programs. 

(This rather reflexive decision has several advantages, not least of which 
is the fact that we do not regress into a language definition project. By 
defining HOPE abstract structures within HOPE and writing a HOPE parser 
in HOPE we have the skeleton of a HOPE compiler. These benefits apart 
HOPE has proved a good choice for a meta-language having powerful 
structure defining and manipulating facilities.) 

3.1. First level tactics 

Our basic tactics, out of which all others are written, consist of the basic 
rules of the unfold/fold system. Thus we define the following HOPE distfix 
operators that work on HOPE object programs 

distfix instantiate _ occuring-in _ with _ 
dee instantiate: variable # equation # expression--> equation 
distfix unfold _ using _ 
dee unfold: equation # equation--> equation 
distfix fold _ with _ 
dee fold: equation # equation--> equation 
distfix abstract _ within _ 
dee abstract: expression # equation-->equation 
distfix rewrite _ as _ because _ 
dee rewrite: equation # equation # rule-->equation 
distfix define _ by _ 
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dee define: set(function-name) # set(equation)-->set(equation) 
distfix replace _ within _ by _ 
dee replace: function-name # program # set( equation)--> program 

Most of these operators should be understandable from their previous 
definition. All work on equations returning equations, except define and 
replace. Define is really an identity function just returning the set of 
equations defining the functions named in the first argument. Replace is 
the only operator that allows us to alter programs. Programs are just sets 
of equations and replace acts upon the program given in the second 
argument by replacing those equations defining the function named in the 
first argument by the equations given in the third argument. 

The use of some of these operators can be seen in the following teletype 
session showing them being used to perform the optimisation used as a 
simple example in [4]. In the meta-language there are two ways one may 
refer to object program equations. One may give the whole equation in 
quotes and parse it using the function eqparse (available as <: : ) distfix 
operators) or one may select an equation from a program by giving the 
left hand side in quotes using the distfix operator eqn _ within _, e.g. 
either 

(: "fact(n + 1) = n + 1 *fact(n)" : ) 
or 

eqn "fact(n + 1)" within P 

evaluate to the same equation. 

let append 

in 

define {"append", "g "} 
by { "append(nil,y) = y ", 

'' append( cons(x, y ), z) = cons(x, append(y, z)) ", 
"g(x,y, z) = append(append(x,y), z)"} 

replace "g(x,y,z)" within append 
by {unfold 

instantiate "x" occuring-in 
eqn "g(x,y,z)" within append 
with "nil" 

using 
eqn "append(nil,y)" within append, 
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fold 
unfold 

instantiate "x" occuring-in 
eqn "g(x,y,z)" within append 
with "cons(u, v)" 

using eqn "append(cons(x,y),z)" within append 
with eqn "g(x,y,z)" within append}; 

GIVING 
append(nil,y) = y 
append(cons(x,y), z) = cons(x, append(y, z)) 

g(nii y, z) = append(y, z) 
g(cons(u, v),y,z) = cons(u,g(v,y,z)) 

3.2. Second level tactics 
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The operators outlined above are adequate to describe a wide range of 
different transformations. However, as explained earlier, significant 
transformations expressed solely at this level are very cumbersome. The 
next step in expanding the expressive power of our transformation meta
language is to define a set of higher level operators. These correspond to 
the different types of transformation outlined in Section 2. The important 
point is that these higher level operators are written in terms of the lower 
level ones and when applied attempt to construct a transformation step of 
the required type in terms of the unfold/fold operators. These tactics can 
thus fail in that they are unable to perform the required transformation but 
can never produce a wrong program as they are working within a 
correctness preserving formalism. 

Each of the transformation types in Section 2 has a set of heuristics to 
guide the transformation tactic and a set of criteria to judge its success or 
failure. Thus they involve a limited amount of search but this search is 
confined to within the tactic avoiding a combinatorial explosion. We can 
cut down the amount of search needed by giving more information in the 
tactic. 

Thus for example corresponding to the merge loops of Section 2(i) we 
have the following tactic 

distfix mergeloops for_ on_ within_ 
dee mergeloops: equation # variable # program-program 
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The previous example can now be done with a single meta-language 
command 

let P==mergeloops for eqn "g(x,y,z)" within append 
on "x" within append 

The code for mergeloops instantiates the variable mentioned according to 
its type and then performs a series of unfolds followed by folds to express 
the composition as a single direct recursion. 

The syntax of some of the other operations is 
(i) Change data type 

distfix implement _ within _ using _ name _ 
dee implement: function _ name # program # function _ name 

# function _ name-+program. 

The first parameter names the 'abstract' function for which a 'concrete' 
version is required. The third parameter names the representation function 
that shows how one wishes to represent this abstract data type and the final 
parameter is the name one wishes to give to the concrete function to be 
synthesised. The result, if successful, is the original program augmented 
with equations for the concrete function. 

Thus using the example from [4] given that the following program, P, 
had been defined 

data pair== nilp ++ conspi(num,pair) ++ conspp(pair,pair) 
data tree== niltree ++ constree(num,tree,tree) 

dee rep: pair-+tree 
dee twist: tree-+tree 

twist(niltree) = niltree 
twist( constree(i, tl, !2)) = constree(i, twist(t2), twist(tl )) 

(Returns mirror image of tree) 

rep(nilp) = niltree 
rep(conspi(i, conspp(tl, t2))) = constree(i, rep(tl), rep(t2)) 

(Simple representation of a labelled tree in terms of pairs.) 

the meta-language command is 

let P == implement twist within P using rep name conctwist 
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and the result is P augmented with the equations 

conctwist(nilp) = nilp 
conctwist( conspi( a, conspp(p 1, p2))) 
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= cons pi( a, cons pp( conctwist(p2), conctwist(p 1))) 

(ii) Change computation sequences. The tactic to convert a function 
defined recursively into an iterative version is 

distfix convert-to-iteration _ within _ using _ name _ 
dee convert-to-iteration: function_ name # program # equation 

# function_ name-+program 

The first parameter names the function for which an iterative version is 
required. The third is the equation defining the iterative form implicitly in 
terms of the recursive form, the 'eureka' step of [4], and the last parameter 
is the name to be given to the iterative form. The result, if successful, is an 
enhanced program containing equations, in iterative form, for the derived 
function. Thus given a program, P, for factorial similar to the one defined 
in Section 2 the meta-language command to convert this to an iterative 
form is 

let P == convert-to-iteration factorial within P 
using (: "factit(n, ace)= ace* factorial(n)" : ) 

name factit 

(iii) Synthesise. The tactic to produce a runnable program for a function 
defined implicitly is 

distfix synthesise _ within _ using _ 
dee synthesise: function _ name # program # 

equation -+program 

The first parameter names the function which is defined implicitly by the 
equation given as the last parameter. The result, if successful, is a program 
containing equations for the function that can be run. 

For example if a program P contains equations for a function f its 
inverse, jinv, can be produced via the meta-language command 

let P == synthesise jinv within P using (: "jinv(f(x )) = x" : ) 

(iv) Structure sharing. This is accomplished via the tactic 

distfix make-destructive _ within _ on _ name _ 
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dee make-destructive: function _ name # program # variable 
# function_ name-+program 

The effect of this tactic is to attempt to produce a version of the named 
function that overwrites the argument named. 

3.3. Paradigm algorithms 

It is becoming increasingly recognised that there are not all that many 
totally different fundamental algorithms and that many seemingly 
different algorithms are just variations on a single theme. Correspondingly 
advice on how to program a solution to a particular problem often consists 
of simply naming a general technique thought appropriate. Given such 
advice programmers are usually fairly adept at instantiating the particular 
paradigm to fit their circumstances. It would be nice to be able to instruct 
our meta-language system in such a direct way. In this section we will 
outline a tentative approach that goes some way towards providing this 
capability. The technique we will use owes a great deal to the ideas put 
forward by Backus and others concerning the power of higher order 
functions, and borrows directly from an example given by Ronan Sleep. 
An allied approach is outlined in [14]. 

We will use as an example binary search. This is perhaps the simplest of 
all paradigm algorithms. The central idea is very simple, if one is searching 
a structure for an occurrence of an item performing a binary search consists 
of splitting the structure in half and deciding after each split that one half 
can be discarded as it could not contain the sought after item. The splitting 
is continued until the item is found whereupon success is indicated together 
with some value computed from the item (e.g. the information stored 
under some particular key) or until the structure cannot be decomposed 
further whereupon failure is indicated. We see that this algorithm depends 
upon being able to split a structure roughly in half and being able to decide 
in which half to continue searching. This idea of a generalised binary 
search can be captured by the following higher order HOPE function 
g_b_s. 

dee g_b_s: alpha # beta # (alpha -+truval) # (alpha-+ alpha # alpha) 
# (alpha # alpha # beta-+truval) # 

(alpha # beta-+truval # gamma) 

-+truval # gamma 
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The meaning of the various arguments in 

g_b_s(str, s, stop, split, decision, test) 
is 

str is the structure being searched (of type alpha) 
s is the item we are looking for (of type beta) 
stop is the test that tells us when we can decompose the 

structure no more 
split is the function that decomposes our structure 
decision is the test that tells us in which of the two structures 

resulting from the decomposition to continue 
searching 

test tells us whether we have found the item we are 
looking for and if so returns a computed value ( of 
type gamma) 

g_b_s can be defined thus, 

g_b_s(str, s, stop, split, decision, test)= 

let tv, v == test(str, s) 
in tv, v if tv 

else false, undefined if stop(str) 
else let strl, str2 == split(str) 

in g_b_s(strl, s, stop, split, decision, test) 
if decision(strl, str2, s) 

else g_b_s(str2, s, stop, split, decision, test) 

Producing a particular realisation of this generalised binary search can be 
achieved by instantiating the functional parameters. This is a two stage 
process. Firstly stop and split depend on the particular structure we wish to 
perform binary search over and secondly decision and test are dependent 
on the particular problem we are applying binary search to, in particular 
what kind of total order we have over the structure. Thus we are expanding 
the notion of structure and expect to be able to access within the module 
defining the structure the appropriate functions for stop and split, a 
concept already present in CLU [19] and CLEAR [5]. 

Our meta-language command therefore is 

distfix use _ over _ on _ within _ 
dee use: algorithm-name # structure-name # function-name 

# program->program 
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The first parameter names some general algorithm for which we have a 
generic form as above, the second parameter names a structure appropriate 
to this algorithm and the third a function that it is desired to implement 
using this algorithm. The result, if successful, is a version of the function 
employing an instance of the particular paradigm algorithm. This tactic 
would work by first combining the particular generic form with the 
structure named instantiating as many of the functions as required and 
then fitting the resulting structure specific algorithm to the problem 
mentioned. 

To return to our example of binary search, say in a program P we had 
the following simple function over arrays 

search(a, i) =m st 1 :5m:5size(a) & a[m] = i 

and we know that a is ordered in ascending sequence. To implement this 
using binary search the meta-language command could be 

use g_b_s over arrays-with-interval on search within P 

arrays-with-interval is the name of a structure consisting of a triple of an 
array and two integers, the lower and upper bounds respectively. For this 
structure the functions stop and split are 

stop(a, i,j) = j :5 i 
split(a, i,j) = (a, i, mid), (a, mid,j) 

where mid== li~j j 
( L n J is n rounded down to the nearest integer) 

Having thus specialised g_b_s the implementation of the use meta
language operator must work out decision and test. Test could simply be 

test(a, i,j,s) = true, j if a[j] = s 
else false, undefined. 

To produce decision the operator must first show that searching in one of 
the substructures must always return false and then produce code to decide 
which it is. It does not require great knowledge of total orderings to come 
up with 

decision(al, il,j 1, a2, i2,j2, s) = al [j 1) > s 
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Having produced our required functions in meta-language operator would 
replace the body of search in P by a call to g_b_s using the above 
functions. 

We must again emphasise that the ideas presented in this section are 
tentative and we are not yet at the stage to start implementing the use 
tactic. However this approach does feel to correspond to our intuitive 
notions about algorithms and structures. 

3.4. General strategies 

The meta-language being a full programming language (HOPE) should 
enable us to program development strategies that apply over a wide class of 
programs. For example the techniques used by Feather in his program 
transformation system [12] can be implemented using the apparatus we 
have developed. One could also perhaps program a strategy corresponding 
to an applicative version of the Jackson Design Technique [18] that has 
been so successful in the area of commercial data processing. 

4. An Example, Hamming's Problem 

In this section we would like to show some of the apparatus introduced 
earlier at work on a simple problem. The one we have chosen is fairly well 
known, having been discussed in [11]. We want to produce a list of all the 
numbers that can be formed by multiplying 2, 3 and 5 together any number 
of times and would like the list to be in ascending sequence. 

4.1. Specification 

Our initial specification is the following HOPE program, 

dee hamming: -> list(num) 
dee g: -> set(num) 
dee order: set(num)-> list(num) 
dee min: set(num)->num 
dee -: set(num) # num->set(num) 
infix -: 6 

hamming = order(g) 

g = { 2 ; 3 i 5 k I O :;; i, }, k } 
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order(S) = min(S):: Order(S - min(S)) 

min(S) =S st SES & Vsl ES S:5s1 

S-s={sllslES&sl:;t:s} 

Note that g is an infinite set and hamming an infinite list. Such structures 
are perfectly acceptable in languages with lazy evaluation [I 3]. However, in 
the above program we ask for the minimum of an infinite set so min would 
never terminate. Nevertheless such a program is perfectly acceptable as a 
specification. 

4.2. Meta-language program 

We next present the meta-language program that will take the above 
specification and produce a runnable program. Although we are forced to 
present things linearly we are not claiming that the development can be 
understood solely by examination of the meta-language program. This can 
best be gained by examining intermediate forms of the program a process 
best aided by a VDU rather than paper. 

There are three main steps in the development corresponding to three 
main ideas in the final algorithm. We first unfold the definition to produce 
the initial value of the list, 1, and re-arrange the set g into the union of 
three sets that are multiplied throughout by 2, 3, 5 respectively. We then 
promote the ordering process into the creation of these sets. This is done by 
introducing two functions: merge a refinement of order that works on 
ordered lists instead of sets and * 1 an infix operator over ordered lists 
that corresponds to the operation of multiplying every element of a set by a 
given number. Merge and * 1 are introduced via equations defining them 
implicitly and the last two steps of the meta-language program synthesise 
runnable versions of them. 

In the following meta-language program we have ommitted type 
declarations, all new meta-language operators are used in distfix form. 

transformhamming P = 

let new hamming== expand hamming within P 

in 

let newhamming == fold newhamming 
with (: "merge(order(S1), order(S2), order(S3)) 

= order(S1 U S2 U S3)" : ) 
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in 

let newhamming == fold new hamming 
with(: "n*1 order(S)=order({n,s/seS})" :) 

in 

let newhamming == fold new hamming with eqn "hamming" within P 

in 

let P == synthesise merge within P 

in 

using <: "merge(order(S1), order (S2), order(S3)) 
=order(S1US2US3)" :) 

let P == synthesise * 1 within P 
using(: "n *l order(S)=order({n,s/seS})" :) 

in replace hamming within P by { newhamming} 

expand ham within P = 

let ham== 

in 

unfold 
unfold 
unfold 
unfold ham 
using eqn "order" within P 

using (: "min(g) = 1" : ) 
using eqn "g" within P 

using eqn "-" within P 

fold 
rewrite (: "hamming= I ::order( {2i3J 5 k IO:::: i,j, k&i,j, k=t= O})" : ) 

as(: "hamming= 1 :: order(2 *S{2i3J5k I O::::i,j, k} U 
3 *S{2i3i 5k /0::::i,j, k} U 
5 *S{2i3J5k /0::::i,j, k}) 

where n *S S = { n, s Is E S}" : ) 
because setrule. 

with eqn "g" within P 
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4.3. Final program 

The program produced by the application of the above meta-language to 
the specification of Section 4.1 is essentially the one given in [20). In HOPE 

this is, 

hamming= 1 : : merge(2 * 1 hamming, 3 * 1 hamming, 5 * I hamming) 

merge(ml ::Ll,m2::L2,m3 ::L3) 

=min:: merge(remove(min, m I : : L 1 ), 
remove(min, m2:: L2), 
remove(min,m3 ::L3)) 
where min== minof3(ml, m2, m3) 

remove(m,n::L)=L if m=n 
else n ::L 

minof3(ml, m2, m3) = ml if ml :5 m2 & ml :5 m3 
else m2 if m2:5m1 & m2:5m3 
else m3 

The behaviour of this program can best be understood pictorially in terms 
of the Kahn, MacQueen communicating processes. Here streams, 
corresponding to the list in the above program, connect process boxes. 

merge 

\ 1 

The 2, 3 and 5 boxes remove the number at the head of their input stream 
multiply it by 2, 3 or 5 respectively and pass it on. The merge box passes on 
the smallest of the numbers at the head of its three input streams removing 
any duplicates from the head of the other input stream. Thus if 1 is injected 
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into the system as shown the required infinite stream of numbers is 
produced at A. 

4.4. Detailed transformation 

In this section we show the detailed transformation induced by the meta
language program of Section 4.2 that takes the specification of Section 4.1 
to the runnable program of Section 4.3. 

We will write the top-level meta-language command on the left and the 
detailed steps of the transformation on the right. 

expand hamming within P 

hamming= order(g) 

= min(g) : : order(g - min(g)) 
Unfolding order 

unfolding g 

rewriting min(g) as l 
= 1 :: order({2i3J 5 k IO :5 i,j, k & i,j, k, * O}) 

= 1 : : order(2 *S{ 2; 315 k I O :5 i, j, k} U 
3 *S { 2 ; 3 15 k I O :5 i, j, k } U 
5 *S{2i3J5klO:s:i,j,k}) 
where n *S S= {n.sls ES} 

unfolding -

rewriting 
= 1 : : order(2 *S g U 3 *S g U 5 *S g) 

where n *S S = {n. slse S} 

fold newhamming 
with (: "merge(order(Sl), order(S2), order (S3)) 

= order(S1 U S2 U S3)" : ) 

folding with g 

hamming = l : : merge( order(2 *S g ), order(3 *S g ), order( 5 *S g)) 
where n *S S = { n. s Is E S} 

fold newhamming 
with(: "n *1 order (S)=order({n.slseS})" :) 

hamming= 1 ::merge(2 *1 order(g), 3 *1 order(g), 5 *1 order(g)) 
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fold newhamming with eqn "hamming" in P 

hamming = 1 : : merge(2 * 1 hamming, 3 * 1 hamming, 5 * 1 hamming) 

synthesise merge within P 
using (: "merge(order (S1), order(S2), order(S3)) 

= order(S1 U S2 U S3)" : ) 

RHS = order(S1 U S2 U S3) 

= m:: order((S1 U S2 U S3)- m) 
where m == min(S1 U S2 U S3) 

= m:: order((S1 - m) U (S2 - m) U (S3 - m)) 
where m == minof3(min(Sl), min(S2), min(S3)) 

Unfolding order 

Properties of min, U 

= m :: merge(order(S1 - m), order(S2- m), order(S3 - m)) 
where m == minof3(min(Sl), min(S2), min(S3)) 

Folding with definition of merge 

= m:: merge(rem(m, order(Sl)), rem(m, order(S2)), rem(m, order(S3))) 
where m == minof3(min(S1), min(S2), min(S3)) 

Properties of order, min 

= m:: merge(rem(m, order(Sl)), rem(m, order(S2)), rem(m, order(S3))) 
where m == minof3(head{order(S1)), head(order(S2)), 

head(order(S3))) 
folding with order (head(n:: 1) = n) 

Thus LHS = RHS i.e. 

merge(order(Sl), order(S2), order(S3)) 
= m:: merge(rem(m, order(S1)), rem(m, order(S2)), rem(m, order(S3))) 

where m == minof3(head(order(S1)), head(order(S2)), 
head( order(S3))) 

merge(OSI, 0S2, 0S3) 
= m:: merge(rem(m, OSI), rem(m, 0S2), rem(m, 0S3)) 

where m == minof3(head(OSI), head(OS2), head(OS3)) 

Generalising 
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Synthesise * 1 in P 
using(: "n *1 order(S)=order({n.slseS})" :) 

RHS = order( { n. s I s E S}) 

= m : : order( { n . s Is E S}) - m) 
where m = = min( { n . s Is E S}) 

= n. m : : order( { n. s Is E S}) - n. m) 
where m = = min(S) 

= n. min(S) :: order( {n. s Is E (S- min(S)))}) 

= n. min(S):: (n * 1 order(S - min(S))) 

Unfolding order 

Fact about min 

Folding with definition of * 1 

LHS =n *1 (min(S)::order(S-min(S))) 

Thus 

n *1 (min(S)::order(S-min(S))) 
= n. min(S):: (n * 1 order(S - min(S))) 

n * 1 (m:: OS)= n. m:: (n * 1 OS) 

Generalising 

Thus when the new equations developed are used to replace the old 
equation for hamming in P we have the program given in Section 4.3. We 
hope the reader will agree that the detailed derivations shown above 
although tedious do not require any great insights once the overall 
structure of the development has been set out by the meta-language 
program. At a few points rewritings dependent on the properties of the 
functions were used but these were not very deep theorems. Although we 
could not expect the machine to discover these facts for itself we could 
hope that it could verify that they were in fact true. Note the great 
similarity in the structure of the transformations for the two synthesise 
operations which lends credence to the claim that this level of problem 
solving can be largely left to the machine. 
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5. Advanced Applicative Programming Environments 

There is a growing interest in the development of systems to support the 
development and maintenance of large software projects [22,26]. A trans
formation system, particularly a meta-language driven one, would seem to 
form a natural component of such a system. 

One advantage of writing program specifications in a functional 
language is that in many cases these specifications can be run, albeit slowly, 
to test that they do in fact specify what is required before proceeding to an 
implementation. We also consider that it has been demonstrated that the 
automatic or semi-automatic verification of programs is much easier if 
these programs are written in a functional language, see for example [2]. In 
fact within the functional languages there is a continuous spectrum, 
running from execution through symbolic execution to formal proof and 
we can envisage a set of tools that would enable a user to establish, with 
more or less certainty, that his specification has all the desired properties. 

Having satisfied himself with the specification the task of the designer 
would be to plan the transformations needed to take this specification to a 
runnable program and write the meta-language program described earlier. 
The system would then carry out the transformation, possibly providing 
estimates of the efficiency of the programs produced. After an acceptably 
efficient program has been produced the specification and successful meta
language program would be stored. There should never be any need for any 
one to examine the code of the final program. 

The fact that the specification is written for maximum clarity and under
standability should have important consequences when we come to consider 
the question of maintenance, modification and portability. Any changes 
required to meet changing circumstances would of course be made to the 
specification, which being more modular than conventional programs 
should greatly reduce the likelihood of errors being introduced. Unless the 
change is a major one it is likely that the original meta-language program 
will still achieve an efficient program without further user intervention. 
Even if modification is required to the meta-language program there is no 
possibility of introducing error. Changes in the implementation of a given 
specification, say for the purposes of implementing on a different target 
machine, would be achieved by suitably modifying and re-running the 
meta-language program. 

Just as conventional programs can share functions or procedures so 
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meta-language programs can share sub-programs or tactics in the LCF 
terminology. Thus a 'tool box' of generally applicable tactics can be built 
up to collect and codify knowledge about algorithm design, giving the 
designer more and more powerful tools for program development. As the 
system becomes more powerful so the vocabulary available to the designer 
would become more sophisticated. 

Another advantage of working totally within applicative languages is 
that these are much more suited to the new generation of parallel architec
tures that are being developed (see for example [10, 16]). We feel that the 
arrival of these machines would go a long way towards making the 
languages and ideas discussed here practical. 

In the future we hope to extend the specification/transformation 
approach to include earlier parts of the software life cycle. We would do 
this by providing specialised user languages and transformation systems. 
These would enable an application specialist to state his requirements 
precisely, but in his own terms, and then have these converted to runnable 
programs. It would be possible to provide such languages and systems, for 
particular domains, right now. However, we hope to achieve this in general 
by developing ways of systematically extending a general specification 
language to a specialised requirements language and at the same time 
extending the transformation system to cope with requirements written in 
the language provided. Thus we envisage that 'programs' in the future will, 
more and more, be written by the people who originally conceive of the 
need for these programs and that the work of present day systems analysts 
or designers will consist of providing the specialised languages and systems 
that enable such programs to be specified and efficiently implemented. 

6. Conclusion 

At the time of writing, July 1981, the status of the meta-language is that 
after only 2 months of work all the first level tactics have been implemented 
and design work is proceeding on the second level ones. We have produced 
a HOPE in HOPE parser which is being extended to provide various HOPE 

compilers particularly one for our parallel machine. We do not see any 
great impediment to implementing the second level tactics and we look 
forward to using this richer set of operators to conduct experiments in 
program development and maintenance. We have conducted studies in 
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expressing the development of several 'classical' algorithms using the meta
language including topological sort, longest upsequence, and the Fisher
Galler algorithm. 

We hope that in this and related papers we have gone some way towards 
convincing readers that programming can progress from being an art to a 
science and be formalised sufficiently to allow at least semi-automation. 
Much remains to be done but we are convinced that the combination of 
applicative languages and transformation techniques offers the best hope 
for overcoming the problems that plague software development at the 
moment. 
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HYPERLISP 

Masahiko Sato and Masami Hagiya 

Department of Information Science, Faculty of Science, University of Tokyo, 
Bunkyo-ku, Tokyo, Japan 

A new programming language called HYPERLISP is presented, whose domain 
of symbolic expressions is mathematically neater than that of LISP. The 
semantics of HYPERLISP is defined in a strictly constructive manner. The cor
rectness of a meta-circular interpreter for HYPERLISP is also provable by a con
structive method. 

0. Introduction 

In this paper, we first introduce a new domain S of symbolic expressions 
(sexps, for short) which is mathematically neater than the classical domain 
of LISP symbolic expressions. All the sexps are constructed from the 
initial sexp O by successive applications of two pairing functions cons 
and snoc. Moreover, our domain S enjoys the set theoretic isomorphism 
S == S x S + S x S, while for that of LISP we have S ==A+ S x S where A is the 
set of atoms. It then becomes possible to define car and cdr as total 
functions. 

We then introduce a programming language which we call HYPERLISP. 
The language is LISP-like in the sense that any sexp is a meaningful HYPER
LISP program. Hence, taking into account the possibilities of nontermina
tion of evaluation and erroneous termination, the semantics of HYPERLISP 
will be given as a binary relation eval c S x S such that eval(x, y) and 
eval(x,z) implies y=z (i.e., eval is a partial function: S-->S). The intended 
meaning of eval(x, z) is that the sexp x is evaluated to z. We define eval 
formally as the least set satisfying a constructively given set of inductive 
clauses. Since inductive definition is the most basic way of definition in 
constructive mathematics, we think that, from the foundational point of 
view, this is the most unproblematic and fundamental way of defining the 
semantics of HYPERLISP. The practical and theoretical usefulness of our 
semantics may be well illustrated by the following facts: 
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(i) The semantics worked as a complete specification of the language in 
the implementation of the interpreter. 

(ii) The correctness of an interpreter (written in HYPERLISP) is provable 
in a constructive manner. 

The domain S has an interesting algebraic structure which we cannot 
explain here due to the limitation of space. For this, as well as for a more 
detailed exposition of the syntax and semantics of HYPERLISP, we refer the 
reader to [8]. 

1. Sexp 

1.1. Definition of a sexp 

Imagine an infinite leaf-free binary tree like Fig. 1, where a small circle is 
drawn at each node. The topmost node is called the root. 

Fig. l. Fig. 2. Fig. 3. 

Choose a finite number of nodes arbitrarily and mark them black as in 
Fig. 2. The resulting figure is called a sexp (for symbolic expression). We 
assume those nodes that do not appear in the drawings are not marked. 
Since only finitely many nodes are marked, any sexp may be represented as 
a finite binary tree. Thus as a sexp, Fig. 2 is equal to Fig. 3. 

The sexp with no marked nodes is denoted by 0. Fig. 1, considered as a 
sexp, is 0. The sexp whose only marked node is the root is denoted by I. 

We use x,y,z, ... , possibly indexed, as variables for sexps. 
The set of all the sexps is denoted by S. 

1.2. Recognizer 

We define the predicate atom: 

( ) [ true if the root of x is marked, 
atom x ..... 

false otherwise 
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e.g. atom(l) is true, but atom(O) is not. 
We set 

A= {xE SI atom(x)}, 

M=S-A. 

An element of A is called an atom while an element of M, a molecule. 

1.3. Selectors 

We define car, cdr: S-----+S 

e.g. 

car( J\ )=car ( f )=x, 

cdr (.j\ ) = cdr ( f ) = y, 

ca,(;(-)~J\. 
cd,(k )~•~!, 

car(O) = cdr(O) = car( 1) = cdr( 1) = 0. 

Remark that car and cdr are total functions on S. 

1.4. Constructors 

We define cons, snoc: S x S-----+S 

cons(x, y) = A , 
J: 

snoc(x, y) = 1' , 
J: 
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e.g. 

cons(0, 0) = 0, 

snoc(0, 0) = 1. 

M. Sato and M. Hagiya 

1. 5. Some properties 

(l) car(cons(x, y)) = car(snoc(x, y)) =x, 
cdr(cons(x, y)) = cdr(snoc(x, y)) = y. 

(2) cons(x, y) EM, 

snoc(x, y) EA. 

(3) x E M __,. x = cons( car(x), cdr(x) ), 
x EA_,. x =snoc(car(x), cdr(x)). 

( 4) cons: S x s-M is bijective, 

snoc: S x s-A is bijective. 

(1)-(3) are obvious from the definition. (4) follows from (1)-(3). By (4) we 
have the following set theoretic isomorphisms: 

(5) A=S x S, 

M:::::::SxS, 

S:::::::A+M=A+Sx S==SxS+SxS. 

Since in a sexp, only finitely many nodes are marked, 

(6) Every sexp can be constructed in terms of 0 

and a finite number of applications of cons and snoc. 

E.g. 

k = snoc( cons(snoc(0, 0), snoc(0, 0) ), snoc(0, O) ). 

By (6) we have the following induction schema: 

(7) 
A(0) A(x)&A(y)-A(cons(x, y))&A(snoc(x, y)) 

A(z) 



1.6. Notation 

Dot notation: 

(x. y) = cons(x, y), 

[x. y] = snoc(x, y). 

List notation: 

HYPERLISP 

(x, y,z) = (x. (y .(z. 0))), 

[x, Y, z] = [x. [y . [ z . 0]]]. 

Particularily, 

( ) = [ ] =0. 

Some auxiliary notations are prepared: 

'x= [l,x], 

x( .. . ) = (x, .. . ), 

x:y=(x,y). 

x[ ... ] = [x, ... ], 

'x has the highest precedence and x: y, the lowest: e.g. 

'O[O, O]: 1 

= [l, 01[0, O]: l 

= [[l,0],0,0]: 1 

= ([[ 1, OJ, 0, O], 1 ). 

x( ... ) and x[ ... ] associate to the left: i.e. 

x( ... )( ... ) = ((x, . .. ), ... ), 

x( ... )[ ... ] = [(x, ... ), ... ]. 

The intention of these notations will be clear in Section 2.5. 
A semicolon may replace a comma: 

[x; y; z] = [x, y, z]. 
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1. 7. Literal 

Let L be the set of all the lowercase letters: 

abcdefghijklmnopqrstuvwxyz 

Let {! be an injection: L--> A. In this paper, we define {! as follows: 

e(a) = [l, 1, o, o, o, o, l], 

e(b) = [I, 1, 0, 0, 0, I, 0], 

e(z)= [l, 1, I, 1,0, 1,0]. 

(The ascii code of a is 141 in octal, 1100001 in binary.) 
A literal is a nonempty string of letters in L. A literal denotes a sexp as 

follows: let l = a 1 ···an be a literal, where a; EL, then / denotes 

We identify a literal and the sexp it denotes: 

ab= [[1, 1,0,o,o,o, 1], [1, 1,0,0,o, 1,0]], 

(b. c)=([[l, 1,0,0,o, 1,0]]. [[I, l,0,0,0, 1, 1]]). 

Remark that a literal is an atom. 

2. Eval 

In this section, we define a binary relation on S, denoted by eval. eval 
will be a partial map: S--> S, in the sense that eval(x, y) and eval(x, z) implies 
y = z. eval(x, z) means that x is evaluated to z. We write x 1- z for eval(x, z). 

The definition of eval is 'mutually recursive' with those of apply, evlis 
and evcon. apply is a tertiary relation on S and evlis and evcon are binary 
relations. apply(!, x, z) means that the function f applied to the argument 
list x yields z as its value. As was said in the introduction, their definitions 
(or rules) take the form of the inductive definition, so they may be hard to 
understand in the first reading. Those who wish to understand our 
intention first may skip to Section 2.5 and then come back here. 

We assume the extremal clause in each of the following definitions. 
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2.1. Eva! 

(el) XE A, apply(car(x), cdr(x),z)-+x'r-z, 

(e2) XE M, evlis(cdr(x), y), apply(car(x), y, z)-+ X'r-Z. 

This corresponds to the following ALGOL-like statement: 

eval(x) 

= if x EA then apply(car(x), cdr(x)) 

elif x EM then apply(car(x), evlis(cdr(x))) fi. 

2.2. Ev/is 

(ell) evlis(0, 0), 

(e/2) x=t- 0, car(x) 'r- z
1

, evlis(cdr(x), z
2
)--->evlis(x, cons(z

1
, z2)). 

2.3. Apply I 

(al) apply(0,x, 0), 

(a2) apply(l, x, car(x)), 

(a3) car(x) = car(cdr(x))-+apply(eq,x, 1), 

(a4) car(x) =I= car(cdr(x))-+apply(eq,x, 0), 

(a5) evcon(x, z)-+apply(cond,x, z), 

(a6) car(x) E A-+apply(atom,x, 1), 

(a7) car(x) E M-+apply(atom,x, 0), 

(a8) car(x) = 0-+apply(null, x, 1 ), 

(a9) car(x) =I= 0---->apply(null,x, 0), 

(al0) apply( car, x, car( car(x)) ), 

(all) apply( cdr, x, cdr( car(x)) ), 

(a12) apply( cons, x, cons( car(x), car( cdr(x))) ), 

(a13) apply(snoc, x, snoc(car(x), car(cdr(x)))). 

eq, cond, atom, null, car, ... are literals. 
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2.4. Evcon 

(eel) evcon(O, 0), 

(ec2) x-::f:-0, car(car(x)) f- y, y EA, car(cdr(car(x))) f-z-evcon(x, z), 

(ec3) x=l=-0, car(car(x)) f- y, y EM, evcon(cdr(x),z)-evcon(x,z). 

2.5. Properties and examples 

Since car(car([x])) = car(x), we have app/y(car, [x], car(x)) by (alO). From 
this and (el) we have car[x] f-car(x), since car(car[x]) = car and 
cdr( car[x]) = [x]. 

(car) car[x] f- car(x). 

Likewise 

(cdr) cdr[x] f- cdr(x), 

(cons) cons[x, y] f- cons(x, y), 

(snoc) snoc[x, y] f- snoc(x, y), 

(eql) x= y-eq[x, y] f-1, 

(eq2) x-=1=-y-eq[x, y] f-0. 

Similar for atom and null. By (a2) etc., 

(id) l[x]f-x i.e. 'xf-x 

For evlis, we have 

(l) Xi f- Y;(l :5 i :5 n)-evlis((X1, ... ,Xn), (Y1,, .. , Yn)). 

(e2) says that when the sexp to be evaluated is a molecule, its argument list 
(i.e. its cdr) should be evaluated by ev/is: 

(e) X;f- Y;(l :5 i :5 n).f[Y1, ... , Ynl f- z- f(Xi, ... , Xn) f- z. 

By (al) etc., 

(z) Or-0. 
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For evcon, 

---->cond[x1: Y1; ... ; Xn: Ynl f-Z, 

(c2) X;f-Z; EM (1:::; i::,:; n)---->cond[x1: Y1; ... ; Xn: Yn1 f-0. 

An atom represents truth while a molecule represents falsity. 
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From the above properties, the following evaluations may be obvious: 

'af-a, 

car[(b . c)] f- b, 

cons('a, car[(b. c)]) 1--(a. b), 

cond[eq[a, a]: O; '1 : '1] f- 0, 

cond[eq[a, b]:O; '1:'l]f-1. 

2. 6. Lambda abstraction 

Consider Axy. cons(y,x). Let us represent this function by a sexp. First 
note that by (cons) in Section 2.5, 

cons( y, x] = con~ f- (y. x) = cons(y, x) . 

.£ 

But in cons[y, x], x and y are the variables for which the actual arguments 
are to be substituted. We try to represent cons[y,x] by two sexps as in Fig. 
4. 

Fig. 4. 

The right sexp represents the place of the variables, but it does not tell 
which variable is where. Remember that xis the first argument and y is the 
second. Since the first argument is identified as the car of the argument list, 
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it is represented by the sexp 

the second argument is represented by 

the third by 

etc. Adding the information on variables to Fig. 4, we get Fig. 5. 

co~ 

Fig. 5. 

Finally, we get our lambda expression, the sexp named xcons in Fig. 6. 

xcons= 

We expect for x, y E S 

xcons[x,y] f-(y.x). 

Fig. 6. 

To realize this, we add the following rule: 

(a,1.) f EM, car(!)= lambda, subst(x, param(f), body(!)) f-Z 

--> apply(f, x, z), 
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where param, body and subst are total functions defined as follows: 

param(f) = car(cdr(f)), 

body(!)= car(cdr(cdr(f))), 

subst(x, p, b) = if p = 0 then b 

elif p EA then point(x, car(p)) 
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elif be M then cons(subst(x, car(p), car(b)), 

subst(x, cdr(p), cdr(b))) 

elif be A then snoc(subst(x, car(p), car(b)), 

subst(x, cdr(p), cdr(b))) fi, 

point(x, q) = if q = 0 then 0 

elif q e A then x 

elif cdr(q) = 0 then point(car(x), car(q)) 

elif cdr(q) =I= 0 then point(cdr(x), cdr(q)) fi. 

We did not define subst and point inductively for the sake of readability. 
point(x, q) is used to extract a certain part (specified by q) from the 
argument list x. E.g. 

subst([a, b], param(xcons), body(xcons)) = cons[b, a]. 
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Since cons[b, a] f-(b. a), by (aJ) above 

apply(xcons, [a, b], (b. a)), 

xcons[a, b] f-(b. a). 

In our lambda expressions, (bound) variables are literally anonymous so 
that the usual problem of avoiding the conflict of variables will never 
occur. But to really write down meaningful lambda expressions, the 
notation so far is too poor; we need more sophisticated notation to express 
lambda expressions. (See Section 2.8.) 

2.7. Label 

(aA) f EM, car(f) =label, 

apply(subst(f, param(f), body(f)), x, z) 
->apply(f, x, z). 

2. 8. Notation for lambda and label expressions 

xcons in Section 2.6 is denoted by 

J([X, Y]; cons[Y, X]) 

where cons[Y, X] expresses the function body and [X, Y] declares that X is 
the first argument and Y is the second. X and Y are called metalitera!s. A 
metaliteral is an alphanumeric string beginning with an uppercase letter 
and plays the role of a bound variable. Obviously 

A([X, Y]; cons[Y, X]) = J([U, V]; cons[V, U]) 

they both denote the same sexp, xcons in Fig. 6. 
Examples: 

J([X, Y]; cons[Y, X])[a, b]f-(b.a), 

J([X, Y]; cons('X, car[Y]))[a, (b. c)] f-(a. b), 

(·. • cons('a, car[(b. c)])f-(a. b)), 

J([X, Y]; cond[eq[X, Y]:0; '1:'l])[a, a]f-0, 

J([X, Y]; cond[eq[X, Y]:0; '1:'l])[a, b]f-1. 

[X, Y] above is called a metaterm; a metaterm declares metaliterals. 
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Examples of metaterms: 

(1) [X], 

(2) [X, Y], 

(3) [[XI . X2]), 

(4) [X=[Xl .X2], Y]. 

In (3) Xl is the car of the first argument and X2 is the cdr. In (4) Xis the 
first argument, XI its car, X2 its cdr and Y is the second argument. a= Pin 
a metaterm means that a and fJ occupy the same place in the argument list. 

A( ... ) is for a label expression. E.g. 

append= A(APPEND; 

).([X, Y]; 

cond[null[X]: 'Y; 

'l : cons(car[X], APPEND(cdr[X], 'Y))])) 

which is the ordinary append function; e.g. 

append[(a, b, c), (d, e)] f-- (a, b, c, d, e). 

Using the metaterm (4) above, let 

append2 =A(APPEND; 

A([X = [Xl. X2], Y]; 

cond[null[X]: 'Y; 

'l :cons('Xl, APPEND[X2,Y])])). 

append and append2 are extensionally equal. 
The notations explained so far (in Sections 1.6, 1.7 and 2.8) comprise 

what we call the reference language of HYPERLISP. The semantics of the 
reference language is given by the rules how a grammatically correct pro
gram is translated to a sexp. The syntax and semantics of the reference 
language may be defined in a constructive manner as we are defining eva/, 
but here we will not go into details. (See [8].) 
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2.9. Function definition 

We can give a function definition to an arbitrary atom. E.g. let us give to 
append, which is a literal, i.e. an atom, the following definition: 

.J.([X = [XI . X2], Y]; 

cond[null[X]: 'Y; 

'I :cons('Xl, append[X2, Y])]). 

We expect 

append[(a, b, c), (d, e)] I- (a, b, c, d, e). 

This will be realized by the rule: 

(aLI) f E A,f-:t-1,f-:t-eq, f-:t-cond, 

f is defined to bed, apply(d, x, z) 
-+apply(f,x,z). 

A function definition is written as follows: 

Llappend[X = [XI . X2], YJ 

= cond[null[X]: 'Y; 
'1 :cons('Xl, append[X2, Y])]; 

Because of (aLI), we seldom need (aA). 

2.10. Apply II 

We update the definition of apply. 

(al)-(a5): as in Section 2.3, 

(a.J.): as in Section 2.6, 

(aA): as in Section 2. 7, 

(aLI): as in Section 2.9, 

(acA) 

(acM) 

f EA, f * 1, f * eq, f * cond, f is not defined, 
f 1- g, apply(g, x, z)I 

-+ aply(f, x, z), 

f EM, car(!)* lambda, car(!)* label, 
f I- g, apply(g, X, z)I 

-+apply(!, x, z). 
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Why we omitted (a6)-(a13) in Section 2.3 will be clear in Section 3.2. (acA) 
and (acM) are for computed functions. (See Section 3.6.) 

Because of (aL1), eval depends on a set of function definitions. We write 
x 1--D z to mean that x is evaluated to z under the set of definitions D. 

We could have defined D formally as a sexp like an association list of 
LISPl.5 (see [5]). But it would have made the definitions messy. 

3. Characteristic Features and Examples 

3.1. Quasi-quotation 

Let 

xcons2 == A([X, Y]; '(Y. X)). 

Since '(y. x) 1--rp (y. x), xcons2 is extensionally equal to xcons; i.e. 

xcons2[x, y] ~(y. x]. 

We do not need the constructor cons here. 
In lambda expressions, we can write (X. Y), [X. Y], (X) etc. as above. 

This is called Quine's quasi-quotation. (See [7].) 
Because of the quasi-quotation and the metaterm, we can dispense with 

explicit use of constructors and selectors in many cases. Take naive reverse 
as an example. In LISP 1.6 (see [6]), we write 

(DE REVERSE (X) 

(COND ((NULL X) NIL) 

In HYPERLISP, 

(T (APPEND (REVERSE (CDR X)) 

(CONS (CAR X) NIL))))). 

L1 reverse[X == [Xl . X2]] 

== cond[null[X]: O; 

'1 :append(reverse[X2], '(Xl))]; 

3.2. Definability of primitives 

L1atom[X] == cond['X: 'l]; 
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Llnull[X] = eq[X, O]; 

Llcar[[Xl. X2]] = 'Xl; 

Llcdr[[Xl. X2]] = 'X2; 

Llcons[X, Y] = '(X. Y); 

Llsnoc[X, Y] = '[X. Y]; 

3.3. Definability of eval and apply 

Let D consist of: 

Lleval[X] = X; 

L1 apply[F, X] = [F . X]; 

Then for any x, f, z ES, 

eval[x]~z iffx~z, 

apply[!, x] ~ z iff apply(!, x, z) under D. 

3.4. Special form 

Since the caller determines whether to evaluate the arguments or not, we 
do not have to distinguish between expr andfexpr. Let us define or; let D 
consist of: 

Llor[. X = [Xl . X2]] 

= cond[eq[X, OJ: O; 

Xl: 'I; 

'I: [or. X2]]; 

where [. X = [Xl . X2]] means that X is the whole argument list, XI the 
first argument and X2 the argument list but the first. 

or[eq[a, b], eq[b, b]]~l, 

or[eq[a, b], eq[b, cl] ~O. 

Another example, list: 

Lllist[. X] = 'X; 
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3.5. Funarg 

Since the arguments are actually substituted in the function body, we 
have no funarg problem. 

For an example of a functional argument, see Section 3.6. 

3.6. Paradoxical combinator 

Curry's Y =Ah. (AX. h(xx))(AX. h(xx)) can be easily simulated. (See [2].) 
Let D consist of: 

Then: 

L1y[H] = A([X]; H[X[X]])[Jc([X]; H[X[X]])]; 

L1null[X] = eq[X, O]; L1cons[X, Y] = '(X. Y); 

y[Jc([APPEND]; 

'Jc([X = [Xl . X2], Y]; 

cond[null[X]: 'Y; 

'1 :cons('Xl, APPEND[X2, Y])]))][(a, b, c), (d, e)] 

~ (a, b, C, d, e). 

4. Bootstrap 

By Section 3.3 we know that eval and apply are easily defined in HYPER

LISP. Here we try a more instructive set of definitions. Let D consist of the 
following definitions: 

L1eval[E = [F. X]] 

= cond[atom[E]: apply[F, X]; 

'1 :apply('F, evlis[X])] 

L1evlis[X = [XI . X2]] 

= cond[null[X]: O; 

'l :cons(eval[Xl], evlis[X2])] 

L1apply[F=[L, P, BJ, X=[Xl, X2]] 
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= cond[null[F]: O; 

atom[F]: 

cond[eq[F,l]: 'Xl; 

eq[F, eq]:eq[Xl, X2]; 

eq[F, cond] : evcon[X]; 

'1 :apply(eval[F], 'X)]; 

eq[L, lambda] : eval(subst[X, P, BJ); 

eq[L, label]: apply(subst[F, P, Bl, 'X); 

'1 : apply(eval[F], 'X)] 

Llevcon[X = [[El . E2]. X2]] 

= cond[null[X]: O; 

atom(eval[El]): eval[E2]; 

'1 : evcon[X2]] 

Llsubst[X, P = [Pl . P2], B = [Bl . B2]] 

= cond[null[P]: 'B; 

atom[P] ~point[X, Pl]; 

atom[B]: snoc(subst[X, Pl, Bl], subst[X, P2, B2]); 

'l :cons(subst[X, Pl, Bl], subst[X, P2, B2])] 

Llpoint[X =[XI. X2], Q = [Ql. Q2]] 

= cond[null[Q]: O; 

atom[Q]: 'X; 

null[Q2] :point[Xl, QI]; 

'1 : point[X2, Q2]] 

Llatom[X] = cond['X: '1]; 

Llnull[X] = eq[X, OJ; 

Llcons[X, Y] = '(X. Y); 

Llsnoc[X, Y] = '[X. Y]; 



Theorem. For any x, z e S 

eval[x] 1r5- z iff x '7; z. 
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Proof. By induction on the evaluation of x. Refer to [8] for the details. 

Compare our constructive approach with that of Gordon [3], where he 
proves the correctness of the universal functions of Pure LISP by means of 
denotational semantics. 

5. Implementation 

A tiny interpreter is implemented on PD Pl 1 and V AXl l under UNIX. 
The technique in [4] is used to implement S. (See also [l, p. 402].) Function 
definitions are semi-compiled so that the arguments are not actually substi
tuted in the body. 

It took 17 .2 seconds to compute 92 solutions of the eight queens puzzle 
on V AXl 1/780. 
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Symbolic Evaluation of LISP Functions with Side Effects 
for Verification 

Dennis de Champeaux and Jos de Bruin 

Faculty of Economics, Informatica Department, Jodenbreestraat 23, 1011 NH Amsterdam, 
The Netherlands 

In this paper we present a symbolic evaluator of USP functions. It can 

handle data-altering functions of the RPLACA type, i.e. functions that change 
one data-structure by replacing parts of it by other structures that will them
selves not be changed further, at least not permanently. The state description 
languages uses first-order predicate calculus. It is argued that symbolic 
evaluation in terms of this language, although theoretically adequate, is not 
feasible in general, since it may require extremely complicated specifications 
for real-life functions with side effects. Examples are given of the specifi
cations needed to verify several versions of SUBSTAD, a non-copying SUBST. 

1. Introduction 

In 1978 we published SUBSTAD, a non-copying version of SUBST (see 
[l]). Comparison of these two functions in the context of a unification 
algorithm showed some very favorable results. Two years later we found 
out that the results were biased by a bug in our machine implementation of 
SUBST. 

This experience increased our interest in verification, in particular of 
functions with side effects, such as SUBSTAD. These functions pose a 
challenge to verifiers. One simple RPLACA can have consequences for 
every data-structure around. 

Very few practical, ready-to-use techniques are available at present. The 
theoreticians of program verification (for an overview, see [5]) are develop
ing languages (Dynamic Logic e.g.) that abstract away from real appli-
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cation, concern toy-like programming languages and tend to be considered 
as interesting objects by themselves. 

More promising seem concrete efforts like that of Topor [8], who 
verified the correctness of the Schorr-Waite marking algorithm, an 
algorithm somewhat similar to SUBSTAD. His proof by hand is reason
able to follow, but we are interested in actually automating the verification 
process as much as possible. 

We developed a program that can keep track of the many details 
involved when checking all possible branches of computation trees. We 
have chosen the method of symbolic evaluation [3, 6], because it guarantees 
that every branch is visited and that all preconditions to operations are 
considered. 

Symbolic evaluation requires the addition of input/ output specifications 
to the program code and of invariants to each loop in that code. The code 
is evaluated with symbolic input values that conform to the input specifi
cation, producing a symbolic output value for each branch through the 
code. The symbolic evaluator should embody the semantics of the 
operators used in the code, in our case (at least) the subset of LISP primi
tives used in SUBST AD. For each of those operators it should be able 
to transform the description of the state in which this operator is called into 
a description of the state it creates. 

It has to be verified that all of the output values produced are in 
accordance with the output condition. This, as well as checking entry and 
loop conditions, can be done 'manually' or by a theorem prover. Although 
we have been experimenting with COGITO, our theorem prover (for 
results see [2]), our concern here is the automatic updating concerning 
functions with side effects, like RPLACA. For details on the actual proofs 
(by hand) see [2]. 

2. The State Description Language 

In order to facilitate deduction, the state description language uses first
order predicate calculus. We start off with a countable domain of cells C 
and a countable domain of atoms A, where C and A are disjoint. Let D be 
their union: D=CUA. We will have the partial functions: 
- car and cdr, with domain C and range D; and 
- addr, with domain D and range N, the natural numbers. 
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We will have the partial predicate: 
- atom, with domain D, and which, where defined, coincides with the 

characteristic predicate of A. 
Using the addr-function, we define the relation eqa with: 

(d)(e){ eqa(d, e)~addr(d) = addr(e) }, 

for d, e in D where addr is defined. 

Axiom 1. 

Axiom 2. 

(d)(e){ eqa(d, e)-+ [atom(d)-+d = e]} for d, e in D. 

(d)(e){ [-atom(d) & eqa(d, e) & 

car(d)=car(e) & cdr(d)=cdr(e)]-+d=e} 

ford, e in D. 

Axiom 1 ensures that e is also non-atomic. 

We define a data object D, to be an element of the power set of D: 
(1) with D, of nite size, 
(2) with C, an A, the elements of D, respectively in C and A, 
(3) with car(C;; and cdr(C,) subsets of D,, and 
(4) with a unique element r in Dn the root of D,, which has the property 

that all other members of D,can be reached from r by finite car/cdr chains. 
From now on we mention data objects by referring to their roots. 
Recursive definitions on data objects run the risk of being undefined due 

to infinite regress, since data objects may contain cycles - a cell can reach 
itself along a car/cdr chain. The finiteness of data objects is the way out of 
this problem. Most recursive definitions that we will give in the sequel 
apply to data objects that have the special format of a tree. For generaliz
ations to arbitrary data objects, see [2]. 

Recursive definitions on trees invoke in proofs an appeal to the so-called 
car/cdr induction. Whenever a formula P(x) reduces to a formula 
P(car(x)) and/or P(cdr(x)) then car/cdr induction allows the conclusion 
that P(x) has been inferred. This is justified by the observation that a well
founded relation can be constructed (in most cases the number of cells 
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reachable from x) that decreases on each recursive reference. Handled 
carefully, this also applies to recursive definitions with non-tree arguments. 

Next we give definitions of the predicates partof and loopfree. The 
definition of partof works only on trees ( + is the sequentially read dis
junction connective): 

(d)(e){partof(d, e)+-+ 
[partofcar(d, e) + partofcdr(d, e)]}, 

(d)(e){partofcar(d, e)+-+ 
[-atom(e) & 
(d = car(e) + partof(d, car(e)))]}, 

(d)(e){partofcdr(d, e)+-+ 
[-atom(e) & 
(d = cdr(e) + partof(d, cdr(e)))]}, 

(d){loopfree(d)+-+ loopfreel (d, 0)}, 

(d)(V){loopfreel(d, V)+-+ 
[atom(d) + 
{-(din V) & 
loopfreel(car(d), {d} UV) & 
loopfreel(cdr(d), {d} UV)}]}. 

The expression partof(d, e) signifies that the data object e contains a cell or 
atom identical to the root of d. Loopfree defines the property that a data 
object does not contain a cycle. 

A state description is a conjunction of facts referring to a finite number 
of data objects, always containing the data objects nil and t, corresponding 
with NIL and T, members of A, for which holds: atom(nil), atom(t) and 
-(t= nil). 

A state description may refer to 'virtual' data objects, which existed 
during earlier states. Two data objects are compatible, if they can co-exist: 

(d)(e){ compatible(d, e)+-+ 

[atom(d) + atom(e) + 
(eqa(d,e) & d=e)+ 
(-eqa(d, e) & 
compatible(d, car(e)) & compatible(d, cdr(e)) & 
compatible(car(d),e) & compatible(cdr(d),e))]}. 
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When two data objects are non-compatible at least one has to be virtual. 
The RPLACX operations are responsible for making data objects virtual. 

Definition. An alist is a finite list of pairs ((ai, r1), ... , (an, r n)) with a; atoms 
unequal nil and r; the roots of data objects, while for each pair r;, r1 we 
have: compatible(r;, rj). 

The alist contains the current bindings of the atoms. A data object is 
virtual with respect to an alist if it is non-compatible with an r; from that 
alist. An atom may occur more than once as a first element of a pair, for 
instance as a consequence of recursion. LISP functions retrieve and update 
leftmost occurrences. Side effects may propagate to the right in the alist. 
Extensions and contractions, as a consequence of entering a higher or 
lower stack level, also occur at the left. 

Definition. A state configuration is a pair (AL, FL) with AL an alist and 
FL (the factlist) a state description. Atomicity of nil, t and all atoms a; on 
the alist is implicitly assumed. 

3. The Symbolic Evaluator 

When given LISP-code and a state configuration the symbolic evaluator 
generates a tree of state configurations, corresponding to all possible 
computation paths through the code. The symbolic evaluator works like a 
real LISP evaluator. It has a code pointer, corresponding to a program 
counter, to that part of the code which has to be executed, it contains 
modules which correspond to built-in LISP functions and it knows what to 
do with user defined functions. 

A non-numerical atomic form is evaluated by retrieving the most recent 
(i.e. leftmost) binding from the current alist. 

For built-in functions, the recipe consists of checking whether pre
conditions, parametrized for the current arguments, are fulfilled and, if the 
check succeeds, updating the state configuration. An exception is made for 
COND. The COND-module generates one or more bifurcations of the 
current state configuration. The correctness of a bifurcation (satisfiability 
of a test expression and its negation) is not proven by means of the 
deduction machinery but by constructing or having available two models 
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that possess opposite truth values with respect to the test expression but are 
both consistent with the current state configuration. To construct these 
models one could ask the user to provide several examples, which are 
processed concurrently with the symbolic input specification for the code 
(not implemented). Testing by running examples and formal verification 
should not be seen as mutually exclusive, but should go hand in hand. 

Modules are implemented for the following subset of standard LISP 
functions: ATOM, CAR, CDR, COND, CONS, EQ, EQUAL, GO, NOT, 
NULL,PROG,PROGN,QUOTE,RETURN,RPLACA,RPLACDand 
SETQ. The functions COND, GO, PROO, PROGN, QUOTE and SETQ 
are of type FSUBR, i.e. evaluation of their arguments is to their own 
discretion. The other functions have automatic - left to right - argument 
evaluation before module-specific actions are taken. 

An essential requirement for the modules is that the compatibility 
property of state configurations is preserved. Our only worry is RPLACA, 
RPLACD and SETQ because only those functions affect the alist. We will 
describe some of the modules. 

ATOM. Let the argument of ATOM evaluate to x. A new symbolic value 
will be generated, say gl, which will be returned as the value, while the fact 
list will be expanded with: 

{gl = t & atom(x)} + {gl = nil & ~atom(x)}. 

The implemented version deals immediately with the atomicity of x. It 
returns t or nil when atomicity or non-atomicity of x can easily be derived 
from the given fact list, otherwise the user is asked to indicate whether t, nil 
or both possibilities are to be pursued. In this last case, it generates a 
bifurcation of the current computation branch with t in one and nil in the 
other branch, adding either atom(x) or ~atom(x) to the respective factlist. 

CAT (and analogously CDR). Let the argument of CAR evaluate to x. In 
contrast with ATOM there is a precondition check for CAR: ~atom(x) 
should be derivable from the current fact list. If that derivation succeeds a 
new symbolic value, say g2, is generated and returned and g2 = car(x) is • 
added to the fact list. 

COND. This function leads to bifurcation(s) of the current computation 
branch, as described for the implemented version of ATOM. 
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CONS. Let the arguments of CONS evaluate to x and y. A new symbolic 
value, say g3, is generated and will be returned, while the fact list will be 
extended with: -atom(g3), car(g3) = c and cdr(g3) = y. 

GO. We assume only backward jumps. The loop invariant associated with 
the label to which GO refers, provided by the user and parametrized for the 
current bindings by the evaluator, should be derivable from the current 
fact list. A non-looping check, based on a well founded relation should 
also be performed. Because jumps are always backwards, we do not have 
to consider the current computation branch any further. 

RPLACA (and analogously RPLACD). Let the arguments of RPLACA 
evaluate to x and y. The precondition for RPLACA is -atom(x). A new 
symbolic value, say g6, is generated and returned, while the fact list is 
extended with: eqa(x, g6), car(g6) = y and cdr(g6) = cdr(x). 

Any non-atomic binding zl on the alist, identical to x or 'above' x, will 
be affected indirectly by the RPLACA operation and has to be replaced by 
a new binding z2 for which minimally holds: eqa(zl, z2). In general: when a 
RPLACX operation causes xl to be replaced by x2 then each binding on 
the alist, yl, will be replaced by a fresh binding, y2, while the fact list will 
grow with: eqaupto(yl, y2, xl, x2), which says: y2 is identical with yl unless 
there is a substructure of yl that is identical with xl. The predicate eqaupto 
is defined as: 

(yl)(y2)(xl)(x2){ eqaupto(yl, y2, xl, x2)<---> 
[eqa(yl, y2) & 
{yl =xl ---->y2= x2} & 
{[-(yl =xl) & -atom(yl)]----> 

[eqaupto(car(yl ), car(y2), xl, x2) & 
eqaupto(cdr(yl), cdr(y2), xl, x2)]}]}. 

Remark. When the original binding yl is atomic then according to Axiom 
l the new binding y2 is identical with yl. 

Lemma 1. 

{xl =x2 & eqaupto(yl,y2,xl,x2)}-,.yl =y2. 

Lemma 2. 

{-(xl = yl) & -partof(xl, yl) & eqaupto(yl, y2, xl, x2)} 
---->yl =y2. 
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These lemmas can be used to curb updating activities. For proofs of 
these and other lemma's and theorems, see [2]. 

Theorem 1. Let yl and zl be old bindings which are respectively replaced 
by y2 and z2 due to an RPLACX-operation that caused xl to be changed 
into x2, thus with eqa(xl, x2), then compatible(yl, zl), eqaupto(yl, y2, xl, x2) 
and eqaupto(zl, z2, xl, x2) implies compatible(y2, z2). 

SETQ. Let the second argument evaluate to x. The precondition for SETQ 
is that the non-evaluated first argument is atomic, say A. The binding of 
the leftmost occurrence of A on the alist will be replaced by x. If A does not 
occur on the alist - i.e. when A is a global variable - then (A . x) will be 
added at the righthand side of the alist. Preservation of alist-compatability 
is ensured when the evaluation of the second argument yields a value 
compatible with the current bindings. 

The modules not described trigger obvious updatings. (For the equal 
predicate needed by the EQUAL module, see [2] .) 

3 .1. User junctions 

Most LISP functions to be verified will contain functions other than the 
above mentioned primitive ones. These are provided either by the user or 
are built-in. They can be handled by the evaluator if they are accompanied 
by an input and an output condition. 

The symbolic evaluator first asks for (and tries to assist with) a check 
that the input condition is fulfilled and then looks whether the user wishes 
this function to be verified. If so, she will have to provide its body. 
Recursive user functions will be opened at most once, for obvious reasons. 
A well-founded relation, user provided, should be used when verifying that 
arguments of a recursive call score strictly less with respect to that well
founded relation than the arguments at the top level call. This was not 
implemented. 

An output condition should describe the resulting state in terms of the 
values used in the input condition to enable the symbolic evaluator to 
update the state configuration in which the function was called. This 
updating is straightforward when the function does not have side effects 
and just returns a value, but built-in and user functions of RPLACX-type 
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need even more complicated alist updating schemes than the one given 
above for RPLACX. 

Suppose we execute (NCONC LIS Sl), where the bindings of LIS and Sl 
are respectively lis and sl. The rightmost leaf of LIS, which must be NIL, 
will be replaced by a pointer to its second argument Sl. Any data-structure 
containing a pointer to lis or to a cell lying on its 'spine' (i.e. the cdr chain 
starting at lis) will be changed as a consequence of this NCONC operation. 

We will describe an alist update scheme for a class of side effect 
generating functions, including NCONC, EFFACE and our SUBSTAD 
support functions SUBSTADl and SUBSTAD2. It applies to those 
functions which cause replacement of a cell, say xl, by a cell, say x2, (thus 
we have eqa(xl, x2)). 

Every binding, zl, on the alist is replaced by a fresh binding, z2, and the 
fact list is expanded with: transf(zl, z2, xl, x2). The predicate transf and its 
supporting predicate trl and tr2 works by double recursion. First, it is 
checked whether zl is identical with xl or - using trl - with a cell reach
able from xl. If the trl-case applies the predicate tr2 is invoked to relate zl 
and z2. Second, when zl is not identical with xl or a subcell of xl then 
transf is called recursively to test whether subcells of zl are affected by the 
xl-x2 replacement. 

The predicate transf is defined as: 

(yl)(y2)(xl)(x2){ transf(yl, y2, xl, x2)+-> 
[eqa(yl, y2) & 
{xl=yl-y2=x2} & 
{[-atom(yl) & -(xl =yl) & trl(yl,xl,x2)]
tr2(yl, y2, xl, x2)} & 

{[-atom(yl) & -(xl =yl) & -trl(yl,xl,x2)]
[transf(car(yl), car(y2), xl, x2) & 
transf(cdr(yl), cdr(y2), xl, x2)]} l}, 

with trl defined as: 

(yl)(xl)(x2){ trl{yl, xl, x2)+-> 
[-atom(xl) & 
eqa(xl, x2) & 
{yl =xl + 
trl (yl, car(xl ), car(x2)) + 
trl(yl, cdr(xl), cdr(x2))}]}, 
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and with tr2 defined as: 

(yl)(y2)(xl)(x2){ tr2(y1, y2, xl, x2)+-+ 
[{yl =xl-➔y2=x2} & 
{~(yl =xl)-➔ 

[ { trl (yl, car(xl), car(x2))-➔ 

tr2(yl, y2, car(xl), car(x2))} & 
{ trl(yl, cdr(xl), cdr(x2))-➔ 

tr2(yl, y2, cdr(xl), cdr(x2))}]}]}. 

The meaning of the transf(zl,z2,xl,x2) formula can be phrased as: let yl 
be zl or a subcell of zl, let ul be xl or a subcell of xl, while ul has been 
replaced by u2 (so u2 is identical with x2 or with a subcell of x2), then, 
when yl is identical with ul, there is a corresponding cell in z2, which is 
identical with u2. 

In analogy with Lemma 1 and Lemma 2, we have: 

Lemma 3. 

Lemma 4. 

{xl =x2 & transf(yl,y2,xl,x2)}-➔ y1 =y2. 

[(z){ [z = xl + partof(z, xl)]-➔ 

[~(z = yl) & ~partof(z, yl)]} & 
transf(yl, y2, xl, x2)]-➔ 

yl = y2. 

Theorem 2. Let yl and zl be old bindings which are respectively replaced 
by y2 and z2 due to a side-effect operation causing xl to be changed into 
x2, thus with eqa(xl, x2), then compatible(yl, zl), transf(yl, y2, xl, x2) and 
transf(zl, z2, xl, x2) implies compatible (y2, z2). 

The limitations of this updating scheme can be seen from the function 
NCONC2, defined as: 

(NCONC2(LAMBDA(LIS1 LIS2 Sl) 
(NCONC LISl(NCONC LIS2 S1)))). 

A binding referring to the 'spine' of the input binding of LIS2 cannot be 
recognized and therefore will not be updated, although it is not up-to-date 
anymore. 
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We conclude that the user must be given the option to specify a specific, 
idiosyncratic alist update mechanism for any function having side effects. 
This will considerably increase the verification burden, since it will have to 
be shown that the compatibility requirement for the updated alist is 
fulfilled. 

4. Evaluating SUBST AD 

To give an impression of the feasibility of the method of symbolic 
evaluation as introduced above, we will discuss our effort to verify 
SUBSTAD. This function is called with three arguments: SI, LAT and S3. 
It replaces all occurrences of LAT in S3 by SI. The value of LAT should be 
a non-numeric atom. This is checked by SUBST AD, which also handles the 
case that S3 is atomic. Otherwise it calls a support function with one 
argument, S3. 

The support function published in [l] uses pointer reversal to avoid the 
use of a stack, as is done in garbage collectors. Before discussing this 
function, we will make some remarks on the verification of two simpler 
versions, to show how the method works and to illustrate how a slight 
modification in a program can lead to substantial differences in its verifi
cation. 

4.1. SUBSTADJ 

First of all, the recursive SUBST AD 1: 

(SUBST AD 1 (LAMBDA(S3)(PROG2 
(COND((ATOM(CAR S3)) 

))). 

(COND((EQ LAT(CAR S3))(RPLACA S3 S1)))) 
(T(SUBSTADl(CAR S3)))) 

(COND((ATOM(CDR S3)) 
(COND((EQ LAT(CDR S3))(RPLACD S3 Sl)))) 

(T(SUBSTADl(CDR S3)))) 

The preconditions are: 
- the binding of S3, say vs3, is not atomic; 
- the binding of LAT, say lat, is atomic; and 
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- lat is not a leaf of the binding of S1, say vsl. This last precondition is 
meant to prevent the introduction of cycles. 

To simplify the proofs, we will assume that vsl does not share sub
structure with vs3. Consequently, Lemma 4 will apply and therefore 
updating of the S1 binding will never happen. (When vsl does share 
structure we can still invoke Lemma 2, since lat is not a leaf of vsl .) 

Since we assume the preconditions to hold, the fact list will (implicitly) 
contain: 

atom(lat) & ~atom(vs3) & ~partof(lat, vsl). 

The input alist is: 

((Sl. vsl)(LAT. lat)(S3. vs3)). 

Assume the output alist to be: 

((Sl. vsl)(LAT. lat)(S3. nvs3)). 

The output assertion to be verified will be: 

replacedd(vsl, lat, vs3, nvs3), 

with replacedd (replacement with potential destruction of vs3) defined as: 

(xl)(x2)(x3)(ot){ replacedd(xl, x2, x3, ot)~ 
[eqa(x3, ot) & 
{ atom(car(x3))-+ 

[(x2 = car(x3)-+car(ot) = xl) & 
(~(x2= car(x3))-+car(ot) = car(x3))]} & 

{~atom(car(x3))-+replacedd(xl, x2, car(x3), car(ot))} & 
{ atom(cdr(x3))-+ 

[(x2 = cdr(x3)-+cdr(ot) = xl) & 
{~(x2 = cdr(x3))-+cdr(ot) = cdr(x3))]} & 

{ ~ atom(cdr(x3))-+replacedd(xl, x2, cdr(x3), cdr(ot))}]}. 

There are nine different paths through the code. We will work our way 
along one of the paths. 

Initially the fact list contains: 

atom(lat) & ~atom(vs3) & ~partof(lat, vsl). 

Assuming that (ATOM(CAR S3)) yields T we get in addition: 

xa = car(vs3) & atom(xa). 
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Assuming that (EQ LAT(CAR S3)) yields T we get: 

lat= xa. 

RPLACA generates a new value, say nvl, adding: 

eqa(nvl, vs3) & car(nvl) = vsl & cdr(nvl) = cdr(vs3). 
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The alist update scheme for RPLACA generates a new binding for S3, say 
ivs3, so the alist becomes: 

((Sl. vsl)(LAT. lat)(S3. ivs3)), 

while the fact list grows with: 

eqaupto(vs3, ivs3, vs3, nvl). 

Assuming that (ATOM(CDR S3)) yields NIL we get: 

xd = cdr(ivs3) & -atom(xd). 

The next action concerns the recursive call on the CDR. Its parametrized 
and simplified input condition: 

-atom(xd) & atom(lat) & -partof(lat, vsl), 

is trivially satisfied. The function will not be opened, but instead the fact 
list grows with: 

replacedd(vsl, lat, xd, nxd) & transf(ivs3,jvs3, xd, nxd), 

while the alist changes into: 

((Sl . vsl)(LAT. lat)(S3. jvs3)). 

The output assertion to be proven for this particular path is: 

replacedd(vsl, lat, vs3, jvs3). 

We will not give proofs. The general strategy in this and following cases 
is a combination of subproblem recognition, case reasoning, expansion of 
recursive definitions and application of car/cdr induction. 

4.2. SUBSTAD2 

The treatment of SUBST AD 1 is given above was slightly incorrect, 
although this did not affect the result. Upon entry of SUBSTADI the alist 
is in fact: 

((S3. vs3)(Sl. vsl)(LAT. lat)(S3. vs3)), 
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where the first occurrence of S3 comes from SUBSTADl and the second 
one from SUBSTAD. The output assertion of SUBSTADl did refer to the 
second occurrence of vs3. This more subtle treatment of the alist is 
essential for the half recursive half iterative support function SUBST AD2. 

(SUBST AD2(LAMBDA(S3)(PROG(HH) 
AGAIN 

))) 

(COND((ATOM(SETQ HH(CAR S3))) 
(COND((EQ LAT HH)(RPLACA S3 Sl)))) 

(T(SUBST AD2 HH))) 
(COND((ATOM(SETQ HH(CDR S3))) 

(COND((EQ LAT HH)(RPLACD S3 SI)))) 
(T(SETQ S3 HH) 

(GO AGAIN))) 

Because of the assignment of the local S3 to its CDR just before the 
loop, we no longer have a handle on the data-structure as a whole, to which 
we must be able to refer in order to specify the loop invariant and to enable 
a correct update of the calling environment after existing SUBST AD2. The 
problem is solved by refering to the global S3, the argument with which 
SUBST AD2 is called. (In general a pre-processor should take care that all 
arguments given to user defined functions are explicitly assigned on the 
alist.) 

Verifying SUBSTAD2 requires deducing the loop invariant when control 
reaches the label AGAIN upon entering the function, deducing the output 
assertion for six paths through the code and deducing the loop invariant 
for three paths. 

The input alist is as given above. The output alist, after exiting from 
SUBST AD2 will be: 

((S1. vsl)(LAT. lat)(S3. nvs3)). 

The input and output assertion are the same as for SUBSTADl. We have 
to provide a loop invariant with the label AGAIN. This loop assertion will 
refer to the current bindings of the variables, so we also have to specify an 
alist at the label: 

((HH. vhh)(S3 .1s3)(S1. vsl)(LAT. lat)(S3. gs3)). 

The value 1s3 is the local value of S3, and gs3 is the global value of S3. The 
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loop assertion will be: 

atom(lat) & -atom(ls3) & -atom(vs3) & -partof(lat, vsl) 
& spine(vsl, lat, vs3, gs3, ls3). 
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We will not give the definitions of spine and other support predicates. 
Giving a general description of the situation at the label is rather compli
cated, since it is not enough to say that every tree hanging off the spine 
above the local S3 has been checked and replaced if necessary. Structure 
sharing may have led to changes in the part of the tree that is still to be 
investigated. It may even have caused the replacement of the right most 
leaf of vs3 by a pointer to vsl, so S3 may eventually point to a cell for 
which there is no corresponding cell in the original vs3. 

We will just give one definition as an example, for the others we again 
refer to [2]. The predicate sidefct is used to describe that xp and xq, which 
are parts of the not yet visited subtrees x3 and xl of the original (xo) and 
current (xn) incarnation, are the same unless structure sharing has led to 
side effects. 

(xo )(xn)(x3)(xso )(xsn)(xp )(xq) 
{ sidefct(xo, xn, x3, xso, xsn, xp, xq) <-> 

[ eqa(xp, xq) & 
{xso =x3-> 

[ { atom(car(xp))->car(xp) = car(xq)} & 
{-atom(car(xp))-> 
sidefct(xo, xn, x3, xo, xn, car(xp), car(xq))} & 

{ atom(cdr(xp))->cdr(xp) = cdr(xq}} & 
{-atom(cdr(xp))-> 
sidefct(xo, xn, x3, xo, xn, cdr(xp ), cdr(xq))}]} & 

{-(xso=x3)-> 
[ { car(xso) = xp->car(xsn) = xq} & 
{-(car(xso) = xp)-> 

[ { trl(xp, car(xso), car(xsn))-> 
tr2(xp, xq, car(xso), car(xsn))} & 

{-trl(xp, car(xso), car(xsn))-~ 
sidefct(xo, xn, x3, cdr(xso ), cdr(xsn), xp, xq)}]}]}]}. 

Symbolic evaluation of SUBST AD2 generates fact lists that are much 
longer than those generated for SUBST AD l, since the alist in this case 
contains three arguments (HH, local S3 and global S3) that have to be 
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updated after an RPLACX or a recursive call to SUBST AD2. This, and the 
greater amount of predicates needed to specify the loop invariant, made 
verification of this function just barely feasible. The great difference in 
verification effort caused by a slight change in the code, challenges the 
claim that once a program is verified, modifications will require very little 
additional effort. 

4.3. SUBSTADP 

The disparity between amount of code and amount of ad hoc definitions 
is e".en worse for SUBSTADP: 

(SUBST ADP(LAMBDA(S3)(PROG(EX HH) 
(SETQ EX$) 

L2 
(SETQ HH(CAR S3)) 
(COND((NOT(ATOM HH)) 

(MARK S3 1) 
(RPLACA S3 EX) 
(SETQ EX S3) 
(SETQ S3 HH) 
(GO L2)) 

((EQ LAT HH)(RPLACA S3 S1))) 
L4 

L5 

(SETQ HH(CDR S3)) 
(COND((ATOM HH)) 

((NOT(EQ EX $)) 
(REPLACD S3 EX) 
(SETQ EX S3) 
(SETQ S3 HH) 
(GO L2)) 

(T(SETQ S3 HH) 
(GO L2))) 

(COND((EQ LAT HH)(RPLACD S3 Sl))) 
(COND((EQ EX $)(RETURN))) 

(SETQ HH S3) 
(SETQ S3 EX) 
(COND((MARKB S3) 
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(MARK S3 0) 
(SETQ EX(CAR S3)) 
(RPLACA S3 HH) 
(GO L4))) 

(SETQ EX(CDR S3)) 
(RPLACD S3 HH) 
(GO L5) 

)))?end of the pointer reversal SUBSTADP? 
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In this version, the use of a stack is avoided by reversing pointers, i.e. 
when the car or cdr part of a cell is non-atomic, this part is saved, while the 
car or cdr is replaced by a pointer back to the parent cell immediately above 
it. Marking is used to indicate whether the car or the cdr part of the cell 
contains the reversed pointer. The tree is searched in a depth first manner. 

The code contains three labels, so in addition to the input and output 
assertion we have to set up three loop invariants. Describing the situation 
at the various loops is extremely complicated because of the much greater 
number of (temporary) replacements. 

We defined the predicates that are necessary to describe the situation at 
one label, L2, assuming that vsl is atomic. Even with this drastic simplifi
cation, we needed a staggering amount of definitions: eleven predicates, 
several of them with seven arguments and totalling nearly 200 lines of text 
(see [2]). To get an impression of what is involved, glance at the definitions 
of two predicates, lb2at3 and its support lb2at5. They describe the subtrees 
hanging off the spine above the inverted pointer chain. 

(vsl )(lat)( ex)(l3)( ol)(nw) 
{lb2at3(vsl, lat, ex, 13, ol, nw)~ 

[eqa(ol, nw) & 
{ onichain(ex, nw)--> lb2at5(vsl, lat, ex, 13, ol, nw)} & 
{-onichain(ex, nw)--> 
[ { atom( car( ol) )--> 

[{car(ol) = lat-->car(nw) =vsl} & 
{-(car( ol) = lat)-->car(nw) = car( ol)}]} & 

{-atom( car( ol))--> 
lb2at3(vsl, lat, ex, 13, car(ol), car(nw))} & 

{ atom( cdr( ol) )--> 
[{ cdr(ol) = lat-->cdr(nw) = vsl} & 
{-(cdr(ol) = lat)-->cdr(nw) = cdr(ol)}]} & 

{ - atom(cdr(ol))--> 
lb2at3(vsl, lat, ex, 13, cdr( ol), cdr(nw))}]}]}. 
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This predicate mainly looks whether nw - which is already visited - is 
residing on the inverted pointer chain, which may be caused by structure 
sharing. If so the predicate lb2at5 will describe the situation. 

(vsl )(lat)( ex)(l3)( ol)(nw) 
{lb2at5(vsl, lat, ex, 13, ol, nw)<-> 

[eqa(ol,nw) & 
{ex=nw-> 

[{markb(nw)-> 
[replacedd(vsl, lat, car(ol), 13) & 
{ atom(cdr(ol))-> 

[ { cdr(ol) = lat->cdr(nw) = vsl} & 
{ ~(cdr(ol) = lat)->cdr(nw) = cdr(ol)} l} & 

{ ~atom( cdr( ol) )-> 
replacedd(vsl, lat, cdr(ol), cdr(nw))}]} & 

{ ~markb(nw)-> 
{ atom(car(ol))-> 

[ { car(ol) = lat->car(nw) = vsl} & 
{ ~(car(ol) = lat)->car(nw) = car(ol)}]} & 

{ ~atom(car(ol))-> 
replacedd(vsl, lat, car(ol), car(nw))} & 

replacedd(vs 1, lat, cdr( ol), 13)]}]} & 
{~(ex= nw)-> 

[{ markb(nw)-> 
[ { atom(cdr(ol))-> 

[ { cdr(ol) = lat->cdr(nw) = vsl} & 
{ ~(cdr(ol) = lat)->cdr(nw) = cdr(ol)}]} & 

{ ~atom(cdr(ol))-> 
lb2at3(vsl, lat, ex, 13, cdr( ol), cdr(nw))} & 

(3 ice!){ onichain(ex, icel) & 
lb2at5(vs 1, lat, ex, 13, car( ol), ice!) & 
[markb(icel)->car(icel) = nw] & 
[~markb(icel)->cdr(icel) = nw]}]} & 

{ ~markb(nw)-> 
[ { atom( car( ol) )-> 

[{car(ol)=lat->car(nw)=vsl} & 
{ ~(car(ol) = lat)->car(nw) = car(ol)}]} & 

{ ~atom(car(ol))-> 
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lb2at3(vsl, lat, ex, 13, car( ol), car(nw))} & 
(3 icel){ onichain( ex, icel) & 

lb2at5(vs 1, lat, ex, 13, cdr( ol), icel) & 
[markb(icel)-+car(icel) = nw] & 
[-markb(icel)-+cdr(icel) = nw]}]}]}]}. 
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When nw = ex, we can describe it with replacedd, keeping in mind 
whether its car (markb) or its cdr (-markb) contains the back pointer. 

If nw lies somewhere else on the inverted pointer chain and the non
reversed pointer points to an atomic structure, describing this part is 
straightforward. However, if it is non-atomic, we have to recursively 
invoke lb2at3, because structure sharing between that part of nw and the 
reversed pointer chain is again possible. 

To describe the part originally pointed to by the now reversed pointer, 
we have to use existential quantification. We do not have a direct pointer to 
it, but we know were to start (at EX) and we know its unique identification: 
eqa(icel, car( ol)). This identification is part of lb2at5. 

Possible structure sharing similarly complicates the description of 
subtrees on the inverted pointer chain, under 13 or to the right of the 
inverted pointer chain. 

5. Discussion 

Although we were able to write a symbolic evaluator that can handle the 
functions we were interested in (and no doubt a host of others), it was not 
possible to give a completely general update algorithm to handle all 
RPLACX-type functions. We defined one for a common class, in which 
one data-structure is changed by replacing certain subparts by other data
structures that will not themselves be mutated before the function is exited 
(at least not permanently). To make the verifier a general one, it should 
allow the user to specify her own update procedures in other cases. Since 
compatibility will have to be proven by the user in those cases, this places a 
rather heavy burden on her. 

The algorithm given is extremely careful, replacing all bindings on the 
alist after every call to an RPLACX-type function. This has its price. 
Updated bindings need potentially complicated proofs to show their 
invariance, even though it may be very obvious (to us) that in fact they 
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could not have been changed at all. Of course one could keep the number 
of updated bindings down by incorporating the lemma's given above and 
other specific knowledge into the evaluator, but this would amount to 
pushing the problem around. 

The attempt to give correctness proofs for several versions of SUBST AD 
revealed that the method of symbolic evaluation - although theoretically 
adequate - flounders in some cases on a practical problem: formal 
description of input/output statements as well as loop invariants leads to a 
proliferation of ad hoc definitions. We expect this to hold for all currently 
available verification techniques. If so, verification specialists may be 
adviced to give more attention to the practical implications of their 
theories, instead of devoting all their energies to esoteric refinements, or 
even to the design of logics that become an end in themselves. 

The bottle-neck lies in the necessity to specify in state-description terms 
what a function is supposed to do. Whether a function is recursive or not is 
not even explicitly expressible in such a specification. Somehow people feel 
more akin to a definition in procedural terms, such as "the terminals equal 
to la~ will be replaced by vsl" and "the tree will be visited from left to 
right". Proving correctness of a function would then 'reduce' to showing 
that the function behaves according to expectations rather than that 
input/output description pairs conform to a certain relation. 

The technique we have developed for describing evolving states using an 
alist, a fact list and predicates like equaupto and transf that capture 
specific side effects, may be of interest to other areas of A.I. The alist can 
be considered a collection of individual concepts, where the bindings are 
the actual extensions. A new situation differs primarily in that some 
concepts have different extensions, which are described by fresh facts. 
Outdated facts do not have to be deleted but merely become invisible since 
they contain arguments not residing on the alist any longer. 

This more procedural approach to the frame problem seems to have 
advantages over the strictly declarative method given in [7]. There is no 
need for wieldy axioms to express that when P(x, ... , z, sl) holds in situation 
sl and some conditions are fulfilled, the fact P(x, ... ,z, s2) can be inferred 
in s2. Instead we have a different problem. A fact may seem to be obsolete 
(since an argument has been removed from the alist) while an analogous 
fact can be inferred for a newly introduced extension. We have 
encountered this in Lemmas 1-4, where particular circumstances allow one 
to equate the old and new binding. 
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Since updatings and the recognition of identities are object centered and 
therefore may affect many facts simultaneously, this problem seems less 
obstructive than the original one, but more thinking and/ or experimenting 
is needed to validate this suggestion. 

Although we agree with De Millo et al. [4] that the present verification 
tools do not lend themselves to practical use, we do not share their 
conclusion that the whole effort should be abandoned. Verifiers will 
probably always run into resource limitations, but to assume that they will 
never be able to use mechanisms similar to those that enable humans to 
circumvent some of these limitations for certain tasks (without sacrificing 
preciseness) seems premature. 

Finally, it pays to have a second look at one's program from a verifi
cation perspective. Writing this paper forced us to reconsider the 
conditions under which the function SUBST AD is applicable. The specifi
cation that we published 5 years ago turned out to be too liberal! 
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The events of 1959-1960 leading to the development of the programming 
language ALGOL 60, with special attention to the contributions of Aad van 
Wijngaarden, are outlined. While Van Wijngaarden contributed actively to the 
shaping of most of the central concepts of the language, in particular block 
structure and procedures, his main influence appears to have been in less 
tangible aspects of discussion manner and mental style. 

Trying to describe and clarify the events that led to the development of 
ALGOL 60 is a precarious undertaking. Many people and incidents were 
involved, and many of the views on ALGOL 60 held then and now are 
emotionally charged. As shown by the discussion provoked by an earlier 
report on these events by the present writer [5] the likelihood is that a 
description that goes into the details of the events will be met with angry 
protests. It should therefore be made clear that the present attempt to 
identify the particular contributions of Aad van Wijngaarden to ALGOL 60 
has been written in response to a specific invitation from the program 
committee of the International Symposium on Algorithmic Languages, 
1981, Amsterdam. Further, although the account will make extensive use 
of original documents, in many respects it can only present a personal view 
of the events. 

ALGOL 60 was developed by an effort as truly collective as could be 
conceived. This means that the contribution of each participant in the 
effort can at best only be understood in connection with, and in relation to, 
the efforts of a number of other participants. In many cases the contri
bution of each individual merges with those of others to such an extent that 
only the collective result can be identified. In the case of the contributions 
of Aad van Wijngaarden, observed from Copenhagen, it must be clear 
from the outset that in many cases a further merging will take place with 
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the contributions of other active workers in Amsterdam, in particular those 
of Edsger Dijkstra and J .A. Zonneveld. What may be noted in this context 
is that Van Wijngaarden, being the senior member of the Amsterdam team 
around 1959, will have been the one who set the direction of the effort and 
who set up the working conditions that gave the younger members the 
opportunity to make the contributions for which they are individually 
recognized. 

Van Wijngaarden's contributions to ALGOL 60 belong to the last phase 
of the development of the language. The first contact of the Amsterdam 
team with the language development activity, as far as I know, was 
Dijkstra's participation in a discussion of implementation problems in 
Mainz, Federal Republic of Germany, on 21 November 1958. At this time 
ALGOL 58 had already been described in the Zurich report [3], worked out 
as a result of the meeting in Zurich on 27 May to 2 June 1958, the 
European participants being F.L. Bauer, H. Bottenbruch, and K. 
Samelson, of the Federal Republic of Germany, and H. Rutishauser of 
Switzerland. Van Wijngaarden's name appears first in the official records 
as participant, together with Dijkstra, in the meeting in Copenhagen, 
26-28 February 1959. Thus, like many other Europeans in the final phase 
of the development, including myself, Van Wijngaarden entered the 
activity in response to the deliberate effort of the original language 
committee, centered around GAMM in the Federal Republic of Germany, 
to expand the geographical basis for the support of the new language. 

The meetings in Mainz in November 1958 and in Copenhagen in 
February 1959 aimed primarily at the discussion of implementation 
problems, the language described in the Zurich report being taken, at this 
stage, as essentially final. This is reflected in the fact that the Algol Bulletin 
[2] that was set up at the meeting in Copenhagen initially addressed 
''computing centres, who are all actively engaged on using the ALGOL 

language for facilitating the programming for their respective computers" 
in order to "facilitate the continued collaboration of these computing 
centres in all questions related to the practical use of the ALGOL". In the 
face of the adoption of the Zurich language as virtually established the 
Amsterdam team remained sceptical and independent, and in fact did not 
at first join the collaboration chanelled by the Algol Bulletin. 

The status of the language as such was taken up for discussion by several 
groups, including American participants, at the UNESCO Conference on 
Data Processing in Paris, June 1959. An ad-hoc sub-committee, members 
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E.W. Dijkstra (The Netherlands), W. Heise (Denmark), A.J. Perlis 
(U.S.A.), and K. Samelson (Federal Republic of Germany), proposed a 
time schedule for the preparations of a first, definitive version of the 
language, and made some specific language proposals. This action 
extended the scope of the Algol Bulletin so as to include the official 
European discussion of language modifications. At this time the 
Amsterdam team entered the mailing list of the Algol Bulletin. 

The time schedule for the discussion set November 1 1959 as the last date 
for acceptance of proposals for the first, definitive version of the language. 
This deadline brought forth proposals from many sides, collected in the 
Algol Bulletin (abbreviated AB) 7, mailed on 3 November 1959. The 
Amsterdam team, Van Wijngaarden and Dijkstra, contributed a series of 
suggestions, AB 7.31 to 7.35, covering a wide range of topics. The first 
group, AB 7.31 to 7.33, was concerned mostly with the meaning of names 
and the dynamics of declarations. These issues had already been the subject 
of several contributions to the Algol Bulletin, as viewed from two different 
sides, the first being the need for arrays of dynamically varying sizes and 
the second the need for some way to control the accessibility of names of 
the surrounding progam from inside procedure bodies. The Amsterdam 
proposals in AB 7 brought fresh insight into the discussion, most strikingly 
in the proposal for level declarations old, new: 

We suggest that the level declaration 

new (/,I, ... ) 

has the effect that, the named entities have no relationship to 
identically named entities before in the following text, until 
the level declaration 

old (/,I, ... ) 

which attributes to the entities named herein the meaning 
that they had before. These level declarations may be nested 
and form the only way to introduce a new meaning to a 
name. In particular in a procedure to be compiled along with 
the main program all variables that should have no relation
ship etc. should be declared new before they have appeared 
and declared old before the end. 

The declarations do not only solve the problem of having 
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"old" and "new" variables alongside in a procedure, but are 
also extremely useful in an ordinary program. It should be 
noted that after new(x) the new xis fully independent of the 
old x and, therefore, type declarations, if necessary, have to 
be given anew. On the other hand after old(x) the type 
declarations of the old x are still valid. 

In AB 7 .34 van Wijngaarden and Dijkstra made a proposal for introducing 
dummy as a type declaration: 

This permits among other things to discern between different 
dummies and apply other declarations to them. Example: 

dummy integer (e, d) ... 

A7le,d] =A[d,e] ... 

defines the transpose of a matrix. In here, and this is the next 
suggestion, the misleading symbol := in the function declar
ation is replaced by the non-operational symbol =. 

Further, in AB 7.35 they suggested that 

It should be possible to declare entities to be other things 
than real variables, e.g. complex numbers, vectors, matrices, 
lists (sets) of quantities. A quantity defined by such a declar
ation may enjoy well defined properties which make it 
possible to apply operators like +, - , x, etc. ''in the 
conventional meaning", i.e. in the meaning that is con
ventional for such types of quantities. 

The next step in the European preparation for ALGOL 60 was the meeting 
in Paris, 12-14 November 1959, attended by 49 persons from nine 
countries. The findings of this meeting are collected in the reports of five 
sub-committees, published in AB 8, issued on 12 December 1959. Van 
Wijngaarden was a member of sub-committee 1, dealing with the identifi
cation of objects, which, essentially, recommended that the Amsterdam 
proposals on dummy variables and on the form of function declarations be 
considered carefully by the final conference. Sub-committee 2, including 
Dijkstra as member, dealt with several questions related to declarations. 
On the dynamic behaviour of declarations the sub-committee report has 
the following foretelling remark: 
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The principal problem is considered to be the range within 
which a declaration should be valid. The extreme possibilities 
are the strict limiting by write-up or alternatively by time 
succession. A further possibility is that of permitting 
dynamic declarations only when those two extremes are 
coincident. 
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Van Wijngaarden was the chairman of the sub-committee 3 concerning 
for and if statements, the other active members being K. Samelson and P. 
Naur. The report of the sub-committee proposes an explanation of the 
effect of a for statement in terms of more elementary statement forms 
that evaluates all expressions of the for clause once before the first 
repetition, in other words according to a static view. The existence of this 
report, written by the members named above, is a telling comment on the 
curious claim made by K. Samelson in 1978 [5, Appendix 7] that certain 
features of ALGOL 60, including the dynamic for clause, were included as a 
result of the pressure from a party of 'liberalists' or 'trickologists' having 
as 'hard core' Naur, Perlis, and Van Wijngaarden, against a party of 
'restrictionists' that included Samelson himself. As I have explained 
elsewhere in more detail [5, Appendix 8] I find no support for the claim 
that such a 'liberalist' party existed, neither in my memory nor in the 
recorded facts, and the report of sub-committee 3 indicates perfect 
willingness on the part of two 'hard core liberalists', Van Wijngaarden and 
myself, to adopt a static for clause. If one looks for the explanation why 
this view of the for clause did not prevail in the final version of ALGOL 60 
one will find that at the final conference in Paris the for statement became 
predominantly an American issue into which the European members felt it 
would be tactically unwise to enter strongly. 

As a further result of the meeting in Paris, 12-14 November 1959, the 
European members of the final Algol committee, F.L. Bauer, P. Naur, H. 
Rutishauser, K. Samelson, B. Vauquois, A. van Wijngaarden, and M. 
Woodger, were appointed. This group of seven met in Mainz on 14-16 
December 1959. During this meeting, in a small group engaged for several 
days on discussing difficult problems that had already engaged the 
members for several months previously, the personalities of all participants 
emerged strongly, although this is not visible from any of the technical 
documents produced at the time [l, document 2]. Right at the beginning of 
this meeting, while we were still walking among the university buildings on 
the way to the room of the meeting, Van Wijngaarden made a move which 
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in its friendly and polite manner and its subtle significance is highly 
characteristic of him. He simply said: "I think we should introduce 
ourselves, I am Aad." For an understanding of the significance of this 
suggestion it should be realized, first, that in the previous meetings the 
mode of personal address had conformed to the central European tradition 
of using surnames, and even titles, as 'Professor So-and-So'. The 
suggestion to use a more informal mode was therefore a general suggestion 
to be less formal, more direct and personal. But the suggestion had a more 
important implication. Until the meeting in Mainz, ALGOL in Europe was 
the result of the work of the GAMM-centered committee, and was felt to 
be, in a sense, the intellectual property of that committee. By making his 
polite suggestion, which conforms more to an Anglo-Saxon than to a 
central European style of address, Van Wijngaarden made it clear to 
everyone that from now on the influence. on the language was shared 
equally by all seven members of the European group. 

In accordance with the tone set by Van Wijngaarden's proposal of 
informality and equality the Mainz meeting became a highly effective 
collective effort. He himself fought valiantly for dynamic declarations 
based on the new-old idea, but with characteristic alertness dropped them 
when the arguments in favour of a block structure gathered force. From 
that moment he contributed cheerfully and actively to the shaping of the 
details of the block structure, the main result of the meeting [1, document 
2]. 

At the final ALGOL 60 conference in Paris, 11-16 January 1960, Van 
Wijngaarden was first entrusted, together with Samelson, the important 
task of convincing the Americans of the merits of the European proposal 
for block structure. This took place in a committee of four, having Backus 
and Green as the American members. The result [1, document 11] was a 
unanimous recommendation of the European proposal with a few minor 
modifications, a decisive turning point of the conference, brought about, 
undoubtedly to a large extent by Van Wijngaarden's friendly and polite 
manner and his flexible intelligence. 

The report of the sub-committee [1, document 11], in addition to the 
notes on block structure has a separate, concluding paragraph saying: 

The Committee recognizes the need for syntactically alter
ing programs in various ways, and recommends that the 
present Algol Committee meets in Rome in May 1960 to con
sider the specification of a Meta Algol and Processor. 
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Needless to say, this recommendation was not followed. It is, however, an 
interesting evidence of the optimism with regard to the speed with which 
programming language ideas could be developed, held by some of the 
members of the ALGOL 60 Committee. 

At the later stages of the ALGOL 60 conference in Paris Van Wijngaarden 
was a member of several sub-committees that had decisive influence on the 
shaping of the procedure concept. During the early stages of the conference 
several proposals for the semantics of procedure parameters, based on a 
distinction between input and output parameters, had been considered and 
rejected by the full committee. As a result a new sub-committee, having 
Katz, Van Wijngaarden, and Woodger, as members, was given the task to 
consider procedure calls with only one list of parameters. The main part of 
their report [l, document 17] reads as follows: 

For the successful use of a procedure, its purpose must be 
understood, and parameters appearing in a call of the pro
cedure must be in accordance with the expressed intentions 
of the author. For this reason no formal rules governing 
admissible actual parameters should be made. In particular, 
we need not even specify which are input and which are 
output parameters, and then the rules for replacement of 
formal by actual parameters on page 53 of DOCUMENT 4B 
(line 7-20) [quoted below] continue to apply for simple 
variables. A procedure may conceivably make use as para
meters of all kinds of identifiable entities, and for each of 
these appropriate replacement rules must be given, whether 
the proposal to amalgamate input and output parameters is 
accepted or not. 

DOCUMENT 4B (the Zurich report [2, p. 53, line 7-20]) says: 

Within a program, a procedure statement causes execution 
of the procedure called by the statement. The execution, 
however, is effected as though all formal parameters listed in 
the procedure declaration heading were replaced, throughout 
the procedure, by the actual parameters listed, in the corres
ponding position, in the procedure statement. 

This replacement may be considered to be a replacement 
of every occurence within the procedure of the symbols, or 
sets of symbols, listed as formal parameters, by the symbols, 
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or sets of symbols, listed as actual parameters in the corres
ponding positions of the procedure statement, after 
enclosing in parentheses every expression not enclosed com
pletely in parentheses already. 

Furthermore, any return statement is to be replaced by a 
go to statement referring, by its label, to the statement 
following the procedure statement, which, if originally 
unlabled, is treated as having been assigned a (unique) label 
during the replacement process. 

While these formulations, which were adopted by the ALGOL 60 
committee, leave many aspects of procedures open, they do make it clear 
that the adoption in ALGOL 60 of the parameter replacement mechanism of 
ALGOL 58, and the rejection of the input/output distinction, was made 
knowingly and deliberately. 

The final decisions concerning procedures were based on a report [l, 
documents 26 and 27] submitted by a sub-committee whose members seem 
not to have been recorded, but which I believe included Perlis and Van 
Wijngaarden. The report on procedure statements describes the handling 
of parameters as follows: 

The execution is effected as though the values or names 
respectively of all formal parameters listed in the formal part 
of the procedure declaration heading were replaced through
out the procedure compound by the values or the names 
respectively of the actual parameters in the corresponding 
positions in the procedure statement. 

The correspondence between the actual parameter and the 
formal one is by list position, i.e. list position defines corres
pondents. The treatment of the correspondents is determined 
by the name list associated with the formal parameter list in 
the procedure heading. A name is taken if the corresponding 
formal parameter appears in the name list; otherwise the 
value is taken. A procedure statement is only defined if the 
correspondents are compatible, i.e. when the correspondent 
is specified by value or name respectively that the types or 
kinds respectively correspond. The value or name - which
ever is indicated - of each of the actual parameters is sub
stituted appropriately in the procedure compound - includ-
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ing declarations - according to the following prescription: if 
specification is made by name, the name of the actual para
meter is substituted for all occurrences of the corresponding 
formal parameter in the procedure compound. If specifi
cation is made by value, the value of the actual parameter is 
assigned to the corresponding formal parameter as an 
initialisation of the procedure compound. If the parameter is 
a label by assignment is meant the same as replacement. If 
the parameter is an array, the consequences of mismatch of 
the dimensions of the correspondents are undefined. 
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As a further help to understanding these rules an addition to the draft 
report [1, document 31, item 174] was submitted by, I believe, Van 
Wijngaarden: 

2.7. Names 
The name of an identifier is that identifier. 
The name of a variable or expression is the (name of the) 

identifier associated with that variable or expression, respec
tively. 

The name of an array, function or procedure is that 
function [sic.] identifier, procedure [sic.] identifier or pro
cedure identifier associated with that array, function or 
procedure, respectively. 

As has been described elsewhere [5] the adoption of these proposals by the 
full ALGOL 60 committee did not clarify the procedure concept sufficiently 
for the final formulation, and another round of exchanges of proposals, by 
letter, followed the ALGOL 60 meeting in Paris, during the time 17 to 25 
January 1960. 

Although most of the formulations quoted above have authors in 
addition to Van Wijngaarden, I think they can serve as support of a 
characterization of his distinctive contribution to ALGOL 60. Running 
through the proposals in which he has a hand is a keen openness to new 
solutions, which, however, are always characterized by being based on few, 
very general notions, and described briefly and elegantly. When this is said 
it must also be admitted by in pursuing this direction there is a risk that the 
simplicity and elegance may be deceptive, may cover complications and 
obscurities. This risk was demonstrated by the discussion and feeling of 
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uncertainty that was provoked in the ALGOL 60 committee by Van 
Wijngaarden's description of the concept of name. 

At this point we may also note some proposals from the Amsterdam 
team that were upheld during the Paris meeting by Van Wijngaarden but 
rejected by the full committee. The most remarkable such proposal was the 
one for having the possibility to declare dummy variables explicitly, as 
presented in Algol Bulletin 7 .34 quoted above. The trouble about this 
proposal, and the main reason why it was rejected, was that it was never 
developed beyond the initial suggestion. It was just an intriguing idea, but 
one whose concrete implications and relation to other parts of the pro
gramming language remained obscure. 

The situation with respect to the Amsterdam proposal (AB 7.35, quoted 
above) for admitting an extended range of types, including complex 
numbers, vectors, matrices, and lists, was similar. In this case the general, 
mathematical notions behind the proposal were of course well known, but 
at the same time is was increasingly clear that it requires a lot more than 
just a mathematically well-defined notion to achieve a data type notion 
that is adequate for inclusion in a common programming language. 
Indeed, even just the clarification of the handling of integers and reals in 
ALGOL 60 required extensive discussion in a sub-committee of the ALGOL 

60 meeting in Paris [l, documents 15, 16]. 
For use as illustrations in the final ALGOL 60 Report all members of the 

committee were urged to submit sample programs. Only Van Wijngaarden 
and Rutishauser responded to this, Van Wijngaarden on 4 February 1960 
sending in the procedure euler that appears as Example 1 in the ALGOL 60 
Report [4] and also a procedure similar in operation to the one submitted a 
few weeks later by Rutishauser, which appears as Example 2. Thus if we 
disregard the examples in the main section of the report, Van Wijngaarden 
must be the first person to have a numerical algorithm written in ALGOL 60 
published. 

The final contribution of Van Wijngaarden to the formulation of the 
ALGOL 60 Report was his and Dijktra's suggestion, made in a telephone 
call from Amsterdam to Copenhagen on about 10 February 1960, that a 
sentence be added to the draft report so as to make it clear that the 
language admits recursive procedure calls. This particular issue has been 
dealt with at length in an earlier study [6, pp. 159-160] from which it 
should be clear that the members of the ALGOL 60 committee do not agree 
on the significance of this incident. However, as far as Van Wijngaarden 
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himself is concerned it is quite clear that he regarded this action, by 
Dijkstra and himself, as a contribution to the clarity and completeness of 
description of the language already fully defined in the draft report, not as 
a reversal of a committee decision to disallow recursive procedure acti
vations. In any case, the concrete proposal itself, due, I believe, to 
Dijkstra, is a highly characteristic piece of brevity and elegance: 

Any occurrence of the procedure identifier within the body 
of the procedure other than in a left part in an assignment 
statement denotes activation of the procedure. 

While the publication of the ALGOL 60 Report [4] in March 1960 may 
be said to terminate the creation of the language itself, when consider
ing the contributions of the Amsterdam team to establishing the language 
in a wider sense the field of ALGOL 60 compiler construction must be 
mentioned. The fact is that only a few months after the final definition of 
the new language, in June 1960, Van Wijngaarden could announce the 
successful completion, by Dijkstra and Zonneveld, of the first compiler for 
the language, working on the Electrologica XI computer. This result had 
an enormous impact as a support of ALGOL 60, both in terms of the actual 
compiler techniques employed, which were subsequently used and adapted 
widely, but perhaps even more as a proof that the language could be imple
mented almost in its entirety by a team of quite modest capital resources. It 
was, in very concrete terms, a confirmation of the benefits that may be 
gained from insisting on simplicity and generality in programming 
language design. 

As the conclusion of these notes, although Van Wijngaarden contributed 
actively to all the central parts of ALGOL 60, it is difficult to identify any 
definite part of the language as contributed particularly by him. In fact, it 
is much easier to point to ideas that he proposed for the language, but that 
were eventually rejected in the language design process. The point is that 
his main influence on ALGOL 60 was less tangible, but not less strong for 
that reason. Van Wijngaarden's manner, his friendliness, politeness, 
cheerfulness, quick comprehension, flexibility of mind, all of these were 
exceedingly helpful in shaping the concepts and in smoothing the dis
cussion. And the direction of his influence, his mental style, his striving for 
simplicity and generality, certainly have left their mark on the final 
language. For these reasons all of us who have benefitted from ALGOL 60, 
in any way whatever, owe him our recognition and gratitude. 



304 P.Naur 

References 

[l] ALGOL 60 documents 1959-60. (Unpublished technical memoranda prepared in con
nection with the ALGOL 60 conference in Paris, 11-16 January 1960.) 
2: European representatives to the ALGOL 60 conference 14-16 December 1959. Meeting 

of the European representatives to the Algol conference, Mainz, 4 pp. 
11: J. Backus, J. Green, K. Samelson and A. van Wijngaarden, 13 January 1960, Report 

of the committee on local, etc., I p. 
15: P. Naur and A. Perlis, Meaning of types and assignments, 1 p. 
16: P. Naur and A. Perlis, 13 January 1960, Types of expressions - assignments, 3 pp. 
17: C. Katz, A. van Wijngaarden and M. Woodger, 14 January 1960, Report of the 

committee on procedure declarations and procedure calls with only one list of para
meters, I p. 

26: Procedure statements, 16 January 1960, 2 pp. 
27: Procedure declarations, 16 January 1960, 2 pp. 
31: ALGOL 60 committee, 13- I 6 January 1960, First and second list of suggested changes 

in document 5. Each item is authored by a member of the committee. The items are 
numbered IOI to 175, followed by 173-175 (used again) and oo-1, 33 pp. 

[2] Algol Bulletin, P. Naur (Ed.), Mimeographed discussion letters, No. 7, 3 November 1959, 
21 pp. No. 8, 12 December 1959, 15 pp. Regnecentralen, Copenhagen. 

[3] J.W. Backus, F.L. Bauer, H. Bottenbruch, C. Katz, A.J. Perlis (Ed.), H. Rutishauser, 
K. Samelson (Ed.), and J.H. Wegstein, Report on the algorithmic language ALGOL, Num. 
Math. I (1959) 41-60. Also: Preliminary report - international algebraic language, 
Comm. ACM l (12) (1958) 8-22. 

[4] J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (Ed.), A.J. Perlis, 
H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. van Wijngaarden and 
M. Woodger, Report on the algorithmic language ALGOL 60, Num. Math. 2 (1960) 106-
136. Also: Comm. ACM 3 (5) (1960) 299-314. 

[5] P. Naur, The European side of the last phase of the development of ALGOL 60. In: R.L. 
Wexelblat (Ed.), History of Programming Languages (Academic Press, New York, 1981) 
pp. 92-139. 

[6] R.L. Wexelblat (Ed.), History of Programming Languages (Academic Press, New York, 
1981) 758 pp. 



Algorithmic Languages, de Bakker/van Vliet (eds.) 
© IFIP, North-Holland Publishing Company, 1981, 305-319 

On the Notion of Strong Typing 

Maarten M. Fokkinga 

Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands 

The usefulness of strong typing is formalized in the following way. Strong 
typing is a syntactic means to restrict the class of programs so that a pleasant 
semantic property holds. More precisely, a semantic equivalence of strongly 
typed programs is proved independent of the representation used to implement 
abstract entities like numbers, truth values and predefined ones. 

Thus a formal content is given to phrases like "typing prevents to employ 
unintended properties of representations" and "semantically types are 
redundant". 

1. Introduction 

It seems widely accepted that so-called strong typing has some 
undeniable benefits. E.g. the ALGOL 68 designers claim that" ALGOL 68 has 
been designed in such a way that most syntactic errors and many others can 
be detected easily before they lead to calamitous results" [19, Section 
0.1.3]. Undoubtly it is its mode discipline which plays a major role in this 
error detection (see [6, 8]). Indeed, "one often pays a price for [the absence 
of a type system] in the time taken to find rather inscrutable bugs - anyone 
who mistakenly applies CDR to an atom in LISP, and finds himself 
absurdly adding a property list to an integer, will know the symptoms" 
[ 11 l. 

It is therefore not surprising that the following requirement is included in 
STEELMAN [2]: 

"3A. Strong Typing. The language shall be strongly typed. The type 
of each variable, array, record, expression, function and parameter 
shall be determinable during translation". 

But STEELMAN neither provides a formal definition of strong typing, nor 
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does it give any semantic property aimed at in requiring strong typing. So 
how could one prove that ADA meets the requirements or desiderata? 

In this paper we investigate what formally the usefulness of strong typing 
might be. To this end we view typing as a purely syntactic way of restricting 
the class of programs so that a pleasant semantic property holds for that 
class, and we thus formalize the interplay between the syntactic typing and 
the semantic properties of programs. This view is in accordance with [13] 
and [12], and seems consistent with practical implementations of strongly 
typed languages. Nevertheless one mostly finds types motivated in a setting 
where semantic entities (like retracts [16] and [3], downward closed 
directed c.p.o.'s [11] and so on) are assigned to types. 

Our paper might be viewed as a continuation of [15] and [3]. They both 
present a theorem which we call the Correspondence Theorem. Informally 
this theorem asserts that there is a relation, called correspondence, which 
relates for any strongly typed program the values denoted under different 
implementations. However, both assign a semantics to types. We are glad 
to improve their results in that we show types to be semantically redundant. 
Moreover we prove a nicer theorem (Theorem 3 .10) which asserts that a 
semantic equivalence of programs is independent of the implementation. 

The formalization and proofs are carried out in the framework of the 
typed J-notation. We define two expressions equivalent with respect to 
some type t if their values, when used according to t, are the same function 
- or constant. 

The remainder of the paper is organized as follows. In Section 2, we 
formally define syntactic concepts of the language, and define some 
axioms which are to characterize the semantics. In Section 3, the formaliz
ation of the usefulness of strong typing is presented. Thereafter, in Section 
4, we give a specific semantics of the language, satisfying the axioms; that 
section only serves to provide a concrete example. Finally we conclude with 
Section 5, discussing the results obtained. 

2. The Language 

We choose a simple language to illustrate the essential ideas. Obviously, 
then, the language has to have a construct where type checking is involved, 
say function application or assignment. Moreover the language has to have 
a construct for user controlled creation of new values; were this not the case 
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there would be no problems at all, because one must of course assume that 
all 'predefined' values behave well. In view of its simple semantics we are 
led to consider the A-notation; A-abstraction is the construct to create new 
values. 

Definition 2.1 (Expressions and Types). Let X be a countably infinite set 
of normal identifiers and let Z be a set of type identifiers. Throughout the 
paper we let x and y vary over X and z over Z. Specific elements of X are 
e.g. 

zero, one, succ, pred, true, false, ... 

and specific elements of Z are 

int, boo!, .... 

The set T of types is defined thus 

t::=zlU-t'). 

The set E of expressions is defined thus 

e ::=xi (AX: t. e) I e(e'). 

Throughout the paper we let e vary over E and t over T; we sometimes 
suffix them with digits, primes and letters f, a and b (for function, 
argument and body). According to common usage we omit parentheses 
when they are clear from the context; in particular the scope of A extends as 
far as possible, and -> associates to the right, so that tl ->t2->t3 = 
tl->(t2->t3). 

Notice that there are no constants like 0, 1, 2, ... ; predefined identifiers 
like zero, one, two, ... (or even zero and succ alone) should enable the 
programmer to use numbers. Other interesting predefined identifiers may 
be the so-called fixed point operators, fixpointu of type ((!-> t')-> 
(t->t'))->(t->t'), to enable recursive definitions. 

Syntactic sugar might be added to make the language more practical. 
E.g. non-recursive definitions can be introduced as an abbreviation: 

let x: t=e' in e 
and 

e where x: t = e' 
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abbreviate (Ax: t. e)(e'). Also conditional expressions can be introduced: 

if e then e 1 else e2 

where both el and e2 have type t, abbreviates 

cond1(e)(Ax: null. e l)(Ax: null. e2) 

where cond1 has type bool--+(null--+t)-->(null-->t)-->t. All this is well known, 
see e.g. [17]. 

We now define what expressions are well typed. The formal term used is 
strong typing. Informally it means that for each application the type of the 
argument must match the parameter type of the function. In our simple 
language two types match iff they are equal; in a more elaborate language a 
less trivial relation may hold. 

The type of identifiers depends on the context in which they occur. We 
model that context by a so-called syntactic environment. Formally, the set 
S of syntactic environments is the set of partial functions X-> T. Through
out the paper we lets vary over S. For each s we assume that there exists an 
identifier x which has not yet a type associated with it; we say that new(x, s) 
holds in that case. In view of the infinity of X this is no strong requirement. 

As usual the suffix [p+-q] denotes updating of a function; in particular 

s[x+- t] (x') = if x = x' then t else s(x'). 

This notation will also be used for semantic environments r, to be intro
duced below. 

Definition 2.2 (Strong Typing). The relations I- e: t ("e has type tins") is 
the smallest relation satisfying 

(a) if s(x) = t, thens 1- x: t; 
(b) if s[x+-ta] 1- eb: tb, thens 1- (AX: ta. eb) : (ta--> tb); 
(c) if for some ta, st-ef: ta-->tb and st-ea: ta, then st- ef(ea): tb. 
We say e is strongly typed in s if for some t, s 1- e: t. 

Now we turn to the semantics of the language. Let Vbe the set of values 
which serve as meanings for expressions, and let R = X--> V be the set of 
semantic environments giving the meaning of the predefined identifiers. 
(Throughout we let v and w vary over Vand rover R.) The meaning of an 
expression e is then given by M(e, r), where Me Ex R--> V is the so-called 
meaning function (a partial function). 
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Usually the meaning of expressions are taken to be some abstract 
entities, like numbers, truth values or functions. Accordingly the domain 
of numbers is associated with the type identifier int, the domain of truth 
values is associated to boo!, and - sometimes mathematically quite 
sophisticated - functional domains are associated to types t--+ t'. Actually, 
however, expressions yield bit patterns, or the like, which in some way or 
another represent those abstract entities. And accordingly, from the bit 
pattern alone, say concrete value, one can not tell whether it is meant as a 
number, truth value or function. It is indeed quite possible to execute a bit 
pattern meant as a number as if it represents a function. Thus semantically 
types do not enter the picture. 

Admittedly, mostly the abstract entities are of interest. But the interpre
tation of the concrete values cannot be the task of the language designer, 
i.e. is not incorporated into M. Even if M would produce numbers, then 
still these numbers represent some more abstract entities like year of birth, 
salary and so on. The interpretation is really outside the grip of M, and is 
left to the individual programmer and creator of the standard environ
ment. 

Consequently the value denoted by an expression is possibly untyped. 
We will however not burden the reader/programmer with details of the 
value space V, but instead specify the meaning of expressions by the 
axioms which we need in the proofs below. 

Definition 2.3 (Axioms for M). For strongly typed expressions the 
meaning function satisfies the following axioms. 

(a) M(x, r) = r(x); 
(b) if v=M(ea,r), then M((,lx: ta. eb)(ea),r)=M(eb,r[x+--v]); 
(c) ifynot freeine, thenM((,lx: ta. e)(ea),r) =M((Ji,y: ta. e[xly])(ea),r); 
( d) if v = M(e', r) and x does not occur free in the scope of some Ji, within 

e, then M(e[x/e'],r)=M(e,r[x+--v]). 

Above, and in the sequel, we use the postfix [x/e'] to denote substitution 
of e' for x - taking care to rename bound identifiers in order to avoid clash 
of names. 

Notice that M(Ji,x: t. e, r) need not be a function. All we require is that it 
can be used as a function in the sense of axioms (b) and (c). Indeed, the M 
given in Section 4 will yield some code of a function, so that e.g. 
M(,lx: t. e, r) differs from M(Ji,y: ! . e[x/y], r). Actually in Section 4 we take 
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Vto be a set of untyped values, so that any value may be used in any way, 
and M even satisfies the axioms for not strongly typed expressions. 

In the sequel we will use the following abbreviations. 
(1) 'v(w)' abbreviates M(x(y),r[x+-v,y+-w]), and is thus a concise way 

of expressing that v is to be used as a function with argument w. 
(2) el =,e2 abbreviates M(el,r)=M(e2,r); el and e2 yield the same 

value in r. 

3. Formalizing the Usefulness of Strong Typing 

We will first introduce the syntactic concept of primitive expressions. 
These denote what one might call predefined values and they are used to 
state assumptions on alternative representations for the same set of 
abstract entities. Secondly we define the semantic relation of correspon
dence and some properties of it. The correspondence relation is used in the 
proof of Theorem 3.10 which expresses our view on the usefulness of 
strong typing. 

Suppose that the standard environment r provides via zero: int and 
succ: int-+int an implementation for numbers. Of course, the concrete 
value denoted by zero is not the number zero, but merely represents it in 
some way or another. We may also consider an alternative implementation 
f. Surely r(zero) and f(zero) need not be equal, although they both 
represent the same abstract entity. E.g. the expressions 

zero, succ(zero ), succ(succ(zero) ), ... 

constitute the - unknown - representation of numbers. And if e.g. 
pred: int-+ int is also present, then 

pred(zero ), pred(succ(zero) ), succ(pred(zero) ), ... 

might also contribute to the representation. However note that abstractions 
like AX: int. x or AX: int. zero do not contribute to the representation of 
abstract entities as far as determined by the environment. Thus we are led 
to the following definition to get some grip on the representations of 
abstract entities. 

Definition 3.1 (Primitive expressions). For any s the set P of primitive 
expressions consists of all strongly typed expressions p generable by 
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P ::=x jp(p). 

In the sequel p varies over P. 

It will turn out that, for fixed s and r, the primitive expressions of type z 
constitute all expressible 'z-values'. Thus they play the role usually played 
by constants. However we do not restrict the types of the given function 
identifiers to first order; a function identifier mk-int:((t-+ t)-+ int) may 
occur in the primitive expressions and so contribute to the values repre
senting 'int's. 

Given two environments r and f, we wish to define a correspondence 
relation - 1 on Vx V, relating those values which wrt r resp f represent the 
same abstract entity. As one concrete value may represent a variety of 
abstract entities (e.g. 001 may represent both the number one and the truth 
value true, and many more), we need to indicate with respect to what 
interpretation the correspondence is to be understood. The type t serves 
that purpose. Of course we want M(p, r) -zM(p, f) for p of elementary type 
z; thus the relation also depends on s. 

Definition 3.2 (Correspondence). For any s, r, f and t the relation s,r,ff-
v - 1 v ( ''v and v represent the same abstract entity") is defined by induction 
on t as follows: 

(a) t = z: s, r, fr- M(p, r)-zM(p, f) for any p withs f- p: z; 
(b) t=ta-+tb: s,r,ef--V-1V iff for all w, W with s,r,ff--W-1aW, also 

S, r, fr- 'V(W) '-lb 'V(W) '. 

We cannot expect to derive any interesting property for the corres
pondence relation unless we assume consistency between the two environ
ments. In particular the following predicate Correct- (s, r, f) is reasonable. 

Definition 3.3 (Correct-). Correct- (s, r, f) holds iff for all x, t with 
Sf--X:t 

s, r, f r-M(x, r)- 1M(x, f). 

The following lemma shows that a seemingly stronger requirement for 
Correct- (s, r, f) actually already follows from the given definition. 

Lemma 3.4. Let s, r, f satisfy Correct - (s, r, f). Then, for any p, t with 
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sf--p: t, 

s, r, f f--M(p, r) ~ 1M(p, f). 

Proof. By induction on the structure of p. 

The following lemma is needed to prove the Stability of Correspondence 
Lemma below, which in turn is needed in the Correspondence Theorem 
following it. Both lemmata are of a rather technical nature. They show that 
updating of s, r, f to s[x+-- t], r[x+--v], f[x+--v] under certain circumstances 
does not change the relation ~ 1. 

Lemma 3.5. Lets, r, f satisfy Correct~ (s, r, i'); let w, w, ty satisfy s, r, i'f-
w ~ 1y w; let y be new ins, i.e. new(y,s). Then for any p, t withs' f--p: t, 

s, r, i' f-- M(p, r') ~ 1M(p, f') 

wheres'= s[y+--ty], r' = r[y+--w], f' = f[y+--w]. 

Proof. By induction on the structure of p. 

Lemma 3.6 (Stability of Correspondence). Lets, r, i' satisfy Correct~ 
(s,r,f); let w, w, ty satisfy s,r,ff--w~ 1y w; let y be new ins, new(y,s). Then 
for any v, v, t 

s,r,i'f--v~ 1v iff s',r',f'f--v~ 1v 

wheres'=s[y+--ty], r'=r[y+--w], f'=f[y+--w]. 

Proof. By induction on the structure oft. 
Case t=z, ⇒. Assume s,r,i'f--V~zV. By definition, for some p with 

sf-p: z, v = M(p, r) and v = M(p, i'). Because new(y, s), y does not occur 
free in p, hence v = M(p, r') and v = M(p, f') and s' f-- p : z. So by definition 
s', r', i'' f- V ~z v. 

Case t=z, <=. Apply Lemma 3.5. 
Case t= ta-+tb. Use the definition of correspondence and the induction 

hypotheses for both ta and tb. 

Theorem 3. 7 (Correspondence). Lets, r, f satisfy Correct~ (s, r, f). Then 
for any e, t with sf-- e: t 

s, r, f f--M(e, r) ~ 1M(e, f). 
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Proof. By induction on the structure of e. 
Case e = x. Immediate from the assumption. 
Case e = ef(ea). Straightforward by induction. 
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Case e = ).x:ta. eb. Then for some tb, t = ta-+ tb and s[x+-ta] 1- eb:tb. 
Now let w, w be arbitrary satisfying s, r, f I- w-10 w. One may easily verify 
that 'M(e, r)(w)'= 'M(Jx: ta. eb, r)(w)' =M(eb[x/y], r[y+-w]) where y is 
chosen such that new(y,s). Setting s'=s[y+-ta], r'=r[y+-w] and f'= 
f[y+-w], we can show Correct- (s', r',f') from the Stability of Corres
pondence Lemma. Hence we may apply the induction hypothesis and find 

s', r', f' 1-M(eb[xly], r')- 1b M(eb[x/y], f'). 

As above M(eb[xly],f') = 'M(e, f)(w) ', so that 

s', r', f' 1- 'M(e, r)(w)' - 1b 'M(e, f)(w)'. 

Using once more the Stability of Correspondence Lemma we find 

s, r, fl- 'M(e, r)(w)' - 1b 'M(e, f)(w) '. 

We conclude therefore s, r, f 1-M(e, r)- 1M(e, f). 

Reynolds [15] and Donahue [3] give more or less this theorem as the 
effect strong typing has on the semantics of expressions. One may interpret 
the theorem that an implementor of the predefined values, accessible via 
the predefined identifiers, may freely switch from one representation r to 
another f, provided Correct- (s, r, f), without essentially affecting the value 
denoted by an expression: the two values do correspond and therefore do 
represent the same abstract entity; in particular if the expression has a non
composite type we know that the two values M(e, r) and M(e, f) arise from 
the same primitive expression. 

Yet we feel a bit unhappy with this result; it involves too much hand 
waving to convince an unwilling listener of the importance. Fortunately 
there is a more appealing semantic property of strongly typed expressions. 
Switching from one representation to another does not affect the meaning 
of expressions in the sense that semantic equivalence is unaffected. 
Semantic equivalence need be defined precisely, because there are several 
reasonable choices, which in general do not coincide (see e.g. [1]). We 
choose the one in which two expressions e and e' are said equivalent with 
respect to a type t1-+ t2-+ • • •-+ tn-+ z if there is no context of the form 
[···](el)(e2)···(en) with el:tl, ... ,en:tn which discriminates between e 



314 M.M. Fokkinga 

and e'; i.e. e(e1)(e2) ••• (en) and e'(el)(e2) •·· (en) yield the same value. 
Formally, we define this notion by induction on t. 

Definition 3.8 (Equivalence). For any s, r, el, e2 we define s,n-el ==1e2 
("el and e2 are equivalent wrt t") as follows. 

(a) for t=z: s,n-el ==ze2 if el =,e2; 
(b) for t=ta+-tb: s,n-el == 1e2 if for all e with s1-e: ta, s,r1-el(e):::::1b 

e2(e). 

Notice that s,rl-e1==1e2 in itself does not require that sl-e1,e2:t. 
Hence it makes sense to consider the question whether any e 1 and e2 are 
equivalent. In particular we may consider expressions which are not 
strongly typed, but are weakly typed according to [3]. Some simple 
examples are treated after Theorem 3.10. 

An alternative notion of equivalence is the following. Two expressions 
el and e2 are said equivalent wrt type t if there is no strongly typed context 
C[ • • ·] with a hole of type t and as a whole of type z, for some z, such that 
C[el] and C[e2] have different values; cf. [IO]. Our Theorem 3.10 fails for 
this notion because of possible pathological values for higher order 
function identifiers. We might exclude such values by suitable assumptions 
about r, but we will not pursue this alternative here. 

We can of course not expect to prove that equivalence is independent of 
the environment, unless we assume some consistency requirements between 
the environments under consideration. In particular the following 
predicate Correct== (s, r, f) seems reasonable. 

Definition 3.9 (Correct=). Correct= (s, r, f) holds iff for all pl, p2, z with 
sl-pl,p2: z 

s,rl-pl=zp2 iff s,fl-plc:::zp2. 

Theorem 3.10 (Representational Independence of Equivalence). Lets, r, f 
satisfy Correct- (s, r, f) and Correct= (s, r, f). Then for any e 1, e2, t with 
s1-e1,e2: t 

Proof. By induction on t. 



On the notion of strong typing 315 

Case t=z, =>. Froms,n-el :::::ze2 we find el =re2 (1) 

From s,r,f1--M(el,r)-zM(el,f) (by the Correspondence Theorem) and 
similarly for e2, we find by the Correspondence Definition 

forsomepl withs1--pl:z, el=rPl andpl=,el, 

for some p2 with s 1--p2: z, e2 =, p2 and p2 =; e2. 

Hence by (1) pl =, p2, so s, r 1--p 1 ==-z p2, so by Correct=:::. (s, r,f) also s,f 1-
pl =zp2, so pl =,p2 and hence el =,e2, i.e. s,f 1--el ==:ze2. 

Case t = z, <=. Similar. 
Case t = ta-> tb. Easy by induction. 

It is not difficult to construct counter examples to the conclusion of the 
theorem in case the condition s 1-- el, e2: t is not met. E.g. consider the 
syntactic environment with zero: int and true,false: boo!. Now let the 
representation of booleans be a subset of the representation of the integers. 
In particular choose r and f such that 

r(zero) = r(true) * r(false), 

f(zero) = f(false)-:f.= f(true). 
Clearly 

s, f 1-- zero :t::- 1 true for all noncomposite t E Z, 
but yet 

s, r 1-- zero ==- 1 true for all t. 

Donahue [3] defines a notion of weak typing so that e =(AX: boo!. x)(zero) 

is weakly typed and has type boo!. Again we find s, r 1-- e==-boot true but 
s, f 1-- e *boot true. Thus relaxing the requirements 1-- e 1, e2: tin the theorem 
to "el and e2 must be weakly typed, with type t say, ins" invalidates the 
conclusion. 

4. A concrete semantics for the language 

This section only serves to show that untyped values and coinciding 
representations are quite reasonable. We will work out the set V and 
function M, without any sophisticated mathematical constructions as 
commonly used in the field of denotational semantics, cf. [3, 9, 15, 16]. 
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Our starting point is that values are untyped, like bit patterns, and that 
each value may be used in any way. This is just the opposite of Definition 
2.1.1.2.c of the ALGOL 68 Report [19], and of the postulation by [5]. For 
ease of presentation we choose a set V which suits our purpose very well. 

Definition 4.1 (The value space V). Let C be a fixed set of constants, 
disjoint from X. The set U of pseudo-values is defined by BNF: 

u ::=x I (AX. u) I u(u') I c. 

The set V of values is defined thus 

V = { u E U I no x EX occurs free in u}. 

Throughout v and w vary over V; specific elements of C are 
c0,c1, ... ,S,P, .... 

Values may be thought to model states of a machine. Possible state 
transitions are modelled by transformation or reduction rules. A com
pleted transformation of some initial state v into a final state is called the 
elaboration of v. We choose here a deterministic transformation in 
applicative order ('call by value'), cf. the SECD machine of [7]. 

Definition 4.2 (Transformation rules and Elaboration). The deterministic 
transformation v➔ w is defined thus: 

(a) if v➔ v', then v(w)➔ v'(w); 

(b) if Vv'. v~v' and w➔ w', then v(w)➔ v(w'); 

(c) if Vw'. w~w', then (.h. v)(w)➔ v[xlw]; 

( d) for each c E C there is a fixed set of rules 

c(vl)(v2) •·· (vn)➔ w 

which respects the deterministic applicative order. 
The elaboration elab E v➔ V (a partial function) is given by 

elab(v) = w if v-!..... wand Vw'. w~w'. 

In the above framework "fatal errors during elaboration" may be 
modelled by nontermination. To this end let error EC with error➔error. 

Abstract entities like natural numbers N or truth values may be repre
sented in Vin a variety of ways, as shown in the next example. 
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Example 4.3 (Representations of natural numbers). One way is to let 
c0, c 1, c2, ... E C and to represent n EN by the obvious constant, say en. 

Further, let S, PE C represent the successor and predecessor function. The 
following rules are needed: for all n 

Alternatively, we may represent n by 

(AX. Ay. xn(y)) =AX. Ay. x(x( • • • x(y) • • • )), 

and the successor by AX. AY. ).z. y(x(y)(z)) and the predecessor either by 

PE C with P(h. Ay. xn+ 1(y))-> ).x. Ay. xn(y) 

or by 
AZ. (z(AX. Ay. y((AX. Ay. AZ. y(x(y)(z)))(x(Ax. Ay. x))) 

(x(AX. Ay. x)))(Az. z(Ax. Ay. y)(Ax. Ay. y)))(AX. Ay. y), 

from [17]. There are various other representations with constant-free 
values, and which have a lower elaboration complexity (see [14)). 

In particular the last representation in the above example shows that 
values are untyped. Ax. Ay. y represents the number zero, but it may be 
applied to any value. In fact it also represents any function f EA-> B-> B 
with 

f(a) = identity function on B. 

Finally we define M. The role of types is to single out the strongly typed 
expressions, i.e., those for which Theorems 3. 7 and 3 .10 hold. Semanti
cally "types are redundant." 

Definition 4.4 (The meaning function M). The compilation - EE-> U is 
defined thus (it throws away all types): 

(a) X=X, 

(b) (AX: t. e) =(AX. e), 
(c) e(e') = e(e'). 
The meaning function MEE x R-> V is defined 

M(e, r) = elab(e[x/r(x), for each x free in el). 



318 M.M. Fokkinga 

It should be easy to verify the axioms assumed in Definition 2.3, and to 
construct suitable values for the identifiersfixpoint1, 1, and cond1 mentioned 
in Section 2. 

5. Conclusion 

We have shown that strong typing may be viewed as a purely syntactic 
means to restrict the class of expressions so that a nice semantic property 
holds. This view is consistent with practice where types are semantically 
(i.e. during run-time) redundant and values are really untyped. 

The explicit formulation of the usefulness of strong typing makes it 
possible to discuss formally whether strong typing is desirable, provides a 
clear goal to aim at in the design of a type system, and enables a formal 
proof that a language, which claims to be strongly typed, satisfies that 
property. Thus we have a framework to discuss the type systems of [15], of 
ALGOL 68 and of modern languages with highly advanced type systems like 
LAWINE [18]. 

For example, [15] extends the A-notation with a facility to pass types as a 
parameter. It presents no problems at all to extend our definitions, 
theorems and proofs to cover that extension too, see [4]. On the other hand 
the decision in ALGOL 68 that struct(real re, im) and struct(real rho,phi) are 
not equivalent seems irrelevant to maintain the representational indepen
dence of equivalence. Here, we think the ALGOL 68 designers have 
(mis)used the concept of strong typing in order to achieve in this particular 
case and in an ad-hoc way that those modes are more or less primitive. A 
facility to declare a type primitive, as in [15], would provide a more general 
solution, with no need to break the full structural equivalence of modes. 

Of course, before we can make precise the above claims, further investi
gation is needed to extend the concepts of this paper to other language 
features. The introduction of cartesian product and discriminated union, 
and of variables and assignment, seems to be straightforward. More 
attention is needed for subtypes. And recursively defined types are 
problematic. E.g. the definitions cannot easily be adapted for the type 
z = z-> z. However, we conjecture that adaptations are possible for 
reducing types [1] like 

f ct= jct x int-> int 
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which may be used to define the factorial function in the following way. 

J :Jct= Ag :Jct, i: int. if i = 0 then 1 else i *g(g, i- 1); 

J act: int- int= Ai: int. J(j, i). 
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Abstract Storage Structures 

H.B.M. Jonkers 

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

A novel model for the description of storage structures is presented. It is 
based on the consideration that a storage structure is completely characterized 
by two things: the collection of its access paths and a relation which indicates 
whether two access paths access the same substructure. The model, called a 
'structure', is abstract in the sense that it is free of low level concepts such as 
pointers and garbage, while at the same time it is general in that it allows the 
description of storage structures with arbitrary sharing and circularities. 
Operations on structures (such as creation and replacement) can be described 
very naturally in terms of three primitive operations. These primitive 
operations are defined using a special partial order, which turns the set of all 
structures into a complete lattice. 

1. Introduction 

The question what a 'data structure' is has been a point of dispute for 
several years. Though not all powder smoke has drifted away yet, a 
beginning of agreement can now be observed. A data structure is a class of 
objects which is fully characterized by the operations which can be applied 
to those objects. There are two aspects to this characterization: an external 
and an internal aspect. The external aspect deals with the question what the 
effect of the operations is. The concept of an 'abstract data type' [11], 
which is essentially a heterogeneous algebra [3], has been introduced to 
model this aspect of a data structure. The internal aspect is concerned with 
the question how the effect of the operations is accomplished. This aspect 
is usually dealt with by choosing a 'representation' for the data structure 
and 'implementing' each operation in terms of the well-known operations 
on the representation. It is generally agreed that the internal aspect of a 
data structure should be hidden ('encapsulated' [16]) to the user. 

The above agreement on what a data structure is does not carry over to 
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an other crucial question: How should data structures be described, or 
'specified'? It is important, both to the user and to the implementer, that a 
specification of a data structure describes only the external aspect of the 
data structure. The meaning (in the semantical sense) of a specification of a 
data structure must therefore be an abstract data type. There are basically 
two ways to specify data structures ( or abstract data types, if you like) [12]. 

The first, and apparently the most attractive, is the axiomatic (or 
'implicit') method [6, 7]. In this method the essential properties of the 
operations are described through axioms. The major advantage of this 
method is that it is not necessary to commit oneself to a representation for 
the data structure. There are also two severe drawbacks, however. Apart 
from very simple data structures, it is very difficult to construct complete 
and consistent axiomatic specifications. Specifically data structures 
involving 'dynamic' and 'shared' data, which are frequently encountered 
in practice, are very hard to specify. Moreover, axiomatic specifications 
are usually far from easy to comprehend. 

The second way of specifying abstract data types is the 'abstract model' 
approach [1]. In this approach an abstract representation for the data 
structure to be specified is chosen. The operations of the data structure are 
then specified in terms of this representation. This method clearly contrasts 
the axiomatic method as to its advantages and disadvantages. First of all, 
specifications are more easily constructed. If the possibility of dynamic 
creation and sharing is already included in the abstract representations 
chosen, data structures featuring these properties are readily specified. The 
specifications also tend to be more readable than axiomatic specifications. 
The salient disadvantage, of course, is the fact that specifications are not 
representation-independent. If one is not very careful, details of the 
representation chosen may permeate into the external world and lead to an 
'overspecification' of the data structure. (Contrast this with the problem of 
writing complete axiomatic specifications.) 

It is my firm belief that for realistic applications the future lies in the 
abstract model approach. A precondition is, however, that the problem of 
representation-dependence is solved satisfactorily. The key to a solution of 
this problem lies in the observation that the choice of a representation need 
not depend on efficiency considerations. The only criteria in choosing a 
representation should be the clarity and naturalness of the specification. 
This implies first of all that the representations themselves must be free of 
implementation detail, or in other words, they should be as abstract as 
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possible. In particular they should not include such things as pointers, 
fixed size storage cells, etc. On the other hand, the possibility of dynamic 
creation and sharing should be inherent ( otherwise many applications are 
ruled out). If we had such abstract representations at our disposal, data 
structures could be specified relatively representation-independent. The 
sole purpose of the representation would be to increase the compre
hensibility of the specification, and not to suggest a certain imple
mentation. 

In this paper representations will be described which are believed to 
satisfy the requirements mentioned above. These representations can be 
viewed as abstract 'storage structures'. They can be used as the basis for a 
specification method, which allows the specification of realistic data 
structures in a comprehensible and unambiguous way, without undue 
effort and at various levels of abstraction. Their use is not restricted to 
specification languages, however. It is envisaged that they can successfully 
be used in definitions of programming languages as well, especially in 
definitions of those programming languages which feature sharing 
('aliasing') and dynamic creation of data. 

The representations, which will be called 'structures', are introduced in 
the next section, together with some related concepts. In Section 3 three 
primitive operations which can be applied to structures are defined. For 
their definition a partial order, which turns the set of all structures into a 
complete lattice, is introduced first. 

2. Structures 

The purpose of this section is to define the concept of a 'structure'. A 
structure can be viewed as an abstract 'storage structure', which can be 
'accessed' through special keys called 'accessors'. Accessors will be con
sidered as primitive concepts, usually denoted by strings of letters and 
digits. By repeatedly applying accessors to a structure one can follow an 
'access path'. 

An accessor is a primitive concept. 

s1 is the set of all accessors. 

s1* is the set of all finite sequences of accessors. 
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sf+ is the set of all finite nonempty sequences of accessors. 

A is the empty sequence of accessors. 

The sequence A 1, ... , An of accessors will be denoted as A 1 ···An. 
The following definition of the concept of a structure is based on the 

consideration that a (storage) structure is completely characterized by two 
things: First, the collection of all of its access paths and second, a relation 
which indicates whether two access paths access the same 'substructure'. 
(Notice that the latter is necessarily an equivalence relation.) Taking into 
account the properties of access paths as well we arrive at the following 
definition: 

A structure S is a pair ( fJJ, =), where fJJ C .w* and = is an equivalence 
relation on 9 such that 
(l)AEfJJ; 

(2)PAEfJJ~PEfJJ (PEsf*,AEsf); 

(3) PAE fJJ /\P= Q~ QA E fJJ /\PA= QA (P, QE fJJ,A E sf). 

A PE fJJ will be called a path of S. 

An XE fJJ I =, i.e. an equivalence class of =, will be called an object of S . 

.'7 is the set of all structures. 

Property 1 states that the empty sequence of accessors is a path of S (hence 
fJJ *0). Property 2 implies that any head piece of a path of Sis also a path 
of S. Property 3 states that equivalent paths have equivalent continuations. 
This property of an equivalence relation is known as 'right-invariance'. 
The paths of a structure can be viewed as 'names' for the objects which 
they represent. As will be seen later, the concept of an object as introduced 
above is closely related to the intuitive concept of an object. 

There are three trivial examples of a structure, which will be called the 
'empty structure', the 'convergent structure' and the 'divergent structure' 
respectively: 

..1 = ({A}, { (A, A)}) is a structure called the empty structure. 

Tc= ( sf*, sf* x sf*) is a structure called the convergent structure. 

To= (sf*, { (P,P) I PE sf*}) is a structure called the divergent structure. 
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Notice that ..L and Tc contain only a single object, while TO contains an 
infinite number of objects (i.e. if sf =t:0, which we will from now on 
assume). Other examples of structures will be discussed below. 

Example 1. Let S = ( ?I,=>, where 

.OfJ = {A, a, b, ba }, 

= = { (A,A), (a, a), (a, ba), (ba, a), (ba, ba), (b, b)}, 

then Sis a structure containing the following objects: 

:YI== { {A}, {a,ba}, {b} }. 

Notice that the paths a and ba are 'aliases' for one and the same object. 

Before continuing some notations have to be introduced. First, if 
S = (?I,=) is a structure, then ?Is and =swill denote ?I and = respectively. 
Second, if X is an object of a structure S and P is a path of S such that 
PE X, then, if no confusion can arise, P will denote X. This convention fits 
in with the common mathematical practice of denoting equivalence classes 
by their representatives. Definitions and lemmas which use this notation 
for objects must be proved to be independent of the choice of the repre
sentatives for the objects. 

The definition of a structure does not preclude that structures use an 
infinite number of accessors or have an infinite number of objects. 
Structures that use only a finite number of accessors and have a finite 
number of objects constitute an important subclass. The structures in this 
subclass will be called the 'finite structures'. 

Let S be a structure. 

The accessor set of S is defined as: 

{A E sf 13 PE ?15 [PA E ?l's]}, 

S is called finite iff the accessor set and the set of objects of S are finite; 
otherwise S is called infinite. 

The empty structure ..L is an example of a finite structure, and the divergent 
structure TO is an example of an infinite structure. The convergent 
structure Tc is infinite if and only if sf is infinite. 

Finite structures can be pictured in a systematic way as follows: 
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For each object P 
!Draw a circle <t'p. 

H.B.M. Jonkers 

For each pair of objects (P, Q) 
and each accessor A with PAE Q 

)Draw an arrow labeled by A from <t' p to 't' Q· 

Label 't' A by A. 

Notice that this drawing algorithm is independent of the choice of the paths 
for the objects and that it would never terminate if applied to an infinite 
structure. It is easy to see that the picture thus associated to a finite 
structure is unique. 

Example 2. The empty structure J_ has the following picture: 

" 0 
Fig. I. 

If st= { a, b}, then the picture of the convergent structure Tc is: 

Fig. 2. 

If we try the impossible and apply the drawing algorithm to the divergent 
structure TO with st = { a, b}, then we get: 

/I 

b 

b 

a b a a 

~ 
Fig. 3. 
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The picture of the structure S from Example 1 is: 

A a 

Fig. 4. 

The above may raise the question what the difference is between a 
structure and a rooted graph with labeled edges. At first sight there may 
not seem to be any difference, yet there is. There are two crucial 
differences. First, the concept of 'unreachability' is meaningless in a 
structure. Each object has at least one access path. Second, objects do not 
have a separate identity. An object simply is the collection of its access 
paths. These two facts will be seen to have a number of important conse
quences. 

An other important observation is that the paths of a structure should 
not be considered as 'pointers': Though a path can be viewed as a name for 
an object, paths are not objects themselves. Instead, the arrows in the 
picture of a structure should be regarded as denoting physical inclusion. 
Since arbitrary kinds of physical inclusion (such as sharing and circularity) 
can be modeled in a structure, the need to introduce pointers will nowhere 
arise. The concept of physical inclusion will be made more precise by 
introducing three relations on the set of objects of a structure: 

Let S be a structure. 
Let P and Q be objects of S. 

P is a direct component of Q iff there is an A Es/ such that QA E P. 

Pis a component of Q iff there is an RE .st+ such that QR E P. 

P is contained in Q iff there is an R Ed* such that QR E P. 

Check that these definitions are independent of the choice of P and Q. 
The relations 'be a component of' and 'be contained in' are both transitive, 
while the latter is also reflexive. Neither of them need be an (irreflexive or 
reflexive) partial order (see Example 3). The meaning of the fact that an 
object is 'cyclic' can be defined as follows: 
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I An object of a structure is cyclic iff it is a component of itself. 

It is easy to see that cyclic objects contain an infinite number of paths. 

Example 3. Consider the structure S of Fig. 5. 

The objects of S are: 

A={A}, 

li= {a}, 

5= {ab,b}, 

a 

Fig. 5. 

aa = {P(ba)n In "?.01\PE {aa, abba, bba} }, 

bb= {P(abr I n"?.O1\PE {aab,abb,bb} }. 

The three inclusion relations which are defined between these objects can 
be described schematically as follows (the plus sign indicates where the 
relation holds): 

Pis a direct component of Q: 

p 

A 
a 
5 
aa 
bb 

Q A a 5 aa bb 

+ 
+ + 

+ + 
+ + 
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Pis a component of Q: 

Q 
A ii 5 aa bb p 

A 
a + 
5 + + 
aa + + + + + 
bb + + + + + 

Pis contained in Q: 

Q 
A a 5 aa bb p 

A + 
a + + 
5 + + + 
aa + + + + + 
bb + + + + + 

The relation 'be a component of' is not an irreflexive partial order here, 
because it is not irreflexive: aa is a component of itself. The relation 'be 
contained in' is not a reflexive partial order because it is not antisymmetric: 
aa is contained in bb and bb is contained in aa, but aa ,t:. bb. This, of 
course, is caused by the fact that aa and bb are cyclic objects. 

The above example (and especially the expressions for the objects aa and 
bb) suggests that there is a relation between structures and regular 
languages. Indeed, the objects of finite structures are regular languages: 

Lemma 1. Let S be a finite structure, then each object of S is a regular 
language over sf. 

This can be understood intuitively by considering the picture of a finite 
structure as the state diagram of a finite state machine and recalling the 
correspondence between finite state machines and regular languages. A 
straightforward proof can be obtained by using the fact that each 
equivalence class of a right-invariant equivalence relation of finite index is 
a regular language [8]. Another way to prove Lemma 1 is to use the relation 
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between left-linear grammars and regular languages. (Check that a left
linear grammar, where each nonterminal symbol 'produces' an object, can 
be associated to each structure.) Due to Lemma I a regular expression 
notation can now be used for the objects of all finite structures. 

Example 4. The objects of the structures of Figs. 1, 2, 4 and 5 can be 
denoted by regular expressions as follows: 

Fig. 1: A =A. 

Fig. 2: A= (a+ b)*. 

Fig. 4: A =A, ii=a+ba, 5=b. 

Fig. 5: A =A, ii= a, 5 =ab+ b, aa = (aa + abba + bba)(ba)*, bb = 
(aab +abb + bb)(ab)*. 

The concept of an object as we introduced it is closely related to the 
concept of a 'dynamic object', as it is normally conceived in computer 
science. Dynamic objects are usually considered as 'instances' of 'values'. 
Two dynamic objects may be instances of the same value and still be 
different. In mathematical models for dynamic objects this problem is 
usually solved by associating an 'identity', which is an explicit value, to 
dynamic objects. As stated before, objects in structures do not have an 
explicit identity. It is interesting to see how the identity problem for them is 
solved. The objects in a structure can be viewed as instances of structures 
(so 'structures' correspond to the 'values' of dynamic objects). This is 
made more precise by the following definition of the 'structure' of an 
object: 

Let S be a structure. 
Let P be an object of S. 
The structure of P, which will be denoted as S[P], is the structure T 
which is defined as follows: 

.9'T={Qed*IPQe 9 8 }, 

Q=TR#PQ=sPR (Q,Re .9'T). 

The proof that T is indeed a structure and that T is independent of the 
choice of P is simple. Two different objects can have the same structure 
(see Example 5). Hence they can be viewed as instances of that structure. 

Example 5. Consider the structure S of Fig. 6. 
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II 

Fig. 6. 

In this figure we have (using regular expression notation): 

A=A, 
ii =a, 
5=b, 
aa= aa+ aba + ba+ bba, 
bb=ab+bb. 

The structure of ii is: 

S[ii] = ( £Ylo, =o), 
where 

£Ylo= {QE st* I aQE £Yls} = {A,a, ba, b}, 

Q=0 R#aQ=saR (Q,RE 9 0), 
hence 

9o I =o = {{A}, { a, ba }, { b}}. 

The structure of 5 is: 

where 

hence 

9 1 = {QE s1*1 bQE 9s} = {A,a, ba, b}, 

Q=,R#bQ=sbR (Q,RE 9i), 

91 I = 1 = { { A } , { a, ba}, { b}}. 

So ii and 5 have the same structure (the structure of Fig. 4). 

Example 6. Consider the structure S of Fig. 7. 

331 
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A b 

Fig. 7. 

All objects have the same structure: 

S[.if] = S[5] = S[bb] = S. 

3. Operations on Structures 

In this section three primitive operations on structures will be defined. 
They constitute a sufficient set in the sense that all other useful operations 
on structures can be defined in terms of them. For their definition a special 
partial order on the set !I' of all structures will be introduced first. 

!The partial order Con !I' is defined as follows: 

SCT# fYlsC fYlrA=sC=r (S, Te !I'). 

The fact that C is indeed a (reflexive) partial order on !I' is trivial. In 
intuitive terms the fact that SC T means that all paths of Sare also paths of 
T and that all paths which are 'identified' in Sare also identified in T. 

Example 7. The structures of Fig. 8 form an ascending sequence. 

/I 
/I 

/I I A .L 0 C C C 

/I 
/I 

A C a C aQDb C TC 

a 

a 
Fig. 8. 
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Example 8. If we define the partial order Lo on !I' as: 

then the fact that SLo T means that S is a 'partial expansion' of T, as 
illustrated in Fig. 9. 

a 

b a 

a 
a b 

/I c. 
b 

b 

/I ~ co 
a 

a 

/I o::=n 
b 

Fig. 9. 

Notice that the partial orders L and Lo are much harder to describe in 
terms of graphs. 

The relation L is more than just a partial order: It turns !I' into a 
complete lattice. (A complete lattice is a partially ordered set where each 
subset has a greatest lower bound.) This is stated in: 

Lemma 2. (S, L) is a complete lattice. 
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The proof of Lemma 2 is simple. First prove that, if Sand Tare structures, 
( q.,5n q>T, =sn =T> is also a structure. It is then easy to prove that the 
greatest lower bound of a set :T of structures is given by < nTE .r q>T, 

nTE.r=T), where nTE.'Tq.,T=d*and nTE:r=T=sl*xsl*if :T=0. Notice 
that the empty structure .L and the convergent structure Tc are the 
'bottom' and 'top' of the complete lattice < Y, C), i.e . .l CSC Tc for each 
Se !/. A simple theorem from lattice theory states that apart from a 
greatest lower bound, each subset also has a least upper bound [2]. The 
following definitions are therefore in order: 

For each set :T of structures, the structures inf :T and sup :T are defined 
as follows: 

inf :T = greatest lower bound of :T with respect to C, 

sup :T = least upper bound of :T with respect to C. 

The above will enable us to define the result of operations on structures in 
terms of inf's and sup's or arbitrary sets of structures without having to 
worry over the existence of the inf's and sup's. 

Example 9. If 

I\ 

S= and T= 

Fig. !Oa. Fig. !Ob. 

then I\ 

inf{S, T} = and sup{S, T} = 

Fig. !Oc. Fig. IOd. 

Before defining the primitive operations on structures a remark should 
be made about an other interesting partial order on Y. The definition of C 
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can be written as: 

If we reverse the implication sign in this definition we still have a (reflexive) 
partial order, call it C: 1 : 

SC:1 T# fY5 C fYT/\ VP, Qe fY5 [P=TQ=>P=sQl (S, Te Y). 

Intuitively SC: 1 T means that all paths of Sare also paths of T and that all 
paths which are 'distinguished' in Sare also distinguished in T. The partial 
order C: 1 has both a bottom (the empty structure .l) and a top (the 
divergent structure T 0 ). Yet, in contrast with C, it does not turn Y into a 
complete lattice (see Example 10). 

Example 10. Consider the structures in Fig. 11. 

I\ I\ 

S: A T: A 
I\ 

I\ 

-([), V: A 'w: 

Fig. 11. 

Suppose Sand T have a greatest lower bound X with respect to C:1 . Since 
VC:1 Sand VC:1 T, we have that VC 1X. This implies that a,ce Y'x and, 
since a,tvc, also that a,txc, WC:1 Sand WC:1 Timply that WC:1X, hence 
b E ,rJJ>x, XC: 1 Sand a=sb imply that a=xb, Analogously, XC:1 Tand b=TC 
imply that b=xC, Using the transitivity of =x we get a=xc, which is a 
contradiction. Hence < Y, C: 1) is not a complete lattice. 

All operations which will be introduced below are considered as partial 
operators on structures. They may have a number of parameters (usually 
objects in the structure to which they are applied, or accessors). The result 
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of applying the operation F with parameters Xi, ... ,Xm to the structure 
S will be denoted as {S}F(X1, ... ,Xm). The notation F(Xi, ... ,Xm) will 
be used to denote the (partial) operator AsE ,.{S}F(X1, ... ,Xm), 
Concatenation is used to denote functional composition of operators, e.g. 
F(Xi, ... ,Xm)G(Yi, ... , Yn) denotes AsEY{ {S}F(X1, ... ,Xm)}G(Yi, ... , Yn)-

The first primitive operation on structures which will be introduced 
amounts to the 'creation' of an object in a structure. The created object has 
.l as its structure and is added as a direct component to a given object. The 
operation, called CRE, has two parameters P and A. Pis an object in the 
structure S to which CRE is applied and A is an accessor such that PA is 
not a path of S. The effect of CRE(P,A) is pictured in Fig. 12. 

I\ I\ 

p CREIP,AI p 

0 

Fig. 12. 

The definition of CRE reads: 

Let S be a structure. If Pis an object of Sand A Est such that PA$ fY>s, 
then {S}CRE(P,A)is the following structure: 

inf{TE Y 1s CTAVR E 9"s[R =sP~RA E .'J"r]}. 

It should be clear that CRE(P,A) does what Fig. 12 suggests. The fact 
that 'less' in the partial order C implies 'less identification' guarantees that 
a new object is created and not some old object is taken as the new 
component of P. 

Example 11. A binary tree can be generated from the empty structure by a 
sequence of operations such as: 

{ .l }CRE(A,a)CRE(A,b)CRE(5,a)CRE(ba,a)CRE(ba,b). 
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The intermediate and final results of this sequence of operations are 
pictured in Fig. 13. 

/I /I /I /I /I 

0 IA 
Fig. 13. 

The second primitive operation on structures is like CRE, except that it 
adds an already existing object as a direct component to an object. The 
operation, called ADD, takes three parameters P, A and Q. P and Qare 
objects in the structure S to which ADD is applied and A is an accessor 
such that PA is not a path of S. The effect of ADD(P,A, Q) is pictured in 
Fig. 14. 

/I 

ADD(P,A.Eil 
p 

0 
Q 

0 

Fig. 14. 

The definition of ADD is given below: 

Let S be a structure. If P and Q are objects of S and A E sf such that 
PA El: 9 5 , then {S}ADD(P,A, Q) is the following structure: 

inf{TE YI SC Tl\ V RE £1'5 [R=sP~RA E :J'T/\RA =TQ]}. 
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The greatest lower bound of the same set of structures as in the 
definition of CRE is taken here, except that the set is restricted to those 
structures in which the paths RA with R =sP and Q are identified. This 
guarantees that not a new object is created, but that Q is added as a new 
component to P. Notice that, in contrast with CRE, it is not simple to 
define ADD without the use of the partial order C:::. This is due to the fact 
that ADD may introduce circularities in a structure. 

Example 12. Let S be the structure of Fig. 15, then { S} ADD(5, a, A) is the 
structure of Fig. 16. 

(\ (\ 

I aob 

Fig. 15. Fig. 16. 

The third and final primitive operation can be viewed somehow as the 
(right) inverse of the other two primitive operations. It amounts to 
removing a direct component of an object. The operation, called REM, has 
two parameters P and A.Pis an object in the structure S to which REM is 
applied and A is an accessor such that PA is a path of S. Fig. 17 pictures 
the effect of REM(P,A). 

(\ (\ 

p REM(P,Al p 

~ 
0 

,-, 
I I ,_, 

Fig. 17. 
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The definition of REM is: 

Let S be a structure. If Pis an object of Sand A E sl such that PAE fYs, 
then {S}REM(P,A) is the following structure: 

sup{TE Y' I TCS/1. V RE ff's[R=sP=RA $ ,if'Tl}. 

Notice that, due to the fact that objects may be shared, REM(P,A) need 
not remove the object PA from a structure. That is why this object is 
represented by a dotted circle in the right part of Fig. 17. (Strictly speaking 
the path name P should also be dotted, because the path P (but not the 
object P) may be removed from the structure by REM(P,A).) In general, 
REM(P,A) may reduce the number of objects in a structure by a number 
varying from zero to all but one (see Example 13). 

Example 13. Consider the structure S of Fig. 18. 

a b 

Fig. 18. 

The effect of REM(a, a) on S is: 

I\ 

a b 

Fig. 19. 
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Notice: the number of objects has not changed. If REM(ab, b) is applied 
subsequently to the structure of Fig. 19, we get: 

/\ 

A b 

Fig. 20. 

Notice: two objects have 'vanished'. 

When choosing structures as the basis of the definition of a specification 
or programming language, the above three primitive operations are suffi
cient in the sense that all more complex operations can be expressed in 
terms of them. In order to illustrate this we shall sketch briefly how the 
meaning of language constructs can be described in terms of the primitive 
operations. The idea is to represent all values as structures (and their 
'instances' as objects of structures). If we consider the variables X 1, ... ,Xn 
of an algorithm as accessors, then the 'state' of the algorithm can be 
represented by a structure as pictured in Fig. 21. In this figure the variables 
Xi, ... , Xn of the algorithm are represented by the paths loc. X 1, ... , loc. Xn 
(dots are used to separate accessors here). The values of the variables are 
(the structures of) the objects loc. Xi, ... , loc. Xn, Since the latter objects 

/\ 

Fig. 21. 
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may share components, things such as 'aliasing' can readily be described. 
The component loc of the state constitutes what might be called the 'local 
environment'. Apart from a local effect an algorithm may also have a 
global effect ('side effect'). This is modeled by the component glo (the 
'global environment') of the state, which is supposed to contain all infor
mation global to the algorithm. Since glo and loc may share components, 
local operations with global side effects can be described very naturally this 
way. 

The meaning of a 'statement' of an algorithm can now be defined as a 
mapping from states on states, where a state is a structure as in Fig. 21. As 
an example consider the assignment statement. This statement might have 
the form "P. A:= Q", where A is an accessor and PA and Qare paths 
within the local environment. (The statement should be read as "replace 
the A-component of P by Q ".) The meaning of the assignment statement 
could be defined as: 

.,if(P. A:= Q) = ADD(.iI,p, loc. P)ADD(.iI, q, loc. Q) 

REM(p,A)ADD(p,A,q) 

REM(.iI,p)REM(.iI, q). 

Notice that the following definition would not be correct: 

.,if(P. A:= Q) = REM(loc. P,A)ADD(loc. P,A, loc. Q). 

The reason is that after REM(loc . P, A) both the object Joe . Q and the path 
loc . P need no longer exist. The meaning of language constructs other than 
the assignment statement can be described in a similar way. For more 
details about this the reader is referred to [9]. 

4. Conclusion 

In this paper a novel method of characterizing storage structures was 
discussed. The concept of a 'structure' was introduced, which is basically a 
simple mathematical model of the access properties of a storage structure. 
Using this model storage structures with arbitrary sharing and circularities 
can be characterized without the need to introduce pointers. Creation and 
replacement become very natural operations which cannot produce any 
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'garbage', since the concept of unreachability is nonexistent in a structure. 
Due to the fact that structures are general and yet free of such low level 
concepts as pointers and garbage, they lend themselves very well as the 
basis of definitions of realistic specification and programming languages. 
This is illustrated in [9], in which a specification language for abstract data 
types is discussed, which is used (in a somewhat informal way) in [10]. 

The concept of a structure as defined in this paper is believed to 
characterize storage structures in a way more abstract than other methods. 
In order to support this assertion let us give a short comparison of 
structures with some of these other methods. 'Vienna objects' [14) are 
basically trees with labeled branches. Sharing and circularity can only be 
modeled by introducing a pointer concept. This is done by allowing 
'composite selectors' (which correspond to 'paths') to be used as objects. 
'Graphs' [13) were already discussed in Section 2. Graphs are easily seen to 
be less abstract than structures, because each structure corresponds to 
many graphs. Also, the unnatural choice of an already existing node as the 
new node when creating a node in a graph is not necessary in a structure. 
'Relational objects' [5] are set-theoretic models of storage structures. 
They are built from atomic values using set and tuple constructors. 
Relational objects are more general than graphs (each graph can be 
described as a relational object), but they inherit many of the dis
advantages of graphs. E.g., sharing can only be modeled by representing 
objects in some way as primitive values (which correspond to the nodes of a 
graph). The programming language SETL [4] even has a special atomic 
data type for this purpose. A more comprehensive comparison of struc
tures with other methods of characterizing storage structures can be found 
in [9]. 
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Although ALGOL 60 has been uniquely influential in programming language 
design, its descendents have been significantly different than their prototype. 
In this paper, we enumerate the principles that we believe embody the essence 
of ALGOL, describe a model that satisfies these principles, and illustrate this 
model with a language that, while more uniform and general, retains the 
character of ALGOL. 

1. The Influence of Models of ALGOL 

Among programming languages, ALGOL 60 [1] has been uniquely 
influential in the theory and practice of language design. It has inspired a 
variety of models which have in turn inspired a multitude of languages. 
Yet, almost without exception, the character of these languages has been 
quite different than that of ALGOL itself. To some extent, the models failed 
to capture the essence of ALGOL and gave rise to languages that reflected 
that failure. 

On main line of development centered around the work of Landin, who 
devised an abstract language of applicative expressions [2] and showed that 
ALGOL could be translated into this language [3]. This work was influenced 
by McCarthy's LISP [4] and probably by unpublished ideas of C. Strachey; 
in turn it led to more elaborate models such as those of the Vienna group 
[5]. Later many of its basic ideas, often considerably transformed, 
reappeared in the denotational semantics of Scott and Strachey [6]. 

In [2], after giving a functional description of applicative expressions, 
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Contract DAAKS0-80-C-0529. 
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Landin presented a state-transition machine, called the SECD machine, for 
their evaluation. Then in [3] he extended applicative expressions to 
'imperative applicative expressions' by introducing assignment and a label
like mechanism called the J-operator. The imperative applicative 
expressions were not described functionally, but by an extension of the 
SECD machine called the 'sharing machine'. In later models, such as that 
of the Vienna group, sharing was elucidated by introducting a state 
component usually called the 'store' or 'memory'. 

For our present concerns, three aspects of Landin's model are especially 
significant. First, the variety of values that can be assigned to variables is 
the same as the variety that can be denoted by identifiers or passed as 
parameters. Landin does not emphasize this fact; it is simply a direct 
consequence of the typelessness of imperative applicative expressions. 
Second, no distinction is made between assignments to variables and 
assignments to locations embedded within data structures. Again, this is 
inherent in the nature of the model, in which variables themselves are 
locations embedded within the data structures of the sharing machine. 

Finally, since operands are evaluated before operators, the basic method 
of parameter passing is call by value, and call by name is described in terms 
of call by value using parameterless functions (in contrast to the ALGOL 60 
report [1], where call by value is described in terms of call by name using 
appropriately initialized local variables). This approach apparently stems 
from the view that undefined values do not 'exist', so that a function 
cannot map an undefined value into a defined value (as in LISP, where the 
conditional must be regarded as a special form rather than a function). 
This is in contrast with the more recent view of Scott that an undefined 
value is as legitimate as any other; its only peculiarity is being least in a 
partial ordering that must be respected by functions. 

Directly or indirectly, Landin's model was the basis for a number of 
programming languages, including his own !SWIM [7], Evans and 
Wosencraft's PAL [8], and my GEDANKEN [9]. Less obviously, the model 
influenced ALGOL 68 [10], despite the significant distinction that this 
language is highly typed. All of these languages inherited from the model 
the characteristics described above: Anything that can be passed as a 
parameter can be assigned to a variable, there is no fundamental 
distinction between assignments to variables and to components of data 
structures, and call by value is either the only or the basic mode of 
parameter transmission. 
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As a consequence, all of these languages are significantly different from 
ALGOL; in certain respects they are closer to the spirit of LISP. They are all 
subject to the criticism of references made by Hoare [11]. (Strictly 
speaking, only ALGOL68 and GEDANKEN use the reference concept, but 
Hoare's criticism is equally applicable to the sharing or L-value approach 
used in I SWIM and p AL.) 

Moreover, except for ALGOL 68, none of these languages obey a stack 
discipline. It would require a clever compiler to make any use of a stack 
during program execution, and even then it would be difficult for a 
programmer to foresee when such use would occur. 

In ALGOL 68, a stack discipline is obtained by imposing the restriction 
that a procedure value becomes undefined upon exit from any block in 
which a global variable of the procedure is declared. However, this 
restriction is imposed for the specific purpose of rescuing the stack; a stack 
discipline is not a natural consequence of the basic character of the 
language. 

Another line of development stemming from ALGOL 60 has led to 
languages such as PASCAL [121] and its\descendents, e.g. EUCLID [13], MESA 

[14], and ADA [15], which are significantly lower-level than ALGOL. Each of 
these languages seriously restricts the block or procedure mechanism of 
ALGOL by eliminating features such as call by name, dynamic arrays, or 
procedure parameters. 

I am not familiar enough with the history of these languages to do more 
than speculate about the influence of models. However, a desire to be 
'closer to the machine' than ALGOL 60 seems evident from the 
abandonment of features requiring inefficient or 'clever' implementations. 
In this respect, implementations themselves can be thought of as models 
influencing language design. 

In addition, the influence of program-proving formalisms, particularly 
the work of Hoare [16], is clear. An axiomatic definition of PASCAL [17] 
seems to have influenced that language, and the axiomatization of EUCLID 

[13] was a major goal of its design. 
Since Hoare's treatment of procedures [18] does not encompass call by 

name, procedure parameters, or aliasing, it may account for the weakening 
of the procedure mechanism in some of these languages. Certainly the view 
of procedures given by this kind of axiomatization is profoundly different 
than the copy rule. 
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2. Some Principles 

The preceding somewhat biased history is intended to motivate a new 
model that I believe captures the essence of ALGOL and can be used to 
develop a more uniform and general 'Idealized ALGOL' retaining the 
character of its prototype. Although its genesis lies in the definition of the 
simple imperative language given in [19], the crux of the model is a 
treatment of procedures and block structure developed by F .J. Oles and 
myself. 

This paper only describes the basic nature of the model, and it avoids the 
mathematical sophistication, involving universal algebra and category 
theory, that is needed to reveal its elegance. A complete and 
mathematically literate description is given in [20). 

It should also be emphasized that the description of 'Idealized ALGOL' in 
this paper is extremely tentative and only intended to illustrate the model. 

Before delving into the details, we state the principles that we believe 
embody the essence of ALGOL: 

(1) ALGOL is obtained from the simple imperative language by imposing 
a procedure mechanism based on a fully typed, call-by-name lambda 
calculus. 

In other words, Landin was right in perceiving the lambda calculus 
underlying ALGOL, but wrong in embracing call by value rather than call 
by name. 

The qualification 'fully typed' indicates agreement with Van 
Wijngaarden that all type errors should be syntactic errors, and that this 
goal requires a syntax with an infinite number of phrase classes, themselves 
possessing grammatical or (more abstractly) algebraic structure. (I believe 
that this characteristic will be the most influential and long lasting aspect of 
ALGOL 68.) The failure of this property for ALGOL 60 is a design mistake, 
not part of its essence. 

When carried to the extreme, this principle suggests that the lambda 
calculus is the source of all identifier binding. More precisely, except for 
syntactic sugar (language constructs than can be defined as abbreviations 
in terms of more basic constructs, as the for statement is defined in the 
ALGOL60 Report), the only binding mechanism should be the lambda 
expression. 
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(2) There are two fundamentally different kinds of type: data types, 
each of which denotes a set of values appropriate for certain variables and 
expressions, and phrase types, each of which denotes a set of meanings 
appropriate for certain identifiers and phrases. 

This syntactic distinction reflects that fact that in ALGOL values (which 
can be assigned to variables) are inherently different from meanings (which 
can be denoted by identifiers and phrases, and passed as parameters). Thus 
ALGOL-like languages contradict the principle of completeness [9]. 

Moreover, in ALGOL itself data types are limited to unstructured types 
such as integer or Boolean, while structuring mechanisms such as 
procedures and arrays are only applicable to phrase types. 

(3) The order of evaluation for parts of expressions, and of implicit 
conversions between data or phrase types, should be indeterminate, but the 
meaning of the language, at an appropriate level of abstraction, should be 
independent of this indeterminacy. 

By 'appropriate' we mean a level of abstraction where overflow and 
roundoff are ignored and termination with an error message is regarded as 
equivalent to nontermination. This principle prohibits expressions with 
side effects such as assignments to nonlocal variables or jumps to nonlocal 
labels, but not expressions that cause error stops. 

If types are described grammatically, the indeterminacy of implicit 
conversions will cause ambiguity. For example, in a context calling for a 
real expression, 3 + 4 might be parsed as either 

(real exp) 

I 
( integer exp) 

/I~ 
( integer exp) + ( integer exp) 

or 

(real exp) 

~1-~ 
( real exp) + ( real exp) 

I I 
( integer exp) ( integer exp) 

Except for overflow and (with unfortunate hardware) roundoff, both 
parses should have the same meaning. 

(4) Facilities such as procedure definition, recursion, and conditional 
and case constructions should be uniformly applicable to all phrase types. 
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This principle leads to procedures whose calls are procedures, but under 
a call-by-name regime such procedures do not violate a stack discipline in 
the way that, for example, function-returning functions in GEDANKEN 

violate such a discipline. More interestingly, this principle leads to 
conditional variables and procedures whose calls are variables; indeed 
arrays can be regarded as a special case of the latter. 

(57 The language should obey a stack discipline, and its definition 
should make this discipline obvious. 

Almost any form of language definition can be divided into primary and 
secondary parts, e.g. Table 1. 

Table I 

Denotational semantics 

Algebraic semantics 

Operational semantics 

Primary 

Domain equations 

Definition of the target 
algebra carrier 

Definition of the set of 
states of the interpreter 

Secondary 

Semantic equations 

Definition of the target 
algebra operations 

Definition of the state
transition function 

By "should make the stack discipline obvious" we mean that the stack 
discipline should be a consequence of the primary part of the language 
definition. Specifically, the primary part should show that the execution of 
a statement never changes the 'shape' of the store, i.e. the aspect of the 
store that reflects storage allocation. 

3. Data Types and Expressions 

To stay close to ALGOL 60, we take {integer, real, Boolean} as the set of 
data types. To introduce an implicit conversion from integer to real, we 
define the partial ordering 

• real 

I • Boolean 

• integer 
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and say that r is a subtype of r' when r ::5 r'. 
For each data type r there is a phrase type r exp(ression), and these 

phrase types inherit the subtype relation of the data types: 

• real exp 

I 
• Boolean exp 

• integer exp 

When 0::5 0' we again say that 0 is a subtype of 0', now meaning that any 
phrase of type 0 can appear in any context requiring a phrase type 0', e.g. 
any integer expression can occur in any context requiring a real expression. 

A type assignment is a function from some finite set of identifiers to 
phrase types. To describe the syntax of our language we will use phrase 
class names of the form ( 0, n), where 0 is a phrase type and rr is a type 
assignment, to denote the set of phrases P such that 

(1) The identifiers occurring free in P belong to the domain of n. 
(2) :When its free identifiers are given the phrase types indicated by n, P 

has phrase type 0. 
We will describe syntax by production schemas (in the spirit though not 

the notation of Van Wijngaarden) in which the metavariables r, 0, n, and 1 

range over data types, phrase types, type assignments, and identifiers 
respectively. A fragment of an appropriate syntax for expressions is 

(0, n > :: = (0', n > when 0'::5 B, 

(B,n)::=1 when zEdom(n) and n(1)=B, 

( integer exp, n) : : = 0 I l I ( integer exp, n) + ( integer exp, n >, 
( real exp, n > : : = 0. 5 I ( real exp, n) + ( real exp, n > , 

( Boolean exp, n):: = true I false I ( r exp, n) = ( r exp, n) 

I ( Boolean exp, n) and ( Boolean exp, n ) . 

(Here dom(n) denotes the domain of the type assignment n.) 
This is an abstract syntax to the extent that precedence considerations 

are ignored. One could 'concretize' it by adding parentheses around the 
right side of each production, but a realistic concrete syntax would require 
far fewer parentheses. In fact, we will use fewer parentheses in our 
examples of programs, trusting the reader's intuition to supply the missing 
ones sensibly. 
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In the first two production schemas 0 ranges over all phrase types, not 
just the types of expressions introduced so far. The first schema shows the 
purpose of the subtype relationship. The second shows that an identifier 
assigned some phrase type can always be used as a phrase of that type. 

In accordance with Principle 3, the syntax is ambiguous (aside from 
parenthesization considerations), but this ambiguity must not result in 
ambiguous meanings. An appropriate method for insuring this 
requirement is described in [19); it requires that the syntax possess a 
property that might be called 'minimal typing': 

For any phrase P and type assignment rr, if there is any 0 such that 
PE ( 0, n ) , then there is a minimal 00 such that PE ( 0, n) if and only if 
0o-:50. 

(When a phrase class name is used as a set it stands for the set of all 
phrases that can be derived from that phrase class name.) 

To prohibit expressions with side effects, we will forbid any occurrence 
of statements within expressions (except in vacuous contexts such as 
parameters of constant procedures) and insist that the bodies of function 
procedures be expressions. Actually, this is unnecessarily Draconian; one 
would like to permit block expressions, as in ALGOL W [22], but restricted 
to avoid side effects. However, this topic is beyond the scope of this paper. 

4. The Simple Imperative Language 

The next step is to introduce variables for each data type. But here we 
encounter a surprising complication. As a consequence of Principle 4, we 
want to have conditional variables. For example, when n is an integer 
variable and x is a real variable, we should be able to write if p then n else 
x on either side of an assignment statement. When used on the right side, 
this phrase must be considered as a real expression, since when p is false it 
can produce a noninteger value. But when used on the left side, it must be 
considered an integer variable, since when p is true it cannot accept a 
noninteger value. Thus there are variables that accept a different data type 
than they produce. 

The first step in dealing with this situation is to realize that, in addition 
to variables, which accept and produce values, and expressions, which only 
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produce values, it is natural to introduce phrases called acceptors, which 
only accept values. Thus for each data typer, we will have the phrase typer 
acc(eptor). The subtype relation for acceptors is the dual of the subtype 
relation for data types. For example, since integer is a subtype of real, 
integer values can be implicitly converted into real values, so that a real 
acceptor can be used in any context requiring an integer acceptor, i.e. real 
ace::;; integer acc. 

The second step is to categorize variables separately by the data types 
that they accept and produce. Thus for each pair of data types r 1 and r2 , we 
have the phrase type r1 (accepting) r2 (producing) var(iable), which is a 
subtype of r'1 ,; var when r 1 ace is a subtype of r'1 ace and r2 exp is a sub
type of,; exp, i.e. when the data types satisfy r'1 s r 1 and , 2 ::;; ,;. 

subtype of ,; exp, i.e. when the data types satisfy r'
1

::;; r
1 

and r
2

::;; r'
2

. 

The case construction for variables raises the same difficulty as the 
conditional. But a further problem arises if the empty construction case n 
of () is permitted. Of course, it would not be unreasonable to prohibit this 
construction, but it is consistent to view it as a phrase whose phrase type 
univ(ersal) is a subtype of all phrase types. All phrases of this type have the 
meaning 'undefined', which implicitly converts into the undefined element 
of the domain of meanings of any other phrase type. 

The only other phrase type needed to describe the simple imperative 
language is comm(and). (Throughout this paper, we will speak of 
commands rather than statements.) In summary, the phrase types of the 
simple imperative language, which we will call primitive phrase types, are 

r exp 

race 

r 1 r2 var 

comm 

univ 

and the subtype relation is the least partial ordering such that 

,::;; r' implies r exp::;; r' exp, 

r's r implies r ace::;; r' ace, 

r'
1

::;; r
1 

and ,
2

::;; ,; implies r
1 
r

2 
vars r'

1 
,; var 

r
1 
r

2 
var::; r

1 
ace, 

r1 r2 var::; r2 exp, 

univ::;;0. 
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An appropriate syntax is: 

( comm, n ) : : = skip I ( r ace, n ) : = ( r exp, n ) I ( comm, n ) ; ( comm, n ) 

I while ( Boolean exp, n ) do ( comm, n ) , 

(0,n)::=if (Booleanexp,n) then (0,n) else (0,n) 

lease (integer exp,n) of (<0,n), ... ,(0,n)). 

In the last two lines, 0 stands for any phrase type, including the 
nonprimitive types to be introduced later. The minimal typing property 
holds for these productions if, in the partial ordering of phrase types, every 
finite set with an upper bound has a least upper bound. In fact, the 
achievement of this property for primitive phrase types was the real goal of 
the arguments about acceptors, variables, and univ at the beginning of this 
section. 

For mathematical simplicity, it is tempting to make the partial ordering 
of phrase types into a lattice by introducing a phrase type ns (nonsense), of 
which all phrase types are subtypes. However, although a nonsense type 
simplifies certain theoretical techniques, as in [19], it is not germaine to the 
purposes of this paper. 

A complete semantic definition of the simple imperative language is 
given in (19]; here we will only delineate the basic nature of such a 
definition by giving its domain equations. For each phrase type 0, there is a 
domain of meanings D0 , and for each type assignment n, there is a domain 
of environments Env71 , which is the product TI ,ectom(n) Dn(,) of the domains 
for the type of each identifier in dom(n ). Then for each phrase class ( 0, n) 
there is a semantic function from phrases to environments to meanings, i.e. 
µe,n E (0, n )---->(Env71 ---->D0). 

For direct semantics Dcomm is a domain of state transitions, i.e. S----> SJ.. , 
where Sis the set of states of the store (hereafter simply called states), and 
SJ.. indicates the formation of a domain by adding an undefined element .l 
(denoting nontermination) to the set S. Similarly D,exp is S---->(V,) J.., where 
Vinteger is the set of integers, V,eal is the set of real numbers, and V8001ean is 
the set { true, false}. 

There are two ways of treating variables. The more conventional is to say 
that, for each data type, a state has a component mapping an appropriate 
set of 'L-values' (or 'names' or 'references' or 'abstract addresses') into 
values of that data type, i.e. 
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S = (Linteger-> Vinteger) X (Lreal-> V,eal) X (Lsoolean-> Vsoolean). 

Then Dr var is S->(Lr) .L. 
A preferable approach, however, avoids any commitment to a notion 

such as L-values or references, and more clearly reveals the relationship 
among variables, acceptors, and expressions. One regards the meaning of 
an acceptor as a function mapping each value into the state transformation 
caused by assigning that value to the acceptor, so that 
Dace= Vr->(S->S .L ). Then the meaning of a variable is a pair of functions 
describing its meanings in its dual roles of acceptor and expression, so that 
Dr r var= Dr ace X Dr exp. The implicit conversion functions from variables 

1 2 I 2 

to acceptors and expressions are the projections from Dr r var to Dr ace and 
I 2 I 

Dr2 exp• 

These two views of variables provide a nice example of the way in which 
formal definition can influence language design. As long as we do not 
impose any structure involving L-values or references upon states, there is 
no danger of defining anyting, such as call by reference, that involves these 
concepts. On the other hand, the more abstract approach opens the door to 
features, such as doublets in P0P-2 [21] or implicit 'references' in 
GEDANKEN [9], that define a variable by giving arbitrary procedures for 
accepting and producing values. 

In fact, the more abstract treatment of variables makes no commitment 
at all to the structure of states; S is a parameter of the semantics that can 
sensibly stand for any set at all. To emphasize this generality, we make San 
explicit argument of D0 and Env 11 , and regard the semantics of a phrase as 
a family of functions, indexed by S, from environments to meanings: 

if PE ( 0, n), then µ 0, 11 (P)(S) E Env 11 (S)-> D 0(S), 

where 

Env11 (S) = IT 1Edom(rr) Drr(1)(S), 

Dcomm(S)=S->S.L, 

Dr, r2 var (S) = Dr, ace (S) X Dr2 exp (S). 

However, although the semantics of a phrase is a family of environment-
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to-meaning functions, the members of this family must bear a close 
relationship to one another. Roughly speaking, whenever a state set S can 
be 'expanded' into another state set S', the semantics of a phrase for S must 
be related to its semantics for S'. 

To make the notion of expansion precise, we first introduce some useful 
notation: 

(Identity and composition of functions) We write ls for the identity 
function on S, and • for functional composition in diagrammatic order (so 
that (f-g)(x)=g(f(x))). 

(Strict extension) When f E S-+S'1-, we write Jo for the .l-preserving 
extension of f to S 1- -> S'1- . When f ES-> S', we write f 1- for the .l -
preserving extension of Jto S 1- -+S'1- . 

(Identity and composition of state-transition functions) We write ls for 
the identity injection from S to S 1- . When f, g ES-> S 1- , we write f * g for 
f • (g O ) E S-> S 1_ . 

(Diagonalization) We write Ds for the continuous function from 
S-+S-+S 1- to S-+S 1- such that Ds(h)(a) = h(a)(a). 

In the last definition (and later in this paper) we assume that -> is right 
associative and that function (and procedure) application is left 
associative. 

Then we define an expansion of S to S' to be a pair (g, G ) of functions 
gES'-+S, GE(S->S1_)->(S'->S 11_) such that 

(1) G is continuous and .l -preserving. 
(2) G(ls) =ls,. 

(3) Whenf1J2ES->S1-, G(f1 *f2)=G(fi)*Gif2)
(4) WhenfES->S1-, g•f=G(f)·(g1_)-
(5) When h E S-+S->S 1-, G(Ds(h)) =Ds,(g• h· G). 
Intuitively, g maps each state in S' into the member of S that is 

'embedded' within it, while G maps each state-transition function in S-+S 1-
into the state-transition function in S'-> S'1- that 'simulates' it. 

More precisely, an expansion of S to S' induces, for each phrase type 0, a 
function in D 0(S)-+D0(S') that maps meanings appropriate to S into 
meanings appropriate to S'. If we write D 0 ( (g, G)) for the function in 
D 0(S)-+D0(S') induced by (g,G), then 

Dcomm( (g, G)) = G, 

D,exp((g, G ))(eE S-+(V,))=g• e, 
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Dracc( (g, G) )(a E VT -+Dcomm(S)) = a· G, 

Drr va,((g,G))((a,e))=Dr acc((g,G))(a),Dr exp((g,G))(e)). 
I 2 I 2 

By pointwise extension, an expansion of S to S' induces, for each type 
assignment rr, a function in Env 71 (S)-+ Env 71 (S') that maps environments 
appropriate to S into environments appropriate to S'. If we write 
Env11 ((g,G)) for the function in Env11 (S)-+Env11 (S') induced by (g,G), 
then 

Env 11 ( ( g, G) )(1'/ E Env 11 (S))(1) = D11 (,) ( ( g, G) )(1'/(1 )). 

We can now state the fundamental relationship between the semantics of 
a phrase for different state sets: If Pis a phrase in < 0, rr) and ( ( g, G)) is a,: 
expansion of S to S', then 

(In fact, properties (1) to (5) of expansions are sufficient to make this 
relationship hold for all phrases of the simple imperative language.) 

As shown in [20], this development can be described succinctly in the 
language of category theory. State sets and expansions form a category J.:, 
with Us, /3_,3 ) as the identity on Sand (g, G) • (g', G') = (g' • g, G· G') 

" as composition. Then each D0 and Env 11 is a functor from J; to the category 
Dom of domains and continuous functions, and the fundamental relation
ship given above is that µ0, 11 (P) is a natural transformation from Env 71 to 
De, 

5. Procedures and Their Declarations 

To provide procedures, we introduce a binary operation -+ upon phrase 
types. A phrase of type 01 -+ 02 denotes a procedure whose calls are phrases 
of type 02 containing an actual parameter of type 01 . Multiple parameters 
will be treated by Currying, i.e. 

P(A 1, ... ,An) means P(A 1) • .. (An) 
and 

A (F1 : 01, ... , Fn : 0n) • B means AF1 : 01 • • .. • AFn : 0n • B. 

This way of desugaring multiple parameters is sufficiently well known that 
we will not formalize it. 
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Thus what would conventionally be called a proper procedure (or r 
function procedure) accepting parameters of types 01, ... , 0n is regarded as a 
phrase of type 0 1 ->·••-+0n-+comm (or 0 1 -+•••-+0n-+r exp). Note that 
parameterless proper procedures are simply commands (as was recognized 
in ALGOL W [22), where an actual parameter of this type could be any 
command), and parameterless function procedures are simply expressions 
(which is a natural and pleasant consequence of call by name). 

It is easy to see that if 02 $ 0;, then 01 -+ 02 $ 01 -+ 0;. Less obviously, if 
0; $ 01 , then 01 -+ 02 $ 0; -+ 02 . For example, since an integer expression can 
appear in any context requiring a real expression, a proper procedure 
accepting a real expression can also accept any integer expression and is 
therefore meaningful in any context requiring a proper procedure accepting 
an integer expression. Thus real exp-+comm$integer exp-+comm. 

In summary, the set of phrase types is the smallest set containing the 
primitive phrase types and closed under the binary operation -+. Its 
subtype relation is the least partial ordering satisfying the properties given 
earlier plus 

In brief, -+ is antimonotone in its first operand and monotone in its second 
operand. 

A suitable syntax for application (procedure statements and function 
designators), abstraction (lambda expressions), and least fixed-points 
(recursion) is 

( 02, n: > : := ( 01 -+ 02, n: > ( < 01' n: > ), 

(01 --,.02, n: >::=Al: 01. (02, [n: I l: 0i] ), 

(0, n) ::= rec(0->0, n:). 

Here [ n: I 1: 01] denotes the type assignment similar to n except that it maps 1 

into 01, i.e. 

dom([n: I 1: 01]) = dom(n:) U {1 }, 

[n: I 1: 01 )(1) = 01' 

[n: I 1: 0i](1') = 1r.(1') when 1' * 1. 

For later developments, it will be convenient to extend this notation by 
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using the following abbreviations: 

[n I 11: 01 I· .. I ln: 0n] = [· .. [n! l1: 0iJ··· I ln: 0n], 

[11: 01 I··· I ln: 0n] = [el 11: 01 I··· I ln: 0nJ 

359 

where e is the type assignment with empty domain. Note that the latter 
form can be used to notate any type assignment explicitly. 

The obvious approach to semantics is to take the meanings of phrases of 
type 01 ➔ 02 to be continuous functions from meanings of phrases of type 01 

to meanings of phrases of type 02 , i.e. D 0 -. 0 (S) =De (S)-+De (S). 
I 2 1 2 

However, when we consider variable declarations in the next section we 
will find that this approach conflicts with Principle 5. 

Even in the absence of a definite semantics, meaning can be clarified by 
equivalences. We write P=e,rr Q to indicate that µ0,rr(P) =µ 0,rr(Q), i.e. that 
P and Q have the same meaning when regarded as phrases in ( 0, n ) . 

First we have the standard equivalences of the (typed) lambda calculus. 
If PE (02, [n I 1: 0i]) and QE (0i, n), then 

(beta reduction) 

where Pl,➔ Q denotes the result of substituting Q for the free occurrences of 
1 in P, with appropriate renaming of bound identifiers in P. If 
PE (01 -+02, n > and 1$ dom(n), then 

(eta reduction) 

Next, an obvious equivalence describes the fixed-point property of rec. 
If PE (0->0, n; ), then 

rec P=e,rcP(rec P). 

Finally, two equivalences relate procedures to the conditional construc
tion. If PE (Boolean exp, n ), Q, RE (01 -+02 , rr) and SE (01, n >, then 

(if P then Q else R)(S)=e2,rrif P then Q(S) else R(S). 

If PE (Boolean exp, n ), Q, RE (02 , [n I 1: Bi]), and 1 $ dom(n), then 

Al: 01 • if P then Q else R =e, -e2, rr if P then Al: 01 • Q else Al: 01 • R. 

For the declaration of procedures, we prefer the let and letrec notation 
of Landin [3] to that of ALGOL 60; it is uniformly applicable to all phrase 
types (not just procedures), it distinguishes clearly between nonrecursive 
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and recursive cases, and it doesn't make declarations look like commands. 
The syntax is 

(0,n) ::=let i1 be (0i,n) &···& ln be (0n,rc) in (0,n') 

I letrec 11 : 01 be ( e,' TC I > & ••• & ln : en be ( 0n, TC I > in ( 0, TC I > 

where n' = [n I 11 : e, I ... I ln: en]. (Note that the types 01, ••. ' en must be stated 
explicitly for letrec but not let.) 

This notation can be defined as syntactic sugar in terms of application, 
abstraction, and rec. The nonrecursive let construction is straightforward. 
If P 1 E ( 01, re), ... ,Pn E ( 0m n ), and PE ( 0, re'), then 

let 11 be P 1 & ... & ln be Pn in P=-0, 11 

(.l.11 : 0, • • .. ·Aln: 0n • P)(P1) • • • (Pn ). 

This equivalence can be used to remove all occurrences of let from a 
program without changing its meaning. Although it is formally similar to 
the equivalence given by Landin [3], it has a different import since call by 
name is being used instead of call by value. For example, if Eis an integer 
expression, then let x be E in 3 has the same meaning as (.l.x: integer exp. 3) 
(E) which, by beta reduction, has the same meaning as 3, even when Eis 
nonterminating. If x and y are integer variables, let z be x in (x := 4; y: = z) 
has the same meaning as (.l.z: integer integer var· (x := 4; y: = z))(x) which, 
by beta reduction, has the same meaning as x := 4; y: =x. 

To treat the recursive letrec construction, we will first define the 
nonmultiple case and then show how multiple declarations can be 
reduced to this case. For the nonmultiple case we follow Landin: If 
P1 E (01, [re I 11: 0i]) and PE (0, [n I i1: 0i]), then 

letrec 11 : 01 be P1 in P=-0, 11 

(.l.11 : 01 • P)(rec .l.11 : 01 • P1 ). 

For the multiple case we give an equivalence, suggested by F.J. Oles, that 
avoids the use of products of phrase types. If P1 E ( 01, re'), ... ,Pn E ( 0m re'), 

and PE (0, n' ), where re'= [re I 11: 01 I··· I ln: Bnl. then 

letrec 11 :01 be P1 &···& ln:0n be Pn inP=e,rr 

letrec 11 : 01 be 

(letrec 12 : 02 be P2 & • • • & ln: 0n be Pn in P1) 

in (lectrec 12 : 02 be P2 & ••• & ln : en be Pn in P). 
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6. Variable Declarations 

To declare variables, we use the syntax 

(comm, n) ::= new r var 1 in (comm, [n I 1: r r var]) 

(Note that declared variables always accept and produce the same data 
type.) However, since this construction involves binding we want to 
desugar it into a form in which the binding is done by a lambda expression. 
The solution is to introduce the more basic construction 

(comm, n) ::= newvar(r)(r r var-comm, n) 

and to define 

new r var I in P =comm, rr newvar( r) Al: r r var· P, 

where Pe (comm, [n I 1: r r var]). 
Semantically, variable declarations raise a serious problem. The 

conventional approach is to permit the set S of store states to contain states 
with different numbers of L-values, and to define variable declaration to 
be an operation that adds an L-value to the state. For example, one might 
take a state to be a collection of strings of values for each data type 

S = Vi!teger X V,!a1 X Vi!oolean , 

and define the declaration of a r variable to be an operation that adds one 
more component of the string of values of type r. 

The problem with this view is that it violates Principle 5 by obscuring the 
stack discipline. Execution of a command containing variable declarations 
permanently alters the shape of the store, i.e. the number of L-values or the 
length of the component strings. In effect, the store is a heap without a 
garbage collector, rather than a stack. H is hardly surprising that this kind 
of model inspired languages that are closer to LISP than to ALGOL. 

Our solution to this difficulty takes advantage of the fact that the 
semantics of a phrase is a family of environment-to-meaning functions for 
different sets of states. Instead of using a single set containing states of 
different shapes and regarding variable declaration as changing the shape 
of a state, we use sets of states with the same shape and regard variable 
declaration as changing the set of states. Specifically, if C is new r var I in 
C', then the semantics of C for a state set S depends upon the semantics of 
C' for the state set S x Vr. Thus, since the semantics of C for S maps an 
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environment into a mapping in Dcomm (S) = S-+S J., it is obvious that 
executing C will not change the shape of a state. 

To make this precise, suppose C'e (comm, [nlz:r r var]), so that 
CE ( comm, ;rr ) • We first note that S and S x VT are related by the 
expansion ( g, G ) in which g is the function from S x VT to S such that 
g( ( a, v)) = a and G is the function from S-+S J. to (S x Vr)-+(S x VT) _j_ such 
that 

G(c)((a,v))=ifc(a)= J_ then J_ else (c(a),v). 

This expansion induces a function Env,,( (g, G)) from Env,,(S) to 
Env,,(Sx VT). 

Let e be the function from S x VT to (VT) 1. such that e( ( a, v)) = v, and a 
be a function from VT to (Sx VT)-+(Sx VT)J. such that 
a(v')((a,v))=(a,v'). Then (a,e)EDrrva,(SxVT) is an appropriate 
meaning for the variable being declared. 

To obtain the meaning of new r var 1 in C' for the state set S and an 
environment 1'/ E Env,, (S), we use Env,, ( (g, G ) ) to map 1'/ into Env,, (S x V,) 
and then alter the resulting environment to map I into ( a, e), obtaining 

Then we take the meaning of C' for the state set S x VT and the environment 
1'/', and compose this meaning, which is a state-transition function from 
S x VT to (S x VT) J. , with a function that initializes the new variable to 
some standard initial value initT E VT, and a function which forgets the 
final value of the variable: 

µcomm,,r(new i var l in C')(S)(l'/) = 

= (Ja • ( a, initT)) • µcomm, [rr I,: rrvar] (C')(S X Vt )(1'/') • (g J. ). 

(Our unALG0L-like use of a standard initialization is the simplest way to 
avoid the abyss of nondeterminate semantics.) 

However, this approach to variable declaration has a radical effect on 
the notion of what procedures mean that forces us to abandon the 
conventional idea that D 0 -. 0 (S) = D 0 (S)-+ D 0 (S). The problem is that 

I 2 1 2 

variable declarations may intervene between the point of definition of a 
procedure and its point of call, so that the state set S' relevant to the call is 
different than the state set S at the point of definition, though there must 
be an expansion from S to S'. 
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As a consequence, a member p of D01 ➔ 02 (S) must be a family of 
functions describing the meaning of a procedure for different S'. More
over, each of these functions, in addition to accepting the usual argument 
in D0 (S') must also accept an expansion from S to S' that shows how the 

I 

states of S are embedded in the richer states of S'. 
As one might expect, the members of the family p must satisfy a 

stringent relationship (which can be expressed by saying that p is an 
appropriate kind of natural transformation). A precise definition is the 
following (where expand(S, S') is the set of expansions from S to S'): 
p E D 01 ➔ ez(S) if and only if pis a state-set-indexed family of functions, 

p(S') E expand(S, S') x D 0 (S')-+ D 0 (S'), 
I 2 

such that, for all (g, G > E expand(S, S'), (g', G') E expand(S', S"), and 
aED01 (S'). 

D02 ( (g', G') )(p(S')( (g, G ), a))= 

= p(S")( (g' • g, G • G' ),De ( (g', G') )(a)). 
I 

To make D01 ➔02 (S) into a domain, its members are ordered pointwise, i.e. 
Af;;;P2 if and only if (VS') p 1 (S')!:P2(S'). 

Finally, we must say how an expansion from S to S' induces a function 
from D0 -+O (S) to D0 ➔e (S'): If (g, G) E expand(S, S') and p E D0 _, 0 (S), 

I 2 I 2 I 2 

then D0 _, 0 ((g, G) )(p) E D0 ➔e (S') is the family p' of functions such that, 
I 2 I 2 

for all S", (g', G') E expand(S', S"), and a E D01 (S"), 

p'(S")( (g', G' ), a)= p(S")( (g' • g, G • G' ), a). 

A full description of this kind of semantics is presented in [20]; in 
particular abstraction and application are defined and the validity of beta 
and eta reduction is proved. This is done by showing that the above 
definition of -+ makes Doml: (the category of functors and natural 
transformations from Ito Dom) into a Cartesian closed category, which is 
an extremely general model of the typed lambda calculus. 

Despite its apparent complexity, much of which is due to our avoidance 
of category theory in this exposition, this kind of semantics shows that our 
language is obtained by adding the typed lambda calculus to the simple 
imperative language in a way that imposes a stack discipline. The essential 
idea is that the procedure mechanism involves a 'hidden abstraction' over a 
family of semantics indexed by state sets. 
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We suspect that this kind of hidden abstraction may arise in other 
situations where a formal language is extended by adding a procedural or 
definitional mechanism based on the lambda calculus. The generality of 
the idea is indicated by the fact that the definition of ➔ and the proof that 
DomI is Cartesian closed do not depend upon the nature of the category I. 

7. Call by Value 

In the ALGOL 60 report, call by value is explained in terms of call by 
name by saying that a value specification is equivalent to a certain modifi
cation of the procedure body. In fact, however, this modification involves 
only the body and not the formal parameter list, so that it is equally 
applicable to commands that are not procedure bodies. In essence, call by 
value is really an operation on commands rather than parameters. 

To capture this idea, we introduce the syntax 

(comm, [n I 1: r exp])::= r value I in (comm, [n I 1: rrvar]) 

which is desugared by the equivalence 

t value l in C=comm, [rrl1:rexp] 

new r var 1' in (1' := 1; (Al: r r var• C)(1')), 

where CE ( comm, [n I 1: r r var]) and d ~ dom(n) U { 1}. (This is only a 
generalization of call by value for proper procedures; an analogous general
ization for function procedures would require block expressions.) 

Notice that r value 1 in C has a peculiar binding structure: the first 
occurrence of I is a binder whose scope is C, yet this occurrence is itself 
free. (A similar phenomenon occurs in the conventional notation for 
indefinite integration.) 

Call by result, as in ALGOL W [22], can obviously be treated similarly. 

8. Arrays 

Arrays of the kind used in ALGOL 60 can be viewed as procedures whose 
calls are variables. Thus an n-dimensional r array is a phrase of type 

integer exp-+ •·· ➔integer exp➔r r var. 

n times 
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(Notice that this is a phrase type. If arrays were introduced as a data type, 
one could assign to entire array variables (as in APL) but not to their 
elements.) 

The declaration of such arrays is a straightforward generalization of 
variable declarations, and can be desugared similarly. The details are left to 
the reader. 

Unfortunately, this kind of array, like that of ALGOL, has the short
coming that it does not carry its own bounds information. A possible 
solution is to introduce, for each n ~ 1, a phrase type array (n, r) that is a 
subtype of the type displayed above, and to provide bound-extraction 
operations that act upon these new phrase types. The concept of array in 
[28] could be treated similarly. 

9. Labels 

Since all one can do with a label I is to jump to it, its meaning can be 
taken to be the meaning of goto 1. Thus labels can be viewed as identifiers 
of phrase type comm, and goto I can simply be written as 1. 

However, as suggested in ALGOL 68, labels denote a special kind of 
command, which we will call a completion, that has the property that it 
never returns control to its successor. If completions are not distinguished 
as a separate phrase type, it becomes difficult for either a human reader or 
a compiler to analyze control flow, particularly when procedure 
parameters denoting completions are only specified to be commands. To 
avoid this, we introduce compl(etion) as an additional phrase type that is a 
subtype of comm (so that completions can always be used as commands 
but not vice-versa). 

Thus labels are identifiers of phrase type compl. Moreover, the 
production schemas for conditional and case constructions, procedure 
application, and recursion provide a variety of compound phrases of type 
compl. This variety can be enriched by the following syntax, in which 
various ways of forming commands are used to form completions: 

(compl, n) ::= (comm, n ); (compl, n) 

I new r var 1 in (compl, [n I 1: rrvar]) 

llnewvar (r) (r r var➔compl, n) 

(compL [n I 1: r exp])::= r value 1 in (compl, [n I 1: r r var]). 
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Two more schemas suffice to describe commands and completions in 
which labels are declared in an ALGOL-like notation: 

(comm, n) ::= (comm, n' ); 11 : (comm, n') ; ···; ln: (comm, n') 

where 11, ... , ln are distinct and n' = [n I 11 : com pl I··· I 1n: com pl]; 

(compL n) ::= (comm, n'); 11 : (compL n') ; ... ; ln: (compL n') 

where 11, ... , ln are distinct and n' = [n I 11 : comp! I· .. I ln: comp!]. 

Since these declarative constructions involve binding, we must desugar 
them into more basic forms. For this purpose, we introduce an escape 
operation that is a paremeterless variant of Landin's J-operator [3]. 

(comm,n) ::=escape (compl-->comm,n). 

This operation can be described in terms of a conventional label 
declaration: If PE ( compl-->comm, n) and r $ dom(n ), then 

escape P=comm, 71 (P(1); l: skip). 

Our present goal, however, is the reverse. To describe label declarations 
in terms of escapes, we proceed in two steps. First, we describe a label
declaring command in terms of a label-declaring completion by adding a 
final jump to an enclosing escape: If 11, ... , In, 1 are distinct identifiers, 
n'= [n I 11 :comp! I··· I 1n :compl], C0 , •.. , Cn E (comm, n'), and 1E!,dom(n), 
then 

escape At: compl. (C0; 11 : C1 ; ... ; ln: (Cn: 1)). 

Then we describe a label-declaring completion in terms of recursive defini
tions: If 11, ... , ln are distinct identifiers, n' = [n I 11 : compl I··· I ln: com pl], 
C0 , ... ,Cn_ 1 E(comm, n'), andKE(compLn'), then 

Co; 11:C, ; ... ;tn:K=compl,n 

letrec 1J: compl be (C1 ; 12) & .. • & ln- I: compl be (Cn- I; ln) 

& ln :compl be K 

in (C0 ; 1i). 

We have chosen to desugar the ALGOL notation for declaring labels 
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because of its familiarity. Other, possibly preferable notations can be 
treated similarly; for example, Zahn's event facility [29] can be described 
by escapes without recursion. Actually, the wisest approach might be to 
avoid all syntactic sugar and simply provide escapes. 

Semantically, the introduction of labels requires a change from direct to 
continuation semantics, which will not be discussed here. In [20] it is shown 
that hidden abstraction on state sets can be extended to continuation 
semantics, though with a different notion of expansion. 

10. Products and Sums 

Although procedures and arrays are the only ways of building 
compound phrase types in ALGOL, most newer languages provide some 
kind of product of types, such as records in ALGOL W or class members in 
Simula 67 [26], and often some kind of sum of types, such as unions in 
ALGOL 68 or variant records in PASCAL. In this section we will explore the 
addition of such mechanisms to our illustrative language. 

Since we distinguish two kinds of type, we must decide whether to have 
products of data types or phrase types (or both). Products of data types 
would be record-like entities, except that one would always assign to entire 
records rather than their components. (Complex numbers are a good 
example of a simple product of data type.) On the other hand, products of 
phrase types are more like members of SIMULA classes than like records; 
one can never assign to the entire object, but only to components that are 
variables; other types of components, such as procedures, are also 
possible. In this paper, we will only consider products (and sums) of phrase 
types, thereby retaining the ALGOL characteristic that data types are never 
compound. 

We must also decide between numbered and named products, i.e. 
between selecting components by an ordinal or by an identifier (i.e. field 
name). In this paper we will explore named products, since they are more 
commonly used than numbered products, and also since they are amenable 
to a richer subtype relationship. 

To introduct named products of phrase types, we expand the set of 
phrase types to include 

prod n, 
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where 7r is a type assignment. Usually we will write products in the form 
prod [1, : 01 I··· I tn: 0n], where 11, ... , ln are distinct identifiers. However, it 
should be understood that the phrase type denoted by this expression is 
independent of the ordering of the pairs 1k: 0k. 

For a subtype ordering, one at least wants a component-wise ordering. 
But a more interesting and useful structure arises if we permit implicit 
conversions that drop components, e.g. 

prod [age: integer exp I sex: Boolean exp I salary: integer var] 
::5 prod [age: integer exp I salary: integer var]. 

In general, we have 

prod 1r ::5 prod n' if and only if 

dom(n')!;:dom(n) and (V1edom(n')) n(1):51r'(1). 

Next we introduce the syntax of phrases for constructing products and 
selecting their components: 

where 11, ... , ln are distinct identifiers 

(0, 1r) ::=(prod[,: 0], 1r) • ,. 

In the second production, notice that our subtype ordering permits us to 
write [1: 0] instead of[··· I 1: 01 ···]. 

The semantics of products is explicated by the following equivalences: 
When P1 E (01, 7r ), ... ,Pn E (0n, 7r ), 11, ... ,ln are distinct, and l :5k:5n, 

(11 :Pi, ... , ln :Pn) • lk=ek,npk 

When Pe (prod n', n) and dom(n') = {11, ... , ln }, 

(11: (P· zi), ... , ln: (P· ln))=prod n',n P 

We have mentioned that this kind of product is closely related to the 
class concept of SIMULA 67. In [25] it is shown that class declarations (in 
the reference-free sense of Hoare [27] rather than of SIMULA itself) can be 
desugared into constructions using such products. 

Finally, we introduce named sums of phrase types. (Roughly speaking, 
type sums are disjoint unions.) We expand the set of phrase types to 
include 

sum n, 
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where rc is a type assignment. The subtype relation is 

sum rc ::5 sum n' if and only if 

dom(rc)c;;;dom(rc') and (V1Edom(rc)) rc(t)::5n'(t). 
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In contrast to the situation with products, a subtype of a sum can contain 
fewer (rather than more) alternatives. 

To construct sums and to do case analysis, we introduce the syntax 

(sum[r: 0], rc) ::= tag 1: (0, rc ), 

(0, rr) ::=sumcase I is (sum[11 : 01 I··· I ln: 0n], rc) 

in (11 : ( 0, [rr I 1: 0i] ), ... , ln: ( 0, [rr I 1: 0n])) 

where 11, ... , In are distinct identifiers. 
Again, the semantics can be explicated by equivalences. When 11, ... , In 

are distinct, 1 ::5k::5n, P1 E (0, [rc I 1: Bi]), ... ,Pn E (0, [rc I 1: BnJ>, and 
A E (0b rr ), 

sumcase I is tag lk :A in (11 : P1, ... , ln: Pn) =0, 11 

let I be A in Pk. 

When SE (sum n', rc > and dom(rc') = {11, ... ,In}, 

sumcase I is Sin (11 : tag 11 : 1, ... , In: tag ln: 1) =sum rr', 11 S. 

Since sumcase is a binding operation, Principle 1 requires us to express it 
in terms of a construction in which the binding is done by lambda 
expressions. For this purpose, we introduce the idea of 'source-tupling'. 
Suppose P1, ... , Pn are procedures of phrase types 01 ----J, 0, ... , 0n-+ 0 
respectively. Then sourcetuple(11 : P1, ... , In : Pn) is a procedure of type 
sum[11 : 01 I··· I In: 0n 1----J, 0 that will behave like Pk when applied to a 
parameter tagged with zk. 

To make this precise we use the syntax 

(sum[11: 01 I· .. I in: BnJ----J,0, n) ::= 

sourcetuple(11 : ( 01 -0, n ), ... , l n : ( 0n-> 0, n)) 

where 11, ... , ln are distinct identifiers. 
Then sumcase is desugared by the following equivalence: If 11, ... , ln are 

distinct, SE (sum[11 : 01 I· .. I ln: Bnl, n ), P1 E (0, [rc I 1: Bi]), ... , 
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sourcetuple(,, : Al: 0, ·Pi, ... , ln : Al: On· Pn )(S). 

It should be noted that sums of phrase types do not introduce any failure 
of typing such as the 'mutant variable record problem' of PASCAL, 

since one cannot change the tag of a sum by assignment. On the other 
hand, sums of data types would also avoid these problems since a branch 
on the tag of a value would not imply any assumption that a variable with 
that value would continue to possess the same tag. This suggests that the 
type-safety problem with sum-like constructions is due to a failure to 
distinguish data and phrase types. 

11. Final Remarks 

I have neglected the topic of program proving since I have discussed it 
elsewhere at length. Although Hoare's work on proving procedures is 
incompatible with call by name and procedure parameters, an alternative 
approach called specification logic appears promising. In [23] this logic is 
formulated for a subset of ALGOL W; in [24] it is given for a language 
closer to that described here. 

Like ALGOL itself, our illustrative language raises problems of inter
ference, i.e. variable aliasing and interfering side effects of statements and 
proper procedures. The language is rich enough that an assertion that two 
phrases do not interfere must be proved (as in specification logic) rather 
than derived syntactically. Several years ago in [25], I attempted to restrict 
a language like that described here to permit interference to be detected 
syntactically. Unfortunately, this work led to some nasty syntactic compli
cations (described at the end of [25]) that have yet to be resolved. Still, I 
have hopes for the future of this approach. 

Although this paper has dealt with nearly all the significant aspects of 
ALGOL 60, it has not gone much beyond the scope of that language. More 
for lack of understanding than space, I have avoided block expressions, 
user-defined types, polymorphic procedures, recursively defined types, 
indeterminate and concurrent computation, references, and compound 
data types. 
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It remains to be seen whether our model can be extended to cover these 
topics. Of course, some of them could reasonably be labelled unALG0L
like. But the essence of ALGOL is not a straightjacket. It is a conceptual 
universe for language design that one hopes will encompass languages far 
more general than its progenitor. 
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An Operational Semantics for Bounded Nondeterminism 
Equivalent to a Denotational One 
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Dyadic nondeterministic choice is added to the programming language with 
recursive procedures as used in de Bakker's monograph on program correct
ness [5]. This leads to considerable changes in the operational semantics. The 
possible result of the execution of a program is no more given as a single state, 
but as a set of possible states. Furthermore, the execution of a program is no 
more given as a computation sequence but as a set of possible computation 
sequences with tree-like properties. 

We present a 'natural' operational semantics t! defined by means of a 
function 01uu, where •tru121 yields for each program ii£ and each state a a set 
of computation sequences, characterized by equations in the style of Cook [7]. 
For this set of equations we prove, in a topological setting, the existence of a 
unique solution and the equivalence of the operational semantics to the usual 
denotational one, defined by fixed point techniques. 

0. Introduction 

The subject of this paper is to investigate the effects of adding bounded 
nondeterministic choice to a simple language with recursive procedures on 
the definition and properties of the operational semantics. 

The motivation to introduce an operational semantics is the following 
usual one. A method for proving program correctness is to abstract to a 
more mathematical level by defining a denotational semantics and to give a 
proof system on that level. A way to justify this abstraction is to define an 
operational semantics such that on the one hand it is intuitively close to the 
actual program execution and on the other hand can be proved to be 
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equivalent to the denotational semantics. We provide a 'natural' oper
ational semantics; its justification and the proof of its equivalence to a 
denotational one are the main aims of this paper. 

The reasons to add dyadic nondeterministic choice - as will be seen later, 
extension to finite choice introduces no extra problems - are twofold. 
Firstly, in practice nondeterministic choice enters the scene directly, cf. 
Dijkstra's guarded command [9], as well as indirectly, cf. parallellism and 
concurrency [12], where one process is selected to proceed, or one 
communication is selected to be executed. Secondly, in theory nondeter
ministic choice is a fairly easy setting in which tree-like structures appear 
instead of computation sequences as when dealing with deterministic 
sequential programs. This phenomenon also occurs as soon as parallel pro
gramming and concurrent processes are concerned and introduces con
siderable changes in the theoretical treatment. Contrary to the deterministic 
case, justification of the defined operational semantics in view of existence 
and uniqueness of the described function is not a clear case, and thus grew 
into a next-important aim in itself. 

The framework we use is that developed in De Bakker's monograph on 
program correctness [5, especially Chapters 5 and 7]. The (ultra)metric 
distances defined between sets, and convergence with respect to such 
metrics we use, are also extensively employed by Nivat and Arnold ([13] 
and [2]) considering, among other subjects, infinite trees and nondeter
minism. In their approach, trees are essentially programs, whereas we use 
trees of states, i.e. traces of program executions. Furthermore, Arnold and 
Nivat obtain the set of all trees by completion of the set of all finite trees. 
We describe a tree by the set of all paths in the tree; the set of all trees is the 
set of all paths restricted in a suitable way (cf. Definition 9). 

It appears that at three stages of the development we are forced to make 
the same restriction on the set of sequences used. This restriction amounts 
to require a tree-like property with respect to the occurrence of infinite 
branches. 

This central tree-like property already was observed by Back in [3] 
treating unbounded nondeterminism. 

The setup of the paper is as follows. After this introduction, in Section 1 
the syntax and some preliminary information are given. Section 2 starts 
with the definition of an operational semantics by means of the function 
<ef'tUt!Y, which in turn is defined by a set of equations. The main result here is 
the existence proof of a unique solution <ef'eJJt!Y of this set of equations. In 
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Section 3 a denotational semantics is described concisely. Finally, in 
Section 4 we prove the equivalence of the operational semantics to the 
denotational one. 

1. Syntax and Preliminaries 

Recursive procedures and finite nondeterministic choice are the key 
characteristics of the chosen language. Note, that subscripted variables are 
not treated (i.e., no arrays are present). Including these would necessitate a 
more complicated framework and only obscure our intentions. A straight
forward extension is possible. The phrase "Let (a E )C be specified by 
a::= qr lxl a1 a2 is to be understood as: All a or a;, i E / in the sequel are 
assumed to be elements of the set C; a is of the form qr or x or a1a2 , where 
a1, a2 are elements of C already. 

We now define the sets of the syntactic entities we use. 

Definition 1 (Syntax). Let (xE) .h.wH be the set of integer variables. Let 
(m E) .hrtA be the set of constants. Let (PE) 9t.w:YI be the set of procedure 
variables. 

Let (t E) .frSX'Y be the set of integer expressions specified by 

t ::=xi m I t1 + t2 I ... I if b then t1 else 12 fi. 

Let (b E) f!g1,'::rY' be the set of boolean expressions specified by 

b : : = true I false I t 1 = t 2 I • • · I , b I b 1 -::> b2. 

Let (SE) Y'.1~w:Y be the set of statements, specified by 

S::=x:=t1S,;S2 IS1vS2 1 if b then S1 else S2 filP. 

Let (EE) 91J 00'.Y be the set of declarations, specified by 

E::=(P;,;:.S;)7~ 1, n?:0, P;'$P1, 1-s,i<J-s,n. 

Let (RE) ::f>:?W,/J be the set of programs, specified by 

R ::= (El S), for all Pin Sor S;, i= 1, ... ,n, there exists}, 
1-s,j ~ n such that P= P;. 

Note, that bounded choice now can be obtained by applying (S 1 v S2) v S3 . 
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The instances left open in .Jiff!JTJ and f!UY& can be filled in with analogous 
expressions. Note that fJ>gun is defined such, that all programs are closed, 
i.e. only these procedure variables occur in a program, for which the 
procedure body is given in the declaration E. 

The following definitions concern assigning meaning to syntactic 
objects, i.e. semantics. At this stage, there is no distinction between 
operational and denotational semantics. Meaning is assigned by way of 
functions, defined by cases, from a syntactic domain to a domain of 
interpretation. To enable us later to define the rest of the denotational 
semantics we design the domains of interpretation as complete partial 
orders (cpo's). 

Definition 2. (C, [;::) is a cpo iff 
(i) [;:: is a partial order on C, 

(ii) there is an element .1 EC such that, for all c E C, .1 [;:: c, 
(iii) each chain ( c;) ;=: 1 has a least upper bound IJ t~ 1 c; E C. 

Definition 3 (Domains of interpretation). Vo= IN, natural numbers; Wo = 
{tt,ff}, truth values; I 0=Yr#,W--+V0, functions assigning meaning to 
variables. 

Let (a E) V = Vo U { .1 v }, cpo by a1 i;;;;:a2 iff a1 = .1 v or a1 = a2. 
Let (PE) W = Wo U { .1 w}, cpo analogously. 
Let ( a E )I= 1:0 U { .1 } , cpo analogously. 

Definition 4. For C cpo, c1, c2, .1 cE C 

if p = tt, 
if fJ =ff, 

if /J=.lw, 

We now define the meaning functions for integer and boolean expres
sions which yield, by cases, for each of the expressions and a state a a value 
in one of the domains of interpretation. 

Definition 5. 

(a) Y: Ylif-1'--+ (I-+ V), 

1/(t)(J_)= .lv, 
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(b) 

For aeL0 
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Y(x)(a) = a(x) 

Y(m)(a)=a where a is the integer denoted by m, 

1/ (if b then t 1 else t2 fi)(a)=if W(b)(a) then V(t1)(a) 
else V(t2)(a) fi. 

Jf'(b)(l..) = 1. w• 

ff(true)(a) = tt, 

1P' (false)(a) = ff, 

fl1 (t1 = t2)(a) = ( r(t1)(a) = r(tz)(a)), 

1/1(,b)(a) =, ff(b)(a), 

"If' (b 1 => b2)(a) = ( 1/1 (b 1 )(a)=> fr (b2)(a )) . 

We end this chapter by introducing the notion variant of a state. The 
purpose of this is to be able to indicate the effect of executing a statement, 
for instance an assignment statement x := t by a change in the state. The 
following definition enables us to change in a state a the value a assigns to 
a particular x. 

Definition 6. 

l. {alx} = 1., 

a{ alxi}(x2) = I a 
(a(x2) 

if X1 =X2, 

ifx1a,!;X2, 
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2. The Operational Semantics 

The aim here is to define an operational semantics which is intuitively 
close to the actual program execution. 

In the deterministic case a well-known way to achieve this is by way of a 
Cook semantics [7]. A function CftUifJ' yields for each program Rand each 
state a a, possibly infinite, computation sequence of states, Cft1...1t:Y(R)(a) = 
< a 1, a2 , ... ) . Intuitively, these states correspond to the states a computer 
goes through when executing R, starting in a. The operational semantics 
then is a function (I} which yields for each program R and each state a the 
state K( Cfcu1.cy(R)(a)), this being the last element of Cfcu1.cy(R)(a) if this 
sequence is finite and the special state J_ otherwise. 

Now intuitively CftJil.cy should be defined by rules, stepwise generating the 
computation sequences; a Cook semantics does so by cases, the cases being 
possible program forms. For example, 

CftU#( (EI S1; S2) )(a)= (a)' CfrU'J"( (EIS,) )(ar 

Cfeu1.0"( (EI S2) )(K( Cftt11.rJ'( (EI S1) )(a))). 

The (a) is motivated as to indicate the operation of splitting up S 1; S2, or 
as a means to make induction arguments later on go through. 

Adding nondeterminism necessitates CftUl.':f! to yield for each R and a not 
the corresponding computation sequence, but the set of computation 
sequences covering all possible alternatives depending on the different 
possible choices. We now define computation sequences and a set of rules 
to describe CftU.cf'. 

Definition 7 (Computation sequences). (a) 

Iw = { ( a 1, ... , a i, ... ) I a; EI, i E N } , 

I 00 = fo, ... } =I+ UI00 • 

Note, that the empty sequence is excluded. 
(b) • :I°' xI00 --+I°", concatenation, is defined by 
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with the extension t({e;f iEI} = {e'o;f iEI}. 
( c) K : l:' 00 ----> 17 is defined by 

K {!)= . ( [
last element of{! if (2 E 17+, 

J_ otherwise 

with the extension: K( {e; Ii EI})= {K(Q;) Ii EI}. 
(d) 

length(R) = ) n if{!= <_ai, ... , an>, 
( oo otherwise. 

(e) e' is initial segment of 12 (i.s.o.) iff e = 12'· e" ore= e'. 

In the sequel, P(l:' 00) ={AI A CZ"'}, the powerset of l:' 00 • 
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Definition 8 (Rules for generating computation sequences). '6f!.ft0r: (!!y;r1:1----> 

(17----> ,cJJ(l:' 00 )) by: For all RE for a= J_, \1ruo1(R)( J_) = { ( J_)}, for 
aEl:'0 : 

(i) '6rutcr( (EI x := t) )(a)= { ( a{ Y(t)(a)lx})}, 

(ii) 'ifrur.JJ( (EI S1; S2) )(a) 

= LJ { (a)·{!· 'ifru1'1'( (EI S2) )(K({! )) ! Q E 'tf'ru1C!'( (EI S1) )(a)}, 

(iii) 'tf'o:49"( (EI S1 v S2) )(a) 

= (a)· '604.0'( (EI S1) )(a) U (a)· '61,n( (EI S2) )(a), 

(iv) 'G'rut.Y'( (EI if b then S1 else S2 fi) )(a)= if 1fl(b)(a) 

then (a)· lfru.'11( (EI S1) )(a) else (a)· \fo:,11,>'( (EI S2) )(a) fi, 

(v) '6(U.9'( (EI P) )(a)= (a)· 'G'ru:Y'( (EIS;) )(a), 

Intuitively, these rules are sufficient to describe generating the set of 
computation sequences for given R and a. However the concept 
'generating' is too fuzzy to be mathematically satisfying. A well-known 
way out of this problem is to regard this set of rules as a set of equations, 
for which '6f!JIY' should be a solution. From now on we take this approach: 
Definition 8 is regarded as a set of equations. Now it is dear that then a 
proof is required that a solution 'G'r!U.0' exists, and moreover that it is 
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unique. For the deterministic case this id done in various ways by De Bruin 
in [6]. For the nondeterministic case we now show that an extra equation is 
needed to ensure uniqueness. We then prove the existence of a unique 
solution 't/(Ui,'f' by extending the techniques of [6]. Then finally we define 
the operation semantics. 

The following examples show, that in general, Definition 8 regarded as a 
set of equations does not ensure a solution to be unique and provide 
intuition as to which kind of extra equation might solve this deficiency. 

Example 1. <ttut.o/( (P¢=.P IP) )(a). Intuitively, this should generate 
{<a, a, ... ) } . However, regarded as an equation, this program gives rise to 

'??tUt!J'( (EI P) )(a)= (a)· '??i:t~.'3'( (EI P) )(a). 

Now both { ( a, a, ... )} and 0 satisfy this equation, as Definition 7b implies 
Q 0 0 = 0, so uniqueness is violated. Both practice (the program will loop) 
and theory (the rules generate ( a, a, ... ) ) suggest preference for the first 
alternative. 

The above example suggests the extra equation to be of the form 
'ef/tJjfcY(R)(a) * 0. However, the following example shows that a stronger 
requirement is needed. 

Example 2. 

'??1U.o/( (P¢=.x :=xv PIP) )(a). 

Intuitively, this should generate { (a, a, a), (a, a, a, a, a), ... , (a, a, ... )}= C 
respectively for x: = x chosen the first time possible, the second time, ... , 
never. However, regarded as an equation this program gives rise to 

'??MY'( (EI P) )(a)= (a)· '?/o..i'.'>'( (EI x :=xV P) )(a) 

=(a)· (a)· '?/o~Y'( (EI x :=x> )(a) 

U (a)· (a)· '?/01.o/( (EI P) )(a) 

= { (a, a, a)} U (a, a)· '?/o~Y'((E IP) )(a). 

Now both C and C \ { ( a, a, ... )} satisfy this equation, so uniqueness of the 
solution is violated. Both practice and theory indicate which one should be 
preferred. Considering practice, a cycle that halts or is repeated according 
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to nondeterministic choice potentially can be repeated any finite amount of 
time, and also can be repeated forever. So this suggests preference for the 
first alternative. Considering theory, for the obvious representation of the 
set of computation sequences by trees, finite nondeterministic choice gives 
rise to finitely branching trees. By Konig's lemma then follows that a tree 
containing infinitely many finite branches, i.e. finite computation 
sequences, also contains an infinite one, so this also suggests preference for 
the first alternative. 

The above examples suggest the entire equation to be of the form: 
'G',uu1(R)(a)E 'l/, where 'll = {GE ,o/'(I 00 ) I G:;t:0, if (Q;);': 1 such that 

(i) for all i, (2; E G, 
(ii) for all i, (2; i.s.o. {};+ 1, 

(iii) sup;{length(QJ} = oo, 

then 3(2 E G such that for all i, (!i, i.s.o. (2 }. 

However, the following example shows that an even more subtle require
ment is needed. 

Example 3. 

'G'fUN'( (P<=x := 1 v PIP) )(a). 

Intuitively, this should generate { (a, a, a{ 1/x} ), (a, a, a, a, a{ 1/x} ), ... , 
< a, a, ... )}= C'. However, regarded as an equation, like in Example 2, 
C' \ { ( a, a, ... )} is also possible. Again, the first alternative is to be 
preferred. 

This example suggests the following strengthening of the above chosen 
requirement described by '§. 

Definition 9. :lt'={He .o/'(I°")!H=t=0, if ({!;);': 1 , {!;EI00 , such that 
(i) for all i, 3(21 EH such that (2; i.s.o. (21, 

(ii) for all i, (2; i.s.o. (2;+ 1, 

(iii) sup{length(g,)} = oo, 
then 3(2 e H such that for all i, (2; i.s.o. {!}. 

Remark. In the different setting of unbounded nondeterminism, this is the 
closedness property to be found in [3]. 
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We claim that the following extension of Definition 8 ensures the 
existence of a unique solution. 

Definition 10. 't'tUfff': q,>@0,1->(I->£) is defined by the following set of 
equations: 

(a) The equations of Definition 8. 
(b) ForallRE aEI, 'ef'fi.4ff'(R)(a)E£. 

In De Bruin [6] for the deterministic case four methods to prove the 
existence of a unique solution are presented. We have chosen to adapt to 
our case the most topological one, as this seems the best one to extend to 
sets of sequences. The idea is the following. Consider the set of functions 
q,>Jf/'7'.'1-> (I->£); the solution '6'tUtff' we seek to find is, if it exists, an 
element of this set. Now as the left parts of the equations in part (a) of 
Definition 10 all contain only 'efocitff'(R)(a), a solution of this set of 
equations can be interpreted as a fixed point of an endomorphic operator 
on q,>@(J,4->(I->.lf) defined directly by these equations (cf. Definition 20). 
To ensure existence of a unique fixed point, from topology it is known that 
it is sufficient that firstly the space is complete metric, i.e. a space with a 
metric distance function defined on it such that every Cauchy sequence 
converges, and secondly, that the operator is a contraction mapping, i.e. 
the distance between the image of any two points is less than or equal to the 
distance between the original points multiplied by a fixed constant smaller 
than 1. 

The operator as well as the elements of the domain are given: respec
tively by the equations and by the type of 'ef'tUtff', Left to choose is the 
metric. As usual, we choose the distance between two functions to be the 
supremum over the elements in the domain of the distance between the two 
images of such an element. To do so, we first define a distance between 
computation sequences, next between sets of them and finally between the 
functions. All of these will have to be complete metrics. 

We start by considering computation sequences, i.e. 1:'00 • A natural 
distance is the following. 

Definition 11. 

if e= (a1, ... ,an> andj;::::n, 

otherwise. 
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Definition 12. Distance on .E00 

Definition 13. For a Cauchy sequence (Q;) '(: 1 define the limit lim;_, 00 (}; 

as follows. As ({2;) '(: 1 has the Cauchy property, \/ e > 0 3Ne V l, 
m?::.Ned({l1,f2m)<e, or, equivalently, V kE fN 3Nk V /, m?::.Nkd(121,em)< 
2-k. 

By Definition 12 this implies VkerN 3NkVl, m?::.Nk6!Nk[k]=t21[k]= 
em[k]. Now define lim;-oo (]; by (lim;_,oo (};)[k] = llN.[k]. 

Lemma 1. (17 00, if) is a complete metric space. 

Proof. d evidently is a metric. d is complete iff every Cauchy sequence 
converges. Clearly, every Cauchy sequence([!;)'(: 1 converges to lim; ➔ oo (};. 

Next, we proceed to sets of computation sequences. Note, that defining 
the distance if enables us to give a much easier definition of ff~ 

Lemma 2. £={HE i?'(l:"00 ) I H * 0, for each Cauchy sequence (Q;) '(: 1 in 
H, lim;-ooQ;EH}. 

Proof. Evident by Definitions 9, 12 and 13. 

Remark. (1) Here the topological approach allows an easier solution of the 
problem than the cpo approach, where it is more difficult to handle cases 
like Example 3 as may be seen by the difference between the two definitions 
of .ff. 

(2) For .E00 with the topology J{d) induced by J, _;,If' can be defined by 

.1t = {HE :Y>(L' 00 ) I H * 0, H closed in f(d)}. 

A natural distance on iff is defined as follows. 

Definition 14. 

H[Jl = {eUl I e e H}. 
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Definition 15. Distance on £. 

a(H H) = rz-k if k=sup{j I H1[j] =H2[jl} < oo, 

1, 2 ( O otherwise. 

Definition 16. For a Cauchy sequence (Hi) i= 1 define the limit lim;- 00 H; as 
follows. As ( H;) i= 1 has the Cauchy property, V e > 0 3 Ne V /, m?::. 
Nea(H1,Hm)<e, or, equivalently, V ke N 3Nk Vl,m?::.Nka(H1,Hm)<2-k. 
By definition 15 this implies VkeN3NkV/, m?::.NkHNk[k]=Hk[k]= 
Hm[k]. Now define lim;- 00 H; as follows (using Lemma 2). 

Lemma 3. (£, a) is a complete metric space. 

Proof. The first requirement to be a metric space is a(Hi, H2) = 0 # H
1 
= 

H2. Let a(H1,H2)=0, QEH
1

. If geL+, then 3Jg=Q[j]=Q[j+l]. As 
a(Hi,H2)=0, Q=e[j]=Q[}+l]eH2 [j+l]. Consequently, QEH2 . If 
Q eLw, then either Q eH2 or Q[i] eH2 [i], i= 1,2, .... In the latter case, there 
exist Qf e H 2, i = 1, 2, ... , such that a[i] = g'[i], i = 1, 2, .... Now clearly 
(aD1= 1 is a Cauchy sequence in H 2 , and by Definition 13 lim;___.ocQ[=Q. 
Consequently, (by Lemma 2) QEH

2
. Conversely let H

1 
=H

2
. Then 

VJ H
1 
[j] = H

2
[j], so d(H

1
, H 2 ) = 0. The other requirements of being a 

metric space are evidently fulfilled. a is complete iff every Cauchy sequence 
converges. Let (H;)1= 1 be a Cauchy sequence. By Definition 15, (H;)'('= 1 

clearly converges to lim;-+oo H;, by Definition 16, clearly lim;- 00 H; E £. 

Remark. The reasons to restrict .01'(L00 ) to ff' in the beginning of this 
section that did arise when regarding Definition 8 as a set of equations here 
have their topological counterpart: Should distance a be defined on .01'(L 00 ) 

instead of £, then the sets C and C \ { ( a, a, ... ) } of Example 2 (and like
wise C' and C' \ { ( a, a, ... ) } of Example 3) would have distance O but not 
be equal. 

This violates the metric requirement a(C
1

, C2 ) =0# C1 = C2 . Now 
disregard knowledge of the previously defined restriction of ,'?'(L 00 ) to ff' 
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caused by ambiguities with regard to solutions of the equations in 
Definition 1 and indicated by the Examples 1-3. (Note, that at that stage 
no distance between sets was even defined.) A natural solution of the 
present problem then, is the following. 

Restrict SW(l: 00 ) to only those subsets of L'°", that contain their limit 
points in the topology induced by a. Lemma 3 states that this solves the 
problem. Not surprisingly, the tree-likeness requirement stated in Y't is 
equivalent to this restriction, as stated in Lemma 2. 

By now, we arrive at our first aim, turning ,'7',!i'(J'1-->(L'->£) into a 
complete metric space by defining the following natural distance. 

Definition 17. 

Definition 18. Distance on C. 

d(<f;i, (/Ji)= sup { a(q; 1 (R)(a), ¢ 2(R)(a))}. 
R,a 

Definition 19. For a Cauchy sequence (</J;)'l°c 1 define the limit Hm;- 00 ¢; as 
follows. As (¢;)'l°c 1 has the Cauchy property, Ve>03Ni;Vl, m'2:. 
N 0 d(¢1,¢m)<e. By Definition 18 holds 

Ve>O 3Ne V /, m"?.Ne VR Vad(¢1(R)(a),¢ 171(R)(a))<£. 

Then VR Va, (¢;(R)(a))1= 1 is a Cauchy sequence. By Lemma 3, VR Va 

(¢;(R)(a))'l°c 1 converges to lim;- 00 ¢;(R)(a). Now define lim;- 00 17'.!; as 
follows. 

Lemma 4. (C, d) is a complete metric space. 

Proof. By standard techniques, e.g. see [8, Chapter 14, Theorem 2.6]. 

Definition 20. t1J: c-c is defined by 
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R= (EI x := t) ➔{ ( { r(t)(a)/x}<}, 

R = (E I S1 ; S2) 

U { (a) v.{! v.</)( (EI S2) )(K({!)) I{! E </)(<EI S1) )(a)} 

R =(EI S1 v S2> ➔ (a)·</)( (El S1) )(a)U (a)·</)( (EI S2))(a), 

R =(EI if b then S
1 
else S

2 
fi) 

➔if W(b)(a) then (a) A</)( (EI S1) )(a) 

else (a).</)((£1 S2))(a), 

R =(EI P) ➔ (a) A</)((E I S1) ), where P=P;, P1 -.=S1 in E. 

Note, that <Pis well defined, i.e. V</) <P(</)) e C, as can be easily seen from 
the definition. 

Lemma 5. <Pis a contraction mapping, namely V ¢
1

, ¢
2
d(<P(¢

1
), <P(</)2)):5. 

½d(</)1, </Ji). 

Proof. Each of the following cases is trivial for a= .L, so from here on 
aeI0 . 

Case 1: R =(EI x := t). By Definition 20 

V ¢ 1, ¢ 2 
Va <P(</) 1)(R)(a) = (a{ r(t)(a)lx})} = <P(¢2)(R)(a). 

So by Definitions 15 and 18, a( <P(</)1), <P(</)2)) = 0 :5. ta(</)i, ¢
2
). 

Case 2: R~(Efx:=t), R~(E[S1;S2). By Definition 20, V¢Va 
<P(</))(R)(a) = (a) '¢(R')(a), R' as given by the right hand part of 
Definition 20. 

So 
d( <P(</)1), <P(</)2)) = sup{ a( <P(¢>1)(R)(a), <P(¢2)(R)(a))} 

R,a by Definition 18 

= sup{ a( (a). </J1(R')(a), ( a) A</J2(R')(a))} 
R,a 

=½ sup{a(¢ 1(R')(a),</)z(R')(a))} 
R,a by Definition 15 

=½d(</)i,</h) by Definition 18. 
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Case 3. R =(EIS 
1

; S
2
), analogously to Case 2. 

By now we can, by using well-known topology, justify our claim made 
above. 

Lemma 6. <P has a unique fixpoint. 

Proof. By Lemmas 4 and 5, using standard techniques from topology. Cf. 
[8, p. 305] and [6, p. 27]. 

Theorem 1. The set of equations of Definition 10 has a unique solution 
'trlll.cJJ'. 

Proof. Directly from Definitions 10 and 20 and Lemma 6. 

Finally, having justified the definition of 'tfr1.1rr, we define the oper
ational semantics. 

Definition 21. Operational semantics. eJ: ff1'4'r1'.1->(L-+L) is defined by: 
For all R, for all a, o(R)(a) = K( <truo'(R)(a)). 

For later use we here state the following lemma. 

Lemma 7. 
(i) o(<EI S1; S2>)(a)= @((El S2)) 0 o(<EI S1))(a), 

(ii) o( (EI S1 v S
2

) )(a)= o( <EI S
1 
> )(a) U eJ( <EI S

2
) )(a), 

(iii) o( (EI if b then S
1 

else S
2 

fi) )(a)= if W(b)(a) 

then ti( (EI S1) )(a) else ID'( (EI S2) )(a) fi, 

(iv) IO((Ef P))(a)=@((EfS1))(a), whereP=P1, P1;;:S1inE. 

Proof. Evident from Definitions 10 and 21. 

3. The Denotational Semantics 

We here present the denotational semantics for which the operational 
one, treated in Section 2, was designed to serve as an intuitive counterpart. 
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The method used is the fixed point approach in a cpo setting, as can be 
found in [15]. The denotational semantics we use greatly resembles the one 
in [5, Chapters 5 and 7], so only a very concise treatment is given, just 
defining the notions and stating the results we need for the equivalence 
proof in Section 4. 

We start by defining a domain, consisting of a selection of subsets of 
.!Jl(I) with the Egli-Milner ordering, cf. [10]. Note the resemblance to the 
domain of results in Section 2, with regard to ff being the outcome domain 
of <t'iU(:f!. 

Definition 22. 

(re)T= {rE .9'(L) Ir finite or _1_ Er}. 

Definition 23 (Egli-Milner ordering). 

'I[: '2 iff J_ E 'l and 'I \ { ..L} ~ T2 

or l. ~ r 1 and r 1 = rz. 

Lemma 8. (T, [:) is a cpo. 

We now give the domain of strict functions L-"5 T. 

Definition 24. 1/f: l:'-"5 T, i.e. 1/f is strict iff 1/f(.l.) = { .l. }. 

Definition 25. 

(I/IE)M=I-"5 T 

with the extension: For each I.fl :I-->5 T, ![I: T-->5 Tby 1/f =Ar· UaEr\V(a) and 

1/11 ° i/12 =).a· \111 (l/12(a)), 

1/11 U 1/12 =la· (1/11 (a) U l/f2(a)). 

Lemma 9. (M, [:) is a cpo. 

We now introduce y EI', where y gives meaning to procedure variables; 
furthermore we define variant of y. 
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Definition 27. (yE)I'= tf'1711 ➔lvf. 

Definition 28. 

y{\IJ/P}(P') = \If/ 
- lY(P') 

if P'=P, 

otherwise. 

The following is needed from the theory of cpo's. 

Definition 29. (C, l;;;-) cpo,J: c➔ c. 

(a) xis a fixed point off iff f(x) = x. 
(b) x is the least fixed point µf off iff: 

(i) x is a fixed point off; 
(ii) for ally, y fixed point off, xl:y. 

Definition 30. (C, [), (C', l:) cpo; f: C➔ C' is continuous iff: 
(i) Xi l:x2 => f(x 1) l:'J(x2) (monotonicity); 

(ii) for each chain (x;) f: 0 in C, 

.r(9o x) = ;go f(x;). 

Notation: fE [C➔ C']. 

Lemma 10. C;cpo,J;E[Cn ➔ c], i=I, ... ,n 

by 

Then 
00 

µ(Ji, ... Jn) = LJ (Ji, ... Jn/( ( .l, ... , .l) ). 
k~I 

389 

After these preparations we define the denotational semantics as 
follows. 

Definition 31 (Denotational semantics). (a) JV: YY~c/Y➔ (I'-> M) is defined 
by 

(i) JV(x := t)(y) =A.a· { a{ Y(t)(a)lx} }, 
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(ii) A!(S1; S2)(y) = A"(S2)(y) 0 A"(S 1)(y), 

(iii} uf/(S1 V S2)(y) = ,!V(S1)(y) U A"(S2)(y), 

(iv) A" (if b then S1 else S2 fi)(y) = Aa • if 1f(b)(a) 
then A/(Si)(y)(a) else A"(S2)(y)(a) fi. 

(b) j( : 9111:,1-> (I'-+ M) is defined by 

where (l/11, ... ,1/Jn)=µ('Pi, ... ,'Pn) and 

'l'J = A 1/11, ... , A 1/1~ A"(Sj)(y{ l/lt IP;} 7 = 1 ), 

j = l, ... , n. 

Lemma 11. 

Theorem 2. j/ is well defined. 

Proof. Essentially from Lemmas 10 and 11. 

For later use, in Section 4, we here state the following lemmas. 

Lemma 12. ACT• A"(S)(y)(a) is monotone. 

4. The Equivalence of the Operational and the Denotational Semantics 

The set-up of the equivalence proof for the two semantics defined in the 
foregoing sections, i.e. o(R) = Jt(R)(y), is as follows. 

A natural way to proceed might seem to apply induction on the length of 
individual computation sequences in ~rur:Y'(R)(a) proving a' e o(R)(a)""' 
a' E Ji (R)(y)(a). However, it is only possible to prove this for a' such that 
~ru1Y'(R)(a) e :Y'(I+). Namely, if there is an infinite computation sequence 
in 'G'O:A'Y'(R)(a), then l. e o(R)(a), as can be directly inferred from 
Definitions 7 and 21. It is by no means clear, that in this case also 
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.l. E vi'(R)(y)(a), as the concept of computation sequence belongs to the 
realm of operational semantics. So using set inclusion /IJ(R)(a) ~ 
vi'(R)(y)(a) is not feasible. Choosing the Egli-Milner ordering 
/IJ(R)(a)!;:vi'(R)(y)(a) with this induction is also impossible, as for this 
ordering it is required to prove /IJ(R)(a)=.~(R)(y)(a) if .l. $ O(R)(a). 

The way out we have chosen is to apply, in case 'G'tJJtrY'(R)(a) E q,'(..[+), 

induction on the sum of the lengths of the computation sequences in 
'G'r1utrY'(R)(a), thus proving /IJ(R)(a) = vi' (R)(y)(a) in this case. In case there 
is an infinite computation sequence in 'G'eUtY'(R)(a), and so, by Definition 
21, .LE /IJ(R)(a), we prove tJ(R)(a) \ {.1.} ~ vi'(R)(y)(a) elementwise by 
the above mentioned induction on the length of individual computation 
sequences. Thus we yield tJ(R) !;: vi' (R)(y). Proving vi' (R)(y) !;: /IJ(R) by 
standard techniques then completes the proof. 

In order to apply induction to the sum of the lengths of the computation 
sequences in case 'G'tJjt.!Y'(R)(a) E ,q'J(..[+) we have to prove that this sum is 
finite. This is made explicit by a careful application of an analogue of 
Konig's lemma. One of the well-known formulations of Konig's lemma is 
the following: 

Lemma (Konig's). A finitely branching tree where all branches are of 
finite length contains only finitely many nodes. 

As we work in the realm of sets of (computation) sequences instead of 
trees, we want to restate this lemma using these notions. Restate "finitely 
branching'' by ''there are only finitely many different initial segments of 
length n, for all n E N ", "all branches are of finite length" by "a set of 
finite sequences", and finally "finitely many nodes" by "finitely many 
different sequences". 

So the analogue to Konig's lemma seems to be 

If in a set of finite sequences there are only finitely many different initial 
segments of length n, for all n E N, then there are only finitely many 
different sequences. 

Now this is not true! Counter example: { (0), (0,0), ... }. The reason for 
this is, that the tree structure does not allow { ( 0 ), ( 0, 0 ), ... } as a set of 
branches in a finitely branching tree but forces to add ( 0, 0, ... ) : 
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For a set of finite sequences this is not the case. So an extra requirement of 
such a set is to be added. Not surprisingly, taking the set to have a property 
analogeous to £ for computation sequences is sufficient, as this reflected 
the tree-like way in which <trut!Y' generated a 'set of computation 
sequences'. 

We now give the analogue of Konig's lemma. 

Lemma 14. If in a set C of finite sequences {r, ... }, r=(si,s2, ... ,sn>, 
n E fN, there are only finitely many different initial segments of length n for 
all n E fN, and C has the foil owing property: C is tree-like i.e. if there is a 
row of sequences ( r;)'l: 1, not necessarily r; EC, such that 

(i) for all i, 3 r;E C: r; i.s.o. r;, 
(ii) for all i, r; i.s. o. r; + 1, 

(iii) sup;{length(r;)} = oo, 

then lim;__. 00 r; EC, then there are only finitely many sequences in C. 

Proof. By contradiction. Suppose there are infinitely many different 
sequences. Let G(n) = {r I length(r) = n, i.s.o. infinitely many different 
sequences}. We show by induction that G(n) * 0 for all n E fN. Induction 
basis: To prove G(l)-:t:-0. As there are only finitely many different initial 
segments of length 1 and infinitely many different sequences, G(l)-:t:-0. 
Induction step: To prove G(k+ l)-:t:-0. As there are infinitely many 
different sequences but only finitely many different initial segments of 
length k or k+ I, and G(k)-:t:-0 (Ind. hyp.), G(k+ 1)-:t:-0. So G(n)-:t:-0 for all 
n E rN. Now clearly, for all n E rN every element of G(n) is initial segment of 
at least one of the elements of G(n + 1). So by the axiom of choice there are 
f; E G(i) such that f; i. s. o. f; + 1, i = I, 2, .... As C is tree-like, this implies that 
there is an infinite sequence in C. Contradiction. 

Remark. Note that the property 'tree-like' had to be brought to the surface 
on three fully independent occasions where it was more or less hidden in 
the structure of the concepts under consideration: 
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(1) In Definition 10 to select tree-like solutions of the equations. 
(2) In Definition 15, restricting the distance a to a space consisting of 

only tree-like sets. 
(3) In Lemma 14 to select sets sufficiently tree-like to prove an analogue 

of Konig's lemma for them. 

We now show, that for all R and all a, 'teU."Y'(R)(a) satisfies the 
requirements of Lemma 14. The only requirement left to prove is, that 
't@jt:J(R)(a) gives only rise to finitely many different initial segments. This 
is done in the following lemma. 

Lemma 15. For all R and all a the following holds for 'tru1."Y'(R)(a): There 
are only finitely many different initial segments of length n, for all n E IN, 
in 'G'o:.11£J(R)(a). 

Proof. Let R =(EIS). Proof by cases, applying induction on the length of 
the initial segment. Let 

/(n)( 't1u1.'?"(R)(a)) 

= fo' I[!' i.s.o. {! E 'teuN(R)(a), length([!')= n }. 

Induction basis: To prove #(/(1)( 't1U1#(R)(a))) < oo. 
By cases: 
(i) S=x := t. Then 'teUt'?"(R)(a) = { (a{ r(t)(a)/x}) }. Consequently, 

#(/(1)( 'ifftU!.9'(R)(a))) = 1 < oo. 
(ii) S=S1; S2 . Then 

'it!Ui.1'(R)(a) 

= U {(a), e' 'it(U/0'( (EI S2) )(K({!)) I{! E 'iffeu1,( (EI S1) )(a)}, 

so /(1)( 'ifftz.11.<f'(R)(a)) = {(a)}. Consequently, #(/(1)( 'tf1u.9'(R)(a))) = 1 < oo. 
Cases (iii), (iv) and (v) of Definition 10 analogeously to (ii) lead to 

#(/(1)( 'tft!ll.9'(R)(a)) = 1 < oo. Induction hypothesis: Assume 

#(/(/)( 'iffo:,l:Y(R)(a))) < oo, 

for 1 :5. I :5. k. Induction step: To prove #(l(k + 1)( 'tf1uu(R)(a))) < oo. 
By cases: 
(i) S=x := t. Then l(k+ 1)( 'tfo:.11:Y(R)(a)) = l(k+ 1)( { (a{ r(t)(a)lx})}) = 

0. Consequently, #(l(k+ 1)( 'iffM.'Y'(R)(a))) = 0< oo. 
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(ii) S= S1; S2 . Then 

't't1..11Y'(R)(a) 

= {<a)· g· 't't1..11Y'( (EI S2) )(K(g )) I e E 't'tt..llY'( (EI S1) )(a)}. 

Consequently, 

#(l(k + 1)( 't't1..11Y'(R)(a))) = #(l(k)( 't't1..11Y'( (EI S1) )(a))) 

+ X{ #(l(k + 1 - (1 + length(e )))( 't't1..11Y'( <EI S2 ) )(K({! )))) I 

{!E 't'0.4'.9'((EI S1))(a), length(e)<k} <oo (Ind. hyp.) 

Cases (iii), (iv) and (v) of Definition 10 analogously to (ii) lead to 
#(l(k + 1)( 't'tUY'(R)(a))) < oo. So #(J(n)( 't'1U.'?'(R)(a))) < oo for all R, all a, 

all n E fN. 

After these preparations, we can state Lemma 16, which enables us to 
apply induction on the sum of the lengths of the computation sequences in 
't'tUtY'(R)(a) in case 't'tu.9'(R)(a) E ?(X+). 

Lemma 16. For all R and all a for which 't'o.11.o/'(R)(a) E ?(X+), 
't'ru.if'(R)(a) is a finite set. 

Proof. It is given that all computation sequences in 't'o.11Y'(R)(a) are finite. 
By Lemma 15 there are only finitely many different initial segments of 
length n, for all n E fN. By Definition lO(b), and Definition 9, 't't1.11.9'(R)(a) 

has the tree-like property as required in Lemma 14. Consequently, by 
Lemma 14, 't'rUN'(R)(a) in this case is finite. 

Finally, we arrive at the main theorem of this chapter, stating 
equivalence of tJ(R) and vd' (R)(y). 

Definition 32. For 

A E ?(l:'00 ), length(A) 

= rxoo{length(e)leEA} if#(A)<oo and VeEA,{!EL+, 
l otherwise. 

Theorem 3. For all R and ally, tJ(R) = vd' (R)(y). 
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Proof. Let R=<EIS). We prove VRVyVatJ(R)(a)=cit(R)(y)(a). As 
this holds trivially for a= l., in the sequel assume a E .I:0 . We prove Egli
Milner inclusion in both directions. 

(1) tJ(R)(a)l:~(R)(y)(a) as follows. 
Case A: If Rand a are such that <{ru1.JJ(R)(a) E g')(J;+), then tJ(R)(a) = 

~ (R)(y)(a) proof by cases, applying induction on the sum of the lengths of 
the computation sequences. (Justified by Lemma 16.) 

(i) S=X:= t. 

tJ( (EI x := t) )(a)= K( 'ef;,UY( (EI x := t) )(a)) 

= K( { (a{ Y(t)(a)/x})}) 

=a{ r(t)(a)lx} 

= ~ ((£Ix:= t) )(y)(a). 

N.B. This result holds for all a, as 't1:u1Y'( <EI x := t) )(a) E g')(J;+). By 
Definition 10 only a= l. or S = x : = t lead to length ( 'trur.<JJ(R )(a)) = 1, so 
the induction basis is provided. 

(ii) S=S1; S2. By Definition 10 and Lemma 16, 

length( 'ttuM((E I S1) )(a))< length( 'ef;ruM( (EI S1; S2) )(a))< oo 
and 

length( 'ef;cUt.o/"( (£ I S2) )(K( 'trut,J'( (EI S1) )(a)))) 

< length( 't,u1q,( (EI S1; S2) )(a))< oo. 

So by induction 

and 
tJ( <EI S2) )(K( 'ttJ.lltf'( (EI S1) )(a))) 

= ~ ((£I S2) )(y)(K( <{rut.I'( (EI S1) )(a))). 

Consequently, 

tJ( (EI S1; S2) )(a)= tJ( (EI S2)) 0 tJ( (EI S1) )(a) by Lemma 7 

= tJ( (EI S2) )(K( 'te?..4.'?"( (£ I S1) )(a))) 
by Definition 21 
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= 1 ((EI S2) )(y)(K( Y?(U.9'( (EI S1) )(a))) 

= 1( (EI S2) )(y)(/0( (EI S1) )(a)) 
by Definition 21 

= 1((£1 S2))(y) 0 1((EI S1))(y)(a) 

= 1 ((EI S1; S2) )(y)(a) by Definition 31. 

Cases (iii), (iv) and (v) of Definition 10 can be treated analogously to 
(ii), applying Lemma 13 when treating Case 5. 

Case B: If R and a are such that l. E O(R)(a) then a'* l., 
a' E e'J( (EIS) )(a) implies a' E j( ((EIS) )(y)(a), proof by cases, applying 
induction on the length of the computation sequence corresponding to that 
outcome. There may be more than one sequence satisfying this require
ment; in that case choose one arbitrary. We again distinguish the following 
cases. 

(i) S = x: = t. Immediately by the above proved equivalence 

0( (EI x := t) )(a)= 1 ((EI x := t) )(y)(a). 

By Definition 10 this is the only case pertaining to length (g) = 1, 
()E 'G'ttd.9'((£1 S))(a) so the induction basis is provided. 

(ii) S = S 1; S2 . Consider a computation sequence 

By Definition 10 there is an intermediate state aj * l. in this sequence such 
that ( a2, ... , a1> E 'G'eU/9'( (EI S1) )(a) and ( aJ, ... , an> E 'G'O:,.k.o/( (EI S2) )(a1). 
As length ((a2, ... ,a1))<length((a1, .. ,,an)) and length((a1, .. ,,an))< 
length( ( a 1, ... , an>), by induction a; E 1 ((EI S1) )(y)(a) and 

a' E 1( (EI S2))(y)(aj). 

Consequently, by Definition 31 a' E 1( (EI S1; S2) )(y)(a). 
Cases (iii), (iv) and (v) of Definition 10 can be treated analogeously to 

(ii), applying Lemma 13 when treating Case 5. 
Now combining A and B yields VR Vy Va O(R)(a)[;;;1(R)(y)(a). 
(2) Conversely, we prove 1(R)(y)[:o(R) as follows: 

By Definition 31, it is equivalent to show JV(S)(Y{l/f/P;}7= 1)[:0((EIS)). 
By Definition 31 and Lemma 10, 1/f; can be defined as follows. Let 
( 1/f?, ... , 1/f~) =(A.a· l., ... , A.a· l. > 

k+ 1 k+ 1 'P k k ) 'P ( k k ) (l/f1 , ... ,1/fn )=( 1((1/fi, .. ,,l/fn) , ... , n (l/fi, .. ,,1/fn) ), 

k=O, 1, ... 
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then 1/f;= LJk=olfl7, i=l, ... ,n. 
By Lemma 11, JV(S)(Y{lfl7 IP;}t=1)= LJk=oJV(S)(Y{lfl7IP;}7=1). There

fore it is sufficient to show that for all k, JV(S)(y{ lfl7 IP;} 7= 1) l;;;; Cl( (EIS)). 
We apply induction on ( k, l(S)), where /(S) is the length of S, i.e. the 
number of symbols of S with ordering (ki,/1)<(k2,/2) iff k 1<k2 or 
k 1 =k2 and /1 <12 . 

JV(S)(y{ !fl? IP;} i= 1) = A/(S)(y{Aa • 1- IP} 7= i) l;;;; Cl( (EIS)), 

so the induction basis is satisfied. 
We again distinguish the following cases: 

(i) S=X := t. 

JV(x := t)(y{ lfl7 IP;};= 1) = Aa • a{ -r(t)(a)lx} = Cl( (EI x := t) ). 

(ii) S=S1;Sz. l(Sj)<l(S1;S2), so (k,/(S1))<(k,/(S1;S2)>, j=l,2. So 
by induction JV(S)(y{ lfl7 IP7} i= 1) l;;;; Cl( (EI S1) ), j = 1, 2. Consequently, by 
Lemma 9, 12 and Definition 31, 

Jll(S1; S2)(y{ lfl7 IP;} i= 1) r;;;; Cl( (EI S1; S2) ). 

Cases (iii) and (iv) of Definition 10 can be treated analogeously to (ii). 
(v) S=P. 

By Definition 10, P=P1, P1<;=.S1 in E. By Lemma 10, o((EIP))= 
o( (EI S1) ). If k = 0 there is nothing to prove. Otherwise 

JV(Sj)(y{ lfl7 IP7}t= 1 = lfl} = lfl1(!fl}- 1, ... , 1/f~-I) 

=JV(Sj)(Y{lfl7- 1IP;}7= 1) by Definition 31 

l;;;; 0( (EI S1>) 

= o(<EIP>). 

Combining these results yields Jl (R)(y) !;;;; o(R), i.e. 

V k Vy Va Jl (R)(y)(a) l;;;; o(R)(y)(a). 
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A Proof Rule for Fair Termination of Guarded Commands* 
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We present a proof rule for fairly terminating guarded commands based on 
a well-foundedness argument. The rule is applied to several examples, and 
proved to be sound and complete w.r.t. an operational semantics of compu
tation trees. The rule is related to another rule suggested by Pnueli, Stavi and 
Lehmann by showing that the (semantic) completeness of the PSL-rule follows 
from the completeness of ours'. 

1. Introduction 

The use of well-ordered sets to prove termination of programs originates 
from Floyd [3] and remained prominent ever since. After the appearance 
of non-deterministic and concurrent programming language constructs, 
the notion of termination was generalized to the notion of liveness [10], 
which also covers properties such as eventual occurrence of events during 
program execution. One way of specifying and proving such properties is 
by applying temporal reasoning [4]. This may be formalized by using 
Temporal Logic [12], a tool suitable for expressing such eventualities. 

* Preliminary work regarding this problem was carried out while the 2nd author visited the 
University of Utrecht, sponsored by a grant from The Netherlands Organization for the 
Advancement of Pure Research (Z.W.O.); the work was completed while the 4th author 
visited the Technion sponsored by the Technion; the 2nd author was partly sponsored by an 
IBM-Israel Research grant. The third author was supported by Swiss National Science 
Foundation grant No. 82.820.0.80. 
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Within this framework, one of the more interesting concepts that can be 
studied is the concept of fairness [6]. However, application of temporal 
reasoning does not appeal to a direct use of well-foundedness arguments 
(see e.g. [11]). Recently, there is a revival of the interest in such direct 
appeals (see e.g. [l]), generalizing arguments hitherto involving finite non
determinism to a context of infinite non-determinism, and [13], generaliz
ing sequential well-foundedness arguments to the context of concurrency 
(using a shared variable model). 

A common property of well-foundedness arguments for more compli
cated types of termination is the use of higher countably infinite ordinals, 
which can be traced back to [8], this in contrast to the fact that for deter
ministic programs (or programs displaying finite non-determinism) natural 
numbers suffice. 

In this paper, we propose a rule for proving/air termination of guarded 
loops using well-foundedness arguments. 

We chose guarded commands [2] since it is relatively well known and 
simple, has as a natural extension to the language Communicating 
Sequential Processes (CSP) [9] and the proof rule proposed in this paper 
extends equally naturally to CSP. This extension is the subject of a 
companion paper. 

The ideas in this paper were developed mostly independent of [13), in 
which a similar situation is dealt with. We shall describe the influence of 
[13] on our work in the last section. 

In Section 2, we introduce the proof rule for termination and apply it to 
several examples. In Section 3 we present soundness and semantic 
completeness proofs of the suggested rule w .r. t. an operational semantics 
using computation trees. Section 4 ends with a reduction of the semantic 
completeness of the rule of (13] to the present one.* 

2. A Proof Rule for Fair Termination 

Basic notions and definitions 

We consider the language GC, with the following syntax: 

* Note added in proof: Conversely, Daniel Lehmann recently reduced the completeness 
proof of our rule to that of [13]. Consequently, the two rules are equivalent. 
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(statement)::= (assignment statement) I (skip) I (selection) 
I (repetition) I (composition) 

(assignment statement)::= (variable):= (expression) 
(skip) ::=skip 
(selection) : := [ (boolean-expression)--> (statement) 

{□ 

(boolean-expression)--> (statement)}* 

l 
(repetition)::= *(selection) 
(composition)::= (statement); (statement). 

Boolean expressions are also called guards. 
Its semantics follows from the usual definition of computation sequence 

n: .;0.;1 ... , where all .;;'s denote states (mappings from variables to values). 
In the sequel we consider programs of the form of repetitions 

C :: *[B1 -->C1 □ ... □ Bn-->Cnl. 

also abbreviated to *[D;Ep, ... ,n}B;-->C;]. 
C; is enabled in.; iff B;(c;) holds. 

Definition. (1) An execution sequence n of C is fair iff it is finite, or it is 
infinite and for every I 5' i 5' n, if C; is infinitely often enabled along n, it is 
also infinitely often chosen along n. 

(2) C is fairly terminating iff all its infinite execution sequences are not 
fair, i.e., unfair. 

Thus, a fairly terminating program has finite computation sequences 
(terminating computations), and unfair infinite computation sequences, 
but may not have infinite fair computation sequences. 

For a given initial state .;, we consider the tree of all possible 
computation sequences, T~. In case of a selection, [B1 -->C1 □ ··· □ Bn-->Cnl, 
a state (node) 17 in T~ has subtrees for every i, 15'i5'n s.t. B;(17) holds. 
Observe that in case of fair termination, T~ contains finite and unfair 
infinite computation paths. 

Example. Consider Dijkstra's example for a random generator of natural 
numbers [2]; this is a possibly non-terminating program, its only infinite 
computation sequence being unfair. Hence this program fairly terminates: 
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C::x:=0; b:=true; 
*[b--+x:=x+ 1 
□b--+b :=false]. 

Notice that by restricting the underlying semantics of the language of 
guarded commands to fair computation sequences only, a fairly termin
ating repetition as defined above becomes a terminating one, possibly 
displaying countably infinite nondeterminism. 

Our goal is to characterize deductively the class of all fairly terminating 
GC programs. The characterization suggested does carry over directly to 
concurrent programs with shared variables; a companion paper extends it 
to CSP. 

We use the notation ((r))C((q)) to express that C fairly terminates in 
all initial states satisfying r, and that q holds upon termination. 

The intuition behind the suggested proof rule is as follows: For an 
always terminating nondeterministic program, there exists a well-founded 
quantity which decreases along every computation sequence, i.e., along 
every direction in the computation tree. 

Now, let us choose the directions along which a certain well-founded 
quantity decreases, taking care that these directions (certain moves C;) are 
always eventually enabled, until they are taken. Let the other directions be 
non-increasing. Then by the fairness assumption eventually a decreasing 
move has to occur. Thus all fair computation sequences are guaranteed to 
be finite. 

The proof rule 

Choose a well-ordered set ( W, :5) (without loss of generality we can 
assume that Wis an initial sequence of the countable ordinals, as shown by 
the completeness proof). Also choose a predicate 

p: W--+ [States--+ {true.false}], 

assigning a truth value to every pair (w,~). 
For each we W, w>O (or, in general, any non-minimal element in W) 

choose a partition Dw, Sw of {l, ... ,n}, with Dw=#:0. (D stands for 
decreasing, S for steady.) 

Let the following clauses hold: 

(1) ((p(w)/\ w>OABj))CJ<( 3v< w • p(v))) for all}EDw, 
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(2) ((p(w)/\w>0/\Bi))C;((3v:s;w-p(v))) for all iESw, 

(3) ((p(w) /\ w >0)) * [ D B;/\--, . V B1-+ C;j ((true)) 
IESw JEDw 

n 
(4) P(0)~q/\ I\ ,B;, 

i=I 

Then, we conclude 

((r))C((q)), 

n 

w>0Ap(w)~ VB;, 
l=l 

i.e., repetition C fairly terminates. 

Explanation 

r~ 3v- p(v). 
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(ad 1) This clause guarantees that along every direction in Dw, if it is 
enabled and taken, then there is a decrease in the well-ordering. (Note 
again that we use a unique minimal element, denoted by 0, to keep the 
notation simple.) Note also that at least one decreasing direction is 
required. 

(ad 2) This clause guarantees that along every direction in Sw, if enabled 
and taken, there is no increase in the well-ordering. Thus, an infinite 
computation proceeding along Sw direction only, and not decreasing, is 
possible. We have to assure that such a sequence is unfair. Whence clause 
(3). 

(ad 3) This clause imposes a recursive application of the rule to an 
auxiliary program Cw, and hence requires a subproof. Cw terminates 
because of one of two reasons: 

(a) /\esw--, Biis true, hence no Sw-move is possible and only Dw-moves 
are left. 

(b) For somejEDw, B1is true, i.e., a Dw-move is enabled. Hence, this 
clause guarantees that along infinite Sw-computations, Dw-moves are 
infinitely often enabled, that is, such computations are unfair. By 
convention, Cw= skip if Sw = 0. 

(ad 4) This clause guarantees that the program terminates only when 
reaching a minimal element of (W, <). 

Remarks. (1) If we take Sw = 0 (and hence Dw = { 1, ... , n}) for all w E W, 
the rule reduces to the usual termination rule for GC (see e.g. [7]). 
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(2) In proving clauses (1)-(4) of the rule, application of the ordinary 
rules (for assignments, etc.) is allowed. 

Example 1. First, consider again Dijkstra's example for a random gener
ator of natural numbers [2], which is a possibly non~terminating program, 
its only infinite computation sequence being unfair. Hence, this program 
terminates fairly. 

C::x:=0; b:=true; 
*(b->x:=x+ 1 
Db->b :=false 

] . 
We prove ((true))C((true)). Choose as well-ordering {0,1} with 0<1, 

as S1 = { l }, D 1 = {2}, and as ranking predicate 

p(w)(x,b)~(w= 1 ::Jb)A(w=0::J ,b). 

As to clause (1): b changes from true to false upon move b := false, and 
hence w drops from 1 to 0. 

As to clause (2): b remains true under x :=x+ 1, andp(w) is independent 
of x, sow stays 1. 

As to clause (3): C1 :: *[bA ,b->···] which obviously terminates. 

Example 2. In Example l, a D-move is always enabled (in the terminology 
of [13], that program is just). Next, consider a program, in which D-moves 
are only eventually enabled, and clause (3) is less trivially satisfied. 

C:: b := true; c := true; 
*[b->c := -, c 
□bAc->b :=false 
] . 

Again we prove ((true))C((true)). Choose W, p, S1, D 1 as above. The 
difference lies in clause (3), with auxiliary program 

Ci:: *[bA-, (bAc)->c:= ,c], 

which terminates after one step at most. 

This example is still trivial, but is should give the reader a feeling for the 
spirit of the rule, which captures eventual enabling of a D-move by means 
of a proof of termination of the auxiliary program. 
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Example 3. Next, we show that the natural numbers N are not sufficient 
for fair termination proofs, since there is no bound on the length of finite 
computations. 

Let x, y, z range over N. 

C::x:=0; y:=0; 
*[x=0---->y:=y+l □x=0---->x:=l 

□x;c0/\y;c0---->y:=y-1 □x;c0/\y;c0---->z:=z+l 

] . 

To prove (( true)) C(( true)), choose W = NU { oo}, 

p(w)(x,y,z) ~r (w = oo ::Jx = 0) A (w:;c oo---->x:;c O /\y = w), 

S00 ={1,3,4}, 

For clause (3) we get as auxiliary programs: 

C 00 :: *[x=0/\x:;c:0---->··· 
□x;c0/\y;c0---->y:=y-1 

□x;c:0/\y;c0---->z :=z+ 1 
] . 

Cn::*[x=0---->··· 
□x=0---->··· □x;c:0/\y;c0/\, (x;c:0/\y=t=0)---->···]. 

To prove ((p(n) An> 0)) Cn ((true)) is trivial since p(n) ::Jx;c 0, and hence 
C n terminates immediately. 

To prove «x = 0)) C00 «true)), choose W' = N, and let S~ = { 1, 3}, D~ = 
{2}, nEN, and p(n)(x,y,z)~ry=n/\x;c:O. Note that the alternatives are 
renumbered. 

Clause (1) is satisfied since y := y-1 decreases y, and clause (2) is 
satisfied since p(n) is independent of z. As to clause (3), we again construct 
an auxiliary program, Coo,n, 

which trivially terminates. 
Finally, consider the following program: 

C::y:=1; b:=true; 

*(b---->y:=y+l 

□bAprime(y)Aprime(y+ 2)---->b :=false 

] . 
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This program fairly terminates iff the conjecture that there exist 
infinitely many 'twin' primes is true. 

3. Soundness and Semantic Completeness 

In this section we prove the soundness of the suggested proof rule w.r.t. 
the semantics of computation trees consisting of fairly terminating 
sequences, and its semantic completeness. We shall not deal in this paper 
with the specification language needed to express p(w) and the partitions, 
an issue dealt with elsewhere [15). 

(a) Soundness. We have to prove that if all premises of the rule hold, so 
does its conclusion. 

Assume that for program C we found a well-ordered set (W, ::5), a 
partition Sw, Dw for each w>O s.t. Dw=F-0, and a predicate p, satisfying 
clauses (1)-(4) of the rule. 

Assume by way of contradiction, that for some state <;0 , Te0 contains an 
infinite fair path (<;;);': 0 . Consider the corresponding sequence of moves 
(d;);': 0 . It cannot contain an infinite subsequence (d;)J=O of D-moves, 
since by clause (1) this would imply the existence of an infinite decreasing 
sequence of elements in W, contradicting W's well-foundedness. Thus, 
from some k onwards, p(w)(<;k) holds, and all moves dj for j>k are Sw
moves (by clause (2)). By clause (3) there is some deDw which is infinitely 
often enabled and not taken, contradicting the assumption that (<;;) ;': 0 is 
fair. 

(b) Completeness. This is the harder part. Assume ((r))C((q)) holds. 
Then we have to find a well-ordered set ( W, ::5), partitions Sw, Dw for each 
w>O s.t. Dw=F-0, and a predicate p (given by a collection of pairs (w,<;)) 
such that clauses (1)-(4) hold. 

Since all we 'have at hand' is the computation tree, we have to derive 
everything needed from that tree (compare also [14] for another well
foundedness argument based on the 'operational' object ~ the compu
tation stack, for nondeterministic recursive procedures). 

We are given that the computation tree Te0 , for every state <;0 satisfying r, 
is either well-founded, or contains at least one infinite, hence unfair, 
computation sequence. The basic idea is to construct another (possibly 
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infinitely wide) tree Tl, some of whose nodes are obtained by collapsing 
certain infinite families of nodes in Tr,0 , all lying on unfair sequences 
originating in nodes ¢" e Tr,0 , such that Tl is well founded, i.e., contains 
finite paths only. Then we use a standard ranking of T/0 by means of 
ordinals. A move which leaves ¢" and remains in the same infinite family 
belongs to Sw for the corresponding rank. A move which exits such a 
family belongs to Dw, Special care must be taken that these partitions do 
not depend on ¢"0 , the root of the computation tree. 

We now present the details of the construction. Let T/',0 be given. 
Case (a): Tr,0 is well founded (this means that C always terminates in ¢"0). 

Choose a ranking of the nodes by means of an initial segment of the 
ordinals, ranking leaves by 0, and proceeding inductively level by level 
from leaves till root (a standard set-theoretical construction); furthermore, 
choose uniformly Sw = 0, Dw = { 1, ... , n}. It is easy to verify that clauses 
(1)-(4) of the rule hold. 

Case (b): Tr,0 contains at least one unfair, hence infinite, computation 
path n. This case is dealt with below. 

Definition. ( 1) A computation sequence n is d-unfair (1 5 d 5 n) iff along n 
Cd was infinitely often enabled, but only finitely often chosen. 

(2) Let¢" e Tr,0 , Define ¢"'s d-cone CONEd(¢") as follows: 

CONEd(¢°) = the set of all occurrences of states in Tf.o residing 
on infinite computation sequences which contain 
only finitely many d-moves and which start in 
¢". 

(Obviously, all occurrences of states on d-unfair sequences starting in ¢" 
belong to its d-cone.) 

Lemma 1. Let ¢" e Tr,0 , and let r/ e CONEd(¢°), for some 15 d :5 n. Then 
every computation sequence leaving CONEd(¢°), say at node r/, is either 
finite or contains a d-move. 

Proof. Suppose not. Then an infinite path n starts in r/ and does not 
contain any d-move. Since r/ e CONEd(¢°), there is some finite path n' 
joining¢" tor/, along which ad-move was taken at most a finite number of 
times. Hence the concatenation n'n of n' and n is contained in CONEd(e), 
contradicting the assumption that n leaves CONEd(¢°). 
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The situation is described in Fig. 1, where a triangle denotes a well
founded tree. 

d 

Fig. 1. 

Observation. If state¢" resides on ad-unfair sequence, then CONEd(¢°) -=I= 

0. 
Our candidates for families 'to be collapsed into a node in T{o' are such 

d-cones. 
Next we define inductively a hierarchy of d-cones. 
Base step: Since by assumption T1:,0 contains an unfair sequence, fix some 

1 :5. d0 :5. n s. t. there exists a d0 -unfair sequence in ¢0 , and let CONEd/¢0) be 
defined as above. It is not empty by the observation above. We say that 
CONEd/¢0) is at level 0. 

Induction step: Suppose at level i- 1 ad-cone CONEd(¢;_ 1) was defined, 
and let TC be some path leaving CONEi¢;_ 1). By Lemma 1 either TC is finite, 
or there is ad-move on path TC resulting in state¢";. If TC is finite we finish 
the construction as far as TC is concerned. So assuming state ¢"; as above, 
construct CONEd,(O at level i, where d' is determined as follows: 

If there is a moved' not appearing in ¢0 ... ¢1 ... ¢";_ 1 ... ¢";, and there is an 
infinite sequence with a finite number of occurrences of d' starting in ¢";, 
choose move d'. Otherwise, choose the index of the move which did not 
appear longest in ¢0 .. • ¢";, for which there is an infinite sequence containing 
finitely many occurrence of that move, starting in¢";. 
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Thus, when iterating the cone construction, we vary the move-indices of 
the cones maximally. 

Lemma 2. There does not exist an infinite sequence of cones CONEd;(<;;) 
s. t. ( <;;) 't=o is an infinite path of T1:,0 , 

Remark. If we describe the construction of cones as in Fig. 2, we have by 
Lemma 2 only finite chains of cones. 

I 

~ -

~ ~----------------

(, (~Jco:c,,u,J_ 

------
d2 

Fig. 2. 

Proof. Suppose such an infinite sequence (<;;) exists. Then it is unfair by 
definition of T1:,0 , Thus; there is some 1 ::5.a::5.n s.t. (<;;) is a-unfair. Then 
there is an i0 s.t. at <;;0 either a did not occur on <;0 .. • <;;0 or it occurred less 
recently than any other move. Hence a= d;0 in the inductive construction of 
CONEd;/<;;0), and <O would have been contained in CONEd;/<;;0 ), 

contrary to assumption. 
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Now we define Tl as suggested above. Its nodes are all the nodes in T1;0 

not belonging to any cone, and the set of all cones. Its edges are either 
edges entering cones, or edges leaving cones, and, otherwise, edges outside 
cones. By Lemmas 1 and 2, the tree Tl is well founded. 

In order to get rid of unwanted c;0-dependence of Sw and Dw as suggested 
above, we do one more construction: Combine all Tl s.t. r(c;0) holds into 
one infinitary well-founded tree Tt;: 

Next, rank the nodes of Tt;. However, we must take care that if c; occurs 
in two places in Tt; with the same rank, it determines some (S, D) partition 
uniquely.* 

In order to achieve this we perform a rank-shift: Suppose that at some 
level of the ranking, say),_, there are equiranked occurrences of a state c;, 
say of ordertype a. Then rerank these consecutively by),_+ 1, ... , ),_+a, and 
proceed to the next level ),_ + a+ I. 

Let e denote the ranking function of Tt;. Then we define predicate p and 
partitions (Sw,Dw), As W we chose the ordinals ranking Tt;, an initial 
segment of the countable ordinals. 

p(w)c; DEF 311, d • c; E CONEd(l1) l\e(CONEd(11)) = w 

V 

V 11, d • c; $ CONEd(11) l\{l(c;) = w. 

For w>O: 

S = \Sd if 311, d • e(CONEd(c;)) = w, 
w /__0 otherwise 

where Sd={l, ... ,n}-{d}. Hence, Dw={d}, a singleton set, or Dw= 
{ 1, ... , n }. 

• Note added in proof: Due to technical considerations, all non-leave nodes should be 
ranked differently. 
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Note that the rank-shift of T"t; assures that Sw is well defined. 
Next, we show that clauses (2)-(4) of the rule hold; and thereafter we 

refine the cone-construction so as to satisfy clause (1), too. 

Lemma 3.1. W, p, (Sw,Dw) satisfy clause (2)-(4) of the rule. (As we shall 
see clause (1) need not hold.) 

Proof. Clause (2): Assume p(w) I\ w>OJ\B; holds in e, for i E Sw. Without 
loss of generality (by the rank-shift), assume e E Tt,0 and r(eo) holds. Then 
eeCONEd(1J) for some 17 and d (since, otherwise, Sw=0), and d=l=i. If 
move C; remains in the cone, by construction the rank remains the same. 
Otherwise, it leaves the cone, and hence, since T"t; is ranked from bottom
leaves to top-root, the rank decreases. 

Clause (3): Assume again p(w) I\ w> 0 holds in r We have to demon
strate that Cw fairly terminates. Since Sw =I= 0 ::> Sw = Sd for some d, the guards 
of Cw are B;I\Bd. Again, assume we are in T,0 as above. Let n: be a fair 
computation sequence of Cw starting in e. Then n: can be extended in front 
to a fair computation sequence starting in eo, and hence is finite. Thus Cw 
fairly terminates. (At this point it should be clear to the reader that the 
whole proof proceeds by induction on the number of alternatives of C.) 

Clause (4): By construction, in Tt holds Q(e) = O+-+e is a leaf of T"t;. 

To see that condition (1) does not hold, consider the case: 

CONEd (f;i) 
--~. 0 

Le., d0d'( labels a d0-unfair computation sequence, contained in 
CONEd0(e1), and let Q(CONEd0(e1)) = w. Then p(w)e11\ w>OI\Bo holds, 
and hence, ((p(w)e1Aw>OABo»Co«P(w)ez», that is, w need not 
necessarily decrease under the C0 move as indicated. 

Finally, we modify our construction of cones so as to satisfy clause (1) of 
the rule, too. This modification affects the collapsing of ad-cone; instead 
of collapsing such a cone to a node of T!o, we collapse it to a well-founded 
subtree of Tl. 
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Let CONEd(<;) be given. Now repeat the inductive construction, but 
modified by defining subcones within CONEa(<;) which include only 
infinite computation sequences containing no occurrences of d at all, and <; 
itself (hence never being empty). 

Definition. For 11 E CONEd(<;), let S-CONEd(l'/) = (the set of all occur
rences of states along infinite paths in CONEd(<;) starting in 11 and 
containing no occurrence of ad-move) U { 11}. 

By an argument similar to the one in the proof of Lemma 1 we establish: 

Lemma 4. Every computation sequence leaving S-CONEd(l'/) is either 
finite or contains a d-move. 

The inductive construction of subcones of CONEj(<;) goes as follows: At 
level 0, define S-CONEd(l'/o) with 110=<;. Suppose S-CONEd(l'/i-i) is 
defined (at level i- 1). 

Case (1): There exists a computation sequence leaving S-CONEd(l'/i-d 
which does not leave CONEd(<;), thereby being infinite. Let Cd denote the 
first occurrence of a d-move along that computation sequence. Such a d
move exists by Lemma 4, since we exclude finite sequences (as these left the 
'big' CONEd(<;) already). In case S-CONEd(l'/i-i)= {11;-i}, a computation 
sequence 'leaving' S-CONEil'/i-i) starts in l'/i-I• Let l'/i denote the 
resulting occurrence of a state. Then define the descendant S-CONEd(l'/i) at 
level i. 

Case (2): There does not exist a computation sequence leaving S
CONEd(l'/ ;- 1). Then this S-CONE has no descendant. 

Lemma 5. There does not exist an infinite chain of S-CONEd(l'/i)'s with 
110=<;. 

Proof. Suppose such a chain exists. Then there exists an infinite compu
tation sequence starting in <; with an infinite number of occurrences of d
moves, contained in CONEd(e), contradicting the definition of CONEd(<;). 

Thus, we now collapse each CONEd(<;) into a well-founded subtree, with 
subcones S-CONEd(17) collapsed to nodes. By Lemma 5 this subtree is well 
founded, and hence, the whole tree Tl is well founded. Now repeat the 
previous ranking procedure to Tl so obtained. 
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Now, clause (1) holds, too, because every d-move either leads to a lower 
ranked node corresponding to a subcone, or leaves the whole cone, there
fore also leading to a lower ranked node. Satisfaction of the other clauses is 
not affected by the modification described above. Hence we established: 

Theorem. If C fairly terminates, ( W, :5), p, ((Sw,Dw)>wE w,w>O• exist 
satisfying all the clauses appearing as premises in our rule for proving fair 
termination of guarded loops. 

Comparing the construction in the completeness proof with the state
ment of the rule itself, one cannot help noticing that there is a certain 
discrepancy between the two. In the construction, we always end up with 
IDw= II for collapsed nodes, whereas the rule itself allows IDwl > 1. We 
would like to give some semantic significance to the case IDwl > 1 in the 
light of the previous construction. 

Suppose in rr there exist infinite computation sequences rri, ... , rrk> not 
containing, respectively, moves di, ... , dk an infinite number of times. Then 
Jr;E U}=l CONEd;(~). 

Define CONE{d1, ... ,d.}(~)=LJ;=1, ... ,kcoNEdJO, where {di, ... ,dk} is 
the maximal set of moves s.t. CONEd;(r) =f:. 0, i = 1, ... , k. Next, one verifies: 

Lemma 6. Every infinite sequence leaving CONE{d1, ... A}(~) contains 
movesdi, ... ,dk. 

Then, one modifies the iterative cone construction in that a new 
(generalized) cone is constructed after all moves di, ... , dk occurred. 
Observe that the analogue of Lemma 2 holds again. 

Now, generalize the construction of subcones to maximal sets of moves. 
Assume k = 2, for simplicity of notation (the construction generalizes to 
k:5n). In order to satisfy clause (1), we refine our ranking, as in Fig. 3. 

Split S-CONE{d1,dz}(~) into three parts: 

S-CONEd1(~)- S-CONEd2(e), 

S-CONEd/~)- S-CONEd1({), 
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1 
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ranked w' 

S-CONE d (~) 
n 1 

S-CONEd (0 
2 

~ 

Fig. 3. 

ranked w'", w' >W'" 

S-CONEd (;)-
2 

S-CONEd (;) 
1 

and rank them, respectively, w", w'", w' with w'> w", w'> w"'. (This can be 
easily accomplished by superposing a lexicographical order on[!.) 

Choose Dw,= {d1,d2}, Dw,= {di}, Dwm= {d2}. Now clause (1) is 
satisfied (as suggested in Fig. 3). 

4. Relation to Other Work 

As already mentioned in the introduction, our work is closely related to 
[13). In [13] three fairness-like notions are introduced: 

(1) Impartial execution: along infinite computation sequences all moves 
appear infinitely often (no reference to being enabled or not). 

(2) Just execution: along infinite computation sequences enabled moves, 
which once enabled remain enabled until taken (i.e., are continuously 
enabled), are eventually taken. 

(3) Fair execution: along infinite computations sequences, moves 
infinitely often enabled are eventually taken. 

This distinction influenced clause (3) of our rule. Without clause (3), our 
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rule is sound and complete for impartial execution.* The difference 
between just termination and fair termination is reflected in Examples 1 
and 2 in Section 2. 

A notable difference between our rule and the one in [13], called method 
F, is that we partition the moves in an ordinal-dependent way, whereas in 
[13] state predicates play a crucial rule in determining decreasing moves. 

Now we show that our rule implies method F, and hence the semantic 
completeness of our rule implies the semantic completeness of method F. 

Assume that for program C we found (W, :5), p, ((Sw,Dw)>wE w, w>O 
satisfying clauses (1)-(4) of our rule, relative to precondition r, and that 
IDwl == 1. 

In order to apply method F, we have to: 
(i) Find a partial ranking function{!: States--> W', where W' is ordered 

by a well-founded ordering, 2:. 

(ii) Find predicates Q;, i == 1, ... , n over states, where Q == V? = 1 Q;, 
satisfying: 

(0) Q(() implies e(() is defined, 
(1) r(()::)Q((), 
(2) Q(¢) A 11 E C;(()::) ( Q(11) A e(¢) 2: e(11 )), 

(3) Q;(()/\17ECj(()Ae(()==e(17)::)Q;(1J) for i::;t:j, 
(4) Q;(() /\ 1J EC;(()::) (e(()?;. e(11)) (thus the Q; determine the decreasing 

directions), 
(5) Program C' :: *[DJ= 1, ... ,nB1/\, B;---->C1] satisfies (( Q;))C'(( true)). 
To satisfy method F, take W' == W (using the same ordering), and define 

e(() == minwp(w)(, Q; == i E De<O · Hence Q(() = 3 w • p(wK 
Next, we verify conditions (0)-(5) of method F. 
Condition (0): 3w-p(w)(::){wjp(w)¢}:;t:0, and the minimum of 

{ w lp(w)¢} exists by a property of the ordinals. 
Condition (1): r(()::) 3w, p(w)( holds by clause (4). 
Condition (2): follows from clauses (1), (2) of our rule, guaranteeing that 

p(v) holds for v:5 w; hence the minimal v s.t. p(v) does not increase, either. 

* Note added in proof: Daniel Lehmann informed us that a sound and complete version of 
our rule for just execution is obtained by replacing clause (3) by 

(3') 
n 

p(w)II ,Bf::>, VB; for j E Dw-
1= I 

The resulting rule is complete for programs terminating under the following assumption upon 
the underlying semantics: each of the computation sequences generated is either finite or every 
guard is infinitely often tried. 
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Condition (3): Q;(~)/\11 E Cj(~), i-:t:.j, implies that an S-move is taken, 
and since em is the minimal w s. t. p(w)~, this S-move does not decrease the 
ordinal, hence Q;(~) still holds. 

Condition (4): follows directly from clause (1), since 11 EC;(~) and Q;(~) 
imply a D-move is taken. 

Condition (5): reduces to clause (3). 
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