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Sequential Experimental Design for X-Ray CT
Using Deep Reinforcement Learning

Tianyuan Wang , Felix Lucka , and Tristan van Leeuwen

Abstract—In X-ray Computed Tomography (CT), projections
from many angles are acquired and used for 3D reconstruction.
To make CT suitable for in-line quality control, reducing the
number of angles while maintaining reconstruction quality is
necessary. Sparse-angle tomography is a popular approach for
obtaining 3D reconstructions from limited data. To optimize its
performance, one can adapt scan angles sequentially to select the
most informative angles for each scanned object. Mathematically,
this corresponds to solving an optimal experimental design (OED)
problem. OED problems are high-dimensional, non-convex, bi-
level optimization problems that cannot be solved online, i.e.,
during the scan. To address these challenges, we pose the OED
problem as a partially observable Markov decision process in
a Bayesian framework, and solve it through deep reinforcement
learning. The approach learns efficient non-greedy policies to
solve a given class of OED problems through extensive offline
training rather than solving a given OED problem directly
via numerical optimization. As such, the trained policy can
successfully find the most informative scan angles online. We
use a policy training method based on the Actor-Critic approach
and evaluate its performance on 2D tomography with synthetic
data.

Index Terms—X-ray CT, optimal experimental design, adaptive
angle selection, reinforcement learning.

I. INTRODUCTION

X -RAY Computed Tomography (CT) is a non-destructive
method widely used to evaluate the quality of complex

internal structures in industrial parts. However, there is a trade-
off between high-quality reconstruction and scanning speed,
as a time-consuming full 360-degree rotation is typically
needed to obtain comprehensive information. Kazantsev [1]
and Varga et al. [2] have pointed out that angles are not equally
informative. Therefore, reducing the number of angles by
extracting more informative data can help to improve the trade-
off between reconstruction quality and scanning efficiency.
This trade-off can be formulated as a bi-level optimization
problem with respect to angle parameters [3]. The low-level
optimization problem formulates the image reconstruction
based on the chosen, limited projection data, while the high-
level optimization problem finds angles that optimize the
reconstruction quality.

Bayesian Optimal Experimental Design (OED) is a mathe-
matical framework that enables the acquisition of informative
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measurements while minimizing experimental costs [4, 5]. In
Bayesian OED, the prior distribution represents the current
belief about the underlying ground truth, while the posterior
distribution refers to the updated belief after taking into
account the new measurements obtained through the selected
design. The difference between the prior and updated posterior
reflects the change in uncertainty or equivalently the amount
of information gained from the experiments. In simultaneous
experimental design, we apply this procedure to select the
optimal viewing angles in a single step, while in sequential
experimental design, the goal is to select the viewing angles
step-by-step, based on the projection data that has been
collected so far [6]. It is this variant of the experimental design
problem that we are interested in, as it can adapt the selected
viewing angles to the object under investigation.

Two widely used methods for measuring the uncertainty re-
duction or information gain in Bayesian OED are D-optimality,
and A-optimality [7]. D-optimality measures the information
gain using the Kullback-Leibler divergence to compare the
posterior and prior distributions, while A-optimality computes
the expected error between the underlying ground truth and
the reconstruction.

However, the high dimensionality, computational cost, and
typically unknown or unobtainable prior distribution prevents
the direct application of the aforementioned technique for
sequential optimal design in real-time CT imaging.

Several methods have been proposed to address these is-
sues. Implicit prior information has been the focus of some
researchers. To this end, Batenburg et al. [8] and Dabravolski
et al. [9] used a set of template images comprising Gaussian
blobs to represent prior distribution samples and introduced
an upper bound [10] to approximate the information gain,
indicating the solution set’s diameter. Gaussian distribution has
been used as a tractable method for the prior distribution in
[7]. Burger et al. sequentially selected the projection angle and
the source-receiver pair’s lateral position considering a specific
region of interest and explored Bayesian A- and D-optimality
to update the posterior in the covariance matrix and mean after
each experimental step. Helin et al. [11] extended this work
to non-Gaussian distributions and employed a Total Variation
(TV) prior to enhance edges. In practice, a lagged diffusivity
iteration generated a series of Gaussian approximations for
the TV prior. Additionally, Barbano et al. [12] proposed a
linearized deep image prior that incorporated information from
the pilot measurements as a data-dependent prior. They then
used a conjugate Gaussian-linear model to determine the next
informative angles sequentially. However, these methods can
be time-consuming and are not well-suited for fast in-line
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applications.
In an industrial context, the use of Computer-Aided Design

(CAD) models is a common form of prior information. CAD
models enable offline optimization by allowing angle acqui-
sition using simulation tools. Fischer et al. [13] used a CAD
model of the object to optimize task-specific trajectories based
on the detectability index proposed by Stayman et al. [14]. The
detectability index is computed using the modulation transfer
function and noise power spectrum to evaluate its fitness with
a user-defined frequency template. In addition to task-specific
optimization, Herl et al. [15] considered data completeness
optimization using a Tuy-based metric. Meanwhile, Bussy
et al. [16] obtained a complete set of angles using either a
simulation model or a CAD model and then used the discrete
empirical interpolation method and related variants to sub-
sample from the set of angles. Once a trajectory is optimized
offline sequentially by a CAD model, it can be applied fast
in the real application. Nonetheless, the alignment of the opti-
mized trajectory outcome to the real-world coordinate system
through proper registration is crucial before executing the real
scan [17]. Hence, these methods lack genuine adaptability in
in-line applications.

In terms of the methods discussed above, achieving adap-
tivity while maintaining a fast scan for in-line settings still
presents a significant challenge. Additionally, informative an-
gles are typically selected in a greedy manner after evaluating
all available angle candidates. In the field of medical CT,
Shen et al. [18] addressed this issue by training a deep
reinforcement learning agent on a medical CT image dataset
to personalize the scanning strategy sequentially. They utilized
a gated recurrent unit as a policy network that maps all
the previous measurements to a probability distribution over
discrete angles and a radiation dose fraction. The next angle is
chosen by sampling from this distribution. This way, around
60 are chosen sequentially.

We also leverage deep reinforcement learning to address
the aforementioned challenges in our work but we focus on
the application of industrial, in-line CT inspection instead
of medical CT: We are considering very few scan angles
(< 10), simple image features, but a potentially large inter-
subject variation due to arbitrary placement and changing
samples. For these reasons, we diverge from [18] by using
the reconstruction space as the main state variable, avoiding
problems caused by the increasing number of measurements.
Due to this we use very different network architectures to
parameterize the learned policy. By employing a deep re-
inforcement learning approach, we can train the policy to
facilitate adaptive angle selection, offering a more efficient
alternative to solving the high-dimensional, non-convex, bi-
level optimization problem. Figure (1) illustrates the proposed
reinforcement learning approach for X-ray CT to solve this
OED problem.

The contributions of this work include a novel formulation
of the angle selection problem as a Partially Observable
Markov Decision Process (POMDP), the use of the Actor-
Critic approach from the field of reinforcement learning to
address the OED problem, and the development of an adaptive
approach that can be fast applied in in-line CT applications.
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Fig. 1. The interaction between the environment and the agent during policy
training

The structure of this paper is as follows. In section II,
we present the background on CT reconstruction, Bayesian
OED, and reinforcement learning. In section III, we discuss
the formulation of this experimental design as a POMDP
and describe the computation of the policy gradient using
the Actor-Critic approach. We provide a set of numerical
experiments in section IV to assess the performance of our
proposed method. Finally, in section V and section VI, we
discuss and summarize our findings.

II. BACKGROUND

A. CT Reconstruction

In sparse-angle tomography, the challenge lies in accurately
reconstructing an image from incomplete measurement data,
where only a limited number of angles are acquired. This
inverse problem is severely ill-posed, meaning that small errors
in the measurements could result in a large reconstruction
error, or that several reconstructions are consistent with the
measurements [19]. The Filtered Back-Projection (FBP) al-
gorithm, a traditional analytical reconstruction method, has
limitations when used for sparse-angle tomography. It assumes
that the measurements are acquired over the full angular range,
resulting in inferior reconstructions when applied to limited
data [20].

To address this challenge, it is necessary to incorporate prior
information into the reconstruction algorithm to compensate
for the limited data [20, 21]. Regularised algebraic reconstruc-
tion methods have been proposed to incorporate such prior
information efficiently. When applied to limited data, these
can result in more stable and accurate reconstructions.

Therefore, we represent the object that we would like to
reconstruct as x̄ ∈ Rn where n ∈ N represents the number of
pixels or voxels. A single noisy measurement y at angle θ is
generated as

y(θ) = A(θ)x̄+ ϵ, (1)

with ϵ ∼ N (0, σ2I) and A(θ) is a discretization of the Radon
transform along angle θ.
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The reconstructed image from M measurements along
angles θ = {θ1, . . . , θM} is obtained via

x̂(θ) = argmin
x

1
2

M∑
k=1

∥A(θk)x− y(θk)∥22 + αL(x), (2)

where L(x) is a regularization term representing prior infor-
mation for x.

B. Bayesian OED

Bayesian OED is a statistical framework that optimizes the
design of an experiment by trading off the information gain
with the cost of an experiment.

In the context of X-ray CT experimental design, the utility
function in Bayesian OED measures the reconstruction quality,
where the true underlying ground truth x̄ is estimated by
x̂(θ) from measurements y ∈ Y obtained under experimental
conditions specified by θ ∈ D. The optimal design θ∗

maximizes the expectation of the utility function over the
design space D with respect to the measured data y and the
model parameter x̄.

Sequential OED is an approach that adjusts the design pa-
rameters as new data is acquired. This is achieved by treating
the experiment as a sequential decision-making process, where
the aim is to select the most informative design parameters
based on the observed data to maximize the utility function. In
the kth step of an X-ray CT experiment, the process involves
generating observed data using a data model πdata(yk|x̄; θk)
(as shown in Equation (1)), updating the posterior distribution
of x given the observed data up to step k (denoted by
πpost(xk|y1:k;θ1:k) in Equation (2)), obtaining the reconstruc-
tion for the underlying ground truth. Subsequently, the most
informative angle θk+1 is selected as the next design parameter
to be used, which maximizes the utility function.

C. Reinforcement Learning

Reinforcement learning is a widely used approach for se-
quential decision-making, allowing agents to learn how to map
the current state to actions that maximize the total reward for
the entire process [22]. Since it considers the long-term effects
of actions, reinforcement learning can realize non-greedy
sequential decision-making. This approach is based on the
Markov Decision Processes (MDPs) framework {S,A, πt, R},
which consists of a set of states S , a set of actions A, a
transition operator πt representing the conditional probability
distribution from the current state to the next state after
selecting an action, and a reward function: S × A → R that
provides feedback from the environment at each time step.

A policy πpolicy in reinforcement learning is a mapping
from the current state to a probability distribution of actions:
πpolicy(ak|sk).

In MDPs with a finite number of states, the process begins
from an initial state s1 with a probability distribution πs(s1).
The agent follows a policy that maps the initial state to the
first action, leading the agent to transition to the next state
and receive a reward from the environment. This process
is repeated until a terminal state is reached, generating a

trajectory or an episode τ = (s1, a1, r1, ..., sM , aM , rM ) of
M steps.

A Partially Observable Markov Decision Process (POMDP)
is an extension of a MDP. In many practical scenarios,
an agent may not have full visibility or knowledge about
the environment’s state. POMDPs come into play in such
situations, allowing an agent to make decisions based on
limited or partial observations. A POMDP can be defined as a
tuple {S,A,O, πt, πe, R}, where two additional components
are included in addition to the ones in the standard MDP
formulation: a finite observation set O and an observation
function πe that defines the conditional probability distribution
over the observation in the underlying state after executing
an action. Since the agent has limited knowledge about the
underlying state in POMDPs, the policy must either map
historical observations to the next action or extract information
from historical observations in the form of a belief state.

Reinforcement learning aims to find the optimal policy
with parameters w, denoted as π∗

policy(.;w), that generates
the trajectory or episode τ to maximize the expected total
reward. The objective function for reinforcement learning can
be expressed as follows:

J(w) = Eτ∼πchain

M∑
k=1

γk−1rk,

where πchain = πs(s1)

M∏
k=1

πpolicy(ak|sk;w)πt(sk+1|sk, ak).

(3)
The objective function measures the expected total reward

with a discount factor γ ∈ (0, 1] to account for future uncer-
tainty, and πchain represents the trajectory generation process
by the policy.

The total rewards for one trajectory are obtained after
the agent completes an episode. The expectation over all
trajectories can be estimated by sampling many trajectories. To
enhance the process’s efficiency, some reinforcement learning
approaches utilize value functions that evaluate the expected
future benefits from the kth step following the policy. The
state-value function V (sk) quantifies the expected cumulative
reward from state sk, taking into account all possible trajec-
tories following the current policy that start from this state.

III. METHODS

A. Sequential OED as a POMDP

We take the reconstruction as a belief state rather than
considering measurements as the state, as done in [18]. To
formulate the problem, we adopt a Bayesian OED framework
and model it as a POMDP. The POMDP formulation for the
X-ray CT experiment is defined as follows:

• Observation space O: The observation space is defined
as the set of measurements generated by the data model
expressed in Equation (1).

• State space S: The ground truth x̄ represents the un-
derlying state. The current reconstruction (belief state)
of the underlying state, denoted by x̂(θ1:k), is obtained
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using the SIRT algorithm with box constraints [23] as
specified in Equation (2). For ease of notation, we use x̂k

to represent the reconstruction at the kth step. In addition,
we maintain a vector bk to keep track of the angles that
have been selected before the kth experiment to prevent
repeating the same angles.

• Action space A: The action space is a discrete design
space consisting of 180 integer angles from the range
[0◦, 180◦).

• Transition function πt and observation function πe: The
transition function πt is deterministic, as the underlying
state remains unchanged. On the other hand, the data
model πe given by Equation (1) serves as the observation
function, from which we only consider measurement
samples.

• Reward function R: The reward function is defined based
on the PSNR value between the reconstruction obtained
after selecting the angle θk and its ground truth. Two
reward settings are considered, both of which correspond
to A-optimality in Bayesian OED.:

– End-to-end setting: The reward is given as follows:

R(x̂k+1, x̄) =

{
PSNR(x̂k+1, x̄) if k = M

0 otherwise

If the fixed number of angles M is reached, the
episode terminates, and the final PSNR value is
given. Otherwise, the agent receives a reward of 0.

– Incremental setting: The reward is given as follows:

R(x̂k+1, x̂k, x̄) = PSNR(x̂k+1, x̄)−PSNR(x̂k, x̄)

The reward represents the improvement in the current
reconstruction quality compared to the previous step.

B. Actor-Critic method for policy optimization

The Actor-Critic method is a novel category in the field of
reinforcement learning for computing the policy gradient on
the objective function described in Equation (3). The proposed
approach leverages the concept of value functions and utilizes
a state-value function to obtain the expected future rewards
at the current state, thereby expediting the learning process.
Additionally, this method parameterizes the value function.
The Temporal-Difference (TD) error [22] is employed in
this approach, which calculates the discrepancy between the
estimated value function for the current state and the sum of
the current reward and the discounted estimated value function
for the next state. This enables the state-value function to be
updated through bootstrapping and provides a direction for
policy gradient.

At the beginning of each episode, a zero matrix and a
zero vector are used as the initial state and action vector,
respectively. The complete algorithm is presented in Algorithm
(1).

C. Network architecture

The proposed method requires the agent to extract relevant
features from high-dimensional images to increase learning

Algorithm 1 Actor-Critic.
1: Initialize the policy parameters w1 and the value function

parameters w2 randomly. Set step sizes αw1 > 0 and
αw2 > 0

2: for each episode do:
3: Get a phantom sample x̄ then initialize x̂1 = 0 and

b1 = 0 (first state of this episode).
4: for k = 1, ...,M :
5: Select the angle based on the soft-max policy,

which maps the inputs to a probability distribution
that sums to 1: θk ∼ πpolicy(·|x̂k, bk;w1)

6: Get new measurements yk from Equation (1)
7: Reconstruct new image x̂k+1 from Equation (2)

and get a new vector bk+1

8: Get reward rk using end-to-end setting
R(x̂k+1, x̄) or incremental setting R(x̂k+1, x̂k, x̄)
Estimate the state-values V̂ (x̂k, bk;w2) and
V̂ (x̂k+1, bk+1;w2) using a neural network

9: Compute TD error:
δk ← rk + γV̂ (x̂k+1, bk+1;w2)− V̂ (x̂k, bk;w2)
(If k = M , V̂ (x̂k+1, bk+1;w2) = 0)

10: Update policy function parameters w1:
w1 ← w1 +αw1∇w1

log πpolicy(θk|x̂k, bk;w1)δk

11: Update value function parameters w2:
w2 ← w2 + αw2∇w2

V̂ (x̂k, bk;w2)δk
12: end for
13: end for

efficiency, which is accomplished using a deep neural encoder
network. The architecture of the encoder network and the
Actor-Critic network is shown in Figure (2), with the input
image being of dimension 128 × 128. The neural network’s
connection weights represent the policy parameters w1 and
the state-value function parameters w2.

The proposed model adopts a shared encoder network
between the actor and critic networks. This shared encoder net-
work comprises three convolutional neural networks (CNNs)
each with padding and group normalization, followed by a
leaky Rectified Linear Unit (ReLU) activation and a max
pooling operation for down-sampling. The shared encoder
network consists of a total of 13,320 parameters. Furthermore,
the following actor and critic networks are separate and have
170,820 and 900,601 parameters, respectively.

Figure (2) outlines the process by which the network op-
erates in the context of the Actor-Critic method. The encoder
network takes the reconstruction x̂k as input and produces a
feature vector in the bottleneck layer, which is flattened into
a 1D vector and concatenated with the 1D action vector bk.
The resulting information is then fed into the following actor
and critic networks.

The actor network uses a Soft-max policy to map the
information to a probability distribution over all possible
angle candidates in the action space, while the critic network
estimates the state-value function V̂ (x̂k, bk;w2). Based on
the probability distribution generated by the actor network,
the agent selects the next angle θk and subsequently collects
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Fig. 2. The combined network architecture first consists of an image
encoder branch that processes the current reconstruction. Then, the code
is concatenated with the previous action vector and fed into a network
parameterizing the policy (Actor, left bottom) and a network estimating the
state value (Critic, right bottom).

measurements to obtain a new reconstruction x̂k+1. The action
vector is updated as bk+1 accordingly.

To compute the policy gradient and update the parameters
in the value function using TD error in Algorithm (1), the
new reconstruction x̂k+1 and the new action vector bk+1

are fed into the network again. This is done to calculate a
new state-value function V̂ (x̂k+1, bk+1;w2). Once an angle is
selected, both the policy parameters w1 and the value function
parameters w2 are updated once.

IV. NUMERICAL EXPERIMENTS

We examine in some numerical experiments whether the
learned policies are really able to sequentially adapt the scan
angles to the object (a-posteriori adaptation). For this, we
use various simple numerical phantoms—where informative
angles are well-established—as well as more realistic phan-
toms. Throughout our experiments, we focus on parallel-beam
geometry and 2D tomography using synthetic data. The code
and synthetic data are available on Github 1.

A. Datasets

In our numerical experiments, we consider several shapes
depicted in Figure (3). All phantoms have a size of 128×128.

1https://github.com/tianyuan1wang/SeqAngleRL

The phantoms in the datasets from d1) to d5) are binary im-
ages. To facilitate algorithm validation with more sophisticated
scenarios, datasets d7) and d8) feature advanced phantoms
composed of multiple materials. To assess the adaptability
of the agent to dynamic environments, each dataset from d1)
to d8) includes phantoms with different rotations, causing a
shift in their informative angles. These rotations are repre-
sented by 36 equally spaced angles ranging from 0◦ to 179◦.
Additionally, the phantoms in each dataset from d1) to d8)
exhibit various scaling and shifts (parameters are shown in
Appendix D). Nonetheless, these modifications do not alter
the informative angles, thereby preserving the consistency of
informative angles across the scaled and shifted phantoms.
By including these scaling and shifts, we aim to ensure the
agent’s ability to recognize the same object despite its size
and location variations. Using these datasets allows us to
transparently validate the algorithm.

d1) Circles: The first dataset consists of circles with varying
locations and radii. Due to its uniform curvature, a circle
does not have a relatively higher concentration of informative
angles. To obtain an accurate reconstruction, angles must be
equidistantly distributed.

d2) Ellipses: Unlike circles, ellipses have a major axis
and a minor axis. The major axis serves as a preferential
direction, making angles around it more informative, as shown
in references [8] and [24].

d3) Triangles: Triangles, characterized by one angle of 90◦

and two angles of 45◦, possess three preferential directions,
causing the informative angles to be tangential to their edges
[25].

d4) Mixed phantoms: This dataset consists of a mixture
of phantoms, including triangles from d3), regular pentagons,
and regular hexagons, each of which has its own preferential
directions.

d5) and d6) Combined phantoms: The dataset d5) com-
prises samples created by combining elements from two
distinct phantom types found in categories d1), d2), and d4).
In contrast, dataset d6) consists of two distinct samples from
dataset d4), which does not include round shapes. These two
datasets integrate features from a variety of shapes. Through
this approach, the dataset transforms simple phantoms into
more complex entities, facilitating a broader exploration of
shape and structure.

d7) and d8) Complex phantoms: The datasets under
consideration introduce variations to the classic Shepp-Logan
phantoms. Specifically, we have redesigned the Shepp-Logan
phantoms by excluding the outer ellipse and modifying the
two inner ellipses, ranging from the lowest to the highest
intensity values. In contrast to previous datasets, the current
ones integrate both static and dynamic elements. In the d7)
setup, two high-intensity ellipses experience changes in both
scale and rotation across 36 uniformly distributed angles from
0◦ to 179◦. Following such modifications, these redefined el-
lipses markedly impact the reconstruction error, consequently
influencing the adaptive capabilities of the trained policy. On
the other hand, in the d8) setup, only the lower of these ellipses
exhibits dynamic characteristics.

https://github.com/tianyuan1wang/SeqAngleRL
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d1) d2)

d3) d4)

d7) d8)

d5) d6)

Fig. 3. Datasets utilized in subsequent experiments: Each dataset comprises
samples that exhibit a variety of rotations and scales.

B. Implementation

For all of our experiments, the sequential experimental pro-
cess for each dataset in Figure (3) follows Algorithm (1). To
generate the measurement data, we utilize the ASTRA Toolbox
[26, 27], considering a projection size of 1.5 × 128. This
specific size choice ensures that each angle covers all pixels.
The reconstruction is performed using the SIRT algorithm with
box constraints [0,1] for 150 iterations.

The encoder and Actor-Critic neural network architec-
tures are illustrated in Figure (2). During training, we
set the discount factor γ to 0.99 and assign weights of
1.0 and 0.5 to the actor loss: − log πpolicy(θk|x̂k, bk;w1)δk
and critic loss: (δk)

2, respectively. To encourage ex-
ploration during training, we incorporate an entropy
loss:

∑
θ

πpolicy(θk|x̂k, bk;w1) log πpolicy(θk|x̂k, bk;w1), with

a weight of 0.01. The aforementioned parameter settings have
been empirically determined to achieve an optimal balance
between policy optimization, accurate value estimation, and
robust exploration throughout the training regimen. For opti-
mization of the parameters, we employ the Adam optimizer
[28] with a learning rate of 10−4 and weight decay of 10−5.

Fig. 4. Comparison of policies considering different numbers of angles for
the circles dataset: the results demonstrate the training outcomes over the
last 2,000 episodes. The box represents the interquartile range in these plots,
spanning from the first to the third quartile of the data distribution. The median
value is displayed as a line within the box. The whiskers extend from the box
to illustrate the range of the data distribution beyond the interquartile range.

In addition, we consider two reward functions: incremental
and end-to-end settings. An equidistant policy is introduced as
a benchmark to compare the performance of the Actor-Critic
policy with un-informed and non-adaptive angle selection
method. Significantly, Experiments 1, 2, 3, 4, and 6 employ
distinct policies, each specifically tailored to their respective
training datasets. Conversely, Experiment 5 adopts either the
policy developed in Experiment 4 or a newly trained policy
encompassing multiple datasets, to thoroughly evaluate and
validate its ability to generalize.

C. Experiment 1 - Uniform informative angles

In the first experiment, we aim to train an agent and
evaluate its performance on the circles (dataset d1), which
have a uniform distribution of informative angles. It is known
that the equidistant benchmark is the optimal policy for this
dataset. Our objective is to investigate whether the Actor-Critic
policy approaches the equidistant policy in performance. To
facilitate this investigation, the experiment is conducted with
3,000 training phantoms, and it requires an extensive training
duration of 100,000 episodes.

As depicted in Figure (4), the equidistant policy exhibits
enhanced performance for the circular phantoms compared to
the Actor-Critic policies with diverse reward configurations.
Furthermore, we observe that the performance of the Actor-
Critic policy with end-to-end reward surpasses that of the
policy with incremental reward as the number of angles
increases.

Figure (5) presents two samples considering three and seven
angles obtained from the Actor-Critic policy with the end-to-
end reward setting. This result demonstrates that the Actor-
Critic agent tends to distribute the selected angles evenly,
although the number of angles is different.

D. Experiment 2 - Non-uniform informative angles

In contrast to circles, informative angles in ellipses (dataset
d2) are found to be concentrated around its major axis. We
train an agent on a dataset comprising 3,000 ellipse phantoms.
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Fig. 5. Results of the end-to-end reward setting for two circle phantoms
considering three and seven angles.

Fig. 6. Comparison of policies considering different numbers of angles for
the ellipses dataset: the results demonstrate the training outcomes over the
last 2,000 episodes. The box represents the interquartile range in these plots,
spanning from the first to the third quartile of the data distribution. The median
value is displayed as a line within the box. The whiskers extend from the box
to illustrate the range of the data distribution beyond the interquartile range.

The model achieves convergence after undergoing 150,000
training episodes.

The training outcomes of the ellipse phantoms over the final
2,000 episodes are shown in Figure (6), which indicates that
the Actor-Critic policies exhibit superior performance. As the
number of angles increases, the results for the three policies
get closer. This is because a sufficient number of angles
around the major axis have already been obtained, even for
the equidistant policy, to achieve a high-quality reconstruction.
Notably, the Actor-Critic policy with the end-to-end reward
setting achieves the best performance. Figure (7) presents the
results for two ellipse phantoms, demonstrating that the agent
can discern the rotation of the ellipse and concentrate the
distribution of the angles around the informative area. As the
number of angles increases, the agent increases the number of
angles around the major axis.

The unseen test set comprises 300 phantoms. Table (I)
reports the outcomes regarding the unseen rotations for the
ellipses dataset with three to seven angles. Consistent with the
training results, the Actor-Critic policies demonstrate superior
performance compared to the benchmark, with the policies
becoming progressively closer as the number of angles in-
creases. The end-to-end reward setting still shows the best
average performance, though it has a higher variance.

Fig. 7. Results of the end-to-end reward setting for two ellipse phantoms
considering three and seven angles.
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Fig. 8. This figure compares the performance of Actor-Critic policies, trained
on triangles phantoms, with that of an equidistant policy. It displays the
training outcomes, with curves showing the mean values and shaded color
bands representing the variances.

E. Experiment 3 - Explicit informative angles

The third experiment focuses on evaluating the ability of
the Actor-Critic agent to identify explicit informative angles
for phantoms with sharp edges, namely triangles (dataset d3).
These phantoms have well-defined informative angles that are
tangential to their edges, and thus, it is of interest to investigate
if the agent can successfully locate these angles. The results
of this experiment will provide insight into the performance
of the Actor-Critic agent in detecting preferential directions
for phantoms with sharp edges.

This study employs a dataset comprising 3,000 triangle
phantoms for training the agent. A total of 150,000 episodes
are required to reach convergence in the training process.
A fixed number of five angles is employed. As shown in
Figure (8), both reward settings for the Actor-Critic agent
outperform the equidistant policy. Specifically, training using
the incremental reward setting demonstrates faster conver-
gence, whereas the end-to-end reward setting yields the best
performance.

The training results demonstrate that the Actor-Critic agent
tends to select the first two angles as fixed angles, with particu-
lar emphasis on the first angle, while the second angle exhibits
some uncertainty. Subsequently, the agent would select three
informative angles to optimize the reconstruction process. This
behavior is consistent with the fact that the initial state is set
as a zero matrix and a zero vector with no prior information,
and the agent, therefore, prioritizes gathering information by
fixing the first angle or first two angles before personalizing
the strategies based on the different phantoms encountered.

Figure (9) presents two samples of the agent’s performance
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TABLE I
PERFORMANCE COMPARISON OF POLICIES ON UNSEEN ROTATIONS TEST FOR ELLIPSES REGARDING THE PSNR VALUES

Policies 3 4 5 6 7
Learned adaptive policy (end-to-end) 23.16 ± 1.02 25.10 ± 0.72 25.73 ± 1.20 26.31 ± 0.82 26.87 ± 1.06
Learned adaptive policy (increment) 22.78 ± 0.92 24.90 ± 0.73 25.67 ± 0.77 26.33 ± 0.79 26.86 ± 0.73

Equidistant policy 22.40 ± 0.74 24.27 ± 0.73 25.35 ± 0.69 26.16 ± 0.64 26.73 ± 0.62

Fig. 9. The personalized strategies for triangle phantoms achieved by the
Actor-Critic policy are demonstrated in these sample results obtained under
the end-to-end reward setting.

TABLE II
PERFORMANCE COMPARISON OF POLICIES ON UNSEEN ROTATIONS TEST

FOR TRIANGLES REGARDING THE PSNR VALUES

Policies Triangles
Learned adaptive policy (end-to-end) 24.07 ± 2.07
Learned adaptive policy (increment) 23.78 ± 1.80

Equidistant policy 20.64 ± 1.05

in an end-to-end reward setting, in which the agent selects
the initial two angles of 44◦ and 153◦. Subsequently, for the
right phantom, the agent selects 76◦, 115◦, and 165◦ as the
following three angles, while for the left phantom, the agent
chooses 97◦, 136◦, and 3◦. Notably, these angles are almost
tangential to the edges of the triangle phantoms.

We observe that sometimes, the agent selects more angles
around the informative angles or repeats its selection when
the first two angles are close to the informative angles. This
sub-optimal behavior is counter-intuitive and might indicate
that the policy network’s capacity is too limited to avoid this
repetition.

In the context of evaluating unseen rotations across 300
test phantoms, Table (II) demonstrates that the Actor-Critic
policies outperform the equidistant benchmark. Furthermore,
it is observed that the end-to-end reward setting achieves the
highest quality in terms of reconstruction.

F. Experiment 4 - Mixed phantoms with explicit informative
angles

In this study, we aim to investigate the capacity of an Actor-
Critic agent to recognize and distinguish between different
phantoms with varying informative angles and their rotation.
Our research methodology trains the agent using a compre-
hensive dataset (dataset d4) comprising 9,000 phantoms over
300,000 training episodes. In this study, a fixed number of
seven angles is employed.
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Fig. 10. This figure compares the performance of Actor-Critic policies, trained
on mixed phantoms dataset, with that of an equidistant policy. It displays the
training outcomes, with curves showing the mean values and shaded color
bands representing the variances.

TABLE III
PERFORMANCE COMPARISON OF POLICIES ON UNSEEN ROTATIONS TEST

FOR MIXED PHANTOMS REGARDING THE PSNR VALUES

Policies Mixed phantoms
Learned adaptive policy (end-to-end) 24.85 ± 1.64
Learned adaptive policy (increment) 24.15 ± 1.55

Equidistant policy 22.94 ± 0.76

Similar to Experiment 3, shown in Figure (10), the training
for the mixed phantoms reveals that the incremental reward
setting facilitates faster convergence, while end-to-end reward
setting results in better performance. Figure (11) illustrates
the performance of the end-to-end reward setting. It fixes the
first two angles to 137◦ and 46◦ for the hexagon and triangle,
respectively, while it selects 137◦ and 65◦ for the pentagon
as the first two angles because of some uncertainty for the
second angle as mentioned in Experiment 3. The agent then
selects the subsequent informative angles based on this prior
information by the fixed angles. The reconstruction results for
these samples are illustrated in Appendix A.

Drawing from the unseen rotations test conducted on 900
phantoms, as detailed in Table (III), it can be observed that
the Actor-Critic policies, with both end-to-end and incremental
rewards, outperform the equidistant policy.

G. Experiment 5 - Generalizability Assessment

To evaluate the generalizability of the proposed method,
we apply the trained Actor-Critic policy, initially tailored for
mixed phantoms, to various noise levels, phantoms possessing
distinct shapes and intensity values. Following this, we train
the Actor-Critic policy using simple datasets. Next, to assess
its effectiveness, we evaluated how well it could generalize
from a simple training dataset to a similar yet more complex
dataset.
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Fig. 11. The personalized strategies for mixed phantoms achieved by the Actor-Critic policy are demonstrated in these sample results obtained under the
end-to-end reward setting.

We investigate the impact of Gaussian noise (5%, 7.5%,
and 10%) on the Actor-Critic agent’s ability to select infor-
mative angles for phantoms. As illustrated in Figure (12), the
incorporation of Gaussian noise into measurements results in
a decrease in performance for both the equidistant and Actor-
Critic policies, particularly when compared to outcomes from
noise-free measurements. Nevertheless, Actor-Critic policies
consistently outperform the equidistant approach, particularly
in an end-to-end framework. This indicates that the pre-
dominant factors contributing to performance disparities are
the difficulties inherent in reconstructing data from noise-
contaminated inputs. Comparing the result samples with 5%
Gaussian noise from end-to-end rewards in Figure (13) to
those in Figure (11) from Experiment 4, we find that the
noise in measurements has a substantial influence on the
angle selection strategy, including the fixed angles and the
informative angles selection orders afterward. To better under-
stand the differences between the two policies in Figures (11)
and (13), we show the policy results for triangles in Figure
(14). Our analysis reveals that the policy for clean data is
tightly clustered around informative angles, whereas the policy
for noisy data is more broadly distributed. We also observe
that the policy realizes adaptive angle selection, where the
probability of a chosen angle decreases significantly, followed
by an increase in the probability of some angles with a small
probability.

In the test involving unseen rotations, conducted on 900
phantoms with variable noise levels as depicted in Figure (15),
the Actor-Critic policies consistently surpass the equidistant
policy, with the end-to-end reward setting maintaining the most
superior performance across the three distinct noise levels.
This suggests again that the observed performance variation
predominantly stems from the reconstruction challenges posed
by noisy measurements rather than the efficiency of the
trained policy itself. Additionally, models trained on clean
measurements generally exhibit enhanced resilience to noisy
measurements compared to those trained on noisy datasets,
suggesting that training with noisy data might hinder the
optimal performance of the Actor-Critic policies.

In terms of shape variations, we analyze phantoms with
fewer edges, such as rectangles, and those with a greater
number of edges, specifically heptagons, and octagons. For
each shape category, we have studied a sample size of 900
phantoms. As deduced from Table (IV), while the Actor-Critic
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Fig. 12. This figure compares the performance of Actor-Critic policies, trained
on a mixed phantoms dataset, with that of an equidistant policy. It displays
the training outcomes while considering the impact of Gaussian noise (5%,
7.5%, and 10%), with curves indicating the mean values and shaded color
bands representing the variances.

policy demonstrates a degree of generalizability for diverse
phantom shapes, such as heptagon, its efficacy is somewhat
restricted. The policy with an incremental setting demonstrates
enhanced generalizability.

For variations in intensity values, we assess phantoms
(dataset d4) with four distinct intensity ranges: [0.9,1), [0.7,1),
[0.5,1), and [0.1,1). For each of these intensity categories, our
study encompassed a sample size of 900 phantoms. Insights
drawn from Table (VII) suggest that as the intensity value
range expands, the generalizability of the Actor-Critic policy
diminishes. However, the policy employing an end-to-end
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Fig. 13. The personalized strategies for mixed phantoms with 5% Gaussian noise on measurements achieved by the Actor-Critic policy are demonstrated in
these sample results, obtained under the end-to-end reward setting.

Fig. 14. Comparison of policies for triangles. The policy on the left is trained on clean data, while the policy on the right is trained on noisy data. The
probabilities are scaled by log 5 to magnify the small probabilities. The red star on each colored line represents the selected angle based on the corresponding
probability distribution. Once an angle is selected, its probability becomes zero or is decreased for subsequent selections.

TABLE IV
PERFORMANCE COMPARISON OF POLICIES ON TEST FOR PHANTOMS WITH DIFFERENT SHAPES REGARDING THE PSNR VALUES

Policies Rectangular Heptagon Octagon
Learned adaptive policy (end-to-end) 21.28 ± 2.66 23.08 ± 0.74 23.19 ± 1.24
Learned adaptive policy (increment) 21.89 ± 2.52 23.32 ± 0.57 23.46 ± 0.90

Equidistant policy 23.66 ± 1.20 22.75 ± 2.16 24.24 ± 0.43

setting showcases superior generalizability.
Finally, we initially trained the Actor-Critic policy on a

comprehensive dataset that includes all phantoms from cat-
egories d1), d2), and d4). This approach aimed to develop a
versatile and adaptable policy capable of handling a variety
of shapes and complexities. With a set configuration of seven
angles across 300,000 training episodes, Figure 16 showcases
the training results for the Actor-Critic policies and uses the
equidistant policy as a comparative baseline. The Actor-Critic
policies surpass the equidistant policy in performance, though
the margin is modest. This narrow performance gap can be
attributed to the specific nature of the training datasets, par-
ticularly the circle and ellipse phantoms. Circles possess uni-
formly informative angles, while ellipses offer nearly uniform
informative angles, as shown in Experiment 2, considering the
seven angles. Interestingly, the performances of Actor-Critic
policies, whether configured for end-to-end or incremental
learning, show a remarkable similarity.

Subsequently, to assess the ability of the policy to generalize
from a simpler training set to a more complex one, we evaluate
the trained Actor-Critic policy on datasets d5) and d6) with a

size of 900 phantoms, respectively. This category encompasses
a mix of two distinct shape types found in the training dataset,
thereby providing a challenging test for its adaptability. The re-
sults for the dataset d5), depicted in Table (V), indicate that the
performance of these three policies is quite similar due to the
inclusion of round shapes. In contrast, the results for dataset
d6), shown in Table (VI), demonstrate the superiority of both
Actor-Critic policies. These results highlight the Actor-Critic’s
proficiency in handling increased complexity. Additionally, the
selection of angles for two specific samples, as detailed in
Appendix B, exemplifies the ability of the Actor-Critic policy
to generalize from basic geometric shapes to more intricate,
combined phantoms.

H. Experiment 6 - Complex phantoms with implicit informa-
tive angles

This study seeks to evaluate the effectiveness of the Actor-
Critic agent when applied to complex, multi-material phan-
toms that more closely resemble realistic scenarios. The agent
is trained using dataset d7) to examine its capability in a-
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Fig. 15. Comparison of policies considering different Gaussian noise levels
for the mixed dataset d4): the results demonstrate the unseen rotations
outcomes over. The graph depicts the efficacy of learned adaptive policies,
both in incremental and end-to-end settings, against the equidistant policy.
Notably, both clean and noisy training conditions are considered for the
adaptive policies. The x-axis represents the Gaussian noise percentage, while
the y-axis captures the performance metric. Error bars indicate the variability
in performance at each noise level.
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Fig. 16. This figure compares the performance of Actor-Critic policies, trained
on simple phantoms from datasets d1), d2), and d4), with that of an equidistant
policy. It displays the training outcomes, with curves showing the mean values
and shaded color bands representing the variances.

TABLE V
POLICY PERFORMANCE ON COMPLEX COMBINED PHANTOMS: A

COMPARISON OF POLICIES TRAINED ON SIMPLE PHANTOMS, EVALUATED
ON COMPLEX COMBINED PHANTOMS (D5) USING PSNR VALUES.

Policies Combined phantoms d5)
Learned adaptive policy (end-to-end) 23.27 ± 1.43
Learned adaptive policy (increment) 23.20 ± 1.67

Equidistant policy 23.24 ± 1.25

TABLE VI
POLICY PERFORMANCE ON COMPLEX COMBINED PHANTOMS: A

COMPARISON OF POLICIES TRAINED ON SIMPLE PHANTOMS, EVALUATED
ON COMPLEX COMBINED PHANTOMS (D6) USING PSNR VALUES.

Policies Combined phantoms d6)
Learned adaptive policy (end-to-end) 22.35 ± 1.12
Learned adaptive policy (increment) 22.49 ± 1.27

Equidistant policy 22.20 ± 0.54

posteriori adaptation and on dataset d8) to evaluate the impact
of static components on a-priori angle selection.

The number of phantoms used for training is 3,000 and
the episodes for training are 150,000. The training outcomes

Fig. 17. Comparison of policies considering different numbers of angles for
the complex dataset d7): the results demonstrate the training outcomes over
the last 2,000 episodes. The box represents the interquartile range in these
plots, spanning from the first to the third quartile of the data distribution. The
median value is displayed as a line within the box. The whiskers extend from
the box to illustrate the range of the data distribution beyond the interquartile
range.

during the final 2,000 episodes are illustrated in Figure (17)
for dataset d7) and Figure (18) for dataset d8). Both figures
affirm the superior efficacy of the Actor-Critic policies. As the
number of angles increases, the differences in results among
the three policies become less pronounced. This convergence
suggests that with a sufficient number of angles, even an
equidistant policy can achieve high-quality reconstructions.
Noteworthily, the Actor-Critic policy under the end-to-end
reward configuration still manifests optimal performance. Test
outcomes on 300 phantoms for the unseen rotations are shown
in Appendix E.

In Figures (19) and (20), we showcase the training results
for two different configurations: five angles in group a) and
nineteen angles in group b). The distinction in angle choices
for these configurations is emphasized by the red lines in both
groups a) and b), illustrating the Actor-Critic’s proficiency in
a-posteriori adaptation. These red lines delineate the Actor-
Critic agent’s ability to monitor the rotations of the ellipses.
To understand the impact of the static component on a-priori
angle-selection, we juxtapose the outcomes from datasets d7)
and d8) as seen in Figure (21). In our analysis of the final
2000 episodes, angles selected over 1750 times are classified
as belonging to the most frequently selected category. In
comparison to group a), group b) incorporates an increased
count of angles, characterized by a denser distribution, at-
tributable to the introduction of an additional static ellipse.
The reconstruction outcomes for these respective samples are
detailed in Appendix C. Collectively, these insights emphasize
the Actor-Critic agent’s proficiency in managing both a-priori
angle selection and a-posteriori adjustments.

V. DISCUSSION

The results indicate that for both categories of phan-
toms—those with clear informative angles and those with-
out—the reinforcement learning policy are able to achieve
superior performance compared to the uninformed, equidistant
policy. Empirical evidence suggests that the reinforcement
learning policy can devise a strategy for the static component
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TABLE VII
PERFORMANCE COMPARISON OF POLICIES ON TEST FOR PHANTOMS WITH DIFFERENT INTENSITY VALUES REGARDING THE PSNR VALUES

Policies [0.9,1) [0.7,1) [0.5,1) [0.1,1)
Learned adaptive policy (end-to-end) 23.91 ± 1.86 23.30 ± 2.35 22.51 ± 2.91 21.21 ± 3.04
Learned adaptive policy (increment) 22.41 ± 2.98 21.41 ± 3.73 18.56 ± 3.92 17.29 ± 3.42

Equidistant policy 21.77 ± 0.77 21.43 ± 0.76 21.36 ± 0.74 21.31 ± 0.71

Fig. 18. Comparison of policies considering different numbers of angles for
the complex dataset d8): the results demonstrate the training outcomes over
the last 2,000 episodes. The box represents the interquartile range in these
plots, spanning from the first to the third quartile of the data distribution. The
median value is displayed as a line within the box. The whiskers extend from
the box to illustrate the range of the data distribution beyond the interquartile
range.

a)

b)

Fig. 19. Illustration of personalized strategies for complex phantoms in d7)
achieved using the Actor-Critic policy under the end-to-end reward setting.
Two groups are depicted based on the number of angles: a) five angles; b)
nineteen angles. Rows one and two present a comparison of distinct phantoms,
with red lines emphasizing the a-posteriori adaptation due to ellipse rotations.

based on a-priori knowledge while authentically implementing
a-posteriori adaptations. This complements the findings from
[18], whose numerical studies could not answer this important
question. Furthermore, our approach simplifies the extension
to other design parameters beyond angle selection. While angle
selection involves straightforward sampling from one dimen-
sion of the complete dataset, altering other design parameters,

a)

b)

Fig. 20. Illustration of personalized strategies for complex phantoms in d8)
achieved using the Actor-Critic policy under the end-to-end reward setting.
Two groups are depicted based on the number of angles: a) five angles; b)
nineteen angles. Rows one and two present a comparison of distinct phantoms,
with red lines emphasizing the a-posteriori adaptation due to ellipse rotations.

such as zooming into a region of interest, introduces more
complex changes in data geometry, like resolution adjust-
ments. Designing a network to operate effectively within such
a variable data environment presents significant challenges.
However, in our approach, the reconstruction method intu-
itively accommodates these variations and seamlessly converts
them to a consistent image space format, thus alleviating the
complexities inherent in handling variable data geometries.

Importantly, the trained reinforcement learning policies ex-
hibit generalization capabilities on the test dataset, including
rotations not encountered during training. Introducing varying
levels of noise in measurements diminishes the potential per-
formance improvements across all policies. Yet, reinforcement
learning policies continue to exhibit superior performance.
This suggests that the primary challenge arises from the recon-
struction of noisy data. Although the method’s generalizability
is somewhat limited when faced with diverse shapes and
intensity values, it remains relevant under particular scenarios,
especially when intensity values mirror those encountered
during training. Additionally, initially trained using simpler
phantoms, these policies are later evaluated on more complex
ones, essentially aggregations of the simpler phantoms. This
illustrates the policies’ capability to adapt from basic to more
intricate geometries. We have also determined that a robust
training dataset is crucial. Fortunately, high-quality datasets



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024 14

a)

b)

Fig. 21. The figure illustrates the distribution of angles most commonly
chosen, emphasizing intrinsic preferences devoid of dynamic interferences.
The depicted phantoms signify the omission of any dynamic element. The
gradation in color is indicative of the frequency with which specific angles
were chosen over the last 2000 episodes, with each angle correlating to a
color on the provided scale. Notably, angles that fall within the top frequency
bracket (1750 to 2000 occurrences) are accentuated by pronounced black lines.

like CAD models are accessible for industrial applications.
The insights from Experiment 5 highlight the flexibility of the
reinforcement learning policy in adapting to more complex or
varied situations, suggesting room for further improvement.

In addition, we conducted numerical experiments to com-
pare end-to-end and incremental reward functions. The end-to-
end reward function achieves the highest average performance
on both the training and test datasets. This indicates its effec-
tiveness in guiding the reinforcement learning agent toward
optimal solutions. On the other hand, the incremental reward
function demonstrates faster convergence during training. In
the future, we will investigate further how to design reward
functions that share both of these desirable properties.

In the future, our work can be extended in the following
ways: Firstly, instead of using SIRT as an image reconstruc-
tion method, we will use deep learning-based reconstruction
methods, trained end-to-end. The integration of DL in the
reconstruction process is anticipated to significantly expe-
dite and enhance the efficiency of our image reconstruction
pipeline. This adaptation is expected to render the process
more efficient, particularly aligning it with the demands
of real-time application scenarios. Conceptually, the current
separation between image reconstruction and RL involves
different a-priori assumptions about the class of images being
analyzed. By developing a coherent framework that unifies
these assumptions for both tasks, we expect to achieve more
consistent and reliable outcomes. Secondly, our forthcoming
research will involve rigorous testing of our method against
datasets containing defects to validate its effectiveness. Work-
ing towards this integration by incorporating defects into our
phantom studies and factoring defect detection into the cost
function. Thirdly, we will focus on improving the policy
network to mitigate the issue of repeated angle selections.

Fourthly, we restricted ourselves to a simple 2D parallel-beam
geometry to obtain scenarios in which optimal angle selection
strategies are known, and the results of trained policies can
be interpreted more easily. In the future, we will extend the
approach to more complex and realistic 3D geometries with
additional degrees of freedom, such as tilting and zooming.
Fifthly, we will continue exploring and strengthening the
generalization capabilities of our approach. This enhancement
is crucial for ensuring that the algorithm can adapt effectively
to a wide range of imaging situations. Finally, a significant
aspect of our future work will involve testing and validating
our algorithm on actual CT scans. This step is fundamental
to transition from theoretical and simulated environments to
real-world applications, and will be a critical area of focus in
our continued research.

VI. CONCLUSION

Compared to classical, computationally prohibitive ap-
proaches to solve the sequential OED problem of adaptive
angle selection in X-ray CT, deep reinforcement learning
avoids direct gradient computation on the high-dimensional,
non-convex, bi-level optimization problem. Instead, it learns
non-greedy strategies to solve it for a particular class of
phantoms during an offline training phase which can then
be applied fast and efficiently online to scans of new phan-
toms. We posed the sequential OED problem as a POMDP
and utilized the Actor-Critic network combining a shared
encoder network to learn an optimal policy. In our numeri-
cal studies with 2D CT scenarios mimicking industrial, in-
line CT inspection, we could demonstrate that our approach
learns efficient, truly adaptive policies that achieve better
performance in terms of reconstruction quality. We introduced
two different reward function settings, namely, the end-to-end
and incremental reward settings. Both settings lead to stable
learning processes, consolidating reinforcement learning as a
reliable and extremely promising method for sequential OED.
To conclude, our work demonstrates the potential of using
reinforcement learning for solving sequential OED problems
in inverse problems and imaging - in particular to automate
angle selection and improve CT imaging efficiency, providing
a flexible and adaptive approach for various CT imaging
scenarios in the Industry 4.0.
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APPENDIX A
RECONSTRUCTION SAMPLES FROM EXPERIMENT 4 AND 5

Fig. 22. Theses figures illustrate reconstructions’ comparison in Figure
(11). The figures on the right provide a comparative analysis of mixed
phantoms. Meanwhile, the two figures on the left depict a comparison between
reconstructed images obtained through the Actor-Critic policy with the end-
to-end setting and those obtained through the equidistant policy.

Fig. 23. The figures on the right provide a comparative analysis of mixed
phantoms in Figure (13). Meanwhile, the two figures on the left depict a
comparison between reconstructed images obtained through the Actor-Critic
policy with the end-to-end setting and those obtained through the equidistant
policy.

APPENDIX B
ANGLE SELECTION SAMPLES FROM EXPERIMENT 5

Fig. 24. The figure illustrates the effectiveness of personalized strategies for
two distinct groups of phantoms, as determined by the Actor-Critic policy
under an end-to-end reward framework. Each row corresponds to a specific
group of phantoms. For each row, the leftmost image displays the outcomes
on the combined phantoms, while the center and rightmost images depict
the results for individual phantoms achieved through the trained Actor-Critic
policy.
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APPENDIX C
RECONSTRUCTION SAMPLES FROM EXPERIMENT 6

Fig. 25. Theses figures illustrate reconstructions’ comparison on a selection of
five angles from the group a) in Figure (19). The figures on the right provide
a comparative analysis of phantoms with different positions and orientations,
focusing on two ellipses. Meanwhile, the two figures on the left depict a
comparison between reconstructed images obtained through the Actor-Critic
policy with the end-to-end setting and those obtained through the equidistant
policy.

Fig. 26. Theses figures illustrate reconstructions’ comparison on a selection of
five angles from the group a) in Figure (19). The figures on the right provide
a comparative analysis of phantoms with different positions and orientations,
focusing on two ellipses. Meanwhile, the two figures on the left depict a
comparison between reconstructed images obtained through the Actor-Critic
policy with the end-to-end setting and those obtained through the equidistant
policy.

Fig. 27. Theses figures illustrate reconstructions’ comparison on a selection of
five angles from the group a) in Figure (20). The figures on the right provide
a comparative analysis of phantoms with different positions and orientations,
focusing on two ellipses. Meanwhile, the two figures on the left depict a
comparison between reconstructed images obtained through the Actor-Critic
policy with the end-to-end setting and those obtained through the equidistant
policy.

Fig. 28. Theses figures illustrate reconstructions’ comparison on a selection
of nineteen angles from the group b) in Figure (20). The figures on the
right provide a comparative analysis of phantoms with different positions
and orientations, focusing on two ellipses. Meanwhile, the two figures on the
left depict a comparison between reconstructed images obtained through the
Actor-Critic policy with the end-to-end setting and those obtained through the
equidistant policy.
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APPENDIX D
PARAMETERS USED IN DATASETS

TABLE VIII
PARAMETERS USED IN DATASETS

Scales Shifts
d1) Circles Radius: 20 ∼ 40 Center coordinate: (42,42) ∼ (85,85)
d2) Ellipses Major length: 63 ∼ 72, Minor length: 32 ∼ 40 Center coordinate: (49,49) ∼ (79,79)
d3) Triangles Right angled sides: 37 ∼ 77 Circumscribed circle center: (50,50) ∼ (70,70)
d4) Pentagons Length: 44 ∼ 56 Circumscribed circle center: (54,54) ∼ (74,74)
d4) Hexagons Length: 45 ∼ 50 Circumscribed circle center: (50,50) ∼ (70,70)
d7) Upper ellipse Major length: 31 ∼ 36, Minor length: 8 ∼ 13 Center coordinate: (49,49) ∼ (79,79)

Lower ellipse Major length: 39 ∼ 41, Minor length: 15 ∼ 17 -
d8) Lower ellipse Major length: 39 ∼ 41, Minor length: 15 ∼ 17 -

APPENDIX E
UNSEEN ROTATIONS TESTS FROM EXPERIMENT 6

TABLE IX
PERFORMANCE COMPARISON OF POLICIES ON UNSEEN ROTATIONS TEST FOR COMPLEX PHANTOMS IN D7) REGARDING THE PSNR VALUES

Policies 3 5 7 9 11 13 15 17 19
Learned adaptive policy (end-to-end) 20.09 ± 0.95 22.06 ± 0.85 23.70 ± 0.62 24.82 ± 0.71 25.74 ± 0.57 26.36 ± 0.43 26.94 ± 0.40 27.47 ± 0.47 27.83 ± 0.44
Learned adaptive policy (increment) 19.97 ± 0.95 21.91 ± 0.61 23.14 ± 0.72 24.78 ± 0.49 25.57 ± 0.88 26.21 ± 0.66 26.19 ± 1.95 26.32 ± 2.38 26.59 ± 2.20

Equidistant policy 18.67 ± 0.33 20.69 ± 0.38 22.62 ± 0.32 24.06 ± 0.40 25.13 ± 0.43 25.95 ± 0.42 6.59 ± 0.40 27.17 ± 0.37 27.64 ± 0.36

TABLE X
PERFORMANCE COMPARISON OF POLICIES ON UNSEEN ROTATIONS TEST FOR COMPLEX PHANTOMS IN D8) REGARDING THE PSNR VALUES

Policies 3 5 7 9 11 13 15 17 19
Learned adaptive policy (end-to-end) 20.11 ± 0.53 21.89 ± 0.83 23.66 ± 0.48 24.83 ± 0.33 25.71 ± 0.38 26.52 ± 0.41 27.01 ± 0.38 27.59 ± 0.30 28.01 ± 0.39
Learned adaptive policy (increment) 20.11 ± 0.50 21.92 ± 0.48 23.49 ± 0.69 24.64 ± 0.48 25.60 ± 0.43 26.33 ± 0.56 26.67 ± 0.57 27.10 ± 0.38 27.48 ± 0.41

Equidistant policy 18.93 ± 0.28 20.78 ± 0.28 22.68 ± 0.24 24.03 ± 0.25 25.24 ± 0.22 26.15 ± 0.24 26.78 ± 0.20 27.30 ± 0.17 27.66 ± 0.16
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