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Abstract. High-tech systems are typically produced in two stages: (1) production of com-
ponents using specialized equipment and staff and (2) system assembly/integration. Com-
ponent production capacity is subject to fluctuations, causing a high risk of shortages of at 
least one component, which results in costly delays. Companies hedge this risk by strategic 
investments in excess production capacity and in buffer inventories of components. To 
optimize these, it is crucial to characterize the relation between component shortage risk 
and capacity and inventory investments. We suppose that component production capacity 
and produce demand are normally distributed over finite time intervals, and we accord-
ingly model the production system as a symmetric fork-join queueing network with N sta-
tistically identical queues with a common arrival process and independent service 
processes. Assuming a symmetric cost structure, we subsequently apply extreme value 
theory to gain analytic insights into this optimization problem. We derive several new 
results for this queueing network, notably that the scaled maximum of N steady-state 
queue lengths converges in distribution to a Gaussian random variable. These results trans-
late into asymptotically optimal methods to dimension the system. Tests on a range of pro-
blems reveal that these methods typically work well for systems of moderate size.
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1. Introduction
Delivery reliability is a key performance indicator for high-tech manufacturers, such as ASML, Philips, and Airbus. 
High-tech systems, such as wafer steppers, medical imaging equipment, and aircraft are produced by assembling 
thousands of components, each produced by highly skilled staff using specialized equipment. This production sys-
tem facilitates modular design and testing, but it is also vulnerable: the shortage of a single component will result in 
delivery delays that cause customer grievances, a build-up of inventory of other components, and a severe reduction 
in turnover and cashflow. For example, in 2021, ASML was hit by material shortages in its supply chain, causing it 
to cut its revenue guidance (Denton 2021). Also, in other industries with higher demand volumes, for example, car 
manufacturing, many components are required to assemble the final product, and a single missing item can hinder 
production of the entire end-product. An example is the shutdown of complete manufacturing lines at several car 
manufacturers because of shortages of semiconductors (Ewing and Clark 2021).

Two complementary approaches may contribute to guaranteeing a reliable production system by reducing the 
risk of component shortages: excess component production capacity and inventory buffers. Production capacity 
and inventory buffers have a qualitatively different role in the mitigation of component shortages. Excess pro-
duction capacity implies that the expected maximum number of components that can be produced per quarter 

131 

STOCHASTIC SYSTEMS 
Vol. 14, No. 2, June 2024, pp. 131–166 

ISSN 1946-5238 (online) https://pubsonline.informs.org/journal/stsy 

mailto:mirjam.meijer@klu.org
https://orcid.org/0000-0002-2260-8557
mailto:c.schol@tue.nl
https://orcid.org/0000-0002-9601-2203
mailto:w.l.v.jaarsveld@tue.nl
https://orcid.org/0000-0003-3620-4067
mailto:m.vlasiou@utwente.nl
https://orcid.org/0000-0002-0457-2925
mailto:bert.zwart@cwi.nl
https://orcid.org/0000-0001-9336-0096
https://doi.org/10.1287/stsy.2022.0014
https://doi.org/10.1287/stsy.2022.0014
https://doi.org/10.1287/stsy.2022.0014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


exceeds the expected demand per quarter; for example, as a rule, production capacity may be 110% of expected 
demand. Inventory buffers are components that are produced in anticipation of demand; typically, such anticipa-
tive production continues until the inventory buffer reaches a target, for example, of six weeks of demand. Excess 
production capacity is always available, whereas inventory buffers are consumed when used to absorb produc-
tion or demand fluctuations.

Joint optimization of excess component production capacity and component buffers is the ultimate goal 
because investments in excess component production capacity and component buffer inventories run into the 
hundreds of millions of euros (ASML Holding NV 2021). High-level investment plans for capacity and inventory 
may be devised for each product line (e.g., ASML’s TWINSCAN XT range or Philips’ Azurion 7 C range), 
depending on the role of the product line in the company’s portfolio and other considerations. Despite the strate-
gic importance of these investments, there is a lack of quantitative methods for determining appropriate invest-
ments in capacity and inventory to achieve the desired level of delivery reliability. Indeed, despite decades of 
research in inventory management, the joint optimization of production capacity and inventory remains a con-
siderable challenge (Bradley and Glynn 2002). Whereas the topic has increasingly been studied (see, e.g., Reed 
and Zhang 2017), the focus of analysis has been on problems with a single component. The much more common 
situation of assembling a system from many components has proved very challenging.

In this paper, we make a step toward overcoming this challenge. We propose a stylized model capturing key 
features of high-tech manufacturing that is based on interactions with high-tech manufacturers in the Nether-
lands and that yields new insights into the joint optimization of capacity and inventory for large-scale assembly 
systems. We focus on a single product line. Typically, a majority of the expensive components used in high-tech 
products are common to all products in a product line, being unique to that line, and we consider capacity and 
inventory optimization for those common components. Component shortages result in delays in the start of the 
assembly/integration process. Given the tight production planning that is common at high-tech manufacturers, 
such delays, in turn, result in costly delivery delays. Component production is capacitated and subject to random 
fluctuations. For example, the production capacity of components may be µ6σ�items per quarter, and we assume 
a normal distribution for this per-period production capacity (e.g., Bradley and Glynn 2002, Wu and Chao 2014), 
which is the most natural assumption as the stochastic term represents the error around the mean. We adopt a 
continuous-time model, and we likewise assume that production capacity in every finite interval is linear with 
normally distributed white noise; that is, cumulative net production is a Brownian motion with drift �β < 0 and 
variance σ2 (cf. Bradley and Glynn 2002, Harrison 2013). We analyze the steady-state behavior of this system.

To analyze the overall production system, we consider a symmetric fork-join network of N queues driven by a 
common arrival process and having independent, identical service processes. Because of this common arrival 
process, total inventory per component, including backlogged items, is equal for all components. However, as a 
result of variations in the service times, the number of backlogged items may vary per component. We express 
the optimal component production capacity and inventory in this model in terms of the steady-state delay distri-
bution of the slowest component, which has the form of a maximum of N all-time suprema of Brownian motions, 
and we subsequently focus on analyzing this delay distribution. In particular, in large-scale systems with many 
components/queues, one can expect that the maximum delay (which is due to stochasticity of demand and ser-
vice processes) grows without bound as a function of the size of the system. To analyze and quantify this phe-
nomenon, we derive new analytic results for the delays in this fork-join network as N→∞. To do so, we make a 
major assumption, which is that the randomness and cost characteristics of each of the N suppliers are identical, 
resulting in a symmetric system with identical net service capacities and base-stock levels. The symmetry we 
impose makes a mathematical treatment of our model within reach. Whereas this is a shortcoming of our work, 
it already reveals useful insights, and we complement our analytic results with simulation experiments for asym-
metric systems.

1.1. Extreme Value Analysis
Original equipment manufacturers (OEMs) typically level the demand to smooth the production process. 
Accordingly, in our base model, we assume that demand is completely leveled, which corresponds to a fork-join 
queue with a deterministic arrival stream. Extremes for this network as N→∞ are obtained using extreme value 
theory (EVT), and based on those results, in Section 4, we derive easy-to-calculate expressions for capacity and 
inventory that are asymptotically optimal as the number of components grows large. We provide order bounds 
between the costs under optimal and approximate inventory and capacity. In particular, inspired by the litera-
ture on call centers (Gans et al. 2003, Borst et al. 2004, van Leeuwaarden et al. 2019), we distinguish three regimes 
that depend on the growth rates of cost parameters and are determined by the probability γN of not having 
enough inventory. Given that γN→ γ, we say that the regime is balanced if γ ∈ (0, 1). Furthermore, we are in the 
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quality-driven regime if γ�� 0 and in the efficiency-driven regime if γ�� 1. For the base model, we establish 
asymptotic cost optimality in all three regimes. For the balanced, quality-driven, and efficiency-driven regimes, 
we have convergence rates of 1=(N log N),γN=(N log (N=γN)), and 1=log N, respectively.

1.2. Demand Fluctuations
Other than the number of produced components being stochastic, despite efforts to level demand, typically, 
some demand variation remains. Thus, a natural choice is that the demand has, apart from a linear term, a white 
noise term as well, which is normally distributed. Therefore, in Section 5, we assume that the cumulative stochas-
tic demand for systems is modeled by a Brownian motion with variance σ2

A. (cf. Bradley and Glynn 2002 for a 
single-component manufacturing system). This implies that the demand over any finite time period is a normal 
variable, which is a standard assumption in literature (e.g., Klosterhalfen et al. 2014, Atan and Rousseau 2016). In 
high-tech manufacturing, normally distributed demand is a suitable assumption especially when considering 
longer time periods, but it is also a reasonable approximation for shorter periods. As a consequence of these 
demand variations, component delays become dependent because they face the same stochastic demands 
from system assembly. The question is now how this affects the maximum delay as the number of 
queues/components N→∞. Most of the work in extreme value theory has been done for independent random 
variables(cf. Resnick 1987, de Haan and Ferreira 2006), and suitable results from extreme value theory are absent 
for our setting, rendering the analysis of extremes in the dependent case challenging.

1.3. New Extreme Value Limit
Our answer to this challenge is somewhat surprising: in Theorem 5.1, we prove that the scaled maximum queue 
length converges to a normally distributed random variable as N→∞. In particular, if Qi(∞,β) is the invariant 
queue length at node i,

maxi≤NQi(∞,β)� σ2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p →
d σσA

ffiffiffi
2
√
β

X, (1) 

with X standard normal. An intuitive explanation of this result is the following. Using Lindley’s recursion, we 
can write the maximum queue length as a maximum of N suprema. By using subadditivity arguments, we can 
separate the independent and dependent parts; the independent part converges using standard extreme value 
results, whereas the dependent part satisfies a central limit theorem. To the best of our knowledge, we are the 
first who prove a result of this type. A consequence of this convergence result is that, with proper scaling of hold-
ing and backorder costs, the optimal inventory for stochastic demand converges to a scaled version of the quan-
tile function of the normal distribution, whereas this quantile function also appears in the limit of the optimal 
capacity.

1.4. Numerical Experiments
In Section 5.3, numerical experiments show that we typically are most of the time 10% off the optimum (e.g., 
when N is in the range from 10 to 100); cf. Tables 5 and 6. Naturally, the difference goes to zero as N→∞; cf. 
Theorem 5.2. We give an improvement of this approximation by combining our results for deterministic and sto-
chastic demand. Based on this approximation, we optimize the capacity and inventory decisions, and we test the 
quality of these approximations through numerical experiments. It turns out that these approximations perform 
well already when considering a limited number of components and are typically less than 2% off the optimum.

1.5. Limitations of Simulation
In Section 5.3, we explain the simulation procedure in the case of stochastic demand. We aim to approximate the 
maximum queue length of the all-time supremum of N dependent Brownian motions. Because the dependence 
structure between two all-time suprema of Brownian motions is complicated, we cannot resort to an easy simula-
tion procedure, for example, by using copulas. We, namely, need to simulate discretized approximations of all of 
these N Brownian paths. Subsequently, we need to cut the Brownian path at some finite time point. We then 
record the largest observations of all of these paths. Subsequently, we compute the maximum of N of these 
records to obtain one observation of a maximum queue length. Afterward, we need to repeat this procedure to 
collect data. Finally, we use the collected data to compute empirical means and to estimate quantile functions. 
This means that the computation time grows with at least N, the size of the fork-join queue. Besides, in this simu-
lation procedure, a lot of discretization and approximation steps are needed, which increase the error. Though 
the simulation results give a clear indication of the convergence rate of our limit theorem for small fork-join 
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queueing networks, clearly the procedure is unworkable for a system with a number of servers of the order of 
thousands, which, as a matter of fact, shows the usefulness of the limit in Theorem 5.1 as an approximation.

1.6. Summary of Results
In this paper, we study an assembly system with N components, in which the demand and the number of pro-
duced components are deterministic with some random perturbation, which is assumed to be normally distrib-
uted. Thus, the total delay for one component in steady state can be modeled by the all-time supremum of a 
Brownian motion. We model the system as a fork-join queue. We then use results from EVT to estimate the lon-
gest queue, and we minimize the total costs in the system using this approximation (cf. Theorems 4.1, 5.1, and 
5.2 for the most important results).

1.7. New Insights
This paper generates new insights in fork-join queues that lead to new analytical results for an important class of 
assembly systems. This paper is the first to consider simultaneous optimization of inventory and capacity in a 
multicomponent assembly system with dependent delays. Because of the dependencies in delays, evaluating 
such a system with fixed capacity and inventory is already a difficult problem. We provide several asymptoti-
cally optimal expressions for capacity and inventory that are either in closed form or can easily be computed 
numerically. Our results may help OEMs to optimally allocate budget to capacity and inventory to cost- 
efficiently ensure timely deliveries to their customers.

1.8. Overview
The remainder of this paper is organized as follows. In Section 2, we provide an overview of relevant literature. 
We introduce the general mathematical model in Section 3 and subsequently present the optimization problem 
in which we need to decide on capacity and inventory to minimize costs. We study the assembly system with 
deterministic demand in Section 4. We provide explicit expressions and approximations for optimal inventory 
and capacity. The stochastic demand case with solutions to the minimization problem and convergence results is 
studied in more detail in Section 5. A refinement of the approximations from Section 5 is provided in Section 6, 
in which we combine the lessons learned in Sections 4 and 5 to obtain better approximations for optimal capacity 
and inventory. In Section 7, we briefly touch upon the case of asymmetric systems and demonstrate that, even in 
these settings, our result for symmetric systems remain useful. We give a summary and conclusions in Section 8
and provide most of the proofs in Appendix A.

2. Literature Review
Simultaneous optimization of capacity and inventory is an important problem in supply chain management, but 
the literature on this topic is limited because of the complexity of the problem (Bradley and Glynn 2002). Consid-
ering the interaction between a manufacturer and a single supplier, Chaturvedi and Martı́nez-de Albéniz (2016) 
discuss the trade-off between inventory and capacity and how properly diversifying supply sources can reduce 
inventory and capacity investments. Sleptchenko et al. (2003) study simultaneous optimization of spare part 
inventory and repair capacity. In the last decade, simultaneous optimization of capacity and inventory in a single 
supplier–manufacturer relationship has been studied increasingly (e.g., Reed and Zhang 2017, Reddy and Kumar 
2020). Reed and Zhang (2017) show that the square root staffing rule of Halfin and Whitt (1981) is a valuable tool 
in optimizing inventory and capacity in a multiserver make-to-stock queue. Altendorfer and Minner (2011) study 
simultaneous optimization of inventory and planned lead time, and Mayorga and Ahn (2011) study the joint 
optimization of inventory and temporarily available additional capacity. Our work differs fundamentally from 
these studies as we consider the assembly of multiple components that face the same (stochastic) demand.

In particular, we derive extreme value results for multicomponent assembly systems as the number of compo-
nents grows large in order to obtain asymptotically optimal capacity and inventory decisions. We are not aware 
of related studies of extreme values for inventory and capacity optimization, but the approach is conceptually 
related to studies that apply asymptotic analysis to analyze inventory control problems, and we next review this 
literature. Such studies typically analyze inventory models that are inherently high dimensional; asymptotic 
analysis may be used to derive much simpler optimization problems that form an accurate approximation in 
some relevant asymptotic regime. This approach has led to major progress in the analysis of inventory problems, 
for example, for lost sales models (Goldberg et al. 2016, Xin and Goldberg 2016), dual sourcing (Xin and Gold-
berg 2018), and assembly-to-order systems (Reiman and Wang 2015, Doğru et al. 2017) in the presence of large 
lead times. Assemble-to-order systems with high-volume demand are studied by Plambeck (2008) and Plambeck 
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and Ward (2008), whereas Zhang et al. (2020) study policies for managing perishable inventory when the market 
size grows large. A comprehensive overview of advances using asymptotic analysis can be found in Goldberg 
et al. (2021). Whereas conceptually related, our analysis differs substantially because a queueing model rather 
than a Markov decision process underlies our problem, and we aim to analyze extremes in the queueing model 
to optimize certain model parameters. In that sense, our work is related to Glasserman (1997), who provides 
approximations for setting base-stock levels in single-stage and multistage systems that are asymptotically exact 
as the target service level or the backorder penalty becomes large. For single-product lost sales inventory systems 
under periodic review, Huh et al. (2009) show that order-up-to policies are asymptotically optimal when the lost 
sales penalty is large compared with the holding cost. Bijvank et al. (2014) show the robustness of this result 
when using the optimal base-stock levels of the corresponding backorder system instead of those of the lost sales 
system. The asymptotic analysis in this paper is also influenced by related problems for queues with many ser-
vers inspired by agent staffing problems in call centers; we refer to Borst et al. (2004), Gans et al. (2003), and van 
Leeuwaarden et al. (2019) for background.

Brownian motion models are common in the literature on inventory control. Optimal control of inventory that 
can be described by a Brownian motion is described by (Harrison 2013, section 7), who provides optimality con-
ditions for both discounted and average cost criteria. Closely related to our work is the Brownian motion model 
presented by (Bradley and Glynn 2002, section 3) to study the trade-off between capacity and inventory. They 
provide closed-form approximations to the optimal capacity and base-stock levels in a system with a single item. 
We consider an assembly system in which multiple components are merged into one end product. This is an 
essential difference because, in our model, inventory does not only buffer against uncertain demand, but a com-
ponent may also need to be stored when other components are not yet available.

We note that our study focuses on the common components of a single high-tech system, which is a consider-
ably simpler problem than general assemble-to-order problems (cf. Atan et al. 2017). Our focus enables us to 
obtain results for the key trade-off between capacity, inventory, and delivery reliability, sidestepping the difficul-
ties of inventory control in multiproduct assemble-to-order systems with component commonality (see, e.g., 
Song 1998, Lu and Song 2005, Reiman and Wang 2015, Atan et al. 2017).

Literature concerning simultaneous optimization of capacity and inventory in single-sourced assembly (or 
assembly-to-order) systems with multiple components is limited. Zou et al. (2004) study how supply chain effi-
ciency can be increased by synchronizing processing times and delivery quantities. Pan and So (2016) consider 
the simultaneous optimization of component prices and production quantities in a two-supplier setting in which 
one supplier has uncertainty in the yield. Our main contribution, compared with the work of Zou et al. (2004) 
and Pan and So (2016), is that we provide approximations of the optimal capacity and base-stock levels that only 
require two moments.

To analyze the problem at hand, we examine fork-join queueing networks with N servers for which the arrival 
and service streams are almost deterministic with a Brownian component. Our goal is to find and investigate the 
maximum queue length as N goes to infinity. The queue lengths are dependent random variables because of the 
joint interarrivals. Thus, our paper is related to the convergence of extreme values (maximum queue lengths) of 
dependent random variables. An overview of early results on extreme value theory for dependent random vari-
ables is given in Leadbetter et al. (1983). The authors provide conditions when the sequence of random variables 
may be treated as a sequence of independent random variables; this is the case when the covariance of random 
variables Xi and Xj decreases when i and j are further apart from each other. They also present a convergence 
result for the joint all-time suprema of a finite number of dependent stationary processes; they prove in theorem 
11.2.3 that, under some assumptions, the joint all-time suprema of a finite number of dependent stationary pro-
cesses are mutually independent. This is somewhat related to the problem that we study; however, we do not 
investigate stationary processes, and we only look at the largest of the N all-time suprema, in which N→∞.

We investigate the extreme values for a sequence of N Brownian motions. To be precise, we examine the joint 
all-time suprema of N dependent Brownian motions with a negative and linear drift term when N is large. A lot 
of work has been done on joint suprema of Brownian motions. For instance, Kou and Zhong (2016) give the solu-
tion of the Laplace transform of joint first passage times in terms of the solution of a partial differential equation, 
for which the Brownian motions are dependent. DeRbicki et al. (2020) analyze the tail asymptotics of the all-time 
suprema of two dependent Brownian motions. The joint suprema of a finite number of Brownian motions are 
also studied; cf. DeRbicki et al. (2015), in which the authors give tail asymptotics of the joint suprema of indepen-
dent Gaussian processes over a finite time interval. These are just three examples, but the literature is rich with 
variations around assumptions on independence and dependence or around whether drift terms are linear, 
with joint suprema of two or more than two processes, with suprema over finite and infinite time intervals, and 
with extensions to other Gaussian processes. In this paper, we specifically examine the maximum of N all-time 
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suprema of dependent Brownian motions. In this respect, the work of Brown and Resnick (1977) comes the clos-
est to our work. In that paper, the authors study process convergence of the scaled maximum of N independent 
Brownian motions to a stationary limiting process whose marginals are Gumbel distributed. However, we add 
to this by considering the maximum of the all-time suprema of N dependent Brownian motions.

Our work also relates to the literature on fork-join queues. Specifically, we study asymptotic results for a fork- 
join queueing system with N servers. Most exact results on fork-join queues are limited to systems with two ser-
vice stations; cf. Flatto and Hahn (1984), Wright (1992), Baccelli (1985) and Klein (1988). For fork-join queues with 
more than two servers, only approximations of performance measures are given; cf. Ko and Serfozo (2004), Bac-
celli and Makowski (1989) and Nelson and Tantawi (1988). Most of these papers focus on fork-join queueing sys-
tems in which the number of servers is finite, whereas we investigate a fork-join queue in which N goes to 
infinity. Furthermore, in these papers, the focus lies on steady-state distributions and other one-dimensional per-
formance measures. Work on the heavy-traffic process limit has also been done. For example, Varma (1990) 
derives a heavy-traffic analysis for fork-join queues and shows weak convergence of several processes, such as 
the joint queue lengths in front of each server. Furthermore, Nguyen (1993) proves that various appearing limit-
ing processes are in fact multidimensional reflected Brownian motions. Nguyen (1994) extends this result to a 
fork-join queue with multiple job types. Lu and Pang (2015, 2017a, b) study fork-join networks. In Lu and Pang 
(2015), they investigate a fork-join network in which each service station has multiple servers under nonex-
changeable synchronization and operates in the quality-driven regime. They derive functional central limit theo-
rems for the number of tasks waiting in the waiting buffers for synchronization and for the number of 
synchronized jobs. In Lu and Pang (2017a), they extend this analysis to a fork-join network with a fixed number 
of service stations, each having many servers, in which the system operates in the Halfin–Whitt regime. In Lu 
and Pang (2017b), the authors investigate these heavy-traffic limits for a fixed number of infinite-server stations, 
for which services are dependent and could be disrupted. Finally, we mention Atar et al. (2012), who investigate 
the control of a fork-join queue in heavy traffic by using feedback procedures.

3. Model and Preliminaries
The production system of OEMs such as ASML, Philips, or Airbus consists of roughly two stages: (1) component 
production and (2) assembly/integration of components. This setup is crucial to enable the modular design, pro-
duction, and testing of components, and substantial value is added in both stages. For these reasons, system inte-
gration is only initiated after customers have committed to purchasing the system. We consider a manufacturing 
system in which a manufacturer assembles a final product from N common components, in which N is a large 
number, meaning that all components are required whenever a product is assembled. Each component is pro-
duced on a single production line that involves highly skilled staff and specialized equipment. In anticipation of 
uncertain demand, an inventory buffer is built up: production continues until a target inventory position is 
reached, after which production is switched off until the inventory position drops below this target. Such base- 
stock policies are widely used for modeling component inventories (e.g., Akçay and Xu 2004, Bollapragada et al. 
2004, Karsten et al. 2012). Also, in a high-tech manufacturing environment, in which capacity mainly refers to 
people working in cleanrooms that can be at work or have a day off instead of expensive machines with high 
start-up costs, such policies are suitable. Despite these inventory buffers, random delays may occur in the pro-
duction process for each of the components.

3.1. Model
We adopt a symmetric, continuous-time model and assume that production capacity in every finite time interval 
is normally distributed, meaning that cumulative production is a Brownian motion with drift. We then look at 
this system in equilibrium and find a trade-off between investing in the base-stock buffer and investing in capac-
ity. To efficiently satisfy demand of the end product, which may either be deterministic or stochastic, we need to 
decide how much capacity to establish for each component and how many finished components to keep on 
inventory as a buffer. Even though it is costly to establish capacity and hold inventory, not being able to satisfy 
demand gives rise to backorder costs. Therefore, we need to find capacity and inventory levels that minimize 
total expected costs.

To analyze the cost-minimization problem, we model this assembly system by a fork-join network of N statisti-
cally identical but possibly correlated queues. Demand is represented by the common arrival process of jobs 
going to each server, and each server, with independent, identical service processes, represents production of a 
component. The backlog of each component is represented by a queue of jobs that have not been served yet. 
After completion of a job, the finished component is stored in a warehouse. As demand at each server is driven 
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by a common arrival process, the total inventory of a component, including the number of backlogged compo-
nents is equal for all components. However, as the service times vary, the division between the number of fin-
ished components and the number of backlogged components may vary per server. When all servers have a 
finished component in their warehouse, the end product can be assembled. This system is visualized in Figure 1.

3.2. Brownian Fork-Join Queue
We model queue lengths as reflected Brownian motions, following Harrison (1985) and Abate and Whitt (1987). 
Other papers using Brownian queues to analyze assembly systems are, for example, Plambeck (2008) and Plam-
beck and Ward (2008).

Definition 3.1. For all i ≤ N, the service process at server i is governed by the Brownian motion {Wi(t), t ≥ 0}
with standard deviation σ, and the arrival process is governed by the Brownian motion {WA(t), t ≥ 0} with stan-
dard deviation σA. The queue length at server i at time t > 0 equals

Qi(t,β) :� sup
0< s< t

((Wi(t) +WA(t)� βt)� (Wi(s) +WA(s)� βs)), (2) 

with Qi(0,β) � 0. For i, j ≤ N with i ≠ j the Brownian motions {Wi(t), t ≥ 0} and {Wj(t), t ≥ 0} are independent and 
identically distributed.

Formally, the Brownian motions {Wi(t), t ≥ 0} and {WA(t), t ≥ 0} represent fluctuations in the service and 
arrival processes as they have zero mean. The controllable parameter β�represents the excess capacity in each 
individual queue.

3.3. Base-Stock Level and Capacity
To buffer against uncertainties in the supply and demand processes, we introduce a base-stock level Ii for each 
component i ≤ N. We define βi > 0 as the net capacity for component i, that is, the difference between the pro-
duction rate and arrival rate; in other words, βi captures the capacity investment of server i. As mentioned before, 
we assume that, for all servers, the net capacity and the base-stock levels are the same; thus, βi � βj � β�and 
Ii � Ij � I. The backlog Qi(t,β) represents the number of outstanding orders of component i ≤ N at time t with 
Qi(t,β) given in Definition 3.1. If σ2

A > 0, (Qi(t,β))i≤N are dependent random variables.

3.4. Transient Inventory Levels and Backorders
We proceed by developing an expression for the total system costs, which requires expressions for the inventory 
and backorders. The inventory of component i consists of two parts: first, the excess supply that works as a buffer 
against uncertain demand and, second, the committed inventory that consists of items that are committed to real-
ized demand but put aside because other components are not yet available. That is, the excess supply of compo-
nent i is given by (I�Qi(t,β))+. Moreover, the number of backorders for component i at time t is equal to 
(Qi(t,β)� I)+ because, for Qi(t,β) ≤ I, the shortage is compensated by inventory I, and only the part of Qi(t,β)
exceeding I represents actual backorders that cannot be satisfied. Because all components need to be available to 
assemble the final product, the number of backorders in the system is equal to the number of backorders of the 
component with the largest backlog and is, thus, given by maxj≤N(Qj(t,β)� I)+. Therefore, the committed 

Figure 1. Fork-Join Queue 
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inventory of component i equals the number of backorders in the system minus its own backlog and can be 
expressed as maxj≤N(Qj(t,β)� I)+� (Qi(t,β)� I)+: The total inventory of component i at time t is, thus, given by

Ii(t) � (I�Qi(t,β))+ +max
j≤N
(Qj(t,β)� I)+� (Qi(t,β)� I)+ � I�Qi(t,β) +max

j≤N
(Qj(t,β)� I)+, (3) 

with Ii(0) � I. Observe that the total inventory Ii(t) at time t is a function of the number of outstanding orders at 
time t. The reason why this is true is that the random variable Qi(t,β) does not depend on the total inventory 
because the servers always produce when there is an incoming task irrespective of whether there are items in 
stock or not. When there are items in stock, the product is immediately assembled, but servers work in order to 
reach the target inventory. When there are no items in stock, servers work to finish their component. Hence, 
whether a server works does not depend on the total inventory, but only on the demand and their own service 
speed. This means that the total inventory at time t is described as the function given in Equation (3). Thus, in 
order to know the total inventory on a certain time t, one should know the number of outstanding orders on that 
given time t when the dynamics of these outstanding orders are described as the dynamics of reflected Brownian 
motions until time t. Thus, this describes the dynamics of the system.

3.5. Steady-State Limit
Because the backlogs are modeled as reflected Brownian motions with negative drift, the backlogs have a steady- 
state limit. This limit extends to the largest backlog in the system and the total inventory of component i. We 
prove this in Lemma 3.1.

Lemma 3.1 (Steady State of Backlogs). Given (Qi(t,β), i ≤ N) with Qi(t,β) defined in (2), we have that (Qi(t,β), i ≤
N)→d (Qi(∞,β), i ≤ N) with

(Qi(∞,β), i ≤ N)�d sup
s>0
(Wi(s) +WA(s)� βs), i ≤ N

� �

: (4) 

In particular,

max
i≤N

Qi(∞, β) �d max
i≤N

sup
s>0
(Wi(s) +WA(s)� βs): (5) 

Proof. The argument in one dimension is standard (see, e.g., section III.6 of Asmussen 2003); we extend it to our 
setting. Given t > 0, we can define Brownian motions {ŴA(s), s ≥ 0} and {Ŵi(s), s ≥ 0} that satisfy ŴA(t� s) �
WA(t)�WA(s) and Ŵi(t� s) �Wi(t)�Wi(s). From this, it follows that, for fixed t > 0, we have that

(Qi(t,β), i ≤ N) � sup
0≤ s≤ t

(Ŵi(s) + ŴA(s)� βs), i ≤ N

 !

�
d sup

0≤ s≤ t
(Wi(s) +WA(s)� βs), i ≤ N

 !

:

Now, we obtain the lemma by letting t→∞, using monotone convergence. w

Combining this result with (3), we obtain an analogous result for the steady-state total inventory. In particular,

XN

i�1
Ii(t)→

d XN

i�1
I �Qi(∞, β) +max

j≤N
(Qj(∞, β)� I)+

� �

:

From now on, we write Qi(β) :�Qi(∞,β).

3.6. Cost Function
We scale the cost of building net capacity to one and let h(N) and b(N) denote (inventory) holding costs and back-
order costs, respectively, which may depend on N. Our goal is to minimize the expected total costs of the system 
in steady state.
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Definition 3.2. We define

CN(I, β) :� E
X

i≤N
h(N)

�
I �Qi(β) +max

j≤N
(Qj(β)� I)+

�� �

+ b(N)max
j≤N
(Qj(β)� I)+

" #

, (6) 

with the distribution of Qi(β) given in Equation (5).

Equation (6) simplifies to

CN(I, β) � E Nh(N)(I �Qi(β)) + (Nh(N) + b(N)) max
j≤N

Qj(β)� I
� �+� �

:

Then, the expected total costs in the system are equal to CN(I,β) + βN, where the term βN reflects our normaliza-
tion of unity net capacity costs per queue. If this term were removed, it would be optimal to choose β �∞ and 
I � 0.

Because of the self-similarity of Brownian motion, we can write

βmax
i≤N

sup
s>0
(WA(s) +Wi(s)� βs) � βmax

i≤N
sup
t>0

WA
t
β2

 !

+Wi
t
β2

 !

� β
t
β2

 !

�
d max

i≤N
sup
t>0
(WA(t) +Wi(t)� t):

This means that maxi≤NQi(β)�d 1
βmaxi≤NQi(1). Therefore, after rescaling the variable I, we can write

min
(I,β)
(CN(I,β) + βN) �min

(I,β)
1
β

CN(Iβ, 1) + βN
� �

�min
(I,β)

1
β

CN(I, 1) + βN
� �

: (7) 

In the last part of Equation (7), I has the interpretation of the base-stock level at which the net capacity β�� 1. 
Therefore, from now on, the actual number of products on stock at time 0 equals I=β. Similarly, the actual unsa-
tisfied demands of component i equals Qi(1)=β, and we write Qi �Qi(1). This allows us to write the cost function 
FN(I,β) to be optimized as given in Definition 3.3.

Definition 3.3. We define

FN(I, β) :� CN(I, β) + βN �
1
β

CN(I) + βN, (8) 

with CN(I) :� CN(I, 1) and CN(I,β) given in Equation (6).

Our goal is to solve min(I,β)FN(I,β), focusing on the case in which N is large.

3.7. Preliminary Results
As we have defined the Brownian fork-join queue and the corresponding cost functions, we now state some gen-
eral results that are valid regardless of whether σA � 0 or σA > 0. In the next lemma, we show that we can write 
min(I,β)FN(I,β) as two separate minimization problems.

Lemma 3.2. Let (b(N))N≥1, (h(N))N≥1 be sequences such that h(N) > 0 and b(N) > 0 for all N. Let (IN,βN) minimize FN(I,β). 
Then, the optimal base-stock level IN minimizes CN(I), and the optimal βN minimizes 1βCN(IN) + βN. Furthermore, the func-
tion CN(I) is convex with respect to I, and the function 1βCN(I) + βN is convex with respect to β.

Using Lemma 3.2, we can characterize the optimal net capacity and base-stock level. In Lemma 3.3, we provide 
expressions for the optimal net capacity and costs in terms of the optimal base-stock level, which is given in 
Lemma 3.4.

Lemma 3.3. Given I∗N � arg minICN(I), minimizing FN(I,β) with respect to β�yields β∗N �
ffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

N

q

. Furthermore, the cor-
responding costs are FN(I∗N,β∗N) � 2Nβ∗N � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)N

p
.

The optimal value of I can be expressed as a quantile of the distribution of maxi≤N Qi.

Lemma 3.4. The optimal base-stock level I∗N is the unique solution of

P max
i≤N

Qi ≤ I∗N
� �

�
b(N)

Nh(N) + b(N)
:
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The main technical issue is that the distribution of this maximum is in general not very tractable, especially when 
N is large. The main theme of our work is to consider approximations of this distribution using extreme value 
theory to analyze their quality if N is large.

To explain our ideas, we mention the following first order approximation of maxi≤NQi.

Lemma 3.5. maxi≤NQi satisfies the first order approximation

maxi≤N Qi

log N
→
L1 σ2

2 , 

as N→∞.

The lemma easily follows from more refined results that are proven later on in this paper.
This first order approximation is valid regardless of whether σA � 0 or σA > 0. In the subsequent two sections, 

we consider more refined extreme value theory approximations covering both cases. It turns out that the second 
order behavior of the maximum is qualitatively different when σA becomes strictly positive. This has, in turn, an 
impact on the structure of the optimal solution of our cost minimization problem when N grows large.

To better understand this structure, we heuristically analyze the first order approximation of the cost- 
minimization problem and apply it to approximate I∗N and β∗N. First, we use the approximation maxi≤NQi ≈
σ2

2 log N to write

CN(I) ≈ CN(I) �Nh(N) I� σ
2 + σ2

A
2

� �

+ (Nh(N) + b(N)) σ
2

2 log N� I
� �+

:

The optimal value IN for the associated first order minimization problem minICN(I) is given by IN �
σ2

2 log N 
because b(N) > 0. Using this approximation, we see that CN(IN) ≈ CN(IN) � (1+ o(1)) σ2

2 Nh(N) log N, βN �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(IN)=N
q

� (1+ o(1))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

2 h(N) log N
q

, and FN(IN,βN) ≈ 2
ffiffiffiffi
N
√ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2

2 Nh(N) log N
q

. These results can be made rigorous, 
and the decision rule IN can be shown to be asymptotically optimal, that is, that FN(IN,βN) � FN(I∗N,β∗N)(1+ o(1)). 
To prove this, we need to specify how the cost parameters h(N) and b(N) scale with N. For this, we consider three 
regimes. These regimes relate to the quantile b(N)=(Nh(N) + b(N)) of maxiQi at which I∗N attains its optimal solution. 
Assume that b(N)=(Nh(N) + b(N)) converges to a constant 1� γ. We classify the three regimes in a similar way as is 
done in the analysis of large call centers; cf. Borst et al. (2004): 
• We are in the balanced regime if γ ∈ (0, 1).
• If γ�� 0, for large systems, the inventory is always sufficiently high to ensure that the manufacturer can assem-

ble the end product. We call this the quality-driven regime.
• Finally, if γ�� 1, inventories are much lower, and we call this the efficiency-driven regime.
When we are in the balanced or efficiency-driven regime we can prove how far the costs under the first order 

approximation are from the real optimal costs. This is established in Lemma 3.6.

Lemma 3.6. Assume γN �Nh(N)=(Nh(N) + b(N)) with γN � γ ∈ (0, 1) or γN →
N→∞1. Then,

FN(I∗N,β∗N)
FN(IN,βN)

� 1� o(1):

In the next two sections, we carry out a more elaborate program using more refined extreme value estimates of 
maxi≤NQi. This analysis gives sharper order bounds than those given in Lemma 3.6. In particular, in the follow-
ing sections, we consider the minimization in two distinct cases. First, in Section 4, we look at the case in which 
demand is assumed to be deterministic such that WA � 0. Thereafter, in Section 5, we consider the stochastic 
demand case. In the former case, we utilize existing results in extreme value theory, whereas the latter case 
requires the development of a novel limit theorem. Furthermore, we use the result given in Corollary 3.1; this 
corollary shows how the ratio between the optimal costs and approximate costs can be represented when the 
approximate base-stock level and net capacity are solutions to a minimization problem as well. This corollary fol-
lows trivially from Lemma 3.3.

Corollary 3.1. Assume we have a function F̃N(I,β) : (0,∞) × (0,∞)→ R. Furthermore, assume that the function F̃N has 
the form

F̃N(I,β) �
1
β

C̃N(I) + βN, 

where C̃N is a positive function with domain (0,∞). Moreover, assume that the minimum value F̃N(ĨN, β̃N) � 2Nβ̃N 
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� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃N(ĨN)N
q

, where ĨN and β̃N are minimizers, so then,

F(I∗N,β∗N)
F(ĨN, β̃N)

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃N(ĨN)

q

CN(ĨN) + C̃N(ĨN)
:

4. The Basic Model: Deterministic Arrival Stream
In this section, we consider the case in which demand is deterministic. From this, it follows that all N queues are 
mutually independent.

4.1. Solution and Convergence of the Minimization Problem
We now analyze the minimization of the cost function described in Definition 3.3 for the special case with WA � 0 
representing deterministic demand. Although we can simplify the minimization problem significantly, by using 
the self-similarity of Brownian motions and by writing the minimization problem as two separate minimization 
problems, as shown in Lemma 3.2, the function FN still has a difficult form because we have the expression 
maxi≤NQi in this function. In Lemma 4.1, we give the optimal base-stock level in order to minimize costs. We 
assume that the holding and backlog costs h(N) and b(N) are positive sequences, and we distinguish three cases. 
First of all, we consider the balanced regime γN �Nh(N)=(Nh(N) + b(N)) � γ ∈ (0, 1) for all n > 0. Second, we con-
sider the quality-driven regime, in which γN →

N→∞0. Finally, we investigate the efficiency-driven regime, in 
which γN →

N→∞1. All proofs for this section can be found in Appendix A.2. We present numerical results for the 
three regimes in Section 4.2.

Lemma 4.1. Let Qi � sups>0(Wi(s)� s) with (Wi, 1 ≤ i ≤ N) independent Brownian motions with mean zero and vari-
ance σ2. Let h(N) and b(N) be positive sequences. In order to minimize FN(I,β), the optimal base-stock level I∗N satisfies,

I∗N � P�1
N (1� γN) �

σ2

2 log 1
1� (1� γN)

1
N

 !

, (9) 

with P�1
N the quantile function of P(maxi≤NQi < x) and γN �Nh(N)=(Nh(N) + b(N)).

To get a better understanding of the limiting behavior of the solution to min(I,β)FN(I,β), we approximate the 
function FN. Because (Qi, i ≤ N) are independent and exponentially distributed, we know by standard extreme 
value theory (cf. de Haan and Ferreira 2006) that 2

σ2 maxi≤NQi� log N→d G as N→∞ with G ~ Gumbel. Therefore, 

for N large, maxi≤NQi ≈
d σ2

2 G+ σ
2

2 log N. We get a new minimization problem when we replace maxi≤NQi with 
this approximation σ2

2 G+ σ2

2 log N. In Definition 4.1, we give the resulting function F̂N(I,β) that is to be 
minimized.

Definition 4.1.

ĈN(I) :� E Nh(N)(I �Qi) + (Nh(N) + b(N)) σ
2

2 G + σ
2

2 log N � I
� �+

" #

, (10) 

and

F̂N(I, β) :�
1
β

ĈN(I) + βN: (11) 

In the remainder of this section, we investigate whether minimizing F̂N(I,β) results in costs that are close to those 
when we minimize FN(I,β). Note that we write (I∗N,β∗N) for the minimizers of the cost function FN defined in Defi-
nition 3.3, and we write (ÎN, β̂N) for the minimizers of the cost function F̂N defined in Definition 4.1. Throughout 
this paper, we indicate second order approximations by the ∧-symbol.

In Proposition 4.1, we present the base-stock level that minimizes F̂N. This base-stock level turns out to be a 
quantile of σ2

2 G added to σ2

2 log N.

Proposition 4.1 (Approximation). Minimizing F̂N(I,β) with G ~ Gumbel gives solution (ÎN, β̂N, F̂N(ÎN, β̂N)) with

ÎN �
σ2

2 log N� σ
2

2 log(�log(1� γN)), (12) 
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and

ĈN(ÎN) �Nh(N) ÎN �
σ2

2

� �

+ (Nh(N) + b(N))σ
2

2

Z ∞

�log(1�γN)

e�t

t
dt+ Γ+ log(�log(1�γN))

 !

, (13) 

where Γ ≈ 0:577 is Euler’s constant and γN �Nh(N)=(Nh(N) + b(N)).

Combining Equations (12) and (13) with the results in Lemma 3.3 gives the solution (ÎN, β̂N, F̂N(ÎN, β̂N)).
We compare the costs under the optimal base-stock level and net capacity with the costs under the approxi-

mate base-stock level and net capacity. We distinguish the balanced, quality-driven, and efficiency-driven 
regimes.

By using the results from Lemmas A.1 and A.2 in Appendix A.2, we prove the order bounds in the balanced, 
quality-driven, and efficiency-driven regimes in Theorem 4.1. In the efficiency-driven regime, we impose the 
additional condition γN < 1� exp(�N) needed to make sure that ÎN > 0. If we, namely, choose γN > 1�
exp(�N), we get that ÎN < 0, which is not feasible because ÎN has the physical meaning of the number of items 
that needs to be stored.

Theorem 4.1 (Order Bounds). Assume γN �Nh(N)=(Nh(N) + b(N)) if γN � γ ∈ (0, 1) in the balanced regime. Then,
FN(I∗N,β∗N)
FN(ÎN, β̂N)

� 1�O(1=(N log N)), (14) 

if γN →
N→∞0 in the quality-driven regime. Then,

FN(I∗N,β∗N)
FN(ÎN, β̂N)

� 1�O(γN=(N log(N=γN))), (15) 

and if γN →
N→∞1 and γN < 1� exp(�N) in the efficiency-driven regime, then

FN(I∗N,β∗N)
FN(ÎN, β̂N)

� 1�O(1=log N): (16) 

Using the order bounds given in Theorem 4.1, we can establish for the three different regimes how FN(I∗N,β∗N)
scales with N as N becomes large.

Lemma 4.2. Assume γN �Nh(N)=(Nh(N) + b(N)) if γN � γ ∈ (0, 1) in the balanced regime. Then,

FN(I∗N,β∗N)

� 2
ffiffiffiffi
N
√

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nh(N) σ
2

2 (log N� log(�log(1� γ))� 1) + (Nh(N) + b(N))σ
2

2 E[(G+ log(�log(1� γ)))+]

s

+O(
ffiffiffiffiffiffiffiffi
h(N)
√

=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
), (17) 

if γN →
N→∞0 in the quality-driven regime. Then,

FN(I∗N,β∗N) � 2
ffiffiffiffi
N
√

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nh(N) σ
2

2 (log(N=γN)� 1) + (Nh(N) + b(N))σ
2

2 γN

s

+O γN

ffiffiffiffiffiffiffiffi
h(N)
√

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(N=γN)
q� �

, (18) 

and if γN →
N→∞1 and γN < 1� exp(�N) in the efficiency-driven regime, then

FN(I∗N,β∗N) � 2
ffiffiffiffi
N
√

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nh(N) σ
2

2 (log N� 1) + b(N) σ
2

2 log(�log(1� γN))

r

+O(N
ffiffiffiffiffiffiffiffi
h(N)
√

=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
): (19) 

The results given in Theorem 4.1 and Lemma 4.2 are obtained by using the properties stated in Online Lemmas 
A.1 and A.2. In Online Lemma A.1, we show that we can write a Gumbel distributed random variable that is on 
the same probability space as maxi≤NQi. This gives us a very powerful result; namely, that maxi≤NQi and GN are 
ordered and that their difference decreases as maxi≤NQi becomes large. Consequently, we obtain very sharp 
bounds on |CN(I∗N)�CN(ÎN) | and |ĈN(ÎN)�CN(ÎN) | in Online Lemma A.2, which leads to sharp results in Theo-
rem 4.1 and Lemma 4.2.
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4.2. Numerical Experiments
We now provide some numerical results to illustrate the solutions to the minimization problem and their charac-
teristics discussed in Section 4.1. In all experiments, we let σ�� 1 and let N vary from 10 to 1,000. The results for 
the balanced, quality-driven, and efficiency-driven regimes are given in Tables 1–3, respectively. We can observe 
that, in all regimes, the approximate solutions are close to the optimal solutions. Most importantly, already for 
small N, the fraction of the costs corresponding to the optimal solution over the costs corresponding to the 
approximate solution nearly equals one.

5. Stochastic Demand
We now extend our framework to the case in which demand is stochastic. This means that stochasticity not only 
arises from the production process of the individual components, but also results from uncertain demands. Con-
sequently, delays may no longer only be caused by low production of a specific component, but may also occur 
when there is a sudden peak in demand. Because all components need to be available to assemble the end prod-
uct and satisfy demand, delays of the different components are now correlated. We use the same strategy when 
demand is stochastic as in the basic model with deterministic demand. However, we can no longer approximate 
the maximum queue length distribution with the Gumbel distribution. In Section 5.1, we show that, for N large, 
maxi≤NQi ≈

σ2

2 log N + σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X with X a standard normal random variable. Using this approximation, we 

obtain a new minimization problem, in which we minimize F̂A
N(I,β) as given in Definition 5.1 with respect to I 

and β.

Definition 5.1.

ĈA
N(I) � E Nh(N)(I �Qi) + (Nh(N) + b(N)) σ

2

2 log N + σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X� I

� �+
" #

, 

and

F̂A
N(I, β) �

1
β

ĈA
N(I) + βN:

In Section 5.2, we elaborate on the solution and convergence of the minimization problem.

5.1. Extreme Value Limit
In this section, we focus on the maximum of N dependent random variables. In Theorem 5.1, we prove that a 
scaled version of maxi≤NQi(β) converges in distribution to a normally distributed random variable as N goes to 
infinity.

Theorem 5.1. Let (Wi, 1 ≤ i ≤ N) be independent Brownian motions with mean zero and variance σ2 and WA be a Brown-
ian motion with mean zero and variance σ2

A. Then,

maxi≤N sups>0(Wi(s) +WA(s)� βs)� σ
2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p →
d σσA

ffiffiffi
2
√
β

X, (20) 

with X ~ N (0, 1). In other words, for all x ∈ R,

P
maxi≤N sups>0(Wi(s) +WA(s)� βs)� σ

2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p > x

 !

→
N→∞1�Φ x

ffiffiffi
2
√
β

σσA

 !

, 

with Φ�the cumulative distribution function of a standard normal random variable.

Table 1. Balanced Regime, h(N) � 1, b(N) �N Such That γN �
1
2

N I∗N β∗N FN(I∗N,β∗N) ÎN β̂N FN(ÎN , β̂N)
1� FN (I∗N,β∗N )

FN (ÎN, β̂N )

� �
N log N

10 1.35178 1.19648 23.9296 1.33455 1.19328 23.9315 0.001807
50 2.14273 1.49338 149.338 2.13927 1.49286 149.338 0.000379
100 2.48757 1.60499 320.997 2.48584 1.60475 320.997 0.000192
200 2.83328 1.70944 683.775 2.83242 1.70932 683.775 9:68 · 10�5

500 3.29091 1.8385 1,838.5 3.29056 1.83846 1,838.5 3:91 · 10�5

1,000 3.63731 1.93044 3,860.87 3.63713 1.93042 3,860.87 1:97 · 10�5
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A heuristic explanation of the result in Theorem 5.1 is as follows: though (Qi, i ≤ N) are dependent random 
variables, because we are adding the same Brownian motion WA, maxi≤NWi(s) dominates more and more over 
WA as N becomes larger. Consequently, WA does not affect the time at which the supremum of maxi≤NWi(s) +
WA(s)� βs is attained. Hence, for N large maxi≤NQi(β) ≈maxi≤Nsups>0(Wi(s)� βs) +WA(τ) with τ�the hitting 
time of the supremum of maxi≤N(Wi(s)� βs). Based on the theory on conditional expectations of Lévy processes, 
we know that the conditional expectation of the hitting time τ(x) to reach a point x is linear with x; to be precise, 
for n � 1, it is known that E[τ(x) |τ(x) < ∞] � x=β. Combining this with the fact that maxi≤N sups>0(Wi(s)� βs)
~ σ2

2β log N, we expect that the supremum of maxi≤N(Wi(s)� βs) is reached at τ ≈ 1
β ·
σ2

2β log N � σ2

2β2 log N. Therefore, 

WA(τ) ≈
d σσA
ffiffiffi
2
√
β

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X with X standard normally distributed, which results in Equation (20).

The proof of Theorem 5.1 consists of four parts, which are stated in Lemmas 5.1–5.4 for which the proofs are 
provided in Appendix A.3. For a process X, we have for all t > 0 that

P sup
s>0

X(s) > x
� �

≥ P(X(t) > x):

Furthermore, for every 0 < t1 < t2,

P sup
s>0

X(s) > x
� �

≤ P sup
0< s< t1

X(s) > x

 !

+P sup
t1 ≤ s< t2

X(s) > x

 !

+P sup
s≥t2

X(s) > x

 !

:

We prove that these lower and upper bounds are tight for the process given in Theorem 5.1 for appropriately 
chosen t, t1, t2. More specifically, in Lemma 5.1, we prove the asymptotic behavior at the critical time d log N, 
where d � σ2

2β2, resulting in the tight lower bound. We show that times before and after this critical time have no 
influence in Lemmas 5.2 and 5.3, respectively, leading up to Lemma 5.4 that shows the concentration around the 
critical time d log N, proving a tight upper bound.

Lemma 5.1. For d � σ2

2β2,

maxi≤N(Wi(d log N) +WA(d log N))� βd log N� σ2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p →
d σσA

ffiffiffi
2
√
β

X, (21) 

with X ~ N (0, 1) as N→∞.

Table 3. Efficiency-Driven Regime, h(N) �N, b(N) � 1 Such That γN �
N2

N2+1

N I∗N β∗N FN(I∗N ,β∗N) ÎN β̂N FN(ÎN, β̂N)
1� FN (I∗N,β∗N )

FN (ÎN, β̂N )

� �
log N

10 0.497572 3.12224 62.4448 0.386624 3.08439 62.4616 0.000797
50 0.965997 9.35451 935.451 0.927385 9.34122 935.452 8:65678 · 10�6

100 1.21527 14.4701 2,894.02 1.19242 14.4615 2,894.02 1:30518 · 10�6

200 1.48208 22.0864 8,834.57 1.46889 22.0808 8,834.57 2:20863 · 10�7

500 1.85348 38.0553 38,055.3 1.84728 38.0521 38,055.3 2:51171 · 10�8

1,000 2.14443 56.945 113,890 2.14098 56.9428 113,890 5:30189 · 10�9

Table 2. Quality-Driven Regime, h(N) � 1, b(N) �N2 Such That γN �
1

1+N

N I∗N β∗N FN(I∗N ,β∗N) ÎN β̂N FN(ÎN , β̂N)
1� FN (I∗N,β∗N )

FN (Î N, β̂N )

� �
N
γN

log N
γN

10 2.32898 1.52962 30.5925 2.3266 1.52924 30.5925 0.000617
50 3.91708 1.97978 197.978 3.91698 1.97976 197.978 2:52 · 10�5

100 4.60768 2.14684 429.368 4.60766 2.14684 429.368 6:31162 · 10�6

200 5.29957 2.30221 920.886 5.29956 2.30221 920.886 1:21801 · 10�6

500 6.21511 2.49306 2,493.06 6.21511 2.49306 2,493.06 5:51467 · 10�6

1,000 6.90801 2.62833 5,256.66 6.90801 2.62833 5,256.66 0.000176
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Lemma 5.2. For d � σ2

2β2 and 0 < ɛ < d and for all x,

P
maxi≤N sup0< s< (d�ɛ)log N(Wi(s) +WA(s)� βs)� σ

2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

→
N→∞0: (22) 

Lemma 5.3. For d � σ2

2β2 and all ɛ > 0 and x ∈ R,

P
maxi≤N sups≥(d+ɛ)log N(Wi(s) +WA(s)� βs)� σ

2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

→
N→∞0: (23) 

Lemma 5.4. For d � σ2

2β2 and ɛ > 0 and for all x,

lim sup
N→∞

P
maxi≤N sup(d�ɛ)log N≤ s< (d+ɛ)log N Wi(s) +WA(s)� βs

� �
� σ

2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

≤ P σA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

2β2� ɛ

s

X1 +
ffiffiffiffiffi
2ɛ
√
σA |X2 | > x

 !

, (24) 

with X1, X2 ~ N (0, 1) and independent.

In Appendix A.3, we show how these lemmas can be used to prove Theorem 5.1. In Lemma 5.5, we prove that 
convergence holds even in L1 when X is chosen appropriately.

Lemma 5.5. Define XN :�
ffiffi
2
√
β

σσA

WA(
σ2
2β2

log N)
ffiffiffiffiffiffiffiffiffi
log N
√ . Then,

E

�
�
�
�
�

maxi≤N sups>0(Wi(s) +WA(s)� βs)� σ
2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
σσA
ffiffiffi
2
√
β

XN

�
�
�
�
�

" #

→
N→∞0:

The proof of Lemma 5.5 is also given in Appendix A.3. In the next section, we apply Theorem 5.1 and Lemma 5.5
to solve and approximate the minimization problem. Specifically, Lemma 5.5 gives us an order bound between 
the optimal base-stock level and the approximate base-stock level.

5.2. Solution and Convergence of the Minimization Problem
We can use the convergence result proven in Theorem 5.1 to prove asymptotics of the minimization of the func-

tion FN. Because 
ffiffi
2
√
β

σσA

maxi≤NQi(β)�σ
2

2βlog N
ffiffiffiffiffiffiffiffiffi
log N
√ is a continuous random variable, we know that its quantile function con-

verges to the quantile function of a standard normal random variable (cf. van der Vaart 1998, lemma 21.2). So we 
can use this to derive asymptotics of the minimization problem of FN.

Using PA
N(z) as described in Definition 5.2, we can solve the minimization problem, which yields the optimal 

base-stock level and net capacity given in Lemma 5.6. The proofs concerning the solution and subsequent con-
vergence results are provided in Appendix A.4.

Definition 5.2. We define

PA
N(z) � P

ffiffiffi
2
√

σσA

maxi≤N Qi �
σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≤ z

 !

:

Lemma 5.6. Let (b(N))N≥1, (h(N))N≥1 be sequences such that h(N) > 0 and b(N) > 0 for all N, and γN �Nh(N)=(Nh(N) + b(N)). 
Let (βA

N, IA
N) minimize FN(I,β). Then,

IA
N �
σ2

2 log N + σσA
ffiffiffi
2
√ PA

N
�1(1� γN)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
: (25) 

When we are in the balanced regime, we can approximate the minimization problem given in Definition 5.1, 
using the convergence result in Theorem 5.1, and prove how far the approximate solution is from the optimal 
solution. This is done in Proposition 5.1 and Theorem 5.2. In Lemma 5.7, we show how the optimal costs scale 
with N when we are in the balanced regime. The proofs are given in Appendix A.4.
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Proposition 5.1. For (b(N))N≥1, (h(N))N≥1 and γN �Nh(N)=(Nh(N) + b(N)),

ÎA
N �
σ2

2 log N + σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
Φ�1(1� γN), (26) 

and

ĈA
N(Î

A
N) �Nh(N) σ

2

2 log N�
σ2 + σ2

A
2

� �

+ (Nh(N) + b(N))
σσA

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
e�1

2Φ
�1(1�γN)

2

2
ffiffiffiffi
π
√ : (27) 

Theorem 5.2 (Order Bound). Assume γN �Nh(N)=(Nh(N) + b(N)) with γN � γ ∈ (0, 1). Then,

FN(IA
N,βA

N)

FN(Î
A
N, β̂A

N)
� 1

�
�
�
�
�

�
�
�
�
�
� o 1

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

 !

:

Lemma 5.7 (Balanced Regime). Assume γN �Nh(N)=(Nh(N) + b(N)) with γN � γ ∈ (0, 1). Then,

IA
N �
σ2

2 log N + σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
Φ�1(1� γ) + o(

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
), (28) 

and
FN(IA

N,βA
N) � 2

ffiffiffiffi
N
√

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈA
N(Î

A
N)

q

+ o(N
ffiffiffiffiffiffiffiffi
h(N)
√

): (29) 

The result in Lemma 5.7 only holds for the balanced regime, so a natural question is what we can say about the 
efficiency- and quality-driven regimes. As is shown in Lemma 3.6, in the efficiency-driven regime, the first order 
approximation IN �

σ2

2 log N gives that the ratio of the approximate costs and the optimal costs converge to one. 
Thus, we expect that the approximation given in (26) also satisfies this convergence result. In order to determine 
whether this approximation also satisfies the order bound given in Theorem 5.2, a further analysis is needed. 
The analysis we provide for the balanced regime heavily relies on van der Vaart (1998, lemma 21.2), which says 
that, if YN→

d Y, then for γ ∈ (0, 1), P�1
YN
(γ) →

N→∞P�1
Y (γ). This gives us the convergence result (28) of the inventory in 

the balanced regime. In order to be able to prove a similar result for the efficiency-driven regime, we need an 
improvement of van der Vaart (1998, lemma 21.2), which also holds when γN →

N→∞1.
However, for the quality-driven regime, this convergence result does not hold because we see in Lemma 4.2

that IA
N ≈

σ2

2 log(N=γN). In order to find a sharp order bound such as given in Theorem 5.2, we should resort to the 
analysis of tail asymptotics, which is beyond the scope of this study.

5.3. Numerical Experiments
In Section 5.2, we provided expressions to calculate the asymptotically optimal net capacity and base-stock level. 
The question remains how large the number of components has to be for these approximations to be of use. 
Therefore, we now examine the expected costs under both the optimal net capacity and base-stock level and 
under these asymptotic approximations. Because it is not straightforward to calculate E[(maxi≤NQi� I)+] for 
dependent Qi, to evaluate the cost function given in Definition 3.3, we resort to simulation. First, we explain the 
details of our simulation experiment, after which we discuss the numerical results.

In our simulation, we aim to determine the maximum delay over all components, so maxi≤NQi. For this, we 
use the algorithm proposed by (Asmussen et al. 1995, section 4.5), who describe an exact algorithm for simulat-
ing a reflected Brownian motion at the grid points. At every grid point, we draw normal random variables with 
the required drift and variance for the supply and demand processes and update the maximum. We use a step 
size of 0.001 for the grid points. Because we cannot simulate over an infinite horizon, we have to determine 
when to terminate the simulation. The maximum value is expected to be attained at a time that is smaller than 
t̂ � σ

2+σ2
A

2
PN

j�1
1
j . To simulate well beyond this point, we run the simulation until t � 2t̂.

Using this method to simulate maxi≤NQi, we can estimate PA
N
�1(1� γN) with PA

N(z) as described in Definition 
5.2. To obtain a median-unbiased estimate of the quantile, we use the approach suggested by Zieliński (2009). 
For this, we sample maxi≤NQi 100 times and randomly choose between the observations (1� γN) · 100 and (1�
γN) · 100+ 1 with weights depending on the value of the fractile. Our estimate is equal to the median over 100 
iterations. Once we have our estimate of PA

N
�1(1� γN), we determine the value of the optimal base-stock level as 

given in Equation (25). Using the optimal base-stock level, we determine the optimal net capacity given in 

Meijer et al.: Inventory and Capacity in Large-Scale Assembly Systems 
146 Stochastic Systems, 2024, vol. 14, no. 2, pp. 131–166, © 2024 The Author(s) 



Lemma 3.3. Because this also requires the expectation of (maxi≤NQi� I)+, we determine this value by taking the 
average based on 10,000 simulations.

Next, we compare the costs under our asymptotic approximations of the net capacity and base-stock level 
(provided in Proposition 5.1) to the costs under the optimal net capacity and base-stock level obtained from the 
simulation. We again sample (maxi≤NQi� I)+ based on 10,000 new simulations and determine the costs of the 
different policies using cost function FN(I,β).

The procedure described is applicable for N in the order of hundreds; however, it is close to impossible to pro-
vide a fast simulation for N in the order of thousands. Hence, to give a useful approximation of the optimal 
capacity and base-stock level in these cases, we need to use the limit we derived in Theorem 5.1.

In order to assess the performance of the approximations and its sensitivity to various model parameters, we 
perform a full factorial experiment. In our experiment, we vary the number of components, demand variability, 
and backorder costs. The setup of the experiment is given in Table 4. We set h(N) � 1 and σ�� 1 in all experiments. 
In total we have 24 instances. The results are given in Tables 5 and 6 for b(N) �N and b(N) � 3N, respectively.

There are several important observations to be made from Table 5. First of all, we can observe that, for n � 10, 
the difference in costs between the simulated optimal solution and the asymptotic solution is around 10% for 
most cases: the case n � 10 and σA � 1 is an outlier, for which the difference is around 15%. As N increases to 50, 
the difference decreases. Furthermore, the difference becomes larger when σ�increases. In the last column, we 
verify the convergence result from Theorem 5.2. We observe that the difference decreases as N increases and that 
increasing σA causes the difference to increase.

When we consider the results for b(N) � 3N given in Table 6, we observe that the difference between the asymp-
totic and optimal costs is considerably higher than for b(N) �N. Especially for n � 10, the difference is around 
15% of the optimum except for n � 10 and σA � 0:1, for which the difference is around 20%. However, for a larger 
number of components, the difference is around 10% of the optimum. Interestingly, for the case σA � 1, the differ-
ence between b(N) �N and b(N) � 3N is relatively small.

Overall, in most of our experiments, the difference between the costs under the optimal base-stock level and 
net capacity and the costs under the approximations are around 10%. Furthermore, we can conclude that, for 
small variations in demand and low backorder costs, the asymptotic approach performs well in terms of costs 
already for a reasonable number of components. Also, the performance improves by increasing N. Finally, the 
performance of the approximations highly depends on the backorder costs relative to the holding costs.

6. Mixed-Behavior Approximations
The numerical results in Section 5.3 show that the approximations are in most of the cases around 10%–15% off 
the optimal value. In this section, we show how we can further improve the approximations.

Under deterministic and stochastic demand, the approximate problems are given in Definitions 4.1 and 5.1. If 
σA is small, then we know that, on the one hand,

max
i≤N

Qi ≈
d σ2

2 G + σ
2

2 log N, 

because Qi and Qj are only slightly correlated. But, on the other hand,

max
i≤N

Qi ≈
d σσA

ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X + σ

2

2 log N ≈ σ
2

2 log N:

Because the Gumbel term is missing here, this could be the reason that this approximation is not working well 
for small N. Thus, it could be beneficial to look at the combination of these two approximations. Then, we have

max
i≤N

Qi ≈
d σ2

2 log N + σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X + σ

2

2 G: (30) 

Table 4. Parameter Settings for Experiments

Parameter Values

N 10, 50, 100
σA 0.1, 0.5, 0.75, 1
b(N) N, 3N
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When we replace maxi≤NQi with Equation (30) in the minimization problem, we get

min
I,β

1
β
E Nh(N)(I�Qi) + (Nh(N) + b(N)) σ

2

2 log N + σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X+ σ

2

2 G� I
� �+

" #

+ βN

 !

:

The optimal IM
N satisfies P σ2

2 log N + σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X+ σ2

2 G < IM
N

� �
� 1� γN. Thus,

Z ∞

�∞

exp �exp �
2
σ2 IM

N �
σ2

2 log N� σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
x

� �� �� �

φ(x)dx � 1� γN: (31) 

Now, IM
N can be computed through standard numerical methods such as the bisection method. Furthermore, the 

optimal net capacity βM
N satisfies

βM
N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E Nh(N)(IM
N �Qi) + (Nh(N) + b(N)) σ2

2 log N + σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X+ σ2

2 G� IM
N

� �+h ir

ffiffiffiffi
N
√ : (32) 

The relevant expectations in this symbolic expression can be computed numerically; see Appendix A.5 for 
details.

6.1. Numerical Results Mixed-Behavior Approximations
Using the same simulation procedure as described in Section 5.3, we evaluate the performance of these adjusted 
approximations. The results for the cases of h(N) � 1, b(N) �N and h(N) � 1, b(N) � 3N are given in Tables 7 and 8, 
respectively.

From the simulation results, we can conclude that these adjusted approximations result in costs that are much 
closer to the optimal costs already for small N. When comparing the last two columns, in which the last column 
repeats the results from Section 5.3, we observe that the mixed-behavior approximations show better 

Table 5. Comparison of Costs Approximate Solution for h(N) � 1, b(N) �N

N σA IA
N βA

N FN(IA
N ,βA

N) ÎA
N β̂

A
N FN(Î

A
N, β̂A

N)
1� FN (IA

N,βA
N )

FN (Î
A
N, β̂A

N )

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

10 0.1 1.327 1.1583 23.1894 1.151 0.855514 24.5143 0.0820
50 0.1 2.122 1.47611 147.534 1.956 1.25004 150.337 0.0369
100 0.1 2.455 1.58865 318.588 2.303 1.38516 322.994 0.0293
10 0.5 1.486 1.25448 25.333 1.151 0.976909 26.9363 0.0903
50 0.5 2.338 1.59412 159.934 1.956 1.3744 164.689 0.0571
100 0.5 2.715 1.71664 343.937 2.303 1.51094 352.91 0.0546
10 0.75 1.714 1.36908 27.191 1.151 1.00605 29.7614 0.1311
50 0.75 2.638 1.70591 171.443 1.956 1.41834 180.556 0.0998
100 0.75 2.980 1.83438 367.348 2.303 1.55865 383.319 0.0894
10 1 1.990 1.47358 29.8393 1.151 1.0037 34.6552 0.2109
50 1 3.006 1.84276 185.25 1.956 1.43941 201.314 0.1578
100 1 3.394 1.97602 393.668 2.303 1.58534 421.505 0.1417

Table 6. Comparison of Costs Approximate Solution for h(N) � 1, b(N) � 3N

N σA IA
N βA

N FN(IA
N ,βA

N) ÎA
N β̂

A
N FN(Î

A
N, β̂A

N)
1� FN (IA

N,βA
N )

FN (Î
A
N, β̂A

N )

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

10 0.1 1.726 1.31058 25.9539 1.224 0.884692 31.2239 0.2561
50 0.1 2.533 1.5931 159.026 2.050 1.27624 173.141 0.1612
100 0.1 2.883 1.69656 341.44 2.405 1.41084 367.575 0.1526
10 0.5 2.067 1.43331 28.3311 1.513 1.0992 31.2606 0.1422
50 0.5 2.987 1.74381 173.875 2.428 1.48993 183.166 0.1003
100 0.5 3.370 1.86469 371.779 2.814 1.62542 387.809 0.0887
10 0.75 2.449 1.57036 31.4004 1.694 1.18023 35.5139 0.1758
50 0.75 3.418 1.89842 190.571 2.664 1.58369 205.174 0.1408
100 0.75 3.899 2.01955 404.306 3.070 1.72277 429.58 0.1263
10 1 2.913 1.72878 34.6096 1.875 1.23092 40.7704 0.2293
50 1 4.158 2.06968 207.553 2.899 1.65341 230.281 0.1952
100 1 4.567 2.20696 439.681 3.326 1.79761 479.663 0.1789
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convergence also when σA is larger. Furthermore, when we saw in Section 5.3 that the cost difference increased 
considerably with the change in b(N), we now do see a slight increase, but the difference is still small for a larger 
value of b(N). Therefore, we can conclude that these mixed-behavior approximations perform well especially 
when demand variations are no more than 75% of the variations in component production even with a small 
number of components.

7. Analyzing Asymmetric Systems
This paper derives several new, analytical results for joint capacity and inventory optimization for large-scale, 
symmetric assembly systems. In this section, we provide an informal discussion of the application of such results 
in asymmetric settings.

For ease of exposition, consider a case in which different components have different holding costs. For other 
parameters, our assumptions remain in place. In practical settings, component prices might range from a few 
thousand to hundreds of thousands of euros. Companies seeking to apply advanced methods for optimizing 
capacity and inventory investments focus on the most expensive components: for inexpensive components, 
some coarse heuristics would suffice.

Suppose the company seeks to derive separate inventory buffer and capacity rules for two groups of compo-
nents: expensive and very expensive components. This yields k � 2 groups of components. We seek to apply our 
results on extremes as the total number of components N in these two groups grows large; we keep k and the 
ratio of components in the two groups fixed. Also, because we seek to derive rules at the group level, it makes 
sense to assume symmetry within groups, that is, by averaging cost parameters within the groups. For example, 
consider the following: N=2 servers have a holding cost h(N)1 and N=2 servers have a holding cost h(N)2 . Then, we 

Table 7. Comparison of Costs Master Solution for h(N) � 1, b(N) �N

N σA IM
N βM

N FN(IM
N ,βM

N )
1� FN (IA

N,βA
N )

FN (IM
N ,βM

N )

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
1� FN (IA

N,βA
N )

FN (Î
A
N, β̂A

N )

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

10 0.1 1.33785 1.1945 23.2022 0.000837 0.082011
50 0.1 2.14487 1.49567 147.567 0.000442 0.036877
100 0.1 2.49244 1.60808 318.638 0.000337 0.029273
10 0.5 1.38072 1.21129 25.4342 0.006038 0.090320
50 0.5 2.19829 1.53814 160.497 0.006938 0.057107
100 0.5 2.54871 1.65808 345.247 0.008143 0.054563
10 0.75 1.40013 1.2128 27.6956 0.027647 0.131055
50 0.75 2.216 1.56166 174.269 0.032074 0.099827
100 0.75 2.5656 1.68745 372.643 0.030493 0.089412
10 1 1.41255 1.19665 31.5428 0.081950 0.210871
50 1 2.22627 1.57136 192.722 0.076684 0.157827
100 1 2.57434 1.70384 407.343 0.072043 0.141724

Table 8. Comparison of Costs Master Solution for h(N) � 1, b(N) � 3N

N σA IM
N βM

N FN(IM
N ,βM

N )
1� FN (IA

N,βA
N )

FN (IM
N ,βM

N )

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
1� FN (IA

N,βA
N )

FN (Î
A
N, β̂A

N )

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

10 0.1 1.78238 1.34746 25.9965 0.002487 0.256113
50 0.1 2.59271 1.62088 159.162 0.001690 0.161243
100 0.1 2.94168 1.72533 341.49 0.000314 0.152581
10 0.5 1.94345 1.38309 28.3671 0.001926 0.142201
50 0.5 2.83775 1.68955 174.284 0.004642 0.100327
100 0.5 3.21861 1.8044 372.617 0.004826 0.088703
10 0.75 2.09429 1.41142 32.0055 0.028689 0.175760
50 0.75 3.04648 1.74512 193.854 0.033496 0.140773
100 0.75 3.44819 1.86761 410.624 0.033019 0.126256
10 1 2.25658 1.43095 36.5165 0.079240 0.229298
50 1 3.26538 1.79271 216.91 0.085321 0.195211
100 1 3.68765 1.92281 456.859 0.080689 0.178876
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need to minimize

N
2 h(N)1

1
β1

I1�
σ2

2

� �

+ β1

� �

+
N
2 h(N)2

1
β2

I2�
σ2

2

� �

+ β2

� �

+
N
2 h(N)1 +

N
2 h(N)2 + b(N)

� �

E max 1
β1

max
i≤N=2

(Qi(1)� I1),
1
β2

max
N=2+1≤ i≤N

(Qi(1)� I2)

� �+� �

: (33) 

This is over (I1, I2,β1,β2). Obviously,

E max 1
β1

max
i≤N=2

(Qi(1)� I1),
1
β2

max
N=2+1≤ i≤N

(Qi(1)� I2)

� �+� �

≤ E
1
β1

max
i≤N=2

(Qi(1)� I1)
+

� �

+E
1
β2

max
i≤N=2

(Qi(1)� I2)
+

� �

:

The cost function in Equation (33) can, therefore, be bounded from above by

N
2 h(N)1

1
β1

I1 �
σ2

2

� �

+ β1

� �

+
N
2 h(N)2

1
β2

I2 �
σ2

2

� �

+ β2

� �

+
N
2 h(N)1 +

N
2 h(N)2 + b(N)

� �

E
1
β1

max
i≤N=2

(Qi(1)� I1)
+

� �

+ E
1
β2

max
i≤N=2

(Qi(1)� I2)
+

� �� �

:

Our analytical results enable us to minimize this upper bound; for instance, choosing h̃(N)1, 2 � h(N)1, 2 and b̃(N)1, 2 �
N
2 h(N)2, 1 + b(N) yields

N
2 h(N)1

1
β1

I1�
σ2

2

� �

+ β1

� �

+
N
2 h(N)2

1
β2

I2�
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2

� �

+ β2

� �

+
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N
2 h(N)2 + b(N)

� �

E
1
β1

max
i≤N=2

(Qi(1)� I1)
+

� �

+E
1
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max
i≤N=2

(Qi(1)� I2)
+

� �� �

�
N
2 h̃(N)1

1
β1

I1�
σ2

2

� �

+ β1

� �

+
N
2 h̃(N)1 + b̃(N)1

� �

E
1
β1

max
i≤N=2

(Qi(1)� I1)
+

� �

+
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2 h̃(N)2

1
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I2�
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� �

+ β2

� �

+
N
2 h̃(N)2 + b̃(N)2

� �

E
1
β2

max
i≤N=2

(Qi(1)� I2)
+

� �

:

This is the sum of two functions that can be minimized using the exact solutions that we derived. In Table 9, we 
compare numerically the actual costs under the capacity and base-stock level that are obtained by minimizing 
this upper bound with the costs under the optimal capacity and base-stock level. In this table, the ratio indicates 
how many servers have a holding cost h(N)1 and how many servers have a holding cost h(N)2 ; the 1:1 ratio 

Table 9. Comparison of Optimal Costs and Costs Under Upper Bound Heuristic, σ�� 1, σA � 0

N h(N)1 h(N)2 Ratio b(N) Optimal Heuristic Difference, %

10 1 10 1:1 10 42.3 6 0.1 42.9 6 0.1 0.14
100 1 10 1:1 100 615.6 6 1.2 617.4 6 1.0 0.3
1,000 1 10 1:1 1,000 7,597.9 6 8.2 7,643.0 6 7.8 0.6
10 10 100 1:1 1 126.0 6 0.4 127.0 6 0.4 0.7
100 100 1,000 1:1 1 5,967 6 10.9 6,002 6 9.6 0.6
1,000 1,000 10,000 1:1 1 236,063 6 256 236,402 6 233 0.1
10 1 10 1:3 10 53.1 6 0.2 53.2 6 0.2 0.2
100 1 10 1:3 100 770.5 6 1.3 772.9 6 1.2 0.3
1,000 1 10 1:3 1,000 9,551.1 6 10.7 9,581.6 6 9.5 0.3
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corresponds to the preceding example, whereas the 1:3 ratio can be treated similarly. The table demonstrates that 
our asymptotic results may be useful when optimizing asymmetric systems as well as symmetric systems.

8. Conclusions
In this study, we define a large-scale assembly system in which N components are assembled into a final product. 
We study an assembly system with linear demand and production, subject to some random noise. Thus, we 
impose the natural assumption that this noise is normally distributed. Hence, delays per component are written 
as an all-time supremum of a Brownian motion minus a drift term. We aimed to minimize the total costs in the 
system with respect to the inventory and net capacity per component. The costs in the system consist of inven-
tory holding costs for each component and penalty costs for delays in assembly of the final product, which is 
equal to the delay of the slowest produced component. Before attempting to solve the minimization problem, we 
simplified the minimization problem, using the self-similarity property of a Brownian motion, into two separate 
minimization problems. We distinguish two cases: First of all, we covered the case of deterministic demand, 
resulting in all delays being independent. Second, we investigated the case in which demand is stochastic and, 
consequently, delays of the components are dependent.

For the deterministic demand scenario, we prove order bounds for three different regimes: balanced, quality 
driven, and efficiency driven. Additionally, we verify numerically that, already for a limited number of compo-
nents, our approximations result in costs that are very close to the costs corresponding to the optimal solution. 
For the stochastic demand scenario, we develop a limit theorem that we use to obtain approximate solutions. We 
show numerically that, even though, theoretically, these approximations perform well, for practical situations, 
there is still room for improvement. However, this limit theorem is still necessary for systems with N of the order 
of thousands because it is close to impossible to simulate these systems quickly. Therefore, we provide additional 
approximations for a mixed-behavior regime, in which we use a combination of the approximations for the 
deterministic and stochastic demand scenarios. We demonstrate numerically that these approximations perform 
very well already for a practical number of components.

Future work could extend the model to a decentralized minimization problem, in which the components are not 
produced in-house by the manufacturer, but are sourced at outside suppliers that have their own objectives, which 
results in an asymptotic analysis of a game theoretical equilibrium; cf. Nair et al. (2016), Gopalakrishnan et al. 
(2016), and Kumar and Randhawa (2010). Additionally, we expect that we can extend the result in Theorem 5.1 to 
general Lévy processes. However, the cost minimization problem relies heavily on the self-similarity property of 
Brownian motions. Thus, to solve the minimization problem for Lévy processes, other techniques are needed.

Appendix A. Proofs
A.1. Proofs of Section 3

Proof of Lemma 3.2. FN(I,β) > 0; hence, FN has a global infimum, and because limβ↓0FN(I,β) � ∞, limβ→∞FN(I,β) � ∞ and 
limI→∞FN(I,β) � ∞, FN has a global minimum. Now, assume FN(IN,βN) �min(I,β)FN(I,β). Assume that there exists an ÎN 
such that

E Nh(N) ÎN �Qi + max
j≤N

Qj� ÎN

� �+� �

+ b(N) max
j≤N

Qj � ÎN

� �+� �

< E Nh(N) IN �Qi + max
j≤N

Qj� IN

� �+� �

+ b(N) max
j≤N

Qj � IN

� �+� �

:

Then, FN(ÎN,βN) < FN(IN,βN). This contradicts the statement that (IN,βN) gives the minimum of FN. Hence, the optimal 
base-stock level minimizes CN(I). The proof that βN minimizes 1

βCN(IN) + βN goes analogously.
To prove that CN(I) is convex with respect to I, we observe that

d2

dI2 CN(I) � (b(N) +Nh(N)) d2

dI2E max
i≤N

Qi � I
� �+� �

� (b(N) +Nh(N)) d2

dI2

Z ∞

I
P(max

i≤N
Qi > x)dx

� (b(N) +Nh(N))f (I) ≥ 0, 

because f is the probability density function of maxi≤N Qi. This density exists (cf. Dai and Harrison 1992, proposition 2a). 
In conclusion, we have a convex minimization problem. Moreover, d2

dβ2
1
βCN(IN) + βN
� �

� 2
β3 CN(IN) > 0. Thus, 1

βCN(IN) + βN is 
also convex with respect to β. w

Proof of Lemma 3.3. FN(I,β) has the form FN(I,β) � 1
βCN(I) + βN; thus, in order to minimize FN(I∗N,β), we know by Lemma 

3.2 that we need to solve d
dβFN(I∗N,β) �� 1

β2 CN(I∗N) +N � 0. Thus, β∗N �
ffiffiffiffiffiffiffiffiffiffi
CN(I∗N)
√

ffiffiffi
N
√ , and FN(I∗N,β∗N) � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NCN(I∗N)

p
� 2Nβ∗N. w
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Proof of Lemma 3.4. To solve minICN(I), we have to solve d
dI CN(I) � 0, and this gives, for the optimal base-stock level I∗N, 

that

Nh(N) � (Nh(N) + b(N))P(max
i≤N

Qi > I∗N) � 0:

Hence, I∗N � P�1
N

b(N)
Nh(N)+b(N)

� �
with P�1

N the quantile function of maxi≤NQi. w

Proof of Lemma 3.6. Following Corollary 3.1, we have

FN(I∗N, β∗N)
FN(IN, βN)

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(IN)

q

CN(IN) + CN(IN)
:

Furthermore, observe that

E max
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Qi
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≥ E max
i≤N

sup
s>0
(Wi(s)� s) +WA(τ)

� �

�
σ2

2
XN

i�1

1
i
≥
σ2

2 log N, 

where τ�is the first hitting time of the supremum of maxi≤N(Wi(t)� t). From this, it follows that, for I < σ2

2 logN, σ2

2 log N�
I < E[maxi≤N Qi � I] < E[(maxi≤N Qi � I)+]: For I > σ2

2 logN, (σ2

2 log N� I)+ � 0 < E[(maxi≤N Qi � I)+]. In conclusion, CN(I) >
CN(I). Therefore,
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We have |CN(I∗N)�CN(IN) | ≤ (2Nh(N) + b(N)) |I∗N � IN | , and

|CN(IN)�CN(IN) | ≤ (Nh(N) + b(N))E max
i≤N

Qi �
σ2

2 log N
�
�
�
�

�
�
�
�

� �

:

In the case that γN � γ ∈ (0, 1), we have, by applying Lemma 3.5, that |CN(IN)�CN(IN) | � o((Nh(N) + b(N))log N). Furthermore, 
CN(IN) ~ Nh(N) σ2

2 log N, and because maxi≤NQi=log N→P σ2=2 as N→∞, we also have that I∗N=log N →N→∞σ2=2. Thus, 
|CN(I∗N) � CN(IN) | � o((Nh(N) + b(N))log N), and the lemma follows.

In the case that γN →
N→∞1, we first observe that CN(IN) �Nh(N) σ2

2 log N� σ
2+σ2
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Thus,
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By Lemma 3.5, we know that E maxi≤NQi�
σ2

2 log N
�
�
�

�
�
�

h i
=log N →N→∞0. Thus,

lim sup
N→∞

CN(IN)=(Nh(N)log N) ≤ σ2=2:

Finally,
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2 + (Nh(N) + b(N))σ

2
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I∗N �O(log N), and b(N)=(Nh(N)) →N→∞0; therefore, lim infN→∞CN(I∗N)=(Nh(N)log N) ≥ σ2=2. Combining these results gives

lim inf
N→∞
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A.2. Proofs of Section 4

Proof of Lemma 4.1. In Lemma 3.4, it is shown that I∗N � P�1
N (1� γN) with P�1

N the quantile function of maxi≤NQi. 
Because (Qi, i ≤ N) are independent and exponentially distributed,

P
�

max
i≤N

Qi ≤ P�1
N (x)

�
� x � 1� e�

2
σ2

P�1
N (x)

� �N
:

From this, it follows that P�1
N (x) � σ

2

2 log(1=(1� x 1
N)). w

Proof of Proposition 4.1. Minimizing F̂N(ÎN, β̂N) goes analogously as minimizing FN(IN,βN) in Lemma 4.1. Hence, ÎN �

P̂�1
N (1� γN): Thus, we have to solve

P
σ2

2 G+ σ
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2 log N ≤ P̂�1
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� P G ≤ 2
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� e�e
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2
σ2
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N (x)�log N

�

� x:

Therefore, P̂�1
N (x) � σ

2

2 log N� σ2

2 log(�logx): Hence, the optimal base-stock level is given in Equation (12). Furthermore,

E σ2
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2 log N� ÎN
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2 log(�log(1� γN))
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�
σ2

2
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�log(�log(1�γN))

1� e�e�x dx:

By using partial integration and substitution, we can write

σ2

2

Z ∞

�log(�log(1�γN))

1� e�e�x dx � σ
2

2

Z ∞

�log(1�γN)

e�t

t dt + Γ + log(�log(1� γN))

 !

:

Hence, this gives us the expression of ĈN(ÎN) in (13). w

Lemma A.1. Define

GN :� �log �log 1� exp �
2
σ2 max

i≤N
Qi

� �� �N
 ! !

, (A.1) 

and then P(GN < x) � e�e�x for all N. Moreover,

max
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Qi >
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2 GN +
σ2
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and maxi≤NQi �
σ2

2 GN �
σ2

2 logN strictly decreases as a function of maxi≤NQi with limit zero.

Proof. To prove that GN follows a Gumbel distribution, we first observe that P(maxi≤NQi < x) � 1� exp � 2
σ2 x

� �� �N
: There-

fore, 1� exp � 2
σ2 maxi≤NQi

� �� �N ~ Unif[0, 1]. Then,

P(GN < x) � P �log �log 1� exp �
2
σ2 max

i≤N
Qi

� �� �N
 ! !

< x
 !

� P �log 1� exp �
2
σ2 max

i≤N
Qi

� �� �N
 !

> e�x

 !

� P 1� exp �
2
σ2 max

i≤N
Qi

� �� �N
< e�e�x

 !

� e�e�x
:

To prove (A.2), we need to show that, for all x > 0 and N,

x > �σ
2

2 log �log 1� exp �
2
σ2 x

� �� �N
 ! !

+
σ2

2 log N:

This is equivalent to the inequality x >� σ2

2 log �log 1� exp � 2
σ2 x
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, which is equivalent to 1� e�

2
σ2

x
< e�e

� 2
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x 

with x > 0. 
This is equivalent to e�y > 1� y for y ∈ (0, e�1]. Observe that, for y � 0, we have equality, and we have for y > 0 that 
(e�y)

′
>�1 � (1� y)′. The statement follows. To prove that the larger maxi≤NQi becomes, the smaller the difference 

Meijer et al.: Inventory and Capacity in Large-Scale Assembly Systems 
Stochastic Systems, 2024, vol. 14, no. 2, pp. 131–166, © 2024 The Author(s) 153 



between maxi≤NQi and σ2

2 GN +
σ2

2 log N becomes, we first observe that
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Thus, we need to obtain that x+ σ2

2 log(�log(1� e�
2
σ2

x
)) is strictly decreasing in x for x > 0. Taking the first derivative gives 

the inequality
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2x
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This is equivalent to the inequality �y=((1� y)log(1� y)) > 1 for y ∈ (0, 1), which can be rewritten to log y > 1� 1=y, which 
is a basic logarithm inequality. Finally, limx→∞x+ σ2

2 log(�log(1� e�
2
σ2

x
)) � 0. w

Lemma A.2. Let γN �Nh(N)=(Nh(N) + b(N)); then,

|CN(I∗N)�CN(ÎN) | ≤ (I∗N � ÎN)(Nh(N) + b(N)) 1� γN � 1+
log(1� γN)

N

� �N
 !

, (A.3) 

|ĈN(ÎN)�CN(ÎN) | ≤ (I∗N � ÎN)Nh(N) 1� 1+
log(1� γN)

N

� �N
 !

: (A.4) 

Proof. Because of the inequality in (A.2), I∗N > ÎN. Then, we have

CN(I∗N)�CN(ÎN) �Nh(N)(I∗N � ÎN) + (Nh(N) + b(N))E max
i≤N

Qi� I∗N
� �+

� max
i≤N

Qi� ÎN

� �+� �

�Nh(N)(I∗N � ÎN) + (Nh(N) + b(N))E (ÎN � I∗N)1 max
i≤N

Qi > I∗N
� �� �

� (Nh(N) + b(N))E max
i≤N

Qi � ÎN

� �+

1 ÎN < max
i≤N

Qi < I∗N
� �� �

:

We have P(maxi≤NQi > I∗N) � γN �Nh(N)=(Nh(N) + b(N)), and thus,

Nh(N)(I∗N � ÎN) + (Nh(N) + b(N))E (ÎN � I∗N)1 max
i≤N

Qi > I∗N
� �� �

� 0:

Furthermore,

E max
i≤N

Qi � ÎN

� �+

1 ÎN < max
i≤N

Qi < I∗N
� �� �

≤ (I∗N � ÎN)P ÎN < max
i≤N

Qi < I∗N
� �

� (I∗N � ÎN) 1� γN � 1 +
log(1� γN)

N

� �N
 !

:

Equation (A.3) follows. To prove Equation (A.4), we observe that

|ĈN(ÎN)� CN(ÎN) |

� (Nh(N) + b(N))E max
i≤N

Qi � ÎN

� �+

�
σ2

2 GN +
σ2

2 log N � ÎN

� �+
" #

� (Nh(N) + b(N))E max
i≤N

Qi �
σ2

2 GN �
σ2

2 log N
� �

1
σ2

2 GN +
σ2

2 log N > ÎN

� �� �

(A.5) 

+ (Nh(N) + b(N))E max
i≤N

Qi � ÎN

� �

1
σ2

2 GN +
σ2

2 log N < ÎN < max
i≤N

Qi

� �� �

: (A.6) 
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Because GN and maxi≤NQi are on the same probability space, we have P maxi≤NQi � I∗N σ2

2 GN +
σ2

2 log N � ÎN

�
�
�

�
� 1:

�
Further-

more, x+ σ2

2 log(�log(1� e�
2
σ2

x
)) is decreasing in x. Thus, we can bound

E (max
i≤N

Qi �
σ2

2 GN �
σ2

2 log N)1 σ2

2 GN +
σ2

2 log N > ÎN

� �� �

≤ (I∗N � ÎN)P
σ2

2 GN +
σ2

2 log N > ÎN

� �

� (I∗N � ÎN)γN:

(A.7) 

Similarly, for (A.6), we observe that, if σ2

2 GN +
σ2

2 log N < ÎN, then maxi≤NQi < I∗N, and thus,

E (max
i≤N

Qi � ÎN)1
σ2

2 GN +
σ2

2 log N < ÎN < max
i≤N

Qi

� �� �

≤ (I∗N � ÎN)P
σ2

2 GN +
σ2

2 log N < ÎN < max
i≤N

Qi

� �

≤ (I∗N � ÎN) 1� 1+ log(1�γN)

N

� �N
� γN

� �

:

(A.8) 

Adding the bounds in (A.7) and (A.8) gives the result. w

Proof of Theorem 4.1. First, we assume that γN � γ ∈ (0, 1). Using Corollary 3.1, we have

FN(I∗N,β∗N)
FN(ÎN, β̂N)

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

CN(ÎN) + ĈN(ÎN)
:

Because of the inequality in (A.2), we have for all I that CN(I) > ĈN(I), and thus,

FN(I∗N,β∗N)
FN(ÎN, β̂N)

>
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

2CN(ÎN)
:

We write f (x) :� I∗1=x � Î1=x for x > 0. Then, we have that

f (x) � σ
2

2 log 1
1� (1� γ)x
� �

+
σ2

2 logx+ σ
2

2 log(�log(1� γ)))

�
σ2

2 log x
1� (1� γ)x
� �

+
σ2

2 log(�log(1� γ))):

By first noting that x=(1� (1� γ)x) � 1=(1� e�xlog(1�γ))) → 1=(�log(1� γ)) > 0, we see that log(x=(1� (1� γ)x)) →�log 
(�log(1� γ)) as x ↓ 0. From this, it follows that f (x) → 0 as x ↓ 0, and we can extend the domain of the function f such 
that f (0) :� 0 and f is twice differentiable at x � 0. By computing the Taylor series of the function f at x � 0, we get

f (x) ��σ
2

4 xlog(1� γ) +O(x2):

Thus, (I∗N � ÎN) ~�σ2log(1� γ)=(4N), as N→∞. Following (A.4), we can conclude that | ĈN(ÎN)�CN(ÎN) |=(Nh(N)) �
O(1=N): We can do the same for P(ÎN < maxi≤NQi < I∗N), and get

1� γ� 1+ log(1� γ)
N

� �N
 !

~ 1
2N
(1� γ)log(1� γ)2:

Thus, after applying the inequality in (A.3), we get |CN(I∗N)�CN(ÎN) |=(Nh(N) + b(N)) �O(1=N2). We have

ĈN(ÎN) �Nh(N) σ
2

2 (log N� log(�log(1� γ))� 1) + (Nh(N) + b(N))σ
2

2 E[(G+ log(�log(1� γ)))+]

~ Nh(N) σ
2

2 log N, 
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because (Nh(N) + b(N))=(Nh(N)) � 1=γ, and �log(�log(1� γ)) and E[(GN + log(�log(1� γ)))+] are of O(1). In conclusion, we 
have

FN(I∗N,β∗N)
FN(ÎN, β̂N)

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(ÎN)

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(ÎN)

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(ÎN)�O((Nh(N) + b(N))=N2)

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(ÎN)

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(ÎN)�O(Nh(N)=N)
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(ÎN)

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�O(1=(N2logN))

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�O(1=(N log N))

p

� 1�O(1=(N log N)):

Now, we assume that γN →
N→∞0, and then, we have that �log(�log(1� γN)) ~�log(γN). Thus, ÎN ~ σ2

2 log(N=γN). Also,

E[(GN + log(�log(1� γN)))
+
] ~ E[(GN + log(γN))

+
] ~ γN:

From this, it follows that ĈN(ÎN) ~ Nh(N) σ2

2 log(N=γN). Furthermore,

P max
i≤N

Qi > ÎN

� �

� 1� 1+
log(1� γN)

N

� �N
≤ NP(Qi > ÎN) ��log(1� γN) � γN(1+O(γN=2)):

From this, it follows that

1� γN � 1 +
log(1� γN)

N

� �N
 !

≤ �log(1� γN)� γN �
γ2

N
2 (1 + o(1)):

Also,

P max
i≤N

Qi < I∗N
� �

� P
σ2

2 GN +
σ2

2 log N < ÎN

� �

� 1� γN →
N→∞ 1:

Earlier, we show that, when γN � γ, (I∗N � ÎN) �O(1=N), now I∗N is larger because P(maxi≤NQi < I∗N) � 1� γN →
N→∞1. Fol-

lowing the statement in Lemma A.1 that the difference between maxi≤NQi and σ2

2 GN +
σ2

2 log N decreases as maxi≤NQi 
increases, we can conclude that (I∗N � ÎN) �O(1=N): Following the proof before, and by using the order bounds in (A.3) 
and (A.4), we have that

FN(I∗N,β∗N)
FN(ÎN, β̂N)

� 1�O(γN=(N log(N=γN))):

Finally, we consider the case that γN →
N→∞1 and γN ≤ 1� exp(�N). Then, ÎN ≥ 0. Furthermore, when γN →

N→∞1, we have 
log(�log(1� γN)) →

N→∞
∞, and from this, it follows that

E[(GN + log(�log(1� γN)))
+
] ~ log(�log(1� γN)):

Thus,

ĈN(ÎN) ~ σ
2

2 Nh(N)(log N � log(�log(1� γN))) +
σ2

2 (Nh(N) + b(N))log(�log(1� γN))

�
σ2

2 Nh(N)log N + σ
2

2 b(N)log(�log(1� γN)):

Because we consider the efficiency-driven regime, we have b(N)=(Nh(N)) →N→∞0. Also, it is easy to deduce that, when 
γN < 1� exp(�N), we have log(�log(1� γN)) < log N. Thus, ĈN(ÎN) ~ σ

2

2 Nh(N)log N. Furthermore, I∗N � ÎN �O(1), and thus, 
the bounds in (A.3) and (A.4) are of O(Nh(N)). By using the same argument as in the proof for the balanced regime,

FN(I∗N,β∗N)
FN(ÎN, β̂N)

� 1�O(1=log N): w 

Proof of Lemma 4.2. Following Equations (A.3) and (A.4) and using the same arguments as in the proof of Theorem 4.1, 

we can find the same order bound for FN(I∗N,β∗N)=F̂N(ÎN, β̂N) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN(I∗N)

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

.
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In the case that γN � γ ∈ (0, 1), we have

ĈN(ÎN) �Nh(N) σ
2

2

�
log N� log(�log(1� γ))� 1

�

+ (Nh(N) + b(N))σ
2

2 E[(G+ log(�log(1� γ)))+]:

Thus, F̂N(ÎN, β̂N)=(N log N) � 2
ffiffiffiffi
N
√ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

=(N log N) �O(
ffiffiffiffiffiffiffiffi
h(N)
√

=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
).

When γN →
N→∞0, we have that �log(�log(1� γN)) ~�log(γN), and thus, ÎN ~ σ2

2 log(N=γN). Also,

E[(GN + log(�log(1� γN)))
+
] ~ E[(GN + log(γN))

+
] ~ γN:

From this, it follows that

ĈN(ÎN) ~ Nh(N) σ
2

2

�
log(N=γN)� 1

�
+ (Nh(N) + b(N)) σ

2

2 γN:

Therefore, 2
ffiffiffiffi
N
√ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

γN=(N log(N=γN)) �O(γN

ffiffiffiffiffiffiffiffi
h(N)
√

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(N=γN)

p
).

When γN →
N→∞1, we have

ĈN(ÎN) ~
σ2

2 Nh(N)(log N� log(�log(1� γN))) +
σ2

2 (Nh(N) + b(N))log(�log(1� γN))

�
σ2

2 Nh(N)log N+ σ
2

2 b(N)log(�log(1� γN)):

Thus, 2
ffiffiffiffi
N
√ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈN(ÎN)

q

=log N �O(N
ffiffiffiffiffiffiffiffi
h(N)
√

=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
). w

A.3. Proofs of Section 5.1

Proof of Lemma 5.1. Let bN �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log N

p
� log(4π log N)=(2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log N

p
). Then,

bN
maxi≤NWi(d log N)
σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d log N

p � bN

 !

→
d G, 

with G ~ Gumbel as N→∞ (cf. de Haan and Ferreira 2006, example 1.1.7, for a proof). Observe that

bN
maxi≤NWi(d logN)
σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d logN

p � bN

 !

�
1
σ
ffiffiffi
d
√

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logN
q

�
log(4πlog N)
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log N

p

 !
maxi≤NWi(d logN)� σ

ffiffiffiffiffi
2d
√

log N+ σ
ffiffi
d
√

log(4πlog N)
2
ffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p :

Furthermore, βd+ σ2

2β � σ
ffiffiffiffiffi
2d
√
� σ

2

β . From this, it follows that

maxi≤NWi(d log N)� βd log N� σ2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p →
P 0, 

as N→∞. Moreover, WA(d logN)ffiffiffiffiffiffiffiffi
logN
√ �

d σσA
ffiffiffi
2
√
β

X with X ~ N (0, 1). The statement follows. w

Proof of Lemma 5.2. To prove Lemma 5.2, we first observe that

maxi≤N(sup0< s< (d�ɛ)log N(Wi(s) +WA(s)� βs))� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

≤
maxi≤N(sup0< s< (d�ɛ)log N(Wi(s)� βs))� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p +
sup0< s< (d�ɛ)log NWA(s)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p :

(A.9) 

We first focus on the first term on the right-hand side of (A.9). We know that sup0< s< (d�ɛ)log N(Wi(s)� βs) is a reflected 
Brownian motion, so we can write down its cumulative distribution function explicitly:

P sup
0< s< (d�ɛ)log N

(Wi(s)� βs) ≤ x

 !

� 1�Φ �x� β(d� ɛ)log N
σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d� ɛ)log N

p

 !

� exp �
2β
σ2 x

� �

Φ
�x+ β(d� ɛ)log N
σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d� ɛ)log N

p

 !

;

(A.10) 
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see Abate and Whitt (1987, equation (1.1)). From this, together with the union bound, it follows that

P max
i≤N

sup
0< s< (d�ɛ)log N

(Wi(s)� βs) ≥
σ2

2β log N+ x
ffiffiffiffiffiffiffiffiffiffiffiffi

logN
q

 !

(A.11) 

≤ NP sup
0< s< (d�ɛ)logN

(Wi(s)� βs) ≥
σ2

2β logN+ x
ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

 !

�NΦ
�β(2d� ɛ)log N� x

ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d� ɛ)logN

p

 !

+ exp �
2β
σ2 x

ffiffiffiffiffiffiffiffiffiffiffiffi

logN
q� �

Φ
�ɛβ logN� x

ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d� ɛ)logN

p

 !

: (A.12) 

The cumulative distribution of the normal distribution Φ�satisfies Φ(�x) � 1�Φ(x). Furthermore, we have that 1�Φ(x) ~ 
exp(�x2=2)=(

ffiffiffiffiffiffi
2π
√

x) as x→∞; see Adler and Taylor (2007, equation (2.1.1)). This asymptotic equivalence gives us that the 
first term in (A.12) satisfies

NΦ
�β(2d� ɛ)log N� x

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d� ɛ)log N

p

 !

�N exp �
β2(2d� ɛ)2

2σ2(d� ɛ)
log N(1+ o(1))

 !

�N exp �
(2d� ɛ)2

4d(d� ɛ)
log N(1+ o(1))

 !

:

For all ɛ ∈ (0, d), we have that (2d�ɛ)2
4d(d�ɛ) �

4d2�4dɛ+ɛ2

4d(d�ɛ) > 4d2�4dɛ
4d(d�ɛ) � 1. Thus, we can conclude that

N exp �
(2d� ɛ)2

4d(d� ɛ)
log N(1+ o(1))

 !

→
N→∞0:

With the asymptotic equivalence from Adler and Taylor (2007, equation (2.1.1)), we get for the second term in (A.12) that

exp �
2β
σ2 x

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q� �

Φ
�ɛβ log N � x

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d� ɛ)log N

p

 !

� exp �
ɛ2β2

2σ2(d� ɛ)
log N(1 + o(1))

� �

→
N→∞ 0:

For the second term on the right-hand side of (A.9), we argue as follows: by filling in β�� 0 and replacing σ�with σA in 
Equation (A.10), one can easily see that

sup
0< s< (d�ɛ)log N

WA(s) �
d
|WA((d� ɛ)log N) | �d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(d� ɛ)log N
q

|X | , 

with X ~ N (0, 1). Thus, we can use the upper bound in (A.9) and conclude that

P
maxi≤N

�
sup0< s< (d�ɛ)logN(Wi(s) +WA(s)� βs)

�
� σ

2

2β logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p ≥ x

0

@

1

A

≤ P max
i≤N

sup0< s< (d�ɛ)log N(Wi(s)� βs)� σ
2

2β logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p ≥ x� y
 !

+P
sup0< s< (d�ɛ)logNWA(s)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ y
 !

≤ NP
sup0< s< (d�ɛ)log N(Wi(s)� βs)� σ

2

2β logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p ≥ x� y

 !

+P
sup0< s< (d�ɛ)logNWA(s)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ y

 !

→
N→∞

P |X | > y
ffiffiffiffiffiffiffiffiffiffiffi
d� ɛ
√

� �

:

This last expression converges to zero as y→∞, and the lemma follows. w

Proof of Lemma 5.3. Let ɛ > 0 be given. Choose δ < min 2(β3ɛ+βσ2)

2β2ɛ+σ2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2σ2

2β2ɛ+σ2

r

, 2β3ɛ

2β2ɛ+σ2 ,β
� �

and positive. Then,

maxi≤N

�
sups≥(d+ɛ)log N(Wi(s) +WA(s)� βs)

�
� σ

2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

≤
maxi≤N

�
sups≥(d+ɛ)log N(Wi(s)� (β� δ)s)

�
� σ

2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p +
sups≥(d+ɛ)log N(WA(s)� δs)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

≤
maxi≤N

�
sups≥(d+ɛ)log N(Wi(s)� (β� δ)s)

�
� σ

2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p +
sups>0(WA(s)� δs)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p :

Meijer et al.: Inventory and Capacity in Large-Scale Assembly Systems 
158 Stochastic Systems, 2024, vol. 14, no. 2, pp. 131–166, © 2024 The Author(s) 



We have

sup
s≥(d+ɛ)log N

(Wi(s)� (β� δ)s) �
d Wi((d + ɛ)log N) � (β� δ)(d + ɛ)log N + sup

s>0
(W′i (s)� (β� δ)s), 

with (W′i , i ≤ N) independent Brownian motions with mean zero and variance σ2. We write Ei � sups>0(W′i (s)� (β� δ)s). 
Hence, Ei ~ Exp 2(β�δ)

σ2

� �
. So

maxi≤N

�
sups≥(d+ɛ)logN(Wi(s)� (β� δ)s)

�
� σ

2

2β logN
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

�
d maxi≤N

�
Wi((d+ ɛ)logN) +Ei

�
� σ2

2β+ (β� δ)(d+ ɛ)
� �

logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p :

By using the union bound and Chernoff’s bound, we get that

P
�

max
i≤N

�
Wi((d + ɛ)log N) + Ei

�
> x
�
≤ NP

�
Wi((d + ɛ)log N) + Ei > x

�

≤ NE[esWi((d+ɛ)log N)]E[esEi ]e�sx, 

for all s > 0. E[esWi((d+ɛ)logN)] � e
s2 (σ
ffiffiffiffiffiffiffiffiffiffiffiffi
(d+ɛ)logN
√

)2
2 �N

σ2 (d+ɛ)s2
2 and E[esEi ] �

2(β�δ)
σ2 =

� 2(β�δ)
σ2 � s

�
. Hence,

P max
i≤N

�
Wi((d+ ɛ)logN) +Ei

�
> x

ffiffiffiffiffiffiffiffiffiffiffiffi

logN
q

+
σ2

2β+ (β� δ)(d+ ɛ)
� �

logN
� �

≤ N1+σ
2 (d+ɛ)s2

2 �s σ2
2β+(β�δ)(d+ɛ)
� �

e�sx
ffiffiffiffiffiffiffiffi
logN
√ 2(β�δ)

σ2

2(β�δ)
σ2 � s

: (A.13) 

Now, we choose s? � β
2β2ɛ+σ2 +

β�δ
σ2 . Because δ < 2β3ɛ

2β2ɛ+σ2 , s? < 2(β�δ)
σ2 . Also,

1+ σ
2(d+ ɛ)s?2

2 � s? σ
2

2β+ (β� δ)(d+ ɛ)
� �

< 0, 

because δ < 2(β3ɛ+βσ2)

2β2ɛ+σ2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2σ2

2β2ɛ+σ2

r

. Therefore,

P max
i≤N

�
Wi((d+ ɛ)log N) +Ei

�
> x

ffiffiffiffiffiffiffiffiffiffiffiffi

logN
q

+
σ2

2β+ (β� δ)(d+ ɛ)
� �

logN
� �

→
N→∞0:

Moreover, sups>0(WA(s)� δs) ~ Exp 2δ
σ2

A

� �
. Therefore, sups>0(WA(s)�δs)ffiffiffiffiffiffiffiffi

logN
√ →

P 0. The limit in (23) follows. w

Proof of Lemma 5.4. First, we bound

maxi≤Nsup
(d�ɛ)log N≤ s< (d+ɛ)log N

�
Wi(s) +WA(s)� βs

�
� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

≤ sup
(d�ɛ)log N≤ s< (d+ɛ)log N

WA(s)
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p +
maxi≤Nsup

(d�ɛ)log N≤ s< (d+ɛ)log N(Wi(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

≤ sup
(d�ɛ)log N≤ s< (d+ɛ)log N

WA(s)
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p +
maxi≤Nsups>0(Wi(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p :

We can write

sup
(d�ɛ)log N≤ s< (d+ɛ)log N

WA(s)
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
WA((d� ɛ)log N)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p + sup
0≤ s< 2ɛlog N

W′A(s)ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

�
d
σA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

2β2 � ɛ

s

X1 +
ffiffiffiffiffi
2ɛ
√
σA |X2 | , 

with X1, X2 ~ N (0, 1) and independent, and W′A a Brownian motion with mean zero and variance σ2
A. Furthermore, we 

have that

2β
σ2 max

i≤N
sup
s>0
(Wi(s)� βs)�

σ2

2β logN
� �

→
d G, 
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as N→∞ with G ~ Gumbel. Therefore,

maxi≤N sups>0(Wi(s)� βs)� σ
2

2βlogN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p →
P 0, 

as N→∞. The statement follows. w

Proof of Theorem 5.1. We have the following lower bound:

P
maxi≤Nsups>0(Wi(s) +WA(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

≥ P
maxi≤N(Wi(d log N) +WA(d log N)) � βd log N � σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

:

From this and Lemma 5.1, we know that

lim inf
N→∞

P
maxi≤Nsups>0(Wi(s) +WA(s)� βs)� σ

2

2βlog N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

≥ 1�Φ x
ffiffiffi
2
√
β

σσA

 !

:

By using the union bound, we get

P
maxi≤Nsups>0(Wi(s) +WA(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x
 !

≤ P
maxi≤Nsup0< s< (d�ɛ)log N(Wi(s) +WA(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

+P
maxi≤Nsup

(d�ɛ)log N≤ s< (d+ɛ)log N(Wi(s) +WA(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x
 !

+P
maxi≤Nsups≥(d+ɛ)log N(Wi(s) +WA(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

:

Combining this with the results from Lemmas 5.2–5.4 gives

lim sup
N→∞

P
maxi≤Nsups>0(Wi(s) +WA(s)� βs)� σ2

2β log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥ x

 !

≤ P σA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

2β2 � ɛ

s

X1 +
ffiffiffiffiffi
2ɛ
√
σA |X2 | > x

 !

, 

with X1, X2 ~ N (0, 1) and independent. This upper bound holds for all ɛ > 0, and therefore,

lim sup
N→∞

P
maxi≤Nsups>0(Wi(s) +WA(s)� βs)� σ

2

2β logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p ≥ x
 !

≤ lim
ɛ↓0

P σA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

2β2 � ɛ

s

X1 +
ffiffiffiffiffi
2ɛ
√
σA |X2 | > x

 !

� 1�Φ x
ffiffiffi
2
√
β

σσA

 !

:

Hence, the statement follows. w

Proof of Lemma 5.5. Because of the self-similarity property, we can assume without loss of generality that β�� 1. Let 
d � σ2

2 , and XN �
ffiffi
2
√

σσA

WA(d log N)ffiffiffiffiffiffiffiffi
log N
√ . It is easy to see that XN ~ N (0, 1). Let 0 < ɛ < d, and we write

Qi � sup
s>0
(Wi(s) +WA(s)� s):
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First, observe that

E

�
�
�
�
�

maxi≤NQi �
σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
σσA
ffiffiffi
2
√ XN

�
�
�
�
�

" #

(A.14) 

≤ E

�
�
�
�
�

maxi≤NQi �
σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
maxi≤NWi(d log N) +WA(d log N) � σ2log N

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

�
�
�
�
�

" #

(A.15) 

+E

�
�
�
�
�

maxi≤NWi(d log N) +WA(d log N) � σ2log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
σσA
ffiffiffi
2
√ XN

�
�
�
�
�

" #

: (A.16) 

Because of Pickands (1968, theorem 3.1), we obtain for the term in (A.16) that

E

�
�
�
�
�

maxi≤NWi(d log N) +WA(d log N) � σ2log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
σσA
ffiffiffi
2
√ XN

�
�
�
�
�

" #

� E

�
�
�
�
�

maxi≤NWi(d log N) � σ2log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

�
�
�
�
�

" #

→
N→∞ 0:

(A.17) 

Furthermore, because Qi >Wi(d log N) +WA(d log N)� d log N, we can rewrite (A.15):

E

�
�
�
�
�

maxi≤NQi �
σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
maxi≤NWi(d log N) +WA(d log N)� σ2log N

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

�
�
�
�
�

" #

� E
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p �
maxi≤NWi(d log N) +WA(d log N)� σ2log N

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

" #

� E
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

" #

�E
maxi≤NWi(d log N)� σ2log N

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

" #

:

(A.18) 

The second term in (A.18) converges to zero as N→∞, which follows from the convergence in (A.17). In order to find a 
converging upper bound for the first term in (A.18), we write

E
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

" #

≤ E
maxi≤NQi�

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1 �M ≤
maxi≤NQi�

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≤ M

 !" #

(A.19) 

+E
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p >M
 !" #

: (A.20) 

For the term in (A.19), we can conclude from Theorem 5.1 together with the dominated convergence theorem that

E
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1 �M ≤
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≤ M
 !" #

→
N→∞

E
σσA
ffiffiffi
2
√ X1 �M ≤ σσA

ffiffiffi
2
√ X ≤ M

� �� �

� 0, 

with X ~ N (0, 1).
In order to find a converging upper bound for the term in (A.20), we bound

max
i≤N

Qi ≤ max
i≤N

sup
s>0

Wi(s)� 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q� �

s
� �

+ sup
s>0
(WA(s)� s=

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

) ≕ ZN:
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Then, we have the bound

E
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1
maxi≤NQi �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M
 !" #

≤ E
ZN �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1
maxi≤Nsups>0(Wi(s)� (1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M=2
 !" #

+E
ZN �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1
sups>0(WA(s)� s=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M=2
 !" #

:

Because sups>0(WA(s)� s=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
) is exponentially distributed with mean σ2

A
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
=2, we have that

E
sups>0(WA(s)� s=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

" #

�
σ2

A
2 :

Additionally, maxi≤Nsups>0(Wi(s)� (1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s) is the maximum of N i.i.d. exponentials with mean σ2=(2(1�

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)), and it is a standard result that

E max
i≤N

sup
s>0
(Wi(s)� (1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

)s)
� �

�
σ2

2(1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

XN

i�1

1
i
, 

see Rényi (1953). From this, it follows that

E
maxi≤Nsups>0(Wi(s)� (1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p
)s)� σ2

2 logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p

" #

→
N→∞ σ2

2 :

Furthermore, because of the memoryless property of exponential random variables, we have that

E
sups>0(WA(s)� s=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p 1
sups>0(WA(s)� s=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M=2
 !" #

� exp(�M=σ2
A)

M
2 +
σ2

A
2

� �

→
M→∞0, 

and

E
maxi≤Nsups>0(Wi(s)� (1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p · 1

�maxi≤Nsups>0(Wi(s)� (1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M=2
�" #

� E max
i≤N

sups>0(Wi(s)� (1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p · 1
sups>0(Wi(s)� (1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M=2
 ! !" #

≤ NE
� sups>0(Wi(s)� (1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p · 1

� sups>0(Wi(s)� (1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)s)� σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p ≥M=2
��

� Nexp
�

�
2(1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)( σ

2

2 log N + M
2

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

σ2

��
M
2 +

σ2

2(1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
)

�

→
N→∞ 0, 

for M > σ2. From these results, it follows that,

lim
M→∞

lim sup
N→∞

E
maxi≤NQi �

σ2

2 logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p 1
maxi≤NQi�

σ2

2 logN
ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p ≥M
 !" #

� 0:

The lemma follows. w
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A.4. Proofs of Section 5.2

Proof of Lemma 5.6. From Lemma 3.2, we know that the optimal inventory IA
N satisfies

d
dIE[Nh(N)

�
IA
N �Qi + (max

j≤N
Qj� IA

N)
+
�
+ b(N)(max

j≤N
Qj� IA

N)
+
] � 0:

We have
d
dI
E[Nh(N)

�
IA
N �Qi + (max

j≤N
Qj � IA

N)
+
�
+ b(N)(max

j≤N
Qj � IA

N)
+
]

� Nh(N) � (Nh(N) + b(N))P(max
i≤N

Qi > IA
N)

� Nh(N) � (Nh(N) + b(N))P
ffiffiffi
2
√

σσA

maxi≤N Qi �
σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p >

ffiffiffi
2
√

σσA

IA
N �

σ2

2 log N
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p

 !

:

Therefore, IA
N satisfies 

ffiffi
2
√

σσA
(IA

N �
σ2

2 log N)=
ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
� PA�1

N (1� γN). w

Proof of Proposition 5.1. We have to find I and β�such that FN(I,β) is minimized. As before, we know that the optimal 
ÎA

N should satisfy

Nh(N) � (Nh(N) + b(N))P σ
2

2 log N+ σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

X > ÎA
N

� �

� 0:

Thus, ÎA
N as given in (26) minimizes ĈA

N(I). We know that

E σ2

2 log N+ σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
X� ÎA

N

� �+h i
�

Z ∞

ÎA
N�
σ2
2 log N

σσAffiffi
2
√
ffiffiffiffiffiffi
logN
√

σ2

2 log N+ σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

x� ÎA
N

� �

φ(x)dx

�
σ2

2 log N� ÎA
N

� �

P
σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

X ≥ ÎA
N �
σ2

2 log N
� �

+
σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q 1

ffiffiffiffiffiffi
2π
√ exp �

(σ2log N� 2ÎA
N)

2

4σ2σ2
Alog N

 !

��
σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q

Φ�1(1� γN)γN

+
σσA
ffiffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi

log N
q 1

ffiffiffiffiffiffi
2π
√ exp �

1
2Φ
�1(1� γN)

2
� �

:

The expression in Equation (27) follows. w

Proof of Theorem 5.2. Using Corollary 3.1, we have

FN(IA
N, βA

N)

FN(Î
A
N, β̂A

N)
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(IA
N)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĈA
N(Î

A
N)

q

CN(Î
A
N) + ĈA

N(Î
A
N)

:

First, assume ĈA
N(Î

A
N) > CN(Î

A
N). Then, FN(IA

N,βA
N)=FN(Î

A
N, β̂A

N) >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CN(IA
N)=ĈA

N(Î
A
N)

q

. We have

| ĈA
N(Î

A
N)�CN(IA

N) | ≤ (2Nh(N) + b(N)) | IA
N � ÎA

N | + (Nh(N) + b(N))E max
i≤N

Qi �
σ2

2 log N� σσA
ffiffiffi
2
√ X

�
�
�
�

�
�
�
�

� �

:

We know by Van der Vaart (1998, lemma 21.2) that (IA
N � ÎA

N)=
ffiffiffiffiffiffiffiffiffiffiffi
log N

p
→

N→∞0. Furthermore, we prove in Lemma 5.5 that 

E maxi≤NQi �
σ2

2 log N� σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffi
log N

p
X

�
�
�

�
�
�=

ffiffiffiffiffiffiffiffiffiffiffi
log N

ph i
→

N→∞0. From this, it follows that | ĈA
N(Î

A
N)�CN(IA

N) | � o((Nh(N) + b(N))
ffiffiffiffiffiffiffiffiffiffiffi
log N

p
). 

Because ĈA
N(Î

A
N) ~ σ

2

2 Nh(N)log N, we have 
ffiffiffiffiffiffiffiffiffiffi
CN(IA

N)
√

ffiffiffiffiffiffiffiffiffiffiffi
ĈA

N(Î
A
N)

p � 1� o((Nh(N) + b(N))
ffiffiffiffiffiffiffiffiffiffiffi
log N

p
=(Nh(N)log N)) � 1� o(1=

ffiffiffiffiffiffiffiffiffiffiffi
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Second, assume ĈA
N(Î

A
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A
N), and then
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ĈA
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q :

With an analogous derivation, we obtain the same order bound. w
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Proof of Lemma 5.7. We have ÎA
N �

σ2

2 log N+ σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
Φ�1(1� γ). Furthermore, | IA

N � ÎA
N | � o(

ffiffiffiffiffiffiffiffiffiffiffiffi
log N

p
), and thus, (28) fol-

lows. Furthermore, by using the same argument as in Lemma 4.2, (29) follows. w

A.5. Mixed-Behavior Approximations
Though we have a symbolic expression for βM

N in (32), it is not completely clear how to compute the part

E σ2

2 log N+ σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
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2

2 G > x
� �

dx 

in βM
N . First, observe that we can write

P
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√
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logN
q

X+ σ
2

2 G > x
� �

� P
σA

ffiffiffi
2
√

σ

ffiffiffiffiffiffiffiffiffiffiffiffi

logN
q

X+G >
2
σ2 x� logN

 !

�

Z ∞

�∞

P
σA

ffiffiffi
2
√

σ
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logN
q
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 !

exp(�exp(�z)� z)dz:

Now, we write z ��log s. Then,
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P
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2
√

σ
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Thus,
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It turns out that
Z ∞

IM
N

P
σA
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2
√

σ
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log N
q

X >
2
σ2 x� log N + log s

 !
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can be expressed in terms of error functions. Thus, because IM
N can be numerically found by solving Equation (31), 

E σ2

2 log N+ σσAffiffi
2
√

ffiffiffiffiffiffiffiffiffiffiffiffi
logN

p
X+ σ2

2 G� IM
N

� �+h i
can be computed numerically as well. Observe that the procedure to obtain IM

N 

and βM
N is efficient and that its running time is independent of the system size N.
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