
International Journal of Greenhouse Gas Control 136 (2024) 104190

A
1

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage
Gabriel Serrão Seabra a,b,∗, Nikolaj T. Mücke c,d, Vinicius Luiz Santos Silva b,e, Denis Voskov a,f,
Femke C. Vossepoel a

a Faculty of Civil Engineering and Geosciences, TU Delft, Stevinweg 1, 2628 CN Delft, Netherlands
b Petroleo Brasileiro S.A. (Petrobras), Rio de Janeiro, Brazil
c Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands
d Mathematical Institute, Utrecht University, Utrecht, Netherlands
e Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
f Department of Energy Resources Engineering, Stanford University, CA, USA

A R T I C L E I N F O

Keywords:
Geological Carbon Storage (GCS)
Uncertainty quantification
Data assimilation
Machine learning

A B S T R A C T

This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques,
focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining
the high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of
two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the
context of CO2 injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid
ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation
(ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard
ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally,
we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on
the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation
of gradients for the optimization of the objective function, and a high-fidelity model is employed for the
computation of the posterior states. Our comparative analyses show that SH-RML offers a better uncertainty
quantification when compared to the conventional ESMDA for the case study.
1. Introduction

Geological Carbon Storage (GCS) is a vital component of Carbon
Capture, Utilization, and Storage (CCUS) to mitigate greenhouse gas
emissions and achieve climate targets (Ringrose and Meckel, 2019).
According to the International Energy Agency (IEA), project developers
aim to bring more than 200 new capture and storage facilities into
operation worldwide by 2030, with the capacity to handle over 220
Mton of CO2 annually (IEA, 2022). To put this ambitious goal into
context, one of the largest CCUS projects to date, the water alternating
gas (WAG) injection project in the Brazilian Pre-Salt, has injected only
20 Mton of CO2 into the largest Brazilian four carbonate reservoirs
(Búzios, Mero, Sapinhoá, and Tupi) over a decade (Nunes et al., 2022),
representing less than 10% of the IEA target. Many CO2 storage sites
are situated in geologically complex formations, such as fractured car-
bonate rocks or channelized reservoirs (Burchette, 2012; March et al.,
2018). As the number of carbon storage projects grows, it becomes
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crucial for companies to develop efficient forecasts and uncertainty
quantification (UQ), as these studies play an important role in securing
support from investors, regulators, and society during project approval
and implementation.

The ambitious scale of expansion in Carbon Capture, Utilization,
and Storage (CCUS) projects necessitates addressing the associated
risks, particularly those linked to pressure management in geological
storage sites. Effective pressure management in Geological Carbon
Storage (GCS) projects is crucial to optimizing storage capacity and
mitigating significant risks such as induced seismicity and caprock
failure. Li and Liu (2016) identified that most GCS project risks orig-
inate from pressure management issues at storage sites, which can
induce seismicity and lead to caprock failure at weak points when CO2
injection pressures exceed the mechanical stability thresholds of the ge-
ological formations. These scenarios can result in microseismic events
or mechanical failures that compromise the caprock’s integrity and
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the overall containment security (Zoback and Gorelick, 2012; Rutqvist,
2012). Furthermore, the CO2 injection process can alter subsurface
tress states, potentially triggering seismic events ranging from micro-
eismicity to significant earthquakes (magnitude 5+ events) (White and
oxall, 2016). Researchers have proposed several solutions to improve
ressure management at storage sites. For instance, Machado et al.
2023) suggests the application of horizontal wells to achieve a better
istribution of the CO2 plume and a smaller increase in reservoir

pressure.
Robust UQ and forecasts in GCS projects typically rely on several

key components. These encompass robust geological models represent-
ing reservoir complexities accurately, high-fidelity reservoir simulators
capturing intricate CO2 injection dynamics and data assimilation (DA)
techniques to combine these elements with field observations. It is
important to note that effective uncertainty quantification can still be
achieved even without data assimilation, depending on the specific
requirements of the project and the available data.

DA techniques contain ensemble methods (e.g., Ensemble Kalman
Filters and Ensemble Smoothers), variational methods (e.g., Random-
ized Maximum Likelihood and 4D-Var), and fully nonlinear DA meth-
ods (e.g., Particle Filters and Markov Chain Monte Carlo) (Evensen
et al., 2022; Tarantola, 2005). These methods leverage data, prior
knowledge, and physics-based models to predict reservoir behavior un-
der uncertain conditions. While ensemble methods are computationally
efficient and flexible, variational approaches can offer better conver-
gence but require gradient computations. Fully nonlinear methods can
offer high accuracy for systems characterized by nonlinearities, such
as the CO2 injection. However, the computational intensity of these
methods can be prohibitive due to the substantial resources and time
they require. In the context of CO2 injection and DA, Tarrahi et al.
(2015) integrated microseismic monitoring data of CO2 injection with
coupled flow and geomechanical models using the Ensemble Kalman
Filter (EnKF), enabling the conditioning of heterogeneous rock perme-
ability and geomechanical property distributions on microseismic data.
Similarly, Li et al. (2017) employed one-step ahead smoothing for joint
state-parameter estimation, crucial for addressing nonlinearities in CO2
torage aquifers. Tadjer and Bratvold (2021) introduced a Bayesian
vidential Learning (BEL) for managing uncertainties in geological CO2
torage, integrating Monte Carlo simulations with ensemble smoother
irect forecasting to enhance decision support systems. Utilizing the
tsira saline aquifer in Norway as an example, the BEL approach

mproves the predictability of CO2 sequestration by effectively manag-
ng uncertainties and potential leakages. These studies emphasize the
ignificance of assimilating diverse data types into reservoir models,
efining the understanding of subsurface properties, and optimizing
O2 injection strategies, thereby contributing to the realization of
ffective GCS projects in mitigating climate change.

Specialized softwares are often employed to model the hetero-
eneities in complex reservoirs, such as channelized formations. Among
hese, Alluvsim is an open-source option that generates multiple ge-
logical models with key features like channel size, curvature, and
hifts, using streamlines as building blocks to mimic natural depo-
ition processes (Pyrcz et al., 2009). These detailed models reflect
he heterogeneities commonly encountered in GCS projects. For high-
idelity reservoir simulation, numerical simulators designed to handle
ultiphase, multicomponent flow and transport in porous media are
tilized. Examples of such simulators include CMG GEM (Computer
odelling Group Ltd., 2023), SLB Eclipse (Schlumberger, 2023), and

pen-source options like DuMux (DuMux Development Team, 2023)
nd GEOSX (GEOSX Development Team, 2023). Delft Advanced Re-
earch Terra Simulator (DARTS), recently released as an open-source
eservoir simulator for energy transition applications, efficiently sim-
lates CO2 injection using advanced numerical techniques like the
perator-based linearization approach (Lyu and Voskov, 2023; Khait
nd Voskov, 2017). However, integrating these simulators into DA
2

rameworks can be challenging due to high computational costs.
The choice of Alluvsim and DARTS as our primary tools stems from
their proven efficacy in handling complex geological formations and
fluid dynamics simulations, respectively. Alluvsim’s capability to accu-
rately simulate channelized reservoirs (Delottier et al., 2023), coupled
with DARTS’s optimized computational efficiency (Khait and Voskov,
2017), makes them particularly suitable for our study’s objectives.
This combination allows us to model the intricate interactions and
variabilities within the reservoirs with a high degree of fidelity, crucial
for reliable CO2 injection simulations.

Recently, researchers have actively been exploring innovative
strategies to merge machine learning (ML) and DA (Buizza et al., 2022;
Silva et al., 2023). Buizza et al. (2022) provides a high-level overview
of techniques for integrating DA and ML, called ‘‘Data Learning’’ for
improving DA in several fields. Their key focus is on approaches that
leverage the strengths of ML’s ability to uncover complex patterns
in data and data assimilation’s incorporation of physical models and
dynamical constraints. Similarly, Cheng et al. (2023) explores how
mixing ML and DA can make research on DA robust. The study sorts
these methods into two main groups. The first group, called ‘‘DA using
ML’’ looks at how ML can help solve problems in data assimilation.
This includes fixing errors in DA models by adding ML, using it to
estimate unknown variables in DA, and defining error rates using
ML methods. The study also talks about how neural networks can
help in learning DA systems from start to finish. The second group,
‘‘ML improved by DA/UQ’’ focuses on how DA and UQ can improve
ML models. This covers topics like using Bayesian neural networks
for uncertainty analysis in ML, fixing errors in simplified ML models
with real-time data, and using DA to identify key equations from
noisy or incomplete data. Brajard et al. (2021) recently proposed an
innovative approach that combines DA and ML to infer unresolved scale
parameterization in models, helping overcome limitations from sparse
and noisy observational data.

In the domain of deep learning for efficient surrogate modeling,
UNets have long demonstrated their efficacy, particularly in tackling
subsurface problems (Wen et al., 2021a; Zhang et al., 2021; Pintea
et al., 2021). Originating from biomedical image segmentation, UNets
excel at capturing local features through specialized convolutional lay-
ers. The architecture comprises an encoder and a decoder connected by
a ‘‘highway’’ system of channel concatenation, facilitating the transfer
of multiscale spatial information. This has enabled outstanding predic-
tive accuracy in diverse applications (Ronneberger et al., 2015; Taccari
et al., 2022). More recently, advancements have been made by integrat-
ing UNets with transformers. Li et al. (2023) explored this method for
robust medical images segmentation and AlSalmi and Elsheikh (2023)
applied an attention UNet for seismic segmentation. On the other hand,
Fourier Neural Operators (FNOs) have recently emerged as a promising
method to build surrogate models for reservoirs submitted to CO2
injection. Employing Fourier basis functions, FNOs efficiently capture
multiscale interactions and offer a novel way to overcome traditional
limitations in surrogate modeling (Li et al., 2020; Wen et al., 2022;
Witte et al., 2023).

Recently, Tang et al. (2022), Wen et al. (2021b), Sun and Durlofsky
(2019), Agogo et al. (2022) developed surrogate models for CCUS
DA, aiming to replace physics-based numerical models. However, these
models often require a substantial amount of training data from high-
fidelity simulations, posing practical challenges for real-world CCUS
projects with limited computational resources. While deep learning has
improved surrogate model accuracy, Dong et al. (2021) shows that it
may struggle to capture subsurface complexities fully.

Hybrid models that combine physics-based and ML approaches have
been explored by Tang and Durlofsky (2022), Korondi et al. (2020), de
Brito and Durlofsky (2020) to mitigate the specific limitations inherent
to both physics-based and ML models, with the goal of forging a
more balanced and comprehensive tool. ML models, while proficient
at identifying patterns and correlations within large datasets, may lack

the capability to infer the underlying physical processes governing the
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system. This limitation can lead to potential inaccuracies in predictions
under unseen conditions or parameter ranges, especially when dealing
with the intricate geological variations and non-linear fluid dynamics
inherent in subsurface environments. On the other hand, physics-based
models offer reliable insights into these underlying processes but may
struggle with computational efficiency. However, significant challenges
arise when incorporating ML surrogate models in DA due to the differ-
ent parameterizations employed by ML surrogates and physics-based,
high-fidelity simulators. This misalignment can impede the integration,
limiting the applicability and efficacy of the resulting UQ in real-world
GCS projects.

In our methodology, we initially employ a standard ESMDA ap-
proach utilizing DARTS for high-fidelity simulations of channelized
reservoirs built with Alluvsim. This scenario poses a significant chal-
lenge for DA due to its highly nonlinear nature and the non-Gaussian
distribution of parameters. To improve upon the standard ESMDA
methodology, we evaluate two ML surrogate models for comparison:
one rooted in the Fourier Neural Operators and the other adopting a
Transformer UNet (T-UNet) architecture, which to our knowledge is the
first application of these techniques to GCS subsurface problems. Our
observations reveal that FNOs show a slight advantage over T-UNet,
particularly for small datasets. Subsequently, we develop two hybrid
techniques to integrate DA with these ML surrogates. The first, termed
Surrogate-based hybrid ESMDA (SH-ESMDA), incorporates the ML sur-
rogates models, expediting the ESMDA process by around 50% or more,
and thereby facilitating quicker uncertainty evaluations. For the second
technique, known as Surrogate-based Hybrid RML (SH-RML), we use
the ML surrogates models specifically for gradient calculations within
a variational framework and compute the posterior curves with high-
fidelity physics simulator DARTS. The SH-RML achieves better history
matching than ESMDA and SH-ESMDA.

In summary, our contributions are as follows:

• We train and test two different types of novel ML surrogates in
a channelized reservoir setting for CO2 storage, a FNO and a
T-UNet.

• We introduce two novel hybrid methods, SH-ESMDA and SH-
RML, that incorporate ML into both ensemble and variational DA
techniques. The first, significantly expedites the DA process and
the second allows one to perform variational DA.

• Both proposed methods ensure that posterior high-fidelity physics
solution is respected.

• The proposed methods are versatile and can be adapted to various
physical systems beyond CO2 sequestration.

The paper is organized as follows: Section 2 discusses the creation of
eological models, followed by CO2 injection simulations with DARTS.

In Section 3, we delve into the ML models used to build the surrogate
models. Section 4 and Section 5 describes the DA methods discussed in
the paper, ESMDA, RML and the hybrid methods SH-ESMDA and SH-
RML. Finally, Section 6 presents the results and implications of these
methods for enhancing DA in CO2 storage projects.

2. Overview of the reservoir model for CO2 injection

.1. Geological modeling using Alluvsim

We use Alluvsim, a specialized algorithm to simulate channelized
eservoirs (Pyrcz et al., 2009; Delottier et al., 2023). This tool allows
s to manipulate different geological variables that impact channel
eatures. Following the guidelines by Pyrcz et al. (2009), we create
ultiple geological models by altering essential parameters within

ertain limits.
We consider as variables the likelihood of channel shifts, known

s avulsion probability, and vertical sediment build-up, or aggrada-
3

ion levels, within statistically defined ranges. Parameters such as
channel orientation, thickness, and geometric aspects like the width-to-
thickness ratio are also modeled using various distributions to mimic
natural variability. We similarly vary levee width to represent lat-
eral sediment deposition and channel sinuosity to capture meander-
ing behavior. Properties are distributed across different facies, to ac-
curately represent variations in rock quality. This allows a compre-
hensive evaluation of the reservoir’s attributes while accounting for
uncertainty.

By randomly selecting values for the aforementioned parameters,
we produce multiple realizations that capture the variability in the
properties of channelized reservoirs. Fig. 1 showcases the permeability
distributions of six randomly sampled models from this dataset. Each
model in the dataset has a grid dimension of 32 × 32 × 1 with a
spatial discretization of 192 × 192 × 10 m. This grid resolution was
carefully chosen, considering computational efficiency and memory
requirements.

The histograms in Fig. 2 clarify the permeability distribution of
a model sample from our dataset. Note that the distributions are
not Gaussian. These diverse geological models define the permeability
distribution for subsequent CO2 simulations which will, in turn, be used
for the training of the ML methods.

It is worth mentioning that a 2D horizontal model was employed
to simplify the study, focusing on the areal permeability distribution
within channelized reservoirs. While acknowledging the influence of
gravity in three-dimensional settings, this approach enables the exami-
nation of non-Gaussian and highly heterogeneous permeability patterns
typical of natural depositional environments. The decision to use a 2D
model was made to highlight how lateral variations in permeability
impact CO2 flow dynamics.

2.2. CO2 injection simulation using DARTS

Delft Advanced Research Terra Simulator (DARTS) is used to per-
form reservoir simulations of CO2 injection into channelized reservoirs.
DARTS is engineered for handling complex flow through porous me-
dia and is optimized for computational speed via techniques such as
operator-based linearization (OBL) yielding a high-fidelity, physics-
based representation (Khait and Voskov, 2017; Pour et al., 2023; Chen
and Voskov, 2020). Detailed descriptions of the physics, analytical
validations, and example models of DARTS for GCS modeling are
documented in Wapperom et al. (2023), Lyu and Voskov (2023) and
openly available in the software open repository (DARTS, 2024).

For the CO2 flow simulation in this study, the gas phase viscos-
ity is assumed to be solely that of CO2, calculated using the model
from Fenghour et al. (1998). The densities of the CO2 and CH4 mix-
ture are computed using the Peng-Robinson equation of state, with
properties determined by their composition. In terms of dissolution,
all components are modeled simultaneously using a hybrid EOS with
fugacity-activity formulation (Wapperom et al., 2023). A power-law
model (Corey) is applied to describe relative permeability in the porous
media, with exponent values 𝑛𝑤 = 2.0 and 𝑛𝑔 = 1.5, and terminal
saturation points 𝑆𝑤𝑐 = 0.25 and 𝑆𝑔𝑐 = 0.1. Although aspects like
diffusion and hysteresis can influence CO2 migration and trapping,
they are neglected to align the simulation objectives with broader
reservoir behavior. Capillary pressure effects are also neglected, as
they are considered to have minimal impact on the 2D model utilized.
We assume this model captures the multiphase flow characteristics
pertinent to CO2 migration and trapping in porous media relevant this
the present study.

In DARTS, the geological model is discredited as a computational
grid. Within this grid, one well is placed in the center of the reservoir
for CO2 injection. The model simulates the injected CO2 plume and con-
ducts equilibrium flash calculations to determine phase partitioning.

Our simulation includes CO2, CH4, and H2O as components, with
initial conditions featuring a uniform gas saturation of 20% and a

composition of 2% CO2 and 98% CH4. CO2 is injected via one well
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Fig. 1. Permeability maps of six models from the dataset.
Fig. 2. Histogram of permeability (left) and log of permeability (right) for one sample.
in the center of the reservoir at a time-varying prescribed gas rate. In
our simulations, the time frame comprises 61 time steps, each lasting
30 days. Although this is a shorter window than what is typically
encountered in real-world CCUS projects, this duration is sufficient to
induce overpressure in the reservoir, which is an aspect we aim to
investigate as it can impact the further CO2 distribution in the reservoir.
Fig. 3 illustrates our simulation results. The top row shows pressure dis-
tributions, and the bottom row displays CO2 molar fractions, captured
at the initial, intermediate, and final time steps.

A key observation is the differential progression of the pressure
and CO2 fronts. Pressure changes, governed by diffusion phenomena
propagate more rapidly through the reservoir. In contrast, the CO2 front
advances more slowly, influenced by complex transport mechanisms.
This differential movement highlights the potential value of monitoring
pressure as an early warning system for subsurface changes, even before
significant CO2 migration occurs. Because of this, we choose pressure
as a critical variable for monitoring in our subsequent DA studies.

By applying DARTS to the Alluvsim realizations, we generate a
comprehensive suite of high-fidelity simulations that form the basis for
our subsequent ML model training and DA study. It is important to note
that the combination of geological complexities modeled by Alluvsim
and the fluid dynamics simulated by DARTS creates a highly nonlinear
problem. Coupled with the non-Gaussian distribution parameters, as
4

evident from Fig. 2, this poses a substantial challenge for traditional DA
methods. This complexity further underscores the need for advanced
approaches, including ML-based techniques, to accurately perform DA.

3. Neural network as surrogate forward models

A surrogate model is a model that replaces the high-fidelity model
for the simulation of fluid behavior in a reservoir. The surrogate model
should be computationally cheap to evaluate without significantly sac-
rificing accuracy. To achieve this, we construct a surrogate model
based on the output of the high-fidelity model. This is done in two
stages: an offline stage, in which the surrogate model is trained, and
an online stage, where the surrogate model is used in place of the high-
fidelity model. Conventionally, surrogate models achieve speed-ups by
lowering the dimension of the state and corresponding equations to be
solved, such as in proper orthogonal decomposition (Quarteroni et al.,
2015; Hesthaven et al., 2016). However, due to large Kolmogorov 𝑁-
widths for highly nonlinear and/or hyperbolic problems (Ohlberger
and Rave, 2015), such linear approaches have lately been replaced
with equation-free methods. Here, one replaces the equations with a
function that directly gives the output of interest. For this to work,
one must typically use highly complicated functions to make up for
the lack of physical knowledge in the online stage. The offline stage is
typically significantly more expensive and requires more training data.

Neural networks are immensely popular in this approach due to their
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Fig. 3. Simulation results using DARTS. Top row: Pressure distributions; Bottom row: CO2 molar fractions.
capability of approximating highly nonlinear functions (Mücke et al.,
2021; Li et al., 2020; Geneva and Zabaras, 2022).

The general setup for the offline stage is to first generate high-
fidelity solutions and then train the neural networks on these solu-
tions. In this paper, we specifically make use of the neural network
architectures T-UNet and FNOs.

3.1. Forward model

The forward model, that is, the simulator used to describe the
behavior of fluid in a reservoir, maps input parameters to a state
trajectory. In our case, it maps permeability and porosity to the state
trajectory of pressure and fluid flow. Injection rate is the control
that determines the behavior of the fluid. Let 𝑲 ∈ R𝑁𝑥×𝑁𝑦 be the
permeability, 𝝓 ∈ R𝑁𝑥×𝑁𝑦 the porosity, 𝒒 ∈ R𝑁𝑡 the injection rate,
and 𝒎 = (𝐾,𝜙, 𝑞). We then define the space of parameters 𝒎 ∈ 𝑀 . The
state trajectories consist of pressure, 𝒑 ∈ R𝑁𝑥×𝑁𝑦×𝑁𝑡 , and 𝐶𝑂2 molar
fraction, 𝒇 ∈ R𝑁𝑥×𝑁𝑦×𝑁𝑡 . We furthermore define the state trajectory
space, 𝒅 ∈ 𝑉 and find that 𝒅 = (𝒑,𝒇 ). With this, the forward map, 𝐺,
is defined by:

𝐺 ∶ 𝑀 → 𝑉 , 𝒎 ↦ 𝒅. (1)

The surrogate forward model, �̂�, approximates 𝐺:

�̂� ∶ 𝑀 → 𝑉 , 𝒎 ↦ 𝒅, �̂�(𝒎) ≈ 𝐺(𝒎). (2)

While 𝐺 maps 𝒎 to 𝒅 implicitly by solving a set of PDEs, �̂� directly
maps 𝒎 to 𝒅. �̂� is parametrized by a family of neural networks. As �̂�
is a neural network, it consists of a set of weights, 𝜽. The weights are
fitted in the offline stage.

The training of �̂� is performed in the offline stage by first generating
𝑁𝑠 training samples by using the high-fidelity forward model:

𝑀train =
{

𝒎𝑖
}𝑁𝑠
𝑖=1 , 𝑉train =

{

𝐺(𝒎𝑖)
}𝑁𝑠
𝑖=1 =

{

𝒅𝑖
}𝑁𝑠
𝑖=1 , 𝑆train = (𝑀train, 𝑉train).

(3)

�̂� is then trained by minimizing a loss function with respect to the
weights of �̂�, 𝜃:

𝐿(�̂�, 𝑆train) =
1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝑙(�̂�(𝒎𝑖),𝒅𝑖) + 𝜆‖𝜽‖22, (𝒎𝑖,𝒅𝑖) ∈ 𝑆train, (4)

where 𝑙 is some loss, typically the 𝑙𝑝 or 𝐿𝑝 norm of the residual, 𝜆 is
a hyperparameter, and ‖ ⋅ ‖2 is the squared 𝑙2 norm and serves as a
5
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regularization term. The minimization of 𝐿 is performed by stochastic
gradient descent (SGD) with respect to 𝜽. The specific SGD algorithm is
often chosen to be the Adam optimizer (Kingma and Ba, 2014) or other
variations thereof.

Below, we will present the particular neural network architectures
we use in this paper.

3.2. Transformer UNet

The UNet architecture was introduced in Ronneberger et al. (2015).
The idea is to reduce the dimension of the input data down to a
bottleneck via a series of convolutional layers and then increase the
dimension back to the original shape via upscaling convolutional lay-
ers. The bottleneck layers serves as a low-dimensional representation
of the data that is rich in feature information. In the upscaling part
of the network, the intermediate layers from the downscaling part are
concatenated to the convolutions to provide context.

Originally developed and primarily utilized in the medical imag-
ing field, the T-UNet architecture is being adapted in this work for
GCS projects. To the best of our knowledge, this constitutes the first
endeavor to apply the T-UNet architecture in the realm of GCS.

The choice of the T-UNet architecture, a variant of the well-
established UNet model, is grounded in its substantial application and
success in various fields, particularly in subsurface applications (Ron-
neberger et al., 2015; AlSalmi and Elsheikh, 2023).

The UNet type of architecture allows one to add information to the
predictions on various spatial levels. Specifically, we utilize this to in-
form the forward model with the injection rate in the bottleneck layers.
By adding this information in the bottleneck layers, we effectively affect
the rich feature encodings with additional information in an efficient
manner. This makes the computations cheaper and makes it easier for
the network to learn the relations between the input parameters and
the output.

In the proposed architecture, we input the spatially distributed
parameters, porosity and permeability, as a two-channel ‘‘image’’. Then
we copy that 𝑁𝑡 times and concatenate a channel consisting only of the
time. This way we can compute the bottleneck encoding of the space
for each time step as a batch consisting of 3D tensors (channels, height,
width) rather than a single 4D tensor (channels, time steps, height,
width), which enables us to use 2D convolutional layers instead of 3D
convolutional layers. Since 3D convolutional layers are significantly
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Fig. 4. T-UNet architecture.
more memory and compute-heavy, this gives us significantly more
efficiency.

For the conditioning of the bottleneck layer, we use cross-attention
in the shape of the transformer architecture (Vaswani et al., 2017). The
transformer has been shown to provide state-of-the-art performance on
multiple types of data and seems to be the superior choice for multi-
modal data (Rombach et al., 2022; Xu et al., 2023). Unfortunately,
the attention mechanism is very compute and memory intensive and
scales poorly with the data dimension. By utilizing the transformer
in the bottleneck layers, however, this problem is circumvented. For
a description of the transformer neural network, see Vaswani et al.
(2017).

As mentioned, we utilize transformers to condition the forward
model on the injection rate. We do this by first embedding the injection
rate time series through dense layers, such that the dimensions match
the encoded spatial dimensions. Then, we employ positional encoding
which receives information from a dense embedding that originates
from the gas injection rates. The encoded positions are then passed to
the transformer decoder layers, effectively providing a richer context
for each time step. This ensures that the transformer is not only aware
of the feature information but also the sequence in which they occur.
The embedding time series is passed through transformer encoder lay-
ers after which it is combined with the spatial data through transformer
decoders. For a visualization of the full T-UNet, see Fig. 4

3.3. Fourier neural operators

FNOs were introduced in Li et al. (2020) for various parametric
PDE problems. In contrast to conventional neural networks, FNOs learn
operators between function spaces instead of Euclidean spaces. This
makes FNOs resolution invariant. The general idea is to make use of the
Fourier transform, followed by a series of operations in Fourier space,
after which the data is transformed back to physical space. Hence, a
single Fourier layer is given by:

𝑎𝑛+1(𝑥) = 𝜎
(

𝑊 𝑎𝑛(𝑥) + −1(𝑅 ⋅ (𝑎𝑛))(𝑥)
)

, (5)

where 𝑎𝑛(𝑥) is the output of the 𝑛th layer, 𝑊 and 𝑅 are affine trans-
formations consisting of trainable weights,  is the Fourier transform,
and 𝜎 is an activation function. Before applying 𝑅 the number of
modes is truncated to a pre-defined number of modes, 𝑘. The Fourier
transform is in practice approximated by a discrete Fourier transform.
𝑊 is typically a standard convolutional layer with a kernel of size one.
While truncating the number of Fourier modes removes high-frequency
information, the convolutional layer, 𝑊 , compensates for that. For
visualization of the FNO layer, see Fig. 5

The FNO layers are preceded by a projection layer, that maps the
number of input channels to the desired number of hidden channels.
6

Similarly, the FNO layers are superseded by another projection layer
that maps the number of hidden channels to the number of output
channels.

For our specific application, we use the FNO to map parameters, 𝒎,
to corresponding state trajectories, 𝒅. To capture the 3D structure of the
data, we use 3D Fourier transform and 3D convolutions. The injection
rate is encoded to have a 3D structure. The rate at each time step is
copied onto all discrete spatial points:

𝒒enc = [𝒒0𝟏𝑁𝑥×𝑁𝑦
,… , 𝒒𝑁𝑡

𝟏𝑁𝑥×𝑁𝑦
], (6)

where 𝟏𝑁𝑥×𝑁𝑦
∈ R𝑁𝑥×𝑁𝑦 is a matrix consisting of ones. The subscript

()enc signifies that the quantities are encoded to fit the 3D tensor format.
Similarly, the spatial points coordinates, (𝑥, 𝑦) are encoded and copied
along the temporal dimension. The time steps are treated in the same
way as the injection rate. Lastly, the porosity and permeability are also
copied along the temporal dimension. Hence, the input to the FNO is:

(𝐾,𝜙, 𝑞, 𝑥, 𝑦, 𝑡)enc = (𝐾enc, 𝜙enc, 𝑞enc, 𝑥enc, 𝑦enc, 𝑡enc) ∈ R𝑁𝑐×𝑁𝑥×𝑁𝑦×𝑁𝑡 , (7)

where 𝑁𝑐 is the number of channels. In our case, 𝑁𝑐 = 6 – permeability,
porosity, injection rate, 𝑥, 𝑦, and time step.

For the training of the FNO, we use the squared 𝐿2-norm. This
is an unusual choice for neural networks but a very common metric
for PDEs. As neural networks typically map tensors to tensors, the 𝑙2-
norm is the most frequent choice. However, since FNOs map functions
to functions, we can make use of the squared 𝐿2-norm, which is
also a much more appropriate choice when dealing with PDEs. It is
worth noting the nuanced difference between the 𝐿2-norm and the 𝑙2-
norm, particularly when it comes to implementation. In both cases,
you will need to discretize the integral for computational purposes.
However, the key distinction lies in the underlying space over which
the norms are computed. When using the 𝐿2-norm, one is essentially
approximating the integral over a function space, aiming to capture
the ‘‘true’’ behavior of the function. On the other hand, the 𝑙2-norm is
computed over an Euclidean space, essentially summing up the squared
differences in a point-wise manner. Hence, the loss function for the
training is:

𝐿(�̂�, 𝑆train) =
1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
‖�̂�(𝒎𝑖) − 𝒅𝑖‖

2
𝐿2 + 𝜆‖𝜽‖22, (𝒎𝑖,𝒅𝑖) ∈ 𝑆train. (8)

Both FNO and T-UNet show promise in approximating the high-
fidelity forward model, 𝐺. T-UNet capitalizes on the strength of 2D
convolutional layers and transformer architectures to efficiently incor-
porate temporal information and spatial parameters. Its design allows
for an efficient encoding of multi-dimensional data, making it compu-
tationally more lightweight. On the other hand, FNOs offer resolution
invariance and the capability to operate directly in function spaces,
making them highly suitable for parametric PDE problems. However,
one caveat with FNOs is their higher memory consumption. This is
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Fig. 5. FNO architecture.
largely due to their need to include time as an additional channel and
their use of 3D Fourier transforms and convolutions, which significantly
increase the size of input tensors.

The code for both the T-UNet and FNOs architectures is publicly
accessible. The repository can be found at https://github.com/nmucke/
subsurface-DA-with-generative-models.

4. Data assimilation

4.1. Ensemble Smoother with Multiple Data Assimilation (ESMDA)

Ensemble-based DA techniques are computationally efficient, as
they lend themselves well to parallelization. Additionally, these meth-
ods offer a level of flexibility by requiring minimal alterations to the
existing forward model code and avoiding the computation of adjoints
gradients (Evensen et al., 2022). Among various ensemble-based DA
techniques, the Ensemble Smoother (ES) serves as an effective method
but it has limited ability to provide adequate data matches in complex
problems, such as reservoir simulations, due to the application of a
single Gauss–Newton correction for conditioning the ensemble to all
available data (Emerick and Reynolds, 2013b). To address this, Emerick
and Reynolds (2013a) introduced the ESMDA, an iterative version of
ES, allowing for improved data matches by assimilating the same data
multiple times with an inflated covariance matrix of measurement
errors, which enables a more robust approach to updating the model.
In spite of its inherent assumptions of Gaussianity, ESMDA is also
applicable to weakly non-Gaussian problems. The method is easy to
implement, leading to broad application in various scenarios.

Following the notation of Emerick and Reynolds (2013b), we can
describe the analysis for each ensemble member’s model parameter 𝒎𝑎

𝑗
as follows:

𝒎𝑎
𝑗 = 𝒎𝑓

𝑗 + 𝐶𝑓
𝑀𝐷

(

𝐶𝑓
𝐷𝐷 + 𝛼𝑖𝐶𝐷

)−1
(

𝒅𝑗 − 𝐺(𝒎𝑗 )𝑓
)

, for 𝑗 = 1, 2,… , 𝑁𝑒.

(9)

Here 𝑁𝑒 is the total number of ensemble members, 𝒎𝑎
𝑗 and 𝒎𝑓

𝑗 represent
the analyzed and forecasted parameters of the 𝑗th ensemble member,
respectively, 𝐶𝑓

𝑀𝐷 and 𝐶𝑓
𝐷𝐷 are the cross- and auto-covariance matrices

of the model parameters and data in the forecast step, 𝛼 is a scaling
factor, and 𝒅𝑗 and 𝐺(𝒎𝑗 )𝑓 are the perturbed and forecasted observa-
tions for the 𝑗th ensemble member. Besides, 𝐺() represents the forward
model. For more details, see Eq. (10):

𝒅𝑗 = 𝒅obs +
√

𝛼𝐶1∕2
𝐷 𝑧, (10)

In this equation, 𝒅obs is the observed data, 𝐶𝐷 is the measurement error
covariance, and 𝑧 is sampled from a standard normal distribution with
7

zero mean and an identity matrix as the covariance. The factor
√

𝛼
scales the perturbations.

The ESMDA algorithm, summarized below, iteratively employs
these equations to update each ensemble member. In this study, the
model parameter 𝒎 is defined as the permeability of the medium,
and 𝒅obs represents pressure values obtained from specific monitoring
points. The ESMDA methodology serves as the basis for a hybrid
method that combines DA with surrogate modeling, with the objective
of history matching in GCS studies.
Algorithm 1: ESMDA Algorithm
Input : Initial ensemble, observed data 𝒅obs, and measurement

error covariance 𝐶𝐷
1 Determine 𝑁𝑎 and 𝛼 for 𝑖 = 1,… , 𝑁𝑎
2 for 𝑖 = 1 to 𝑁𝑎 do
3 Compute predicted data 𝐺(𝒎𝑗 )𝑓 for each ensemble member
4 Generate perturbed observations 𝒅𝑗 using Equation (10)
5 Update ensemble members 𝒎𝑎 using Equation (9)
6 end for
Output: Compute the final posterior results with DARTS with

optimized parameters 𝒎𝑗

7 .

4.2. Randomized Maximum Likelihood (RML)

Randomized Maximum Likelihood is a variational DA method for
approximating the posterior pdf with a method introduced in Oliver
et al. (1996). As a gradient-based method, it provides the advantage
of better convergence and accuracy than an ensemble-based method,
within a specified solution space. These benefits come at the cost
of computational complexities. The need for adjoint models can be
prohibitive and the computational efforts linked to the linearization of
the model may introduce errors (García-Pintado and Paul, 2018).

RML employs a set of cost functions, often denoted as 𝐽 (𝒎𝑗 ). These
cost functions aim to minimize the discrepancy between the ensemble’s
forecasted model states and the observed data, as well as the a priori
model information. By optimizing these cost functions, RML generates
multiple models that are consistent with the available observations,
thus aiding in robust UQ. The core idea of RML is to use a set of cost
functions, 𝐽 (𝒎𝑗 ), defined as:

𝐽 (𝒎𝑗 ) = (𝒎𝑗 −𝒎prior
𝑗 )𝑇𝐶−1

𝑀𝑀 (𝒎𝑗 −𝒎prior
𝑗 )+ (𝐺(𝒎𝑗 )−𝒅𝑗 )𝑇𝐶−1

𝐷𝐷(𝐺(𝒎𝑗 )−𝒅𝑗 ),

(11)

where 𝒎prior
𝑗 and 𝒅𝑗 represent the prior model parameters and the per-

turbed observed data for the 𝑗𝑡ℎ ensemble member, respectively. These
cost functions are designed to produce an ensemble of models that are

https://github.com/nmucke/subsurface-DA-with-generative-models
https://github.com/nmucke/subsurface-DA-with-generative-models
https://github.com/nmucke/subsurface-DA-with-generative-models
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coherent with the observed data, thereby assisting in robust DA. For
the minimization of the RML cost function 𝐽 (𝒎𝑗 ), we employ the Adam
optimizer due to its effectiveness and computational efficiency (Kingma
and Ba, 2014).

Applying RML in practice can be computationally intensive as each
member of the ensemble necessitates a separate optimization process.
Gradient-based optimization methods are commonly used for this pur-
pose, and when adjoints are available for the forward model, they can
be applied and increase efficiency. Algorithm 2 describes RML. It takes
an initial set of model realizations and observations as inputs. It then
computes the relevant covariance matrices and generates variations of
the prior model and observed data for each ensemble member. Each
ensemble member is then updated by optimizing its respective cost
function.
Algorithm 2: RML Algorithm
Input : Initial model set 𝒎prior and perturbed observed data 𝒅𝑗

1 Compute covariance matrices 𝐶𝑀𝑀 and 𝐶𝐷𝐷

2 Generate variations of the prior model 𝒎prior
𝑗 and perturbed

observed data 𝒅𝑗
3 for 𝑗 = 1,… , 𝑁e do
4 Compute 𝐽 (𝒎𝑗 ) using Equation (11)
5 Optimize 𝐽 (𝒎𝑗 ) using gradient-based optimization (e.g.

Adam)
6 Compute the final posterior results with DARTS with

optimized parameters 𝒎𝑗

7 end for
Output: Posterior history matched states for entire ensemble

5. Hybrid data assimilation

5.1. Surrogate-based hybrid ESMDA (SH-ESMDA)

ML surrogate models offer computational efficiency but may com-
promise robustness when used independently for DA. Conversely,
ensemble-based DA methods like ESMDA are known for their accu-
racy but often come at a high computational cost. To preserve the
trade-offs between efficiency and robustness, we introduce a surrogate-
based hybrid approach called SH-ESMDA, which is within the ‘‘Data
Learning’’ paradigm introduced by Buizza et al. (2022). A key feature
facilitating this integration is the use of the same parameters as input
for both the ML algorithm and the reservoir simulator, allowing the
surrogate model to serve as a direct substitute for the forward model
in the intermediate steps of ESMDA. It is important to note that
the surrogate model is only used in the intermediate steps of the
ESMDA process. This ensures that the high-fidelity forward model is
leveraged for both the initial and the computation of the posterior
step, resulting in a more robust and accurate assimilation process. The
surrogate model for SH-ESMDA requires training with only the number
of forward simulations typically necessary for running the prior in
standard approaches. This feature ensures no additional computational
burden beyond conventional methods.

The development of SH-ESMDA has the primary objective of accel-
erating the ESMDA procedure, not achieving more accurate history-
matching results than conventional methods. This is due to the fact
that in this scheme, ESMDA is still the core DA method, so this hybrid
approach also will keep its limitations in terms of DA. The main gain
is the acceleration of the process, which potentially enables more
iterations, which might otherwise be computationally prohibitive if
relying solely on high-fidelity simulations. To achieve this acceleration,
the following steps are proposed:

1. Prior Dataset Generation: Generate a prior dataset consisting of
channelized permeability models with Alluvsim. Subsequently,
perform CO2 injection simulations on these models using the
DARTS simulator.
8

2. Surrogate Model Training: Train a surrogate model, such as a
FNO or T-UNet, on the generated dataset. This training can be
conducted as an offline stage, allowing the pretrained model to
be reused in multiple subsequent Hybrid-ESMDA-Surrogate runs,
thereby obviating the need for repetitive training and enhancing
computational efficiency.

3. Initial Analysis Step: Compute the first analysis step with ES-
MDA using prior forecasts.

4. Intermediate ESMDA Steps: Employ the trained surrogate mode
as a substitute for DARTS in the intermediate steps of the ESMDA
process. This offers a computationally efficient approximation to
the solution.

5. Posterior: Incorporate simulations from DARTS to compute the
posterior to refine the solution and compute the final posterior
states.

The key innovation is leveraging the efficiency of the trained surro-
gate model to handle the computationally intensive ESMDA iterations.
The final step with DARTS simulations acts as a physics-based reg-
ularizer to enhance robustness. Another significant advantage of a
SH-ESMDA is the capability to pre-train the surrogate model in an
offline stage. Once trained, this model can be reused across multiple
SH-ESMDA runs without the need for retraining, thereby providing
an additional layer of computational efficiency. This feature is par-
ticularly beneficial when dealing with a series of similar scenarios,
as it eliminates the need to undergo the training process before each
new ESMDA run. Consequently, this enables more frequent and rapid
iterations, further enhancing the overall efficiency of the DA process.
This SH-ESMDA approach is summarized in the algorithm below:

Algorithm 3: Hybrid-ESMDA-Surrogate Algorithm
Input : Initial ensemble, observed data 𝒅obs, measurement

error covariance 𝐶𝐷, and trained surrogate model
1 Determine 𝑁𝑎 and 𝛼 for 𝑖 = 1,… , 𝑁𝑎
2 for 𝑖 = 1 to 𝑁𝑎 do
3 if 𝑖 = 1 then
4 Compute the prior using DARTS
5 else
6 Use surrogate model to compute predicted data �̂�(𝒎𝑗 )𝑓

for each ensemble member
7 end if
8 Generate perturbed observations 𝒅𝑗 using Equation (10)
9 Update ensemble members 𝒎𝑎 using Equation (9)
0 end for
Output: Compute the final posterior results with DARTS with

optimized parameters 𝒎𝑎

5.2. Surrogate-based hybrid RML (SH-RML)

In a similar manner to SH-ESMDA, we introduce a surrogate-based
hybrid (SH-RML), a method that integrates ML surrogates into the
RML variational framework. One of the critical features that make
this integration possible is the use of consistent permeability param-
eterization for both the surrogate and the high-fidelity DARTS model.
This uniformity allows for seamless transitions between the surrogate
and the physics-based models during the optimization process. SH-
RML employs a streamlined approach similar to SH-ESMDA, where the
surrogate model training occurs in the same fashion. It requires only as
many forward simulations as are typically necessary in the prior phase
of conventional methods. This ensures the method’s computational ef-
ficiency by aligning with the standard simulation demands, and avoids
the need for additional computational resources.

A particular feature of this method is its ability to allow variational
DA, even in cases where simulators lack adjoint capabilities. This capa-
bility is achieved through the computation of gradients using automatic
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differentiation from a neural network. The primary objective of the SH-
RML approach is to facilitate the optimization of the RML cost function
𝐽 (𝒎𝑗 ). The algorithmic flow of the SH-RML is as follows:

1. Prior Dataset Generation: Generate a prior dataset consisting of
channelized permeability models with Alluvsim. Subsequently,
perform CO2 injection simulations on these models using the
DARTS simulator.

2. Surrogate Model Training: Train a surrogate model, such as a
FNO or T-UNet, on this dataset. This training can be conducted
as an offline stage, allowing the pre-trained model to be reused
in multiple subsequent SH-RML runs.

3. Parameter Initialization: Initialize the permeability parameters
𝒎𝑗 for each ensemble member within the RML framework.

4. Initial Optimization: Use gradients derived from the surrogate
model to perform initial optimization of the cost function 𝐽 (𝒎𝑗 ).

5. Posterior Parameter Computation: Compute the posterior pa-
rameters after the surrogate-based optimization using RML.

6. High-Fidelity Refinement: Apply these posterior parameters to
the DARTS model, running high-fidelity simulations to refine the
solution and compute the final posterior states.

The initial steps of the RML optimization process are accelerated by
leveraging the surrogate model, which offers both efficiency and au-
tomatic differentiation capabilities. The final steps employ the DARTS
model to ensure high-fidelity, physics-based solutions as summarized
in the algorithm below:

Algorithm 4: Hybrid-RML-Surrogate Algorithm
Input : Initial model set 𝒎prior, perturbed observed data 𝒅𝑗 ,

and trained surrogate model
1 Compute covariance matrices 𝐶𝑀𝑀 and 𝐶𝐷𝐷

2 Generate variations of the prior model 𝒎prior
𝑗 and perturbed

observed data 𝒅𝑗
3 for 𝑗 = 1,… , 𝑁e do
4 Use surrogate to compute initial 𝐽 (𝒎𝑗 ) and gradients
5 Perform optimization of 𝐽 (𝒎𝑗 ) using gradient-based methods
6 end for
Output: Compute the final posterior results with DARTS with

optimized parameters 𝒎𝑗

One of the key innovations in SH-RML is the utilization of automatic
ifferentiation capabilities provided by the surrogate model. This elimi-
ates the need for manually deriving computationally expensive adjoint
odels, which are required in traditional variational DA methods. As
result, the SH-RML offers an efficient approach to DA in complex,

onlinear systems. However, it is important to acknowledge the inher-
nt limitations due to the intrinsically ill-posed nature of the problem,
ffecting the overall results.

In summary, the proposed SH-ESMDA and SH-RML frameworks of-
er solutions for enhancing DA techniques in applications such as GCS.
y adding the computational advantages of ML surrogates with the
eliability of physics-based models, these hybrid methods pave the way
or efficient and accurate DA and, ultimately, a better understanding
nd quantification of the model and data uncertainties.

. Results

In this section, we present a comprehensive evaluation of surrogate
odels and history-matching methods for GCS applications. We begin
ith the training and evaluation of FNO and T-UNet as surrogate
odels. This is followed by an assessment of the ESMDA method for
istory matching. Subsequently, we evaluate the SH-ESMDA. Finally,
e discuss the SH-RML results.
9

6.1. Training and evaluation of the FNO and T-UNet

In this Section, the focus is on training the T-UNet and the FNO to
serve as surrogate models that approximate the high-fidelity forward
model 𝐺. As described in Section 3, these models are trained on a
dataset derived from high-fidelity reservoir simulations generated with
the DARTS simulator. This dataset includes critical unknowns such
as permeability, porosity, and gas injection rates, along with corre-
sponding state variables, pressure and CO2 molar fraction. Given the
developing state of understanding of optimal FNO configurations, we
particularly investigated the impact of varying Fourier modes, consid-
ering both modes 18 and 6, and hidden channel widths of 128 and 64.
This nuanced examination aims to contribute to the open question of
how to best configure FNOs for subsurface modeling tasks.

To quantify the performance of the T-UNet and FNO surrogate
models, we RMSE as a metric, focusing on both pressure and CO2 molar
fraction. Specifically, we consider training plus test sample sizes of 100,
200, 500, and 1000 to understand how the size of the training set
affects the model’s performance. Training and test data are split into
80% and 20%, respectively. The RMSE values presented as a function
of the number of training samples in Fig. 6, and detailed in the Ap-
pendix, indicate that both neural network architectures yield accurate
approximations of the high-fidelity forward model 𝐺. However, the
FNO shows a slight advantage when the number of training samples
is limited, particularly at the 100-sample size. This is a significant
observation for subsequent data assimilation studies, as it suggests
that FNO may require fewer training samples than the T-UNet, thus
alleviating the need for additional high-fidelity simulations for neural
network training. For context, it is important to note that the pressure
range in the reservoir simulations is between 200 and 320 bars, and the
CO2 molar fraction varies from 0 to 1. In this range, the RMSE values
indicate that the approximation errors are significantly small. However,
these are still approximations and, although they are highly accurate,
they cannot entirely replicate the high-quality DARTS simulations.

We also examine the capability of FNO and T-UNet to represent the
spatial distributions of pressure and CO2 molar fraction. Figs. 7 and
8 present the contour maps of CO2 distribution for a specific test case
(not part of the training dataset). At the final time step, we compare the
true state variables against those predicted by FNO and T-UNet. Those
are responses for the models with a sample size of 1000. Both models
capture the overall behavior of the reservoir and what is particularly
noteworthy is the ability of both models to approximate the shape of
the CO2 plume. We analyze the models’ time evolution in addition to
comparing their spatial distributions of pressure and CO2 molar fraction
at a specific point in the grid. Fig. 9 illustrates the temporal variations
at the injection point located at the grid position (16,16). These figures
show the predictive capabilities of both FNO and T-UNet in capturing
dynamic behavior, as compared to the high-fidelity DARTS simulations.
One observation that stands out is the relative smoothness in the time
evolution generated by the FNO model, especially when compared to
the more fluctuating curves from the T-UNet model. This difference is
intriguing, and it prompts further discussion.

The FNO’s less noisy, and thus more physically plausible, represen-
tation of the temporal evolution at the injection point may be attributed
to the way it handles time steps as additional channels of data. This
treatment allows the FNO to account for interdependencies across time,
thus yielding a smoother, more coherent dynamic response. On the
other hand, the T-UNet model generates time evolution independently
from each other through integration with the transformer, as discussed
in Section 3. This approach seems to result in a more noisy represen-
tation of the pressure, possibly because the temporal dependencies are
not as explicitly captured as in the FNO model.

The difference in noise levels between the FNO and T-UNet models
might not just be a matter of the numerical accuracy of the methods,

but could also have implications for their respective usefulness in
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Fig. 6. Test RMSE metrics for FNO and T-UNet.
Fig. 7. Pressure distributions for a test case.
subsurface modeling and DA studies. The smoother temporal response
of the FNO model may make it more suitable for cases that require
a higher accuracy for the physical representation of the states. In
summary, the ability of these models to adequately represent both
the spatial and temporal complexities of the reservoir suggests their
robustness and reliability for further analysis and DA studies. However,
the observed differences in dynamic behavior between the FNO and
T-UNet models could be a crucial factor in deciding which model to
employ for specific applications.
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6.2. ESMDA history matching

ESMDA is employed to conduct history matching on our reservoir
model described in Section 2. The primary objective is to evaluate
ESMDA’s efficiency and accuracy in modeling complex reservoir sys-
tems for this GCS application. The task at hand poses challenges due
to the nonlinearity of the problem and the non-Gaussian nature of
the reservoir’s permeability field. To start our assessment, we utilized
a distinct reference permeability model, generated outside our prior
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Fig. 8. CO2 distributions for a test case.
Fig. 9. Comparison of time evolution of states at grid (16,16) for DARTS, FNO and the T-UNet.
Fig. 10. Reference permeability model showcasing the central injection well (triangle)
and peripheral monitoring points (circles). Monitoring points are numbered from 1 to
4, starting from the top-left corner and proceeding clockwise.

distribution, to produce synthetic observed data. This model, displayed
in Fig. 10, incorporated a central injection well, surrounded by four
pressure monitoring points.

The ESMDA approach utilizes an ensemble of 100 prior permeability
maps to represent the uncertainty before DA. These maps are drawn
from geological realizations using the Alluivsim algorithm. Over 4 ES-
MDA steps, the results indicate that the posterior pressure distribution
at each of the four monitoring points is closer to the observed data
11
Table 1
Uncertainty reduction in P10-P90 pressure range at monitoring points for the ESMDA
history matching with 4 iterations.

Location Prior (bar) Posterior (bar)

P10-P90 Difference P10-P90 Difference

1 213.9–268.8 54.9 212.6–261.1 48.5
2 202.7–261.2 58.4 211.0–259.9 48.9
3 209.9–265.1 55.2 211.5–260.2 48.7
4 208.7–264.0 55.3 208.8–259.0 50.2

compared to the prior. Fig. 11 displays this improvement, comparing
pressures from the prior, the reference model, and the posterior. We
further analyze the sensitivity of the method to the number of steps
in ESMDA at the monitoring pressure points for both the prior and
posterior models by varying the number of ESMDA steps: 4, 8, 16, and
32. Fig. 12 reveals that increasing the number of iterations does not
substantially improve the quality of history matching.

In terms of uncertainty quantification, ESMDA narrowed the range
of uncertainty in pressure estimations. This is visualized in Fig. 13,
where the histograms demonstrate a post-ESMDA variance reduction
of the width of the pressure distribution at the final injection step, as
compared to the broader spread of the prior. The observed pressure
values, indicated by the red dashed line, are now more centrally
situated within the tightened posterior distribution, signifying how the
observations reduce the uncertainty of pressure buildup within the
reservoir. The true pressures observed at the monitoring points are
as follows: 255.1 bar at Monitoring Point 1, 252.0 bar at Monitoring
Point 2, 255.0 bar at Monitoring Point 3, and 251.4 bar at Monitoring
Point 4. The P10-P90 pressure range, which serves as an indicator of
uncertainty, is reduced after the history matching process, as quantified
in Table 1.
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Fig. 11. Comparison between the prior, reference model, and posterior pressures at each monitoring point for the ESMDA history matching. Red dots represent a realization of
erturbed observed data.
Fig. 12. Comparison of monitoring pressure absolute error across different ESMDA
terations and the prior. Red dots represent a realization of perturbed observed data.

Although ESMDA reduces errors related to measured pressure in
omparison to the prior, it significantly overestimates reservoir perme-
bility in comparison to prior permeability distributions, as illustrated
n Fig. 14. While undesirable, the discrepancy can be explained by the
act that history matching is an ill-posed problem, allowing for multiple
olutions that can satisfactorily fit the data.

Given the inherent assumptions of ESMDA, namely, its reliance on
aussian distributions and its better suitability for linear problems—
one of which are present in our case—it is crucial to recognize its
imitations in addressing the ill-posed problems we encounter. Our
ubsequent results delve into hybrid methods, as detailed in Section 5.
hese techniques serve dual purposes: one aims to accelerate the com-
utational process, while the other focuses on enhancing the accuracy
f history matching.
12
Table 2
Uncertainty reduction in P10-P90 pressure range at monitoring points for the
SH-ESMDA history matching with 4 iterations.

Location Prior (bar) Posterior (bar)

P10-P90 Difference P10-P90 Difference

1 213.9–268.8 54.9 212.96–262.1 49.14
2 202.7–261.2 58.4 210.93–260.8 49.87
3 209.9–265.1 55.2 211.65–261.0 49.39
4 208.7–264.0 55.3 209.10–260.1 50.97

6.3. Results for SH-ESMDA

In order to accelerate the computational efficiency of the standard
ESMDA, we employ ML surrogates in the form of FNO and T-UNet
following the algorithm outlined in Section 5.1. For this study, we
employ 100 samples and conduct history matching for pressure at four
monitoring points over four iterations. Figs. 15 and 16 display the
results of these history-matching exercises. In this context, it should
be highlighted that the larger-scale training experiments involving
additional models were designed for performance benchmarking of
SH-ESMDA method. These figures reveal the performance when FNO
and T-UNet are used as surrogate models for the intermediate steps in
the ESMDA algorithm, respectively. As can be observed, the outcomes
produced by both FNO and T-UNet are remarkably similar to each
other and closely align with those obtained using the standard ESMDA
methodology with 4 steps.

Fig. 17 presents the histograms of pressure at the last time step
of injection for SH-ESMDA using the FNO surrogate model with 4
iterations, illustrating a variance reduction of the pressure distributions
around the observed values at each monitoring point, results similar to
what was achieved with ESMDA. This is quantified further in Table 2,
which presents the P10-P90 pressure range before and after applying
SH-ESMDA with FNO and 4 iterations. The reduction in uncertainty
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Fig. 13. Histograms of prior and posterior pressure distributions at the last time step of injection for each monitoring point for the ESMDA history matching with 4 iterations.
The observed reference pressures are marked with a red dashed line.

Fig. 14. Comparison between prior and posterior permeabilities across three different samples for the ESMDA.
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Fig. 15. Comparison between the prior, reference model, and posterior pressures at each monitoring point for the Hybrid-ESMDA-Surrogate history matching using FNO. Red dots
represent a realization of perturbed observed data.

Fig. 16. Comparison between the prior, reference model, and posterior pressures at each monitoring point for the SH-ESMDA history matching using T-Unet. Red dots represent
a realization of perturbed observed data.



International Journal of Greenhouse Gas Control 136 (2024) 104190G.S. Seabra et al.
Fig. 17. Histograms of prior and posterior pressure distributions at the last time step of injection for each monitoring point for the SH-ESMDA history matching with 4 iterations.
The observed reference pressures are marked with a red dashed line.
ranges from 5.8 bars at Monitoring Point 1 to 3.9 bars at Monitoring
Point 4.

Fig. 18 presents box plots that offer a comparison of the monitoring
pressure errors for both the standard ESMDA and the enhanced SH-
ESMDA methodology, employing FNO and T-UNet as surrogates. The
SH-ESMDA methods maintain a level of accuracy that is comparable
to that of the standard ESMDA, while significantly reducing the com-
putational time required. When the T-UNet model is employed as the
surrogate, the errors observed are marginally higher compared to when
the FNO is used. It is also crucial to highlight that, consistent with the
observations made for the standard ESMDA, increasing the number of
iterations does not result in a substantial reduction in errors.

The gains in computational efficiency are enumerated in Table 3. As
the table illustrates, both versions of the SH-ESMDA method—utilizing
either FNO or T-UNet as surrogates significantly reduce computation
time. Specifically, there is a minimum speedup of around 50%. In all
experiments, the ESMDA involved 4 steps. The computational times
reported in Table 3 do not include the time required to train the
FNO and T-UNet models. The exclusion is justified for two main rea-
sons. First, the training of these neural network models is generally
considered a one-time computational expense. For the configuration
used in our hybrid methods—comprising 100 samples for both FNO
and T-UNet, along with 6 models and a width of 64—both models
can be trained in less than 30 min. Once trained, these models can
be reused for multiple iterations or different scenarios without the
15
Fig. 18. Box plots comparing monitoring pressure errors between standard ESMDA
(green) and SH-ESMDA using FNO (purple) and T-UNet (black) surrogates for 4, 8 and
16 iterations.

need for retraining. This is particularly beneficial in applications where
the same or similar systems are studied multiple times. Second, the
training can be performed offline and in parallel, taking advantage
of high-performance computing resources. This minimizes its impact
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Table 3
Comparison of computational times for different methods, considering 100 ensemble members.

Total number of steps Methods

ESMDA Hybrid-ESMDA-Surrogate (FNO) Hybrid-ESMDA-Surrogate (T-UNet)
(min) (min) (min)

4 73 39 38
8 149 46 44
16 303 58 55
Fig. 19. Comparison between the prior, reference model, and posterior pressures at each monitoring point for the Hybrid-RML-Surrogate history matching using FNO. Red dots
represent a realization of perturbed observed data.
on the overall computational efficiency when amortized over multiple
applications.

The posterior permeability distributions obtained through both the
SH-ESMDA schemes employing FNO and T-UNet closely align with
those achieved using the standard ESMDA approach. Given that ESMDA
serves as the core method for DA in these hybrid algorithms, the per-
meability distributions inherently reflect the strengths and limitations
of ESMDA itself. Therefore, the hybrid schemes do not necessarily bring
about a qualitative shift in the outcome; rather, their primary advan-
tage lies in computational speedup. We acknowledge that the hybrid
methods will inherit the constraints of ESMDA, and its inadequacies
in encapsulating the uncertainties inherent in the system. For brevity
and to avoid redundancy, we refrain from presenting additional figures
showcasing the similarity in the posterior permeability distributions
across the different methods, as they would closely mirror the results
already discussed for ESMDA.

In summary, SH-ESMDA successfully combines the computational
efficiency of ML with the reliability of DARTS like ESMDA. The ap-
proach reduces the time needed for each computational step, allow-
ing for less time for the same amount of iterations. However, the
SH-ESMDA inherits the fundamental weaknesses of the core ESMDA
algorithm. Therefore, although the method provides substantial accel-
eration, the accuracy of the history matching is still constrained by
the inherent limitations of ESMDA. This makes this SH-ESMDA scheme
16
an important tool for accelerating DA studies, especially for complex
reservoir models.

6.4. Results for SH-RML

As elaborated in Section 5.2, SH-RML offers a combination of factors
that make it an effective choice for accurate DA for complex problems.
Here, we explore further its comparative results over other methods like
ESMDA. Our findings show that the SH-RML improves history matching
and provides more accurate posterior permeabilities estimates. For a
comprehensive perspective on the computational requirements of SH-
RML, it is pertinent to discuss the computational time in the SH-RML.
Both FNO and T-UNet models were subjected to 200 steps each for
gradient evaluation in the optimization process for each one of the
100 prior models, and the full reservoir simulations with DARTS were
also taken into account for the prior and the posterior curves. For SH-
RML, it should be noted that the extensive training experiments, which
included up to 1000 models, were primarily focused on performance
benchmarking. These experiments are not a requirement for the frame-
work but serve to showcase its adaptability and effectiveness in diverse
application scenarios. The overall history-matching process requires
approximately 8 h, which is justified by the enhanced accuracy and
reliability of the estimates obtained. Nonetheless, the optimization time
could potentially be reduced by employing a more tailored approach to
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Fig. 20. Comparison between the prior, reference model, and posterior pressures at each monitoring point for the Hybrid-RML-Surrogate history matching using T-UNet. Red dots
represent a realization of perturbed observed data.
Table 4
Uncertainty reduction in P10-P90 pressure range at monitoring points for SH-RML with
FNO.

Location Prior (bar) Posterior (bar)

P10-P90 Difference P10-P90 Difference

1 213.9–268.8 54.9 209.0–253.9 44.9
2 202.7–261.2 58.4 208.7–253.7 45.0
3 209.9–265.1 55.2 208.2–253.5 45.3
4 208.7–264.0 55.3 208.2–253.5 45.3

the cost function optimization without significantly compromising the
quality of the results.

For SH-RML, we noticed an improvement in history matching with
posterior pressure closer to the values of the observations. Figs. 19 and
20 show the pressure matching results at each monitoring point for
SH-RML with FNO, and SH-RML with T-UNet, respectively. While sur-
rogates are employed for gradient evaluations, the final posterior pres-
sure curves are computed using the full reservoir simulator (DARTS).
This allows SH-RML to leverage the efficiency of surrogates during
optimization while still generating high-fidelity pressure forecasts with
the simulator for final uncertainty quantification. Fig. 21 displays
box plots comparing monitoring pressure errors between the standard
ESMDA and SH-RML methods. The results from SH-RML exhibit a better
balance around zero when compared to ESMDA. Additionally, Fig. 23
demonstrates that the posterior permeabilities derived from SH-RML,
employing FNO are consistent with the prior. In contrast to ESMDA,
RML provides permeabilities within a similar range as the prior. For
conciseness and to avoid repetition, we do not include additional
figures showcasing the posterior permeabilities using the T-Unet in SH-
RML. The outcomes closely mirror those already presented for the FNO
version, as well as the enhanced uncertainty quantification compared
to ESMDA.
17
Fig. 21. Box plots comparing monitoring pressure errors between standard RML and
Hybrid-RML-Surrogate using FNO and T-UNet surrogates.

Fig. 22 presents the histograms of pressure at the last time step of
injection for SH-RML using the FNO surrogate model. These histograms
demonstrate a better reduction in uncertainty than what was observed
with both ESMDA and SH-ESMDA. This is quantitatively supported by
the data in Table 4, which shows the P10-P90 pressure range reduction
across the monitoring points. To maintain conciseness and since the
outcomes between the FNO and T-UNet models are notably similar, we
focus on presenting results from the FNO model only.

In summary, the results of this case study demonstrate that SH-RML
offers improvements over ESMDA for history matching and uncer-
tainty quantification. By leveraging the gradients of ML surrogates for
optimization of the cost functions, SH-RML achieves better pressure
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Fig. 22. Histograms of prior and posterior pressure distributions at the last time step of injection for each monitoring point for SH-RML with the FNO surrogate model.

Fig. 23. Posterior permeabilities for Hybrid-RML-Surrogate with FNO surrogates.
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matching while also providing more accurate estimates of posterior
permeability distributions. The integration of surrogates enables the
computations of gradient evaluations, enabling thorough optimization
of the RML objective.

Developing on these results, our study contributes to and extends
the current understanding of machine learning integration with data
assimilation in geological carbon storage. It aligns with the data learn-
ing methods framework proposed by Buizza et al. (2022), contributing
to the growing body of work on integrating machine learning with
data assimilation. Similar to the approaches by Tang et al. (2022)
and Wen et al. (2021b), our methods apply machine learning models
to enhance data assimilation processes. However, our approach dis-
tinguishes itself by ensuring that the posterior is physics consistent,
addressing a common limitation in previous studies, which rely heavily
on surrogate models for data assimilation without adequately ensuring
physical consistency (Tang et al., 2022; Wen et al., 2021b). In addition,
our work demonstrates the feasibility of employing a combination of
transformers with UNets in CO2 storage problems, a method similar
o that proposed by Li et al. (2023). This novel application within the
ield of geological carbon storage underscores the adaptability and po-
ential of advanced neural network architectures in handling complex
patial and temporal data patterns typical of subsurface environments.
urthermore, while employing FNOs, we demonstrated the potential
uccess of overcoming the challenge of data demand for training these
odels, which has been a notable issue in related works (Wen et al.,
021a; Tang et al., 2022; Sun and Durlofsky, 2019). Our approach
ot only reduces the amount of data required but also enhances the
omputational efficiency of the data assimilation framework, thereby
ffering a robust solution to one of the major hurdles in applying deep
earning techniques to geoscience applications.

. Discussion

This study presents advancements in combining DA and ML to
nhance history matching in CO2 storage projects, addressing key
hallenges and limitations inherent in existing methodologies. Our
nnovative hybrid frameworks, namely SH-ESMDA and SH-RML, opti-
ize both computational efficiency and accuracy in DA studies. The

ntegration of ML surrogates enabled the application of ensemble-based
A methods like ESMDA efficiently to complex subsurface systems.
pecifically, the SH-ESMDA method has accelerated ESMDA computa-
ions while maintaining the physical consistency of posterior physical
esponses. The SH-RML method has excelled in achieving superior
istory matching compared to standard ESMDA, attributed to the bet-
er approximation of the gradients for non-linear and non-Gaussian
roblems. This method leveraged the automatic differentiation inherent
n ML models, enabling gradient-based optimization and overcoming
he challenges posed by the absence of adjoint models in reservoir
imulators.

A consideration during this study was the choice of grid resolution.
n the preliminary stages, models with resolutions of 256 × 256,

128 × 128, and 64 × 64 were examined. The choice of a 32 × 32
resolution was influenced by extended computational times required
for numerous runs at higher resolutions and substantial memory re-
quirements of the FNO. Although subsequent updates to the compu-
tational tools have mitigated these challenges, allowing for exploration
at higher resolutions, a substantial portion of the work presented was
conducted using the initial setup and resolutions due to the constraints
at the time. The chosen resolution effectively captures the variability of
the permeability of channelized reservoirs, offering a balance between
computational demand and model fidelity.

Additionally, while we recognize that vertical gradients and gravity-
driven flow are crucial in more comprehensive CO2 storage models,
the 2D horizontal model allows the examination of the areal and
19

non-Gaussian characteristics of permeability distributions typical of g
geological formations used for CO2 storage. These formations often fea-
ure highly heterogeneous and non-Gaussian permeability distributions
ue to natural depositional processes, which are effectively represented
n the simplified 2D channelized models. By focusing on horizontal
ressure distribution within the reservoir, we address the primary
ynamics of CO2 flow, where lateral variations in permeability sig-
ificantly influence the migration and trapping of CO2. This approach
acilitates the analysis of horizontal flow behaviors, providing essential
nsights into lateral connectivity and barrier effects on CO2 plume
ehavior without the complicating factors of vertical segregation. The
D model aligns with the goals of developing a new computational
ramework and sets a clear path for future 3D extensions, which can
ncorporate vertical dynamics and gravity effects, enhancing the frame-
ork’s applicability to real CO2 storage projects. The insights gained

rom these 2D horizontal simulations provide a baseline for the de-
elopment of more complex models, ensuring that the underlying
ata assimilation and machine learning techniques are robust and
ell-understood before adding additional layers of complexity.

Reflecting on the characteristics and applications of each method,
he SH-ESMDA is optimal for scenarios prioritizing computational
peed. At the same time, the SH-RML is particularly suited for problems
ecessitating more accurate gradient computations, even when forward
odels lack adjoints. The unified parameterization of permeability

etween ML and physics-based models has facilitated integration,
nsuring physical consistency and reliability in the posterior solutions
omputed using the high-fidelity DARTS simulator. However, it is
mportant to acknowledge some limitations of the methods. The SH-
SMDA inherits the fundamental constraints from ESMDA in capturing
ncertainties, and the accuracy of both hybrid methods is contingent
n the precision of the ML surrogates, which may encounter challenges
n extrapolation. Addressing these limitations could potentially be
chieved by incorporating more robust and nonlinear DA methods,
nhancing the reliability of uncertainty quantification. A limitation of
he SH-RML is the dependency on the accuracy of the ML surrogates
or gradient computation of specific points of the reservoir. If the
urrogates are not well-trained or accurate, the gradients derived from
hem could be unreliable, leading to suboptimal or incorrect solutions
nd impacting the method’s overall effectiveness.

The implications of this uncertainty reduction relate to the core
bjectives of this study since a reduction in the uncertainties of the
ressure buildup in the reservoir is important to ensure operations that
reserve the integrity of caprock to prevent CO2 leakage and mitigate
he risk of induced seismicity and fault reactivation.

Our comparative assessment between FNO and T-UNet has demon-
trated that both architectures exhibit low RMSE compared to DARTS
imulations, with FNO having a slight edge, particularly when training
ata is limited. This insight is essential for scientists to choose the
ost suitable ML architectures effectively, especially when considering
ata availability constraints. Beyond CO2 storage, the versatility of
he developed methodologies is evident, with potential adaptability
o other applications including geothermal energy and nuclear waste
isposal. The advancements made in this study are poised to catalyze
he broader adoption and application of hybrid DA-ML methodologies
cross diverse scientific domains, marking a significant step forward in
he field.

To provide a comprehensive overview of the methodologies assessed
n this study, we have included a comparative summary in Table 5.

. Conclusion

This paper introduced novel frameworks for enhancing uncertainty
uantification (UQ) in Geological Carbon Storage (GCS) projects
hrough the integration of machine learning (ML) and data assimilation
DA) techniques. We evaluated two neural network architectures, the
ourier Meural Operators (FNOs) and Transformer-UNet (T-UNet), for

enerating accurate and efficient surrogate models of CO2 injection
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Table 5
Summary of methods and their characteristics.

Method Category Advantages Disadvantages

Fourier Neural Operators
(FNO)

ML Model Slightly better performance
with limited data. Efficient in
capturing temporal dynamics.

Potentially higher
computational cost than
T-UNet.

Transformer UNet (T-UNet) ML Model Good at integrating spatial
and temporal data. Effective
in handling complex patterns.

Can be more sensitive to small
training datasets compared to
the FNO.

Ensemble Smoother with
Multiple Data Assimilation
(ESMDA)

DA Method Does not require gradients.
Easy implementation.

Assumes Gaussianity, which
can limit its effectiveness in
non-Gaussian systems.

Surrogate-based Hybrid
ESMDA (SH-ESMDA)

DA Method Significantly reduces
computational time (by over
50%). Maintains physical
consistency of the model.

Inherits limitations of the core
ESMDA method, such as issues
with non-Gaussian
distributions.

Surrogate-based Hybrid RML
(SH-RML)

DA Method Provides improved history
matching and uncertainty
quantification. Avoids the
need for adjoint derivations
thanks to ML surrogates.

Dependency on the accuracy
of ML surrogates for gradient
computations.
simulations. Comparative analyses revealed the FNO’s slight superiority
when training data is limited.

Leveraging these surrogates, we proposed two hybrid methods.
Surrogate-based hybrid ESMDA (SH-ESMDA) incorporates the ML mod-
els into the Ensemble Smoother with Multiple Data Assimilation (ES-
MDA), reducing computational time by over 50% while maintaining
accuracy. Surrogate-based Hybrid RML (SH-RML) enables variational
data assimilation by using automatic differentiation from the neu-
ral networks for gradient calculations in the Randomized Maximum
Likelihood (RML) optimization. This avoids manual adjoint derivations.

Results showed that SH-RML achieved improved history matching
and uncertainty quantification compared to standard ESMDA. The FNO
surrogate enabled efficient computation of gradients for the RML op-
timization. The proposed frameworks thus enhance DA for GCS by
integrating machine learning efficiency with the physical reliability of
reservoir simulators.

In conclusion, while our study presents significant advancements
in integrating AI with DA for GCS applications, it also opens av-
enues for future research. Particularly, exploring the scalability of
our methodologies to larger, more complex reservoir systems, such
as real carbonate formations, and real field cases from current GCS
projects and investigating the integration of additional neural network
architectures, could yield further valuable insights in optimizing GCS
operations. The framework shows versatility beyond CO2 sequestration,
presenting opportunities for adaptation to other subsurface model-
ing applications like geothermal energy and nuclear waste storage.
Overall, this study demonstrates the potential of combining machine
learning and physics-based models to tackle problems in uncertainty
quantification for the energy transition.
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Appendix. Detailed RMSE metrics for FNO and T-UNet models

See Table A.6.

Table A.6
Test RMSE metrics for pressure and CO2 molar fraction.

Samples Modes Width RMSE (Pressure) RMSE (CO2 molar fraction)

FNO

1000 18 128 4.29081 0.01072
1000 18 64 4.41009 0.01047
1000 6 128 4.28229 0.00895
1000 6 64 4.66067 0.00759
500 18 128 5.80695 0.01089
500 18 64 5.44274 0.01092

(continued on next page)



International Journal of Greenhouse Gas Control 136 (2024) 104190G.S. Seabra et al.

M

N

O

O

P

P

P

Q

R

R

R

R

S

S

S

T

Table A.6 (continued).
Samples Modes Width RMSE (Pressure) RMSE (CO2 molar fraction)

500 6 128 6.76917 0.01074
500 6 64 6.54552 0.01087
200 18 128 8.22966 0.01156
200 18 64 8.34038 0.01713
200 6 128 8.29742 0.01250
200 6 64 8.20080 0.01262
100 18 128 9.91828 0.01761
100 18 64 10.07389 0.01789
100 6 128 8.75043 0.01727
100 6 64 10.90478 0.01747

T-UNet

1000 – – 2.27017 0.00620
500 – – 6.04151 0.00646
200 – – 12.78398 0.01721
100 – – 12.71158 0.03029
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