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Abstract—In practical security systems, it is difficult to keep
secret keys protected against adversarial attacks. Key insulated
schemes (KIS) are used to improve security by generating session
keys that expire after a finite period of time. However, during the
refresh period, side channels of the base can be observed, leaking
keys during transfer. To counter this, the proposed masked
memory primitive prevents these attacks while maintaining low
latency and computational requirements. Using PUFs and polar
coding, keys are safely stored in memory, allowing users to
extract keys as needed while preventing machine learning based
attacks against the system. A (2048, 512) polar code construction
is proposed for PUF and adversarial error rates of 0.1 and
0.25, respectively, allowing for accurate key reconstructions and
sufficient security. Furthermore, a 3.54 - 5.49ms delay between
key request and retrieval can be achieved, a ∼4.81× improvement
over the state-of-the-art KIS implementation. It is shown that
these keys can be reliably requested by a user with ≤ 10−6

failure probability, while an adversary is unable to obtain the key,
even with state-of-the-art decoding techniques and PUF learning
algorithms.

I. INTRODUCTION

In computing systems where sensitive data is used, proper
security is essential. Typically, this means that information
is being protected with the use of a keyed scheme, such as
authentication in remote attestation, or encryption for securing
data. The security of keys is important, especially at the hard-
ware level. Through the use of side channel analysis (SCA),
characteristics such as execution timing and power analysis
can reveal significant information about keys as they perform
their cryptographic operations. Such SCA attacks are even
implemented entirely in software. For example, exploiting
permissions on Intel machines allow users to measure CPU
power traces without physical access [1], while other attacks
write to a machine’s cache during encryption, observing when
evictions occur [2].

Key insulated schemes (KIS) aim to alleviate this problem
by spreading private keys across timed sessions, providing
security guarantees even in the event of a leaked key [3].
Assuming S total sessions with up t < S session keys that
can be leaked from an insecure device, a (t, S) KIS scheme
guarantees the security of the remaining S − t session keys
[3]. While KIS assumes perfect security of the base that
“refreshes” the insecure device with new secret keys [4], a

difficult problem is ensuring the security of this base in the
presence of a side-channel attacker. Therefore, a method of
obfuscating keys before they are stored is required. Of course,
this would also require a way to un-obfuscate keys when they
are requested by the insecure device.

To perform this obfuscation, one can mask the session keys
with a random sequence. This involves XORing the key using
the mask prior to storage, safely allowing it to reside in
memory, then XORing it again upon retrieval to unmask it.
This can be performed with a physically unclonable function
(PUF), which is a device-unique circuit to generate random
outputs (responses) for a given input (challenge), forming
a challenge-response pair (CRP) [5], [6]. PUFs come with
numerous benefits. First, since PUFs are queried whenever a
response is needed, responses do not need to be stored, and the
queries can be locked behind access control [7]. Second, PUF
designs are impossible to replicate even if their architecture
is known, due to their intrinsic randomness introduced at the
fabrication level [8], [9]. Finally, PUF readouts are inexpensive
to perform on the fly [10]. These properties make the PUF a
promising way to mask the session keys of KIS, however, they
still have difficulties that must be addressed.

One such difficulty is that the same challenge can produce
different responses over time. These reliability errors caused
by device aging, temperature changes, or voltage fluctuations
cause a legitimate user to incorrectly unmask a session key
if used directly [8], [11]. Another difficulty is that PUF side
channel attacks, when combined with learning algorithms, can
yield accurate PUF models able to predict CRPs [12]–[15].
The goal is to design a system that can update KIS keys on
an insecure device without error, while keeping them shielded
in the presence of an adversary.

PUF errors can be corrected with the use of a block error
correction code (ECC), which encodes k data and N − k
parity bits into a codeword of length N to be transmitted
across a noisy channel. Schemes such as fuzzy extractors
[16] can be used, but may leak PUF response information,
contributing towards the adversary learning model. Recently,
new high-performance coding schemes have been discovered,
particularly polar codes [17]. Polar coding schemes are well
suited for masked memory, offering high configurability to
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Fig. 1: High-level view of masked memory. The enrollment
phase is assumed to be done in a secure environment offline.

explore reliable and secure code constructions for different
settings [18], [19], while also having efficient decoding im-
plementations that are suitable for correcting the high error
rates of PUFs [20]–[22].

Construction of a masked memory is proposed, a primitive
that reliably and securely updates KIS keys. First, strings of
k random bits are used to generate session keys of length
128-bits. Then, these k bit strings are encoded with the
polar transform [17], before being masked with unique PUF-
generated responses. The challenges used to generate each
response and the corresponding masked codewords are then
stored at the insecure base as a tuple. When a session key is
requested, the corresponding tuple is retrieved from memory,
and the original key can be reproduced by using the challenge
to get the masking response. The decoding process allows for
errors caused by PUF noise to be corrected. An overview of
the system is pictured in Figure 1. In this model, key retrieval
occurs while an adversarial observer is present, with some
assumptions made about their capabilities. Firstly, the adver-
sary has access to PUF side channels, revealing a number of
CRPs after key retrieval [12]. Next, a powerful modeling attack
leveraging already known CRPs is used to predict new CRPs.
Lastly, for a given coding scheme, the adversary chooses the
best-known decoder without latency or resource limitations,
and the implementation does not have to be the same as the
main user. Considering these adversary capabilities, we design
a coding scheme leveraging the properties of polar codes to
ensure protection against this adversary.

For the main user renewing KIS keys, errors in CRPs are
generated from PUF internal noise. These bit error rates can
vary ranging from ∼ 5% up to 25% [8], [23]. Denoting this
error rate as pm, we can also approximate the adversarial error
rate, pa, as the error rates produced in a predicted response.
Because the adversary only has access to noisy response
information, and PUF designs resilient to learning attacks have
been shown [24], [25], it is enforced that pm < pa, as learning
all CRPs from a PUF is infeasible for strong PUF designs [8],
[26]. However, an advantage of the adversary is that for a given
(N, k) coding scheme, no limitation on the decoding algorithm
for the chosen parameters is enforced. Therefore, a coding
scheme must be designed that can counter the decoder of

adversary, while also ensuring the original key can be extracted
correctly. Additionally, the minimal coding scheme that can
provide reliable and secure key retrieval must be designed,
so that an efficient decoding implementation with minimal
latency may be achieved. To configure the desired coding
scheme, the successive cancellation list (SCL) algorithm is
evaluated, a state of the art polar decoding algorithm [22]
which introduces an additional parameter, L. Increasing L
can improve the error correction performance of a particular
coding scheme, but requires additional latency overheads to
do so, although some implementations to achieve increased
performance have been realized [27].

It is shown that for a (2048, 512) polar code configuration
with channel parameters pm = 0.1, pa = 0.25, and list sizes
L ≥ 2, main channel errors are extremely unlikely with an
efficiently implemented decoder. Additionally, the modelled
adversary using the same (2048, 512) configuration and a
decoder with a significantly larger list size (L = 128) is unable
to leak the k information bits used to form the key in any of
the trials. Even when given additional capabilities, such as an
oracle that can verify the correctness of any arbitrary source
word estimate, the adversary is still unsuccessful.

The contributions of this paper are the following:
1) A masked memory primitive for KIS is constructed

using PUFs and polar codes, with our designed code
construction yielding reliable key retrieval in an un-
trusted setting.

2) The same coding parameters are shown to be secure
against an adversary model which has access to PUF
side channel information and a powerful machine learn-
ing algorithm.

To realize the masked memory primitive, simulation is per-
formed to emulate the main user and adversary in an insecure
setting. SCL decoding is performed with an NVidia GPU,
showing the masked memory primitive with a 3.54 - 5.49ms
total latency cost on the KIS critical path, a ∼ 4.81× speedup
over the best-known KIS retrieval technique [28].

II. BACKGROUND

A. Key Insulated Schemes
Key Insulated Schemes have been proposed to provide hard

security guarantees while assuming that keys may be leaked
over time [3]. In a typical keyed scheme, when the private key
is leaked, the system cannot be recovered from the attacker.
The entire cryptosystem must be purged, generating a new
private key, and correspondingly forcing users to replace their
public key. However, in KIS, rather than having a single key,
S discrete keys are generated and assigned to a particular time
period, called a session [3]. The device that uses these private
keys for typical cryptographic operations is assumed to be
insecure, but it is assumed that the key generator device is
secure in strong KIS [4]. Even in strong KIS, however, the
assumption is made that the key storage device is insecure
and that renewing keys can potentially expose them.

The action of keys being refreshed opens up a new attack
vector. Side channel information as the main device retrieves
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a new session key may be used by an adversary to leak the
key [28]. Our focus is on the need to store and retrieve keys
from a vulnerable location securely, despite the presence of an
adversary. If this is accomplished, the number of keys leaked
across KIS sessions can be reduced.

B. PUFs

A particularly useful primitive to help accomplish secure
key storage and retrieval is the PUF. PUFs leverage the
uniqueness in chips during the fabrication process to generate
unique “digital fingerprints” that can be used for inexpensive
random sequence generation [5].

PUFs are well studied in the field of hardware security, and
can generally be classified into either i) weak PUFs (wPUF) or
ii) strong PUFs (sPUFs). The primary distinction we consider
is the difference in challenge space; wPUFs support a limited
number of challenges, while sPUFs have a very large quantity
of CRPs. Additionally, by definition, the entire challenge-
response space cannot be learned in sub-exponential time,
making them more robust for secure applications [8], [9], [26].
Thus, the masked memory primitive requires an sPUF.

PUFs offer a way to mask session keys prior to enroll-
ment, and subsequently unmask keys upon retrieval with low
computation complexity and high entropy for different CRPs.
However, one issue is that PUFs are still vulnerable to attacks,
as their side-channel information is available as a byproduct of
their operation [12]. Additionally, as physical analog devices,
their outputs are not always consistent, and inherent noise can
cause fluctuations in the response bits for the same challenge.
This can be caused by temperature changes, voltage, device
aging, and depends on the implementation used [8].

The noise from a PUF response can be modelled as a simple
communication channel called the binary symmetric channel
(BSC). Given the random variables X and Y , where X → Y
across a noisy channel with alphabets X ,Y ∈ {0, 1}, then in
a BSC: Pr(X = Y ) = 1 − p and Pr(X ̸= Y ) = p, where
p is the bit-flip probability. The channel is symmetric, since
Pr(Y = 0|X = 1) = Pr(Y = 1|X = 0). In the PUF, the bit
flip probability p across successive CRP queries is nonzero
and must be addressed, as every CRP is used at least twice
(once during key enrollment, and once during key extraction).
This is classically achieved by implementing error correction
codes [8]. By encoding the key prior to PUF masking, the key
can be reconstructed at a later point, without noise in the PUF
response affecting reliability.

The work in [23] is used to provide an estimated average
case PUF error probability. While PUF designs to achieve
higher reliability exist, such as the ring-oscillator design pro-
posed in [29], having a low, correctable error may be beneficial
from a security standpoint. In fact, having some response bit
variation can obfuscate CRP relationships to an adversary,
decreasing the ability of a modelling attack to completely learn
the behavior of the PUF [30]. By using an estimated PUF error
rate of pm = 10%, an accurate PUF error approximation can
be made that also works to inhibit attacks. However, depending

on the specific PUF model being used, the value of pm can
be varied.

C. Error Correction Codes

Different ECCs operate on the same principle: insert re-
dundancy to bits with an encoding algorithm, and then undo
those operations with a decoding algorithm, so data can be
faithfully reconstructed even when corrupted by noise. PUF
response errors can be seen a noisy communication medium,
so ECCs are leveraged to correct them [8]. The choice of ECC
must resist attacks, while also providing reliable behavior to
the main user. Flexibility in the code choice is desirable so that
parameters can be tuned to balance between error correction,
security, and latency.

One method of extracting keys in a noisy environment
is to use a fuzzy extractor, which is explicitly designed to
extract keys from noisy data (for example, biometric data)
[16]. Differential sequence coding (DSC) is another approach
often used in conjunction with other schemes to achieve high-
performance decoding for noisy PUFs with low bias [31].
However, it is shown in some cases, such as when PUF bias
is present, these schemes may lead to information leakage
which can then be used to enhance the ML model [19], [32].
Additionally, as PUF reliability, machine learning accuracy,
and application requirements can vary, a coding scheme that
allows one to choose parameters more freely is desirable,
allowing for designs more tailored to the system requirements.

High-performance coding schemes have emerged, such as
turbo codes, Reed-Solomon (RM) codes, and polar codes,
all of which are linear block error correction methods [33]–
[35]. Polar codes are of particular interest since their encoding
and decoding algorithms are efficient to implement, and when
properly constructed, they outperform other coding schemes
at similar rates [17], [36]. Polar codes have a clear advantage
in their error correction ability, low decoder complexity, and
variety of coding parameters. Several polar code decoding
implementations have been proposed, such as belief propaga-
tion [37] and successive cancellation decoding [17]. However,
focus is turned toward the best-performing decoder available:
successive cancellation list (SCL) decoders [22], which extend
the original decoder of Arikan [17] with efficient implemen-
tations designed [27].

Polar codes have also been used for reliable PUF usage,
for example with SRAM-based PUFs, which have high error
rates of 15-30% [20]. A security analysis of polar codes is
also performed, as it is assumed that PUF information is
leaked during a KIS key refresh to train a powerful adversarial
ML model. The work in [19] also investigates polar codes to
improve security with PUFs, however its focus is on reducing
leakage due to PUF biasing.

D. Threat Model

Machine learning models have found success in predicting
unknown PUF responses. Some of these models can be highly
accurate, such as the attacks proposed in [14], in which
some attacks can predict CRPs with > 99% given sufficient
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training data. However, there are also drawbacks to these
methods. Also concluded by [14], some PUF architectures
render these attacks unusable, such as an 8-XOR length-512
arbiter PUF, which cannot be learned by machine learning
models. Additionally, PUF architectures such as the multi-PUF
design described in [24] are designed to be especially resilient
to machine learning attacks, reducing their prediction accuracy
< 80%. Based on the results shown in [25], if the number of
PUF CRPs is large, and there are many response bits, there
is increased resilience against machine learning-based PUF
attacks. Because the masked memory design uses an sPUF,
there is a large CRP space that an adversary is unable to
exhaustively learn. Additionally, since the PUF response acts
as a mask for the codeword, there must be a significant number
of response bits. So, based on these findings, the adversarial
model is then estimated to have a predicted response error
probability pa = 0.25 with respect to the original PUF
response from the isolated key enrollment phase.

It is noted that no work has been able to successfully
incorporate the employed coding scheme along with the PUF
to build an enhanced ML model that somehow considers
both parity information along with the PUF CRPs. So, when
considering the adversary, the machine learning model is
completely separate from the error correction model [38].

After the adversary has predicted a PUF response, in order
to extract the original key, the unmasked codeword must be
decoded properly. Because masked memory uses polar codes,
an adversary who is attempting to decode a masked codeword
is constrained to the use of polar decoding algorithms. It
is noted, however, that i) the adversary knows the polar
code block length and information indices, meaning a proper
decoder can be implemented and used by the adversary, ii)
the decoder used by the adversary is not necessarily the same
as the one used by the main channel, and iii) for a given
secret key, the adversary is not present during its enrollment,
as that can be done in an offline or isolated environment.
More specifically, the implication of ii) is that a different,
more powerful decoding algorithm may be implemented on the
leaked masked key, so long as the code block length and parity
bits are the same. Additionally, the implication of iii) is that
the adversary cannot directly access the PUF and obtain the
response for a leaked challenge, and must rely on the machine
learning model to provide the estimated response.

III. MASKED MEMORY PRIMITIVE

The goal of masked memory is to improve the security
of KIS keys stored in an insecure location when they are
retrieved by a user. Difficulties include reliable error cor-
rection, protection from adversaries, and reasonable latency
for implementation of the system. Whenever a user needs a
key refreshed, they are able to access the masked memory
and request the session i key as such: the tuple {c,X}i
which contains the PUF challenge and masked key for session
i, respectfully, is extracted from the insecure memory. This
process is shown in Figure 2.

Fig. 2: Process of a key being requested from the masked
memory in the presence of an adversarial channel.

For the user, r̂ is extracted from the PUF using c, where r̂
is the extracted noisy response that was used to mask the key,
with each response bit having an error probability of pm. Then,
the noisy codeword is produced via Û = r̂⊕X . The extracted
key ŝk is estimated after the recovered data bits at the output
of the decoder, v̂ ∈ I, are hashed down to the original key
length. We require that ŝk = sk, the original enrolled key.

At the same time, an adversary observes the requested
c and X through the insecure memory side channels. The
goal of the adversary is the same as the main channel; to
attempt the reconstruction of sk using the acquired tuple.
Although the adversary does not have direct access to the
PUF model, it is assumed that the PUF machine learning
model has been trained using previously observed challenge-
response pairs {cj , rj}i−1

j=1 to form a response estimate {ci, ṙi}
as shown in Figure 3. The adversary estimated response ṙ
produced by the ML model is used to unmask X , providing the
adversary with U̇ to be decoded. After the adversary decodes,
the recovered data bits, v̇ ∈ I are hashed into ṡk, the adversary
key estimate. It is crucial to note here that the adversarial
decoder is not necessarily the same implementation as the
main channel, however, the block length and data channels
will be the same. The adversary is assumed to have the best

Fig. 3: An adversary observes challenge-response pairs as keys
are requested from masked memory.

decoding implementation for a (N, k) polar code, along with
the construction of the source code known. The SCL decoder
is used by the adversary, which has an additional parameter, L,
to determine the most probable transmitted source word V out
L different estimates at each stage in the algorithm [22]. When
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choosing the coding scheme, it should be ensured that for a
choice of N and k, the adversary cannot properly decode even
as L grows significantly. Parameters that inhibit the adversary
decoder sufficiently are required, while also allowing the main
user to decode properly.

The tradeoff between reliability and latency can also be
analyzed for the main channel parameters depending on the
application. For example, in encryption applications where the
reliability of decoding is essential, it is critical that reliability
in our scheme is as robust as possible for error correction,
at the cost of increased latency. For applications such as
attestation, an implementation may forego some reliability for
faster decoding if re-transmission would not be as costly. Such
a latency analysis is not performed for the adversary, as latency
is not seen as a factor for an adversary with ample resources.

The channel and error models used are discussed in Section
III-A. Then, the use of polar codes in masked memory is
detailed in Section III-B. Finally, the masked memory imple-
mentation is discussed, along with the metrics used to analyze
performance in Section III-C.

A. Channel and Error Models

Whenever a session key is initially stored in memory, a
challenge is used to invoke the PUF black box to receive
the response, modeled generally as r = f(c), where r is a
response, f is the PUF model, and c is the challenge [8].
It is assumed that the PUF can produce enough bits in r to
completely mask the codeword of length N . For subsequent
requests, when a session key is requested, internal noise
from the PUF affects the reliability of responses, resulting in
r̂ = f ′(c), where f ′ ≈ f is the same PUF with added noise.
A response error is then defined as ri ̸= r̂i, where i is the
response bit index, ri is the mask bit, and r̂i is the unmask
bit. A uniform discrete error distribution is assumed across
all indices i ∈ N where Pr(ri ̸= r̂i) = pm. Furthermore,
as the error on each index is independent of other indices,
the BSC is used to model the PUF noise process, giving
Pr(ri = r̂i) = 1 − pm. f ′ acts as the noisy BSC channel
for the legitimate user, causing incorrectly unmasked keys if
not addressed. Therefore, there is a stringent requirement that
decoded secret keys cannot contain any errors, otherwise, key
retrieval fails.

The adversary is unable to directly access the PUF f ,
but can make a series of challenge-response observations to
develop a machine learning model which is also modelled as
a BSC. The machine learning model is capable of estimating
responses to arbitrary challenges c as ṙ = g(c), where ṙ is the
adversary response estimate, g is the ML PUF model, and c
is the same challenge used by the legitimate user. It should
be noted that based on the wiretap channel model [39], the
accuracy of the machine learning model is bounded by f ′,
in that Pr(ri ̸= ṙi) = pa and Pr(ri = ṙi) = 1 − pa with
pm < pa ≤ 1

2 .
A channel measure that is considered is the channel capac-

ity, determined by the PUF error rate. The channel capacity
defines a theoretical limit to the ratio of information to total

data that may be transmitted across a noisy channel without
error [40].

Using the binary entropy function, given as:

H(p) = −p log2(p)− (1− p) log2(1− p) (1)

with p as the channel bit-flip probability, the channel capacity
of a BSC is:

C(x) = 1−H(x) (2)

which gives the capacities for both the main and adversarial
channels.

Another measure is the secrecy capacity of the system,
which depends on the reliability of the two channels. This
provides an upper bound on the amount of information that
can be transmitted both reliably and securely across a commu-
nications channel in the presence of a wiretap channel, so long
the degradation of the adversary channel with respect to the
main channel is known, as in our case [39]. Using Equation
2, the secrecy capacity of the PUF channel is given as [18]:

Cs = C(pm)− C(pa) (3)

This measure gives the theoretical maximum code rate that can
be used for reliable communication, while also being secure
[39]. In Section IV-A, Cs is used as an upper bound for
choosing parameters to configure the masked memory.

B. Construction of Masked Memory with Polar Codes

Polar codes are used to construct the proposed masked
memory as the method of error correction since they can
be efficiently implemented, have high error correction perfor-
mance, and have secure constructions [17], [18], [36], [36].
The basic polar code concepts are introduced in the following
subsections.

1) Polar Code Construction: Polar codes encode a k bit
message into a vector U ∈ {0, 1} of length N . The remaining
N −k bits provide parity for error correction, giving the code
rate as R = k

N [35]. Higher rates lead to better error correction
in noisy environments, as additional bits dedicated to error
correction are used. In any of the coding considerations, R <
Cs is chosen, as choosing parameters exceeding the secrecy
capacity holds no guarantees on leakage in the presence of a
wiretap channel [41]. Before encoding, k information bits and
the N − k parity bits are constructed into a source word V .
We denote the k information bit indices as belonging to I,
with the N −k parity bit indices (also called the frozen set as
they are set to ‘0’) as F [17].

The members of I are chosen using the Bhattacharyya
parameter [35], density evolution [42], or channel indepen-
dent construction [43], each having their own variation in
performance and implementation complexity. The goal of each
construction method is to order the reliability of each channel
from most to least reliable, assign the first k of these channels
to I, with the N − k remaining indices assigned to F . The
capacity of channels in I approach 1, while the capacity of
channels in F approach 0 when N → ∞ with R → C(p) for
a BSC [17]. Different constructions have tradeoffs between
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computational complexity and reliability accuracy. Because
of the low construction complexity compared to their per-
formance, we choose the original Bhattacharyya parameter
method originally introduced by Arikan [17].

2) Polar Code Encoding: After constructing the source
word, V , by interleaving the k information and N − k parity
bits, the codeword U is generated as:

U = VG⊕log2(N) (4)

Where G is the polar code kernel given by

G =

[
1 0
1 1

]
(5)

and log2(N) is the Kronecker power of the kernel [35].
This encoding is used to form the masked codeword as X =

U⊕r. Later on, when requested by a user, X can be unmasked
and subsequently decoded to allow the retrieval of the original
key.

3) Polar Code Decoding: After a session key is requested
by the user, X is unmasked with the noisy PUF response,
forming Û = X ⊕ r̂. The original key is then estimated using
a decoding algorithm. Two widely used decoding algorithms
used for decoding are i) successive-cancellation (SC) decoders
[35] and ii) belief propagation (BP) decoders [37]. Both
types of decoders have O(N logN) decoding complexities.
The primary difference is that BP decoding is an iterative
algorithm, which can be performed in parallel effectively, at
the cost of decoding performance. On the other hand, SC
decoders are more serialized, but yield better error correction.

SC decoding recursively attempts to estimate the ith channel
of the source word V , vi, based on the following likelyhood
estimate [35]:

v̂i =


0, vi ∈ F
0,

Pr(Û,V̂ i−1
1 |vi=0)

Pr(Û,V̂ i−1
1 |vi=1)

> 1

1, otherwise

(6)

Likelihood ratios for each bit are computed, and a hard
decision is made about the estimated source word bit v̂i at
any given stage. Finally, each estimated bit v̂ ∈ I is extracted,
and hashed down to form the 128-bit key estimate ŝk. Note
that because of the recursive structure of this decoder, it can
be difficult to exploit parallelism at the different stages [27].

The adversary goes through the same process as the main
channel to attempt the reconstruction of the key, except instead
of unmasking X with a PUF, the machine learning model with
increased error is used, resulting in a more difficult decoding
process. U̇ = X⊕ ṙ is formed, followed by decoding U̇ → V̇ ,
and finally hashing down the bits v̇ ∈ I into ṡk.

Incorporating SC list decoding has been shown to improve
the performance over the bare SC decoder [22]. The L most
likely source words at each step are selected to proceed. At the
end of the algorithm, the L best estimates for the transmitted
source word remain, with the highest probability word chosen

as the output [22]. Equation 7 shows how the final estimate is
selected:

V̂ = argmax
V̂l

{{Pr(Û |V̂l)}Ll=1} (7)

with V̂l as the lth generated possible source word.
The caveat here is that as an O(LN logN) algorithm, addi-

tional latency is experienced for better decoding performance
[27]. While this tradeoff is carefully considered for the main
channel, we assume that an adversary can choose an arbitrarily
large L since they are not bounded by latency constraints.

Also, as L increases, the error correction performance
approaches an upper bound [22]. Consider the most likely
transmitted source word to usually be among the first Lmax
estimates. Then, increasing L > Lmax would have no effect on
decoding performance. So long as the adversary is unable to
decode properly past this bound, we will have a similar amount
of list decoding failures for L > Lmax as L = Lmax. Literature
suggests this bound to be around Lmax = 32, however, it is
also found that sometimes the transmitted source word can
exist somewhere in the list, despite it not being the most likely
as provided by Equation 7 [22]. We consider an adversary that
has an oracle Ω(·) that can do the following:

Ω(V̇ ) =

{
0, V ̸= V̇

1, V = V̇
(8)

That is, the adversary can determine if an arbitrary vector
is the original source word. Using Ω(·), it is assumed the
adversary will choose to greedily verify each L source word
estimate produced by the SCL decoder, even if it is not the
estimate ultimately returned. This could realistically be done
by first extracting the information bits and performing the
hash to form ṡk, as is normally done. Then, depending on the
application, ṡk could be verified. For example, in the case of
authentication, a public key could be tested for compatibility
with ṡk. In the case of encryption, a ciphertext could be
decrypted with sk, and if correct, the plaintext should be
interpretable.

In either case, although Equation 8 provides information
about the correctness of a particular source word estimate, no
other information (i.e., Hamming distance) is revealed. This
idea is used in the subsequent sections.

C. Implementation of Polar Codes based Masked Memory

For the masked memory coding scheme, if a 128-bit key is
considered, then the constraint k > 128 is needed to ensure
that the key can be hashed down from the information bits.
Similarly, schemes with other key sizes (i.e., 256 or 512-bit
key based schemes) can also be Incorporated into masked
memory, with the only limitation being that the k > “key size”
constraint is met. The code parameter considerations are the
choice of N , R, and L. Choosing larger N , or block length,
shows more “ideal” polar code behavior in that channels tend
to polarize better at the cost of increased decoder complexity
and latency for the main channel. The choice of R, or
code rate, is also important, as for R ≪ Cs, main channel
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decoding performs well, but lots of information is leaked to
the adversary. For R ≈ Cs, main decoder reliability suffers,
but with less adversary accuracy. In each case, increasing L
can decrease errors at the cost of latency in the main channel,
noting that performance is not much improved beyond Lmax.

The strategy is then to find a combination of N and R that
can meet sufficient reliability conditions for the main channel
using a minimal L, while also meeting sufficient security
conditions for the adversary channel with a very large L.
To determine the optimal parameters for our masked memory
setting, decoding block error rate (BLER) is used for both
main and adversarial channels, while the estimated channel
entropy is used for the adversarial channel. For the main
channel, the latency of the decoder is also considered. Each
metric is discussed next.

1) Block Error Rate: The BLER is defined for both the
main and adversary channels to determine the overall effec-
tiveness of the decoder in each respective channel. The vector
Z is defined as the concatenation of each data bit v ∈ I (i.e.,
a vector of the original k information bits of V that hash down
to sk). Then, Ẑ and Ż denote the main and adversary channel
estimates of these bits from decoding Û → V̂ and U̇ → V̇ ,
respectively.

The BLER is considered as:

BLER =
# of trials where a ̸= b

total # of trials
(9)

with a = Z, and

b =

{
Ẑ, for the main channel
Ż, for the adversary channel

For the main channel, this number should be low (≤ 10−6),
while for the adversary, we should always have block errors.
The error patterns within the incorrectly decoded vectors can
then be further analyzed.

2) Adversary Channel Entropy: As evident in [18], specific
bits, zi, have better reliability than others depending on their
location in the source word (polar code construction tries to
exploit this) [17], [42], [43]. This is also true for the adver-
sarial channel. Using Equation 1, the approximated adversary
entropy of a particular bit channel after decoding is:

y(i) = H(Pr(zi ̸= żi)) (10)

which can be used to analyze how secure the scheme is. As
mentioned, a strong adversary will exhaustively attempt each
SCL with Equation 8, so each of these L outputs must be
considered.

Equation 10 can then be extended to SCL decoding. Letting
yl(i) be the channel entropy for the ith channel in the lth SCL
estimate, then ideally:

y1(i) ≈ y2(i) ≈ · · · ≈ yL(i) (11)

so that an adversary cannot use any produced estimate to their
advantage. A subset of the adversary channels is defined as
D ⊆ I in which D = {j ∈ I | y(j) ≥ 1− δ}, with δ bringing
a particular index entropy to an acceptable level.

Because the adversary has access to an oracle which can
accurately verify the correctness of an arbitrary decoded word,
an adversary may choose to use the existing L SCL candidates
to form an enhanced list of SCL candidates L′ > L. The
additional L′ − L candidates can be formed by using a-priori
information about the source word, (i.e., the relative reliability
of each channel from I) to change bits, or by attempting to
merge the existing L candidates in a meaningful way. It may
also be considered that the L′ candidates can be sorted from
most-to-least likely, allowing a systematic way to test each
candidate with Equation 8. Let L be this ordered set of L′

candidates.
If it is assumed that δ is sufficiently small, then a known

|D| bits will appear as completely random to the adversary.
If it is also assumed that there is no correlation between
these channels for each of the candidates in L, then the
approximation in Equation 11 should hold. Also, the channels
in D of the additional L′−L candidates should be uncorrelated
equally like the rest of the original L SCL candidates.

If there are |D| channels that have approximately full
entropy, the adversary is correct with a probability of ≤ 2−|D|.
This can be verified with Equation 8. If the oracle returns 0,
there is no additional information gained about the correct
candidate, so the 2nd most likely estimate is tested in a similar
fashion. Similar to the first case, the probability of being
correct should be ≤ 2−|D| provided i) the assumption about
the L generated SCL source words being uncorrelated holds
and ii) the indices in D truly have high entropy. This process is
repeated for the remaining candidates in L the same way. The
adversary then has an overall success probability of L′ · 2−|D|

with an O(L′N logN) complexity, which is infeasible to
compute for an exponentially increasing L′. We validate the
set D experimentally, and show that the different candidates
produced by the SCL decoder are uncorrelated.

Furthermore, it is noted that if the key is extracted from the
correct source word by means of a cryptographic hash func-
tion, as is our case, where k bits are hashed down to 128 with
128 < |D|− log2 L

′, then the adversary should just attempt
to guess the session key with probability 2−128. Security now
reduces to that of the cryptographic hash function.

3) Latency Considerations: Analyzing latency enables
masked memory implementation tailored for certain applica-
tions. Recall that the primary applications we consider are
authentication in remote attestation and encryption. In the case
of remote attestation, if we consider a decoding failure on the
main channel, (i.e., when we retrieve our key from masked
memory, there is an error), we would realize such an error
existed due to the authentication failing, and simply re-request
authentication. Besides the additional time required to re-
attempt authentication, there would be no other consequence
of failing the additional authentication. Thus, from a latency
perspective, it might be beneficial to implement a smaller error
correction code that requires less time to decode, and that has
an acceptably low probability of error.

In the case of encryption, however, such a relaxation on
the reliability is not permissible. If the decoding of the stored
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key were to fail, which was then used to decrypt user data,
there would be no way to verify its integrity. This would
have serious consequences if this incorrect data were then
used throughout a program. As a result, our masked memory
implementation would require much harder requirements for
encryption, with the tradeoff of longer decoder latency in the
critical path.

IV. METHODOLOGY

A. Error Simulation

We model the performance of the system given in Figure
2 via simulation with an open-source Python polar code
implementation1. The simulator is modified to automate the
collection of bit error statistics for the different configurations,
such as channel-dependent error rates to estimate channel
entropy across each trial. Note that the main and adversary
channel error probabilities are modifiable to model different
scenarios. For instance, more aggressive adversarial models
can be tested by decreasing pa, or less reliable PUF architec-
tures can be modeled with an increased pm.

The process for masked memory simulation is as follows:
for key enrollment, random vectors Z of length k are first
generated to simulate the information bits, before being con-
structed into the source word V (using the Bhattacharyya polar
code construction) and encoded to a length N block, U . We
then find X = U ⊕ r, where r is another random vector of
length N to simulate a PUF-generated mask. Extraction is
simulated by inverting this process. A uniform 10% noise is
injected across the bits of r to model PUF noise and form r̂,
which forms Û = X ⊕ r̂, and is subsequently decoded with
the k estimated information bits extracted into Ẑ from the
decoded source estimate V̂ .

For the adversary, a uniform 25% error rate is instead
applied to r to form ṙ, modeling the additional noise induced
by the ML model, and forming U̇ = X⊕ṙ. U̇ is then decoded,
extracting the adversary information bit estimates into Ż. In all
cases, the SCL decoder is used in the simulations (where a list
size of L = 1 just indicates the original successive cancellation
algorithm). The model is tested with different parameters (code
block size, rate, and list size) to examine the tradeoff between
latency, error correction performance, and security.

To find an upper bound of code rate for simulation, Cs is
used. Using Equation 3 with pa = 0.25 (as determined in
Section II-D) and pm = 0.1 (as determined in Section II-B),
Cs = 0.342 is computed. As such, the rates of R = 1

5 , R = 1
4 ,

and R = 1
3 are measured for block lengths of N = 1024 and

N = 2048. Various list sizes L = 1, 2, 4, 8, 16 are also tested
in order to find the SCL performance for each configuration.
Certain configurations are then chosen to test L = 128.

Initially, 105 trials are performed with each configuration to
obtain baseline results. Equation 9 is then used to determine
the average BLER of each channel for each configuration.
Configurations that show an adversary BLER of 1 for each trial
are then tested at L = 128 to analyze if the decoding failures

1https://github.com/RQC-QApp/polar-codes

Fig. 4: Main channel latency of polar code GPU kernel for
each configuration.

persisted at an exaggerated L. Additionally, those that have
main BLER < 10−6 and adversary BLER = 1 are chosen for
106 trials, and further analyzed at L = 128 for the adversary.

The adversary is considered for further analysis with the
best N and R configurations at L = 128. Each channel’s
entropy is approximated by Equation 10 across all 106 experi-
ments. Additionally, experiments are performed to analyze the
the L−1 remaining candidates, counting the number of errors
in each candidate and producing the minimum and maximum
number of bit errors produced for a given run.

B. Latency Simulation

After evaluating the error correction settings for the main
and adversary channels, the decoding scheme is evaluated for
implementation costs using a GPU implementation of polar
encoders and decoders. The Nvidia Quadro RTX 6000 GPU
is used for evaluations with the polar codes library2 [44].

The decoding latency is measured using the NVidia Nsight
profiler. Each experiment is run individually for a given N , R,
and L configuration. The latency measurements are reported
using the time spent launching a new decoding kernel, and
the kernel execution time spent in decoding algorithm in the
GPU. The kernel launch time is included since a practical
implementation of the decoder with a GPU in masked memory
will need to invoke the kernel for each request.

V. EXPERIMENTAL RESULTS

The experimental results obtained are summarized in Table
I. Columns that are white denote configurations that have an
adversary BLER < 100% (i.e., the adversary successfully
decoded all k information bits perfectly in some trials), failing
the security condition. Yellow configurations are shown to be
secure, however have worse reliability than the ≤ 10−6 failure
rate metric. Finally, the green configuration of N = 2048
with R = 1

4 meet both the reliability and security conditions
for the simulated trials, and are further analyzed according
to the methodology. The reported errors are based on the
vector Z, the k encoded data bits that hash down to the secret
sk. In Figure 4, the latency impact for each configuration is
shown for increasing list sizes (L). For the same N and L, not
much latency variation is seen across each R. This is because
changing the rate simply modifies the ratio of k to N − k

2https://nvlabs.github.io/sionna/api/fec.polar.html
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Block Length N = 1024 N = 2048
Rate 1/5 1/4 1/3 1/5 1/4 1/3

List Size Main Adv. Main Adv. Main Adv. Main Adv. Main Adv. Main Adv.
1 0% 99.355% 0.007% 99.999% 2.127% 100% 0% 99.985% 0.0005% 100% 0.79% 100%
2 0% 97.552% 0.004% 99.998% 0.478% 100% 0% 99.909%% 0% 100% 0.205% 100%
4 0% 95.156% 0.003% 99.985% 0.254% 100% 0% 99.676% 0% 100% 0.111% 100%
8 0% 92.435% 0.003% 99.972% 0.209% 100% 0% 99.283% 0% 100% 0.126% 100%

16 0% 89.686% 0.003% 99.960% 0.149% 100% 0% 98.801% 0% 100% 0.100% 100%
128 - - - - 0.199% 100% - - 0% 100% 0.119% 100%

TABLE I: BLER of main and adversary channels for different configurations.

Fig. 5: Main channel error patterns for N = 1024, R = 1
3 .

bits. A total of N · L likelihoods are still computed, with the
only difference being the decoder can automatically set a bit
i ∈ F to ‘0’ as in Equation 6, since the set F is known a-
priori. The main contributors to increased latency are N and
L for a given decoder configuration since the SCL decoder
complexity is O(LN logN). For N = 1024 vs. N = 2048,
the latency is ≈ 2×, which is expected as SC decoding is an
inherently serial algorithm. Increasing L allows the decoder
to exploit some parallelism between branches, so rather than
linear growth, slightly better latency is observed (for example,
with N = 2048 and R = 1

4 , latency is 3.72ms at L = 1 and
19.45ms for L = 8, around 5.23×).

However, the cost of increasing L is still evidently signif-
icant. Therefore, minimizing L for the main channel while
retaining the decoding efficacy must be prioritized. Exempli-
fying this is N = 2048, R = 1

4 with L = 1 vs. L = 2.
Increasing the list size effectively reduces the BLER in the
main channel to 0% from 0.0005%, but with 1.71× latency
overhead. For applications where main BLER below 10−6 is
needed, this tradeoff is worth using in the main channel.

A. Choosing Configurations for Masked Memory

For potential candidates highlighted in Table I, the bit error
patterns of Ẑ for each are shown in Figures 5, 6, and 7. While
the primary metric of interest when analyzing main channel
error is the BLER, these error patterns reveal additional
insights. Firstly, the R = 1

3 configurations shown in Figures 5
and 6 visualize the reliability of certain channels for various
L. In both cases, the low channel error rates tend towards the
lower indices, while larger channel indices see higher error
rates. This is expected when constructing polar codes using
the Bhattacharyya parameter, as can be seen in [17]. Another
insight here is that past L ≈ 8, larger list sizes do not further
improve decoding, suggesting that L = 8 may be a practical

Fig. 6: Main channel error patterns for N = 2048, R = 1
3 .

Fig. 7: Main channel error patterns for N = 2048, R = 1
4 .

bound for these configurations considering the latency and
error correction tradeoff. Conversely, the additional reliability
gained from increasing the list size from L = 1 to L = 2 is
significant, consistent with the finding of Table I. So for an
application where a number of block errors may be acceptable
(such as in lightweight authentication protocols where re-
attempts may be allowed, or even expected), choosing L = 2
shows a greater factor of error correction relative to the
additional latency paid.

For the case of Figure 7, while some errors are observed
at L = 1, increasing L > 1 resulted in no main channel
BLER for this configuration, suggesting L = 2 as the realistic
upper bound. For L = 1, out of the 5 trials resulting in BLER,
some of the error channels are fairly predictable. For example,
channel i = 257 resulted in an error for every BLER that was
seen, suggesting that flipping this bit when encountering an
error for this channel would correct it with high probability.
Similar logic can be followed for other channels that saw
repeated errors. While in a real setting, selecting a L > 1
would be more practical, it is interesting to observe this
distribution across the channels.

The focus then shifts on the green column showing the
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Fig. 8: Trial bit errors for the N = 2048, R = 1
4 , L = 128

parameters of adversary.

N = 2048 and R = 1
4 setting, or the (2048, 512) polar code

configuration. Considering the L = 2 case of the (2048, 512)
code for the main channel, an error rate of ≤ 10−6 can be
achieved with a latency overhead of 5.89ms for decoding.
This includes the time required to launch the decoder, which
accurately models the scenario of a new KIS session key being
requested at a certain period.

For the L = 128 case of the adversary, the error rates of the
SCL decoder are analyzed. Three measurements are made: (1)
The number of errors produced by the returned SCL estimate,
which is the most likely transmitted source out of the L SCL
paths. (2) The minimum number of errors produced by any
of the remaining L − 1 candidates that are not ultimately
returned. (3) The maximum number of errors produced by any
of the remaining L − 1 candidates that were not ultimately
returned. Experimental results are shown in Figure 8. It is seen
that the SCL decoder has a significant number of channel bit
errors when a block error is encountered. Out of 5k trials,
the mean number of errors in the returned SCL estimates is
249.72, translating to a 47.88% error rate out of 512 data bits.
Interestingly, the variance of the minimum and maximum error
candidates not ultimately returned had a variance of 56.57 and
57.71, respectively, while the variance of the actual returned
SCL estimate was 214.43. This suggests that when the SCL
algorithm fails, and the other L− 1 less likely candidates are
searched, there is a predictable range of channel errors that
can be expected.

Although there are some SCL candidates in red that have
the minimal number of errors in a particular trial, the overall
best trials are those that come from the actual returned SCL
estimate, as shown in Figure 8. However, even in these cases
where the SCL algorithm performs relatively well, the actual
source word is unrecoverable to the adversary, with each trial
having ≥ 166 errors in the best case. Clearly, even with the
oracle of Equation 8 available to the adversary, the properly
decoded source word will never be found, resulting in an
unsuccessful adversary.

Considering the polarization property of polar codes, the
entropy of each decoded channel for the adversary is shown
in Figure 9. While certain channels have lower overall entropy
to the adversary (and thus are easier to decode), these most
reliable channels do not jeopardize the security of the key. If

Fig. 9: The entropy of each data channel for the adversary.

an adversary knows the most reliable bit positions (i.e., those
with the least entropy), the channels with the most entropy D
must be determined to guarantee the scheme is secure, even if
the adversary can leak bits in D̄ ∩ I with increased certainty.

Considering D as our set of channels that each has an
entropy ≥ 1 − δ, and δ = 0.001 for instance, sorting the
channels by their entropy in Figure 9 gives 419 bits ∈ D. As
these bits appear completely random to an adversary, there
are a total of ≈ − log2(L · 2−419) = 419− log2 (L) bits that
need to be guessed, reducing the security to that of the hash
as shown in Section III-C2.

These two additional results show that adversaries experi-
encing block errors cannot use the SCL decoder candidates,
or the channel properties of polar codes themselves, to assist
with decoding for N = 2048, R = 1

4 with L = 128. It is also
shown that for these same N and R, the main channel can
achieve sufficiently low error with low list sizes.
Comparison to State-of-the-art [28]: Compared to KIS
implementations where keys are generated on-the-fly with an
overhead of 26.6ms [28], the proposed masked memory re-
quires the additional overhead of decoding, a total of 5.49ms,
as S session keys can be pre-generated and securely stored in
memory. This makes masked memory a practical method for
the secure and reliable retrieval of keys.

VI. CONCLUSION
We have introduced the masked memory primitive, which

utilizes a strong PUF and polar codes to improve the security
of refreshing keys in KIS with low latency. After estimating
the PUF and machine learning model parameters, masked
memory is evaluated experimentally. It is found that for the
polar code scheme of (2048, 512) and L = 2, the main
channel can effectively decode and recover all k information
bits used to form session keys. It is further shown that for
an adversary, this same scheme with L = 128 does not allow
for proper decoding, resulting in significant block error rates.
Furthermore, the adversary gains no advantage by searching
through all SCL decoder candidates, with adversary channels
having sufficient entropy among all source word estimates to
inhibit decoding. This results in the strong security of session
keys as they are retrieved from memory.
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