
Accelerating GPU Data Processing using FastLanes Compression

Azim Afroozeh
azim@cwi.nl

CWI
Amsterdam, Netherlands

Lotte Felius
felius@cwi.nl

CWI
Amsterdam, Netherlands

Peter Boncz
boncz@cwi.nl

CWI
Amsterdam, Netherlands

ABSTRACT

We show that compression can be a win-win for GPU data process-

ing: it not only allows to store more data in GPU global memory, but

can also accelerate data processing. We show that the complete re-

design of compressed columnar storage in FastLanes, with its fully

data-parallel bit-packing and encodings, also bene�ts GPU hard-

ware. We micro-benchmark the performance of FastLanes on two

GPU architectures (Nvidia T4 and V100) and integrate FastLanes

in the Crystal GPU query processing prototype. Our experiments

show that FastLanes decompression signi�cantly outperforms pre-

vious decompression methods in micro-benchmarks, and can make

end-to-end SSB queries up to twice faster compared to uncom-

pressed query processing – in contrast to previous work where

GPU decompression caused execution to slow down. We further

discovered that an access granularity of decoding vectors of 1024

values is too large for a single GPU warp due to register pressure.

We mitigate this here using mini-vectors – a future work question

is how to further reduce this granularity with minimal impact on

e�ciency.

ACM Reference Format:

Azim Afroozeh, Lotte Felius, and Peter Boncz. 2024. Accelerating GPU Data

Processing using FastLanes Compression. In 20th International Workshop on

Data Management on New Hardware (DaMoN ’24), June 10, 2024, Santiago,

AA, Chile. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3662010.3663450

1 INTRODUCTION

The FastLanes project1 is working towards a new analytical data

format to better suit modern workloads and modern hardware.

In the �rst paper on FastLanes, that describes its novel and com-

pletely data-parallel columnar encodings, we showed its very high

performance using data-parallel SIMD instructions on CPUs [1].

In this paper, we evaluate and optimize FastLanes decompression

on GPUs. In the past decades there has been a lot of research on

database processing on GPUs and also numerous start-ups; but

database workloads have not migrated to GPUs yet; instead, a

�ood of ML workloads have propelled GPUs to center stage in data

centers. These workloads consume a steady stream of data in ML

1github.com/cwida/FastLanes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

DaMoN ’24, June 10, 2024, Santiago, AA, Chile

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0667-7/24/06
https://doi.org/10.1145/3662010.3663450

Global
Memory

Decompress

Block-wise Decompression
(e.g. LZ4)

Vectorized Decompression
(FastLanes-GPU)

Compressed Vectorized
Execution (FLS-GPU-opt)

Global
Memory

Global
Memory

GPU GPUSUM

decompressed
block (32 bits,
i.e. 11x larger)

GPUDecompress

shared
memory +
registers

(can hold many
compressed blocks)

(can hold many
compressed blocks)

SUM

3bit

3bit

32bit

16bit

2 mini-
vectors

Decompress SUM

3bit

22x bandwidth consumption

shared
memory +
registers

shared
memory +
registers

Figure 1: Three di�erent ways of decompressing data on the

GPU. Left shows that decompressing into global memory

(as typically done in GPU decompression) can cause very

high memory bandwidth consumption. The middle shows

how vectorized decompression avoids spilling back to global

memory, by directly processing the decoded data. The right-

most shows how the pressure on GPU registers and shared

memory (cache) can be reduced, by (i) reducing the decoding

batch size, and (ii) by decoding into thin (<32-bit) data types.

training and inferencing, producing a growing call for data formats

that are compatible and performant on both CPUs and GPUs [11].

Data formats that are now ubiquitous in data lakes, such as

Parquet and ORC, were originally designed for use on CPUs [11].

While these formats harbor multiple good ideas (schemas, statistics,

columnar storage, compression, vectorized decoding) they have

limitations that hurt GPUs; particularly the fact that their column

encodings do not compress data enough, and therefore their data-

pages are further compressed with general-purpose block-based

schemes (gzip, zstd, lz4 or snappy), which are GPU-unfriendly.

Data compression is an attractive proposition for GPUs: they

typically have smaller RAM ("global memory") than the host CPU

machine, such that storing compressed data alleviates a capacity

bottleneck. Further, data is moved into the GPU over the PCIe bus,

so having to move less data thanks to compression helps to reduce

that bottleneck. But this hinges on the capability of the GPU to

e�ciently decompress the data, ideally incrementally, when it is

processed. As the left picture in Figure 1 shows, however, block-

based compression operates on a coarse granularity that is too large

to �t into the shared memory (the on-die GPU cache), whose size

is typically just tens of KB, shared among 32 threads. Note that e.g.

parquet-mr typically creates pages of 1MB, that get (de)compressed

as one block, which exceed this size. This means that the uncom-

pressed result of decompression must spill back to GPU global

memory, signi�cantly increasing the memory bandwidth usage

inside the GPU, because the decompressed data is much larger than

the compressed data. In the depicted example, when a compressed

column that takes 3 bits per value, is decompressed into the stan-

dard 32-bit integer that GPUs manipulate; this will transfer in total

22x the compressed bandwidth (3+32bits for decompressing, plus

https://doi.org/10.1145/3662010.3663450
https://doi.org/10.1145/3662010.3663450
https://doi.org/10.1145/3662010.3663450
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3662010.3663450&domain=pdf&date_stamp=2024-06-09

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Azim Afroozeh, Lo�e Felius, and Peter Boncz

32bits upon use). There are three problems here: (i) decompression

algorithms like lz4 are essentially sequential (have many control-

and data-dependencies) and therefore run ine�ciently on GPUs (ii)

materializing bu�ers of uncompressed data in global memory as

depicted, wastes scarce global memory capacity. (iii) transferring

uncompressed data for processing (here SUM) into GPU kernels,

can make these bandwidth-bound.

In FastLanes we pursue cascading (recursive) application of col-

umn encodings (FOR, DELTA, RLE, DICT) to remove the need for

general-purpose compression like lz4 for getting good compression

ratios [4]. FastLanes encodings are fully data-parallel, even elim-

inating the sequential dependencies that are normally present in

DELTA decoding and RLE. This data-parallelism works great on

CPU SIMD instructions but conceptually also �t the SIMT GPU

model, where 32 threads that make up a warp and execute the same

instructions in lockstep; without any data-dependencies between

the threads. FastLanes stores data in 1024-value vectors, where

32 or more adjacent values can be decompressed completely inde-

pendently of each other. We propose the integration of FastLanes

decoding in GPU data processing as depicted in the middle of Figure

1 using vectorized decompression: decompression as the �rst step

of data processing, where one vector of data is decompressed into

registers or shared memory and is directly consumed from there,

without spilling back to global memory.

In this paper, we show that FLS-GPU decompressing a vector of

1024 values can easily be too coarse-grained for GPUs. If each of

the 32 threads in a warp decodes 32 values, these should be stored

in GPU registers or shared memory, in order not to spill into GPU

global memory. However, depending on the GPU architecture, this

can already be close to the average available registers per thread

(see last row of Table 3). Worse, the consuming data processing task

(like a database query, or ML inferencing) typically needs multiple

columns, which increases memory pressure on registers and shared

memory – which may also hold e.g. lookup-tables. This then causes

GPU register spilling, leading to increased memory latency and/or

a reduction of scheduled tasks, leading to GPU under-utilization.

Therefore, we developed GPU-speci�c optimizations (FLS-GPU-opt)

that reduce register and shared memory pressure. Key ideas are: (i)

dividing a vector into mini-vectors and decompressing mini-vector

at-a-time; (ii) thinking beyond the standard 32-bits GPU data type

and simulating smaller data types; thus considering 16- and 8-bits

data widths. We (iii) also increased the block-width from 32 to 128

or even 256 in order to reduce scheduling overhead.

Our main contributions in this paper are:

• Generating and Micro-benchmarking FLS-GPU code.

We use a code generator to generate the C++ FastLanes

CPU encoding and decoding methods for all relevant bit-

widths statically at compile-time. This code generator was

extended such that it can generate CUDA code. We show

that FLS-GPU outperforms the current state-of-the-art GPU

decompression algorithms GPU-FOR and GPU-DFOR by

performing micro-benchmarks where we decompress into

global memory, shared memory and GPU registers.

• Integrating and Optimizing FastLanes in Crystal. Fur-

ther, FastLanes bit-unpacking is integrated into Crystal [8].

To increase performance we tested compressed execution, par-

titioning 1024-tuple vectors into mini-vectors, increasing the

block size, and the sorting of columns to simulate RLE and

obtain a better compression ratio. These optimizations en-

able to release pressure from registers and shared memory,

and are ultimately combined with optimizations proposed

by Crystal-opt [2].

Outline. First, we discuss Crystal, Crystal-opt and Tile-based de-

compression: the fastest state-of-the-art GPU academic database

systems and decompression scheme respectively. We also summa-

rize the FastLanes layout that uses interleaved bit-packing and the

transposed layout to eliminate dependencies from the DELTA and

RLE encodings. Then, we discuss how we adapted FastLanes to be

compatible with GPUs and we propose optimizations to improve

the performance of FastLanes on Crystal. Lastly, we discuss the

obtained results and share our �ndings and ideas for future work

to further optimize FastLanes for GPU-based data processing.

2 BACKGROUND

In this section, we shortly explain the GPU memory hierarchy and

basic principles of CUDA. In addition, the lightweight compression

(LWC) algorithms used by FastLanes are brie�y explained, along

with an explanation of the intrinsics of FastLanes en/decoding.

2.1 GPU Programming

In this paper we use CUDA for programming the GPU [5]. CUDA

only works for NVIDIA hardware, so in an increasing heteroge-

neous hardware landscape, a more portable API such as Vulkan [10]

could be considered. However, CUDAo�ers amoremature toolchain

and higher-level programmingmodel; hence we use it for this initial

study of FastLanes on GPUs.

CUDA splits the written code in two parts: the device code, used

to program the GPUs itself, and the host code, which is CPU code.

The host code takes care of initialization and launching of the ker-

nels in the program and allocating memory regions. The device

code is written as a sequential program, thus for a single thread,

but executed for multiple threads at once, a model known as Single-

Instruction-Multiple-Threads (SIMT). CUDA virtualizes physical

hardware. A thread block in CUDA is a virtualized streaming mul-

tiprocessor (SM). It is typically recommended to use at least 128

threads in a block, to limit scheduling overhead.

Each SM contains cores, a register �le, a warp scheduler, data

caches, instruction bu�ers and texture units. A SM can therefore be

considered a whole machine on itself. Thread blocks are launched

on a single SM and are independent of each other, meaning that

they run to completion without preemption. A thread itself is a vir-

tualized scalar processor which contains its own registers. Threads

are grouped into warps, which is the basic unit of execution for

a single SM. A warp is a unit that consists of 32 threads that all

run concurrently on a SM. All threads in a warp execute the same

instruction when running a kernel. If the kernel contains branches

(if-then-else), thread divergence can occur if some threads take the

if- and other the else-branch. The threads must execute all instruc-

tions in lock-step, but the instructions o� the chosen paths become

no-ops. This also a�ects while-loops: all threads execute as long as

the longest loop in the warp.

Accelerating GPU Data Processing using FastLanes Compression DaMoN ’24, June 10, 2024, Santiago, AA, Chile

The memory hierarchy of a GPU di�ers signi�cantly from the

CPU memory hierarchy. In the memory hierarchy of the GPU, each

thread contains its own 32-bit registers. Next to the amount of

registers per thread, each thread contains its own local memory

(lmem). Lmem is not really a memory – its bytes are stored in the GPU

main memory (global memory). The name local memory refers to

the memory where registers and other data from a thread is spilled,

when e.g. a thread exceeds the register limit. The main di�erences

between lmem and global memory however are (1) stores are always

cached in L1 cache and (2) addressing is resolved by the compiler

itself. If the L1 cache is full, a line gets evicted to L2 cache or DRAM.

In this case, a store incurs multiple writes.

Each thread block contains its own shared memory which func-

tions as a programmable L1 cache of usually a few tens of KB.

Shared memory thus stores data which is accessible for all threads

within a thread block and gets wiped when a new block is executed.

Unlike the L1 cache, the L2 cache is shared among all SMs. There

is global memory, which is accessible to any thread at all times.

Global memory is the main memory where data is stored when

loaded from the CPU into the GPU. The bandwidth to the GPU

is typically a few factors higher than main memory attached to a

CPU (often using HBM technology). Data is transferred using wide

cache-lines (typically 128 bytes), and best access is achieved if the

threads in a warp load adjacent data (coalesced memory access).

Transferring data, and communication between host (CPU) and

device (GPU) in general, happens via the PCI/e bus. However, such

I/O should be minimized where possible as the PCI/e bandwidth is

much lower than global memory bandwidth.

2.2 Lightweight Compression using FastLanes

This section explains state-of-the art approaches of di�erent light-

weight compression schemes on the GPU. In addition, it explains

how FastLanes internally works to provide e�cient en/de-codings

for these lightweight schemes.

Common Lightweight Compression Methods. Analytical data-

base systems make extensive use of compression to reduce mem-

ory footprint when storing and accessing data. However, general-

purpose compression methods such as Snappy or LZ4 are com-

putationally expensive for decompression at runtime. Therefore,

lightweight compression methods or encodings such as Bit-packing,

DICT, DELTA and Run-Length Encoding (RLE) are typically used

as a �rst step. Exploiting the fact that the the actual domain of

data stored close together is often much smaller than what their

data type can represent, Bit-packing allows to represent larger data

types in fewer bits. It is typically the lowest-level encoding applied

to stored data. The other encodings work on top of bit-packing.

DICT uses a dictionary, holding unique values, and represents the

original data as (bit-packed) integer codes, which are positions in

this dictionary. DELTA encoding exploits value locality, by only

storing the (bit-packed) di�erence between subsequent values. Note

that during DELTA decoding subsequent values are dependent on

its predecessor (a data dependency). RLE encoding, �nally, is par-

ticularly e�ective on sorted data with lots of repeating values. It

encodes the repeating values in so-called run-lengths. Note that

decoding RLE requires a loop over the run-length, which on GPUs

can lead to thread divergence .

0

1

1

S- 1129 1257

257385513641

641769897

0 . . .

. . .1

. . .1

S- 1255 127383

383511639767

7678951023

0

1

1

S- 1128 0256

256384512640

640768896

S: Number of SI MD l anes i n a 1024 bi t SI MD r egi st er = 1024/ T

Lane 127 . . . Lane 1 Lane 0

Figure 2: FastLanes bit-packs a vector by interleaving its val-

ues (vector positions in black below) over many lanes; in

this example 128 lanes of 8-bits [1]. On GPUs this leads to

all threads in a warp accessing directly adjacent lane data,

which is the optimal memory access pattern.

FastLanes. FastLanes is an open-source library that provides light-

weight encodings, in a fully data-parallel manner. Even though

its CPU source code is scalar, this property allows compilers to

auto-vectorize it into SIMD instructions, such as AVX512 on AMD

and Intel, and NEON or SVE on ARM. SIMD instruction on CPUs

can execute an operation on multiple data items, stored adjacently

in 8-, 16, 32- or 64-bit lanes, in one instruction.

The �rst step in decoding is un-packing densely packed bits

into 8-, 16-, 32- or 64-bits (byte-addressable) integers. Standard

bit-packing schemes, however, pack bits of adjacent values tightly

together right after each other. In principle, SIMD instructions can

perfectly support bit (un)packing as they support the required oper-

ations (AND, OR, SHIFT). The problem here is that to produce the

original value sequence with SIMD instructions, adjacent values

will reside in the same SIMD lane. To avoid this, interleaved bit-

packing distributes subsequent values round-robin over subsequent

lanes. Thus, a data-parallel unpacking kernel can produce subse-

quent values from subsequent lanes, without needing (expensive)

inter-lane data transfers.

After values have been bit-unpacked; they can be decoded us-

ing lightweight schemes like DICT, RLE and DELTA. The latter

two schemes have proven challenging for SIMD instruction sets,

because of the sequential dependencies in DELTA and the loops

required to decode RLE (SIMD does not support loops). For example,

if we encode a column of [1, 2, 3, 4, 5] into [1, 1, 1, 1, 1] using DELTA,

we can only restore the original values if we know the predecessors

of the value that we want to decode. To tackle this issue, FastLanes

proposes the Uni�ed Transposed Layout that removes the data de-

pendency by using a special permuted order for the 1024 tuples in

a vector (Figure 3 shows a simpli�ed permuted order for 16 tuples).

Thanks to this, every lane produces independent running sums to

perform DELTA decoding. FastLanes further maps RLE coding to

DELTA coding, to also make RLE fully data-parallel [1].

By removing all data dependencies, FastLanes achieves ultra-

high performance [1]: up to 60 values per CPU cycle single-threaded.

We think this is important, because in the vectorized decompression

model, most of the computational time should go in the data pro-

cessing (i.e. database query processing, or machine learning), and

only a minority in decompressing, if we want to alleviate a memory

bottleneck and make data processing faster. Ultra-fast decoding

also facilitates our move towards cascading column encodings; that

implies multiple decoding kernels are invoked per column – this

otherwise could become expensive. As an example of cascading

encoding, the thin integer codes arrays used in DICT, as well as its

dictionary array can be further encoded, e.g. using RLE or DELTA.

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Azim Afroozeh, Lo�e Felius, and Peter Boncz

0

25

0

0

4

0

8

0

12

0

1

5

5

0

9

4

13

0

2

1

6

5

10

2

14

1

3

3

7

6

11

6

15

1

4

41

8

55

12

74

0000

1
1

1
1

2
2

2
2

3
3

3
3

Figure 3: Transposed Layout of a 16-value vector for making

DELTA decoding data-parallel[1]. Starting with a base stored

in a header (yellow), DELTA has to sum up all di�erences, a

sequential task. By storing multiple bases, and reordering

the tuples in vector (small below numbers are positions) we

can now execute this with four 4-way SIMD additions. The

FastLanes layout (that stores 1024 values, not 16) provides

enough parallelism to let all GPU threads in a warp do com-

pletely independent sums.

The work in BtrBlocks [4], which does not use data-parallel en-

codings, has established that cascading lightweight encodings can

achieve compression ratio’s comparable to Parquet with LZ4. In

ongoing work on FastLanes, that adopts cascading encoding, we

have con�rmed this �nding.

3 RELATED WORK

There has been only a modest amount of research into compression

schemes for GPU-based database systems. Fang et al. [3] implement

nine compression schemes suitable for the GPU. These schemes

are divided between main schemes and auxiliary schemes. These

schemes include null-surpression (NS) of �xed and variable length,

DICT, bitmap and RLE. Auxiliary schemes include FOR, DELTA,

SEP and SCALE. Shanbhag et al. [9] propose GPU-FOR, GPU-DFOR,

and GPU-RFOR where the latter two do respective DELTA and

RLE. None of the previous GPU compression schemes [3, 7, 9] has

changed the value order (i.e. interleaving or transposing) to make

decompression data-parallel.

Crystal. [8] is the current state-of-the-art academic GPU-based

query processing prototype [2]. It consists of hard-coded CUDA

kernels implementing each of the SSB benchmark queries [6]. To

bene�t from the parallelism provided by GPUs, Crystal adopts a

tile-based execution model. Here, a Tile consisting of 128 tuples

is the basic a unit of execution and is processed as a whole in a

single thread block, which in its turn is partitioned by the GPU into

warps. Processing at the granularity of tiles aligns with the 128-byte

GPU cache lines and leads to reduced cache misses and coalesced

memory accesses. Before performing any operations, a tile of 128

values is loaded directly into the available registers of each thread.

Loading a tile enables coalesced memory access and loading into

registers avoids an extra pass to shared and global memory. Crystal

is not a production system, since all queries are hand-written. Other

signi�cant limitations are e.g. hard-coded parameters for hash tables

and the lack of support for data types other than 32-bits integers.

Crystal-opt. The authors in [2] pointed out that Crystal is memory-

bound, and there is room for improvement. Crystal (i)) loads un-

necessary data from DRAM if �lter predicates are selective and (ii)

it bypasses the L1 cache which could be exploited for operating

on intermediate results [2]. In Crystal-opt, query performance is

improved roughly 2x, making it currently the fastest GPU-based

query execution prototype for SSB queries. The �rst optimization is

predicated loads (PredLoad, essentially predicate push-down) that

avoid loading tuples from global memory that are already disquali-

�ed by a predicate. While such an if-then-else test introduces GPU

thread divergence, doing so for avoiding unnecessary loads is a

good trade-o�. A somewhat less important optimization is to check

whether an entire tile has no more qualifying tuples. This is only

bene�cial if all threads in a warp can be terminated early (a quite

rare phenomenon). A second optimization to disable L1 cache by-

pass on certain queries (manually), for those queries that pro�t

from this (a manually tuned decision).

Tile-Based Decompression. [9] introduced tile-based decompres-

sion to reduce memory bandwidth consumption in Crystal data

scans. Three new compression schemes are introduced, based on the

tile-based execution model that combine bit-packing and FOR: GPU-

FOR, GPU-DFOR and GPU-RFOR. The latter two denote DELTA

and RLE, respectively. Bit-unpacking in tile-based compression is a

generic function that has bit-width as a parameter. For any tuple, it

loads two values, computes two shifts and two AND-masks to apply

to these values, and OR-s them together; which is a worst-case ap-

proach in terms of bit-unpacking. In contrast, a typical CPU-based

vectorized bit-unpacking function would be templated by bit-width

(rather than receive it as a dynamic parameter) and internally con-

tain a series of hard-coded LOAD-SHIFT-AND-STORE instructions

(with occasional OR work, only applied to those bit-sequences that

cross a word boundary) to unpack all tuples in a vector – which

is computationally much more e�cient than computing the shift

amounts and the masks for each tuple and always doing an OR. The

authors argue that GPU decompression is bandwidth-bound and

thus such computational expense is of no importance; an argument

that in our view is only correct when compressing back into global

memory (leftmost Figure 1, which we recommend not to do). The

Tile-Based micro-benchmarks in [9] are decompressing into global

memory – in this paper we re-do those micro-benchmarks using

the alternatives of decompressing into registers and into shared

memory - where the query processor directly consumes it (middle

of Figure 1: vectorized decompression). Finally, the end-to-end SSB

results reported in [9] are 35% slower than running Crystal on un-

compressed data; which is explained as something that should be

expected – however this paper shows that SSB queries can get faster

thanks to compression. This comes in addition to the compression

bene�t of being able to store 2-4x more data in GPU memory (and

a reduction of the PCIe bottleneck when data is moved into the

GPU).

4 FASTLANES ON GPU

In this section, we explain our �rst implementation of FastLanes on

the GPU, which is available in our GitHub repository2. Moreover,

we perform micro-benchmarks to test three di�erent approaches

(global-to-global, global-to-shared and global-to-registers) to deter-

mine which approach minimizes latency when decompressing data

into memory.

2https://github.com/cwida/FastLanesGPU

https://github.com/cwida/FastLanesGPU

Accelerating GPU Data Processing using FastLanes Compression DaMoN ’24, June 10, 2024, Santiago, AA, Chile

Table 1: global-to-global decoding 3 to 32 bits (256M values)

GPU GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

T4 7.80 ms 5.89 ms 12.36 ms 6.05 ms

V100 1.60 ms 1.60 ms 1.77 ms 1.64 ms

Table 2: global-to-shared decoding of 3 to 32 bits (256Mvalues)

GPU GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

T4 10.02 ms 2.42 ms 14.63 ms 4.16 ms

V100 1.22 ms 0.44 ms 1.90 ms 0.63 ms

Table 3: Speci�cations for Tesla T4 and Tesla V100 GPUs

Model T4 V100

Memory 16GB 16GB
Memory Bandwith 320.0 GB/s 900.0 GB/s
L1 size (per SM) 96 KB 128 KB

L2 size 6 MB 6 MB
SM count 40 80

Max. Warps/SM 32 64
Max. Blocks/SM 16 32
Max. Threads/SM 1024 2048
Max. 32-bit reg/SM 65536 65536
Avg. registers/thread 64 32
Max. registers/thread 255 255

4.1 Initial Implementation

FastLanes for CPUs leans into the Single Instruction Multiple Data

(SIMD) capabilities of CPUs to decode multiple values in one pass.

GPUs, however, are based on the SIMT model. To exploit the SIMT

parallelism provided by GPUs, we assign a vector of 1024 values

to a block. Since we assign one warp per block, every thread in a

warp decodes 32 values and thus functions as a so-called lane in

FastLanes. This means that at least 32 values are decoded in parallel

in every step within a warp, when decoded into 32-bit integers.

Thanks to use of interleaved bit-packing, this leads to coalesced

memory access. Decoding into 1024 32-bits values still �ts in GPU

registers. We note that GPU systems so far focus on 32-bits data

processing, since this is the native data type for GPUs. However,

FastLanes has the capability of achieving data-parallelism using

scalar instructions, i.e., it can use 32-bits instructions to decode

4x8bit and 2x16bit lanes per GPU thread. This capability can be used

in GPUs to decode into thinner data-types than 32-bits, reducing

GPU shared memory and register pressure; while at the same time

performing 2x or 4x more operations per instruction.

4.2 Micro-benchmarks

We use two di�erent GPUs for our benchmarks: the Tesla T4 and

Volta V100, fromwhich the exact speci�cations are shown in Table 3.

We benchmark both FastLanes Bitpacking (FLS-BP) and FastLanes

DELTA (FLS-DELTA) using C++20, nvcc and CUDA 12.3 for the

implementation.

Measured execution time. In the micro-benchmarks we measure

the execution from the moment the data is loaded into global Mem-

ory of the SM. Loading data from and to the CPU is thus not taken

into account. Therefore, the PCI/e bandwidth is not a bottleneck in

any of the experiments. The measured time is thus from the time

the kernel is executed, until the execution is �nished and the �nal

results are written back to global memory. To measure the execu-

tion time per kernel we make use of the Nvidia Nsight Compute

CLI (ncu).

Global-to-Global Memory. The global-to-global scenario of this

experiment is depicted leftmost in Figure 1. A block or vector of

compressed data is fetched from global memory. It then is decom-

pressed by using bit-unpacking or GPU-FOR decompression, and

the decompressed data (1GB) is directly written back to global mem-

ory. We repeat this experiment for every bit-width between 1 and

32. We bypass the L1 cache and make no use of shared memory, but

store the results directly in global memory. The results in Table 1

show that on the Tesla T4, FastLanes outperforms Tile-based for

both bit-unpacking (GPU-FOR vs FLS-BP) and DELTA decoding

(GPU-DFOR vs FLS-DELTA). On the V100, both FastLanes and Tile-

based are memory bandwidth bound, hence they have an exactly

similar execution time.

Global-to-Shared Memory and SUM.We now fetch compressed

data from global memory, decompress the data to shared memory,

and directly perform a SUM on the decompressed data (middle of

Figure 1). This aggregation is necessary to prevent the CUDA com-

piler from optimizing away all computation. The result of this local

aggregation in shared memory is then written again to global mem-

ory, such that the aggregation value persists between the execution

of multiple blocks. This avoids two passes to global memory: �rst

decompressing and writing the data to global memory and then,

when decompressing is �nished and all data is stored, fetching this

data again from global memory to perform any operations on the

decompressed data.

Performing a “simple" aggregation now includes (1) an explicit

allocation of shared memory for every block and (2) an aggregation

in each thread in the corresponding thread block and a write to

global memory for each block that is executed. Explicitly using

shared memory incurs overhead, especially for Tile-Based, since

it otherwise only uses GPU registers. However, if one stores inter-

mediate results in registers (which is thread-local memory), this

intermediate result is not accessible by other threads. The aggrega-

tion in Tile-Based ultimately requires 128 threads to each aggregate

4 values, which incurs 128 writes per 512 values to store the tem-

porary result in shared memory. Finally, the �nal aggregation is

written back to global memory.

For FastLanes, global-to-shared works by decoding a vector of

1024 values using one warp, such that each of the 32 threads de-

codes and directly aggregates 32 values. This results into 32 writes

for the intermediate result into shared memory and one write to

global memory for each 1024 values. By avoiding to write the large

uncompressed (32-bits) results back to global memory, all kernels

are now compute-bound. This reveals that FastLanes indeed is

computationally faster than Tile-based compression. A somewhat

unexpected result on T4 is that the Tile-Based kernels are in fact

slower than in the global-to-global benchmarks for GPU-FOR and

similar behavior is observed for GPU-DFOR on the V100 (1.77 vs

1.90 ms), which is depicted in Table 2. This increase in compute

can be attributed to the fact that including a SUM is computation-

ally intensive, and since GPU-DFOR seems compute bound instead

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Azim Afroozeh, Lo�e Felius, and Peter Boncz

Table 4: global-to-shared memory + SUM with varying bit-

width for Tile-based (GPU-FOR) and FastLanes (FLS-BP)

GPU-FOR FLS-BP

Bits T4 V100 T4 V100

1 10.09 ms 1.21 ms 2.34 ms 0.435 ms

3 10.02 ms 1.22 ms 2.42 ms 0.434 ms

4 10.09 ms 1.22 ms 2.45 ms 0.436 ms

8 10.14 ms 1.23 ms 2.60 ms 0.437 ms

0 5 10 15 20 25 30

(a) Performance on T4
0

2

4

6

8

10

D
ur

at
io

n
(m

s)

Register Shared Global

0 5 10 15 20 25 30

(b) Performance on V100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ur

at
io

n
(m

s)

Register Shared Global

Figure 4: Micro-benchmarks for FastLanes unpacking into 32-

bits values. X-axis is the bit-width of the compressed column

(256M values). The red horizontal line is estimated compu-

tational cost of unpacking. The solid black line (global-to-

shared) shows the impact of read-bandwidth; the dotted line

the impact of write-bandwidth (global-to-global).

of memory bandwidth bound on both T4 and V100, this leads to

deteriorating performance on both GPUs.

In Table 4 we con�rm that FastLanes is consistently 3-5x faster

than Tile-Based in global-to-shared decoding, for various bit-widths.

Its kernels are compute-bound, as they only read compressed data,

and the execution time increases by adding an aggregation. Increas-

ing the data volume does not a�ect performance.

Global-to-Register. A third option is to directly store the output of

the decompression in GPU registers, as opposed to shared memory.

In CUDA, scalar variables are stored in registers by default by the

compiler. Figure 4 shows the performance of FLS-BP for all bit-

widths (1-32), using all three approaches. The red line models what

we think is the computational cost of global-to-register. The solid

black line (overall global-to-register time) follows this line for lower

bit-widths, but starts to follow a linearly increasing line that we

attribute to read cost from global memory. Note that the shared

memory in V100 appears faster than on T4 as its line is completely

identical on V100 with global-to-register. Global-to-global is at a

constant distance from the read-cost, due to its additional cost for

writing 1GB of data to global memory, which on V100 corresponds

to the read-cost measured at 32-bits.

Measuring Compute. For the next micro-benchmarks, where

we aim to measure the "raw" compute, we repeat the procedure

described at the global-to-global memory benchmarks with one

Table 5: Measuring compute – thus no writes to global mem-

ory. Decoding of 3 to 32 bits (256M values) on Tesla T4. Com-

pute is the "raw" compute of eachmethod, including fetching

compressed data from global memory. To-global are the val-

ues for T4 reported in Table 1, to highlight the di�erence

with- and without writing back to global memory

GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

compute 3.48 ms 0.98 ms 10.70 ms 2.49 ms

to-global 7.80 ms 5.89 ms 12.36 ms 6.05 ms

Table 6: Measuring compute – thus no writes to global mem-

ory. Decoding of 3 to 32 bits (256M values) on V100 GPU.

Compute is the "raw" compute of each method, including

fetching compressed data from global memory. To-global

are the values for V100 reported in Table 1, to highlight the

di�erence with- and without writing back to global memory

GPU-FOR FLS-BP GPU-DFOR FLS-DELTA

compute 0.86 ms 0.43 ms 1.58 ms 0.45 ms

to-global 1.60 ms 1.60 ms 1.77 ms 1.64 ms

modi�cation: we write nothing back to global memory. However,

if we write nothing back to global memory the compiler optimizes

everything away. Therefore, we trick the compiler by implementing

an if statement containing a STORE, which has an almost 100%

probability to evaluate to false. Now, we are able to measure the

compute with increased precision. Note that the latency of fetching

the compressed data from global memory is still included in the

execution time.

The results in Table 5 indicate that FLS-BP is around 3-4x faster

compared to GPU-FOR, and FLS-DELTA is around 4-5x faster then

GPU-DFOR on a T4. On the V100, this di�erence is around 2x for

FLS-BP and GPU-FOR, and 3x for FLS-DELTA and GPU-DFOR (Ta-

ble 6). Also, on T4, FLS-BP is 2-3x faster then FLS-DELTA in terms

of compute, and the same phenomenon occurs for GPU-FOR and

GPU-DFOR. For V100, the di�erence for FLS-BP and FLS-DELTA is

minimal, indicating that it is close to the minimum compute. GPU-

FOR is around 2x as fast compared to GPU-DFOR on V100. Remark-

ably, in the global-to-global memory benchmarks the execution

times of FLS-BP and FLS-DELTA are very similar. An explanation

for the smaller di�erence between global-to-global and solely com-

pute for FLS-DELTA and GPU-DFOR is that the increased compute

hides the write latency to global memory.

Investigating Occupancy. To explore whether we can further

optimize FLS-BP global-to-shared and FLS-DELTA global-to-shared,

we investigate the GPU utilization. We found that both FLS-BP

and FLS-DELTA su�er from low occupancies compared to Tile-

Based (Table 7). In addition, for both FLS-BP and FLS-DELTA the

occupancy on V100 is structurally lower.

The lower occupancy on V100 can attributed to the fact that for

both T4 and V100 GPUs there are 64k 32-bit registers available per

SM, even though V100 provides double the amount of maximum

active threads per SM (Table 3). As a consequence, software em-

ployed on the V100 su�ers from high register pressure. Compiling

with ptxas=-v shows that FLS-BP uses at most 64 registers per

Accelerating GPU Data Processing using FastLanes Compression DaMoN ’24, June 10, 2024, Santiago, AA, Chile

Table 7: Occupancy reported by ncu of both FastLanes and

Tile-Based for bit-unpacking of 3 bits and DELTA decod-

ing. T indicates the maximum theoretical occupancy of this

con�guration, A indicates the achieved occupancy during ex-

ecution.

Method T4 T T4 A V100 T V100 A

GPU-FOR 100% 94.16% 100% 93.99%

FLS-BP 46.88% 44.67% 34.38% 16.09%

GPU-DFOR 100% 95.94% 100% 96.15%

FLS-DELTA 21.88% 20.75% 17.19% 16.04%

Table 8:Micro-benchmarks for di�erent con�gurationswhen

decompressing 3 bits using FLS-BP. Both timing and occu-

pancy are reported. Occupancy T indicates theoretical occu-

pancy, Occupancy A indicates achieved occupancy. Experi-

ments are done on Tesla T4.

Con�guration Exec. time Occupancy T Occupancy A

<32, 32> 2.42 ms 46.88% 44.67%

<64, 32> 2.24 ms 40.81% 43.75 %

<128, 32> 2.33 ms 37.50% 34.63%

<256, 32> 3.49 ms 25.00% 24.63%

thread. This leads to at most 64 /64 = 1024 active threads; which

equals the maximum amount of 1024 active threads per SM on T4

(Table 3). On V100, this is below the maximum amount of 2048;

which already leads to a lower occupancy. This phenomenon is

also visible in Table 7. However, the occupancy is below 50% in all

cases. This means that there are other factors that attribute to the

low occupancy. These are (i) there are too little blocks or warps

launched per SM and (ii) the required amount of shared memory

per block is too high.

Block Size. We benchmark di�erent con�gurations for FLS-BP

global-to-shared, to investigate whether increasing block size im-

proves the occupancy reported in Table 7. However, Table 8 shows

that although the execution time increases slightly for a block size of

64, which is probably due to the reduction of scheduling overhead,

both the theoretical and achieved occupancy gradually decrease.

The decrease of occupancy can be attributed to the fact that we

con�gure around 65kb (as pointed out by ncu) of shared memory at

our initial launch con�guration for FLS-BP global-to-shared. This

implies that it is not possible to achieve a higher occupancy in

our current implementation since we are limited by the required

amount of shared memory per block. It is therefore more favorable

to use the global-to-register approach, where shared memory usage

will not become a bottleneck for bit-unpacking.

5 FASTLANES ON CRYSTAL

Our basic implementation of FastLanes on Crystal is referred to as

FLS-GPU. In FLS-GPU we integrate FastLanes with Crystal using

vectorized decompression (shown in the second scenario of Figure

1), where we decode the 1024 values using a block consisting of

32 threads, i.e. a single warp, such that each thread decodes 32

values. This approach is similar FastLanes on CPUs and is thus

trivial as a basic implementation. Crystal however uses registers

Q1.1 Q2.1 Q3.1 Q4.1
0

5

10

15

20

25

Ti
m

e
(m

s)

Crystal Tile-Based FLS-GPU

Figure 5: End-to-end SSB query execution times (SF10) on

Tesla T4. Naive FLS-GPU signi�cantly improves Q1.1 and

generally performs better than Tile-Based decompression.

Compared to Crystal however, there is still a performance

penalty.

to store in-�ight data. Relying on registers can be tricky, since

the programmer does not have explicit control over the placement

of data into registers. To guarantee that data resides in registers

Crystal processes only 4 values per thread. Each thread in a warp

can operate on at least 32 32-bit registers on a V100 GPU, which

means that registers can be used for up to 32

4
− 1 = 7 columns in

Crystal without a performance penalty.

When integrating FastLanes in Crystal, we choose to follow a

similar approach which resembles the global-to-register approach

explained in section 4. This is more bene�cial since (i) pro�ling

indicates that the occupancy is inevitably low due to sharedmemory

usage being a limiting factor for the global-to-shared version of

FLS-BP and (ii) the micro-benchmarks in Figure 4 show that the

global-to-register approach is the most performant for data that is

bit-packed in small bit-widths.

End-to-end benchmarks. We now benchmark the integration

of FastLanes (de)compression in end-to-end queries, for which we

use the Star Schema Benchmark (SSB) [6] queries implemented in

Crystal [8]. SSB is a modi�ed form of the TPC-H benchmark. Along-

side integrating FastLanes in Crystal, we compare the benchmark

results against Crystal-opt [2] and Tile-based decompression inte-

grated in Crystal as reported in [9]. We only benchmark a single

query from each di�erent query family (Q1.*, Q2.*, Q3.* and Q4.*

resp.), such that we can compare the performance among di�erent

types of queries within SSB. We chose to benchmark a scale-factor

of 10 since this will �t as a whole in global memory.

Figure 5 shows that for all queries, FLS-GPU performs better

compared to Tile-Based. However, except for Q1.1, FLS-GPU per-

forms worse than baseline Crystal. This is because FLS-GPU incurs

extra operations for decompression, and its naive approach of un-

packing 32 values per thread with a maximum of 1024 values per

block leads does not leverage the parallelism provided by GPUs.

Another unexpected result is the di�erence in behavior of FLS-

GPU on the V100 and T4 as observed in �gure 5 and �gure 6. In

fact, on T4, FLS-GPU performs signi�cantly better than Tile-Based

for all queries. On V100, however, Tile-Based outperforms FLS-

GPU on Q3.1 and Q4.1. To �nd an explanation for this behavior

we investigate whether register spilling or low occupancy cause

this low performance. Speci�cally occupancy might be problematic,

since Table 7 already indicated very low occupancy rates for FLS-

BP and FLS-DELTA on a V100 GPU – which negatively a�ects

performance.

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Azim Afroozeh, Lo�e Felius, and Peter Boncz

Q1.1 Q2.1 Q3.1 Q4.1
0

1

2

3

4

5

Ti
m

e
(m

s)

Crystal Tile-Based FLS-GPU

Figure 6: End-to-end SSB query execution times (SF10) on

NVIDIA V100. Naive FLS-GPU still improves Q1.1 but gen-

erally performs worse compared to both Tile-Based decom-

pression and Crystal.

Table 9: Occupancy for Q1.1, Q2.1, Q3.1 and Q4.1 using FLS-

GPU. Both theoretical occupancy (O-T) and achieved occu-

pancy (O-A) are reported for both T4 and V100 GPUs.

Query O-T T4 O-A T4 O-T V100 O-A V100

Q1.1 50.00% 49.07% 37.50% 36.39%

Q2.1 50.00% 48.54% 25.00% 24.32%

Q3.1 25.00% 24.50% 12.50% 12.11%

Q4.1 25.00% 24.67% 12.50% 12.17%

Register Spilling. FLS-GPU unpacks 1024 values at a time, putting

high pressure on registers. Therefore, a possible cause of slowdown

for FLS-GPU is register spilling. If the spill is signi�cant and the

caches are full, this can cause a high slowdown (explained in section

2.1). To determine if spilling occurs at compile time, we compile

the queries with the ‘–ptxas-options=-v’ �ag. We found that no

register spilling occurs at compile time for both FLS-GPU and Tile-

Based. However, for some queries, such as Q3.1 and Q4.1, which

includes large hash tables and multiple columns, FLS-GPU assigns

up to 226 registers per thread. This high amount of registers limits

the number of threads (and thuswarps) we can execute concurrently

on a SM, slowing down performance. Due to the high amount of

registers per thread, we obtain a low occupancy of 25% and even

12.50% for both queries on T4 and V100 respectively (Table 9).

Low Occupancy. Increasing the occupancy will, in most cases,

lead to better performance. In its current form, FLS-GPU can only

reach 50% of occupancy (Table 7 and Table 9), since it assigns only

32 threads, i.e. one warp, to a single block. Since the block limits

on T4 and V100 are 16 and 32 with corresponding warp limits of

32 and 64 respectively, the highest theoretical occupancy we can

achieve is 50% – assuming that register and shared memory usage

are no limiting factors. On V100, where there are on average only

32 registers per thread available (Table 3), we only reach a very

low theoretical occupancy of 12.50% for Q3.1 and Q4.1. This low

occupancy explains the bad performance of FLS-GPU compared

to Tile-Based on V100. To increase both theoretical and achieved

occupancy, we consider increasing the thread block size from 32

to 128 or 256 such that we will achieve the maximum amount of

blocks or warps that run concurrently on a SM.

However, only increasing the block size is not enough, as shown

in Table 8. To achieve a better occupancy we therefore need to (i)

reduce the amount of sharedmemorywe use per block and/or (ii) de-

crease the amount of registers used per thread. Since FLS-GPU uses

the global-to-register approach, we already minimized the amount

of shared memory used for bit-unpacking. If we want to boil down

shared memory usage even further, this would require adapting

the SSB queries in Crystal, which is out of scope. The second op-

tion is to reduce the register usage by unpacking less values per

thread. For example, we could unpack 8 values per thread using 128

threads per block, which still leads to a single block processing 1024

values. This form of scheduling almost resembles the Tile-based

processing model, which unpacks 4 values per thread for GPU-FOR

and GPU-DFOR, using a total of 128 threads per tile (i.e. thread

block). Another way to reduce the registers per thread is compiling

with the –maxregcount �ag or using __launch_bounds() param-

eter to limit the amount of registers per thread for all or speci�c

kernels. Forcing a lower amount of registers per thread however

leads to register spilling, which becomes quickly very expensive

and reduces the overall performance. Therefore, we aim to process

less values per thread to reduce register pressure in a more natural

way.

5.1 FLS-GPU-opt

The results in �gure 5 and �gure 6 show that FLS-GPU (green) only

improves performance over Crystal (yellow) in Q1.1. The reason

why this happens is that the other queries involve more columns

and joins which require in-memory hash-tables. As a consequence,

the register pressure generated by FLS-GPU becomes too high in

these queries. The register pressure in combination with schedul-

ing too few blocks per SM leads to a low occupancy which in this

case severely a�ects performance. Therefore, we started consid-

ering methods to reduce the register pressure and increasing the

thread block size, moving to FLS-GPU-opt; depicted in the right-

most scenario of Figure 1. The optimized version of FastLanes on

Crystal, FLS-GPU-opt, addresses shortcomings of FLS-GPU while

leveraging GPU parallelism. This includes releasing pressure on

registers by processingmini-vectors and using compressed execution.

In addition, FLS-GPU-opt achieves a better compression ratio by

using RLE for suitable SSB columns, such as lo_orderdate. Each

of the optimizations is brie�y explained below.

Processing mini-vectors. To release pressure of registers and

shared memory we partition a vector of 1024 values into mini-

vectors of 256 values. This means that each thread in a warp now

processes 8 values at-a-time, thus using 8 32-bit registers per col-

umn, a 4x reduction of register pressure. Technically, this means

that bit-unpacking logic is split over 4 FastLanes unpack methods;

each delivering 256 values. For bit-widths that are not multiples of

4-bits this leads to some additional work if the unpacking does not

start aligned on a 32-bits values, but the extra e�ort is low.

Compressed Execution. While processing queries in Crystal, all

SSB columns are handled in-�ight as 32-bit integer values. However,

some columns of the SSB benchmark can be encoded in signi�cant

smaller data types. Using smaller data types is bene�cial to reduce

both the memory footprint and memory bandwidth. This however

is not natural to GPUs, since each register in a GPU spans one

word, and each word consists of 32 bits. It is thus convenient to

Accelerating GPU Data Processing using FastLanes Compression DaMoN ’24, June 10, 2024, Santiago, AA, Chile

Q1.1 Q2.1 Q3.1 Q4.1
(a) Performance on T4

0

5

10

15

20

25

Ti
m

e
(m

s)

Crystal Tile-Based FLS-GPU-opt Crystal-opt FLS-GPU-128x8

Q1.1 Q2.1 Q3.1 Q4.1
(b) Performance on V100

0

1

2

3

4

5

Ti
m

e
(m

s)

Crystal Tile-Based FLS-GPU-opt Crystal-opt FLS-GPU-256x4

Figure 7: End-to-end SSB query execution times (SF10).

Naive FLS-GPU signi�cantly improves Q1.1; but it gener-

ates too much register pressure in the other queries, which

involve more columns and are hash-probe rather than scan-

bound. By reducing the decompression granularity with

mini-vectors, using more threads per block and simulating

RLE, FLS-GPU-opt can match its performance nevertheless.

decompress values into 32-bit integers to align with the word size.

However, decompressing values into 32 bits is ine�cient if signi�-

cantly less bits are needed. For example, let’s assume that we are

able to represent values of a column in 8-bits. We then can partially

decompress the bit-packed values into four 8-bit lanes in one 32-bit

register, instead of decompressing a single 8-bit value into 32 bits.

This also allows us to directly operate on these values at the same

time, within a single thread. Thus, we use some SIMD parallelism

with the GPU SIMT execution model. As a result, we are able to

(i) �t more data into registers which avoids spilling to L1 cache (ii)

enhance more data-parallelism by performing multiple operations

at the same time and (iii) reduce bandwidth by a factor 4.

Predicate Pushdown. In real-world systems, columns that do

not bene�t from bit-packing will not be compressed. Therefore,

we leave the column extended_price uncompressed, and we use

the <PredLoad> predicate-pushdown optimization proposed by

Crystal-opt [2] to reduce bandwidth. Crystal-opt [2] showed that

Crystal loads unnecessary data from global memory and this a�ects

performance.

Note that when using scans on compressed columns, such predicate-

pushdown is impossible (or, it would require random access to

compressed data). Therefore, all compressed data needs to be de-

compressed at least to shared memory, incurring global memory

bandwidth. Only if an entire vector or tile would have zero selected

tuples, this step could be skipped. This is similar to another opti-

mization of Crystal-opt, which terminates a thread and eventually a

warp early if no tuple is selected. However, this is mostly bene�cial

for highly selective queries, i.e. when a chunk of values does not

satisfy any of the selection �ags. None of the SSb queries Q1.1, Q2.1,

Q3.1 and Q4.1 bene�t from this.

Simulating RLE. In the current port of FastLanes to GPU, we

do not support RLE yet. The SSB LINEORDER table is clustered

on order, which means that it is quite RLE-compressible, as all

Table 10: Occupancy for Q2.1, Q3.1 and Q4.1 using FLS-GPU-

128x8 for T4 and FLS-GPU-256x4 for V100. Both theoretical

occupancy (O-T) and achieved occupancy (O-A) are reported.

Q1.1 is not included, since this query already outperformed

Crystal, Tile-Based and Crystal-opt signi�cantly.

Query O-T T4 O-A T4 O-T V100 O-A V100

Q2.1 100.00% 93.23% 100% 92.25%

Q3.1 87.50% 81.49% 75.00% 68.90%

Q4.1 87.50% 80.92% 75.00% 67.75%

columns that contain order information, rather than lineitem infor-

mation, repeat on average four times. In the SSB queries tested here,

this concerns the lo_orderdate and lo_custkey columns. Lack-

ing RLE, the compression ratio FLS-GPU achieve is diminished to

about 1.5x. In real-life datasets, such as public BI [4], FastLanes can

achieve a compression ratio of 8X. To mitigate the bad compression

ratio, partially caused by our lack of an RLE implementation, we

decided in a separate experiment to sort LINEORDER on columns

lo_orderdate and lo_custkey. This allows to store _orderdate

in 8 bits instead of 16, and l_custkey in 8 bits instead of 20 (real

RLE would reduce this even to 6 + 8 bits).

Larger Block Size. Table 9 indicates that the occupancy of FLS-

GPU on both T4 and V100 is low for all queries, but particularly for

Q3.1 and Q4.1. To improve occupancy by lowering register pres-

sure, we now move to a 8-values-per-thread model, which we call

mini-vectors, as described above. Instead of only launching thread

blocks consisting of 32 threads, we now increase the size to 128

threads per block for T4 to still decode 1024 values per block (FLS-

GPU-128x8). This allows to execute more warps concurrently while

reducing register pressure. For V100 however, there are even less

registers available per thread, leading to a higher register pressure.

Therefore, we choose to use a 4-values-per-thread model, using 256

threads per block to decode 1024 values per block (FLS-GPU-256x4).

For these con�gurations, we also remove the predicate pushdown

optimization and instead compress all columns.

5.2 Discussion

SSB Q1.1 is a simple scan with �lter and aggregation. The roof-line

analysis in [2] already showed that this query is the most scan-

bound – and thus stands to pro�t most from compressed storage.

The fact that Tile-Based compression is not able to improve per-

formance of this query is a missed opportunity, but explainable

from the fact that its encoding format lacks data-parallelism needed

by GPUs. The interleaving of values in a vector employed by Fast-

Lanes however allows Q1.1 to execute 2-3x faster, illustrated also

in Table 11. For Q1.1 the predicate-pushdown on extended_price

provided FLS-GPU-opt most of the additional gains over FLS-GPU.

For the other queries, where FLS-GPU su�ers from too high register

pressure, the FLS-GPU-opt bene�ts most from using mini-vectors.

Notably, we did not manage (yet) to make compression faster using

the idea of compressed execution, i.e. using data types smaller than

32-bits. The reason for this lack of success is as of yet unclear, and

there are still techniques we could try. We further think that more

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Azim Afroozeh, Lo�e Felius, and Peter Boncz

Table 11: On the scan-bound Q1.1 that stands to pro�t most

from compressed scans, FLS-GPU shows strong performance,

which is signi�cantly enhanced in FLS-GPU-opt.

Scheme SF1-T4 SF10-T4 SF1-V100 SF10-V100

Crystal 0.35 3.39 0.115 1.080

Crystal-opt 0.26 2.49 0.070 0.608

FLS-GPU 0.21 1.92 0.087 0.642

FLS-GPU-opt 0.139 1.19 0.057 0.335

complex encoding schemes, like RLE and DICT, which we so far

have not implemented, could bene�t from GPUs.

For Q3.1 we managed to increase the performance further by

sorting LINEORDER on lo_orderdate and lo_custkey to achieve

a better compression ratio. The query performance from FLS-GPU-

opt goes from 8.17 ms to 7.54 ms on T4, and from 2.78 to 1.33 on

V100. Speci�cally for the V100 GPU the performance increase is a

factor of 2, which is signi�cant. For Q4.1, the improved compression

ratio provided by sorting did not have a signi�cant impact. We do

intend to re-benchmark FLS-GPU when RLE support is ready and

this sorting is no longer required.

Lastly, aiming to increase occupancy, we scheduled larger thread

blocks. We found that for the T4 high occupancy is achieved for

thread blocks of 128 threads, that process 8-values-per-thread (Table

10). For Q2.1 this improved the execution time from 6.55 to 5.42ms,

for Q3.1 from 7.54 to 6.40ms and for Q4.1 from 8.99 to 7.12 ms. For

V100, we still su�er from severe register pressure, and therefore

were not able increase the occupancywith the 128x8 format. Instead,

we tried 256x4 to process even less values per thread. However,

register pressure remained problematic for the occupancy – only

little performance improvement is observed. We note though, that

Q3.1 and Q4.1 which involve more columns than the other two

queries, also cause lower occupancy for Crystal itself.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we tested the data-parallel layout of FastLanes on

GPUs. Both our micro-benchmarks as well as end-to-end SSB query

results show encouraging results. The micro-benchmarks in section

4 showed that FLS-GPU outperforms Tile-Based decoding by a

factor of 3-4x for bit-unpacking against GPU-FOR and FLS-DELTA

decoding against GPU-DFOR. We also show in contrast to Tile-

Based (which causes a 35% slowdown of end-to-end queries), that

the overhead incurred by FastLanes decompression in Crystal is

o�set by reduced memory bandwidth; an important bottleneck for

data processing on GPUs.

We also found drawbacks of the original 1024 tuples at-a-time

decoding granularity of FastLanes: this forced it to use at least 32

registers per thread - which are not always available, or to store 1024

values on shared memory for each block. This proved to become

a bottleneck on more complex queries with a multiple columns to

process. We addressed this issue using the idea of mini-vectors and

larger thread blocks, which perform FastLanes decompression in

four steps of each 256 or 128 values to reduce pressure on GPU reg-

isters and shared memory, as well as the idea of decoding into thin

data-types (8- and 16-bits). We however experienced that register

pressure on the V100 remains a challenge, and were not able to sig-

ni�cantly improve its execution time using a 256x4 con�guration.

FastLanes on GPUs is still in an early stage of development, and

its more complex encoding schemes (e.g. RLE) were not available yet

in CUDA during these experiments. This causes SSB experiments

to experience lower compression ratio’s than are normally possi-

ble with FastLanes. The experiments with an arti�cially enhanced

compression ratio (by sorting the LINEORDER table) already show

that end-to-end query performance will further improve once the

FastLanes GPU implementation reaches greater maturity.

6.1 Future work

Improving Mini-Vectors. In FastLanes, we bit-pack 1024 tuples

using the interleaved layout, which has as advantage that all 32

threads do the same decoding work (no divergence) and have coa-

lesced memory access. To support access using mini-vectors (we

experimented with 8 resp. 4 values per thread), for bit-widths other

than multiples of 4 resp. 8, memory access is not 32-bits aligned.

In our experiments we used our original decoding methods and

mitigated by rounding up bit-widths to the closest higher multiple

of 4 resp. 8, hurting compression ratio and thus performance. This

rounding up can be avoided by a proper implementation for all

bit-widths at some additional computational cost during decoding.

Reducing Mini-Vectors. The observed strong e�ects of register

pressure make us consider even smaller mini-vectors, and even

the extreme approach of threads doing single-tuple access. The

trade-o� here is increased computational overhead in decoding

calls, for invoking the decoding action appropriate for each mini-

vector, as well as for interpreting cascaded encodings. The decoding

interpretation cost would in the extreme case be incurred for each

tuple. We note that the variability of data in-the-wild requires an

interpreted approach for decoding, as parameters and encodings

used will vary between di�erent parts of a column.

Adding DELTA and RLE In this paper, we mainly focused on

bit-packing, as FastLanes on GPU is still in a very conceptual phase

of development, and the full set of basic encodings had not yet

been ported to CUDA (speci�cally DELTA/RLE and DICT). This

is an opportunity to further improve our results, since quite a few

columns from the SSB benchmark can be better compressed by RLE.

We think that using RLE we can further speed up SSB queries as

the overall compression ratio would increase.

Compressed Execution.We observed that the performance bot-

tleneck of SSB queries Q2.*, Q3.*, and Q4.* are join probes. Therefore,

memory latency is a signi�cant cost, caused by the random and non-

coalesced nature of hash-lookups; which may only be alleviated by

caching (mainly in the L2 cache). While this problem appears to be

unrelated to our main topic of accelerating compressed scans from

a novel big data format, we do think that the idea of compressed

execution (decompressing to thinner types) could allow to build

smaller hash tables (which are faster hash tables thanks to improved

caching locality). Further, a GPU data processing engine could po-

tentially even squeeze in-�ight data, by storing multiple thin (e.g., 8-

or 16-bit) values in a single 32-bit value, to reduce register or shared

memory pressure; thereby enabling higher kernel performance.

Accelerating GPU Data Processing using FastLanes Compression DaMoN ’24, June 10, 2024, Santiago, AA, Chile

REFERENCES
[1] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:

Decoding> 100 Billion Integers per Second with Scalar Code. Proceedings of the
VLDB Endowment 16, 9 (2023), 2132–2144.

[2] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. 2023.
GPU Database Systems Characterization and Optimization. Proceedings of the
VLDB Endowment 17, 3 (2023), 441–454.

[3] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database compression on
graphics processors. Proceedings of the VLDB Endowment 3, 1-2 (2010), 670–680.

[4] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: E�cient Columnar Compression for Data Lakes. Proc. ACM
SIGMOD 1, 2 (2023), 118:1–118:26.

[5] David Luebke. 2008. CUDA: Scalable parallel programming for high-performance
scienti�c computing. In 2008 5th IEEE international symposium on biomedical
imaging: from nano to macro. IEEE, 836–838.

[6] Patrick E O’Neil, Elizabeth J O’Neil, and Xuedong Chen. 2007. The star schema
benchmark (SSB). Pat 200, 0 (2007), 50.

[7] Eyal Rozenberg and Peter Boncz. 2017. Faster across the PCIe bus: a GPU li-
brary for lightweight decompression: including support for patched compression
schemes. In Proceedings of the 13th International Workshop on Data Management
on New Hardware. 1–5.

[8] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the funda-
mental performance characteristics of GPUs and CPUs for database analytics. In
Proceedings of the 2020 ACM SIGMOD international conference on Management of
data. 1617–1632.

[9] Anil Shanbhag, Bobbi W Yogatama, Xiangyao Yu, and Samuel Madden. 2022.
Tile-based lightweight integer compression in GPU. In Proceedings of the 2022
International Conference on Management of Data. 1390–1403.

[10] Johannes Unterguggenberger, Bernhard Kerbl, and Michael Wimmer. 2023.
Vulkan all the way: Transitioning to a modern low-level graphics API in academia.
Comput. Graph. 111 (2023), 155–165.

[11] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An Empirical Evaluation of Columnar Storage Formats.
arXiv preprint arXiv:2304.05028 (2023).

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Programming
	2.2 Lightweight Compression using FastLanes

	3 Related Work
	4 FastLanes on GPU
	4.1 Initial Implementation
	4.2 Micro-benchmarks

	5 FastLanes on Crystal
	5.1 FLS-GPU-opt
	5.2 Discussion

	6 Conclusions and Future work
	6.1 Future work

	References

