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ABSTRACT
We provide an evaluation of an analytical workload in a confidential
computing environment, combining DuckDB with two technolo-
gies: modular columnar encryption in Parquet files (data at rest)
and the newest version of the Intel SGX Trusted Execution Envi-
ronment (TEE), providing a hardware enclave where data in flight
can be (more) securely decrypted and processed. One finding is that
the "performance tax" for such confidential analytical processing is
acceptable compared to not using these technologies. We eventually
manage to run TPC-H SF30 with under 2x overhead compared to
non-encrypted, non-enclave execution; we show that, specifically,
columnar compression and encryption are a good combination. Our
second finding consists of dos and don’ts to tune DuckDB to work
effectively in this environment. There are various performance
hazards: potentially 5x higher cache miss costs inside the enclave,
NUMA penalties, and highly elevated cost of swapping pages in
and out of the enclave – which is also triggered indirectly by using
a non-SGX-aware malloc library.
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1 INTRODUCTION AND BACKGROUND
Confidential Computing aspires to protect data in use by perform-
ing computations in a hardware-based, attested Trusted Execution
Environment (TEE) [4]. Such TEEs are particularly useful in sce-
narios where sensitive data is outsourced to an untrusted external
cloud provider. The first general-purpose TEE technology intro-
duced in 2015 for mainstream hardware is Intel SGX – processing
queries on e. g. AES-encrypted data requires decryption, which
exposes sensitive data to malicious actors if they have access to
the RAM. SGX aims to protect against this threat by separating a
dedicated part of the RAM into a secure enclave. The enclave keeps
data encrypted at all times and only decrypts it transparently inside
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the CPU package (i. e. in the registers and CPU caches), making it
inaccessible for untrusted processes.

Intel SGX allows trusted and untrusted software to communicate
through ECALLs (enclave calls) and OCALLs (out calls) – these are,
respectively, special invocations from the application to the enclave,
and from the enclave to the application. Untrusted software initiates
ECALLs to transfer control flow to code inside the enclave. Similarly,
trusted software uses OCALLs to transfer control flow back to
code outside the enclave. These interactions involve a CPU context
switch and additional steps, such as flushing CPU caches and the
Translation Lookaside Buffer (TLB), to maintain the confidentiality
of enclave data. Communication between trusted and untrusted
software is thus expensive and should be avoided when possible.

SGX allocates a dedicated memory region, the Processor Re-
served Memory (PRM), which is protected from non-enclave ac-
cesses. The PRM contains the Enclave Page Cache (EPC), which in
turn stores code and data in encrypted memory pages of 4KB. To
provide an EPC size up to 512GB per socket, the newer version of
SGX (SGX2) makes use of the Total Memory Encryption – Multi-
Key (TME-MK), replacing the more expensive Memory Encryption
Engine (MEE) used in an older version of SGX. The TME-MK re-
lies on AES-XTS for encryption, and enables the creation of private
memory regions to assure confidentiality. SGX allows swapping
pages in/out of unprotected memory through EPC paging, which oc-
curs when the allocated memory for the PRM is exceeded. However,
this operation is much more expensive than regular page swapping
because of additional checks that guarantee the confidentiality and
integrity of evicted EPC pages.

This paper does not focus on the security aspect of query process-
ing with SGX –we are aware of many of its security vulnerabilities1.
We think SGX should not be considered a single measure to achieve
security but rather a hardening technology, given that all advised
mitigations are implemented. Properly operating SGX hardware
requires promptly implementing all advised advisories, requiring –
among others – regular microcode updates, and disabling simulta-
neous multi-threading. We hope to transfer some lessons from this
work to other/future enclave technologies, including those working
on the VM level (Intel TDX [5], AMDSEV [1], AWS Nitro [17], ARM
CCA [12]). Furthermore, we acknowledge additional potential se-
curity threats of our implementation and plan to resolve them in
the future.

1e. g.; https://sgx.fail lists vulnerabilities; www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00329.html is an example mitigation notice.
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SGX databases. Multiple database prototypes for Intel SGX1 exist,
e. g., StealthDB [9], EncDBDB [8], CryptSQLite [19], EnclaveDB [15],
and even DuckDB [2]. In particular, our previous work describes
and implements different approaches for a secure OLAP database,
deploying vectorized, compressed, and encrypted execution and
placing different components of the engine inside the enclave. In
all cases, the constrained EPC size of 256 MB significantly affected
query performance due to an inefficient page-swapping mechanism.
Consequently, most prototypes for database systems using SGX1
are considered impractical due to severe performance degradation
or weak security guarantees.

In SGX on the newer generations of Intel hardware (commonly
SGX2), the EPC constraint has been lifted since the maximum size
increased to 512GB per socket (with a maximum of two sockets per
enclave). This significant advancement in SGX technology opens up
new possibilities for secure applications. Due to its novelty, however,
limited research exists on database systems on SGX2. [14] describes
bottlenecks and challenges encountered during the execution of
joins in TEEs. [7] benchmarks SGX2, showing around 25% overhead
compared to an in-memory B-Tree. Recent work [13] conducts
an evaluation of analytical workloads on SGX2, investigating the
causes of performance overhead mainly present in hash and radix
joins. They argue that a large part of the overhead in SGX2 can be
attributed to expensive random memory accesses and a difference
in how the CPU executes code inside the enclave. In addition, they
warn of possible performance degradation when using internal
libraries inside the enclave.

The SGX enclave only allows to secure data while being pro-
cessed. However, when data exits the enclave, it is again vulnerable
to attacks and should be protected. In this paper, we aim to extend
the previous research by proposing a fully secure system, efficiently
safeguarding not only data in use, but also at rest. We run the TPC-
H benchmark to perform queries on encrypted Parquet files using
DuckDB in SGX2 to provide a secure end-to-end pipeline for analyt-
ical queries. We aim to ensure robustness and efficiency, instilling
confidence in potential real-world applications. Therefore, our main
research question is: how much does performance degrade inside an
enclave, and how to minimize this degradation?

2 DUCKDB-SGX2
Exploiting the larger EPC size, we run DuckDB entirely inside
an SGX enclave via Gramine [18], publishing the manifest in an
Open-Source repository2.

Gramine (formerly Graphene) is one of the most widely used
tools to port applications out-of-the-box to run them inside Intel
SGX enclaves. It strives for compatibility with the Linux kernel,
providing compatibility with the POSIX standards while remain-
ing minimalistic, implementing only the essential subset of Linux
functionality for running portable, hardware-independent applica-
tions. It has the capability to run unmodified Linux applications,
intercept application requests, and pull the OS functionality inside
the enclave. Database systems heavily rely on I/O, scheduling, and
memory management to perform their tasks: Gramine supports

2https://github.com/cwida/DuckDB-SGX2

Figure 1: DuckDB TPC-H 30GB power scores for various con-
figurations (compression, encryption, SGX); the "good" being
the light-purple vs. red (affordable confidentiality); the "bad"
light-orange and yellow vs. light-purple (SGX sensitivity to
configuration) and the "ugly" choice between blue and light-
purple: how much performance is more security worth?

more than half of the system calls available on Linux, making it fea-
sible to port such workloads3 but additionally allows to implement
new system calls.

DuckDB [16] is an embedded DBMS for analytical workloads,
such as data science and data transformation pipelines. It can seam-
lessly operate within mobile apps, in-browser environments (utiliz-
ing WASM), as well as on laptops and in cloud computing settings.
This flexibility is made possible by its compact footprint, portable
code, and lack of dependencies. Its in-process nature allows for
easy porting in Gramine since DuckDB can run directly within
the application. It is easily possible to build cloud services using
DuckDB by embedding it in a server process that accepts queries
from the network and sends result sets back. Our study also intends
to inform about the efficiency of such architectures if they were to
use SGX2 for security hardening.

DuckDB implements compressed vectorized execution, allowing
direct queries on Parquet files and recently added support for its
encryption. Specifically, a Parquet file consists of different modules:
pages, headers, column and offset indexes, and a footer. Parquet
Modular Encryption encrypts each of these separately, using AES-
GCM or AES-CTR (although the latter can only be used to encrypt
data pages).

For portability reasons, the DuckDB core system, which includes
its Parquet functionality, does not make use of assembly or intrin-
sics, as these are platform-specific; instead, DuckDB inlines the
pure C++ mbedtls library for dealing with encrypted data. How-
ever, ARM and X86 have specialized CPU instructions for AES
(not auto-generated by compilers), which are not used for Parquet
[de/en]cryption in DuckDB. We, therefore, modified the Parquet
functionality in DuckDB to switch at runtime to the OpenSSL imple-
mentation of encryption, exploiting dedicated AES CPU instruc-
tions whenever available. We show that this strongly improves
encryption and decryption performance.

3https://gramine.readthedocs.io/en/stable/
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However, during our preliminary experiments, we struggled to
explain a significantly deteriorating performance after running
multiple queries requiring large hash tables (e. g. Q18). Our investi-
gation eventually led us to disable the jemalloc memory allocator
that DuckDB uses by default on Linux (as recommended in the
annals of DaMoN [6]). We attribute the better performance of the
glibc malloc implementation to its perceived ability to give back
unused memory to the OS without incurring EPC paging, i. e., by
avoiding encryption of freed pages.

Evaluation.Our platform is a bare-metal instance provided by Intel,
running Ubuntu 23.10 with two Intel Xeon Platinum 8570 CPUs
(224 cores) and 1TB RAM across 4 NUMA regions. In order to obtain
the best performance, the data should fit in the enclave, the enclave
should fit in the EPC, and the EPC should be NUMA-local: hence we
run TPC-H SF30 onDuckDB 0.10with SET memory_limit=’40GB’ and
SET threads=56, requesting a 64GB enclave via Gramine 1.6, with
256GB EPC. The EPC is spread across the NUMA nodes; however,
the memory and cores used by Gramine are restricted to one region
using numactl.

Figure 1 starts with uncompressed, unencrypted Parquet (light-
blue). Adding compression (blue) slightly affects performance, but
instead, adding mbedtls encryption (light-green) causes a 3x slow-
down. Combining both (green) reduces the penalty to 2x, as less
data needs to be decrypted thanks to compression. Enabling the
use of AEX decryption CPU instructions (i. e. OpenSSL) turns the
tables, as uncompressed encrypted (pink) then becomes only barely
faster than compressed encrypted (red) and has as little as 10% over-
head in the TPC-H power score over uncompressed unencrypted
(light-blue). However, running this in SGX constitutes a perfor-
mance disaster due to the EPC paging caused by jemalloc memory
fragmentation (light-orange).

We attribute this behavior to the use of mmap calls by jemalloc:
each of these calls requires to zero the corresponding memory re-
gion, to provide default values to the memory application. Modern
operating systems implement optimizations to speed up this opera-
tion, such as inserting all-zero pages. However, SGX is not able to
take advantage of such strategies as it does not have access to the
page tables. This limitation leads to the usage of memset(0), which
also incurs additional overhead.

Switching to the glibc malloc brings us to the best SGX con-
figuration (light-purple), which only pays a 50% "security tax" for
SGX alone (red). We attribute the remaining overhead to expensive
cache misses and randommemory accesses, which occur frequently
in e. g. hash tables in joins and aggregations, and are known to be
less performant in Intel SGX [13]. The performance degradation
however is still acceptable; the overhead is less than 2x compared to
no security (light-blue). Note that this optimization is only feasible
when the enclave is larger than 64MB * 56 threads, as per-thread
arenas might consume a large portion of enclave memory. Further-
more, malloc is vulnerable to memory fragmentation, and it can
lead to out-of-memory errors quickly. We believe that mimalloc4
could be a better solution which suits both SGX and non-SGX query
processing, and we plan to evaluate this approach in our future re-
search. The roadmap also includes investigating and implementing

4https://github.com/microsoft/mimalloc

improvements in the way DuckDB employs jemalloc in order to
decrease the amount of mmap and munmap calls.

Letting go of the NUMA locality (dark-purple) also causes a slow-
down, and letting the DuckDB memory overrun the EPC size (yel-
low) induces EPC paging and performance disasters. Compression
reduces the memory footprint (orange) but is still quite inadequate.

Figure 2: Relative score of TPC-H SF30 (average of 5 runs,
compared to the encrypted Parquet mbedtls baseline — lower
is better). This goes up to 16x (yellow) when configurations
are not carefully optimized; however, in the best-case sce-
nario (light purple), each query suffers from at most 2x over-
head, a tradeoffwe consider acceptable in order to protect our
data. Furthermore, the overhead of SGX varies significantly
over different queries — we attribute this to the higher cache
miss cost.

Figure 2 shows a more detailed overview of the previously men-
tioned "bad" effects, compared with the "good" performance of the
appropriate configuration: in particular, we point out the impact of
paging when running different queries consecutively.

Finally, we look deeper into the performance bottlenecks of
single query operators. We denote that there are some queries
whose overhead is more significant, as noted in Figure 2: the queries
with the worst relative score (Q05, Q08, Q11, Q12, Q19) involve
either large aggregations or large joins. These operations, in general,
are typical for OLAP workloads and revolve around hashing, one
of the most expensive processes in terms of cache misses. When
performing the TPC-H queries on our machine, we incur up to 70%
misses for each query among all cache references.

This issue has already been assessed by previous work [14] [13],
denoting the bottleneck of the join performance on SGX. Further-
more, aggregation workloads with many unique groups are subop-
timal for hash aggregation on SGX. DuckDB’s hash aggregation is
inspired by HyPer’s parallel hash aggregation [11]. In the first phase
of the aggregation, as described in [10], each thread pre-aggregates,
i. e., duplicates, data in a small, fixed-size hash table that fits in the
CPU cache. When this hash table is full, it is reset, and the data
is radix-partitioned. This process repeats until all input data has
been read. The small fixed-size hash table keeps cache misses to
a minimum while still being able to efficiently reduce frequently
occurring groups. After the first phase, the radix-partitions are
exchanged. In the second phase, each thread performs a partition-
wise aggregation. During this phase, however, the hash table can

https://github.com/microsoft/mimalloc
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no longer be a small, fixed size; it must grow to fit all unique groups
in a partition. If the input contains many unique groups, the hash
table will be large, and the probability of cache misses increases,
diminishing lookup efficiency. Additionally, cache misses, along
with random access, seem to be another source of overhead in SGX,
and therefore amplify the performance degradation: future work
should deeply investigate this behaviour.

The number of ECALLS and OCALLS is furthermore in the order
of magnitude of hundreds of thousands for each query: since data-
base systems heavily rely on I/O and memory copy, it is essential
to investigate more efficient methods such as custom syscalls to
minimize this overhead, avoid unnecessary data movement, and
[en/de]cryption between disk and memory. In general, data move-
ment between CPU and encrypted memory seems to cause another
performance bottleneck due to the write amplification of encrypted
pages and their metadata.

DuckDB has a buffer manager to cache blocks of its internal
table format but does not use this for Parquet, which is an external
format. We note that if data at rest is already encrypted, the buffer
manager could make use of memory outside of the enclave to
avoid performance overhead incurred by mechanisms inside the
enclave [2].

3 SECURITY ASSESSMENT
In this section, we briefly discuss the security assessment of our
implementation. As we previously mentioned, this paper’s primary
focus is to provide an overview of the main bottlenecks of analytical
workloads on SGX2; however, for real-world usage, it is necessary
to understand the security model and its guarantees.

For data at rest, disk-based encryption serves as a foundational
layer in mitigating potential security threats, provided that proper
storage and management of encryption keys are ensured, a con-
sideration momentarily ignored in our design. While encrypted
files protect against unauthorized access, they introduce challenges
regarding data modification. Partial modifications to encrypted data
necessitate either the re-encryption of the entire database system or
the implementation of a Merkle tree for localized integrity checks.
The implementation of OLAP databases, in general, simplifies the
process of generating encrypted backups due to the reduced likeli-
hood of data modifications. However, while analytical workloads
often operate on static data, efficiently handling updates is still an
open research area.

Sensitive information is thus encrypted both at rest on disk and
in memory, with decryption occurring exclusively within CPU
caches, emitting decrypted (aggregated) results. Our related work
on Responsible Decentralized Data Architectures (RDDA) [3] elab-
orates on how we design our system to guarantee user privacy at
the data definition and manipulation levels, leveraging SGX as a
secure computation technology to emit anonymized query results.

However, additional measures are required to provide a fully
secure system, particularly in safeguarding data in use. These may
include hiding access patterns, encrypting buffers, preventing ma-
licious signal injection, and implementing secure out-of-core exe-
cution. Running the application with hyperthreading disabled can
mitigate certain well-known attacks5, and the newer Intel hardware

5https://sgx.fail/

addresses most vulnerabilities, but as we previously mentioned, all
these security measurements need to be promptly integrated. More-
over, all Parquet-related metadata must be protected to prevent the
inference of their structure and row groups. We plan to address
these enhancements in our future work.

Furthermore, database administrators will need to ensure adher-
ence to security policies such as strict access control, authentication
mechanisms, and user permissions. We acknowledge the presence
of limited security controls and access policies in our database
system. However, using encryption within DuckDB eases the man-
agement of access privileges by regulating access to encryption
keys. Furthermore, the memory encryption in SGX mitigates the
risks associated with potential memory leaks or buffer overflows.

4 CONCLUSION AND FUTUREWORK
We evaluated the confidential execution of analytical queries on
DuckDB using SGX2 and Modular Parquet Encryption. Our results
show that a well-configured system only incurs a 1.5x-2x overhead,
primarily due to the higher CPU cache miss cost in the enclave.
However, there are performance hazards, mostly EPC paging, and
a lack of NUMA locality. We tuned DuckDB to use AES CPU in-
structions, significantly speeding up decryption. Also, we disabled
jemalloc, which is SGX-unaware and causes EPC paging after mem-
ory fragmentation.

There is still significant future work to be done, both in evalu-
ating this setup on different enclave technologies and improving
database architectures for TEEs. Previous work [13] has managed
to gain performance improvements for query execution operations
tailored specifically to SGX. However, this is only a small part of
all the research opportunities opened by confidential computing
within data management systems.

Furthermore, our prototype does not address some necessary
security measurements such as the ones described in Section 3, and
its performance is not optimized for data transfer: data is encrypted
twice when moved inside the enclave, which incurs significant
overhead. Our roadmap includes implementing new system calls
such that the decryption of the data happens only when necessary.

We advocate and plan for vectorized decryption, which requires
more fine-grained encryption units than Parquet allows. We aim to
only decrypt into CPU caches, thus avoiding EEM (Enclave Memory
Manager) and memory movement costs. Finally, database systems
could not only use enclavememory but also some unsafe memory to
store non-sensitive or file-encrypted data, avoiding EEM overhead.
Such improvements would also allow more portability and support
of other secure hardware technologies while further improving the
query performance in analytical workloads.
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