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Abstract The balance of processes affecting electron density drives the dynamics of upper‐atmospheric
electrical events, such as sprites. We examine the detachment of electrons from negatively charged atomic
oxygen (O− ) via collisions with neutral molecular nitrogen (N2) leading to the formation of nitrous oxide (N2O).
Past research posited that this process, even without significant vibrational excitation of N2, strongly impacts the
dynamics of sprites. We introduce updated rate coefficients derived from recent experimental measurements
which suggest a negligible influence of this reaction on sprite dynamics. Given that previous rates were
incompatible with the observed decay of the light emissions from sprite glows, our findings support that glows
actually result from electron depletion in sprite columns.

Plain Language Summary Sprites are transient, filamentary luminous structures appearing between
approximately 50 and 85 km above Earth's surface. While the primary sprite activity is ephemeral, lasting mere
thousandths of a second, certain luminous features persist up to a hundred times longer. The key to
understanding these enduring structures lies in the evolution of free electron populations that facilitate electrical
conductivity. Here we show that a process that influences this population is slower than previously thought. This
may explain why luminous structures can persist for so long.

1. Introduction
Sprites are high‐altitude filamentary discharges occurring in the upper mesosphere following a strong cloud‐to‐
ground lightning discharge in a thunderstorm (Liu et al., 2015; Luque & Ebert, 2009; Pasko et al., 1997). One
notable benefit arising from the discovery of sprites (Franz et al., 1990) has been a renewed interest in the
chemistry of the upper mesosphere, in particular on the reaction mechanisms induced by free, super‐thermal
electrons as present in sprites, where they are accelerated by intense electric fields. Several questions motivate
this interest: for example, there is the question of whether sprites have global, regional, or local effects on the
composition of the atmosphere (Arnone et al., 2008; Gordillo‐Vázquez & Pérez‐Invernón, 2021; Malagón‐
Romero et al., 2023; Sentman et al., 2008). Understanding the spectra of sprites (Gordillo‐Vázquez et al., 2012;
Passas et al., 2016) is another motivation, particularly relevant in the context of space‐based detection of sprites
(Chanrion et al., 2019) and discrimination from other events such as Blue Luminous Events (BLUEs) in thun-
dercloud tops (Chanrion et al., 2017; Soler et al., 2020).

Finally, understanding the chemistry of electrons and ions in the upper mesosphere is crucial for elucidating the
fundamental physics of sprites. Conversely, investigations into sprites have highlighted previously overlooked
reactions. A notable example is the reaction of detachment of electrons from O− to form N2O, which is the focus
of the present work:

O− + N2 → N2O + e. (1)

Several numerical modeling works (Kotovsky & Moore, 2017; Liu, 2012; Luque & Gordillo‐Vázquez, 2012;
Neubert & Chanrion, 2013) highlighted the prominent role of the detachment reaction from O− on the sprite
inception and dynamics. In sub‐breakdown electric fields, the free electron population is not solely determined by
ionization reactions and their counterpart, attachment reactions, but also by detachment reactions such as
Equation 1 that reverse this attachment and return electrons to their free state. All these works assumed the most
recent laboratory measurements of reaction Equation 1 provided by Rayment and Moruzzi (1978), who argued
that the reaction is effective even when nitrogen is in its vibrational ground state. The detachment rates by
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Rayment and Moruzzi (1978) have been used in different contexts besides sprites. For instance, Pan-
cheshnyi (2013) considered how, among others, reaction Equation 1 influences an effective ionization rate
whereas da Silva and Pasko (2013) applied them to their investigation of the streamer‐to‐leader transition.

Other investigations, such as Luque et al. (2016) indicated potential inaccuracies in the reaction rate coefficients
of Rayment and Moruzzi (1978). That study explained the appearance in sprites of beads and glows, which are
luminous structures that persist for up to 100 milliseconds even after the main streamer activity has subsided
(Stenbaek‐Nielsen & McHarg, 2008). The model presented by Luque et al. (2016) matched the observed sprite
glow lifetimes as long as detachment reactions such as Equation 1 were disregarded. This was later confirmed by
Malagón‐Romero et al. (2020), where a similar mechanism was proposed as the origin of upward branches in
sprites which frequently, if not always, emerge from pre‐existing glows.

A further step was taken in a careful literature analysis by Janalizadeh and Pasko (2021), where, besides iden-
tifying several issues in the data reporting by Rayment and Moruzzi (1978), they pointed that under atmospheric
conditions electron detachment from O− is not possible in collisions with nitrogen in its ground state.

The controversy motivated Shuman et al. (2023‐a) to carry out new measurements of the reaction rate of
Equation 1. The rate coefficients of O− +N2 were measured using a flow tube apparatus under thermal conditions
from 800 to 1200 K; at lower temperatures the rate coefficients were smaller than the limit of the experiment. The
results were inconsistent with the literature determination by Rayment and Moruzzi (1978), but supported the
results of Janalizadeh and Pasko (2021) indicating that reaction with vibrational ground state N2 was negligible.
The results were model fitted and vibrationally resolved rate constants for v ≤ 2 derived with extrapolation over
the thermal range 300–1,400 K.

The objective of this study is to investigate the implications of an enhanced understanding of reaction Equation 1
on the chemistry of sprites and related high‐atmosphere electrical phenomena. We hope that this work will garner
interest of the geophysical community into the updated knowledge of electron detachment in the atmosphere.

2. Updated Reaction Rate
As described in detail by Shuman et al. (2023‐a), the O− + N2 associative detachment reaction must overcome
two kinetic bottlenecks. First, a large energetic barrier separates the weakly bound entrance complex O− (N2) from
the metastable, but longer‐lived, N2O

− intermediate. Second, the system must cross from the N2O
− anion po-

tential surface to the N2O neutral potential surface. It happens that both the height of the energetic barrier and the
location of the lowest‐energy crossing geometry are very similar, about 0.3 eV above the energy of the separated
reactants. Shuman et al. (2023‐a) successfully reproduced the measured thermal rate constants with a simple
model, by considering only the vibrational state of N2 and the relative kinetic energy of the reactants. Increased
vibrational energy increased the probability of overcoming the transition state to N2O

− (both from the inherently
higher energy and from increased overlap with the geometry of the transition state, which lies at a larger N‐N bond
distance). Increased kinetic energy also increased the probability of overcoming the transition state, but decreased
the probability of crossing to the neutral surface, such that increasing kinetic energy initially increases the rate
coefficient but at larger values decreases the rate coefficient.

The vibrationally‐resolved thermal rate constants reported by Shuman et al. (2023‐a) can be converted to a
function of E/n. The effective kinetic energy in the center‐of‐mass reference frame is given by the Wannier
expression (Viggiano & Morris, 1996; Viggiano & Williams, 2001) and for our particular case reads:

3
2
kTeff =

3
2
kT0 +

1
2
mN2

v2d, (2)

where k is the Boltzmann constant, Teff is an effective translational temperature, T0 is the gas temperature, mN2
is

the mass of the molecular nitrogen and vd is the ion drift velocity. The drift velocity is a function of the applied
electric field strength (E) divided by the air density (n) and the reduced ion mobility (κ0)

vd = κ0n0
E
n
, (3)
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where n0 is Loschmidt's number. We can then define the drift velocity at temperature T0 equivalent to the thermal
velocity at temperature Teff as

vd (Teff ,T0) = [
3k(Teff − T0)

mN2

]

1/2

. (4)

Here T0 is taken to be 200 K, an approximation for the gas temperature at an altitude of 70 km and Teff are the
temperatures reported by Shuman et al. (2023‐a). The values of κ0 are interpolated from the compilation of
Viehland and Mason (1995) up to E/n = 100 Td and extrapolated from that data up to 120 Td. Table 1 contains
the resulting reaction rate coefficients for reaction Equation 1.

Table 1
Reaction Rate Coefficients for the Reaction O− + N2(v) → N2O + e for Different Values of an Effective Collision
Temperature Teff and Reduced Electric Field E/n

Teff(K) E/n (Td) K0 (m
2 V− 1 s− 1)

k (m3 s− 1)

v = 0 v = 1 v = 2

200 0 3.33 × 10− 4 2.33 × 10− 26 5.42 × 10− 19 1.72 × 10− 17

300 32 3.5 × 10− 4 1.06 × 10− 23 9.93 × 10− 19 1.42 × 10− 17

400 43 3.67 × 10− 4 2.23 × 10− 22 1.29 × 10− 18 1.22 × 10− 17

500 50 3.81 × 10− 4 1.34 × 10− 21 1.47 × 10− 18 1.06 × 10− 17

600 56 3.94 × 10− 4 4.56 × 10− 21 1.57 × 10− 18 9.42 × 10− 18

700 61 4.06 × 10− 4 1.07 × 10− 20 1.63 × 10− 18 8.43 × 10− 18

800 65 4.17 × 10− 4 2.02 × 10− 20 1.66 × 10− 18 7.60 × 10− 18

900 69 4.27 × 10− 4 3.30 × 10− 20 1.67 × 10− 18 6.90 × 10− 18

1,000 72 4.35 × 10− 4 4.85 × 10− 20 1.67 × 10− 18 6.30 × 10− 18

1,100 75 4.43 × 10− 4 6.62 × 10− 20 1.65 × 10− 18 5.78 × 10− 18

1,200 78 4.5 × 10− 4 8.56 × 10− 20 1.63 × 10− 18 5.32 × 10− 18

1,300 81 4.55 × 10− 4 1.06 × 10− 19 1.60 × 10− 18 4.91 × 10− 18

1,400 83 4.56 × 10− 4 1.26 × 10− 19 1.56 × 10− 18 4.55 × 10− 18

1,500 86 4.59 × 10− 4 1.46 × 10− 19 1.53 × 10− 18 4.23 × 10− 18

1,600 89 4.62 × 10− 4 1.66 × 10− 19 1.49 × 10− 18 3.94 × 10− 18

1,700 91 4.66 × 10− 4 1.85 × 10− 19 1.45 × 10− 18 3.67 × 10− 18

1,800 94 4.69 × 10− 4 2.03 × 10− 19 1.45 × 10− 18 3.43 × 10− 18

1,900 96 4.72 × 10− 4 2.19 × 10− 19 1.36 × 10− 18 3.21 × 10− 18

2,000 99 4.75 × 10− 4 2.34 × 10− 19 1.32 × 10− 18 3.01 × 10− 18

2,100 102 4.78 × 10− 4 2.48 × 10− 19 1.28 × 10− 18 2.83 × 10− 18

2,200 105 4.8 × 10− 4 2.60 × 10− 19 1.24 × 10− 18 2.66 × 10− 18

2,300 107 4.83 × 10− 4 2.71 × 10− 19 1.20 × 10− 18 2.50 × 10− 18

2,400 110 4.85 × 10− 4 2.80 × 10− 19 1.16 × 10− 18 2.36 × 10− 18

2,500 113 4.87 × 10− 4 2.89 × 10− 19 1.12 × 10− 18 2.23 × 10− 18

2,600 117 4.89 × 10− 4 2.95 × 10− 19 1.08 × 10− 18 2.11 × 10− 18

2,700 120 4.91 × 10− 4 3.01 × 10− 19 1.04 × 10− 18 1.99 × 10− 18

2,800 123 4.93 × 10− 4 3.06 × 10− 19 1.01 × 10− 18 1.89 × 10− 18

2,900 127 4.95 × 10− 4 3.09 × 10− 19 9.77 × 10− 19 1.79 × 10− 18

3,000 131 4.97 × 10− 4 3.12 × 10− 19 9.44 × 10− 19 1.70 × 10− 18

Note. K0 is the mobility of O− ions for the given electric field, at atmospheric pressure and 300 K. For drift velocities below
103 ms− 1 (reduced electric fields below E/n ≈ 85 Td) we use ion mobilities interpolated from Viehland and Mason (1995) for
higher reduced electric fields we extrapolate as K0 = 1 × 10− 4 m2 V− 1 s− 1 × ln(vd(Teff)/10

− 2 m s− 1) − 7 × 10− 4 m2 V− 1 s− 1.
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The dependence of the reaction rate coefficients on the effective temperature
is well approximated by a modified Arrhenius expression of the form

k = k0(
Teff

300K
)

d

exp(−
TA

Teff
). (5)

The best‐fit parameters k0, TA and d for v = 0, 1, 2 are listed in Table 2.
Figure 1 shows the rate coefficients as well as the values from expression
Equation 5. Also, as a reasonable approximation that foregoes the use of

interpolating tables for the ion mobility, we also show the results of Equation 5 with a constant reduced ion
mobility κ0 = 4.5 × 10− 4 m2 V− 1 s− 1. By further neglecting T0 in 4, we reach this simple expression for the
reaction rate coefficient:

Table 2
Fitting Parameters for the Reaction Rate Coefficients for the Reaction
O− + N2(v) → N2O + e With v = 0, 1, 2 According to Expression 5

v k0 (m
3 s− 1) TA (K) d EA/n (Td)

0 3.98 × 10− 17 5,097 − 1.36 176

1 9.04 × 10− 18 674 − 0.85 64

2 2.74 × 10− 17 186 − 1.10 34

Figure 1. Rate coefficients of O− + N2(v) → N2O + e for v = 0, 1, 2. On the left panel we show the dependence of the rate
coefficients on temperature assuming equilibrium conditions. The dots correspond to the values in Table 1 whereas lines
show the fits using Equation 5 with the parameters listed in Table 2. The right panel shows the rate dependence on the
reduced electric field, following the conversion of Equations 3 and 4 with T0 = 200 K. The solid lines use the same fits as in
the left panel and the ion mobilities from Viehland and Mason (1995). The dashed lines replace these mobilities by a field‐
independent reduced ion mobility κ0 = 4.5 × 10− 4 m2 V− 1 s− 1 and the dotted lines also neglect thermal motion (T0 = 0).
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k = k0(
E/n
43 Td

)

2d

exp(− (
EA/n
E/n

)

2

), (6)

with the values of reduced electric fields EA/n listed in the last column of Table 2. These rate coefficients are
represented in 1 with dotted lines; they provide a reasonable approximation for reduced electric fields above
40 Td, where the energy imparted by the electric field dominates over thermal motion at 200 K.

We also plot in Figure 1 the reaction rate coefficients by Rayment and Moruzzi (1978) as approximated by
Pancheshnyi (2013) (labeled as RM78). For most of the studied range of reduced electric field, the updated rate
coefficients for the vibrational ground state of N2 (v = 0) are several orders of magnitude below those from
Rayment and Moruzzi (1978). Close to the classical breakdown field (E/n ≈ 120), the updated rate is still about
five times lower than RM78.

3. Implications
We now discuss some of the implications of the new rates on the physics of upper‐atmospheric electrical dis-
charges. Table S1 in the Supporting Information S1 details a simple chemical scheme that accounts for the main
processes within a halo or sprite discharge and up to about 100 ms after its initiation. The rate coefficients for
electron‐molecule processes, which depend on the electron energy distribution function, are modeled by solving
the steady‐state Boltzmann equation with the Bolsig+ solver (Hagelaar & Pitchford, 2005) and the Phelps' cross‐
section database (Lawton & Phelps, 1978; Phelps & Pitchford, 1985) as provided by LxCat (Carbone et al., 2021;
Pancheshnyi et al., 2012; Pitchford et al., 2017). With these rates we approximate the vibrational distribution of
the electronic ground state of nitrogen, which induce associative detachment from O− with the rates discussed in
the previous section. We also consider detachment from O2

− and negative ion conversion as modeled by Pan-
cheshnyi (2013). Finally, for the sake of completeness, we include positive ion conversion as modeled by
Aleksandrov and Bazelyan (1999) and electron‐ion and ion‐ion recombination as modeled by Kossyi et al. (1992).

To compare with previous models, we also consider a reaction scheme where the rate of Equation 1 follows
Rayment and Moruzzi (1978) as fitted by Pancheshnyi (2013) and regardless of the vibrational state of N2. We
name the two models “new” and “RM78.”

First we look at the chemical evolution under constant reduced electric field. Figure 2 shows the evolution of the
main negatively‐charged species in the wake of a streamer that leaves an electron density ne = 1011 m− 3 at an
altitude of 80 km. The left column of the figure (labeled (a)) corresponds to the reaction rates of Equation 1
presented here, whereas the right column (b) contains the densities predicted by the rates by Rayment and
Moruzzi (1978). In both cases we simulate constant applied reduced electric fields of 70 Td and 90 Td.

There are clear differences between the two columns. Enhanced detachment rates of O− in the right column yields
higher electron and O− densities by the end of the simulated evolution. Electron densities with the updated and the
RM78 rates start to diverge at around 1 ms. Specifically, at an electric field strength of 70 Td with the updated
rate coefficients, the electron density exhibits a two‐order‐of‐magnitude reduction prior to stabilization. In
contrast, according to the rate coefficients of Rayment and Moruzzi (1978), the electron density experiences only
a marginal decrease before entering a growth regime. At 90 Td, and considering the new updated rates, the
reduction in the electron density is still a factor of 6 greater than the obtained with the rate coefficients by
Rayment and Moruzzi (1978). The evolution of the vibrational populations considered in this model is repre-
sented in Figure S1 in the Supporting Information S1, where we see that, despite being populated by electron
impact, the densities of the v= 1 and v= 2 states remain at least two orders of magnitude below the density of the
vibrational ground state.

Next we investigate the consequences of the updated reaction rate coefficient in a self‐consistent 2D axisym-
metric model of a sprite discharge. In this model, the electron density (ne) under a local electric field E, evolves
according to the conservation equation:

∂tne = ∇ ⋅ (μeE + De∇ne) + Ce, (7)

Geophysical Research Letters 10.1029/2023GL107990

MALAGÓN‐ROMERO ET AL. 5 of 10

 19448007, 2024, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
107990 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [12/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where μe and De are the electron mobility and the diffusion coefficient, and Ce is the chemical source term ac-
counting for the chemical reactions listed in Table S1 in the Supporting Information S1. Transport coefficients (μe

and De) are assumed to be functions of the local electric field and are computed with Bolsig+ (Hagelaar &
Pitchford, 2005) using as above the cross sections for electron impact with N2 and O2 provided in Phelps' database
retrieved from LxCat.

Neutral species and ions (ni with i = 0, 1, …) are considered motionless and their time evolution obeys a
simplified version of Equation 7, namely,

∂tni = Ci, (8)

where Ci is the chemical source term determined by the reactions in Table S1 in the Supporting Information S1.

The electric field E, is calculated as E = − ∇ϕ, where ϕ is the electrostatic potential obtained upon the solution of
Poisson's equation

Figure 2. Evolution of the dominant negatively‐charged species in our chemical models under a constant reduced electric
field. Starting with an initial condition of an electron density of 1011 m− 3, which is representative of the state of a sprite
column in the wake of a streamer at 80 km.
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∇2ϕ =∑
s

qsns

ε0
, (9)

where the sum extends over all charged species s, qs is the charge of the species s and ɛ0 is the vacuum
permittivity.

The model is implemented in Afivo‐streamer (Teunissen & Ebert, 2017) and is based on Afivo (Teunissen &
Ebert, 2018), an octree‐based adaptive mesh refinement framework, with OpenMP capabilities and a geometric
multigrid solver for Poisson's equation. Equations 7 and 8 are solved with an explicit second order time stepping
and a flux‐limited second order accurate spatial discretization.

In this study, we initiate our model with the exact same conditions discussed by Malagón‐Romero et al. (2020),
that consist in a neutral column of radius a0= 400 mwith a truncated funnel attached to its lower part that roughly
approximates the multiple branching events the parent streamer discharge undergoes as it propagates. The initial
electron density is then computed as

ne(r, z) = ne,0 (z)
a20

a(z)
max(0,1 −

r2

a(z)2
) + ne,bg(z), (10)

where ne,0(z) = Cnair (z) is the electron density at the axis, C = 3.33 × 10− 11, nair is the air density obtained by
scaling the ground air density nair,0 = 2.5 × 1025 m− 3 as nair(z) = nair,0 exp (− z/7.2 km), and a(z) is a piece‐wise
linear function that models the radius of the channel and the funnel, ensuring a smooth transition. The funnel has a
radius of 5 km at the base zb = 50 km with the upper vertex at zu = 60 km and is calculated as

a(z) = max(a0,
zu − z
zu − zb

× 5 km). (11)

Finally, the background electron density follows the Wait‐Spies profile estimated by Hu et al. (2007):

ne,bg(z) = 10− 2 cm− 3 exp(‐
z − 60 km
2.86 km

). (12)

The computational domain is a 10 km radius and 40 km height cylinder with its base at 40 km altitude. The
minimum grid spacing in our simulation has been 1.22 m.We apply homogeneous Neumann boundary conditions
at all boundaries to solve Equations 7 and 8. Poisson's equation has been solved with homogeneous Neumann
boundary conditions at the outer radial boundary. The bottom boundary is grounded while the top boundary is set
to a fixed voltage of 2.9 MV. The result is a constant background field of 72.38 V/m pointing downwards, setting
a reduced electric field E/nair of approximately 120 Td at roughly 77 km.

The results are displayed in Figure 3 where we show simulated light emissions (N2 1P) from the sprite column.
With the detachment rate coefficients of Rayment and Moruzzi (1978) (RM78) a more elevated conductivity
inside the column contributes to a fast screening of the electric field and light emissions that decay within a few
milliseconds. On the other hand, with the updated rates of detachment (new), the attachment instability discussed
for example, by Luque et al. (2016) leads to a sharply defined, light‐emitting segment which is consistent with
observations (Bór, 2013; Stenbaek‐Nielsen & McHarg, 2008).

A closer look at the light‐emitting segment in Figure 4 shows that the luminosity decays faster than exponentially
within 5 ms when using the RM78 detachment rate coefficients. This contrasts with the results for the new
detachment rate coefficients (Table 1). In this case, the luminosity exhibits an exponential decay, consistent with
observations (Luque et al., 2016), with a decay constant of approximately 1.7 ms. The exponential trend becomes
evident after 6 ms, whereas observations show it almost from the very beginning. We attribute this discrepancy to
the neutral charge conditions used to initiate the simulation (Luque et al., 2016).
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Figure 3. Modeled light emissions from a sprite column. Both for the reaction rate coefficients by Rayment and
Moruzzi, (1978) (upper row) and the updated reaction rate coefficients in Table 1 (lower row), we show the instantaneous
emissions of photons from the first positive system of molecular nitrogen (N2 1P). The snapshots are taken at intervals of
0.1 ms up to 0.5 ms and of 0.5 ms afterward.

Figure 4. Emissions from the first positive system of N2 integrated in 400 m‐radius and 1 km‐tall cylinders centered at 71 km,
73 and 75 km altitudes, considering the detachment rate coefficient from Rayment and Moruzzi (1978) (RM78) and the
updated detachment rate coefficients from table 1 (new), showing faster than exponential and exponential decay respectively.
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4. Conclusions
In this work we provide updated rate coefficients for the reaction of associative electron detachment and discuss
its implications for the dynamics of sprites. For the vibrational ground state of N2, these rate are significantly
smaller than previous estimates. We conclude that, given the low population of vibrationally excited N2, this
reaction is too slow to play a significant role in sprites. Future investigations of electrical phenomena in the upper
atmosphere should consider the new understanding of electron associative detachment presented here.

Data Availability Statement
The code containing the simple sprite chemical model used to generate Figure 2 is available in Malagón‐Romero
et al. (2024a). The output and source files for the generation of the results presented in Figures 3 and 4 are openly
available in Malagón‐Romero et al. (2024b).
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