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Summary

We develop novel approaches to enhance the functionality and efficiency of digital twins
through deep learning techniques. Digital twins, sophisticated virtual models of physical
systems, serve as dynamic counterparts, mirroring real-world entities’ behavior and perfor-
mance. Their primary role includes real-time monitoring, flaw detection, automated control,
and proactive maintenance. To perform such tasks it is necessary to use various methods
from scientific computing to combine data with physics models. Furthermore, to assess the
reliability of a digital twin, it is important to not only make predictions, but also quantify
the uncertainty of estimations and predictions. In this regard, Bayesian methods serve as a
natural framework to pose the problems. However, the complexity and real-time operation
requirements pose significant computational challenges. The thesis explores the integration
of deep learning in scientific computing for enabling digital twins. The focus is on overcoming
the computational hurdles in real-time data assimilation and inverse problem-solving through
surrogate modeling. Deep learning, with its capability to handle high-dimensional functions in
both deterministic and stochastic settings is shown to be a viable solution to these challenges.

This work investigates several key areas, beginning with a brief introduction to digital
twins, data assimilation, and inverse problems. It proceeds to elaborate on the role of
Bayesian inversion problems in static and dynamic contexts, highlighting the importance of
uncertainty quantification. The focus is on the challenges of real-time computation and the
potential of Bayesian methods, despite their computational intensity. The thesis investigates
deep learning architectures like Dense and Residual Neural Networks, Convolutional Neural
Networks, Recurrent Neural Networks and Transformers.

The core contributions are presented in the four main chapters of the thesis:

1) Reduced Order Modeling for Parameterized Time-Dependent Partial Differ-
ential Equations: Here, we focus on the forward problem. We introduce a novel deep
learning framework for the numerical solution of parameterized partial differential equations
(PDEs), focusing on spatially and memory-aware neural networks. We discuss strategies to
achieve long term predictions of the time dependent solution. The approach is demonstrated
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iv Summary

on a linear advection equation and incompressible Navier-Stokes equations.

2) Markov Chain Generative Adversarial Neural Networks: Here, we aim to
enhance Bayesian inversion for static problems with sparse observations. We present a unique
algorithm using Markov Chain Monte Carlo methods and Generative Adverserial Networks
(GANs) for solving Bayesian inverse problems in physics applications. A GAN is trained to
sample from the prior distribution and is then embedded into a Hamiltonian Monte Carlo
procedure for sampling from the posterior. By using a GAN to generate samples from the
the prior distribution, the posterior can be formulated in a latent space, significantly lowering
the dimension of the problem. Furthermore, sampling then becomes computationally cheap
as it only requires evaluating the GAN generator. We prove that sampling in the latent
space is equivalent to sampling directly in the high-fidelity space in a weak sense, as well as
convergence of the posterior in the Wasserstein-1 metric. The method is demonstrated on a
Darcy flow problem and leakage detection in pipe flow.

3) Probabilistic Digital Twin for Leak Localization: In this chapter, we look into the
specific problem of leak localization in water distribution networks. A probabilistic framework
for leak localization is developed, utilizing generative deep learning in form of supervised
Wasserstein Autoencoders. The autoencoder consists of transformer neural networks that
are trained to generate the flow rates and head losses conditional on a leak location and
size. In the online stage, the autoencoder is used to speed up a Bayesian inference procedure,
resulting in a posterior over all possible discrete leak locations. The approach is tested on
several network models that are commonly employed in the literature.

4) The Deep Latent Space Particle Filter: The final contribution involves a real-time
nonlinear data assimilation method for dynamic PDEs with uncertainty quantification. We
utilize the findings from the previous chapter to develop a method that assimilates data
online, by introducing a transformer-based dimensionality reduction and time stepping in
the context of particle filters. We present various regularization techniques to ensure that
the latent space has desirable properties. The resulting methodology, the Deep Latent Space
Particle Filter (D-LSPF), is showcased on the viscous Burgers’ equation, harmonic wave
generation over a submerged bar, and leak localization in multi-phase pipe flow. In all cases
observations are sparse in both time and space.

The thesis offers comprehensive and novel contributions to the field of digital twins, fo-
cusing on solving, real-time, inverse problems and data assimilation through advanced deep
learning methods. The methodologies proposed not only address the existing computational
limitations but also open new avenues for the practical application of digital twins in various
industries.



Samenvatting

We ontwikkelen nieuwe benaderingen om de functionaliteit en efficiëntie van zogenaamde
‘digital twins’, of ‘digitale tweelingen’ te verbeteren door middel van deep learning-technieken.
Digitale tweelingen zijn geavanceerde virtuele modellen van fysieke systemen. Ze fungeren
als dynamische tegenhangers die het gedrag en de prestaties van echte systemen reflecteren,
en kunnen worden gebruikt voor bijvoorbeeld realtime monitoring, foutdetectie, geautoma-
tiseerde besturing en proactief onderhoud. Om dergelijke digitale tweelingen mogelijk te
maken, is het noodzakelijk om verschillende methoden uit de wetenschappelijke computing
te gebruiken om gegevens met fysica-modellen te combineren; om de betrouwbaarheid van
een digitale tweeling te beoordelen is het verder belangrijk om niet alleen voorspellingen te
doen, maar ook de onzekerheid van schattingen en voorspellingen te kwantificeren. Hier zijn
Bayesiaanse methoden een natuurlijk kader. Echter, de complexiteit en de eisen aan realtime
operaties vormen een aanzienlijke computationele uitdaging. Deze thesis verkent de integratie
van deep learning in wetenschappelijke computing om digitale tweelingen mogelijk te maken.
De focus ligt op het oplossen en beheersbaar maken van de computationele hindernissen bij
realtime data-assimilatie en het oplossen van inverse problemen via surrogaatmodellering.
Deep learning, met het vermogen om hoog-dimensionale functies in zowel deterministische
als stochastische settings te hanteren, wordt ontwikkeld tot werkbare oplossingen voor deze
uitdagingen.

Dit werk onderzoekt verschillende sleutelgebieden, beginnend met een korte introductie
tot digitale tweelingen, data-assimilatie en inverse problemen. Vervolgens wordt uitgebreid
ingegaan op de rol van Bayesiaanse inversieproblemen in statische en dynamische contexten,
met nadruk op het belang van onzekerheidskwantificering. De focus ligt op de uitdagingen van
realtime berekening en het potentieel van Bayesiaanse methoden, ondanks hun computationele
intensiteit. De thesis onderzoekt deep learning-architecturen zoals Dense en Residual Neural
Networks, Convolutional Neural Networks, Recurrent Neural Networks en Transformers.

De voornaamste bijdragen worden gepresenteerd in de vier primaire hoofdstukken van de
thesis:
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1) Gereduceerde Orde Modellering voor Geparametriseerde Tijdafhankelijke
Partiële Differentiaalvergelijkingen: Hier richten we ons op het forward problem.
We introduceren een nieuw deep learning-framework voor de numerieke oplossing van
geparametriseerde partiële differentiaalvergelijkingen (PDE’s), met focus op ruimtelijk en
geheugenbewuste neurale netwerken. We bespreken strategieën om langetermijnvoorspellin-
gen van de tijdafhankelijke oplossing te bereiken. De aanpak wordt gedemonstreerd aan de
hand van een lineair advectie probleem.

2) Markov Chain Generatieve Adversariale Neurale Netwerken: Hier is ons doel
om Bayesiaanse inversie voor statische problemen met spaarzame observaties te verbeteren.
We presenteren een algoritme met behulp van Markov Chain Monte Carlo-methoden en
Generatieve Adversariale Netwerken (GAN’s) voor het oplossen van Bayesiaanse inverse
problemen in fysica-toepassingen. Een GAN wordt getraind om te sampelen uit de prior-
verdeling en vervolgens ingebed in een Hamiltonian Monte Carlo-procedure voor het sampelen
uit de posterior. Door een GAN te gebruiken om samples uit de prior-verdeling te genereren,
kan de posterior worden geformuleerd in een latente ruimte, wat de dimensie van het probleem
aanzienlijk verlaagt. Bovendien wordt het sampelen computationeel goedkoop omdat het
alleen het evalueren van de GAN-generator vereist. We bewijzen dat sampelen in de latente
ruimte equivalent is aan direct sampelen in de hoog-dimensionele ruimte in een zwakke
zin, evenals convergentie van de posterior in de Wasserstein-1-metriek. De methode wordt
gedemonstreerd op een Darcy-stromingsprobleem en lekdetectie in pijpstroom.

3) Probabilistische Digitale Tweeling voor Leklokalisatie: In dit hoofdstuk bestud-
eren we het specifieke probleem van leklokalisatie in waterdistributienetwerken. Een proba-
bilistisch kader voor leklokalisatie wordt ontwikkeld, gebruikmakend van generatief diep leren
in de vorm van Wasserstein Autoencoders. De autoencoder bestaat uit transformer neurale
netwerken die getraind zijn om de debieten en drukverliezen te genereren, conditioneel op een
leklocatie en -grootte. In de online fase wordt de autoencoder gebruikt om een Bayesiaanse
inferentieprocedure te versnellen, resulterend in een posterior over alle mogelijke discrete
leklocaties. De aanpak wordt getest op verschillende netwerkmodellen die vaak worden
gebruikt in de literatuur.

4) De Diepe Latente Ruimte Partikelfilter: De laatste bijdrage betreft een real-time
niet-lineaire data-assimilatiemethode voor dynamische PDE’s met onzekerheidskwantificering.
We gebruiken de bevindingen uit het vorige hoofdstuk om een methode te ontwikkelen die
gegevens online assimileert, door een op transformers gebaseerde dimensionaliteitsreductie en
tijdstappen in de context van particle filters te introduceren. We presenteren verschillende
regularisatietechnieken om ervoor te zorgen dat de latente ruimte gewenste eigenschappen
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heeft. De resulterende methodologie, de Diepe Latent Space Particle filter (D-LSPF), wordt
gedemonstreerd op de viskeuze Burgers-vergelijking, harmonische golfgeneratie over een
ondergedompelde bar, en leklokalisatie in meerfasige pijpstroom. In alle gevallen zijn de
waarnemingen spaarzaam, zowel in tijd als ruimte.

Deze thesis biedt uitgebreide en vernieuwende bijdragen aan het veld van digitale tweelingen,
gericht op het oplossen van realtime inverse problemen en data-assimilatie door middel van
geavanceerde deep learning-methoden. De voorgestelde methodologieën pakken niet alleen
de bestaande computationele beperkingen aan, maar openen ook nieuwe mogelijkheden voor
de praktische toepassing van digitale tweelingen in verschillende industrieën.
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1
Introduction

1.1 Digital Twins

A digital twin is a sophisticated virtual model of a physical object or system [127]. It acts as
a dynamic digital counterpart, reflecting the real-world entity’s behavior, characteristics, and
performance. In the realm of fluid dynamics, for example, a digital twin must adeptly handle
intricate phenomena like turbulence and fluid-structure interactions. This is achieved by
integrating fluid flow equation solutions with data from diverse sources, including IoT devices
and sensors, leading to a multifaceted interplay of multiple mathematical and computational
models. These models span various physical phenomena and scales, contributing to the
digital twin’s complexity.

The practical applications of a fully functional digital twin are manifold. Its primary
role is to facilitate a deeper understanding and enhanced utilization of the physical asset.
By mirroring a physical entity digitally, one can engage in real-time monitoring to detect
flaws, implement automated control through closed-loop optimization, and explore ’what-if’
scenarios for proactive maintenance. Essentially, the digital twin operates as a versatile
simulation platform or a ’sandbox.’

Digital twins stand out from traditional high-fidelity models by being accurate represen-
tations of the physical asset throughout its entire lifecycle. Unlike a conventional simulation

1



2 1. Introduction

focused on a specific process, a digital twin comprises various interacting models, enabling the
simulation of multiple processes simultaneously. Moreover, whereas a conventional simulation
is designed for a specific problem, a digital twin continuously adapts and calibrates itself
based on incoming data streams [6, 79]. The aim of a digital twin is comprehensive real-time
mirroring, as opposed to a conventional simulation’s focus on particular processes of interest.

Nevertheless, the complexity and the need for real-time operation make digital twins
challenging to implement and use. The substantial computational requirements for real-time
calibration, prediction, and control present a significant hurdle. Additionally, the need for
reliable output necessitates uncertainty quantification, making the computational burden
even larger. This thesis proposes to address these challenges by leveraging deep learning for
efficient real-time data assimilation, enhancing the practicality and performance of digital
twins.

1.2 Data Assimilation and Inverse Problems

This section offers a concise introduction to data assimilation and inverse problems, focusing
on delivering an intuitive grasp of these concepts without going into the deep theoretical
aspects such as function spaces and advanced theoretical results. These more complex
considerations are reserved for later chapters where they are discussed in detail as required.

At its core, data assimilation and inverse problems are concerned with deducing the
underlying parameters and/or states that have generated a particular set of observations
[33, 78]. This process is commonly divided into two categories: state estimation, which is
the deduction of the state from a limited set of observations, and parameter estimation or
calibration, which is the inference of parameters.

In defining an inverse problem, we begin by identifying three essential elements: the state,
denoted as q(µ), the parameters, represented by µ, and the observations, symbolized as y.
It’s important to recognize that the state typically depends on the parameters. For example,
in fluid dynamics, the state might comprise velocity and pressure fields, the parameters could
include the Reynolds number, but also boundary condition values or the location of a source,
and the observations might be pressure readings from a limited number of sensors.

Throughout this thesis, we adopt specific notation for clarity: Capital letters represent
stochastic variables, P (X = x) denotes the probability of X equaling x, and ρ symbolizes
the probability density function (PDF) associated with the distribution P . We assume the
existence of a PDF for all discussed distributions.

The relationship between the state and the observations is established through the
observation operator, H, expressed as follows:

y = H(q(µ)) + η, η ∼ Pη(η) (1.1)
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Here, η represents the noise in the observations. The observation operator essentially maps
the complete state to specific observation points, such as sensor locations. The inverse
problem, therefore, involves calculating q and/or µ based solely on the available observations
y. In this context, q(µ) represents an idealized true state, which, in reality, is unattainable.
However, it is usually assumed that q adheres to a physical process that can be described by
a partial differential equation (PDE), referred to as the forward problem:

F (q(µ), µ) = 0. (1.2)

It is important to note that this formulation pertains to static problems. In the context of
dynamic phenomena, the forward problem is given by:

∂tq(t, µ) = F (q(t, µ), µ, t), (1.3)

with the corresponding observations being:

y(t) = H(q(t, µ)) + η(t). (1.4)

Practically, one often considers the discrete-time version of this problem:

qn(µ) = Fn(qn−1(µ), µ), (1.5)

yn = H(qn(µ)) + ηn. (1.6)

Where qn(µ) = q(tn, µ) for a time discretization, t0, . . . , tN . When F represents a PDE,
space discretization is further applied to transform this into a set of algebraic equations.

1.2.1 Bayesian Inverse Problems

There are two primary methods for solving an inverse problem: the variational approach
and the Bayesian approach [33, 147]. The variational approach involves formulating an
optimization problem that includes an objective function and the forward problem. This
objective function is designed to quantify the discrepancy between actual and simulated
observations. Solving this optimization problem directly yields the state and/or parameters,
using the forward map as either a regularization term or, alternatively, as a hard constraint.
Conversely, the Bayesian approach treats the problem as an estimation of the posterior
distribution. It utilizes the forward problem and observations to calculate a likelihood, which
is then combined with a prior distribution over the states and/or parameters.

The variational approach is typically faster and simpler to implement but lacks uncertainty
quantification. It also necessitates a differentiable solver for the forward problem or the
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derivation of adjoint equations. The Bayesian approach, however, provides a comprehensive
view of the state and parameters through the posterior distribution, inherently quantifying
uncertainty. This method incurs higher computational costs; it either requires pre-selecting a
family of distributions or employing sampling techniques like Monte Carlo sampling. While
sampling methods are powerful in approximating any distribution, making them suitable for
nonlinear, complex problems, they are computationally intensive. Each sample necessitates
solving the forward problem, often requiring numerous samples for accuracy. This thesis
focuses exclusively on Bayesian methods, prioritizing the quantification of uncertainty in
solutions.

1.2.2 Static and Dynamic Inverse problems

Static and dynamic inverse problems differ in their temporal aspects. Static inverse problems
seek to determine the posterior distribution of a system’s state and/or parameters when
there is no temporal evolution. In contrast, dynamic inverse problems involve identifying the
state and/or parameters at various time points as new data becomes available.

Static Inverse Problems

We first introduce the concept of the augmented state, denoted as u = (q, µ). This augmented
state contains both the state and the parameters, simplifying our notation.

The posterior PDF of the augmented state, ρu|y(u|y), is derived from Bayes’ theorem
and is expressed as:

ρu|y(u|y) =
ρy|u(y|u)ρ0(u)∫
ρy|u(y|u)ρ0(u)du

, (1.7)

where ρu|y represents the posterior, ρy|u(y|u) the likelihood, ρ0(u) the prior, and the denomi-
nator signifies the evidence. The likelihood, specifically, models the probability of observing
y given a particular state, u. As derived from the earlier general inverse problem formulation,
it can be reformulated as,

ρy|u(y|u) = ρη(y −H(u)). (1.8)

Here, the likelihood essentially quantifies the residual between the forward model’s output
and the observations, considering the observation noise. When given observations y, the
likelihood is often considered a function of u, namely Φ(u) = ρη(y−H(u)), at which point it
ceases to be a PDF.

The prior PDF encapsulates our initial beliefs about the system, generally informed
by previous experiments or knowledge about the system. Selecting an appropriate prior is
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Figure 1.1: Illustration of the distributions in Bayesian inference.

critical, as an inadequate choice can severely affect the posterior.

The evidence is the unconditional probability of the observed data and serves the role
of normalizing the posterior to ensure it integrates to 1. However, it is often overlooked in
many algorithms since it doesn’t directly influence the parameter of interest.

The interplay between the posterior, prior, and likelihood is visualized in Figure 1.1.

Computing the posterior as per (1.7) is a complex task. As previously noted, the true
posterior is typically approximated through sampling methods. These methods aim to
sample from the posterior without calculating it directly. To accurately represent the entire
distribution, a large number of samples is needed. The computation of the posterior (which
is the product of the compute-intensive prior and the likelihood) is particularly resource-
intensive, as it necessitates solving the forward problem, making real-time computation
challenging. Significant research efforts focus on enhancing the efficiency of sampling, by
reducing the number of samples required. Techniques such as Markov Chain Monte Carlo
(MCMC) and its variations, including Hamiltonian Monte Carlo and Langevin Monte Carlo,
are developed to minimize wastage of resources on unlikely sampling regions in the augmented
state space (refer to Section 3.2 for more on these methods). Even with these advanced
methods, it’s common to require between 103−106 samples to accurately depict the posterior.

In Chapters 3 and 4, we explore and demonstrate techniques to expedite this process
using generative deep learning approaches.

Dynamic Inverse Problems

Dynamic inverse problems, unlike their static counterparts, incorporate the added dimension
of time, often being synonymous with data assimilation in many contexts.
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Similar to static Bayesian inverse problems, our goal is to compute a distribution of the
augmented state based on the observations. In the dynamic scenario, however, the posterior
distribution is over full trajectories of states in time. To express this, we introduce the
notation u0:n = u0, . . . , un. Applying Bayes’ theorem, the posterior is then given by:

ρ(u0:n|y0:n) =
ρ(y0:n|u0:n)ρ(u0:n)∫

ρ(y0:n|u0:n)ρ(u0:n)du0:n
, (1.9)

where

ρ(y0:n|u0:n) =
n∏

i=0

ρ(yi|ui), ρ(u0:n) = ρ(u0)

n∏

i=1

ρ(ui|ui−1). (1.10)

Rather than calculating the posterior over the entire trajectory, we focus on estimating the
posterior filtering distribution at each time step:

ρ(un|y0:n) =
ρ(yn|un)ρ(un|y0:n−1)∫
ρ(yn|un)ρ(un|y0:n−1)dun

, (1.11)

where

ρ(un|y0:n−1) =

∫
ρ(un|un−1)ρ(un−1|y0:n−1)dun−1. (1.12)

This implies that the posterior distribution at a given time step, n, can be calculated using
the posterior from the previous time step to establish the current prior. Repeatedly applying
this process yields a series of posterior distributions.

The computation of ρ(un|un−1) involves the forward problem, Fn, as shown in Eq. (1.5).
This forward problem is often modified with stochastic perturbations to account for model
errors (see Section 5.2 for details).

As with static cases, the filtering distribution, ρ(un|y0:n), is typically not possible to
compute analytically, necessitating numerical methods. Challenges arise particularly when
dealing with high-dimensional states and/or parameters and complex forward problems
characterized by nonlinearities or discontinuities. In such instances, accurately represent-
ing ρ(un|un−1) becomes computationally prohibitive, especially for real-time applications.
Certain methods, like the Kalman filter, simplify the complexity by assuming Gaussian
distributions, focusing on calculating the mean and variance of the posterior. However, the
Kalman filter is limited to linear forward problems. The ensemble Kalman filter extends this
approach to weakly nonlinear problems, still under the assumption of Gaussian distributions.
While computationally efficient, it struggles with highly nonlinear and non-Gaussian problems.
This is where more general methods, such as particle filters, become necessary. Particle
filters do not impose constraints on the forward problem or the distributions, but require a
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significantly higher computational effort due to the increased number of samples needed for
propagation over time (more details in Section 5.2).

In Chapter 5, we introduce the Deep Latent Space Particle Filter, an innovative approach
that leverages neural networks to enhance the efficiency of particle filtering.

1.3 Deep Learning in Scientific Computing

For digital twins to operate effectively and reliably, they must be capable of executing
Bayesian inversion in real-time, as Bayesian inversion is the preferred method for estimating
an unknown distribution of any type. However, as previously mentioned, this can be
highly challenging due to the extensive computations required, especially in solving the
forward problem multiple times for high-dimensional, nonlinear problems. Consequently, the
integration of deep learning into scientific computing has become an increasingly common
practice [17, 43, 87].

Deep learning focuses on modeling with deep Artificial Neural Networks (ANNs), com-
monly referred to simply as neural networks (NNs). These networks map inputs to outputs
through a sequence of affine transformations and nonlinear activation functions, drawing
inspiration from the human brain’s complex neural network [50].

NNs offer several beneficial properties for scientific computing. They are universal
approximators [71], implying that, given sufficient training data and network depth, they can
approximate theoretically any function. They excel at handling high-dimensional functions
and, due to their architecture, calculating gradients is computationally efficient through a
process known as backpropagation [133].

As data-driven models, neural networks are trained on a collection of examples, known as
training data. During training, the network adjusts its weights to minimize a loss function,
gradually improving its performance [50].

It’s crucial to recognize that neural networks form a vast and varied class of functions,
with their primary unifying feature being the multi-layered processing of data. Various
types of layers exist within neural networks, including dense, convolutional, recurrent, and
transformer layers, each with its own set of strengths and weaknesses [50]. The subsequent
section will introduce and detail the kinds of layers relevant to this thesis.

1.3.1 Neural Network Architectures

Dense Neural Networks

The arguably most common ANN architecture is the dense neural network (DNN). A DNN
can be considered a function, G : RNi → RNo , consisting of a series of affine transformations,
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Figure 1.2: Visualization of a feedforward densely connected neural network.

Ti, followed by an element-wise (nonlinear) activation function, σi:

G(x; θ) = σL ◦ TL ◦ . . . ◦ σ1 ◦ T1(x). (1.13)

The combination of an afine transformation followed by the activation is called a neuron.
The afine transformation can be written as Ti(x) = Wix + bi, where W ∈ RMi×Mi−1 and
b ∈ RMi . We call Wi the weight matrix, bi the bias vector, and Mi the number of neurons in
layer i, and L the number of layers. (1.13) is conveniently visualized as a network of neurons.
We will refer to the set of parameters as θ = {W1, b1, . . . ,WL, bL}.

Residual Neural Networks

A residual neural network is a neural network that consists of residual layers. A residual
layer is defined by having a skip connection bypassing the normal layer. That is, a residual
layer is given by

xi+1 = F i(xi) + xi, (1.14)

where xi is the output of layer i and F i is the ith layer. F i typically consists of a linear
layer, followed by an activation function, and then another linear layer. The linear layers can
be either dense or convolutional.

ResNets were developed to deal with the so-called vanishing gradient problem. The
vanishing gradient problem occurs when the gradients of the NNs weights become very
small as they are propagated back through the network. This is particularly problematic
in networks with many layers (deep networks). The advantage of using ResNets is that the
problem of vanishing gradients is not very apparent, which makes them easier to train [63].
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Convolutional Neural Networks

Convolutional neural networks (CNNs) gained attention due to their great performance in
image recognition. The general principle is to utilize local properties of the data instead
of only considering global properties. This is done by having local connections and shared
weights in the neural networks. These properties are not only important for detecting patterns
in data but it also enable computations on very high-dimensional data.

A convolutional layer is effectively a feature map where each unit in the layer is connected
to a local patch of the previous layer through a filter bank and an activation function. A feature
map at layer l is a tensor, H l ∈ RN l

chan×N l
1×N l

2 , where H l
i,j,k is a unit at channel i, row j, and

column k. The filter bank at layer l is a 4-dimensional tensor, F l ∈ RN
l
filter×N l−1

chan×k1×k2 ,
where F li,j,m,n connects a unit in channel i of the output and channel j of the input with
m and n being the offset of rows and columns respectively. N l

filter denotes the number of
filters in the feature bank in layer l and k1 and k2 denotes the kernel size. The convolution
operation between a feature map and a filter bank is given by

H l
i,j,k = σl



N l−1

chan∑

r=1

N l−1
1∑

m=1

N l−1
2∑

n=1

H l−1
r,(j−1)s+m,(k−1)s+nF

l
i,r,m,k +Bli,j,k


 , (1.15)

where Bli,j,k is a bias term and σl is an activation function applied element-wise. s denotes
the stride, effectively downsamples the feature map between layers. The filters, F li,r,m,k, and
biases, Bli,j,k, are the learnable parameters while the kernel sizes, k1, k2, the stride, s, and
the number of filters, N l

filter, are chosen. Often these are subject case specific objectives or
hyperparameter optimization.

Causal Convolutional Neural Networks

As the name suggests, causal convolutional neural networks (CCNNs) are related to convolu-
tional neural networks.

CCNNs are used for encoding time series data with the purpose of forecasting or classifi-
cation [14, 110]. The approach is to use 1-dimensional convolutions on time series data. In
the multivariate case, the multiple dimensions are interpreted as channels. The term causal
refers to the fact that the filter banks are only convolved with the current and previous time
steps, thus establishing a causal relationship between the past and the future.

Recurrent Neural Networks and Long Short-Term Memory

A recurrent neural network (RNN) is an alternative to a CCNN for interpreting time series
data. In this thesis, we solely focus on a specific RNN called long short-term memory (LSTM)
[68]. For an input consisting of several previous time steps, xn, an LSTM layer consists of
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four components [49]: An input gate:

in+1 = σ (Wix
n + bi) , (1.16)

a forget gate:

fn+1 = σ (Wfx
n + bf ) , (1.17)

an output gate:

on+1 = σ (Wox
n + bo) , (1.18)

and a cell state

cn+1 = i⊙ cn + in ⊙ tanh (Wcx
n + bc) . (1.19)

The prediction is then given by

xn+1 = on ⊙ tanh (cn) . (1.20)

Wi, bi,Wf , bf ,Wo, bo,Wc, bc are the trainable weight matrices and bias vectors, and ⊙ is the
Hadamard product. Ideally, the input gate identifies what information to be passed to the
cell state, the forget what to be dropped, and the output gate decides what to be passed to
the final prediction.

Attention and Transformers

A transformer model, a sophisticated neural network architecture, excels in understanding
context and semantics within sequential data, such as the arrangement of words in a sentence.
By employing advanced techniques like attention mechanisms, these models analyze the
interplay between different elements of the sequence, perceiving subtle dependencies and
influences even across distances. This quality to capture relationships within sequential data
makes transformer models particularly adept at unraveling the complexities of temporal
dynamics, making them well-suited for tasks requiring a deep understanding of sequential
events within time stepping for PDE-based physical models .

Transformers were introduced in 2017 [156] and rapidly became the default choice for
natural language processing. Since then, transformers have outperformed the state-of-the-art
methodologies in areas such as image recognition [29], protein structure prediction [76], and
time series forecasting [29].

We will highlight the relevant features of the transformer architecture used in this thesis.
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Figure 1.3: Transformer encoder and decoder architecture.

The key to the transformer architecture is the so-called attention mechanism. The scaled
dot-product attention is the method of choice here. For a matrix, X ∈ Rk×d, the scaled
dot-product attention is computed by:

K = Fk(X) ∈ Rk×d, Q = Fq(X) ∈ Rk×d, V = Fv(X) ∈ Rk×d, (1.21a)

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V, (1.21b)

where K is referred to as the keys, Q the queries, and V the values. Fk, Fq, and Fv are
typically shallow neural networks to be fitted during training. k is the context length and
d is the embedding dimension. An attention layer typically consists of so-called multiple
attention “heads”. Each head is of the same structure, but consists of different functions Fk,
Fq, and Fv, resulting in multiple attention maps, Ci, that are concatenated along the dth

dimension.

By connecting the attention layer to a residual connection, a normalization layer, a
dense neural network, another residual connection and another normalization, we have the
transformer encoder module. See Figure 1.3 for a visualization.

In Equation (1.21), the attention described is referred to as self-attention, referring to
the fact that all elements of X only attend to other elements in X. Similarly, one defines
cross-attention by using the attention map from another source as keys and values. By
combining this with self-attention, normalization and a dense neural network, we have the
decoder transformer module, see also Figure 1.3 for a visualization.

The transformer encoder and decoder networks are not aware of the relative positions of
the individual nodes. Therefore, a positional encoding is added to the features before passing
them through the transformers.
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1.3.2 Deep Learning-Based Surrogate Models

With an understanding of relevant neural network (NN) layers established, we now turn
our attention to the applications of NNs in scientific computing, particularly focusing on
surrogate models. A surrogate model is essentially a replacement for a high-fidelity model.
While it offers the advantage of faster evaluation, this comes at the cost of reduced accuracy
and potentially extensive offline training.

The implementation of surrogate models typically involves two distinct stages: the offline
and the online stages. During the offline stage, the surrogate model is defined and trained
using relevant data. In scientific settings where actual data is scarce, this training data
is often generated through simulation using high-fidelity models, making the offline stage
resource-intensive. The online stage involves utilizing the trained surrogate model for real-
time predictions or for integration into other computational tasks, such as control systems or
data assimilation processes.

Surrogate models can be built through various approaches, primarily differentiated by
whether they are intrusive or non-intrusive. Historically, intrusive methods were more preva-
lent, with techniques like proper orthogonal decomposition (POD) being widely employed.
POD involves generating a set of high-fidelity data, denoted snapshots, which are then used to
create an optimal low-dimensional basis via singular value decomposition. This basis is used
to project the high-fidelity model onto a lower-dimensional space, reducing computational
demands (refer to Section 2.3.1 for detailed discussion on POD). Although effective in many
cases, POD struggles with highly nonlinear or hyperbolic problems due to the slow decay
of the Kolmogorov N -width, making significant speed improvements difficult. Additionally,
intrusive methods require access to the underlying PDE models, which can be restrictive if
the source code is not available.

In contrast, non-intrusive surrogate models offer greater flexibility and potentially larger
speed-ups during the online stage, as they operate purely on inputs and outputs without
solving equations. However, they typically demand more training data and time. These
challenges are mitigated to some extent by the fact that training occurs during the less
time-sensitive offline stage. The learning task is more complex in non-intrusive models, as
they must learn the entire input-output relationship without a model prior. This complexity
is where NNs excel, capable of modeling intricate relationships far beyond traditional methods
like polynomial chaos expansion.

Numerous examples of deep learning-based surrogate models in scientific computing exist.
In [40, 160], neural networks are trained non-intrusively to map parameters and to solve
a PDE at specific times. For time stepping, conventional architectures such as LSTMs
and CNNs have been developed to non-intrusively approximate parametric time stepping
[105, 166]. Here, the neural network surrogate advances the state in time, conditioned
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on the provided parameters. Recent work has also explored alternative neural network
architectures for surrogate models, such as transformers, graph neural networks, and Fourier
neural operators [43, 58, 91, 111].

Within this thesis, we explore NN applications in surrogate modeling across three key
categories:

• Dimensionality Reduction – focusing on reducing the state dimensionality;

• Time Stepping – using NNs to advance the state in time;

• Generative Modeling – learning a distribution to enable efficient sampling.

Each category is outlined below and detailed in subsequent chapters.

Dimensionality Reduction

Dimensionality reduction is the process of reducing high-dimensional data into a low-
dimensional representation. Traditional methods like Principal Component Analysis (PCA)
[157] and Proper Orthogonal Decomposition (POD) [67, 123] have been standard approaches,
but they often fall short with highly nonlinear and hyperbolic problems. To address these
challenges, nonlinear methods, particularly those employing neural networks (NNs), have
gained traction due to their ability to achieve more substantial dimensionality reductions.

A key technique in this area is the autoencoder (AE), a specialized NN framework designed
for data-driven dimensionality reduction (refer to [81, 151] for foundational work). An AE
is composed of two parts: an encoder that compresses the data into a lower-dimensional
’latent’ state, and a decoder that reconstructs the original data from this latent representation.
Detailed discussions on AEs are found in Section 2.3.2.

The construction of both the encoder and decoder in an AE can incorporate various types
of NN layers, each chosen based on the specific nature of the data. For instance, convolutional
layers are prevalently used in scientific computing due to their efficacy in processing spatially
structured data, as demonstrated in Chapter 2. However, certain applications demand higher
accuracy than convolutional layers can provide. To address this, we also explore the use of
transformer layers, known for their powerful sequence modeling capabilities, in Chapters 4
and 5. These layers offer enhanced performance in applications where convolutional layers
are insufficient, showcasing the versatility and adaptability of NNs in scientific computing.

Time Stepping

Time stepping is a critical task in computational modeling, involving the progression of
a system’s state over time. The objective here is to leverage a neural network (NN) to
approximate the time advancement function, Fn, as shown in Eq. (1.5). Essentially, this
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means using an NN to predict the subsequent state, qn, based on the current state, qn−1.
Adopting an NN for this purpose offers several potential advantages that can significantly
speed up the process of time advancement.

One key benefit of using an NN for time stepping is the ability to take larger time steps. Un-
like traditional methods that are often constrained by factors like the Courant–Friedrichs–Lewy
(CFL) condition [89], NNs are not bound by such limitations, allowing for more flexibility
in time incrementation. Additionally, NNs generally require a single evaluation to progress
in time, contrasting with conventional time stepping approaches that necessitate multiple
evaluations, whether through several stages in Runge-Kutta methods or solving a set of
nonlinear equations in implicit methods.

In this thesis, our focus is on training NNs for time stepping within a reduced-dimensional
space, achieved through dimensionality reduction via an AE. In such scenarios, non-intrusive
methods become essential since deriving explicit equations for the latent state is not possible
due to the nonlinear nature of the encoder. Consequently, the NN dedicated to time stepping
learns this function solely from data.

Significant speed improvements are realized as the time stepping occurs in a substantially
lower-dimensional space. This reduction not only accelerates the time stepping process itself
but also facilitates efficiency in subsequent tasks, such as data assimilation. Operating these
tasks within the latent space benefits from the reduced dimensionality, thereby enhancing
overall computational efficiency and effectiveness.

Deep Generative Models

Deep generative models are a type of neural network that learns how to sample from complex
distributions, which are typically difficult to sample from directly. These models achieve this
by learning a transformation (known as a ’pushforward’ map) to convert simple distribution
samples (like those from a standard normal distribution) into samples resembling the target
data.

Key frameworks for deep generative models include, Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), Wasserstein Autoencoders (WAEs), and Denoising
Diffusion Models. Each model comes with it’s advantages as well as disadvantages. To this
end we talk about three qualities a generative model can have: Speed, quality, and mode
coverage. GANs excel at speed and quality, but it is difficult to achieve full mode coverage.
VAEs and WAEs offer speed and mode coverage, but generally produce samples of lower
quality. Denoising diffusion models are slow but provides high-quality samples and mode
coverage.

As speed is of utmost importance for our real-time applications, we are not discussing
denoising diffusion models further, but are focusing on GANs and WAEs in the following
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chapters instead.

1.4 Structure of Thesis

In this thesis, we introduce a range of deep learning-based methodologies aimed at enhancing
digital twins. Our primary focus is on accelerating the forward problem and optimizing
data assimilation processes for both static and dynamic problems. Throughout the thesis,
each chapter deals with distinct aspects, ultimately building towards a suite of tools and
techniques.

Chapter 2

In this chapter, we develop a methodology that speeds up simulations of dynamic PDEs. We
present a framework that makes use of AEs for nonlinear dimensionality reduction and time
stepping NNs for time stepping in the latent space. The AE is made up of convolutional NNs,
which ensures that the dimensionality reduction utilizes the spatial structure of the states.
Furthermore, the time stepping is performed using memory-aware NNs such as LSTMs and
CCNNs. We also discuss considerations regarding long-term stability of the time stepping in
shape of residual learning and regularizing the Jacobian of the NNs.

Chapter 3

In the third chapter of the thesis, we focus on solving static Bayesian inverse problems. We
train a GAN to sample from the prior of the states and parameters and embed it into a
Hamiltonian Monte Carlo sampling scheme. By using a GAN, we can perform the sampling in
the low-dimensional latent space, resulting in a method we refer to as the Markov Chain GAN
(MCGAN). Furthermore, by using an NN as a probabilistic surrogate model, we can utilize
gradient computations to make the sampling more efficient in shape of the Hamiltonian Monte
Carlo Method. The theoretical convergence of the method in the Wasserstein-1 distance is
proved, which provides a theoretical foundation.

Chapter 4

In this chapter, we focus on the case of localizing leaks in large water distribution networks.
We train a supervised Wasserstein AE to generate the full state of flow rates and pressure
heads and embed it into a Bayesian inference framework. By using a generative NN, we
speed up the problem significantly and thereby we can efficiently compute the posterior
distribution over possible leak locations. To get the optimal performance of the framework
we develop a novel transformer-based Wasserstein AE.
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Chapter 5

Lastly, in Chapter 5, we present the methodology that enables real-time dynamic data
assimilation. A novel transformer-based dimensionality reduction layer is used in a Wasserstein
AE to reduce the dimension of the state. Then a time stepping transformer is used to perform
parameterized time stepping which allows us to perform the state estimation in the latent
space as well as parameter estimation. The NNs are embedded into a particle filter which
not only gives estimates, but the full posterior filtering distribution. The novel method is
referred to as the Deep Latent Space Particle Filter (D-LSPF).



2
Reduced order modeling for parameterized

time-dependent PDEs using spatially- and

memory-aware deep learning

We present a novel reduced order model (ROM) approach for parameterized time-dependent
PDEs based on modern learning. The ROM is suitable for multi-query problems and is
nonintrusive. It is divided into two distinct stages: A nonlinear dimensionality reduction stage
that handles the spatially distributed degrees of freedom based on convolutional autoencoders,
and a parameterized time stepping stage, based on memory aware neural networks (NNs),
specifically causal convolutional and long short-term memory NNs. Strategies to ensure
generalization and stability are discussed. To show the variety of problems the ROM can
handle, the methodology is demonstrated on the advection equation, and the flow past a
cylinder problem modeled by the incompressible Navier-Stokes equations.

This chapter is based on the article “Reduced order modeling for parameterized time-dependent PDEs
using spatially- and memory-aware deep learning”, Journal of Computational Science, 53:101408, 2021 [105].
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2. Reduced order modeling for parameterized time-dependent PDEs using spatially- and

memory-aware deep learning

2.1 Introduction

Simulations based on first-principles models often form an essential element for understanding,
designing, and optimizing problems in, for example, physics, engineering, chemistry, and
economics. However, with an increasing complexity of the mathematical models under
consideration, it is not always possible to achieve the desired fidelity of such simulations in a
satisfactory time frame. This is especially the case when dealing with multi-query and/or real
time problems, as encountered in uncertainty quantification and model predictive control,
where the computational model is typically parameterized.

There are several approaches to reduce the computation time bottleneck. The arguably
most common ones include high-performance computations [57], high-order discretizations
[83], iterative and/or multigrid methods [136, 152], and reduced order modeling (ROM)
[123]. High-performance computing may be costly; the improvements due to high-order
discretization strongly depend on the smoothness of solutions at hand, and iterative methods
are highly dependent on suitable preconditioners. Furthermore, these approaches may suffer
from the curse of dimensionality. ROM, a relatively recent research area, is an interesting
alternative to the other approaches.

The ROM solution process is generally divided into two distinct stages [123]: A so-called
”offline stage”, in which the reduced model is derived, and an ”online stage”, where the
reduced model is utilized and solved. Popular choices for the two stages are the proper
orthogonal decomposition (POD) model definition, combined with a (Galerkin) projection
procedure in the online stage [67, 123]. Whereas this combination has shown important
successes, it has also been shown that the POD and projection approaches perform worse
in specific settings, such as for advection-dominated or nonlinear problems. Furthermore,
projection-based methods are intrusive, as they require access to the underlying high-fidelity
model. Nowadays, it is a reasonable assumption that an industrial model is not directly
accessable, and therefore non-intrusive approaches, i.e. approaches that are only based on a
series of snapshots of solutions, are increasingly interesting alternatives.

Machine learning has recently gained the attention from the scientific computing commu-
nity due to great successes of artificial intelligence in various settings. Specifically Artificial
Neural Networks (ANNs), often simply denoted neural networks (NNs), have shown remark-
able results in tasks such as image analysis and speech recognition. Much of the success has
been boosted further by the availability of open source software frameworks, such as PyTorch
[114] and Tensorflow [1], which have made implementation and training possible without
expert knowledge and the availability of computation accelerating hardware, such as GPUs,
has made training of very large models feasible. These recent advances have accelerated
research in especially deep learning, i.e. multilayered NNs, which was not possible few a
years ago, resulting in many NN architectures specialized in certain tasks, such as time series
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forecasting and dimensionality reduction.

NNs have gained traction within the mathematics, numerical analysis, and engineering
communities either as a replacement or as a supplement to conventional function approxima-
tion methods. For an overview of articles, prospects, and future challenges see e.g. [9, 17, 88].
In this chapter, we will combine ROM and machine learning in both the offline and the
online stages to showcase the potential of using these technologies on conventional problems
from scientific computing.

Important work has already been done on the topic of NN-based ROM. For example, the
authors in [56, 65, 150] have used proper orthogonal decomposition (POD) for dimensionality
reduction and data-driven methods to map the parameters to the reduced basis coefficients.
However, none of these approaches considers time-dependent problems.

Examples of approaches that utilize POD and also deal with time are found in [8, 108, 160].
A difference with our method is that these approaches do not compute the unsteady states
by means of time stepping, but rather consider time an extra parameter. Hence, it is not
possible to advance a solution in time from an arbitrary point on the trajectory. The above
mentioned approaches are based on a linear dimensionality reduction scheme in the form of
the POD.

In [87], a convolutional autoencoder (CAE) is utilized for a nonlinear dimensionality
reduction, while the time stepping is done, intrusively, using multistep methods on the
reduced model, derived from a Galerkin projection procedure. Due to the Galerkin projection
of the high-fidelity model, this approach requires access to the underlying model. In [49], a
CAE is also used for model reduction and an LSTM is used for time stepping of the reduced
state, but with the problem parameters kept fixed. The paper [18] also considers CAEs
for dimensionality reduction and a dense feedforward neural network (DFFNN) to map the
parameters but without any time stepping procedure. Closest to our work is [165], where a
CAE is employed to reduce the dimension and a causal convolutional neural network (CCNN)
to encode previous reduced states. The CCNN and the DFFNN are trained independently
of each other. Stability of the methodology is not discussed in that paper and neither are
comparisons with alternative regression techniques.

In our work, we present a non-intrusive framework, based on deep learning, for computing
parameterized spatio-temporal dynamics. The resulting reduced order model is divided into
two distinct stages: Firstly, a dimensionality reduction stage based on CAEs, and secondly
a memory-aware NN stage for parameterized time stepping. This methodology utilizes
the effectiveness of CAEs as nonlinear dimensionality reduction techniques for spatially
distributed data. To discuss the advantages of using CAEs, we make a comparison with
the widely used linear counterpart, POD. Specifically, we show that POD is a special case
of an autoencoder. Furthermore, we present a flexible neural network structure for time
stepping, that takes into consideration previous states as well as parameters. The framework
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is quite general and allows for incorporation of various types of neural network architectures,
hence allowing state-of-the-art techniques that fit the problem at hand. We present and
compare two modern time series forecasting architectures, Long Short-Term Memory (LSTM)
networks [68], and Causal Convolutional Neural Networks (CCNNs) [110]. Furthermore, we
present and discuss a series of approaches to ensure stability and generalization of the time
stepping network. The scheme presented here is compared to similar, but different, schemes,
like Gaussian processes with POD.

To the best of our knowledge, there is no other work on deep learning-based ROM that is
non-intrusive, uses CAEs for dimensionality reduction, has memory-aware and parameterized
time stepping, and discusses practical approaches to ensure stability and generalization. The
result is a flexible offline-online scheme that works for various physical phenomena and can
easily be modified according to the specific problem at hand. This makes the presented
approach suitable for multi-query problems.

The structure of the present chapter is as follows. In Section 2.2, we present parameterized
time-dependent PDEs. In Section 2.3, we discuss dimensionality reduction. Furthermore, we
discuss how convolutional autoencoders are used for nonlinear dimensionality reduction. In
Section 2.4, we present the parameterized memory-aware time stepping neural network. In
Section 2.5, we showcase the performance on two test problems: A linear advection equation
and a flow past a cylinder modeled by the incompressible Navier Stokes equations.

2.2 Parameterized Time-Dependent PDEs

The model under consideration is of the form

∂tu(t, x;µ) = F (t, x, u;µ), u(0, x;µ) = u0(x;µ), (2.1)

where F is a (nonlinear) differential operator, ∂t := ∂
∂t , u : R × Rd × RNp → R or u :

R× Rd × RNp → Rd, t ∈ [0, T ], and x ∈ Rd. Equation (2.1) is a very general parameterized
PDE. µ is to be considered a vector of parameters on which the solution depends. These
parameters could be diffusion rate, Reynolds number, parameterize an initial or boundary
condition, etc. For technical reasons, the parameter space P is chosen to be a compact
subspace of RNP [123].

Spatially discretizing (2.1), using finite elements, finite volumes, finite differences [122],
gives the following finite-dimensional dynamical system,

∂tuh(t, µ) = Fh(t, uh(t, µ);µ), uh(0, µ) = u0h(µ), (2.2)

h defines the granularity of the discretization, i.e. grid size, number of elements, etc. We
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will not go into details regarding these discretizations and it should be assumed that the
discretized system is stable and converges to the exact solution when granularity is refined.
uh(t, µ) ∈ RNh will be referred to as the high-fidelity or full-order solution.

The manifold of high-fidelity solutions, parameterized by time and the parameters, is
called the spatial discrete solution manifold,

Mh = {uh(t, µ) | µ ∈ P, t ∈ [0, T ]} ⊂ RNh , (2.3)

Our goal is to approximate this manifold.
Defining a time discretization, {t0, t1, . . . , tNt

}, tn = nδt, and using a time stepping
scheme gives us the time discrete approximation of (2.2):

un+1
h (µ) = Fh,δt(u

n
h;µ), (2.4)

where un(µ) = u(tn, µ). We will refer to unh(µ) as the state at time step n. Note that the
discrete time evolution map is not necessarily restricted to only depend on the last state, but
can take in several previous states, as is done in e.g. multistep methods, or it could depend
on the current state as in implicit methods. We can now define the time-discrete high-fidelity
solution manifold:

Mh,δt = {unh(µ) | µ ∈ P, n = 0, . . . Nt} ⊂ RNh . (2.5)

The subscripts h and δt refer to the chosen spatial and time discretizations, respectively. Mh,δt

can be seen as the set of discrete state trajectories parameterized by the set of parameters.
In general, Nh will be very large, which makes advancing the state with (2.4) for many

time steps time consuming. This is especially the case when dealing with high-dimensional
domains and multiphysics problems. It is indeed a problem when dealing with multi-query
problems such as uncertainty quantification and data assimilation or when real-time solutions
are of importance as in real-time control settings and digital twins.

2.3 Dimensionality Reduction

The fundamental idea of dimensionality reduction is that the minimal number of variables
necessary to represent the state, also called the intrinsic dimension, of the dynamical system
is low compared to the dimension of the high-fidelity model. However, identifying an optimal
low-dimensional representation is, in general, not a trivial task. In this section, we will
give a brief overview of linear dimensionality reduction, particularly, the well-known proper
orthogonal decomposition (POD). Then, from the linear outset, we will describe the more
general case of nonlinear dimensionality reduction.
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In general, for both linear and nonlinear dimensionality reduction, we assume that a
state, unh(µ) ∈ RNh , can be approximated,

unh(µ) ≈ Φ(unh) = Φdec ◦ Φenc(unh(µ)), (2.6)

where Φenc(uh) ∈ RNl with Nl ≪ Nh. Φenc is referred to as the encoder and Φdec the decoder.
The encoder transforms the high-dimensional input to a latent space of low dimension and
the decoder transforms the latent variable back to the high-fidelity space. The latent space
is often denoted the reduced trial manifold. The state at time step n in the latent space is
denoted unl (µ) = Φenc(u

n
h(µ)), and will be referred to as the latent state.

Ideally, Φ reconstructs the input perfectly for any given parameters and time step. How-
ever, that is, in general, not possible. The precision of the reconstruction is heavily dependent
on the dimension of the latent space, as this determines the amount of compression applied.
One computes Φ by choosing a latent dimension, Nl, and then solving the minimization
problem,

Φ∗ = argmin
Φ

√√√√
∫

µ∈P

[
Nt∑

n=0

||unh(µ)− Φ(unh(µ))||
2
2

]
dµ, (2.7)

where ||·||2 denotes the l2-norm. Theoretically, the reconstruction error should decrease
when Nl is increased until the intrinsic dimension of the problem is reached. From thereon,
increasing the dimension of the latent space should have very little effect on the reconstruction
error.

There are many ways of solving (2.7) [123]. Here, we focus on a data-driven approach,
sometimes referred to as the method of snapshots. A snapshot is a high-fidelity solution
for a given parameter realization at a certain time. The idea of this approach is to make
Ntrain samples from the parameter space and then compute a series of NT + 1 snapshots, i.e.
trajectories, per parameter sample,

MNtrain,h,δt =
{
u0h(µ1), . . . , u

Nt

h (µ1), u
0
h(µ2), . . . , u

Nt

h (µ2), . . . , u
0
h(µNtrain

), . . . , uNt

h (µNtrain
)
}
.

(2.8)

Then, (2.7) is rewritten into an empirical minimization problem:

Φ∗ = argmin
Φ

√√√√
Ntrain∑

i=1

Nt∑

n=0

||unh(µi)− Φ (unh(µi))||
2
2
. (2.9)

The insight is that sampling a finite number of discrete trajectories a sufficient number of
times may yield an accurate enough representation of the time-discrete high-fidelity solution
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manifold. It should be noted that computing (2.8) is potentially very expensive and even
infeasible in some cases.

When a reduction scheme is computed, one can then compute the parameterized trajec-
tories in the latent space, by

un+1
l (µ) = Fl,δt(u

n
l ;µ), u0l (µ) = Φenc

(
u0h(µ)

)
, (2.10)

from which the trajectories in the high-fidelity space can be recovered by unh(µ) = Φdec (u
n
l (µ)).

Fl,δt can be derived in many ways and much time and effort have been put into deriving
optimal latent dynamics.

2.3.1 Linear Dimensionality Reduction

In linear dimensionality reduction, the strategy is to find a reduced linear trial manifold of
low dimension. Since the sought manifold is linear, it can be written as the column space,
Col(V ) of some matrix, V ∈ RNh×Nl . The column space is the space spanned by the columns
of the matrix V . From the orthogonal projection theorem, it can be shown that the optimal
projection onto a latent linear space is given by

uh ≈ V V Tuh. (2.11)

Hence, this is a special case of (2.6) where

Φ = V V T , Φenc = V T , Φdec = V. (2.12)

This simplification reduces (2.9) to

V ∗ = argmin
V

√√√√
Ntrain∑

i=1

Nt∑

n=0

||unh(µi)− V V Tunh(µi)||
2
2
, (2.13)

often accompanied by the constraint that the columns of V are orthogonal, V TV = 0. It can
be shown that (2.13) has an exact solution [123]. By collecting the snapshots in a snapshot
matrix,

S =
[
u0h(µ1) | . . . | uNt

h (µ1) | . . . | u0h(µNtrain
) | . . . | uNt

h (µNtrain
)
]
, (2.14)

one can show that the optimal V ∈ RNh×Nl is given by the first Nl left singular vectors. The
left singular vectors are computed through the singular value decomposition (SVD),

S = UΣZT , (2.15)
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where U is a matrix whose columns are the left singular vectors, Z is a matrix whose columns
are the right singular vectors, and Σ is a diagonal matrix with the singular values on the
diagonal. V is then chosen to be the first Nl columns of U . This method of obtaining V is
the proper orthogonal decomposition (POD) [123], also denoted principal component analysis
(PCA) [41].

To obtain Fl,δt, a Petrov Galerkin projection is often performed, which yields

Fl,δt(u
n
l ;µ) =WTFh,δt(V u

n
l ;µ). (2.16)

When W = V , it is denoted the Galerkin projection. This approach is intrusive, which
means that direct access to the model, Fh,δt, is required. Furthermore, in the online phase a
transformation between the latent space and the high-fidelity space must be performed in each
time step in order to be able to evaluate Fh,δt(V unl ;µ), which slows down the computations.
Various methods to circumvent that problem, such as the discrete empirical interpolation
methods [123], already exist. In recent years, there are also studies exploring approximating
Fl,δt with neural networks [108, 119].

While there are many advantages of a linear reduction scheme, such as the explicit solution
to (2.13), there are, indeed, disadvantages as well. A significant problem is the restriction to
a linear trial manifold. The optimal trial manifold, i.e. the trial manifold of the intrinsic
dimension, is rarely linear. Especially for advection-dominated and nonlinear problems, it
has been shown that a linear reduced approximation does not necessarily lead to significant
speed-ups.

2.3.2 Nonlinear Dimensionality Reduction

The extension from linear to nonlinear dimensionality reduction comes naturally and addresses
several of the drawbacks of linear dimensionality reduction. The fundamental difference is
that we remove the constraint that the latent space has to be a linear manifold. Due to this
generalization, we cannot write the projection operator as the matrix product V V T anymore,
but instead we must use the general form in (2.6), where Φenc and Φdec can be any type of
nonlinear functions. This gives rise to a major difference in solving (2.9), since no general
exact solution exists and therefore (2.9) will be solved numerically.

Even though extra approximation steps have to be introduced in the nonlinear case, the
potential gains will, in some cases, outweigh this hurdle. This is due to the fact that with
a nonlinear reduction scheme, it is theoretically possible to reduce the high-fidelity space
down to its intrinsic dimension, NP + 1. However, this depends on the choice of Φ and the
minimization scheme.

A common method for nonlinear dimensionality reduction from the machine learning
communities is, among others, kernel PCA. Here, the nonlinear manifold is embedded into a
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linear space, often of higher dimension, using a predefined nonlinear mapping, ψ : RNh → RNk ,
Nk > Nh. From thereon, a linear PCA is performed on the high-dimensional linear data.
In order to speed up computations, the so-called kernel trick is typically invoked. Utilizing
that, the nonlinear embedding induces a kernel, K = k(ψ(x), ψ(y)) = ψ(x)Tψ(y), one can
compute the low-dimensional basis without explicitly transforming the data and perform
PCA in the high-dimensional space. For more details, see [157].

This approach works well in many cases, but suffers from one crucial downside: Choosing
the nonlinear mapping, ψ, or the kernel, K, is far from trivial. There exist no clear guiding
principles that work across several cases.

Autoencoders

To overcome the problems of other nonlinear dimensionality reduction methods, such as
kernel PCA and DEIM, we present Autoencoders (AEs). AEs are a type of NN. For a
brief introduction to NNs and the terminology used here, see Section 1.3.1. In the context
of dimensionality reduction, one can interpret an AE as a kernel PCA where the kernel
is learned during the training process. Thus, one circumvents the problem of choosing a
suitable kernel. Note that this interpretation is merely presented in order to give an intuition
of AEs in context of other methods. To further explain the connections between AEs and
PCA, it is worth noting that a single hidden layer AE with linear activation functions is
equivalent to PCA. A single hidden layered AE without bias terms can be written as

Φ(unh(µ); θ) = T2 ◦ T1(x) =W2W1u
n
h(µ), (2.17)

where θ = {W1,W2}, T1 : RNh → RNl , and T2 : RNl → RNh are linear maps and W1 and
W2 are matrices. Typically, the mean squared error is chosen as the loss function for AEs,
which gives the following minimization problem for the single hidden layer AE:

arg min
W1,W2

1

NtrainNt

Ntrain∑

i=1

Nt∑

n=0

||unh(µi)−W2W1u
n
h(µi)||2 . (2.18)

Hence, training a single layer AE is equivalent to solving the PCA minimization problem,
(2.13), without the orthogonality constraint. Conclusively, Eq. (2.11) in the PCA context,
can be considered a special case of an AE.

By dividing the AE into the encoder and decoder parts and allowing an arbitrary number
of layers and nonlinear activation functions, it is easier to understand the similarities to
linear dimensionality reduction and why AEs have the potential to perform significantly
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better. Consider the encoder part with a linear activation in the final layer,

Φenc(u
n
h(µ); θ) = T encL ◦ σencL−1 ◦ T encL−1 . . . ◦ σenc1 ◦ T enc1 (unh(µ))︸ ︷︷ ︸

ψenc(un
h(µ);θ)

=W enc
L ψenc(u

n
h(µ); θ) = z,

(2.19)

where ψenc(x; θ) = (ψ1
enc(x; θ), . . . , ψ

Ne
enc(x; θ)) ∈ RNe and W enc

L ∈ RNe×Nl . For convenience,
we ignore bias terms. We see that this corresponds to a nonlinear embedding onto RNe and
then a projection onto the space spanned by the vectors ψ1

enc, . . . , ψ
Ne
enc. This is similar to the

idea behind kernel PCA. The difference is that in the AE framework we adjust the nonlinear
embedding in the training instead of defining it beforehand. The decoder part is similarly
written as

Φdec(z; θ) = T decL ◦ σdecL−1 ◦ T decL−1 . . . ◦ σdec1 ◦ T dec1 (z)︸ ︷︷ ︸
ψdec(z)

=W dec
L ψdec(z; θ) = ũnh(µ), (2.20)

where W dec
L ∈ RNd×Nh .

Note that this is merely a brief discussion of the topic of AEs aiming to give an intuitive
understanding. For more details see [168].

Convolutional Autoencoders

Convolutional autoencoders (CAEs) are a special type of AEs utilizing convolutional layers
instead of dense layers. A brief introduction to convolutional neural networks (CNNs) can also
be found in Section 1.3.1. It can be shown that dense and convolutional neural networks are
equivalent regarding approximation rates [121], which means that theoretical approximation
results for dense NNs translate almost directly to CNNs. For practical purposes, however,
convolutional layers are often to be preferred due to especially the following two properties:

• Local connections, which utilize that spatial nodes close to each other are highly
correlated.

• Shared weights, which in practice make the affine transformations very sparse and
enables location invariant feature detection.

An additional advantage is that it is straightforward to handle multiple spatially distributed
states. These occur in coupled PDEs, such as the Navier Stokes equations, where one is
dealing with both the x−, y− and z−components of the velocity field as well as the pressure
field. In the framework of CAEs, these can all be included by interpreting them as different
channels. This enables the possibility of including multiple spatial states without increasing



2.4. Approximating Parameterized Time Evolution using Neural Networks 27

Reshape Reshape

Latent representation

Increasing filters and decreasing dimension

Encoder Decoder

Convolutional layers Convolutional layers

Decreasing filters and increasing dimension

Original data Reconstruction

ul(µ)
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Figure 2.1: Illustration of a convolutional autoencoder

the number of weights in the neural network significantly. The connection between PDEs
and CNNs has already been made, see e.g. [134].

In Figure 2.1, one sees an illustration of a CAE. The encoding consists of a series of
convolutional layers with an increasing number of filters and decreasing dimension, effectively
downsampling the number of degrees of freedom, followed by dense layers. Similarly, the
decoding consists of a series of dense layers followed by a series of deconvolutional layers
with a decreasing number of filters and increasing dimension, effectively upsampling. The
downsampling is often performed by utilizing pooling layers or strides larger than one.

It is worth noting that computing the decoder, Φdec, of a CAE in the training phase is
effectively solving an inverse problem. Inverse problems are, in general, ill-posed and therefore
require regularization. L2-regularization, often referred to as weight decay, is frequently used,
and results in the following minimization problem to solve:

argmin
θ

1

NtrainNt

Ntrain∑

i=1

Nt∑

n=0

||unh(µi)− Φ(unh(µi); θ)||2 + α ||θ||22 , (2.21)

where α is a hyperparameter to be tuned. Besides ensuring well-posedness, the term also
ensures generalization.

2.4 Approximating Parameterized Time Evolution using

Neural Networks

In the previous section, we presented the general framework for nonlinear dimensionality
reduction and showcased how convolutional autoencoders fit into this framework. In this
section, we explain how neural networks will be utilized for approximating the dynamics
in the latent space. For a brief review of the relevant types of neural networks, see again
Section 1.3.1. Neural networks have already shown to be able to approximate dynamical
systems [32, 39, 165].
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We aim to approximate the dynamics in the latent space non-intrusively by a function,
Ψ ≈ Fl,δt:

un+1 = Ψ(un), (2.22)

where Ψ is a neural network. The approximated latent states will be denoted, ũnl (µ), to
distinguish them from the encoded high-fidelity state, unl (µ) = Φenc(u

n
h(µ)). Thereby, we

aim to achieve:
{
ũ0l (µ1), . . . , ũ

Nt

l (µ1), . . . , ũ
0
l (µNtrain

), . . . , ũNt

l (µNtrain
)
}

≈
{
u0l (µ1), . . . , u

Nt

l (µ1), . . . , u
0
l (µNtrain

), . . . , uNt

l (µNtrain
)
} (2.23)

Taking Larger Steps

Using high-fidelity methods for time stepping often includes some restrictions on the step
size in order for the scheme to be stable. An example is the Courant–Friedrichs–Lewy (CFL)
condition for advection-dominated problems [89]. With our strategy, where we aim to learn
a neural network representation of the time evolution map, there is no immediate connection
between step size and stability. Therefore, in order to speed up online computations, the
neural network can be trained to learn to take steps of size sδt. Hence, Ψ ≈ Fl,sδt.

In the offline phase, the high-fidelity trajectories are still computed with step size δt, to
ensure stability, but only every s’th step is used for training the NN:

{
u0h(µ), u

1
h(µ), u

2
h(µ) . . . , u

Nt

h (µ)
}
7→
{
u0h(µ), u

s
h(µ), u

2s
h (µ) . . . , uNt

h (µ)
}
. (2.24)

In general, unh(µ) and un+1
h (µ), are highly correlated, which means that we gain very little

extra information by using both variables in the training of the NN. Therefore, it makes sense
to only use every s’th step to save memory and speed up the training. However, the number
s must be chosen according to various factors, like the requested detail of the dynamics in
the online phase. It should further be kept in mind that larger s-values result in a more
complicated map to learn, and thus complicates the training.

For simplicity, we will use the notation
{
u0h(µ), u

1
h(µ), u

2
h(µ) . . . , u

Nt

h (µ)
}

when referring
to the trajectory used for training the neural network.

Approximating the State vs. Residual

At first glance, it makes sense to train a neural network to approximate un+1
l directly given

un. However, it is shown in [119] and [45] that learning the residual instead of the next state
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Figure 2.2: CCNN network architectures for varying memory.

often improves the accuracy. Hence, we consider the case

un+1
l = Ψ(un) = unl +R(unl ), (2.25)

where R is approximated by a neural network. This practically makes Ψ what is often
referred as a residual neural network.

Incorporating Memory

In [119] and [49], the potential benefits of not only using the present state but also incorpo-
rating several previous time steps for the future predictions were shown. Therefore, we now
consider

un+1
l = Ψ(unl , u

n−1, . . . , un−ξl ) = unl +R(unl , u
n−1
l , . . . , un−ξl ), (2.26)

where ξ is the number of previous states included as input into the residual computation by
the NN. The principle of incorporating several previous time steps can loosely be compared
to linear multistep methods where the order of approximation can be increased by using
several previous steps [89]. In contrast to linear multistep methods, NNs incorporate the
previous time steps in a nonlinear fashion.

We consider two different types of networks here: LSTM, and the CCNN. The two
types of neural networks take varying computational time to train, have varying numbers of
parameters, and vary in regards to how they interpret memory. In Section 1.3.1, there is a
short description of the two types. Regarding the CCNNs, there are different ways to include
memory. We have chosen to include memory in shape of adding more layers, see Figure 2.2,
for examples for ξ = 8, ξ = 6, ξ = 4, and ξ = 2.
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Figure 2.3: Illustration of the parallel neural network structure. The "Encoding previous
time steps" part is visualized using the CCNN, but it should be noted that an LSTM network
(or any suitable time series encoder) could be put in its place.

Parameterized Dynamics

We aim to simulate parameterized trajectories of the latent dynamics. Hence, we need to
incorporate the parameters as input to the residual computation, resulting in a map

Ψ : RξNl+NP → RζNl , un+1(µ) = Ψ(unl (µ), u
n−1(µ), . . . , un−ξl (µ), µ). (2.27)

For now, we consider constant parameters, but it should be possible to incorporate time-
dependent parameters. For this reason, the parameters do not need to be part of the memory
aware section of the network. We propose a parallel architecture consisting of two branches
combining into one: One branch interpreting the last ξ states and one branch processing the
parameters. The two branches then connect and provide one final prediction for the residual.
Having a single neural network incorporating the previous states and the parameters enables
simultaneous training of the two branches. See Figure 2.3 for an illustration of the network
structure. This ensures that the learned latent features from both branches are optimal with
respect to predicting the next state. This is in contrast to what is done in [165], where the
memory and the parameters are incorporated into two completely separate networks.

For the parameter branch, we simply make use of a dense FFNN. There is no immediate
reason to believe that more complicated architectures are necessary, since we are neither
dealing with time-dependent nor high-dimensional or continuously spatially varying input.
Note, however, that there is no reason to believe that this methodology will not work if
the FF network in the parameter branch is replaced with a memory aware network in more
advanced settings.
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The training of the full time-evolution network is done by minimizing the loss function

L(ul, µ; θ) =
1

NtrainNt

Ntrain∑

i=1

NT∑

n=ξ

∣∣∣
∣∣∣un+1(µi)−Ψ(unl (µi), . . . , u

n−ξ
l (µi), µi; θ)

∣∣∣
∣∣∣
2

2
, (2.28)

with respect to the NN parameters θ.
Whereas the individual techniques described may be well-known, we here show how these

techniques can be integrated to achieve high quality performance and accuracy.

Imposing Stability and Generalization

It is well-known that NNs do not necessarily generalize well beyond the training data without
some kind of regularization. Combining that with the general risk of having instability in
discrete dynamical systems, makes it crucial to address these problems during the training.

The arguably most common technique is to add L1- or L2-regularization to the loss
function. Furthermore, specifically for dynamical systems, it has been shown in [32] and
[112] that regularizing the eigenvalues of the Jacobian of the dynamics with respect to the
state variable, DuΨ, improves long term predictions. In short, this is related to linear and
Lyapunov stability analysis of dynamical systems, that are related to sensitivity to initial
conditions. Hence, we propose adding the term ||DuΨ||2, which is the matrix 2-norm, i.e.
the spectral radius of the Jacobian of Ψ, to the loss function. In practice, by utilizing the
relation

||DuΨ||2 ≤ ||DuΨ||F , (2.29)

we instead add the computationally much cheaper Frobenius norm.
It can empirically be shown that the long term predictions are significantly better if the

network takes several steps at a time instead of a single one. Hence, we modify the output of
the NN to

R
(
unl (µ), . . . , u

n−ξ
l (µ), µ; θ

)
= [R1, R2, . . . , Rζ ]

T
, (2.30)

which gives future predictions,




un+1
l (µ)

...
un+ζl (µ)


 =




Ψ1

(
unl (µ), . . . , u

n−ξ
l (µ), µ; θ

)

...

Ψζ

(
unl (µ), . . . , u

n−ξ
l (µ), µ; θ

)


 = unl (µ) +




R1

(
unl (µ), . . . , u

n−ξ
l (µ), µ; θ

)

...

Rζ

(
un(µ), . . . , un−ξl (µ), µ; θ

)




(2.31)
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Empirically, we see that this modification keeps the prediction from exploding for longer
time and it reduces spurious oscillations.

The resulting loss function for the dynamics NN is given by:

L(u, µ; θ) =
1

NtrainNt

Ntrain∑

i=1

NT∑

n=ξ

∣∣∣∣∣

∣∣∣∣∣

ζ∑

k=1

[
un+kl (µi)−Ψk

(
unl (µi), . . . , u

n−ξ
l (µi), µi; θ

)]∣∣∣∣∣

∣∣∣∣∣

2

2

+ β1 ||θ||22︸ ︷︷ ︸
Weight decay

+ β2 ||DuR||F︸ ︷︷ ︸
Jacobian regularization

,

(2.32)

2.4.1 The Complete Scheme

Putting the components together, we have a scheme subdivided into two parts that are
trained independently: The CAE, and the time evolution. The whole process is divided into
an online phase and an offline phase.

In the offline phase, the CAE is trained on a series of high-fidelity snapshots in order to
identify a nonlinear reduced trial manifold. Then, the CAE is used to reduce the high-fidelity
snapshots to the latent space. The latent space trajectories are used to train the time
evolution NN. The training of the two neural networks is visualized in Figure 2.4 and outlined
in Algorithm 1. Note that in Steps 3 and 5, where the autoencoder and the time evolution
network, respectively, are being trained, the considerations mentioned in Section 1.3.1 have to
be included, like early-stopping, multiple-initialization, choice of optimizer, etc. In Algorithm
2, an algorithm to automatically choose the latent dimension, number of training trajectories,
memory, and future steps per iteration is presented. Note that this is a basic approach to
tune the network. More advanced methods such as Bayesian optimization or reinforcement
learning could be utilized here. Furthermore, it is worth noting that we can, assuming no
time constraints, generate as many training samples as necessary.

In the online phase, the first ξ time steps of the state, computed with a high-fidelity
scheme for a given parameter realization µ, are projected onto the latent space using the
encoder part of the CAE. From there, the time evolution NN computes the parameterized
latent space trajectories iteratively. The latent space trajectories are then transformed to
the high-fidelity space using the decoder of the CAE. The online stage is visualized in Figure
2.5 and described in pseudo code in Algorithm 3.

2.5 Results

The aim of this section is to showcase how well our frameworks perform for different parame-
terized PDE problems. Furthermore, we show how the various approaches, regularizations,
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ũ1
h(µ1) . . . ũ1
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h (µNtrain)







un−ξ
l (µ1) . . . un−1

l (µ1) un
l (µ1)

un−ξ+1
l (µ1) . . . un

l (µ1) un+1
l (µ1)

...
...

...

un−ξ
l (µNtrain

) . . . un−1
l (µNtrain

) un
l (µNtrain

)
...

...
...
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Figure 2.4: Illustration of the offline stage.

Algorithm 1: Offline Stage - Training
Input: Nl, ζ, ξ, Ntrain.

1 Sample Ntrain parameter samples from the parameter space.
2 Generate high-fidelity trajectories,

{
u0h(µ1), . . . , u

Nt

h (µ1), . . . , u
0
h(µNtrain

), . . . , uNt

h (µNtrain
)
}
.

3 Train CAE, Φ = Φdec ◦ Φenc, with latent space dimension Nl, by minimizing

argmin
θ

1

NtrainNt

Ntrain∑

i=1

Nt∑

n=0

||un(µi)− Φ(un(µi); θ)||2 . (2.33)

4 Encode high-fidelity trajectories to get latent state space trajectories
{
Φenc

(
u0h(µ1)

)
, . . . ,Φenc

(
uNt

h (µ1)
)
, . . . ,Φenc

(
u0h(µNtrain)

)
, . . . ,Φenc

(
uNt

h (µNtrain)
)}

.

5 Train time evolution network, R, to take the last ζ states and output the residuals for
the next ξ states, by minimizing

1

NtrainNt

Ntrain∑

i=1

NT∑

n=ξ

∣∣∣∣∣

∣∣∣∣∣

ζ∑

k=1

[
un+kl (µi)−Ψk

(
unl (µi), . . . , u

n−ξ
l (µi), µi; θ

)]∣∣∣∣∣

∣∣∣∣∣

2

2

+ β1 ||θ||22 + β2 ||DuR||F ,

6 Estimate error on a test set.
Output: Trained CAE, Φ, and Time Evolution Network, R, and test error, E.
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Algorithm 2: Offline Stage - Tuning
Input: Desired test error, E∗

1 Initialize E = ∞, Nl = 1, ζ = 0, ξ = 1, Ntrain.
2 while E∗ < E do
3 Train Φ and R and compute test error, E, using Algorithm 1.
4 Update Nl, ζ, ξ, Ntrain and according to some update rule.
5 end while

Output: Optimal latent dimension, Nl, ζ, ξ, and Ntrain.
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Figure 2.5: Illustration of the online stage.

Algorithm 3: Online Stage

Input: Φdec, R, µ, u0h(µ), . . . , u
ξ
h(µ)

Output: Approximated trajectory in high-fidelity space.
1 Encode the initial ξ high-fidelity states,

(u0l (µ), . . . , u
ξ
l (µ)) =

(
Φenc

(
u0h(µ)

)
, . . . ,Φenc

(
uξh(µ)

))

2 Compute approximated latent trajectory by iterating,
(
ũnl (µ), . . . , ũ

n+ζ
l (µ)

)
= ũnl (µ) +R

(
ũn(µ), . . . , ũn−ξ(µ), µ; θ

)
,

until desired end time has been reached.
3 Decode approximated latent space trajectories to high-fidelity space:

{
ũ0h(µ), . . . , ũ

Nt

h (µ)
}
=
{
Φdec

(
ũ0l (µ)

)
, . . . ,Φdec

(
ũNt

l (µ)
)}

.
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and parameters affect the performance.

To assess the performance measure, the error on Ntest test trajectories for parameter
values, {µ1, . . . , µNtest

}, that the NNs have not seen in the training phase, is evaluated. We
measure the mean relative error (MRE) at every time step and take the mean over multiple
runs of the test cases:

MRE(unh(µi), ũ
n
h(µi)) =

1

Ntest

Ntest∑

i=1

||unh(µi)− ũnh(µi)||
2
2

||unh(µi)||
2
2

, (2.34)

where

||unh(µi)||22 = (unh(µi))
Tunh(µi). (2.35)

Besides the MRE, we also analyze the standard error:

Standard Error =
σ√
Ntest

, (2.36)

where σ is the variance of the MRE. With this measure, we can assess if the trained NN
performs similarly on all the test data, i.e. we empirically show robustness and generalization.

For comparison, we show how the error evolves in time using various regression approaches
for time stepping, together with the CAE and POD. We do not compare our method to
intrusive approaches, such as POD-Galerkin, as we assume here that the PDE model is not
available. The approaches dealing with time as a parameter, instead of performing time
stepping, are inherently different and are therefore also not considered here. Instead, we
compare another regression technique, Decision Tree Regression (DTR), as in [150], (see
[41] for details on DTR). K-Nearest-Neighbour Regression and Gaussian Process Regression
(GPR) were also tested. K-Nearest-Neighbour Regression performed very similar to DTR and
GPR was infeasible to train due to the many training samples needed in the time stepping
training. The implementation of DTR was done with the Python package Scikit-learn [120].

Regarding hyperparameters, we considered the number of layers, number of neurons,
regularization parameters, learning rate, batch size, and memory. Due to the high-dimensional
hyperparameter space, we used Gaussian process minimization as a quick and approximate
way to tune the hyperparameters.

Neural Network Setup

All neural networks are implemented in Tensorflow 2.0 [1] in Python. The training is
performed in the Google Colab framework on NVIDIA Tesla P100 GPUs. The neural
network architecture configurations for the CAEs can be found in Table 2.1.
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Linear advection equation Flow Past Cylinder
Conv Kernels Filter Size Stride Kernels Filter Size Stride
Conv 1 4 5× 5 2× 2 8 5× 5 2× 2
BN 1

Conv 2 8 5× 5 2× 2 16 5× 5 2× 2
BN 2

Conv 3 16 5× 5 2× 2 32 5× 5 2× 2
BN 3

Conv 4 32 5× 5 2× 2 64 5× 5 2× 2
BN 4

Conv 5 - - - 128 5× 5 2× 2
BN 5 - - -

Flatten
Dense Neurons Neurons
Dense 1 Nl 493
Dense 2 - 247
Dense 3 - Nl

Table 2.1: Convolutional autoencoder configuration for the advection equation and the
Navier Stokes equations. Note that the decoder is the inverse of the encoder. BN =
Batchnormalization and Conv = Convolutional layer.

For the CCNN memory encoding, the layers are organized as shown in Figure 2.2. For
the LSTM, we work with network architectures of 3-5 layers with 16-64 neurons in each
LSTM layer. Furthermore, before the LSTM or CCNN layers every previous state is passed
through a dense layer with 16 neurons. In TensorFlow 2.0, this type of layer is denoted
TimeDistributed.

For the parameter encoding, the neural network is a 3 layer deep network with 16 neurons
in each layer. For the final prediction, we utilize a 3-5 layer deep NN with 32 neurons in
each layer.

Remark. We only present results on dimensionality reduction using convolutional au-
toencoders and compare them to POD. It should be noted that dense autoencoders were
also tested and showed significantly worse results. Moreover, we only consider LSTMs, and
CCNNs for the time stepping. We also studied other architectures, such as neural ODEs
[21], gated recurrent units (GRUs), and simple recursive neural networks. However, we chose
to not include those results. Neural ODEs performed significantly worse and the training
took much longer time. GRUs performed similarly to LSTMs and simple recursive neural
networks performed slightly worse.
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2.5.1 Linear Advection Equation

We first consider a linear advection equation on the domain Ω = [0, 1]2:

∂tu(µ) + b · ∇u(µ) = 0, in Ω, (2.37a)

u(µ) = 0 on Γ, (2.37b)

where Γ = ∂Ω,

b = µ1

(
−y − 1

2

x− 1
2

)
, (2.37c)

with initial condition

u0(µ) = exp

(
1

2

[
(x− x0)

2

0.005
+

(y − y0)
2

0.005

])
, (2.38)

where
(
x0

y0

)
=

1

4

(
cos(µ2)

sin(µ2)

)
+

1

2
. (2.39)

This problem models a Gaussian curve being advected with velocity µ1 in a circle with
origin at [ 12 ,

1
2 ] and radius 1

4 , starting at the position given by the angle µ2. This problem is
parameterized by two parameters, µ = (µ1, µ2) ∈ [0.5, 1.5]× [0, 2π]. The first parameter, the
velocity, is directly affecting the phase of the dynamics, while the other, µ2, is only dictating
the initial placement of the Gaussian curve. Hence, we are dealing with a 2-dimensional
parameter space, while the dynamics are only parameterized by a single parameter.

The high-fidelity snapshots are computed on a 60 × 60 grid using the discontinuous
Galerkin method with linear Lagrange elements, resulting in a second-order convergence
scheme that suits advection dominated problems well. The high-fidelity model consists of
21600 degrees of freedom. For the implementation, we used the FEniCS library in Python
[94]. The time stepping is done using the Crank-Nicolson scheme with time steps of size
0.0075 for 2000 steps, resulting in a time interval, t ∈ [0, 15]. The training of the neural
networks is done using every 4th time step, s = 4, meaning the model is trained to take steps
of size 0.03. We are using 15 trajectories for the parameters not included in the training set
for testing. The parameter µ is sampled uniformly in the domain [0.5, 1.5]× [0, 2π] for the
training data. Furthermore, the training is performed with 120 training trajectories.

In Figure 2.6a, we see a significant improvement by using the CAE compared to the POD
approach. Using a latent dimension of 2, which is also the intrinsic dimension of the solution
manifold, the CAE reconstructs the high-fidelity solution with an MRE between 10−3 and
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(a) (b)

Figure 2.6: (a) Comparison of convergence of the time averaged MRE of the reconstruction
using CAE and POD for the advection equation. (b) average test errors computed for the
linear advection equation for various combinations of POD, CAE, and regression methods.

10−4. To achieve the same accuracy using the POD method, one needs a latent dimension of
at least 17. This supports the previous claim that POD does, in general, not perform well on
advection dominated problems. Furthermore, it is shown that the accuracy improves with
the amount of training data until the point where more data becomes redundant. Specifically,
one sees that using 70 trajectories or 120 trajectories is very similar in performance. Note
that the POD method does not improve with the amount of training data.

In Figure 2.6b we compare the mean error at each time step of our method with the
alternative approaches. A latent space of dimension 18 is used for the methods using POD
to achieve the same accuracy as for the CAE. All regression approaches are trained with 120
trajectories. Clearly, none of the alternative approaches captures the dynamics accurately.
Using the POD basis for the NN time stepping performs significantly worse than the proposed
methodology. The time stepping map becomes truly high-dimensional and thereby much
harder to approximate.

By looking at the pointwise error between the high-fidelity and the NN solutions in Figure
2.7, it is clear that the NN approximation introduces a small phase error. This error could
possibly be corrected in a post-processing step.

In Figures 2.8-2.11, various figures showcasing how each parameter affects the accuracy
and stability are presented. From these plots, we infer that the NN configuration that
performs the best employs ξ = 6, β1 = 10−9, β2 = 10−6, and computes the residual rather
than the state directly.
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(a) t = 0 (b) t = 7.5 (c) t = 15

Figure 2.7: Pointwise absolute error between the high-fidelity solution and the neural network
prediction (CCNN) for the linear advection equation with velocity, µ1 = 1.4161, and initial
angle, µ2 = 2.8744.

(a) CCNN. (b) LSTM.

Figure 2.8: Comparison of CCNN and LSTM in relative error for each time step in high-
fidelity space for the linear advection equation for varying memory, ξ. The error for each
time step is a computed average over 15 test cases with the standard error.

(a) CCNN. (b) LSTM.

Figure 2.9: Comparison of computing the next step directly and the residual for the CCNN
and LSTM. The figures show relative error for each time step in high-fidelity space for the
linear advection equation.
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(a) CCNN. (b) LSTM.

Figure 2.10: Comparison of CCNN and LSTM in relative error for each time step in high-
fidelity space for the linear advection equation for number of training samples, Ntrain.

(a) β1 = 10−3. (b) β1 = 10−6. (c) β1 = 10−9.

Figure 2.11: Impact of the two regularization terms, weight decay, β1, and Jacobian, β2 for
the linear advection equation. The average relative error in high-fidelity space over 15 test
trajectories for each time step is shown. Each figure shows the error for a constant β1 and
varying β2.
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Figure 2.12: The setting for the flow past cylinder problem.

2.5.2 2D Nonlinear Equation - Flow Past Cylinder

We also consider the incompressible Navier-Stokes equations, governing transitional flow,
resulting in a complicated flow pattern. The equations are given by:

∂tu(Re) + (u(Re) · ∇)u(Re)−∇p(Re) = 1

Re
∆u(Re), in Ω, (2.40a)

∇ · u(Re) = 0, in Ω, (2.40b)

u(Re) = 0, on Γ, (2.40c)

(ux(Re), uy(Re)) = (1, 0) for y = 0, (2.40d)

with initial conditions u(Re) = 0 and p(Re) = 0. Consider a channel with a cylinder with an
inflow at the left side and outflow on the right side, see Figure 2.12 for a visualization of the
setting. In the figure, we have also marked the area of interest, as we are interested in the
complex flow pattern in the area immediately behind the cylinder. Note that the present
methodology can be employed in a specific subdomain of interest. It is not necessary to work
on the whole computational domain, as opposed to most high-fidelity methods.

The inflow profile is given by:

u(0, y, t) =

(
1.5

4y(0.41− y)

0.412
, 0

)
. (2.41)

On the walls and the cylinder, no slip conditions are prescribed.

We parameterize the problem by the Reynolds number and consider values in the interval
Re ∈ [120, 200]. For Reynolds numbers in this interval, the flow exhibits very interesting
nonlinear behavior, such as Karman vortex streets. We compute the velocity as well as the
pressure field, meaning we include all relevant physics in the methodology.

The high-fidelity problem is solved here using the finite element method with Taylor-Hood
elements and the second-order incremental pressure correction scheme for time stepping [46],
implemented in FEniCS. We use 128 elements resulting in 73768 degrees of freedom. The
solution is then evaluated at a 300× 100 uniform grid.
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For the training trajectories, we solve for t ∈ [0, 2.5], and, for the test trajectories, we
compute with t ∈ [0, 5]. This means that we also test how our method performs beyond the
training horizon. The high-fidelity model stepsize is 0.0002, resulting in 12500 time steps for
the training trajectories and 25000 steps for the test trajectories. For the training of the
reduced model, we only use every 5th step, resulting in 2500 time steps, which also means
that we use 5000 time steps for the test trajectories.

In Figure 2.15a, we compare the CAE with the POD method for dimensionality reduction
for various numbers of training trajectories. Using the CAE, one achieves accuracy of
approximately 10−4 with a latent dimension of 6. To achieve the same accuracy with POD,
one needs a latent space of dimension 76. Furthermore, it is clear that the CAE performs
better with more training data until a certain point. However, it is apparent that the error
increases when the latent dimension is increased. This phenomena is a result of overfitting
or insufficient training, such as convergence to a local minimum.

As for the advection equation, we compare the accuracy with DTR. In Figure 2.15b,
we see that CAE+DTR performs well within the interval of the training, but fails to give
anything meaningful beyond it. On the other side, CAE+LSTM performs significantly better
beyond the training horizon. The CAE+CCNN configuration performs consistently one error
of magnitude worse than CAE+LSTM.

In Figure 2.13, we see the velocity magnitude at t = 25 in the area of interest. Visually,
there is no significant difference between the two, suggesting that the CAE+LSTM approach
is able to capture the complicated flow patterns beyond the training time interval. This is
further shown in Figure 2.14, where we see the velocity magnitude at two specific points in
space. It is clear that there is a small dispersion error as well as small errors in magnitude.
However, the general flow pattern is approximated well.

Lastly, we compare how the number of training trajectories affects the accuracy for the
CAE+DTR and CAE+LSTM methods in Table 2.2. As expected, the test error decreases
with the number of training trajectories. It is further apparent that the CAE+LSTM
approach decreases faster, suggesting that this method benefits, to a higher degree, from
more data.

Remark - Larger Reynolds Number Intervals. Above, we considered the case with
the Reynolds numbers Re ∈ [120, 200]. For larger ranges of Reynolds numbers, the flow in
the wake of the cylinder varies more. Specifically, the flow regimes are known to have the
following characteristics [39]: 0 < Re < 5: Steady without a wake; 4 < Re < 40: Steady
symmetric separation; 30 < Re < 90: Laminar unstable wake; 80 < Re < 300: Von Karman
vortex street; 150 < Re < 1.3 · 105: Vortex street with (turbulent) instabilities. Note that
the intervals are overlapping as the exact boundaries between two regimes are unclear.

The neural networks need to have a greater approximation ability in order to capture
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Ntrain 20 50 90
CAE + DTR 1.75 · 10−1 1.41 · 10−1 6.41 · 10−2

CAE + LSTM 4.45 · 10−1 1.11 · 10−1 3.92 · 10−2

Table 2.2: Time averaged error for the CAE+DTR andf CAE+LSTM for various number of
training trajectories

the dynamics in such different flow regimes. This would require a very large neural network
with a large training data set. This can be circumvented by using, instead of a single CAE
plus time stepping NN, a conditional approach. By dividing the parameter space into NI
intervals and constructing NI CAEs with time stepping NNs to be trained on each interval,
we made the data fitting an easier task. The offline procedure then involved training NI
CAEs and time stepping NNs and the online procedure included an initial step determining
the regime in which the given parameters lie.

The division of the parameter space can be done by utilizing knowledge of the bifurcation
diagram. Here, we saw that the NNs are not sensitive to the specific choice of intervals. In this
experiment, we divided the parameter space into the following three intervals: I1 = [1, 10],
I2 = [10, 65], and I3 = [65, 120]. Hence, we tested whether the NNs could approximate the
flow across different regimes.

We chose to use the same hyperparameter setting for all NI networks. The CAEs were
trained on 10 trajectories for I1 and 20 trajectories for I2 and I3. The time stepping NNs
were trained on 13, 72, and 77 trajectories for I1, I2, and I3, respectively. Testing of the
NNs in each interval was done with three trajectories with Reynolds numbers uniformly
distributed in the relevant interval.

We compared results for CAE and LSTM with results computed with CAE and DTR.
Regarding the convergence of the CAEs for the three Reynolds number intervals, a latent
dimension of 4 showed satisfactory results. We found essentially the same results for
the three flow regimes, as those presented in the previous subsection for I4. The CAEs
significantly outperfomed POD and LSTMs resulted in a better time stepping scheme that
could approximate the flow beyond the training horizon while DTRs failed.

In conclusion, dividing the parameter space into intervals and train NNs in each regime
was a feasible solution to the problem of large parameter intervals.

2.5.3 Computation Time and Accuracy

We have showed and discussed performance regarding relative error for the two test cases.
The results for the two cases, using the CCNN, LSTM, and DTR, combined with CAE and
POD, are summarized in Table 2.3, where the time averaged error is shown. The results for
the flow past cylinder case are computed for I4.
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Figure 2.13: Comparison of the velocity at t = 25 for Re = 192 using CAE+LSTM (top)
and the high-fidelity method (bottom).

(a) (x, y) = (1.5, 0.30) (b) (x, y) = (0.08, 0.33)

Figure 2.14: A comparison of the velocity magnitude for the flow past cylinder problem at
two distinct points in space for Re = 192 using CAE+LSTM.
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(a) (b)

Figure 2.15: (a) CAE and POD convergence as well as (b) average errors with standard
error for the flow past cylinder problem for various Reynolds numbers computed with various
combinations of POD, CAE, and regression methods. The vertical black line signifies the
end of the training horizon. The CAE based solutions are computed with a latent dimension
of 6 and the POD based with a latent dimension of 76.

As mentioned in the introduction, the aim is to be able to compute solutions fast in the
online stage. In Table 2.4, the high-fidelity as well as the NN, and DTR online times in
seconds are shown. In the online stage, there has not been used any form of parallelization.
Therefore, it should be noted that significant speed ups for both the high-fidelity and the
regression time stepping approaches could be achieved with a greater effort on this matter.
The NN online time and the high-fidelity computation time is computed on an AMD Ryzen
9 3950X CPU. We observe that DTR is computationally faster, due to the much simpler
model. However, it was shown above, that DTR was not able to approximate the dynamics
well.

Comparing the CAE+LSTM computation with the high-fidelity computation time, we
see speed-ups of around 115 times for the advection equation and 1770 times for the flow
past cylinder test case. Hence, we see significant speed-ups.

In Table 2.5, the offline time is shown, divided into NN training time and the time it
took to generate the training trajectories. In cases where the training trajectories come from
collected data, the simulation step is unnecessary, and hence the training time alone is the
relevant number. For the training, we used an Nvidia GeForce RTX 3090 GPU. Compared
to the online stage, it makes a significant difference to use a GPU instead of a CPU due to
the heavy computations associated with backpropagation. We have chosen to only show the
GPU training time. It is clear that the most time consuming part is generating the training
trajectories.
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CAE POD
Test Problem CCNN LSTM DTR CCNN LSTM DTR

Advection Equation 1.54 · 10−3 5.02 · 10−3 1.53 · 100 2.02 · 102 2.84 · 101 1.50 · 100
Flow Past Cylinder 1.64 · 10−1 3.92 · 10−2 6.41 · 10−2 - 27.389 5.23 · 10−2

Table 2.3: Time averaged error for each of the time stepping regression techniques together
with CAE and POD respectively for each test problem. The results are for Re ∈ [120, 200]
for the flow past cylinder problem.

CAE POD
Test Problem High-Fidelity CCNN LSTM DTR CCNN LSTM DTR

Advection Equation 532.22 2.08 4.63 0.03 1.78 3.41 0.02
Flow Past Cylinder 17251.31 7.56 9.74 3.13 5.14 6.57 1.45

Table 2.4: Online computation time in seconds for each of the time stepping regression
techniques together with CAE and POD respectively for each test problem.

Test Problem CCNN LSTM Generation of Trajectories
Advection Equation 396.67 622.28 50763.13 (120 trajectories)
Flow Past Cylinder 300.39 985.54 931570.74 (90 trajectories)

Table 2.5: Offline computation time, i.e. NN training time, in seconds for the CCNN
and LSTM using GPUs. Furthermore we show the time it took to generate the training
trajectories. Note that the generation of training trajectories is not necessary in cases where
the data already exists. Furthermore, we have omitted to show the training time for the
non-NN regression methods as the training time negligible.
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2.6 Conclusion

We presented a novel deep learning approach to non-intrusive reduced order modeling for
parameterized time-dependent PDEs using CAEs for dimensionality reduction and CCNNs
and LSTMs combined with FFNNs for time evolution. This approach was demonstrated on
two test cases and was shown to perform well in the online phase, showcasing the potential
of using deep learning based ROMs for different physical phenomena.

Regarding dimensionality reduction, a discussion and comparison of linear and nonlinear
methods was presented with POD and CAEs as the focal points. The discussion focused on
why a nonlinear approach has the potential to outperform a linear approach.

For time stepping, the general approach was to encode the previous states and the
parameters separately in parallel and then combine the encoded data to make a final
prediction using an FFNN. The two encoding NNs, as well as the final prediction NN,
constitute a single network, meaning all parts are trained simultaneously. This ensures that
both the memory and parameters are encoded in relation to one another. Furthermore,
various methods to ensure generalization, stability, and precision were discussed and tested.

For the advection equation, the CAE+CCNN approach performed very well with errors
below 10−2 for all time steps, while the CAE+LSTM performed similarly, but slightly worse.
Interestingly, the alternative approaches, using POD instead of CAE and DTR for time
stepping, failed to approximate the dynamics in any meaningful way. Furthermore, as
expected, the CAE reached much better precision than POD for dimensionality reduction
with much fewer dimensions in the latent space.

Secondly, a more involved problem, flow past a cylinder, was also studied. Here, we
were dealing with multiple vector fields and complicated nonlinear patterns. Furthermore,
we tested how the methodology performs beyond the training horizon. We saw that the
CAE+LSTM approach showed errors below 10−2 within the training horizon, and a slow
increase in error beyond the horizon. However, the increase in error was primarily due to
small phase errors, meaning the overall structure of the flow still resembles the high-fidelity
flow. When using DTR, either with POD or the CAE, the approximations completely failed
beyond the training horizon, suggesting more complicated models are needed to actually
learn the time stepping map.

Lastly, we discussed an approach to deal with large parameter intervals that give rise to
highly varying flow regimes. Namely, training a CAE and time stepping NN on subdomains
and use the NNs corresponding to the subdomain it was trained on. We conclude that for
the flow past cylinder case this approach is successful.

In summary, the contributions in this work include a nonlinear dimensionality reduction
scheme using convolutional autoencoders, a novel parallel neural network architecture for
parameterized time stepping using CCNNs and LSTMs, and a discussion on different ap-
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proaches to achieve stability and generalization for neural network-based time stepping. It is
furthermore worth mentioning that the framework presented allows for flexibility in shape of
replacing certain elements with alternatives. E.g. one could replace the CCNN or LSTM
with another choice if needed.

In the future, the methodology should be tested on more advanced PDE problems. By
advanced problems, we are both referring to increasing nonlinearity, higher dimensions, and
multi-query problems such as uncertainty quantification, model predictive control, and data
assimilation. Especially, data assimilation seems a promising direction, since incorporating
data could rectify the phase errors.

Besides considering other use cases, one could work on improving the NN architecture and
training by, e.g. incorporating the physics in the training [32, 124], and use reinforcement
learning [148] to ensure effective snapshot generation. Furthermore, with the amount of
hyperparameters (ξ, β1, β2, number of layers and neurons, etc.) the task of hyperparameter
tuning is not trivial and could potentially be solved more effectively using alternative
approaches.



3
Markov chain generative adversarial neural

networks for solving Bayesian inverse problems in

physics applications

In the context of solving inverse problems for physics applications within a Bayesian
framework, we present a new approach, the Markov Chain Generative Adversarial Neural
Network (MCGAN), to alleviate the computational costs associated with solving the Bayesian
inference problem. GANs pose a very suitable framework to aid in the solution of Bayesian in-
ference problems, as they are designed to generate samples from complicated high-dimensional
distributions. By training a GAN to sample from a low-dimensional latent space and then
embedding it in a Markov Chain Monte Carlo method, we can highly efficiently sample from
the posterior, by replacing both the high-dimensional prior and the expensive forward map.
This comes at the cost of a potentially expensive offline stage in which training data must be
simulated or gathered and the GAN has to be trained. We prove that the proposed methodology
converges to the true posterior in the Wasserstein-1 distance and that sampling from the
latent space is equivalent to sampling in the high-dimensional space in a weak sense. The

This chapter is based on the article “Markov chain generative adversarial neural networks for solving
Bayesian inverse problems in physics applications”, Computers & Mathematics with Applications, 147:278-299,
2023 [107].
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method is showcased on two test cases where we perform both state and parameter estima-
tion simultaneously and it is compared with two conventional approaches, polynomial chaos
expansion and ensemble Kalman filter, and a deep learning-based approach, deep Bayesian
inversion. The method is shown to be more accurate than these alternative approaches while
also being computationally faster, in multiple test cases, including the important engineering
setting of detecting leaks in pipelines.

3.1 Introduction

The Bayesian inference approach is popular for solving inverse problems in various fields
including physics and engineering [7, 59, 78, 147], mainly due to the fact that it does not
only provide an estimate of the solution but also quantifies the uncertainty of the estimate.
Information about the distribution of a computed quantity is important, for example, for
digital twins [79].

The general idea of Bayesian inference is to use observations to update a given prior
distribution towards a resulting posterior distribution over the parameters of interest. The
observations and parameters are linked through a forward map and a noise distribution that
make up the likelihood function. The main task in the Bayesian approach is to connect the
prior and the likelihood in order to compute the posterior distribution. Since the posterior
is typically not analytically tractable, one must use numerical sampling techniques such
as Monte Carlo methods to approximate the distribution. However, for each sample, it is
necessary to compute the likelihood which in turn requires the evaluation of the forward map.
For nontrivial problems, such as high-dimensional or nonlinear partial differential equation
(PDE) problems, this becomes a computational bottleneck and often results in unacceptable
computation times. In Figure 3.1, the general schematics of an inverse problem are shown.

The two most common approaches for overcoming this problem are to either minimize
the required number of samples by making certain assumptions about the posterior or to
reduce the computational complexity associated with the forward map by approximating
it with a surrogate model. The first approach includes methods such as Kalman filters
[59] and Markov Chain Monte Carlo (MCMC) methods [16, 42]. With Kalman filters, one
minimizes the number of necessary samples by assuming Gaussian distributions. While this
is efficient, it is often quite restrictive when it comes to highly nonlinear problems. MCMC
methods, while being quite efficient, are based on fewer assumptions but still require many
samples. See Figure 3.1 for a visualization of a common workflow for Bayesian inference using
Markov chain Monte Carlo methods (MCMC). The surrogate modeling approach includes
methods such as reduced basis methods [123], polynomial chaos expansion (PCE) [164], and
Gaussian processes [159]. While a surrogate model enables fast likelihood evaluations, it
requires a forward map that can be approximated by a low-order representation. This is
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however not trivial for problems with a so-called slow Kolmogorov n-width decay, such as very
high-dimensional problems and problems involving discontinuities in either the parameters
or the state.

In this chapter, we consider an approach that overcomes the above mentioned challenges
(high-dimensionality, nonlinearity, discontinuities, expensive sampling) by utilizing machine
learning. Specifically, we will make use of neural networks which have already been recognized
as promising tools in scientific computing, especially for the case of high-dimensional and
nonlinear problems that we wish to address [9, 19, 54, 65, 77, 91, 105]. While there exist
several types of neural networks, each aiming at solving specific problems, we focus on
generative models here. Generative models aim to learn a distribution from data in order
to enable sampling from it at later times [135]. Such models include generative adversarial
networks (GANs) [52], variational autoencoders (VAEs) [81], diffusion models [26], and
Normalizing Flow models [129].

Examples where generative models have been successfully used for solving Bayesian inverse
problems already exist. In [47] and [161], a VAE and Normalizing Flow, respectively, are
embedded into a variational Bayesian inference approach and in [118] and [162] a GAN and
a VAE, respectively, are used as the prior distribution in MCMC sampling. While [118] and
[162] combine generative models for parameter prior approximation with MCMC sampling in
order to get samples from the posterior distribution, they do not achieve significant speed-ups.
Since the generative models are only used to approximate the parameter prior, they still
need the expensive forward problem being solved to match synthetic observations with the
real observations. Furthermore, in [2] a GAN has been trained to directly sample from the
posterior distribution. This is done by using a conditional GAN that generates samples
conditioned on the observations. This approach achieves speed-ups as MCMC sampling
is bypassed, but is restricted to the sensor configuration used for training. That is, the
observation operator must be chosen when training in order to form the training set and
cannot be changed without changing the architecture of the neural network and retraining it.

We will focus on GANs due to their success in learning complicated high-dimensional
distributions. When choosing a generative model, there are essentially three aspects to
consider [163]: Quality of samples, sampling speed, and mode coverage. VAEs generally
generate lower quality samples than GANs, as they tend to blur the samples. Diffusion
models [144], on the other hand, generate high quality samples, but they are significantly
slower than both VAEs and GANs and are therefore not suitable for solving inverse problems
in real-time. While the original GAN was known to suffer from mode collapse, it has been
shown that the extension, the Wasserstein GAN (WGAN) [5], overcomes this issue to a large
extent. Furthermore, the GAN training is more stable but it comes at a cost of computational
time. As the training takes place in the offline stage, this is not a serious problem.

Specifically, GANs learn a target distribution by training a generator to map latent
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space samples to samples that mimic a nontrivial high-dimensional target distribution. So,
GANs provide a way to represent a complicated high-dimensional distribution by means of a
low-dimensional latent space distribution.

We here present the novel Markov Chain Generative Adversarial Network (MCGAN)
method, visualized in Figure 3.1. In short, we train a GAN to approximate the prior distribu-
tion for the states and parameters and thereby obtain a corresponding latent representation.
By using an MCMC method, we can then efficiently sample from a latent space posterior
instead of the high-dimensional posterior. As a result, we achieve dimensionality reduction,
due to the approximation of the desired posterior, and furthermore the forward map is
replaced by the generator. In practice, this gives significant computational speed-ups as
the computational bottleneck is significantly reduced. The methodology presented draws
inspiration from [118], but utilizes the GAN in a different manner. Our extension is hence
well-suited for both state and parameter estimation in real-time. Furthermore, we prove that
sampling in the latent space is the same as sampling in the high-dimensional space in a weak
sense and we provide a proof of convergence of the posterior distribution in the Wasserstein-1
distance.

This chapter’s outline is as follows. In Section 3.2, we explain the setting of Bayesian
inverse problems as well as the MCMC methods and GANs. Then, in Section 3.3, we present
the details of our proposed methodology, the MCGAN methodology, including the theoretical
findings. In Section 3.4 we briefly discuss alternative methods. Lastly, in Section 3.5, we show
the MCGAN performance on two problems: a stationary Darcy flow and leakage localization
in a pipe flow. The results are compared to ensemble Kalman filters, MCMC methods with
PCE as the surrogate model and the likelihood-free deep Bayesian inversion.

3.2 Notation, Problem Setting, and Preliminaries

Throughout this chapter, we will make use of the following notation: capital letters will
denote random variables, e.g. X and Y . The distribution of X is denoted Px, where
Px(A) = Px(X ∈ A) is the probability of observing X ∈ A. Similarly, the probability of x is
denoted Px(x) = Px(X = x). We assume that all distributions have a probability density
function (PDF), ρx. A stochastic variable, X, conditioned on another stochastic variable, Y ,
is denoted X|Y and is distributed according to Px|y(X|Y ) with PDF, ρx|y.

3.2.1 Problem Setting

Let q ∈ RNq denote the state, m ∈ RNm the parameters, and y ∈ RNy the available
observations. Note that q encapsulates the state at all discrete times for time-dependent

Note that “real-time” is dependent on the specific problem at hand
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Figure 3.1: Left: overview of the forward problem and the inverse problem. The parameters
of interest are typically boundary and/or initial conditions, or physical parameters. The
physics model depends on the system at hand and is here a PDE modeling pipe flow. The
model output is the result obtained from a numerical simulation, such as pressure or velocity
in the case of fluid dynamics. Observations are either observed from a set of sensors or created
synthetically from the model output through the observation operator. Middle: a typical
approach for doing Bayesian inference with MCMC (see Section 3.2). Right: our proposed
method, the MCGAN approach as explained in section 3.3. Note that the complicated prior
distribution is replaced with a simple latent distribution. Furthermore, the physical model is
replaced with a generator that enables us to evaluate the full forward problem, more or less,
instantaneously.

problems. Hence, the state, q, is the full space-time state of the system at hand. q is
computed by solving a forward problem, typically a PDE, depending on the parameters, m.
We denote the vector of combined state and parameters, u = (q,m) ∈ RNu , Nu = Nq +Nm.

The inverse problem deals with the recovery of u from a vector of observations in space-
time, y ∈ O ⊂ RNy . By setting up the inverse problem in both state and parameters, we
allow for the case where the state is not necessarily determined by the parameters of interest
alone. The relation between u and y is assumed to be of the form

y = h(u) + η, η ∼ Pη, η ∈ RNy , (3.1)

where h : RNu → O ⊂ RNy is referred to as the observation operator and η is a random
variable denoting the observation or measurement noise.

From Eq. (3.1), we can write the PDF associated with the probability of observing y
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given u, ρy|u(y|u), as:

ρy|u(y|u) = ρη(y − h(u)). (3.2)

When observations are given, one can view this as a function of u, i.e., Φ(u) = ρy|u(y|u), in
which case it is referred to as the likelihood since it is not a PDF with respect to u.

We assume that, before observing any data, the probability of u has the PDF ρ0, which
is referred to as the prior. The goal of the Bayesian inverse problem is to identify the PDF,
ρu|y(u|y), i.e. the PDF of u given observations, y. Using Bayes theorem, we can write this
as:

ρu|y(u|y) =
ρy|u(y|u)ρ0(u)∫

RNu
ρy|u(y|u)ρ0(u) du

=
ρη(y − h(u))ρ0(u)∫

RNu
ρy|u(y|u)ρ0(u) du

. (3.3)

The denominator is called the evidence and serves as a normalization constant; the lefthand
side is the posterior.

However, in order to compute the likelihood in Eq. (3.3), a PDE must be solved for a
given set of parameters. Moreover, choosing a suitable prior is not always an easy task, and
the evidence can be restrictive to compute in high dimensions.

It should be noted that the last problem is alleviated in many methods such as maximum
likelihood estimation and MCMC methods, as we will describe below. The other two
complications will be minimized using our proposed methodology.

3.2.2 Markov Chain Monte Carlo Methods

MCMC methods [16, 42] form a class of algorithms for sampling from probability distributions.
Stated in terms of the posterior PDF, we have:

ρu|y(u|y) ∝ ρy|u(y|u)ρ0(u), (3.4)

and we aim to generate a set of points distributed according to the PDF ρu|y.The general
approach is to construct a Markov chain, {u1, . . . ,uN}, with a stationary PDF, ρ̃u|y, that
approximates ρu|y. We then sample according to ρ̃u|y by computing the next element in
the chain. For MCMC algorithms, we have the following result, under some reasonable
assumptions [16]:

lim
Nmcmc→∞

1

Nmcmc

Nmcmc∑

i=1

f(ui) = Eu∼Pu|y [f(u)], ui ∼ P̃u|y (3.5)
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where P̃u|y is the probability distribution associated with the density ρ̃u|y. Eq. (3.5) indicates
that with enough samples from the chain, we can approximate some statistics of the true
posterior arbitrarily well, i.e. the distribution, P̃u|y, converges weakly to Pu|y.

The arguably most common MCMC sampler is the Metropolis-Hasting (MH) algorithm
[61, 102]. However, it is well-known that the MH algorithm converges very slowly in high-
dimensional settings. Therefore, we make use here of the Hamiltonian Monte Carlo Method
(HMC), which can be considered a special case of the MH algorithm. Instead of computing
new proposals by a random walk, the HMC algorithm computes a new sample by moving in
a state space defined by a Hamiltonian ODE system.

Starting with a ‘momentum’ vector, p, of the same size as u, and a joint PDF ρu,p|y(u,p|y),
we define the Hamiltonian as:

H(u,p) = − log ρu,p|y(u,p|y) = − log ρp|u(p|u)− log ρu|y(u|y)

∝ 1

2
pTM−1p
︸ ︷︷ ︸

=K(p)

− log
[
ρy|u(y|u)ρ0(u)

]
︸ ︷︷ ︸

=U(u)

, (3.6)

where we choose the conditional distribution of the momentum given u to be normally
distributed, Pp|u(p|u) ∼ N (0,M). K(p) is referred to as the kinetic energy and U(u) the
potential energy. One can compute trajectories on level sets of the Hamiltonian by solving
the Hamiltonian dynamical system. A new sample is then computed by perturbing the
current sample, integrating the Hamiltonian system in time and using the final state as the
new sample with acceptance probability:

α = min

{
1,

exp (−H(u′,p′))
exp (−H(ui,p(0)))

}
, (3.7)

where (u′,p′) is the terminal state of the trajectory. Intuitively, this procedure will be
biased towards sampling from level sets in the phase space that maximize the likelihood
U(u). Furthermore, K(p) ensures that the algorithm explores other areas of the phase space
to a degree decided by M and the integration horizon, T . Compared to the standard MH
algorithm, this reduces the correlation between elements in the chain by traversing long
distances in the phase space while maintaining a high acceptance probability due to the
energy preserving properties of Hamiltonian dynamics.

When sampling using the HMC algorithm, a series of choices have to be made, like the
number of time steps in the integration and the end time, T . If T is too small, the sampling
will resemble a random walk, while T too large may result in trajectories making a ‘U-turn’
and return to their initial condition. To avoid this, we utilize the No U-Turn Sampler (NUTS)
[69].

The approach is to integrate backward and forward in time until a U-turn condition is
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satisfied. Then, a random point from the computed trajectory is chosen, and the algorithm
continues from there.

It is important to emphasize that the HMC algorithm can only be utilized when the
likelihood and the prior are differentiable. Furthermore, the derivative should be cheap to
compute to get the desired speed-up.

Even though HMC with NUTS is efficient, one still needs many samples to converge.
With a good initial sample, the method converges significantly faster. There are several
ways of computing a suitable initial guess, one of which is the maximum a posteriori (MAP)
estimate [78], which we will use in this work. This is typically computed using the log PDFs:

uMAP = argmax
u

log(ρy|u(y|u)) + log(ρ0(u)). (3.8)

uMAP can be computed using standard optimization methods such as gradient descent
methods. In our case, both ρy|u and ρu are known PDFs so it is easy to compute derivatives
using standard software libraries such as PyTorch.

3.2.3 Generative Adversarial Neural Networks

In this section, we will give a brief overview of generative adversarial networks (GANs),
see [52, 74] for more details. We will focus on a version of GANs called Wasserstein GAN
(WGAN) [5].

GANs deal with the problem of learning an unknown distribution from samples. Consider a
probability distribution, P ru , on a data space which is a subset of Rm. We aim to approximate
P ru with another distribution, P gu . We will refer to P ru as the real data probability distribution
or the target distribution, and P gu the generated distribution. In order to compute P gu , we
define a stochastic latent variable, Z ∈ RNz , with prior distribution P gz , typically chosen
to be a Gaussian. Then, we define a generator, Gθ : RNz → RNu , which is a neural
network parameterized by its weights, θ. Gθ takes in the latent variable and outputs
Gθ(Z) ∼ P gu . Hence, P gu = Gθ#P

g
z is the pushforward of the latent space distribution

with PDF ρgu = ρgz ◦G−1 [15]. By choosing Nz ≪ Nu, we effectively get a low-dimensional
representation of the Nu-dimensional distribution. Therefore, the variable z can be considered
a latent/low-dimensional representation of samples from P ru .

Next, we introduce the discriminator, Dω : RNu → R. The discriminator takes in samples
from either the real data probability distribution or the generated probability distribution,
and returns a real number called the score. A large score means that the discriminator believes
the sample comes from the real data distribution. Dω is a neural network parameterized by
its weights, ω.

In order to learn the target distribution, a zero-sum game between the generator and the
discriminator is set up. The generator aims to maximize the discriminator output, while the
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discriminator tries to minimize the score of generated samples while simultaneously trying
to maximize the score of the real samples. For the WGAN, this game is mathematically
formulated as [5]:

inf
θ
sup
ω

EX∼P r
u
[Dω(X)]− EZ∼P g

z
[Dω(Gθ(Z))] . (3.9)

It can be shown that this inf-sup problem is equivalent to minimizing the Wasserstein-1
distance between P ru and P gu due to the Kantorovich-Rubinstein duality [5]. The WGAN
framework requires the discriminator to be Lipschitz continuous with respect to the input.
Therefore, we introduce a gradient penalty term to constrain the gradient of the discriminator
[55]:

inf
θ
sup
ω

EX∼P r
u
[Dω(X)]− EZ∼P g

z
[Dω(Gθ(Z))]− λEx̂∼PX̂

[(
||∇X̂Dω(X̂)|| − 1

)2]
, (3.10)

where λ is a regularization parameter to be tuned, X̂ = ϵX + (1− ϵ)Gθ(Z), and ϵ is a small
positive number.

In practice, we do not update the weights of the generator and the discriminator at the
same time. Instead, we split (3.10) into two subproblems: a generator loss, LG, that aims to
minimize (3.10) and a discriminator loss, LD, that aims to maximize (3.10) by minimizing
the negative value:

LG = −EZ∼P g
z
[Dω(Gθ(Z))] , (3.11)

LD = −EX∼P r
u
[Dω(X)] + EZ∼P g

z
[Dω(Gθ(Z))] + λEX̂∼PX̂

[(
||∇X̂Dω(X̂)|| − 1

)2]
. (3.12)

In the WGAN framework, it is important to properly train the discriminator. Therefore, it is
common practice to update the discriminator parameters more frequently than the generator
parameters. The WGAN is visualized in Figure 3.2.

It has been shown that if the generator and the discriminator have sufficient capacity, the
generated distribution converges to the real data probability distribution in the Wasserstein-1
distance [93].

3.3 Markov Chain GAN

In this section, we will outline our proposed method, the Markov Chain GAN (MCGAN)
method. The general purpose is to combine MCMC methods with GANs in order to perform
state and parameter estimation in a computationally fast and accurate way. As mentioned
in the previous section, similar approaches exist using polynomial surrogate models [96, 137]



58
3. Markov chain generative adversarial neural networks for solving Bayesian inverse

problems in physics applications

Latent Distribution

ParametersGenerator Discriminator

Real DataPrior Distribution

Figure 3.2: GAN architecture.

and Gaussian processes [159]. However, as will be discussed, using GANs gives significant
advantages over these alternatives.

3.3.1 Proposed Algorithm

In short, the proposed algorithm aims to speed up posterior sampling without compromising
too much on accuracy. The general methodology is to replace the forward model in the
likelihood computation with the generator and replace the data prior with the GAN latent
distribution (see Figure 3.2).

Firstly, in an offline stage, we train the GAN to generate discrete solutions to the PDE
for the desired time span and corresponding parameters. The GAN is trained on samples
from the real prior distribution, P r0 , i.e. solutions computed through conventional numerical
methods (finite elements, finite volumes, etc.) and aims to learn a generated prior distribution,
P g0 . Samples from P r0 are typically computed by sampling the parameters and then solving
the physical model to get the state. This can be a lengthy process, but the training data can
be simulated completely in parallel on several computer cores. After training, the (single)
generator may generate pairs of states and parameters from a latent sample, z:

Gθ(z) = (Gqθ(z), G
m
θ (z)) = (qg,mg) = ug ∼ P g0 (3.13)

Hence, the generated distribution is approximating the real prior distribution, P g0 ≈ P r0 . In
the training, the discriminator will receive pairs of states and parameters, (qr,mr), sampled
from the real data prior and generated pairs of states and parameters, (qg,mg), sampled
from the generated distribution, in order to ensure that the generator learns to generate
states and parameters that match.

Remark It should be noted that since the GAN is trained on discrete solutions on a specific
grid, it will generate samples on the same grid. Therefore, it is important to train on discrete
solutions that have all the necessary properties for the online phase (sufficient resolution, etc.)
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In order to take advantage of the low-dimensional latent space, we need to be able to
sample solutions and parameters from a posterior on the latent space, instead of the gener-
ated distribution in the full data space. To this end, we have the expression for the latent
space posterior density:

ρgz|y(z|y) =
ρgy|u(y|Gθ(z))ρgz(z)∫

RNz
ρgy|u(y|Gθ(z))ρ

g
z(z) dz

=
ρη(y − h(Gθ(z)))ρ

g
z(z)∫

RNz
ρgy|u(y|Gθ(z))ρ

g
z(z) dz

∝ ρη(y − h(Gθ(z)))ρ
g
z(z).

(3.14)

By training the generator to generate pairs of states and parameters, there is no need for the
expensive forward model, as it is replaced by an evaluation of the generator at the sampled
z. This means that in the online stage, we only have to evaluate the GAN once in order to
get both the state and parameters. This is in contrast to “conventional” approaches where a
surrogate model only approximates the forward map or the parameters. In that case, one
would have to make use of two surrogates – one for the parameters and one for the forward
map. Furthermore, it also takes into account the slightly more general case where there is
not necessarily a deterministic relationship between the parameters and the state.

This approach yields a significant speed-up in online computation time since evaluating
the generator is, more or less, instantaneous and we obtain the posterior over both the state
and parameters at no extra cost. The derivation of (3.14) is given in Section 3.3.2 in Theorem
1.

In the online stage, we then use the MCMC method, as discussed in Section 3.2.2, to
sample from the latent space posterior. We can make use of the highly efficient HMC
algorithm, since derivatives of the likelihood are easily obtained through backpropagation
of the neural network generator. For conventional numerical methods, this is rarely the
case as computing derivatives of the forward model typically requires expensive numerical
approximations or adjoint methods. Furthermore, the MAP estimate is also cheap to compute
for the same reasons, which provides an excellent starting point for the HMC algorithm.
Since the dimension is lowered significantly, and derivatives and an appropriate starting
point are cheaply available, the Markov chain will converge significantly faster and we can
get by with much fewer samples. In conclusion, with the MCGAN methodology each sample
is cheap and we need fewer samples than for conventional methods.

Given the MCMC samples, we can compute derived quantities, e.g. for a given quantity
of interest f , we can compute the expected value by:

Eq∼P r
q|y

[f(q)] ≈ Eq∼P g
q|y

[f(q)]

= Ez∼P g
z|y

[f(Gqθ(z))]
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≈ 1

NMCMC

NMCMC∑

i=1

f(Gqθ(zi)), zi ∼ P̃ gz|y,

Em∼P r
m|y

[f(m)] ≈ Em∼P g
m|y

[f(m)]

= Ez∼P g
z|y

[f(Gmθ (z))]

≈ 1

NMCMC

NMCMC∑

i=1

f(Gmθ (zi)), zi ∼ P̃ gz|y,

By choosing an appropriate f , we can thereby compute various quantities of interest by
sampling the latent space posterior. See Theorem 1 in Section 3.3.2 for details.

For an overview of the methodology, see Algorithm 4 for the offline stage and Algorithm
5 for the online stage. Here is a summary of the distinct advantages of the proposed method
compared to the alternatives discussed in Section 3.4:

• The latent vector z is, in general, of significantly lower dimension than the state and
parameters, effectively reducing the dimension of the stochastic space, resulting in
significantly faster convergence of MCMC methods;

• The computationally expensive forward problem is replaced by the generator, whose
cost is computationally negligible to evaluate once it has been trained;

• Since the forward map is replaced by a neural network, derivatives of the log-likelihood
function can be computed efficiently, which enables computationally fast MAP estima-
tion and allows us to utilize the highly efficient HMC method for sampling.

While the advantages are clear, it is worth mentioning the drawbacks as well:

• There is no immediate way of choosing the dimension of the latent space. However,
one can consider it a hyperparameter and perform hyperparameter optimization;

• Training a GAN is not always an easy task, since commonly known problems of training
neural networks, such as local minima and generalization, also apply here;

• It is necessary to generate much training data in order to ensure accuracy of the GAN.

Note that the drawbacks are not unique to this methodology, but general when dealing with
neural networks. The first two points are a matter of hyperparameter tuning, and the last
point is a matter of time in the offline stage. Furthermore, with an efficient numerical solver
and the fact that the offline stage can be easily parallellized (since the training samples are
independent), the generation of data is often feasible within a reasonable timeframe. If the
forward solver would be too expensive to allow for this, it is recommended to first obtain a
simpler forward model e.g. by model reduction techniques such as reduced order models.
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Remark The purpose of the proposed methodology is to solve Bayesian inverse problems
computationally fast in an online stage. As mentioned, this comes at a cost of an expensive
offline stage in which the GAN is trained on simulated data. However, when the GAN is
trained, it can be deployed in several settings. Therefore, the method is highly suitable in
settings where computational speed is crucial and offline training time is less important.
This is, for example, the case for digital twins and model predictive control where repeated
real-time state estimation and parameter calibration are necessities.

Algorithm 4: MCGAN offline stage
Input: Ntrain, GAN hyperparameters, GAN architecture

1 Generate training samples, {(qi,mi)}Ntrain
i=1 ∼ P r0 , by solving the forward problem;

2 Train the GAN to approximate the prior, P g0 ≈ P r0 (see Section 3.2.3);
Output: Trained generator, Gθ

Algorithm 5: MCGAN online stage
Input: Generator from Algorithm 4, MCMC parameters, observations (y),

1 Compute the MAP estimate in the latent space, using a gradient descent algorithm,
as initial sampling point (see Eq. 3.8);

2 Use MCMC algorithm (see Section 3.2.2) to sample from the latent space posterior
(see Eq. (3.14));

3 Generate states and parameters from the posterior latent space samples:

{qi,mi} = {Gqθ(zi), Gmθ (zi)} = {Gθ(zi)}, i = 1, . . . , Nsamples zi ∼ P̃ gz|y.

4 Compute the relevant statistics, such as mean and variance;
Output: {qi,mi}Nsamples

i=1 , statistics

3.3.2 Latent Space Sampling

Here we prove that sampling from the latent space posterior essentially yields the same
results as sampling from the full data space in a weak sense. From [13], we have the following
results for push forward distributions:

EU∼Pu [f(U)] =

∫

V

f(u)ρu(u)du =

∫

G−1(V )

f(G(z))ρz(z)dz = EZ∼Pz [f(G(Z))], (3.15)

where u = G(z) ∈ V , Pu and Pz are the distributions of u and z with PDFs ρu and ρz,
respectively, and f is a measurable function on a suitable space, V . Here, Pu = G#P

g
z is the

push forward of Pz by G. The derivation of Eq. (3.15) only requires that G is measurable.
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Theorem 1. Let Gθ be a generator. Let Z be a latent space variable, distributed according
to a latent space distribution, P gz , with PDF ρgz , and let U = Gθ(Z) be distributed according
to the push forward distribution of the latent space distribution, U ∼ P gu = Gθ#P

g
z , with

PDF ρg0. Then, the push forward posterior distribution, conditioned on data y, is equal to
the latent space posterior distribution conditioned on the same data in a weak sense, i.e. for
all measurable functions f , the following holds:

EU∼P g
u|y

[f(U)] = EZ∼P g
z|y

[f(G(Z))], (3.16)

where the associated PDFs are given by:

ρgu|y(u|y) =
ρgy|u(y|u)ρ

g
0(u)∫

RNu
ρgy|u(y|u)ρ

g
0(u) du

, ρgz|y(z|y) =
ρgy|u(y|Gθ(z))ρgz(z)∫

RNz
ρgy|u(y|Gθ(z))ρ

g
z(z) dz

. (3.17)

Proof. Firstly, since neural networks with continuous activation functions are continuous,
they are also measurable [13]. Therefore, the generator defines a push forward distribution
and Eq. (3.15) is applicable.

Secondly, we look at the evidence. Assuming the likelihood is measurable with respect to
u, we have from Eq. (3.15):

Qu(y) =

∫

RNu

ρgy|u(y|u)ρ
g
0(u) du =

∫

RNz

ρgy|u(y|Gθ(z))ρgz(z) dz = Qz(y). (3.18)

Consider the expected value of the likelihood times some measurable function, f , with respect
to the prior:

EU∼P g
0
[f(U)ρgy|u(y|U)] =

∫

E

f(u)ρgy|u(y|u)︸ ︷︷ ︸
=ξ(u)

ρg0(u) du

=

∫

G−1
θ (E)

f(Gθ(z))ρ
g
y|u(y|Gθ(z))︸ ︷︷ ︸

=ξ(Gθ(z))

ρgz(z)dz

= EU∼P g
z
[f(Gθ(Z))ρ

g
y|u(y|Gθ(Z))].

(3.19)

Note that ξ is the product of two measurable functions and is therefore measurable. Hence,
Eq. (3.15) applies. Now using Eq. (3.18) and (3.19), we get:

EU∼P g
u|y

[f(U)] =
1

Qu(y)
EU∼P g

0
[f(U)ρgy|u(y|U)]

=
1

Qz(y)
EZ∼P g

z
[f(Gθ(Z)ρ

g
y|u(y|Gθ(Z))]

= EZ∼P g
z|y

[f(G(Z))].
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Using Theorem 1, we can conclude that sampling from the latent space posterior, P gz|y,
and pushing forward using the generator, Gθ, yields essentially the same results as sampling
directly from the generated posterior, P gu|y, in a weak sense. While small perturbations in
the latent domain might result in different output in the full data space, Theorem 1 shows
that, in a weak sense, the posterior obtained from pushing forward the latent samples is
equal to the full data posterior.

3.3.3 Convergence of Generated Posterior

In this subsection, we prove that P gu|y ≈ P ru|y when P g0 ≈ P r0 and under some additional
reasonable assumptions on the generator. That is, the case where the prior is approximated
in the Wasserstein metric and the likelihood is approximated with a surrogate forward map.
While [145] proves the cases where either the likelihood or the prior is approximated, we
provide a proof where both are being approximated.

Before stating the theorem, we need to define the appropriate spaces and metrics. Let
(E, dE) be a complete metric space. E ⊂ Rd is the set containing the state and parameter
vectors, u ∈ E and dE : E × E → R+ assigns non-negative distances between two elements
of E. Furthermore, in this formulation, the observation operator, h : E → O maps elements
from E to the observation space.

We can then define the relevant space of probability distributions:

Definition 3.1. On a metric space, (E, dE), we define the space of probability distributions
as:

Wq(E) =
{
P : |P |Wq

<∞
}
, |P |Wq

= inf
x0∈E

(∫

E

dE(x, x0)
qρ(x) dx

)1/q

.

Then, we define the Wasserstein-1 distance and its dual representation [113]:

Definition 3.2. For two probability distributions, P1, P2 ∈ W1(E), the Wasserstein-1
distance is defined as:

W1(P1, P2) = inf
γ∈Γ(P1,P2)

∣∣∣∣
∫

E

∫

E

dE(x, y)γ(x, y)dxdy

∣∣∣∣ ,

where Γ(P1, P2) is the set of joint PDFs, γ, for combined probability distributions with P1

and P2 as marginal distributions, respectively. From the Kantorovich–Rubinstein duality, we
can write the Wasserstein-1 distance as:

W1(P1, P2) = sup
Lip(f)≤1

∣∣∣∣
∫

E

f(x)ρ1(x)dx−
∫

E

f(x)ρ2(x)dx

∣∣∣∣ ,
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where f : E → R is a Lipschitz continuous function, Lip(f) is its corresponding Lipschitz
constant, and ρ1 and ρ2 are the PDFs of P1 and P2, respectively.

Besides the Wasserstein distance, we will also be working with the weighted norms:

||f ||L1
ρ
=

∫
|f(x)|ρ(x) dx, ||f ||L2

ρ
=

(∫
|f(x)|2ρ(x) dx

)1/2

.

With the proper spaces, norms, and metrics defined, we can state the following theorem,
inspired by [145]:

Theorem 2. Let (E, dE) be a bounded metric space with supx1,x2∈E dE(x1,x2) ≤ D <∞.

Let P r0 ∈ W2(E) denote the prior probability distribution of real data, and let P r0 ∈ W2(E)

denote the generated prior probability distribution of generated data.

Let the real data and generated likelihoods satisfy

ρry|u(y|u) ∝ Φr(u) = e−l
r(u), Φr : E → R+, lr : E → R+,

ρgy|u(y|u) ∝ Φg(u) = e−l
g(u), Φg : E → R+, lg : E → R+,

where lr and lg are the log-likelihood functions for the real and generated data, respectively,
and Φr and Φg are Lipschitz continuous functions with Lipschitz constants Lip(Φr) and
Lip(Φg), respectively. Furthermore, let Φr,Φg ∈ L2

ρg0
, where L2

ρg0
is the weighted L2 space

with ρg0 as the weight function.

Assume the GAN has converged, i.e. W1(P
r
0 , P

g
0 ) ≤ ϵ1. Furthermore, assume that this

implies convergence of the log-likelihood, as follows,

||lr(u)− lg(u)||L1
ρ
g
0

≤ ϵ2, ||lr(u)− lg(u)||L2
ρ
g
0

≤ ϵ3, (3.20)

where || · ||L1
ρ
g
0

is the weighted L1-norm with ρg0 as the weight function. Then, the Wasserstein-

1 distance between the real posterior probability distribution given observations and the
generated posterior probability distribution given observations satisfies:

W1(P
r
u|y, P

g
u|y) ≤ C1ϵ1 + C2ϵ2 + C3ϵ3, (3.21)

where

C1 =
(1 +DLip(Φr))

Qru(y)
, C2 =

max(Φr,Φg)

Qru(y)Q
g
u(y)

(1 +DLip(Φr))|P g0 |W1
, C3 =

max(Φr,Φg)

Qgu(y)
|P g0 |W2

,

where Qru and Qgu are the evidence from the real and generated posterior, respectively, and
D denotes the maximum distance between two points in the metric space, E.
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Proof. We write the Wasserstein-1 distance between the real prior and the generated prior
in dual form:

W1(P
r
0 , P

r
0 ) = sup

Lip(f)≤1

∣∣∣∣
∫

E

f(u)ρr0(u)du−
∫

E

f(u)ρg0(u)du
∣∣∣∣ , (3.22)

where f : E → R is Lipschitz continuous with Lipschitz constant less or equal 1 and f(u0) = 0

for some u0. Note that any function, g, with Lipschitz constant less than or equal 1, is a
contraction and therefore admits a fixed point. Now, assuming that u0 is the fixed point, we
can simply define f = g − u0, which admits f(u0) = u0. Therefore, assuming f(u0) = 0 for
some u0 is not a restriction. Furthermore, we have:

|f(u)| = |f(u) + f(u0)− f(u0)| = |f(u) + f(u0)| ≤ Lip(f)d(u,u0) ≤ D.

The Wasserstein-1 distance between the posteriors is given by:

W1(P
r
u|y, P

g
u|y) = sup

Lip(f)≤1

∣∣∣∣
∫

E

f(u)ρru|y(u|y)du−
∫

E

f(u)ρgu|y(u|y)du
∣∣∣∣

= sup
Lip(f)≤1

∣∣∣∣
∫

E

f(u)(ρru|y(u|y)− ρgu|y(u|y))du
∣∣∣∣

= sup
Lip(f)≤1

∣∣∣∣
∫

E

f(u)

(
Φr(u)ρr0(u)

Qru(y)
− Φg(u)ρg0(u)

Qgu(y)

)
du
∣∣∣∣ ,

Adding and subtracting the term f(u)
Φr(u)ρg0(u)
Qr

u(y)
gives

W1(P
r
u|y, P

g
u|y) = sup

Lip(f)≤1

∣∣∣∣
∫

E

f(u)

(
Φr(u)ρr0(u)

Qru(y)
− Φg(u)ρg0(u)

Qgu(y)
+

Φr(u)ρg0(u)

Qru(y)
− Φr(u)ρg0(u)

Qru(y)

)
du
∣∣∣∣

≤ sup
Lip(f)≤1

∣∣∣∣
∫

E

f(u)
Φr(u)

Qru(y)
(ρr0(u)− ρg0(u)) du

∣∣∣∣+
∣∣∣∣
∫

E

f(u)ρg0(u)

(
Φr(u)

Qru(y)
− Φg(u)

Qgu(y)

)
du
∣∣∣∣ .

Subsequently, adding and subtracting the term f(u)
Φr(u)ρg0(u)

Qg
u(y)

in the second integral gives

W1(P
r
u|y, P

g
u|y) ≤ sup

Lip(f)≤1

∣∣∣∣
∫

E

f(u)
Φr(u)

Qru(y)
(ρr0(u)− ρg0(u)) du

∣∣∣∣

+

∣∣∣∣
∫

E

f(u)ρg0(u)

(
Φr(u)

Qru(y)
− Φg(u)

Qgu(y)

)
+ f(u)ρg0(u)

(
Φr(u)

Qgu(y)
− Φr(u)

Qgu(y)

)
du
∣∣∣∣

≤ sup
Lip(f)≤1

∣∣∣∣
∫

E

f(u)
Φr(u)

Qru(y)
(ρr0(u)− ρg0(u)) du

∣∣∣∣
︸ ︷︷ ︸

=I1
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+

∣∣∣∣
∫

E

(
1

Qru(y)
− 1

Qgu(y)

)
f(u)ρg0(u)Φ

r(u)du
∣∣∣∣

︸ ︷︷ ︸
=I2

+

∣∣∣∣
∫

E

1

Qgu(y)
f(u)ρg0(u) (Φ

r(u)− Φg(u)) du
∣∣∣∣

︸ ︷︷ ︸
=I3

.

We will consider I1, I2, and I3 individually. Starting with I3, we use that

|e−x1 − e−x2 | ≤ e−min(x1,x2)|x1 − x2| ⇒ |Φr(u)− Φg(u)| ≤ max
u

(Φr,Φg)|lr(u)− lg(u)|.
(3.23)

Using Eq. (3.23) and the fact that |f(u)| ≤ d(u,u0), together with the Cauchy-Schwartz
inequality, we get:

sup
Lip(f)≤1

I3 ≤ sup
Lip(f)≤1

max(Φr,Φg)

Qgu(y)

∣∣∣∣
∫

E

f(u)ρg0(u)|lr(u)− lg(u)|du
∣∣∣∣

≤ max(Φr,Φg)

Qgu(y)

∣∣∣∣
∫

E

d(u,u0)ρ
g
0(u)|lr(u)− lg(u)|du

∣∣∣∣

≤ max(Φr,Φg)

Qgu(y)

(∫

E

d(u,u0)
2ρg0(u)du

)1/2

||lr(u)− lg(u)||L2
ρ
g
0

≤ max(Φr,Φg)

Qgu(y)
|P g0 |W2

︸ ︷︷ ︸
=C3

||lr(u)− lg(u)||L2
ρ
g
0

.

Considering I2, we use the following [145]:

∣∣∣∣
1

Qru(y)
− 1

Qgu(y)

∣∣∣∣ =
|Qgu(y)−Qru(y)|
Qru(y)Q

g
u(y)

, (3.24)

and

|Qgu(y)−Qru(y)| ≤ max(Φr,Φg)||lr(u)− lg(u)||L1
ρ
g
0

, (3.25)

in order to get:

I2 =

∣∣∣∣
∫

E

(
1

Qru(y)
− 1

Qgu(y)

)
f(u)ρg0(u)Φ

r(u)du
∣∣∣∣

≤
∣∣∣∣

1

Qru(y)
− 1

Qgu(y)

∣∣∣∣
∣∣∣∣
∫

E

f(u)ρg0(u)Φ
r(u)du

∣∣∣∣

≤ |Qgu(y)−Qru(y)|
Qru(y)Q

g
u(y)

∣∣∣∣
∫

E

f(u)ρg0(u)Φ
r(u)du

∣∣∣∣
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≤ max(Φr,Φg)

Qru(y)Q
g
u(y)

∣∣∣∣
∫

E

f(u)ρg0(u)Φ
r(u)du

∣∣∣∣ ||lr(u)− lg(u)||L1
ρ
g
0

.

By defining the function, g : E → R, g(u) = f(u)Φr(u), one can show that g is Lipschitz
continuous with Lipschitz constant Lip(g) = 1 +DLip(Φr) [145]. Furthermore, we have have
|g(u)| ≤ d(u,u0). This gives:

sup
Lip(f)≤1

I2 ≤ max(Φr,Φg)

Qru(y)Q
g
u(y)

(1 +DLip(Φr))

∣∣∣∣
∫

E

dE(u,u2)ρ
g
0(u)du

∣∣∣∣ ||lr(u)− lg(u)||L1
ρ
g
0

≤ max(Φr,Φg)

Qru(y)Q
g
u(y)

(1 +DLip(Φr))|P g0 |W1

︸ ︷︷ ︸
=C2

||lr(u)− lg(u)||L1
ρ
g
0

.

Finally, we consider I1. By using the function, g : E → R, u 7→ f(u)Φr(u), as defined above,
we get:

sup
Lip(g)≤1

I1 ≤ sup
Lip(f)≤1

(1 +DLip(Φr))

Qru(y)

∣∣∣∣
∫

E

g(u) (ρr0(u)− ρg0(u)) du
∣∣∣∣

=
(1 +DLip(Φr))

Qru(y)︸ ︷︷ ︸
=C1

W1(P
r
0 , P

r
0 ).

Combining, I1, I2, and I3 we then get:

W1(P
r
u|y, P

g
u|y) ≤ sup

Lip(f)≤1

I1 + I2 + I3

= C1W1(P
r
0 , P

r
0 ) + C2||lr(u)− lg(u)||L1

ρ
g
0

+ C3||lr(u)− lg(u)||L2
ρ
g
0

≤ C1ϵ1 + C2ϵ2 + C3ϵ3.

In short, the proof of Theorem 2 helps us understand when we can expect convergence of
the posterior. While the assumptions of the Theorem might seem restrictive, this is actually
not the case. Firstly, we assume that the metric space, E, is bounded, which is typically
the case in many applications. Secondly, we assume that the likelihood is of the form e−l(u),
Lipschitz continuous, and is in the weighted L1 and L2 spaces. For simple observation
operators (e.g. linear), this is a consequence of the negative log-likelihood function typically
being an L2-norm. This leaves us with the question of the convergence of the prior, which
directly determines ϵ1, ϵ2, and ϵ3.
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3.3.4 Convergence of the Generated Prior

The convergence of the generated prior is a matter of studying convergence properties of
GANs. Such studies are beyond the scope of this work. Instead, we refer to [5, 55, 93], where
convergence properties of GANs are discussed. In short, ensuring convergence of GANs is
similar to ensuring convergence of other types of neural networks. Hence, it is a matter of
having enough data and performing hyperparameter tuning. For the MCGAN, the amount
of data is, in general, not a problem, as we simulate the training data.

3.4 Alternative Methods

Here, we will comment on some well-known alternative methods that exist to speed up
solving the Bayesian inverse problem, which we will use for comparision with our proposed
method. We will also comment on their respective shortcomings.

3.4.1 Ensemble Kalman Filter

Ensemble Kalman filtering (EnKF) is a Kalman filter variant that is suitable for high-
dimensional and nonlinear problems [59]. The general idea is to compute the sample mean
and sample covariance from an ensemble and then update the prior accordingly. However,
as all distributions are assumed to be Gaussian, it means that it is not directly suitable for
non-Gaussian problems. In cases with very nonlinear or high-dimensional features, large
ensembles are necessary which in turn makes it computationally slow.

We compare the MCGAN framework with two variations of the ensemble Kalman filter
(EnKF):

• The (standard) EnKF for dynamic problems, where the state and parameter distribu-
tions are computed based on previous time steps along with data availability;

• Ensemble Kalman Inversion (EKI), used for stationary problems, where an artificial
time dimension is introduced in order to iteratively update the posterior of the state
and parameters.

For the pipe flow equations, the standard EnKF is utilized, while for the Darcy flow, the
EKI is used. The EnKF implementation is based on [59] and the EKI implementation is
based on [27].

For simultaneously estimating the parameter and state, we make use of disturbance
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modeling [72]. Here, we define an augmented model:

qi = F (qi−1,mi−1) + Γqϵi, ϵi ∼ N (0, Qq), (3.26a)

mi = mi−1 + Γmδi, δi ∼ N (0, Qm), (3.26b)

yi = h(qi) + ηi, ηi ∼ N (0, R), (3.26c)

where F is the discrete one-step time advancement model, ϵi is the model noise, Q the model
covariance, and R the observation covariance. With this formulation, both the state and
parameters are updated in every step of the EnKF algorithm.

Alternative approaches exist, such as particle filters, that do not assume a Gaussian
distribution. However, such methods are, in general, computationally very expensive and
will not be further discussed.

3.4.2 Surrogate Models

Instead of replacing the sampling method, the forward computations can be done using
a surrogate model, such as polynomial chaos expansion (PCE) methods [164], Gaussian
processes [146], or reduced basis methods [123]. The idea is to approximate the parameter-
to-observations map or the forward map by a low-order model that is computationally fast
to evaluate. These approaches have been shown to speed up the sampling significantly.
However, in high-dimensional cases the curse of dimensionality hampers the applicability of
such methods. Moreover, they usually do not perform well in discontinuous and/or highly
nonlinear cases unless the approach is tailored to the problem at hand.

Polynomial Chaos Expansion

In this chapter, we specifically compare with the PCE approach. The basic idea behind
PCE is to create a surrogate model that maps the stochastic parameters, m, to a quantity
of interest, Q [164]. The surrogate model is defined by a linear expansion of orthogonal
polynomials:

Q(m) =

N∑

i=1

αiϕi(m), (3.27)

where ϕi are the polynomials that are chosen based on the distribution of m, and αi are the
generalized Fourier coefficients.

The coefficients, αi, are typically computed using either spectral projection methods or
by least squares minimization. In both cases, the evaluations are carefully chosen according
to a quadrature rule.
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In our test cases, we choose the quantity of interest to be the observations, i.e. Q(m) ≈
h(q(m)) and αi ∈ RNy ; m are the parameters of interest, which are often the model
parameters and/or initial and boundary conditions.

When the PCE is computed, the posterior PDF is defined by:

ρym(m|y) = 1

ρy(y)
ρη(y −Q(m))ρm0 (m). (3.28)

The expected state and parameters are then computed by:

Eq [q] ≈
1

Nsample

Nsample∑

i=1

q(mi), Em [m] ≈ 1

Nsample

Nsample∑

i=1

mi, mi ∼ P ym, (3.29)

and the variance is computed in a similar manner.
It is important to notice that the sampling is done in the parameter space and the state

is thereafter computed by using the sampled parameters as input for the forward problem.
Directly sampling the state is infeasible due to the high-dimensionality of the state.

The implementation of the PCE method in this chapter is done using the Python library
Chaospy [37].

3.4.3 Likelihood-Free methods

As mentioned above, the computationally most expensive task is to evaluate the likelihood as
this requires the solution of the forward problem. Alternatively, one can compute the posterior
distribution without computing the likelihood. Such approaches are termed likelihood-free
methods.

There are several ways of making use of likelihood-free methods. One approach that has
become increasingly popular is to learn the posterior directly in an offline stage [2]. Here,
pairs of state/parameters and corresponding observations, (u,h(u)), are required in the
training stage. Then, a model is trained to approximate the posterior, P (u|h(u)) ≈ P (u|y).

While this approach enables fast computation of the posterior in the online stage, because
no sampling is needed, it is less flexible, as h cannot change between the offline and the
online stages, meaning that sensor configurations must be constant. Hence, in cases where
the sensor configuration is not known a priori, the methodology is not usable. Furthermore,
if the noise levels in the observations change, this cannot be incorporated in the online stage.

Deep Bayesian Inversion

A particular example of a likelihood-free method that makes use of GANs is the Deep
Bayesian Inversion (DBI). DBI makes use of conditional GANs (CGANs) to learn the posterior
distribution [2]. A CGAN is trained to learn to sample from the posterior distribution, Pu|y,
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directly. The general setup is the same as in Section 3.2.3, but with some minor differences.
The generator is now a map that takes a latent vector, z, and observations, y, and outputs a
sample u:

G(Z,y) = P gu|y(U |y) ≈ P ru|y(U |y), Z ∼ P gz . (3.30)

Similarly, the discriminator takes y and u and outputs a real number.
The training is performed by solving the inf-sup problem:

inf
θ
sup
ω

EX∼P r
u
[Dω(X,h(X))]− EZ∼P g

z
[Dω(Gθ(Z),h(Gθ(Z))))] (3.31)

−λEx̂∼PX̂

[(
||∇X̂Dω(X̂,h(X̂))|| − 1

)2]
.

Hence, the training is performed with the same data as for the MCGAN training, with the
difference that the observation operator is used to create observations for training.

In the online stage, when observations become available, one samples several latent vectors
for the same observations and uses those to obtain posterior samples:

{G(z1,y), G(z2,y), . . . , G(zN ,y)} = {u1|y,u2|y, . . . ,uN |y} , zi ∼ P gz , ∀i. (3.32)

The generator is now tied to the observation operator that was used for training.

3.5 Results

In this section, we will present the results on two different problems using the MCGAN
methodology. We show two distinct parameter and state estimation cases to highlight various
advantages of using the MCGAN methodology. Firstly, we consider a Darcy flow case
(stationary flow through a porous medium), with the aim of approximating the horizontal
and vertical velocity, the pressure, and the permeability field. The purpose of this case is to
emphasize the ability to deal with high-dimensional stochastic problems as the permeability
field is spatially distributed and follows a high-dimensional distribution. Secondly, we consider
the problem of leakage detection in pipe flow. Here, the challenge lies in dealing with a
nonlinear hyperbolic PDE with discontinuities and a non-informative prior.

The results will be assessed using the relative root mean squared error (RRMSE):

State RRMSE =

√∑Nq

i=1(q
∗
i − qi)2√∑Nq

i=1 q
2
i

, Parameter RRMSE =

√∑Nm

i=1(m
∗
i −mi)2√∑Nm

i=1 m
2
i

, (3.33)

where q∗ and m∗ denote the approximated state and parameters, respectively, and q and
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m are the reference state and parameters, respectively. The reference values are computed
using an appropriate numerical solver. This will be discussed for each test case separately.

Furthermore, we will look at the approximated posterior distributions resulting from the
MCGAN.

For the details on the hyperparameters for the training in each of the test cases, see Table
3.1. We compared the Adam optimizer and the RMSprop optimizer for training, and found
that RMSProp, in general, showed superior results in our test cases. The GAN architectures
are shown in Figure 3.3. Furthermore, all the training data for the GANs are generated by
sampling the parameter spaces according to the chosen distribution for the test case. The
number of training samples is chosen based on the performance of the resulting GAN. Note
that it is, in general, a difficult problem to choose the number of necessary training samples.

Table 3.1: Hyperparameters for the WGANs for the three test cases. The number of
discriminator updates, relative to those of the generator, is denoted by ndisc/ngen

Hyperparameters \ Test case Darcy flow Pipe flow

Optimizer RMSProp RMSProp
Learning rate 10−4 10−4

Batch size 64 64
Gradient penalty 5 5
ndisc/ngen 1 2
Ntrain 300,000 100,000
Latent dimension (Nz) 150 50

The specific architectures of the generators and discriminators for each test case can be
found in Figure 3.3. It is worth noting that we make use of convolutional neural networks
in all cases due to their success in problems dealing with spatially distributed degrees of
freedom [19, 105]. It should, however, be noted that convolutional neural networks can
essentially only be applied to Cartesian grids. To deal with irregular grids, one could make
use of alternative architectures, such as graph neural networks, as in [58], or operator neural
networks, such as Fourier neural operators [91].

As mentioned in Section 3.3.4, it is not feasible to compute the Wasserstein distance for
very high-dimensional distributions. Therefore, in order to show convergence of the generated
prior, we show the convergence of the first two moments, mean and standard deviation, with
the training epochs. Here, we have a value for the mean and variance at every grid point and
we compute the error as the relative RMSE. The convergence plots are shown in Figure 3.4.
While this is a weaker type of convergence than convergence in the Wasserstein-1 distance, it
still gives an indication that the GAN error is sufficiently small for the purpose of Bayesian
inversion.

We compare the proposed set-up with three alternatives: Ensemble Kalman filter, poly-
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2: Neurons = 1*

Edge Detection

Output
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Input size: 50

Reshape: (512,3,3)
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Size: (2,256,256)

Tanh

TransConv
1: (c,k,s)=(256,3,2)
2: (c,k,s)=(128,3,2)
3: (c,k,s)=(64,3,2)
4: (c,k,s)=(32,3,2)
5: (c,k,s)=(16,3,2)
6: (c,k,s)=(2,3,2)*
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Size: (2,256,256)

Parameters:
Size: 2
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1: (c,k,s)=(16,3,2)
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3: (c,k,s)=(64,3,2)
4: (c,k,s)=(128,3,2)
5: (c,k,s)=(256,3,2)
6: (c,k,s)=(512,3,2)*

Flatten
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1: Neurons = 128
2: Neurons = 64
3: Neurons = 32
4: Neurons = 16
5: Neurons = 1*

Concatenate

Output size: 1

Generator Discriminator

TransConv
1: (c,k,s)=(256,3,2)
2: (c,k,s)=(128,3,2)
3: (c,k,s)=(64,3,2)
4: (c,k,s)=(32,3,2)
5: (c,k,s)=(4,3,2)*
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1: Neurons = 512
2: Neurons = 2048
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Reshape: (512,2,2)
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Output
Size: (4,50,50)

Conv
1: (c,k,s)=(32,3,2)
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2: Neurons = 256
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Input size: (4,50,50)

Output size: 1
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Darcy flow Pipe flow

Conv = convolutional layers
TransConv = transposed convolutional layers
Dense = fully connected layers
(c,k,s) = (channels, kernel size, stride)
Tanh = hyperbolic tangent activation

All Conv, TransConv, and Dense layers have a  
bias term and are followed by a LeakyReLU 
activation function, except for chose with a *. 
Layers with a * are not followed by an 
activation function and do not have a bias term.

Figure 3.3: Generator and discriminator architectures for the two test cases.
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Figure 3.4: Convergence of mean and variance of the generated prior towards the prior
computed from simulations. The error is computed using a test dataset.

nomial chaos expansion, and deep Bayesian inversion (DBI) [2]. Brief summaries of each
methods can be found in Section 3.4. For the first test case, it is worth noting that we make
use of a variation called ensemble Kalman inversion, that is suitable for stationary problems.
For the DBI, we make use of the same architectures, except for the input. In the generator,
the observations are concatenated with the latent variables and for the discriminator the
observations are concatenated with output of the convolutional layers. Furthermore, both
the PCE and the DBI approaches are trained to the specific sensor configurations. Hence,
they are less flexible than the Kalman filter and MCGAN methods, which allow for varying
sensor configurations and a change of likelihood function.

All results are generated using synthetic observations. Therefore, all observations are
simulation-based and perturbed with artificial noise. To ensure that we are not subject to
inverse crime [25], the synthetic observations are generated with a higher resolution than what
is used for the training of the GANs and PCE models, for all experiments. Furthermore, the
Kalman filter results are also generated with a lower resolution. Secondly, we will use another
distribution for the likelihood function than for the noise in the synthetic observations. The
specifics will be discussed in each test case.

The number of necessary MCMC samples was considered a hyperparameter to be tuned
and we chose the smallest number of samples that did not sacrifice accuracy in both cases.

3.5.1 Darcy Flow

As a first test case, we consider stationary two-dimensional Darcy flow:

v + k∇p = 0, x ∈ [0, 1]2, (3.34a)

∇ · v = 0, x ∈ [0, 1]2, (3.34b)

p = 1, x ∈ 0× [0, 1], (3.34c)
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p = 0, x ∈ 1× [0, 1], (3.34d)

v · n = 0, x ∈ [0, 1]× {0, 1}. (3.34e)

p : [0, 1]2 → R denotes pressure, v : [0, 1]2 → R2 denotes the velocity, k : [0, 1]2 → R is the
spatially-dependent permeability field, and x = (x1, x2) are the spatial coordinates in the
horizontal and vertical directions, respectively. The permeability field k is modeled as a
lognormal field, log k = m ∼ N (0, C). The problem of state and parameter estimation for
Darcy flow is often considered in data assimilation and in uncertainty quantification, see e.g.
[28, 132].

The covariance matrix C is derived from the class of Matérn functions [85]:

C(xi,xj) = σ2 2
1−ν

Γ(ν)

(√
2ν

l
d(xi,xj)

)ν
Kν

(√
2ν

l
d(xi,xj)

)
. (3.35)

Γ is the gamma function and Kν is the modified Bessel function of the second kind. d(xi,xj)
denotes the distance between two points, xi and xj , in the domain, ν defines the smoothness,
σ2 > 0 is the variance, and l > 0 is the correlation length.

We denote by mN the discretized version of m defined on an N × N grid and the
covariance matrix, CN ∈ RN2 × RN2

, has elements (CN )i,j = C(xi,xj). Then, mN can be
sampled by computing

mN =

N2∑

i=1

√
λim̂iψi, m̂ ∈ RN

2

, m̂ ∼ N (0, I), (3.36)

where I ∈ RN2 × RN2

is the identity matrix, λi are the eigenvalues of CN in descending
order, and ψi the corresponding eigenvectors. Hence, the permeability field is determined by
m̂i, i = 1, . . . , N . A reduced representation of the permeability field can then be computed
by choosing n < N2:

m
(n)
N =

n∑

i=1

√
λim̂iψi. (3.37)

Thereby, the reduced permeability field is determined by n, instead of N2, parameters.

For generating the training data, Eq. (3.34) is solved using the finite element method.
The velocity is discretized by discontinuous Raviart-Thomas elements of polynomial order 3
and the pressure is discretized by Lagrange elements of polynomial order 2. This is known
to be a stable pairing of finite element spaces for the stationary Darcy flow [24]. The domain
is divided into 32× 32 squares, each divided into two triangles, resulting in 25793 degrees
of freedom in total. The solutions are then evaluated on a 50 × 50 equidistant grid. The
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implementation is done using the FEniCS library [94].

The specific setting for creating the permeability field here is n = 1089, ν = 1.5, l = 0.2,
and σ = 0.5.

For the observations, we consider evenly distributed sensors at locations, (x1, . . . ,xNy
),

measuring the horizontal velocity at Ny = 100 discrete points, see Figure 3.6a. Thus,
h : RN×N → RNy , and the measurements are created by:

y = h(v) + η, h(v) = (v1(x1), . . . , v1(xNy
)) η ∼ N (0, 0.012I), η ∈ RNy . (3.38)

The synthetic observations are generated using 50× 50 squares divided into two triangles.
The velocity is discretized with polynomial order 4 and the pressure with polynomial order 3.
The test case is similar to the one presented in [28].

We compare the MCGAN method with the ensemble Kalman inversion (EKI) method
[27] and Deep Bayesian Inversion [2]. The DBI is trained to the specific sensor locations. We
do not compare with PCE, since it is infeasible to compute a PCE model for a problem of
this high dimensionality. For the EKI, we compute ensembles consisting of 4000 forward
computations and use 25 iterations. Note that the EKI method is parallel, since each member
of the ensemble can be computed independently from the other members. Therefore, we run
the EKI using 20 CPU cores. For computing the permeability field, we use n = 1089, which
is the total number of degrees of freedom. See Figure 3.7 for the results.

GAN setup

The discriminator of the GAN consists of convolutional layers and the generator consists
of transposed convolutional layers. The generator is trained to generate the velocity in the
horizontal direction, v1, the velocity in the vertical direction, v2, the pressure, p, and the log-
permeability field, log(k). Each quantity is considered a channel in the sense of convolutional
neural networks. Thereby, the generator outputs tensors of the shape (4, N,N). To avoid
boundary artifacts in the generated fields originating from the transposed convolutional
layers, the generator is trained to generate fields of the shape (4, N + l, N + l), l > 0, which
are then cropped to the desired size. For details on the exact architecture specifications, see
Figure 3.3.

Results

The MCGAN results are computed with a single chain of 20,000 samples, where the first
12,500 samples are discarded to ensure that we only use samples with a converged chain. The
MAP estimate is used as the initial MCMC sample, which reduces the time until convergence
for the MCMC method significantly.
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Figure 3.5: Convergence of the MCGAN and high-fidelity MCMC for the state and log-
permeability with respect to the latent dimension.

For the likelihood function, we use N (0, 0.022I), which is different from the distribution
used to generate the observation noise.

To assess the convergence of relative RMSE for the MCGAN approximated state and
permeability with respect to the latent dimension, we compare the MCGAN approximated
state with a high-fidelity MCMC procedure. For each latent dimension, a new GAN is trained
with the same architecture, hyperparameters, and training data. For the MCMC procedure,
we sample the permeablity and solve the forward problem to get the likelihood. We use the
same forward model as for simulating the MCGAN training data and the standard deviation
was also the same as for the MCGAN. The mean values of all accepted samples were used
for computing the relative RMSE of the permeability. Similarly, the mean values of all
corresponding states were used to compute the state relative RMSE. The latent dimension
refers to the number of modes used for the permeability, as shown in (3.37). A Metropolis-
Hastings algorithm with adaptive proposal standard deviation ensuring that the acceptance
rate is between 0.2 and 0.5 was used. We employed 10 uncorrelated chains in parallel, with
different initial conditions. The first 200,000 samples from each chain were discarded and
then every 5th sample was saved to reduce the correlation between each sample in the chain
until 3,000 samples per chain were reached. Hence, a total of 30,000 samples were used for
computing the relative RMSE. In Figure 3.5, we see the convergence results. Clearly, with
a latent dimension of 10 in the MCGAN, essentially the same accuracy was achieved for
the permeability as for the high-fidelity MCMC method with between 150 and 300 modes.
Furthermore, for the state, a dimension of 50 in the MCGAN achieves similar accuracy as
300 modes in the high-fidelity MCMC. Hence, the MCGAN approach provides a significant
dimensionality reduction, together with a speed-up of the evaluation.

MCMC Setup. In Figure 3.6, the results from using MCGAN for the Darcy flow are
shown. We see that the horizontal velocity is estimated accurately with a relative RMSE of
0.10 and a relatively low standard deviation. Not surprisingly, the standard deviation seems
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Figure 3.6: MCGAN results for the Darcy flow test case. Top row: v1. Red dots are points
of measurements. Bottom row: log(k).

to be largest at the upper boundary where no measurements are available. Furthermore,
larger uncertainty is observed in the areas of the domain where the magnitude v1 is large.

Regarding the log-permeability, the MCGAN captures the structure of the true log-
permeability as well as the sharp edges with a relative RMSE of 0.17.

For both the state and log-permeability, the Kalman inversion gives similar, but slightly
worse, accuracy and significantly smoother results than the MCGAN approach (see Figure
3.7). Hence, the Kalman inversion is not able to capture the sharper edges. Furthermore, it
is an order of magnitude slower (see Table 3.5). The DBI method gives similar results, but a
lower accuracy on the parameter estimation is observed (see Figure 3.8).

3.5.2 Leakage Detection in Pipe Flow

To show the method’s generality, as a different problem, we consider unsteady single phase flow
through a pipeline, until suddenly (at t=10s) a leak occurs. As a consequence, pressure waves
start propagating through the pipeline, and the velocity field at the leak becomes discontinuous
because of the mass flow leaving through the leak. We have only two measurement locations,
one close to the inlet and one close to the outlet of the pipeline measuring pressure, and
the goal is to infer the leak location and size based on these measurements and a physical
model of the flow in the pipeline. This is a challenging problem because of the very sparse
measurement data and the discontinuity in the solution.
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Figure 3.7: EKI results for the Darcy flow test case. In (a)-(b) we see the reconstruction
of v1 and the standard deviation of the reconstruction, respectively. In (c)-(d) we see the
reconstruction of log(k) and the standard deviation of the reconstruction, respectively.

The governing equations are given by the one-dimensional Euler equations for mass and
momentum conservation [62, 86]:

∂tq1 + ∂xq2 = Cd
√
ρ(p(ρ)− pamb)δ(x− xl)H(t− tl), (3.39a)

∂tq2 + ∂x

(
q22
q1

+ p(ρ)A

)
= − 1

2d

q22
q1
ff (q), (3.39b)

v(0, t) = v0, p(L, t) = pL. (3.39c)

where ρ is the fluid density (not to be confused with the probability density functions in
previous sections), p(ρ) = c2(ρ−ρ0)+p0 is the pressure, v is the velocity, q1 = ρA, q2 = ρvA,
δ is the Dirac delta function, and H is the Heaviside function. v0 represents the boundary
conditions prescribed on the velocity at the left end of the pipe and pL is the prescribed
pressure at the right end of the pipe. d, A, pamb, c, ρ0, are all constants. The physical
quantities they represent and the values we will be working with are found in Table 3.2. The
righthand side in Eq. (3.39a) is the leakage, modeled as a discharge. tl is the time at which
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Figure 3.8: DBI results for the Darcy flow test case. In (a)-(b) we see the reconstruction
of v1 and the standard deviation of the reconstruction, respectively. In (c)-(d) we see the
reconstruction of log(k) and the standard deviation of the reconstruction, respectively.

the leakage occurs, xl and Cd are the two parameters of interest. They represent the location
and size of the leakage, respectively. The righthand side of Eq. (3.39b) is the friction, where
ff is the Darcy-Weisbach friction coefficient, which is given by the Haaland expression [138]:

1√
ff

= −1

4
1.8 log10

[(
ε/D

3.7

)1.11

+
6.9

Re

]
, (3.40)

where Re is the Reynolds number, Re = ρvd
µ , with µ the fluid viscosity and ε the pipe

roughness. The values and units of all parameters in the model are in Table 3.2. The initial
condition is (q1, q2) = (ρ0A, ρ0v0A).

Eq. (3.39) is solved using the nodal discontinuous Galerkin method [66]. We use Legendre
polynomials for the local polynomials, and Lagrange polynomials for the nodal representation.
The numerical flux is chosen to be the Lax-Friedrichs flux. To ensure stability and non-
oscillatory behavior while ensuring high-order accuracy, a TVBM slope-limiter is applied
after each time step [66]. The time stepping is performed using the BDF2 method, with an
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Table 3.2: Parameters for the pipe flow equations, (3.39). Note that the discharge coefficient
and the leakage location have values denoted by intervals, as they are the parameters to
determine.

Physical quantity Constant Value Unit

Pipe length L 2000 m
Diameter d 0.508 m
Cross-sectional area A 0.203 m2

Speed of sound in fluid c 308 m/s
Ambient pressure pamb 101325 Pa
Reference pressure pref 5016390 Pa
Reference density ρref 52.67 kg/m3

Inflow velocity v0 4.0 m/s
Outflow pressure pL 5016390 Pa
Pipe roughness ε 10−8 m
Fluid viscosity µ 1.2 · 10−5 N · s/m2

Leakage start time tl 10 s
Discharge coefficient Cd

[
1.0 · 10−4, 9.0 · 10−4

]
m

Leakage location xl [100, 1900] m

initial implicit Euler step [89].

For the generation of the training data, we consider 75 elements with a local polynomial
order of 3. The resulting solution is then evaluated on an equidistant grid consisting of 256
points. For the time stepping, we consider a horizon of T = 64 seconds with 256 time steps.
Hence, (q1, q2) ∈ R256×256 × R256×256.

We assume a uniform prior for both the leakage location, xl ∼ U(100, 1900), and the
discharge coefficient, Cd ∼ U

(
1.0 · 10−4, 9.0 · 10−4

)
. Other choices of distributions of xl and

Cd are subject to future studies.

For the state and parameter estimation, only measurements of the pressure are ob-
served. We consider the vector, (x1, . . . , xNy

), of measurement locations, and the vector of
measurement times, (t1, . . . , tNy

). This gives rise to the synthetic observations:

y = h(p) + η, h(p) = (p(x1, t1), . . . , p(xNy
, tNy

)), η ∼ N (0, 15002I), η ∈ RNy . (3.41)

We specifically consider the case where we only observe at x = 20m and at x = 1980m and
for all time instances, i.e. (x1, . . . , xNy) = (20, . . . , 20, 1980, . . . , 1980) and (t1, . . . , tNy) =

(0.25, . . . , 64, 0.25, . . . , 64). Hence, Ny = 2 · 256 = 512. For simulating the synthetic
observations, we used 100 elements with a local polynomial order of 4.

We compare our method with the DBI, PCE and the EnKF approaches. The PCE model is
trained to map the leakage location, xl, and discharge coefficient, Cd, to the observations. We
achieved the highest precision with fourth-order polynomials. We performed 50,000 MCMC
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posterior samples and discarded the first 40,000. The state reconstruction is performed
after the sampling by computing the state using the parameters samples from the MCMC
sampling. The state reconstructions are computed in parallel using 20 cores. See Figure 3.11
for results.

In the EnKF method, we used an ensemble size of 2000. Γq and Γm are chosen to be
identity matrices and Qq = diag(0.01, 0.001)2 and Qm = diag(100, 1 · 105)2. The ensemble is
computed in parallel on 20 CPU cores. See Figure 3.12 for results.

GAN setup

As for the above tests, we use convolutional layers for the discriminator and transposed
convolutional layers for the generator. The GAN is trained to generate the velocity, v,
and pressure, p, instead of generating the conservative variables q1 and q2, since v and p

are the quantities of interest. The GAN is trained to generate full space-time solutions
in the intervals, x ∈ [0, L] and t ∈ [0, T ]. v and p are considered channels in the sense of
convolutional neural networks. Hence, the generator generates tensors of size (2, 256, 256).

At the location of the leakage, there will be a discontinuity in the velocity, due to a drastic
drop in the velocity. We use this information to compute the leakage location by identifying
the spatial location of the discontinuity, by convolving the state with an appropriate kernel.
Furthermore, a dense neural network takes in the generated state and outputs the discharge
coefficient. See Figure 3.3 for a visualization of the GAN.

Due to the large differences in orders of magnitude, the velocity, pressure and discharge
coefficients are scaled to have values between -1 and 1.

Results

The MCGAN results are computed with a single chain of 15,000 samples, where the first 10,000
samples are discarded to ensure that we only use samples after the chain has converged. The
MAP estimate is, again, used as the initial MCMC sample in order to speed up convergence.
For the likelihood function, we use N (0, 30002I), which is different from the distribution
used to generate the observation noise.

Figure 3.9 presents the reconstruction of the velocity. It is apparent that the velocity
is reconstructed very well with a relative RMSE of 0.01. It is especially worth noting that
the uncertainty is largest around the drop in velocity, i.e. at the location of the leakage, as
expected. This uncertainty information could further be used to estimate the location of the
leakage. While the state estimation is accurate, it is apparent that the velocity estimation
is slightly worse in the domain to the right of the leakage (x > xl). The lack of accuracy
is accompanied by an increased standard deviation in that part of the domain. Hence, the
uncertainty estimates provide useful information.
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While the MCGAN is performing well in the interior of the domain, it is noteworthy that
the estimation at the boundary at x = 2000 is not as accurate.

In Figure 3.10, we see the estimated posterior distributions of the leakage location and
discharge coefficient, respectively. In the leakage location posterior, the estimated mean is
close to the true mean (see also Table 3.3) and it is, more or less, symmetric. In the discharge
coefficient posterior, on the other hand, the estimated value appears to be smaller than the
true value. The MCGAN method significantly outperforms the PCE and EnKF methods in
this case. The EnKF is initiated with xl = 1000 and Cd = 5 · 10−4 and the MCMC with
PCE is initiated at the MAP estimate. In Figures 3.11 and 3.12, the results obtained using
the EnKF and PCE method are shown. None of the two approaches manages to estimate
the state or the parameters in a satisfying manner. Table 3.3 shows that the EnKF approach
is unable to update the posterior and the PCE approach only performs marginally better.

The pipe flow equations are highly nonlinear and the solution exhibits a discontinuity
at the location of the leakage. Both phenomena are not easy to handle with the PCE nor
EnKF approaches, while neural networks have been shown to be well-suited for such tasks.

On the other hand, DBI performs highly satisfactory (see Figure 3.13). For the leak
location, DBI is slightly more accurate, while for the leak size, MCGAN performs better.
Furthermore, the distribution over the leak size computed by DBI is narrow, suggesting
that the approximated value has small uncertainty associated with it, even though the
approximation is not accurate. MCGAN, on the other hand, shows larger uncertainty
associated with the approximation suggesting more accurate evaluation of the reliability.
Lastly, we see that MCGAN approximates the state more accurately than DBI.

As mentioned, when using DBI, one has to choose the exact location and temporal
frequency of incoming observations before training, to create the training set. This is not
the case for MCGAN, where the exact sensor configuration and likelihood do not have to be
specified before the online stage.

Table 3.3: Estimated parameters for the pipe flow using MCGAN, PCE, and EnKF. The
best estimates are highlighted in boldface.

MCGAN PCE EnKF DBI

Pars True val. Mean Std Mean Std Mean Std Mean Std

xl 1354.5 1336.8 44.80 1099.2 69.98 1005.0 10.15 1357.2 35.7
Cd 3.5·10−4 3.1·10−4 5.7·10−5 2.6·10−4 2.4·10−5 7.2·10−4 3.2·10−3 2.7·10−4 1.2·10−5

3.5.3 Summary of Results

To summarize the results obtained using the proposed MCGAN method, we highlight accuracy
and computation time. Firstly, in Table 3.4 the relative RMSE for the state and parameters
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Figure 3.9: Results for the MCGAN method applied to the pipe flow with a leakage, Eq.
(3.39). (a)-(c) are space-time contour plots of the true state, the MCGAN estimated state,
and the standard deviation, respectively. (d)-(f) show the state reconstruction at various
instances in time with the shaded area denoting one standard deviation away from the
reconstruction.
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Figure 3.10: Posterior distributions of the leakage location and discharge coefficient in the
pipe flow equation.
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Figure 3.11: Results for the MCMC sampling with a PCE surrogate model applied to the
pipe flow with a leakage, Eq. (3.39). In (a) we see the space-time contour plots of the
reconstructed velocity. In (b) we see the velocity reconstruction at t = 44 with the shaded
area denoting the standard deviation. In (c)-(d) we see the posterior distributions of the
leakage location and discharge coefficient.

are presented for both test cases. The MCGAN performs better than the three alternative
approaches in almost all metrics. For the leakage localization in the pipe flow test case,
the MCGAN method outperforms the PCE and the EnKF approaches, while performing
similarly to DBI. The MCGAN results are very close to the true values with relative RMSEs
that are one order of magnitude better than PCE and ensemble Kalman approaches for the
state and parameter estimation. In Table 3.5, the online computation times for the methods
applied to the two test cases are shown. It is interesting to note that the computation time
does not change much in the two test cases for the MCGAN. This is due to the fact that there
are only minor differences in computation time between evaluating a small neural network
and a large one. DBI is the fastest approach since the GAN is trained to sample directly
from the posterior, in contrast to the MCGAN approach that makes use of MCMC methods.

Lastly, we briefly comment on the offline training time. For the computationally most
expensive case, the pipe flow, the most time consuming part is the generation of data.
Generating 100,000 training trajectories took about 80 hours on 30 CPU cores (90 seconds
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Figure 3.12: Results for EnKF method applied to the pipe flow with a leakage, Eq. (3.39).
In (a) we see the space-time contour plots of the reconstructed velocity. In (b) we see the
velocity reconstruction at t = 44 with the shaded area denoting the standard deviation. In
(c)-(d) we see the posterior distributions of the leakage location and discharge coefficient.

per trajectory). The training of the GAN was finished in about 24 hours for both the
MCGAN and DBI. In total, the offline stage took approximately 104 hours. The offline
time for the Darcy flow was shorter, totaling around 50 hours. We did not experience high
sensitivity to the hyperparameters, such as learning rate, batch size, etc. This might be a
product of the large number of training samples.

3.6 Conclusion

We have presented a new method, named MCGAN, to efficiently and accurately solve
Bayesian inverse problems in physics and engineering applications. The method combines
Generative Adversarial Networks and Markov Chain Monte Carlo methods to sample from
posterior distributions by utilizing a low-dimensional latent space and a push-forward map
defined as a neural network.

The methodology was divided into two distinct stages, an offline stage, in which the GAN
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Figure 3.13: Results for DBI method applied to the pipe flow with a leakage, Eq. (3.39).
In (a) we see the space-time contour plots of the reconstructed velocity. In (b) we see the
velocity reconstruction at t = 44 with the shaded area denoting the standard deviation. In
(c)-(d) we see the posterior distributions of the leakage location and discharge coefficient.

was trained on simulated training data in order to learn the prior distribution, and an online
stage, in which the inverse problem was solved for a new set of observations. While the offline
stage potentially takes significant computational time, the online stage was computationally
very fast and efficient.

We presented a proof of theoretical convergence of the posterior distribution in the
Wasserstein-1 distance, in the case where the GAN would be perfectly trained. Furthermore,
we provided the insight that sampling from the latent space yielded essentially the same
results as sampling from the high-dimensional space, in a weak sense.

To showcase the method’s performance, we applied it to two computational engineering
test cases with different characteristics and compared it to three alternative approaches. In
the high-dimensional problem, the Darcy flow with uncertain permeability field, an improved
accuracy was found with MCGAN compared with EKI and DBI, as well as a speed-up of
one order of magnitude compared to the EKI method. In the second test case, the leakage
localization for flow in a pipe, the MCGAN approach showed increased accuracy for the state
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Table 3.4: Relative RMSE for the state and parameter estimation for the various test cases.
For the Darcy flow, the Relative RMSE for (v1, v2, p) is computed. For the pipe flow, the
Relative RMSE for (u, p) is computed. The best performing cases are highlighted in boldface.

MCGAN PCE EnKF/EKI DBI

State Pars State Pars State Pars State Pars

Darcy flow 1.3·10−1 1.7·10−1 - - 2.0·10−1 4.2·10−1 1.9·10−1 4.9·10−1

Pipe flow 4.8·10−3 1.3·10−2 1.3·10−2 1.9·10−1 3.3·10−2 2.6·10−1 7.0·10−3 2.0·10−3

Table 3.5: Comparison of online computation time. All simulations are run on CPU cores.
Only the number of CPU cores varies.

MCGAN (1 core) PCE (20 cores) EnKF/EKI (20 cores) DBI (1 core)

Darcy flow 3.17·102s - 4.11·103s 3.31·101s
Pipe flow 7.10·102s 1.18·104s 1.25·104s 3.14·101s

and leak size detection, while DBI was slightly more accurate regarding the leak location.
Out of the four approaches, the MCGAN method was the one that provided accurate results,
fast sampling without being trained to only work for a single sensor configuration.

It is worth noting that, similar to any surrogate modeling approach, it is unclear how
well the methodology performs on out-of-distribution cases. This is a subject to future study.

While the MCGAN approach performed well on the two test cases, there is still room
for future research. We believe the offline stage can be improved by identifying optimal
ways of simulating training data and determining hyperparameters for the GAN. This
includes determining the optimal size of the latent space. Furthermore, the GAN can be
improved by incorporating physics knowledge either in the training or directly in the neural
network architecture. This could possibly alleviate the boundary estimation problems. Also,
possibilities of using the MCGAN framework in a sequential fashion, as is the case for Kalman
filters, would be an interesting direction to explore.

In conclusion, we believe that the MCGAN methodology can form an important piece of
the puzzle towards a well performing digital twin framework, in which real-time state and
parameter estimation is of crucial importance.



4
A Probabilistic Digital Twin for Leak

Localization in Water Distribution Networks

Using Generative Deep Learning

Localizing leakages in large water distribution systems is an important and ever-present
problem. Due to the complexity originating from water pipeline networks, too few sensors,
and noisy measurements, it is a highly challenging problem to solve. In this work, we present
a methodology based on generative deep learning and Bayesian inference for leak localization
with uncertainty quantification. A generative model, utilizing deep neural networks, serves as
a probabilistic surrogate model that replaces the full equations, while, at the same time, also
incorporating the inherent uncertainty in such models. By embedding this surrogate model
into a Bayesian inference scheme, a leak is located by combining sensor observations with
model output approximating the true posterior distribution over possible leak locations. We
show that our methodology enables fast, accurate and trustworthy results. It shows convincing
performance on three problems with increasing complexity. For a simple test case, the Hanoi
network, the average topological distance (ATD) between the predicted and true leak location
ranges from 0.3 to 3 for varying numbers of sensors and measurement noise. For two

This chapter is based on the article “A Probabilistic Digital Twin for Leak Localization in Water
Distribution Networks Using Generative Deep Learning”, Sensors, 23.13:6179, 2023 [106]
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more complex test cases, the ATD ranges from 0.75 to 4 and from 1.5 to 10, respectively.
Furthermore, accuracies upwards of 83%, 72%, and 42% for the three test cases respectively
are achieved. The computation times range from 0.1 to 13 seconds, depending on the sizes
of the neural networks employed. This work serves as an example of a digital twin for a
sophisticated application of advanced mathematical and deep learning techniques in the area
of leak detection.

4.1 Introduction

Water distribution systems make up a large and important part of our civil infrastructure.
They need to be safe, efficient, and reliable. Ensuring a constant supply of clean water is,
however, not an easy task. The distribution is typically done by using networks of pipes,
which can be highly intricate and involve multiple components, such as several kilometres
of pipe segments, numerous junctions, valves, pumps, reservoirs and tanks. Such networks
are difficult to manage and they are prone to failure due to leakages and blockages which
may result in economic losses and environmental damage. Therefore, it is important to
have quick and trust-worthy monitoring in place. Monitoring is typically done by recording
information from a number of sensors installed at critical locations within the network.
However, detecting the occurrences and locations of leaks can still be a challenging task, even
with sensor data available, because the information captured by sensors will be incomplete
in both time and space, making it difficult to pinpoint the exact location and timing of the
leak. In this chapter, we address the problem of leak localization in real-time by means of
machine learning techniques.

For a leak localization framework to be considered useful in practice, it has to satisfy certain
requirements. First, it should be sufficiently accurate. Secondly, it must be computationally
fast so that any leakage can be identified quickly. Third, it must be reliable. That is, the
framework should not just provide an estimated leak location, but also a measure of the
level of confidence in the estimate. Fourth, it should be general and work under different
circumstances. The framework should be sufficiently generic to work on different water
distribution networks with widely varying complexity. Lastly, it must be flexible. In this
context, flexibility refers to various aspects such as whether it is possible to include prior
knowledge when such becomes available, whether it can handle different kinds of sensor
readings or varying numbers of sensors, etc. There are not many approaches that satisfy
all requirements since many of them are difficult to satisfy simultaneously. For example,
computing uncertainty often comes at the cost of computation time and generalized models
are typically less accurate than models tailored to special cases, and they struggle with
incorporating prior knowledge as they will then lose their general nature. The framework
presented satisfies all requirements, at the cost of a computationally intensive training stage.



4.1. Introduction 91

4.1.1 Leak localization literature

There is already a significant amount of research in the area of leak localization. However,
not many approaches satisfy all the above mentioned requirements. The authors in [149] and
[75] make use of a model to generate synthetic sensor observations. The residuals between
the model output and the observed values are then used to predict the leak location using a
trained classifier. Similarly, in [103] residuals are employed for leak detection after which
the characteristics of the residuals are used for localizing the leak. In [130], an encoding of
the sensor observations is used together with a trained classifier and a graph theory-based
clustering method. While these approaches are computationally fast and are shown to be
accurate on selected test cases, they mainly work for the sensor configurations they are
trained on and are limited in uncertainty quantification as they do not model the inherent
input uncertainty in e.g. the demand. Furthermore, even if available, prior information
cannot be embedded into these approaches. On the other hand, in [140], a combination of
model- and graph theory-driven techniques is used together with online training of a neural
network classifier to predict a cluster of nodes in which the leak is present. This is a flexible
setup that allows for changes in sensor configurations. However, uncertainty quantification is
still limited as only the size of the predicted cluster is used as a proxy for reliability of the
prediction.

4.1.2 Bayesian inference

As an alternative to the above mentioned approaches, one can make use of Bayesian infer-
ence. This allows one to solve the leak localization problem accurately with uncertainty
quantification. The general technique is to compute the data likelihood and combine it with
a prior. The output from a Bayesian inference approach is then a distribution of the leak
location conditioned on sensor observations, i.e. the posterior distribution. This approach
also provides flexibility as new sensor configurations can be incorporated by simply modifying
the likelihood. Within the likelihood, both the sensor noise and model uncertainty are
modeled. That is, the uncertainty associated with imperfect sensors and e.g. stochastic nodal
demand in the water network can be included in the computations of the posterior directly.
Furthermore, one can incorporate prior information in a straight-forward way. However,
the Bayesian approach has the significant drawback of being computationally expensive.
Approximating the likelihood accurately, requires solving the model many times due to the
nonlinearity and high-dimensionlity. Hence, it is often infeasible to run a Bayesian inference
procedure in real time. In [155], the authors overcome this problem by assuming normally
distributed demands and inputs, to be able to use gradient-based optimization together
with kernel methods. However, this assumption may be restrictive. Instead, we propose an
alternative solution to this problem, that does not require such restriction.
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4.1.3 Computational bottleneck

To overcome the computational bottleneck associated with Bayesian inference, one can
make use of a surrogate model. A surrogate model is trained in an offline stage before
being used in an online stage for leak localization. The usage of surrogate modeling has
become widespread nowadays, due to the potential computational speed-up without essential
loss of accuracy. Conventionally, a linear dimensionality reduction, like proper orthogonal
decomposition (POD), is used together with some regression method in the reduced space.
E.g. in [99], a combination of POD and radial basis functions with neural networks is used
in inverse analysis for structural diagnoses. In [38], POD is used with stochastic spectral
methods to relate the input to the output within a Bayesian inverse problem to speed it
up. In [56], POD is combined with Gaussian processes for speeding up nonlinear structural
analysis. In recent years, deep neural networks have become popular choices for surrogate
models in scientific computing due to their performance in dimensionality reduction and their
predictive power [65, 91, 105]. For the purpose of speeding up Bayesian inference, we want to
model a high-dimensional stochastic problem. We will make use of the concept of generative
modeling. While applications of generative modeling in various scientific fields are already
widespread [30, 107, 117], it has not yet been tailored to the area of water management. The
general concept is to train a neural network to learn the underlying distribution of data in
order to be able to sample from it after a training phase. This enables fast sampling from
complicated and high-dimensional distributions. There are several kinds of generative neural
networks, such as generative adversarial networks [51], variational autoencoders [81], and
diffusion models [144]. Each of these models has its advantages and drawbacks. There are
specifically three factors to consider when using generative models: sampling quality, speed,
and diversity [163]. In this work, we adopt the Wasserstein Autoencoder [151] as it performs
highly satisfactory on these three criteria.

4.1.4 Overview chapter

In this chapter, we present a novel leak localization framework based on Bayesian inference and
generative deep learning. By formulating the leak localization problem as a Bayesian inverse
problem, the uncertainty in model parameters and sensor observations is included in the leak
location estimation, which enables accurate uncertainty quantification of the predicted leak
location. Furthermore, prior information can be included in the computations. To overcome
the computational drawback, we make use of neural networks as the stochastic surrogate
model. The neural network is trained as a generative model to estimate the distribution
of pressure heads and flow rates given a leak location. This enables fast evaluation of the
likelihood function while retaining accuracy.

In Section 4.2, we present the theory behind the framework. The problem setting and
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the underlying equations are described, the leak localization problem is presented as a
Bayesian inverse problem and the generative neural networks, WAEs and the neural network
architectures, are presented. In Section 4.3, we combine the components from Section 4.2
into the presented framework. In Section 4.4, we showcase the framework on three test cases.
The chapter is then concluded in Section 4.5.

4.2 Problem Setting and Preliminaries

In this section, we introduce the problem setting and briefly cover the preliminaries for
the proposed framework. We start by introducing the mathematical model for the water
distribution network, which allows us to simulate the pressure heads and flow rates given a
set of parameters, such as demand, pipe roughness, and leak location. Then, we describe
leak localization as a Bayesian inverse problem, explain how the Bayesian setting allows
us to model the uncertainty and incorporate prior information. Furthermore, we state
the assumptions and the drawbacks of the proposed framework. Lastly, we present the
relevant machine learning framework and deep learning architectures. Specifically, we discuss
Wasserstein autoencoders, which are crucial in speeding up the Bayesian inference as well
as residual– and transformer neural networks, which enable us to replace the conventional
mathematical model without losing significant accuracy.

4.2.1 Problem Setting

We consider a water distribution network which has Np pipes, Nj variable head nodes, and
Nf fixed head nodes. The head losses in all pipes in the network are assumed to be modeled
by the Hazen-Williams formula, so the relation between the heads at two ends (nodes i and
k) of a pipe j and the flow is given by

hi − hk = rjQ
n
j , (4.1)

where Qj is the flow rate in pipe pj ; hi is the head at node i, n = 1.852, and rj is the pipe
resistance factor, that depends on its length, diameter, and the material of the pipe. Define
q = (Q1, . . . , QNp

)⊤, as a vector of unknown fluid flow rates in the pipes.

The network topology is modeled by the incidence matrices A1 ∈ RNp×Nj and A2 ∈
RNp×Nf , for the unknown head nodes and the fixed head nodes, respectively. These incidence
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matrices are defined as

Ab =





−1 if the flow in pipe j enters the node i,

0 if the j does not connect to the node i,

1 if the flow in pipe j leaves the node i,

(4.2)

where b = 1, 2. The unknown heads at different nodes are defined as h = (h1, . . . , hnj
)⊤, the

known nodal demands as dm ∈ RNj and el ∈ RNf are the fixed head elevations. Additionally,
we define the following matrices: O, as the Nj ×Nj zero matrix, o, as an Np ·Nj zero vector,
and an RNp×Np diagonal matrix G(q), with diagonal entries,

Gjj(q) = rj |Qj |n−1. (4.3)

The hydraulic problem is to solve the unknown flow rates in the Np pipes, q, and the unknown
heads at the Nj nodes, h, given the network topology Ab, the demand at the nodes dm, and
a fixed head elevation, el, such that the mass and energy for the flow are balanced. The
continuity equation to be solved in matrix form is written as (see [143] for details):

f(x) =

(
G(q) −A1

−A⊤
1 O

)(
q

h

)
−
(
A2el

dm

)
= o, (4.4)

where we solve for the unknown vector x := (qT ,hT )T . The above set of equations is typically
solved using Rossman’s popular program EPANET ([131]) to obtain a steady state solution.

A leak is modeled by adding a leak demand at a specific node. The leak demand is given
by

dleak = CdAp
α

√
2

ρ
. (4.5)

Typically, α = 0.5 is chosen [131]; Cd is the dimension-less discharge coefficient, A[m2] is
the leak area, g[m/s2] is acceleration by gravity, p[Pa] is the gauge pressure, and ρ[kg/m3]

is the density (not to be confused with the probability density functions used later in the
chapter). Note that a leak is modeled as a nodal demand dependent on the pressure head.
However, in the vast majority of cases, a leak will be located in a pipe section and not at a
node. Therefore, we will introduce an extra node in the pipe section in which the leak will
occur. The demand on that node is the leak demand.
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4.2.2 Leak Localization as a Bayesian Inverse Problems

Detecting water leaks can be formulated as an inverse problem. Solving inverse problems is
the process of computing the causal factors that give rise to a set of observations. These
causal factors are typically either model parameters, the model itself, or the model output.
There are, in general, two approaches for solving inverse problems: The variational approach
where a functional is minimized and the Bayesian approach where a posterior distribution is
computed. We focus on the Bayesian approach as we aim to resolve, in addition to a point
estimate, also the uncertainty associated with the estimate.

We will use the notation, Px, for the probability distribution of the stochastic variable, x,
and px for the associated density function. Px(xi) then denotes the probability of a specific
value xi.

The leak location is denoted by c ∈ {1, . . . , Np}, the sensor observations by y ∈ RNy ,
the state is x = (qT ,hT )T ∈ RNj+Np , the uncertain parameters are ω ∈ RNω , ω ∼ Pω, the
forward model is given by F : R × Nω → RNj+Np , F (c,ω) = x, the observation operator
by H : RNj+Np → RNy , H(x) = y, and the observation noise is η ∈ RNy , η ∼ Pη. These
quantities are related in the following way:

y = H(F (c,ω)) + η. (4.6)

The forward model, F , is closely related to Eq. (4.4). The output, F (c,ω) = x, is the
solution to Eq. (4.4) for given c and ω. The uncertain parameters, ω, depend on the problem
at hand, and can, for example, be demand at each node or the pipe roughness in each pipe
section. One would typically have some knowledge of the distribution, Pω, based on previous
observations and calibration. The forward model is the function that maps leak location and
parameters to the solution of Eq. (4.4). Hence, for larger WDNs this can potentially be
expensive to evaluate.

The distribution of interest is the posterior distribution of the leak location, i.e., the
distribution over the leak location given observations, Pc|y. Since c is a discrete variable, we
have to compute the posterior probability of all possible values of c, Pc|y(ck|y), ck = 1, . . . , Np.
Using Bayes’ theorem for density functions, we get:

ρc|y(ck|y) =
ρy|c(y|ck)ρc(ck)

ρy(y)
, (4.7)

where ρy|c is referred to as the likelihood, ρc is the prior, ρy the evidence. For leak detection,
we often choose a uniform prior distribution. However, there are cases where prior information
is known and incorporating it is highly beneficial. The evidence serves as a normalizing



96
4. A Probabilistic Digital Twin for Leak Localization in Water Distribution Networks Using

Generative Deep Learning

constant which ensures that ρc|y sums to one over all possible values of ck. It is given by:

ρy(y) =

Np∑

k=1

ρy|c(y|ck). (4.8)

The likelihood is not directly available, however, from Eq. (4.6) we get:

ρy|c,ω(y|ck,ω) = ρη(y −H(F (ck,ω))), (4.9)

which implies that we can compute the likelihood by marginalizing over ω:

ρy|c(y|ck) =
∫ −∞

−∞
ρy|c,ω(y|ck,ω)ρω|c(ω|ck)dω

=

∫ −∞

−∞
ρy|c,ω(y|ck,ω)ρω(ω)dω

= Eω∼Pω

[
ρy|c,ω(y|ck,ω)

]
.

(4.10)

We assume that ω is independent of ck.
As observations will arrive with time, we need to update the posterior when new observa-

tions become available, using the posterior from the previous observation time as the prior.
We denote observations at time ti by yi, which gives us the following posterior:

ρc|y(ck|yi) =
ρy|c(yi|ck)ρc|y(ck|yi−1)

ρy(yi)

=
Eω∼Pω

[
ρy|c,ω(yi|ck,ω)

]
ρc|y(ck|yi−1)∑Np

j=1 Eω∼Pω

[
ρy|c,ω(yi|cj ,ω)

] . (4.11)

The posterior distribution after observations at times t0, t1, . . . , tNt , is given by:

ρc|y(ck|y0:Nt) = ρc(ck)

Nt∏

i=0

Eω∼Pω

[
ρy|c,ω(yi|ck,ω)

]
∑Np

j=1 Eω∼Pω

[
ρy|c,ω(yi|cj ,ω)

] . (4.12)

We can write down the expression ρc|y(ck|y0:Nt
) for all k, but it is infeasible to analytically

solve it. Therefore, we need to make use of numerical approximations such as Monte Carlo
approaches. However, there are several computational challenges associated with this:

• Pω is not necessarily known or it could be difficult to sample from;

• ω is, in general, high-dimensional. For example, when ω represents the stochastic
demand in each node, then ω is Nj-dimensional. This makes the integral to be
computed, in Eq. (4.10), high-dimensional and it is thereby infeasible to compute the
likelihood, Eω∼Pω

[
ρc|y,ω(yi|ck,ω)

]
, for all k in real-time;
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• ρc|y,ω(yi|ck,ω) can be expensive to evaluate as it requires solving Eq. (4.4).

While several methods exist that address the computation of stochastic integrals, most of
them has undesirable issues. For example, Gaussian processes (GPs) can be trained to
compute the posterior distribution directly. However, with GPs one is restricted to modeling
multivariate Gaussian distributions. Furthermore, it is well-known that kernel methods are,
in general, not suitable for very high-dimensional cases [60]. An alternative to GPs is the
polynomial chaos expansion (PCE), which allows for more complicated distributions than
GPs. However, with PCE one is typically even more restricted in dimensionality as these
methods suffer from the curse of dimensionality [164]. We will make use of deep learning as
it allows us to deal with arbitrary distributions and high-dimensional problems.

4.2.3 Supervised Wasserstein Autoencoder

The methodology chosen here to address the above mentioned challenges is generative mod-
eling. Particularly, we will focus our discussion on the use of the autoencoder set-up, whose
details are explained in this subsection. The Supervised Wasserstein Autoencoder (SupWAE)
forms a type of neural network that simultaneously achieves a problem dimensionality re-
duction as well as an approximation of the relevant distribution [151]. Before explaining
the SupWAE, we briefly introduce the regular autoencoder (AE) and add the necessary
components for leak detection to it.

Autoencoders

A regular autoencoder (AE) is often used to identify an accurate low-dimensional representa-
tion of the data [84]. The low-dimensional representation is then referred to as the latent
state which is an element of the latent space, while the original data is referred to as the
high-fidelity state belonging to the high-fidelity space.

An AE consists of two neural networks: An encoder, ϕenc, that sparsifies (i.e., reduces
the dimensionality of) the data, and a decoder, ϕdec, that reconstructs the data:

ϕenc(x) = z, ϕdec(z) = x̃, ϕdec(ϕenc(x)) = x̃ ≈ x. (4.13)

Considering a training set, {xi}Ni=1 ∼ Px(x), AEs are trained by minimizing the mean
squared error (MSE) with a weight regularization:

LAE(ϕenc, ϕdec) =
1

N

N∑

zi=1

(xi − ϕdec(ϕenc(xi)))
2
+ αR(ϕenc, ϕdec) (4.14)

LAE is minimized with respect to the weights of ϕenc and ϕdec, typically using stochastic
gradient descent type algorithms. The term R(ϕenc, ϕdec) is chosen to be the l2 norm of the
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weights. This is referred to as weight decay within machine learning; α determines how much
we regularize the weights. The purpose of the regularization is to avoid overfitting to the
training data.

Wasserstein Autoencoders

While AEs provide a framework for computing latent representations of data, they lack
certain properties that are of interest when computations in the latent space are necessary.
Specifically, small perturbations in the latent space should result in small perturbations in
the high-fidelity space as well. Moreover, it should be possible to sample from the latent
space. By using Wasserstein AEs (WAEs) [151], we can also obtain these properties.

We introduce a prior distribution on the latent space, Pz(z). While the encoder and
decoder remain deterministic mappings, they define the conditional distributions Penc(z|x)
and Pdec(x|z), respectively, by the densities:

ρz(z) =

∫
ρ(z|x)ρx(x)dx ≈

∫
ρenc(z|x)ρx(x)dx = ρenc(z), (4.15)

ρx(x) =

∫
ρ(x|z)ρz(z)dz ≈

∫
ρdec(x|z)ρz(z)dz = ρdec(x). (4.16)

Here, a sample from Penc(z|x) is computed by using the encoder, z = ϕenc(x), and similarly
a sample from Pdec(x|z) is obtained by using the decoder, x = ϕdec(z). The goal is to
ensure that the encoder approximates the latent prior distribution, Pz(z) ≈ Penc(z) and the
decoder approximates the high-fidelity prior distribution, Px(x) ≈ Pdec(x). This is achieved
by simultaneously minimizing the reconstruction error and a divergence, D, between Pz(z)

and Penc(z) that measures the similarity of the two distributions:

LWAE(ϕenc, ϕdec) =
1

N

N∑

i=1

(xi − ϕdec(ϕenc(xi)))
2

︸ ︷︷ ︸
reconstruction

+λD(Pz(z), Penc(z))︸ ︷︷ ︸
divergence

+αR(ϕenc, ϕdec)︸ ︷︷ ︸
regularization

.

(4.17)

Here, λ is another regularization parameter to be determined through hyperparameter tuning.
In this chapter, we choose the maximum mean discrepancy (MMD) with a multiquadratics
kernel for the divergence, which gives us the WAE-MMD. In [53], it was argued that this is
an accurate choice when Pz(z) is the normal distribution, see [151]. Summarizing, we obtain:

LWAE(ϕenc, ϕdec) =
1

N

N∑

i=1

(xi − ϕdec(ϕenc(xi)))
2
+ λMMD

(
ϕenc, {zi}Ni=1

)
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+ αR(ϕenc, ϕdec),

where zi ∼ Pz(z),

MMD
(
ϕenc, {zi}Ni=1

)
=

λ

N(N − 1)

N∑

l ̸=j
[k(zl, zj) + k(ϕenc(xl), ϕenc(xj))]

+
2λ

N2

N∑

l,j

k(zl, ϕenc(xj),

and

k(zl, zj) =
C

C + ||zl − zj ||22
. (4.18)

After training, it is possible to sample from the chosen latent prior distribution, pz(z), pass
it through the decoder, ϕdec, and obtain a high-fidelity sample, ϕdec(z) = x.

To get the supervised version of the WAE, we introduce c as an extra input to the decoder,
so ϕenc(·) := ϕenc(z, c). This way, the decoder models the conditional probability density
function, ρx|c(x|c),

ρx|c(x|c) =
∫
ρx|c,z(x|c, z)ρz(z)dz

≈
∫
ρdec(x|c, z)ρz(z)dz

=

∫
ϕdec(z, c)ρz(z)dz

= ρdec(x|c),

(4.19)

so that c is considered a known condition. During training, the WAE sees pairs (x, c) and
uses the information to learn the conditional distribution. The condition c determines the
class, while the latent variable, z, determines the style. This separation will be crucial for the
proposed framework. A visualization of the supervised WAE-MMD is shown in Figure 4.1.

It is important to note that different kinds of neural network architectures can be
incorporated in the WAEs framework. Therefore, one should choose the architecture that
performs optimally for the data type. In this chapter, we showcase the performance using two
different kinds of architectures – residual neural networks (ResNet) [63] and transformers.
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Figure 4.1: Illustration of an adversarial AE for reconstruction of a water distribution
network.

4.3 Proposed Framework

The aim of the proposed framework is to overcome the challenges related to solving Bayesian
inverse problems, as described in Section 4.2.2, while maintaining high accuracy when
computing the posterior over the parameters of interest. The framework employed here is an
extension to the one presented in [107].

We will use the generative neural network as a stochastic digital twin of the WDN. It can
be used to sample pressure heads and flow rates of the entire WDN for a given leak location
and time. By modeling the pressure heads and flow rates as distributions conditioned on leak
location and time, instead of a deterministic output, the uncertainty due to the stochastic
parameters is included in the model output. A generative neural network is a suitable choice
for this as it enables us to sample from the distribution of pressure heads and flow rates.

We will specifically make use of the generative properties of the decoder of the supervised
WAE-MMD, whereas the encoder is discarded after training. The decoder is trained to
approximate the state, given random noise, leak location, and time of the day. It then
replaces the forward model and the latent vector, z, replaces the uncertain parameters, in
our case, the demand. Using the same approach as in Section 4.2.2, we can rewrite the
posterior for given observations, as follows,

ρc|y(ck|yi) =
ρc(ck)

∫
z
ρy|c,z(yi|ck, z)ρz(z) dz

∑Np

j=1

∫
z
ρy|c,z(yi|cj , z)ρz(z) dz

=
ρc(ck)Ez∼Pz

[
ρy|c,z(yi|ck, z)

]
∑Np

j=1 Ez∼Pz

[
ρy|c,z(yi|cj , z)

] , (4.20)

where the likelihood is computed by:

ρy|c,z(yi|ck, z) = ρη(yi −H(ϕdec(z, ck))). (4.21)
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As in Eqs. (4.11) and (4.12), we can use the posterior from time ti−1 as the prior for the
posterior at time ti. This gives us the resulting posterior for a series of Nt observations:

ρc|y(ck|y0:Nt
) = ρc(ck)

Nt∏

i=0

Ez∼Pz

[
ρy|c,z(yi|ck, z)

]
∑Np

j=1 Ez∼Pz

[
ρy|c,z(yi|cj , z)

] . (4.22)

At time t0, we simply use a uniform prior.

As an addition to the described setup, we add the timestamp as additional input to the
decoder. This gives us the following description:

ϕdec(z, c, ti) = xi(c,ω) = (qTi (c,ω),h
T
i (c,ω))

T . (4.23)

With this formulation the decoder disentangles the temporal information from the rest.
Hence, the time dependency of the stochastic demand is modeled explicitly in the decoder.

The proposed framework essentially resolves the challenges described in Section 4.2.2:

• Pω is replaced by the latent prior, Pz, which is known as we used it during training of
the WAE-MMD;

• z is of much lower dimension than ω, which makes the evaluation of the integral
in Eq. (4.10) fast and thereby enables real-time computations of the likelihood,
Ez∼Pz

[
ρy|c,z(yi|ck, z)

]
;

• The likelihood, ρy|ck,z, is computed by a forward propagation of the decoder instead of
solving the expensive forward model.

While the costs are drastically reduced in the leak detection stage, the training stage is now
(potentially) expensive to compute. These two stages are referred to as the online stage, in
which the trained supervised WAE-MMD is used to solve the leak localization problem for
given observations, and the offline stage, in which we generate training data and train the
supervised WAE-MMD. The two stages are outlined in Algorithms 6 and 7, respectively.
Furthermore, the online stage is visualized in Figure 4.2.

Algorithm 6: Offline stage
Input: Ntrain, training hyperparameters, WAE-MMD architecture

1 Generate training samples, {(xi, ci)}Ntrain
i=1 , by solving the forward problem (see

Section 4.2.1);
2 Train the supervised WAE-MMD (see Section 4.2.3);

Output: ϕdec
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Figure 4.2: Illustration of the online computation of the posterior distribution, ρ(ck|y0:i),
k = 1, . . . , Np.

4.3.1 Stopping Criterion in the Online Stage

With every new set of observations, yi, we receive additional information of the system at
hand. However, at some point new observations do not contribute to the accuracy of the
posterior anymore. In other words, the posterior density should converge:

ρc|y(ck|y0:Nt) → ρc|y(ck|y), for Nt → ∞. (4.24)

This implies that the algorithm should be stopped, when there is no significant change to
the posterior. For this reason, we introduce the information gain of c, IG(c,yi), obtained
from additional observations as the stopping criterion. The information gain is defined by
the KL divergence between the posterior at time ti and time ti−1, which measures how much
the posterior distribution changed with new observations:

IG(c,yi) = DKL(Pc|y(ck|y0:i)||Pc|y(ck|y0:i−1))

= −
Np∑

k=1

ρc|y(ck|y0:i) log
(

ρc|y(ck|y0:i)
ρc|y(ck|y0:i−1)

)
.

(4.25)

We terminate the computations when the information gain is below a threshold, ϵ.
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Algorithm 7: Online stage
Input: ϕdec from Algorithm 6, observations y, threshold ϵ

1 i = 0
2 for ck = {1, . . . , Np} do

3 Compute pc|y(ck|yi) =
ρc(ck)Ez∼Pz [ρy|c,z(yi|ck,z)]∑Np

j=1 Ez∼Pz [ρy|c,z(yi|cj ,z)]
4 end for
5 while IG(c,yi) > ϵ do
6 i = i+ 1
7 for ck = {1, . . . , Np} do

8 ρc|y(ck|y0:i) = ρc(ck)
∏i
i=0

Ez∼Pz [ρy|c,z(yi|ck,z)]∑Np
j=1 Ez∼Pz [ρy|c,z(yi|cj ,z)]

9 end for
10 end while

Output: ρc|y(c|y0:i)

4.3.2 Estimating Uncertainty

In order to decide whether a leak location prediction is trustworthy, we can compute the
entropy of the posterior:

H(C) = −
Np∑

i=1

ρc(ci|y0:1) log(ρc(ci|y0:1)). (4.26)

This tells us how much information or uncertainty we have in the posterior distribution. Low
entropy means a sufficient amount of information, i.e. low uncertainty, and high entropy the
opposite. Therefore, we can use the entropy as a measure for how much we can trust our
prediction. That is, when there are insufficient observations to make a trustworthy prediction,
the entropy will be higher and thereby indicate that more observations are needed. Hence,
when the truth is unknown, we can still assess whether the prediction is accurate or not.

This is a crucial step for applying the methodology in practice as it provides the necessary
information to act on a certain prediction. If the entropy is high, it tells us that we need
more observations in order to provide a trustworthy prediction.

4.3.3 Model Architectures

As mentioned in Section 4.2, the WAE and the proposed framework do not rely on only
one neural network architecture. In this work, we make use of two different types of neural
network architectures to showcase that the framework can be based on more than one possible
choice. Moreover, we will see that each choice shows superior performance for a certain test
case. Specifically, we use transformers and dense ResNets in the experiments to follow. For
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a detailed breakdown of the model architectures, see below and for a visualization of the
transformer network, see Figure 4.3. For the transformers, both the encoder and the decoder
make use of a combination of dense neural networks, transformer encoders, and transformer
decoders. With this architecture, the network structure of the data is modeled through the
attention mechanisms. For the dense ResNet, the encoder and decoder consist of a series of
residual layers with dimension reduction and increasing layers, respectively, in between.

Dense ResNet WAE The encoder consists of a series of ResNet layers, followed by dense
layers that reduce the dimension. Similarly, the decoder consists of ResNet layers followed by
dense layers that increase the dimension. The input layer of the encoder takes a vector with
the flow rates and pressure heads concatenated and outputs the latent state. The decoder
takes the latent state and the parameters (leak location and time) concatenated and outputs
the full order state.

Transformer WAE For the encoder, the data is first passed through a dense layer in
order to increase the embedding dimension. Then, it is passed through several transformer
encoder layers. The transformer layers model interactions between the nodes and edges of the
network. The resulting attention maps are reshaped into a vector and passed through dense
layers in order to decrease the dimension. Lastly, the reduced representation of the network
is passed through transformer encoder layers in order to model the relations between the
latent features. The decoder follows a similar structure, the difference being the inclusion of
the parameters and transformer decoder layers instead of encoder layers. The parameters are
passed through two different sets of transformer encoder layers. The output of the first set
of transformer encoder layers is used as input to the cross-attention in the latent transformer
decoder layers. The output of the second transformer encoder layer is passed to the full state
space decoder transformer layers. For a visualization of the architectures, see Figure 4.3.

4.4 Results

In this section, we show the performance of the proposed framework on three test cases. We
assess the framework’s performance with respect to the topological distance and accuracy .
We compare the performance of two distinct architectures, a dense ResNet and a transformer
architecture. In both cases, the neural networks are similar to the encoder network, but with
a softmax activation function at the output.

The code used for generating the data and the corresponding results can be found on GitHub, see
https://github.com/nmucke/DT-for-WDN-leak-localization.git
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Figure 4.3: Illustration of the encoder and decoder architectures.

4.4.1 Classification Model

For comparison, we also compute the leak location by a conventional classification neural
network, which is trained to classify a leak location based on sensor observations at the given
time. The classification network is trained on the same data as the autoencoders. It is worth
noting that with this method, it is necessary to train a model for each sensor configuration.
This is in contrast to the proposed framework, where a single model can handle all possible
sensor configurations.

The classification neural network, g, outputs a vector of the same size as the number of
pipe sections, Np. Furthermore, it has a softmax activation after the last layer to ensure
that the output sums to 1. The model is trained on a labeled dataset consisting of noiseless
sensor observations, H(x) = y and the corresponding leak location, c, as the target. The
leak location is one-hot encoded. That is, the target is a zero vector with a one at the entry
of leak location index. Hence, the dataset is given by:

{(H(x1), c1), . . . , (H(xN ), cN )} . (4.27)

The neural network is trained using the cross-entropy loss:

L(g) = −
N∑

i=1

Np∑

j=1

ci,j log(g(H(xi)j), (4.28)

where ci,j is the jth index of the ith training sample and H(xi)j is the jth index of the
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output of the neural network evaluated at the ith training sample. Hence, the neural network
is trained to output the probability of a leak being present in each possible pipe section
given observations, i.e. the posterior distribution, g(yi) = pc|y(ck|yi). In the online stage,
the distribution is updated with observations in time, by:

ρc|y(ck|y0:Nt
) = ρc(ck)

Nt∏

i=0

ρc|y(ck|y0:i) = ρc(ck)

Nt∏

i=0

g(yi), (4.29)

until convergence with respect to the KL-divergence. This is the same procedure as for the
proposed framework.

It is important to keep in mind that the classifier only approximate the leak location
posterior for a single sensor configuration. This is in contrast to the proposed framework
where the full state posterior is approximated together with the leak location. This also
means that the classification neural network needs to be retrained every time the sensor
configuration is changed.

4.4.2 Test Cases

All test cases are defined in a similar manner, however, with some variations. Figure 4.4
shows the three test WDN topologies together with the sensor locations. The first one is
typically referred to as the Hanoi network; the second one is often referred to as Net3 (not to
be confused the numbering of the cases in this chapter), and the third is known as Modena.

We place sensors in various nodes in the WDN. Each sensor measures the pressure head
value in the node and the flow rate in a neighboring pipe section. We do not have pressure
head sensors at the water sources as such information does not make sense in many cases,
e.g. for lakes and rivers. However, we have located flow rate sensors in pipes connected
to those sources in order to mimic a real-world scenario where the inflow into the network
is measured. In test case 1, we show results for three configurations, each with a varying
number of sensors. For test cases 2 and 3, we show results for two sensors configurations.
Note that since the generative model outputs the full state, consisting of pressure heads and
flow rate, the different sensor configurations only change the observation operator in the
online stage. That is, only H in (4.21) is varied with sensor configuration. Hence, a single
training stage is performed and the resulting generative model works under multiple sensors
settings.

We also add noise to the sensor readings to mimic a real-world scenario where sensors
are not perfect. In all cases and for all pressure head and flow rate observations, the noise is
sampled from a normal distribution at each time step and added to the observations. The
noise at each sensor is independent of the other sensors. The normal distribution has mean
zero and a standard deviation corresponding to a percentage of the observed value. We
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Figure 4.4: Network topologies and the sensor locations for the three test cases.

Table 4.1: Settings for the three test cases.

WDN 1 WDN 2 WDN 3

Num. pipes 34 119 317
Num. junctions 31 97 272
Demand noise 10% 5% 10%

show results for various noise percentages in all test cases to analyze the performance of
the algorithm in varying settings. In Table 4.1, we show the specific parameter and noise
settings for the three test cases.

In all test cases, the data is generated by varying the pipe section in which the leak is
present. The leak size is also varied by varying the leak area between 0.002[m2] (20[cm2])
and 0.004[m2] (40[cm2]). Test cases are simulated for 24 hours with values recorded every
hour.

All the demands follow a temporal pattern, i.e., in each node at every time of the day
the demand has a base value. In order to mimic the stochasticity of the demand, we add
noise to the base values.

We use two metrics for assessing the performance of the framework – the average
topological distance (ATD) and the accuracy. The accuracy is the fraction of correctly
predicted leak locations. The topological distance is the distance of the shortest route from
the predicted leak location to the true leak location. The ATD is then computed by taking
the average over many different solutions of the inverse problems for varying leak locations,
sizes, demands, and sensor noise.

Furthermore, it is important to emphasize that the models are trained on a dataset that
is distinct from the test dataset used for assessing the performance. The Epanet .inp files
can be found in the GitHub repository.
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(c) Test WDN 3.

Figure 4.5: Total demand with standard deviation.
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Figure 4.6: Demand patterns for test WDN 2.

Training of the WAEs

All neural network code is based on PyTorch [115]. Training is performed in a similar manner
for all three test cases. We use the Adam optimizer with a cosine warm-up learning rate
scheduler with 50 warm-up steps, as described in [95]. That is, the learning rate starts
as a small value, and is increased to the chosen value over 50 epochs. Thereafter, it is
reduced following a cosine function over the remaining epochs. The gradient norms are
clipped to 0.5 to stabilize the training. We make use of early stopping with a patience of 50
to avoid over-fitting. That is, if there are 50 consecutive epochs without improvement on
the validation data, we stop the training and make use of the best performing model. In
all test cases, we train on 25000 samples and use 5000 samples for validation. For all the
hyperparameters, see Table 4.2.

The WAEs are trained on simulated data. Training data is generated by simulating
according to the settings described above. The leak locations are sampled from a multinomial
distribution with equal probability assigned to each pipe section. The leak size is sampled
uniformly from the interval [0.002m2, 0.004m2]. Furthermore, the demand noise is sampled
at each time instance from a normal distribution with mean 0 and a variance equal to 10%
of the base value in test cases 1 and 3 and 5% in test case 2.
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Table 4.2: Hyperparameters for the WAEs

WDN 1 WDN 2 WDN 3

Training hyperparameters
Batch size 256 256 256
Learning rate 5 · 10−5 5 · 10−5 5 · 10−5

l2 regularization 10−10 10−10 10−10

MMD regularization 10−2 10−2 10−2

Scheduler warmup 50 50 50
Early stopping patience 50 50 50

ResNet Architecture
Latent dimension 8 16 16
# layers 5 5 7
# neurons 64, 48, 32, 192, 160, 128, 512, 384, 320,

24, 16 96, 64, 32 256, 192, 128, 64
Act. func. Leaky ReLU Leaky ReLU Leaky ReLU

Transformer Architecture
Latent dimension 8 16 16
Num. dense neurons 32 128 256
Embedding dimension 4 4 4
# Attn. heads 2 2 2
# Latent transformer blocks 2 2 2
# Full order transformer blocks 1 1 1
Act. func. transformer layers GeLU GeLU GeLU
Act. func. dense layers Leaky ReLU Leaky ReLU Leaky ReLU
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Figure 4.7: Results for WDN1 for the given priors. First row shows results for the prior in
(a) and second row shows results for the prior in (d). The number of sensors counted is the
number of flow rate sensors. Note that there are fewer pressure head sensors.

4.4.3 Test WDN1: Hanoi Network

For test WDN1, we consider three different sensor configurations (see Figure 4.4a), each
with five different sensor noise levels. All nodes are given the same demand pattern, but
with varying base values in each node. Noise is added to the total demand, which is then
distributed to all nodes according to the relative base value. Noise is added to each node
independent of the other nodes. See Figure 4.5a for the total demand time series with the
standard deviation.

We test the framework with both a prior distribution over leak locations and without any
prior knowledge. The prior distribution is shown in Figure 4.7d.

We make use of the transformer architecture here. The results are shown in Figure 4.7.
The likelihood is computed with 30000 samples. We test with 50 different leak locations.

As expected, the ATD increases and accuracy decreases with increasing noise and a
decreasing number of sensors. The ATD goes from approximately 0.25 to approximately
3.0 from the best to the worst case and the accuracy diminishes from approximately 79%
to approximately 9% when no prior is available. When a prior is present, the ATD ranges
from approximately 0.4 to approximately 2.7 and the accuracy from approximately 81% to
approximately 19%, which is a drastic reduction.
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Figure 4.8: Results for WDN2 for the given priors. First row shows results for the prior in
(a) and second row shows results for the prior in (d). The number of sensors counted is the
number of flow rate sensors. Note that there are fewer pressure head sensors.

4.4.4 Test WDN2

For test WDN2, we consider two different sensor configurations (see Figure 4.4b), each
with five different sensor noise levels. The total demand is shown Figure 4.5b. There is a
varying demand pattern for each node. Some nodes mimic households, while other nodes
have no demand, and some have demands mimicking factories. Noise is added to each node
independent of the other nodes. In Figure 4.6a, examples of demand patterns are presented.
Furthermore, there are water tanks present, which serve as stabilizers for the WDN. Hence,
their demand varies according to the total demand. In Figure 4.6b, examples of three tanks
are shown.

As for test WDN1, we will work with a prior distribution over leak locations and without
any prior knowledge. The prior distribution is shown in Figure 4.8d. We make use of the
transformer architecture. The results are shown in Figure 4.8. The likelihood is computed
with 30000 samples. We test with 200 different leak locations.

The results are very similar to the results for WDN1, which suggests that the framework
scales well to more complicated settings.
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4.4.5 Test WDN3: Modena

For test WDN3, we again consider two different sensor configurations (see Figure 4.4c), each
with five different sensor noise levels. The demand patterns are modeled in the same way as
for WDN1, but with a different total demand. See Figure 4.5c for the total demand time
series.

Unique for this test case, we make use of a different standard deviation for the likelihood
computation than for the noise added to the observations. Specifically, use a standard
deviation of 5% no matter the artificial noise added to the observations. This is more
reminiscent of a real-world scenario where the true sensor noise is unknown.

As for test cases WDN1 and WDN2, we will work with a prior distribution over leak
locations and without any prior knowledge. The prior distribution is shown in Figure 4.9d.
Here, we make use of the ResNet architecture. The results are shown in Figure 4.9. The
likelihood is computed with 50000 samples. We test with 250 different leak locations.

As for the other two test cases, we see better performance when we make use of prior
information. Furthermore, increasing the number of sensors also gives better results.

We see a decrease in accuracy and increase in ATD when the noise level is increasing.
However, in contrast to the other test cases, the performance is relative constant across
noise levels until 5% and 10% where the accuracy and ATD worsen. This suggests that our
method is stable until a certain threshold where more information is needed to say something
definite about the leak location. This is not a surprise as the WDN is significantly larger
than the two other test cases and therefore might require additional observations when there
is much noise present. In such cases it is of great value that our method also quantifies
the uncertainty associated with the prediction. Hence, the user will know when there is
insufficient information to make a strong conclusion.

4.4.6 Comparison with Baseline

In Table 4.3, we show a comparison of the results computed with our framework and the
baseline classifier. Clearly, the proposed framework outperforms the classifier for both WDN1
and WDN2 with both the ResNet and the transformer architecture. Furthermore, the
transformer network gives the best results, suggesting that the transformer architecture is a
suitable choice for the small to medium-sized WDNs.

For WDN3, the results are different. The ResNet architecture with the new framework
gives the best results while the transformer architecture does not perform very well. However,
with the classifier the transformer architecture performs the best, suggesting that the
transformer architecture may also be a satisfactory choice in that setting.
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Figure 4.9: Results for WDN3 for the given priors. First row shows results for the prior in
(a) and second row shows results for the prior in (d). The number of sensors counted is the
number of flow rate sensors. Note that there are fewer pressure head sensors.

Table 4.3: Comparison with baseline. The ATD and accuracy are computed for all noise
and sensors cases with both prior and without prior and then averaged. Our framework is
denoted by “Bayes” followed by the neural networks utilized. The vertical arrows denote the
desired direction of the metric.

WDN1 WDN2 WDN3

ATD ↓ Acc ↑ ATD ↓ Acc ↑ ATD ↓ Acc ↑
Classifier - ResNet 2.94 26.5 5.81 13.25 10.01 7.85
Classifier - Transformer 2.06 31.67 3.60 21.5 4.88 27.92

Bayes - WAE, ResNet 1.23 45.70 2.91 25.03 3.49 29.50
Bayes - WAE, Transformer 1.07 50.00 1.71 39.28 10.38 4.54
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(a) Ratio. (b) Correct predictions. (c) Wrong predictions

Figure 4.10: Entropy of the estimated posterior distributions. (a) shows the ratio between
the mean entropy of the posterior for a wrong prediction and a correct prediction. (b) shows
the mean entropy of the posterior distribution for correct predictions. (b=c) shows the mean
entropy of the posterior distribution for wrong predictions

Posterior Distribution Entropy

To evaluate the entropy computations, here we consider three different entropy functions,
i.e., the mean entropy of the posterior for all incorrect predictions, E[Hwrong(C)], the mean
entropy of the posterior for all correct predictions E[Hcorrect(C)], and the ratio between the
two E[Hwrong(C)]/E[Hcorrect(C)]. The ratio informs us on the relative size of the entropy of
an incorrect prediction compared to a correct prediction. Ideally, this ratio should be large,
as this is an indication that the framework provides high uncertainty for incorrect predictions
and little uncertainty for correct predictions.

In Figure 4.10, it is clear that, compared with the classifier, the new framework shows
consistently higher entropy ratios. So, the framework provides more accurate uncertainty
estimates compared to the classifier. Particularly, for the transformer neural network in
the new approach, the entropy ratio is high, because the entropy for incorrect predictions
is. Summarizing, if the ATDs and accuracy were not high, this would be reflected in the
entropy. Therefore, we know a-posteriori, accurately, when predictions computed with the
new framework are trustworthy. This is an important feature, that is not easily attained.

4.5 Conclusion

We presented a framework for computing leakage locations using Bayesian inference and
generative deep learning. A Bayesian approach was used to formulate the leak localization in
a probabilistic way. A generative neural network was trained to approximate the distribution
of pressure heads and flow rates given a leak location and time using the WAE framework. To
use the generative neural network for leak localization, the Bayesian problem was reformulated
to a latent Bayesian inference problem. The approach was showcased on three test cases and
showed superior performance compared to a classification approach.
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The Bayesian approach for leak localization offers two distinct advantages compared to
non-probabilistic methods. Firstly, it automatically gives the uncertainty of the prediction in
shape of the posterior distribution. Secondly, it allows one to incorporate prior knowledge.
However, it comes at a cost of computation time.

The generative deep learning is trained in an offline stage on simulated data. After
training, it then performs as a fast to evaluate surrogate model. In other words, the Bayesian
inverse problem can be solved efficiently without sacrificing accuracy when the neural network
is trained properly.

We showed that one can get good quality performance by using different architectures.
We specifically showcased results using transformers and dense ResNets. The transformer
architecture performed best in the two first test cases, while the ResNet performed best in
the last test case. Therefore, one should investigate which neural network architecture to use
beforehand. However, the fact that the framework works with various architectures means
that a new state-of-the-art architectures can easily be incorporated.

For all test cases considered, the new framework outperformed the classification approach.
Furthermore, flexibility of the framework was shown by varying the amount of noise in the
nodal demand and sensor measurements. Even when the true noise level is unknown, it was
shown in test case 3 that the method performs well. Furthermore, the (positive) impact of
prior knowledge for the leak location on the accuracy has been detailed.

The framework does not only provide leak location estimates, but also estimates on
the uncertainty in the estimates. This is done by means of the entropy of the posterior
distribution. We showed that the entropy computed with the new framework was significantly
more informative than for the classification approach.

This chapter thus showed the potential of using generative deep learning as a stochastic
digital twin for water distribution networks, as it seamlessly integrated with Bayesian inversion
schemes.

There are many opportunities for further study. The computation of the posterior may
be sped up with more efficient integration methods than Monte Carlo simulation. The
physics of the problem may be incorporated into the training of the neural network to ensure
conservation of important quantities such as mass and momentum.
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In Data Assimilation, observations are fused with simulations to obtain an accurate
estimate of the state and parameters for a given physical system. Combining data with a
model, however, while accurately estimating uncertainty, is computationally expensive and
infeasible to run in real-time for complex systems. Here, we present a novel particle filter
methodology, the Deep Latent Space Particle Filter or D-LSPF, that uses neural network-based
surrogate models to overcome this computational challenge. The D-LSPF enables filtering
in the low-dimensional latent space obtained using Wasserstein AEs with modified vision
transformer layers for dimensionality reduction and transformers for parameterized latent
space time stepping. As we demonstrate on three test cases, including leak localization in
multi-phase pipe flow and seabed identification for fully nonlinear water waves, the D-LSPF
runs orders of magnitude faster than a high-fidelity particle filter and 3-5 times faster than
alternative methods while being up to an order of magnitude more accurate. The D-LSPF
thus enables real-time data assimilation with uncertainty quantification for physical systems.

This chapter is based on the article “The Deep Latent Space Particle Filter for Real-Time Nonlinear
Data Assimilation with Uncertainty Quantification”, currently under review.
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5.1 Introduction

Virtual representations of physical systems like digital twins have proven to be invaluable
tools for monitoring, predicting, and optimizing the performance of intricate systems, ranging
from industrial machinery to biological processes [127]. The efficacy of digital twins relies
however on the accurate assimilation of real-time data into the simulations to ensure accurate
calibration and state estimation in situations where the state and its dynamics are not
known. Importantly, to confidently rely on the information provided, data assimilation
should be accompanied by a quantification of the associated uncertainty originating from
both measurements and model errors [6, 79].

Performing data assimilation with uncertainty quantification in real time for high-
dimensional systems, such as discretized partial differential equations (PDEs), is com-
putationally infeasible due to the need to compute large ensembles of solutions. Approaches
such as (ensemble) Kalman filtering [73] aim to overcome this computational bottleneck by
assuming Gaussian distributed prior, likelihood, and posterior distributions [33], which is
restrictive in practical situations where these assumptions do not hold [4, 153]. Particle
filters, on the other hand, can approximate any distribution provided there is a sufficient
number of particles in the ensemble [36, 82]. The necessary ensemble size for particle filters
however often makes it infeasible to run in real-time for complex, high-dimensional systems.
Therefore, there is a need for methods to speed up the computations of ensembles.

To speed up the computation of ensembles, surrogate models are used to approximate
the forward problem by replacing the full order model with a computationally cheaper
alternative. Surrogate models based on proper orthogonal decomposition and dynamic mode
decomposition have been developed with reasonable success [4]. However, for nonlinear,
hyperbolic, and/or discontinuous problems, advanced surrogates are necessary to achieve the
desired speed-up [87]. Therefore, utilizing deep learning approaches has received increased
attention, as significant speed-ups are possible without sacrificing essential accuracy [20, 43,
87, 105].

Deep learning-based surrogate models can be designed in various ways. One very common
approach is to make use of latent space representations. High-dimensional states are mapped
onto a low-dimensional latent space such that the computations are performed cheaply in
this latent space. The autoencoder (AE) [10] is the principal enabling architecture for this.
In the AE, an encoder network reduces the original data into a latent representation and a
decoder subsequently reconstructs the original data from the latent representation. Since
[10], many extensions and improvements have been developed, such as adding probabilistic
priors to the latent space [81, 151]. In the context of surrogate modeling for physical systems,
the focus has been on ensuring that AEs learn latent representations that are suitable for
downstream tasks, such as time stepping, via various regularization techniques [20, 43, 158].
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The success of such regularization is important when embedding the surrogate model into a
data assimilation framework.

Utilizing neural network surrogate models for speeding up data assimilation has been
explored in various studies (see [23] for a review). In [107, 118, 139, 162], generative deep
learning has been used for high-dimensional state- and parameter estimation. However, none
of these approaches performed sequential assimilation of the data. In [18, 22], deep learning
was used for model discovery. In such applications, the model is a-priori unknown and is
learned from observations, typically requiring a huge number of observations in space and
time to recover the complete, unknown state; to this point it is not clear how these methods
perform with real-time data assimilation. Similarly, in [98, 104] a particle filter approach
to data assimilation has been used to formulate a variational objective for training a latent
space model. Hence, the latent model is trained while data is arriving, which severely limits
real-time assimilation for high-dimensional, nonlinear problems with limited observations. In
[142], a GAN set-up, combined with proper orthogonal decomposition, was used for sequential
data assimilation with an approach similar to randomized maximum likelihood. However,
unlike particle filters, convergence of such methods is not ensured for nonlinear cases [33].

Yet, while many deep learning-based surrogate models have been used to speed up data
assimilation, there is limited work on such approaches using particle filters [48, 167]. In
[48] a back-constrained Gaussian process latent variable model is used to parameterize both
the dimensionality reduction and latent space dynamics. In [167], a particle filter using a
latent space formulation was presented. The approach evaluated the likelihood by iterative
closest point registration fitness scores and the latent time stepping was mainly linear. It is
unknown how these methods would perform with highly nonlinear PDE-based problems and
only a few observations in space and time.

Here, we propose a deep learning framework for performing particle filtering in real-
time using latent-space representations: the Deep Latent Space Particle Filter, or D-LSPF,
targeting complex nonlinear data assimilation problems modeled by PDEs. For this, we
develop a novel extension to the vision transformer layer for dimensionality reduction of
the high-dimensional state in an AE setup. Then, a transformer-based network is used for
parameterized time stepping, which enables filtering in the latent space as well parameter
estimation. To ensure that the latent space has the appropriate desirable properties, we
combine several regularization techniques such as divergence and consistency regularization
[151, 158]. We showcase the D-LSPF on three distinct test problems with varying charac-
teristics, such as discontinuity, few observations in space and time, parameter estimation,
and highly oscillatory real-world data. In all cases, the D-LSPF demonstrates significant
speed-ups compared to alternative methods without sacrificing accuracy. This promises to
enable true or near real-time data assimilation for new, more complex classes of problems,
with direct applications in engineering such as leak localization as well as seabed and wave
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height estimation.

The chapter is organized as follows. In Section 5.2 we describe the problem setting.
This consists of a brief description of the Bayesian filtering problem and an overview of
the particle filter. In Section 5.3 we present the D-LSPF. Firstly, we outline the latent
filtering problem, followed by a description of the latent space regularized autoencoder
using the novel transformer-based dimensionality reduction layers, and parameterized time
stepping. Lastly, in Section 5.4 we showcase the performance of the D-LSPF on three test
cases, namely the viscous Burgers equation, harmonic wave generation over a submerged
bar, and leak localization for multi-phase flow in a pipe. The D-LSPF is compared with
a high-fidelity particle filter and the Reduced-Order Autodifferentiable Ensemble Kalman
Filter (ROAD-EnKF) [22].

5.2 Problem Setting

We consider problems that are modeled by time-dependent PDEs. Such problems consist of a
state, typically made up by several quantities such as velocity and pressure, and parameters,
source terms, boundary conditions, and initial conditions. Since the model won’t be perfect
and true values of the parameters are rarely known, the problem needs to be accompanied
by observations coming from a series of sensors. However, sensors deliver noisy data and are
often scarcely placed in the domain of interest, so that the data needs to be assimilated into
the model to yield an accurate estimate of the state and parameters.

Consider a time and spatially discretized PDE, with accompanying observations:

qn = F (qn−1;mn−1) + ξn−1,

mn = G(mn−1) + ζn−1,

yn = h(qn) + ηn−1,

ξn−1 ∼ Pξ(ξn−1),

ζn−1 ∼ Pζ(ζn−1),

ηn−1 ∼ Pη(ηn−1),

(5.1)

where F is a (nonlinear) operator advancing the state, G is an operator advancing the
parameters, qn(mn) ∈ RNx is a parameter-dependent state at time step n, mn ∈ RNm

are the parameters, yn ∈ RNo is an observation vector at time step n, h : RNx → RNo is
the observation operator, ξn is the model error, ζn is the parameter error, and ηn is the
observation noise. Note that when parameters are constant in time, we use G(mn) =mn.
To simplify notation, we introduce the combined state-parameter variable, un = (qn,mn).
We will refer to un as the augmented state and introduce the notation for time series,
u0:n = (u0, . . . ,un). We further assume that the probability density functions exist and will
therefore continue with the derivations using the densities.
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5.2.1 Data Assimilation

The goal is to compute the posterior density of the augmented state given observations, i.e.,
ρ(u0:Nt |y0:Nt). Based on the formulation as a filtering problem, it can be solved sequentially
as observations become available. This leads to the filtering distribution, ρ(un+1|y0:n+1).
Bayes’ theorem then gives us:

ρ(un|y0:n) =
ρ(yn|un)ρ(un|y0:n−1)

ρ(yn|y0:n−1)
. (5.2)

The problem at hand is to compute Eq. (5.2) as observations become available. The posterior
density is not analytically tractable, so we must resort to numerical approximations.

5.2.2 Particle Filter

We will make use of the particle filter, also referred to as sequential Monte Carlo method,
where one aims to sample from the posterior instead of computing it [128]. The approximation
is performed by creating an ensemble of augmented states (particles) and advancing each
augmented state in time using the prior distribution. The posterior is then approximated by
the empirical density, made up of N particles,

ρN (un|y0:n) =
N∑

i=1

winδ
(
un − uin

)
, (5.3)

where uin+1 represents particle i at time step n+1 and win+1 is its corresponding weight. δ is
the Dirac delta function, which gives winδ(x) = win for x = 0 and zero otherwise. ρN (un|y0:n)
can therefore be considered a discrete approximation of the true posterior. The computation
of the weights is done by the specific choice of particle filter. A common choice is the
bootstrap filter which makes use of importance sampling, originally described in [82].

The bootstrap filter assimilates data by advancing each particle using the prior distribution
and assigning a weight to each. The weights are the normalized likelihoods, computed by
evaluating the observation noise density at the residual between the observations and the
particles. The weights are then normalized and used to resample the particles using a
multinomial distribution with replacement. Note, however, that resampling when a new
observation becomes available can lead to poor variablity in the ensemble. Therefore,
resampling only occurs when the effective sampling size, ESS = 1/

∑N
i=0(w

i
n)

2, is below
a certain threshold, λESS , typically chosen as N/2. See Algorithm 8 for an outline of the
bootstrap particle filter.

We will refer to the particle filter solution of Eq. (5.1) as the high-fidelity (HF) problem
as it is the most accurate solution available.
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Algorithm 8: Bootstrap Particle Filter
Input: Time stepping operator = F , ensemble size = N

1 Compute resample threshold, λESS = N/2;
2 Initialize N initial conditions, {ui0}Ni=1;
3 Initialize weights, {wi0}Ni=1 = {1/N}Ni=1 ;
4 while new data, yn, arrives do
5 Time step states, {uin}Ni=1 = {F (zin−1) + ξin−1}Ni=1 ;
6 Compute weights, {w̃in}Ni=1 = {ρηn(yn − h(uin))w

i
n−1}Ni=1;

7 Normalize weights = {wi0}Ni=1 =
{
w̃i0/

∑N
j=0 w̃

j
n

}N
i=1

;

8 if 1/
∑N
i=0(w

i
n)

2 < λESS then
9 Resample states, {uin}Ni=1, with computed weights

10 end if
11 end while

Output: Assimilated ensemble, {ui0:n}Ni=1

The prior distribution is sampled by time stepping in the underlying discretized PDE
and adding random noise. For high-dimensional problems, it is generally not feasible to
run a particle filter in real-time as several thousands of particles are needed to accurately
approximate the posterior, since the true model error is typically unknown. Therefore,
reduced order models are often employed to speed up the computations at the cost of
accuracy and training time.

5.3 Deep Latent Space Particle Filter

Here, we present the proposed methodology for real-time data assimilation with particle
filters – the D-LSPF.

At its heart, we represent the high-fidelity state in a more compact and cheaper to
compute latent space and perform the data assimilation in the latent space. We then
compute a posterior distribution over the latent state after which we transform back to the
high-fidelity space to obtain the high-fidelity posterior. For this, we employ an autoencoder
(AE) to reduce to the latent state, which we combine with a latent time stepping model to
advance the latent state. AEs consist of two neural networks: An encoder, ϕenc : q 7→ z, that
reduces the dimension of the data to a latent state, and a decoder, ϕdec : (z,m) 7→ q̃, that
reconstructs the data. The AE is trained by minimizing the loss (MSE) between the input
and the reconstruction – for the parameter dependent cases we include the parameters in the
decoder, which increases the reconstruction accuracy [101]. The encoder and the decoder are
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then used to represent Eq. (5.1) in the latent space:

zn = f(zn−1;mn−1) + ξ̂n−1,

mn = G(mn−1) + ζn−1,

qn = ϕdec(zn,mn),

yn = h(qn) + ηn,

ξ̂n ∼ Pξ̂(ξ̂n),

ζn ∼ Pζ(ζn),

ηn ∼ Pη(ηn),

(5.4)

Eq. (5.4) differs from Eq. (5.1) in three ways:

• qn is replaced by zn – we advance the latent state instead of the high-fidelity state in
time;

• ξn is replaced by ξ̂n – the latent time stepping model introduces a model error that
differs from the high-fidelity model error;

• qn+1 = ϕdec(zn+1) is added – we need to decode the latent state to get synthetic
observations in the high-fidelity space.

With the augmented latent state, an = (zn,mn), the high-fidelity posterior density
is replaced by the latent posterior density, ρ(a0:Nt

|y0:Nt
). Formulating the problem as a

filtering problem, the sequentially defined posterior density is given by:

ρ(an|y0:n) =
ρ(yn|an)ρ(an|y0:n−1)

ρ(yn|y0:n−1)
. (5.5)

The latent prior density is then computed by:

ρ(an|y0:n−1) =

∫
ρ(an|an−1)ρ(an−1|y0:n−1)dan−1, (5.6)

which is an integral of much lower dimension than the high-fidelity equivalent. The latent
likelihood is computed by:

ρ(yn|an) = ρηn (yn − h(ϕdec(an))) , (5.7)

which is faster to evaluate than the high-fidelity equivalent, since ϕdec(an)) is fast to compute
once f and ϕdec have been trained. Eqs. (5.5), (5.6), and (5.7) are approximated using the
particle filter, as for the high-fidelity equations. The computationally expensive part of the
particle filter, namely the time stepping, is performed efficiently in the latent space.

Here, we make use of the bootstrap particle filter; other types of particle filter algorithms
could possibly be used instead. An outline of the D-LSPF algorithm is shown in Algorithm 9
and in Figure 5.1.
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Algorithm 9: D-LSPF (based on the Boostrap particle filter)
Input: Autoencoder=(ϕenc, ϕdec), time stepping network=f , ensemble size=N

1 Compute resample threshold, λESS = N/2 ;
2 Encode N initial conditions, {zi0}Ni=1 = {ϕenc(u

i
0)}Ni=1 ;

3 Initialize weights, {wi0}Ni=1 = {1/N}Ni=1 ;
4 while new data, yn, arrives do
5 Time-step latent states, {zin}Ni=1 = {f(zin−1) + ξ̂in−1}Ni=1 ;
6 Decode latent states, {uin}Ni=1 = {ϕdec(u

i
n)}Ni=1 ;

7 Compute weights, {w̃in}Ni=1 = {ρηn(yn − h(uin))w
i
n−1}Ni=1 ;

8 Normalize weights = {win}Ni=1 =
{
w̃in/

∑N
j=0 w̃

j
n

}N
i=1

;

9 if 1/
∑N
i=0(w̃

i
n)

2 < λESS then
10 Resample latent states, {zin}Ni=1 with computed weights
11 end if
12 end while

Output: Assimilated latent ensemble: {zi0:n}Ni=1, decoded ensemble:
{ui0:n}Ni=1 = {ϕdec(z

i
0:n)}Ni=1

Note that the speed-up in running the particle filter in the latent space comes at a cost
of a training stage and the cost of encoding and decoding (which is fast due to parallel
computations on a GPU). This is, however, not a significant drawback as the AE and time
stepping network can be used numerous times after training.

5.3.1 Latent Space Regularized Autoencoder

For the D-LSPF to function efficiently, the latent space needs to satisfy certain properties.
Firstly, the latent space must be smooth enough: to ensure that the latent space perturbations
are meaningful, two states that are close to each other in the high-fidelity space must also be
close in the latent space. With smoothness thus defined, we enforce this property using a
prior distribution on the learned latent space in the form of a Wasserstein autoencoder (WAE)
[151] using the maximum mean discrepancy (MMD) loss term – the variational autoencoder
(VAE) [81] could serve the same purpose; however, the VAE tends to also smoothen the
reconstructions which is undesirable in our settings. Secondly, the autoencoder should ensure
that latent space trajectories are simple and easy to learn by a time stepping neural network.
We achieve this by adding a consistency regularization term, as in [158], which ensures that
the time evolution of the latent state can be modeled by means of an ODE system and thus
promotes differentiability, and thereby smoothness, of the time evolution map.
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Figure 5.1: Schematic of the D-LSPF.

In summary, for a given training set, {qi}Ntrain
i=0 , the complete loss function is given by:

LWAE(ϕenc, ϕdec) =
1

N

N∑

i=1

(qi − ϕdec(ϕenc(qi)))
2

︸ ︷︷ ︸
Reconstruction

+ αR(ϕenc, ϕdec)︸ ︷︷ ︸
Weight regularization

+βMMD (ϕenc)︸ ︷︷ ︸
Divergence

+λC(ϕenc, ϕdec)︸ ︷︷ ︸
Consistency

.

(5.8)

5.3.2 Transformer-Based Dimensionality Reduction

In our approach, the loss function ensures that the autoencoder, and thereby the latent space,
has certain desirable properties. To ensure that the autoencoder can learn a low-dimensional
representation and reconstruct it accurately, the architecture also has to be able to handle a
multitude of possible high-fidelity states.

The arguably most common layer for AEs are convolutional and pooling layers [43, 105,
158]. Convolutional layers however tend to have inherent inductive biases and struggle with
discontinuous signals, resulting in spurious oscillations. Transformers, originally developed for
text processing, have proven effective for image processing in the form of vision transformers
(ViT) [29]. These transformers divide images into patches and apply the attention mechanism
between each set of patches. Yet, since there is no natural way of reducing or expanding the
dimensionality of the data, the ViT has been used to dimensionality reduction tasks only to
a limited degree [64, 90, 111, 126]. Importantly, current ViTs have not been integrated with
increasing numbers of channels in convolutional layers to represent increasingly complicated
features.

In this section, we extend the vision transformer layer to combine the advantages of
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Figure 5.2: Visualization of the ViT dimensionality reduction/expansion layer.

convolutional layers (i.e., dimensionality reduction/expansion and increasing/decreasing
number of channels) and ViTs (global information, patch processing).

In the proposed layer, the expansion/reduction of channels and dimensions is done on
each individual patch. It can be interpreted as a type of domain decomposition, where
the reduction/expansion is performed on each subdomain and the communication between
subdomains is handled through the attention mechanism. Formally, let the superscript,
l, denote the l’th layer. We divide an input xl ∈ RN l

c×N l
x (N l

c channels and a spatial
dimension of size N l

x), into p patches, xl1, xl2, . . . , xlp of size N l
p. That is, xli ∈ RN

l
c×N l

p ,
for all i. Then, each patch is flattened and projected onto an N l

e-dimensional embedding
space, e = (e1, e2, . . . , ep) ∈ RNe×Np . Positional encodings are then added after which the
embeddings are passed through a standard transformer encoder layer. Each embedded vector,
ei, is projected onto a new dimension of size N l+1

c N l+1
p , unflattened, xl+1

i ∈ RN
l+1
c ×N l+1

p and
recombined, xl+1 ∈ RN l+1

c ×N l+1
x . The process is visualized in Figure 5.2.

5.3.3 Time Stepping

Once the AE is trained, we can transform high-fidelity trajectories into latent trajectories.
To compute the latent trajectories, we next need to perform time stepping in the latent space.
For this, we make use of transformers [156] as they are well suited for modeling physical
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systems, being able to mimic the structure of multistep time-marching methods [43].
Time stepping in the latent space is done by means of a map, f , that advances a latent

state in time. Adopting the concept of multistep time integrators, we use several previous
time steps to predict the next latent state:

zn+1 = f(zn−k:n;mn), (5.9)

where k is referred to as the memory. For multiple time steps, we apply the transformer
model recursively. Training is done by minimizing the loss function:

L(f)=

Nt−s∑

n=k

s∑

i=1

||f i(zn−k:n;mn)− zn+1:n+1+i||22+αR(f).

Here, R is a regularization, f i means applying f i times, recursively, on the output, and s is
the output sequence length. After trajectories are computed in the latent space, high-fidelity
trajectories are recovered through the decoder.

Parameterized Time Stepping

In the high-fidelity space, dynamics are not only dependent on the previous state but also on
a set of parameters, and the same applies to the latent dynamics. Including the parameters
of interest in the latent space time stepping model can be done in several ways, depending on
the specific choice of neural network architecture. We adopt the approach presented in [58],
where the parameters are encoded and added to the sequence of states as the first entry:

{g(mn), zn−k, zn−k+1, . . . ,zn} →
f ({g(mn), zn−k, zn−k+1, . . . ,zn}) = zn+1,

(5.10)

where g is a parameter encoder that lifts a vector of parameters to the same dimension as
the latent state. This efficiently allows attention to be computed between the parameters
and the sequence of states. Figure 5.3 visualizes the time stepping transformer model.
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Figure 5.3: Illustration of the transformer model for parameterized time stepping.
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5.4 Results

We demonstrate the potential and strength of the D-LSPF for a variety of numerical
experiments. The first test case serves as a simple benchmark problem. The second test
case uses real-world data from an experimental setting, and shows that the D-LSPF can be
applied to real-world situations even when trained on simulation data. The last test case is a
realistic engineering setting and is used as an ablation study to emphasize the performance
of the architectural choices. An overview of the test cases can be found in Table 5.1. For all
neural networks, hyperparameter tuning was performed to find the optimal settings. For the
alternative methods we compare with, we adopt hyperparameters as chosen in the respective
papers when applicable, and performed hyperparameter tuning when not.

Table 5.1: Overview of test cases.

Burgers Multi-phase pipeflow Waves over submerged bar

Num Train samples 1024 5000 210
Num Test samples 20 8 1
Parametric No Yes Yes
Simulated observations Yes Yes No
Noise variance 0.1 0.003 -
Num Sensors 8 9 8
Num Time steps between obs 30 400 [25, 75]
State DOFs 256 1536 1024
Num States 1 3 2
Num States observed 1 1 1

All neural networks were implemented using PyTorch [116]. The modified ViT layers are
implemented by modifying the code from https://github.com/lucidrains/vit-pytorch.
Training and testing were performed using an Nvidia RTX 3090 GPU and 32 core AMD
Ryzen 9 3950X CPU.

All models are trained with the Adam optimizer [80] and a warm-up cosine annealing
learning rate scheduler. Gradient clipping was applied when training the transformers. The
states and parameters were transformed to be between 0 and 1 before being passed to the
autoencoder. The time stepping networks are trained without teacher forcing, and with a
limited unrolling. The number of time steps to unroll was treated as a hyperparemeter.

The code for setting up and training the neural networks, including hyperparameter
settings, for the test cases can be found in the GitHub repository https://github.com/

nmucke/latent-time-stepping. The code for simulating training data for Burgers equations
and the multi-phase leak location problem can be found in the same repository. The code
for simulating the training data for the harmonic wave generation over a submerged bar test

https://github.com/lucidrains/vit-pytorch
https://github.com/nmucke/latent-time-stepping
https://github.com/nmucke/latent-time-stepping


5.4. Results 129

case can be made available upon request and in consultation with Associate professor Allan
Peter Engsig-Karup. The code for the particle filter implementations as well as the test data
can be found in the GitHub repository https://github.com/nmucke/data-assimilation.

5.4.1 Viscous Burgers Equation

The first test case is the viscous Burgers equation:

∂tq(x, t) = ν∂xxq(x, t)− q(x, t)∂xq(x, t),

q(0, t) = q(L, 0) = 0,

q(x, 0) = Q sin

(
2πx

L

)
,

(5.11)

with x ∈ [0, L], L = 2, ν = 1/150, and Q ∼ U[0.5, 1.5]. We only perform state estimation
so neither the AE nor the time stepping NN receives any parameters as input. The ob-
servations used for the data assimilation are simulated, as well as the training data. We
add normally distributed noise with a standard deviation of 0.1. Eq. (5.11) is discretized
using a second-order finite difference scheme in space and a Runge-Kutta 45 method in
time. We consider t ∈ [0, 0.3] with a step size of 0.001, resulting in 300 time steps. For
the data assimilation, we test on a case where the state is observed at 8 spatial locations,
x = (0.0, 0.286, 0.571, 0.857, 1.143, 1.429, 1.714, 2.0), Ny = 8, at every 10th time step. The
latent dimension in the D-LSPF is chosen to be 16.

We compare the D-LSPF with 100 and 1000 particles with the Reduced-Order Autodif-
ferentiable Ensemble Kalman Filter (ROAD-EnKF) [22] with a latent dimension of 40. The
ROAD-EnKF is trained on the same training data as the D-LSPF with full access to the
entire states in space and time. All methods are evaluated on 20 different simulated solutions,
with Q ∼ U[0.5, 1.5]. We compare the performance by computing the Root-Mean-Square
Error (RMSE) and the averaged RMSE of the 2nd, 3rd, and 4th moment of the state ensem-
ble, referred to as the Average Moment RMSE (AMRMSE). The AMRMSE measures how
accurately the distributional information of the posterior is approximated and therefore how
accurately uncertainty is quantified. Moreover, we also present the negative log-likelihood
(NLL) with respect to the high-fidelity posterior.

In Table 5.2, the results for the test case are shown. The D-LSPF shows superior
performance with respect to AMRMSE and NLL by one order of magnitude, suggesting that
the D-LSPF quantifies the uncertainty in a more accurate way compared to ROAD-EnKF
for this case. For the mean state estimation, the D-LSPF also performs 3.75 times better.
Regarding timing, the D-LSPF with 100 particles and the ROAD-EnKF are comparable
using GPUs, while the ROAD-EnKF is slightly faster using a CPU.

Lastly, in Figure 5.4, we show state estimation results at three different time points. It

https://github.com/nmucke/data-assimilation
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Table 5.2: The viscous Burgers equations. In parenthesis is the number of particles. For the
high-fidelity (HF) particle filter, 30 CPUs were used in parallel. For the rest of the methods
a single CPU or GPU was used. The AMRMSE is computed by comparing the surrogate
model ensembles with the HF particle filter solution.

RMSE ↓ AMRMSE ↓ NLL ↓ GPU ↓ CPU ↓

HF(1000) 9.0 · 10−3 - - 22.7s

D-LSPF(100) 1.6 · 10−2 1.3 · 10−4 0.38 0.6s 1.5s
D-LSPF(1000) 1.6 · 10−2 1.1 · 10−4 0.42 1.2s 13.4s
ROAD-EnKF 6.0 · 10−2 1.2 · 10−3 4.73 0.6s 0.8s

(a) t = 0.03 (b) t = 0.15 (c) t = 0.29

Figure 5.4: State estimation for the viscous Burgers equations with observations every 10 time
step using the high-fidelity particle filter, the D-LSPF and the ROAD-EnKF. The high-fidelity
particle filter was run with 1000 particles and the D-LSPF and ROAD-EnKF were run with
100 particles. we see the state estimation for the using the D-LSPF, ROAD-EnKF, and
the high-fidelity model for case 2. It is clear that all methods approximates the state well.
However, the ROAD-EnKF is visibly worse at the end.

is clear that the uncertainty bands shrink as time passes and more observations become
available as expected. The ROAD-EnKF state estimation is visually slightly worse than the
D-LSPF and the high-fidelity particle filter.

5.4.2 Harmonic wave generation over a submerged bar

In this test case, the data comes from a real-world experiment [11]. The setting is a 25m long
and 0.4m tall wave tank, with waves being generated from the left side, traveling to the right.
At the seabed of the tank, a 0.3m tall submerged bar is placed, see Figure 5.5. Eight sensors
measure the surface height of the water at x = (4, 10.5, 13.5, 14.5, 15.7, 17.3, 19.0, 21.0). For
the state and parameter estimation, we aim to reconstruct the surface elevation, the velocity
potential, and the height of the submerged bar. A similar study was conducted in [12], where
the uncertainty of the water wave height was quantified given random perturbations on the
seabed; in [12] however only uncertainty of the forward problem was considered, whereas
we solve the inverse problem with uncertainty quantification, given the observations. For
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Figure 5.5: Wave tank setup and physical variables. Figure comes from [31].

the neural network surrogate model, we only consider the surface variables η and ϕ̃, as the
state and the height of the submerged bar is the parameter of interest. This highlights an
important advantage of using a non-intrusive surrogate model, as it becomes possible to
only model the relevant quantities of interest, bypassing the computations of the velocity
potential in the vertical direction.

To generate the training data, we model the setup using the fully nonlinear water wave
model for deep fluids as described in [31]. The problem is modeled in 2D by means of a set
of 1D PDEs for the free surface boundary conditions, together with a 2D Laplace problem in
the full domain. Let x be the horizontal component and z the vertical component, see Figure
5.5. The velocity potential, ϕ : (x, z, t) 7→ ϕ(x, z, t), is the scalar function defined on the
whole 2D domain, and the free surface elevation, η : (x, t) 7→ η(x, t), is defined only on the
1D surface. The free surface boundary conditions can be expressed in the so-called Zakharov
form [169], modeled by two 1D PDEs – the wave height, η, and the velocity potential, ϕ̃:

∂η

∂t
= −∇η ·∇ϕ̃+ w̃(1 +∇η ·∇η),

∂ϕ̃

∂t
= −gη − 1

2

(
∇ϕ̃ ·∇ϕ̃− w̃2(1 +∇η ·∇η)

)
.

(5.12)

Eq. (5.12) is defined on the surface part of the domain, ΓFS. w̃ = ∂zϕ|z=η and ϕ̃ = ϕ|z=η
are the surface parts of the functions that are defined on the 2D domain and ΓFS is the free
surface, as shown in Figure 5.5. The velocity potential on the domain is modeled by the 2D
Laplace problem, via the σ-transform:

∇σ(K(x; t)∇σϕ) = 0, in Ωc,

ϕ = ϕ̃, z = η on ΓFS

n · ∇ϕ = 0, z = −h(x, y) on Γb.

(5.13)



132
5. The Deep Latent Space Particle Filter for Real-Time Nonlinear Data Assimilation with

Uncertainty Quantification

where σ = (z + h(x))d(x, t)−1, Ωc = {(x, σ)|0 ≤ σ ≤ 1}, and

K(x, t) =

[
d −σ∂xη

−σ∂xη 1+(σ∂xη)
2

d

]
. (5.14)

We use the spectral element method, as described in [31], for the discretization of the
equations. We use 103 elements in the horizontal direction and 1 element in the vertical
direction, both with 6th order polynomials, to generate the training data. The equations are
solved with a step size of 0.03535 with t ∈ [0, 42.42], resulting in 1200 time steps, and the
bar height is uniformly sampled between 0.1 and 0.325. The states are interpolated onto a
regular grid of 512 points.

Sensor observations from the experiment are available at a time frequency of 0.03535s,
which was also chosen as the step size for the simulations. To demonstrate how the D-LSPF
performs with varying time intervals between the observations, we show the results for sensor
observations at every 25th and 75th time step, corresponding to every 0.884s and 2.651s,
respectively. We refer to these two settings as case 1 and 2. We only observe the wave height
and not the velocity potential. Since we deal with real-world data, the true full state is not
available. Therefore, we measure the accuracy against the full time series of observations,
showcasing that the D-LSPF can accurately estimate the state between observations. We do,
however, also compare the results with a high-fidelity simulation with the true bar height.
Furthermore, we present the accuracy of the bar height estimates.

Table 5.3: Results for the harmonic wave generation test case using the D-LSPF and the
ROAD-EnKF with 100 and 1000 particles. Timings are measured using a single GPU. The
PICP is computed using the 2.5th and the 97.5th percentile. An upward pointing arrow
means larger values are better and a downward pointing arrow means lower values are better.
"S-" and "P-" refer to the state and parameters, respectively.

Case 1 – Every 25 time step

S-RRMSE ↓ S-PICP ↑ P-RRMSE ↓ Time ↓
D-LSPF(100) 3.6 · 10−1 4.4 · 10−1 4.4 · 10−3 1.5s
D-LSPF(1000) 3.8 · 10−1 3.9 · 10−1 4.6 · 10−3 10.5s
ROAD-EnKF(100) 1.1 5.0 · 10−1 - 5.4s
ROAD-EnKF(1000) 1.0 5.5 · 10−1 - 31.3s

Case 2 – Every 75 time step

D-LSPF(100) 4.3 · 10−1 4.9 · 10−1 5.3 · 10−3 1.4s
D-LSPF(1000) 4.0 · 10−1 5.6 · 10−1 4.9 · 10−3 10.0s
ROAD-EnKF(100) 1.0 5.8 · 10−1 - 5.1s
ROAD-EnKF(1000) 1.0 5.8 · 10−1 - 29.9s

We compare the D-LSPF with the ROAD-EnKF [22], where we train the ROAD-EnKF
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model on the same simulated data as the D-LSPF with full access to the states in space and
time. To deal with the multiple states, wave height and velocity potential, we introduce a
slight modification in the decoder network in the ROAD-EnKF compared to [22], by ensuring
that the Fourier decoder networks outputs data with two channels. The latent dimension is
chosen to be 8 for the D-LSPF and 40 for the ROAD-EnKF. The neural network architectures
for the modified ROAD-EnKF model have been chosen through hyperparameter tuning.

Table 5.3 contains the Relative RMSE (RRMSE), probability interval coverage percentage
(PICP), and timings for the D-LSPF and the ROAD-EnKF in both variations of the test
case using 100 and 1000 particles. The D-LSPF clearly performs best with respect to the
state estimation with an improvement of one order of magnitude, for both 100 and 1000
particles. For the PICP, the ROAD-EnKF does slightly better, however, inspecting Figures
5.6a and 5.6b, we see that the ROAD-EnKF has large uncertainty intervals while being
quite inaccurate on average compared to the D-LSPF. In general, the PICP is less relevant
when the RRMSE is bad. This is further highlighted in Figure 5.7a and 5.7b, plotting the
windowed RRMSE versus time. The windowed RRMSE measures the RRMSE in a time
window in order to show how the state estimation improves when more observations become
available. The D-LSPF converges and even surpasses the high-fidelity simulation, showcasing
how assimilating observations impactfully improves accuracy. We also notice for both the
D-LSPF and ROAD-EnKF that there are only minor differences between using 100 and 1000
particles. Furthermore, the RRMSE only varies slightly between the two cases, suggesting
that both methods are stable with respect to observation frequency.

Besides the accuracy, Table 5.3 also notes the computation time. In both cases, both
the D-LSPF and the ROAD-EnKF are faster than real-time, as the data assimilation takes
place over 40s in physical time and the D-LSPF and ROAD-EnKF computation times vary
between 1.4s and 29.9s. In general, the D-LSPF is between 3 and 4 times faster than the
ROAD-EnKF. For comparison, a single high-fidelity model simulation takes on average some
1062s. Hence, running the particle filter using the high-fidelity model on 30 CPU cores,
assuming no overhead associated with the parallelization, would take approximately 3542s
with 100 particles and 35420s for 1000 particles, yielding a speed-up of 2345 for 100 particles
and 3376 for 1000 particles on a GPU when using the D-LSPF. When deploying the D-LSPF
and running it as the data comes in, it is not possible to perform the data assimilation
task faster than the arrival of observations. However, the timings show that the method
assimilates the data without any delay.

Figure 5.8 shows the quality of the D-LSPF estimates of the state and the sensor locations
between observations. Furthermore, the difference between using 100 and 1000 particles is
negligible for the state estimates. However, when zooming in, it becomes clear that using
more particles result in better uncertainty intervals. For an overview of the estimation at all
sensor locations, including ROAD-EnKF results, see Figure 5.9.
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(a) Wave height estimation, η ± 2σ. (b) Velocity potential estimation, ϕ̃± 2σ.

Figure 5.6: State estimation at t=40s for the harmonic wave test case with observations
every 75 time steps. Note that only wave height is observed and not velocity potential.

(a) Observations every 25 time step. (b) Observations every 75 time step.

Figure 5.7: Windowed RRMSE for the harmonic wave test case with a window size of 75
time steps.

Lastly, in Figure 5.10, the posterior distributions of the bar height for varying numbers
of particles and observation frequency are shown. While the average bar height estimates are
very similar for the 100 and 1000 particles, the distributions change from being multimodal
to unimodal.

5.4.3 Multi-phase leak localization

Here, we consider leak localization in a two-phase pipe flow for liquid (water) and air, and
we assume that they are mixed. We consider a case where only a few sensors are placed
along a 5km long pipe, measuring pressure. The system is in a steady state when a leak
occurs, where we then use the particle filter to compute a distribution over the leak location,
leak size, liquid holdup, mixture velocity, and pressure. This problem is similar to the setup
in [153], where single-phase CO2 was considered, but state estimation was only performed in
a non-leakage case.
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(a) Sensor located at 13.5m. (b) Sensor located at 14.5m.

Figure 5.8: State estimation at two sensor locations computed with the D-LSPF with 100
and 100 particles compared with a high-fidelity simulation with the true bar height and the
true sensor data.

The state for data assimilation and our surrogate model is the primitive state, consisting
of the liquid holdup, pressure, and mixture velocity, q = (αl, p, um). Both training, testing,
and observations data are simulated and noise is artificially added to the observations with a
standard deviation of 0.01. We use the homogeneous equilibrium model (HEM) [109] for the
simulations. The HEM is a set of nonlinear, hyperbolic one-dimensional PDEs:

∂t(Agρg) + ∂x(Agρgum) = −αgL(ρm)δ(x− xl),

∂t(Alρl) + ∂x(Alρlum) = −αlL(ρm)δ(x− xl),

∂t(Aρmum) + ∂x
(
ρmu

2
mA+ p(ρg)A

)
= −ρu|u|

2
ff (ρ, u),

(5.15)

with boundary conditions ρgum(0, t) = (ρgum)0 and ρlum(0, t) = (ρlum)0 at the pipe inlet
on the left side, and p(L, t) = pL at the outlet on the right side. ff is the wall friction, Re is
the Reynolds number, and L is the leak size. δ is the Dirac delta function, ensuring that the
leak is only active at x = xl. A is the cross section area of the pipe, Ag is the area occupied
by gas and Al the area occupied by liquid. Hence, for αg ∈ [0, 1] and αl ∈ [0, 1] being the
fraction of gas and liquid, respectively, we have:

Ag = αgA, Al = αlA, A = Ag +Al, αg + αg = 1. (5.16)

ρl is the liquid density assumed to be constant, ρg is the gas density, and ρm is the mixture
density (not to be confused with the probability density functions, ρ),

ρm = αgρg + αlρl. (5.17)
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Figure 5.9: State values at the sensor locations compared with the true sensor observations
for the D-LSPF with 100 and 1000 particles, as well as for a high-fidelity simulation with the
true parameters chosen.
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(a) D-LSPF with 100 particles.
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(b) D-LSPF with 1000 particles.

Figure 5.10: Posterior distribution over the bar height at t = 40s for varying observation
frequency and number of particles. The density outlines are computed using kernel density
estimation based on the posterior particles. Vertical lines represent the mean of the distribu-
tions.

The wall friction, ff , is given by,

ff = 2

((
8

Re

)12

+ (a+ b)−1.5

)1/12

, a =

(
−2.457 ln

(
7

Re

)0.9

+ 0.27
ε

2r

)16

, b =

(
37530

Re

)16

,

(5.18)

the Reynolds number, Re, is given by

Re =
2rρmum
µm

, µm = αgµg + αlµl, (5.19)

and the leak size, L, is given by,

L(ρm) = Cv

√
ρm(p(ρg)− pamb). (5.20)

For specific values of all constants in Eq. (5.15), see Table 5.4.

We discretize the PDEs using the nodal discontinuous Galerkin method [66] with Legendre
polynomials for the modal representation and Lagrange polynomials for the nodal degrees of
freedom. We use the Lax-Friedrichs discretization for the numerical flux and BDF2 for time
stepping. The nonlinear equations coming from the implicit time stepping are solved using
Newton’s method, where the resulting linear systems are solved via an LU factorization.
Furthermore, the Jacobian matrix is only updated every 500 time-steps to speed up the
computations.

The true state and observations used for the data assimilation are simulated using 3000
elements and third-order polynomials. The states are then evaluated on regular grid of 512
points.

The training data is simulated using 2000 elements and second-order polynomials. There-



138
5. The Deep Latent Space Particle Filter for Real-Time Nonlinear Data Assimilation with

Uncertainty Quantification

Table 5.4: Parameters for the multi phase pipe flow equations, (5.15). Note that the
discharge coefficient and the leakage location have values denoted by intervals, as they are
the parameters to determine.

Physical quantity Constant Value Unit

Pipe length L 5000 m
Diameter d 0.2 m
Cross-sectional area A 0.0314 m2

Speed of sound in gas c 308 m/s
Ambient pressure pamb 1.01325 · 105 Pa
Reference pressure pref 1 · 105 Pa
Reference density (gas) ρg 1.26 kg/m3

Reference density (liquid) ρl 1003 kg/m3

Inflow velocity v0 4.0 m/s
Outflow pressure pL 1.0e6 Pa
Pipe roughness ε 10−8 m
Fluid viscosity (gas) µg 1.8 · 10−5 N · s/m2

Fluid viscosity (liquid) µl 1.516 · 10−5 N · s/m2

Temperature T 278 Kelvin
Discharge coefficient Cd [1, 2] m
Leakage location xl [10, 5990] m

after, it is evaluated on a regular grid consisting of 512 grid points. The equations are solved
with a time-step size of 0.01, for t = [0, 120] seconds. Hence, there are 12000 time steps. The
surrogate model is trained to take steps 10 times larger than the high-fidelity model.

For testing the D-LSPF, we compute a high-fidelity particle filter solution with 5000
particles as a baseline to measure if we estimate the distributional information accurately.
The high-fidelity solver uses 700 elements and 3rd order polynomials.

The available observations are located at 8 spatial locations: x=(489.24, 978.47, 1467.71,
1956.95, 2446.18, 2935.42, 3424.66, 3913.89, 4403.13). Only pressure is observed. The
observations arrive with a time frequency of 4s, corresponding to every 400 time steps of the
PDE model. To ensure consistent performance across various configurations, we compute the
metrics over 8 different test trajectories with varying leak locations and sizes and take the
average. We compute the state and parameter RRMSE against the true solution, the state
AMRMSE against a HF particle filter solution, the state and parameter NLL against the
HF particle filter solution, as well as the Wasserstein-1 distance of the posterior parameter
distribution against the HF posterior.

We use this test case as an ablation study: we use the same particle filter setting
for all approaches and only replace the chosen architectures. We compare the presented
architectures with three alternatives: One where the transformer-based AE layers are replaced
with convolutional ResNet layers. The dimensionality reduction in this network is performed
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through strided convolutions and the dimensionality expansion is performed using transposed
convolutions. The second alternative is using the proposed ViT architecture but without the
Wasserstein distance and consistency regularization in the latent space for the autoencoder.
Lastly, we compare with a setup that still uses the proposed ViT AE with regularization,
but replaces the transformer based time stepping with a neural ODE (NODE) [21]. In all
cases, a latent dimension of 8 is chosen.

Remark We also trained a Fourier Neural Operator (FNO) [91] as a surrogate model,
but without success. In all attempts, the solutions exploded after a certain number of time
steps. This may be due to the fact that there is a clear discontinuity which is located at the
parameter, xl. Fourier series may not be good approximators for such tasks. For this reason,
FNO results are omitted from the chapter.

Table 5.5: Computation times using a GPU for the D-LSPF applied to the multi phase leak
localization test case. All timings are computed with 5000 particles. The high-fidelity solver
makes use of 100 CPU cores and the neural network uses one GPU. "P-" refers to parameter
estimation and "S-" refers to state estimation.

HF Reg-ViT-Trans NoReg-ViT-Trans Reg-Conv-Trans Reg-ViT-NODE

P-RRMSE ↓ 5.2 · 10−1 9.6 · 10−3 1.1 · 10−2 7.4 · 10−1 1.5 · 10−2

P-Wasserstein-1 ↓ - 169.9 168.4 875.7 172.7
S-RRMSE ↓ 7.9 · 10−2 2.5 · 10−2 2.9 · 10−2 8.3 · 10−2 3.1 · 10−2

S-AMRMSE ↓ - 4.3 · 10−3 4.4 · 10−3 4.5 · 10−3 4.5 · 10−3

P-NLL ↓ - 5.09 5.70 6.01 12.54
S-NLL ↓ - 16.87 15.37 18.37 17.32
Time (GPU) ↓ - 24.89s 24.90s 23.58s 6.52
Speed-up (GPU) ↓ - 1807.95 1807.23 1908.40 6901.84
Time (CPU) ↓ 45000s 332.3s 317.0s 328.8s 45.9s
Speed-up (CPU) ↓ - 135.4 142.0 136.9 980.8

The results are summarized in Table 5.5. Our chosen architecture demonstrates superior
performance in most metrics. Note in particular that the results using the convolutional
AE are significantly worse compared to the ViT AE, emphasizing the advantages of the
transformer-based architecture across different combinations. Furthermore, the D-LSPF
outperforms the high-fidelity particle filter in estimating the leak location and size as well
as the state. This can be explained from the fact that the D-LSPF is trained on higher
resolution trajectories. As this came at a higher cost only at the training stage, it does not
add to the computation time when running the particle filter.

In Figure 5.11, the true velocity at t = 40 and t = 120 are compared with estimates using
a high-fidelity model, the D-LSPF with the ViT AE, and the D-LSPF with convolutional AE.
The convolutional AE clearly fails to reconstruct the state in any meaningful way, while the
D-LSPF with the ViT AE accurately estimates the velocity with the uncertainty concentrated
around the leak location as expected.
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(a) Velocity estimation at t = 40s. (b) Velocity estimation at t = 120s.

Figure 5.11: Velocity estimation results for the multi phase pipeflow test case.
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(b) Wasserstein distance for the leak location.

Figure 5.12: Results for the leak size and location estimation at time 120s, for varying neural
network specifications and number of particles.

In Figure 5.12, we show the convergence accuracy of the leak location estimation for all
the neural network setups. We see in Figure 5.12a that the proposed setup is superior than
the alternatives with respect to the RRMSE for all number of particles. Similarly, we reach
the same conclusion with respect to the Wasserstein-1 distance of the posterior distribution
of the leak location.

5.5 Conclusion

We presented a novel particle filter, the D-LSPF, for fast and accurate data assimilation
with uncertainty quantification. The D-LSPF was based on a surrogate model utilizing
dimensionality reduction and latent space time stepping. The use of particle filters provided
estimates for the state and parameters as well as for the associated uncertainties. For the
AE, we made use of a novel extension of the vision transformer for dimensionality reduction
and reconstruction. Furthermore, we discussed a number of regularization techniques to
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improve the performance of the D-LSPF.
We demonstrated the D-LSPF on three different test cases with varying characteristics

and complexities. In the first test, we compared with alternative deep learning-based
data assimilation methods for the viscous Burgers equation. The D-LSPF showed superior
performance by an order of magnitude regarding uncertainty estimation as well as almost 4
times better mean reconstruction. In the second test case, we performed state and parameter
estimation on a wave tank experiment with few observations available in time and space. The
D-LSPF performed up to 3 times better than alternative approaches while also being faster
and successfully estimated both the state and parameter. Lastly, we applied the D-LSPF on
a leak localization problem for multi-phase flow in a long pipe. We showed how the ViT AE
and the regularization techniques drastically improved the state and parameter estimation:
the D-LSPF provided speed-ups of 3 orders of magnitude compared with a high-fidelity
particle filter while also being more accurate.

Several aspects of our work could benefit from future investigations. In particular, we
made use of the bootstrap particle filter. While this particular version of the particle filter
has many advantages such as relative ease of implementation and convergence, there are
alternatives. It might be fruitful to analyze the quality of filters that utilize the differentiability
of neural networks, such as the nudging particle filter with gradient nudging [3] or particle
filters based on Stein variational gradient descent [34, 100].

In all, the D-LSPF significantly sped up complex data assimilation tasks without sacrificing
accuracy, thus enabling fusing of increasingly complex models with data in real-time. This
work promises a solid foundation for future digital twins.





6
Conclusion

In this thesis, we discussed several methods to speed up inverse problems and data assimilation
with uncertainty quantification. The aim was to enable real-time state and parameter
estimation to be used in digital twins, which before was limited due to excessive amount of
computations related to such tasks. The integration of advanced deep learning techniques
with traditional scientific computing methods has led to novel developments in reduced order
modeling, Bayesian inverse problem solving, digital twin technology for leak localization,
and real-time nonlinear data assimilation. Specifically, techniques like autoencoders, LSTM,
CNNs, and transformers from the realm of deep learning were shown to work well with
conventional methods from scientific computing, such particle filters and Markov Chain
Monte Carlo methods.

6.1 Chapter Conclusions

Each chapter contributed to the overarching theme by building a suite of tools and method-
ologies. These methods enhance computational efficiency in various real-world scenarios.
Below, we conclude the findings in each of the chapters.

143
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Chapter 2 In this chapter, we have successfully demonstrated the application of spatially-
and memory-aware deep learning techniques in reduced order modeling (ROM) for parameter-
ized time-dependent partial differential equations (PDEs). The development of a nonintrusive
framework, integrating convolutional autoencoders for nonlinear dimensionality reduction
and memory-aware neural networks for time stepping, marks a significant advancement in
computational efficiency and accuracy. This approach allows for a more precise capture of
the complex dynamics inherent in parameterized PDEs, setting a new benchmark for ROM
in scientific computing.

Chapter 3 Chapter 3 presented the Markov Chain Generative Adversarial neural Network
(MCGAN) method for solving Bayesian inverse problems in physics applications. The
innovative approach of embedding GANs into a Hamiltonian Monte Carlo sampling scheme
enhances the efficiency of sampling from complex distributions. This chapter not only
presented a theoretical convergence proof for the method but also highlighted its practical
efficacy in scenarios like Darcy flow and leakage detection in pipe flow, underscoring its
potential in various physics-based applications.

Chapter 4 In this chapter, we presented a probabilistic digital twin framework utilizing
generative deep learning for leak localization in water distribution networks. The use of a
supervised Wasserstein Autoencoder for generating complete states of flow and pressure,
coupled with Bayesian inference, represents a major leap in the efficiency and accuracy of
leak localization methods. The innovative transformer-based architecture further elevated the
model’s performance, demonstrating the practicality of this approach in real-world scenarios.

Chapter 5 The final chapter introduced the Deep Latent Space Particle Filter (D-LSPF),
a novel method for real-time nonlinear data assimilation with uncertainty quantification. By
integrating transformer-based dimensionality reduction in a Wasserstein Autoencoder with a
time-stepping transformer, this methodology significantly enhanced the efficiency of particle
filtering. This approach not only estimated the state accurately but also captured the full
posterior distribution, offering robust solutions for complex data assimilation problems.

6.2 Outlook and Future Work

This thesis has explored the integration of deep learning in the realm of digital twins, focusing
on real-time inverse problems and data assimilation. The advancements made here pave the
way for further research and development in several key areas. The future directions can be
categorized into three major subsections:
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Deep Learning-Based Surrogate Models The use of deep learning-based surrogate
models in scientific computing has shown promising results in this thesis. Future work should
aim to enhance these models’ accuracy and efficiency even further.

In future developments, one could focus on the integration of transfer learning to leverage
pre-trained models for new but related problems to significantly reduce computational costs
[141]. This could especially lower the offline training costs by not training from scratch every
time a new problem arises.

Furthermore, one could look into incorporating physics knowledge directly into the neural
network architectures or training [125, 154]. In this thesis, we mainly focused on purely
data-driven approaches. By incorporating physical constraints, one could ensure that the
surrogate model adheres to fundamental principles of physics to higher degree with less data.

Lastly, instead of only training the surrogate in the offline stage, one could continue the
training when new data arrives by using online learning [35]. With such approaches, the
surrogate could potentially improve over time, ensuring long-term stability.

Inverse Problems and Data Assimilation In the area of inverse problems and data
assimilation, there is still much to be explored. We primarily used sampling based methods,
such MCMC and particle fitlers, in this thesis. However, by utilizing the differentiability of
neural networks, one could potentially gain further speed-ups and accuracy. This could be
achieved with alternative Bayesian approaches such as nudging particle filters [3] and Stein
variational gradient descent methods [34, 100].

Furthermore, one could bypass the expensive likelihood computation by exploring
likelihood-free methods [2]. With such methods, one has to define alternative formula-
tions of the posterior distribution as well as alternative ways to estimate it, using e.g.
adversarial losses directly in the inference schemes [44, 97].

Generative Modeling for Scientific Computing Generative models based on neural
networks have shown substantial promise in scientific computing applications. We focused on
GAN- and autoencoder-based generative models in this thesis. However, denoising diffusion
models (DDMs) have already shown great promise outside of scientific computing. DDMs
for physics applications are still widely unexplored and might prove to be useful [70, 92].
However, a drawback of DDMs is the computation time associated with sampling, which
might make them difficult to use when real-time computations are important.
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