
Sequential Value Passing yields a Kleene Theorem for
Processes

Jos C.M. Baeten1 and Bas Luttik2

1 CWI, Amsterdam, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Communication with value passing has received ample attention in
process theory. Value passing through a sequential composition has received much
less attention. In recent work, we found that sequential value passing is the essen-
tial ingredient to prove the analogue of the classical theorem of the equivalence
of pushdown automata and context-free grammars in a setting of interactive pro-
cesses and bisimulation. Subsequently, we found that the treatment of sequential
value passing in the process setting can be simplified considerably. We report on
this simplification here, and find another application of sequential value passing,
viz. a Kleene theorem for processes.

Keywords: sequential value passing · process theory · pushdown automaton ·
context-free grammar · bisimilarity · Kleene theorem.

We dedicate this paper to our valued colleague Herman Geuvers on the occasion of his
sixtieth birthday. We admire his meticulous and thorough style.

©Jos C.M. Baeten and Bas Luttik; Licensed under Creative Commons License CC-
BY. This is the Author Accepted Manuscript of Jos C.M. Baeten and Bas Luttik, Se-
quential Value Passing Yields a Kleene Theorem for Processes, in: V. Capretta et al.
(Eds.): Logics and Type Systems in Theory and Practice, LNCS 14560, Springer Na-
ture, pp. 1–16, 2024, doi.org/10.1007/978-3-031-61716-4.

1 Introduction

This paper contributes to our ongoing project to integrate the theory of automata and
formal languages on the one hand and concurrency theory on the other hand. We do not
treat automata as language acceptors. Instead, we treat them as processes. That is, we
view automata as transition systems, and consider them modulo bisimilarity.

It is well-known that Kleene’s theorem [20], which states that a language is accepted
by a finite automaton if and only if it is denoted by a regular expression, does not have
a direct process-theoretic pendant modulo bisimilarity. Milner showed that there exist
finite automata that are not bisimilar to the transition system associated with a regular
expression [23]. We shall prove in this paper that it suffices to extend regular expressions
with a simple notion of sequential value passing to obtain a process-theoretic variant of
Kleene’s theorem.

In [5], it was shown that a Kleene theorem can also be obtained in bisimulation
semantics if the syntax of regular expressions is enriched with parallel composition,



2 J.C.M. Baeten and B. Luttik

synchronisation and encapsulation. The Kleene theorem we establish here provides an
alternative to that result.

In [4], we already looked at the classical theorem that a language is accepted by
a pushdown automaton if and only if it is defined by a context-free grammar. In the
process setting, a context-free grammar is a process algebra with actions, choice, se-
quencing and recursion. We proved that every process given by a finite guarded recur-
sive specification over this algebra is also a process defined by a pushdown automaton,
but not the other way around, the algebra is not sufficiently expressive to specify all
processes defined by pushdown automata. Adding sequential value passing suffices: the
set of processes given by a finite guarded recursive specification over the extended al-
gebra coincides with the set of processes defined by pushdown automata. The variant
of sequential value passing used in [4], however, is semantically significantly more in-
volved than the variant that we propose here. Thus, we also present a simplification of
the result in [4].

Communication with value passing has received ample attention in process theory
(see, e.g., [19]). Value passing through a sequential composition has received much less
attention (but see, e.g., [25, 13]). Kleene algebra with tests, proposed in [21], gives an
axiomatic treatment of regular expressions with conditionals. There are two important
differences between this theory and the theory presented in this article. First, Kleene
algebra with tests is catered towards language equivalence; indeed, it includes axioms
that are not valid in bisimulation semantics. Second, it does not include a facility to
specify sequential passing which, as we will show, is an essential ingredient to get a
Kleene theorem in bisimulation semantics. In [18], a process algebra with guards is
proposed, which yields a treatment of conditionals in bisimulation semantics. Also this
work, however, lacks a facility to specify sequential value passing; state attributes are,
instead, changed implicitly through an effect associated with actions. This approach
makes it unsuitable for establishing the type of correspondence results we obtain in this
article.

2 Preliminaries

As a common semantic framework we use the notion of a transition system.

Definition 1. A transition system space is a quadruple (S,A,−→, ↓), where

1. S is a set of states;
2. A is a set of actions;
3. −→ ⊆ S ×A× S is an A-labelled transition relation; and
4. ↓ ⊆ S is the set of final or accepting states.

A transition system is a transition system space with a special designated root state or
initial state ↑, i.e., it is a quintuple (S,A,→, ↑, ↓) such that (S,A,→, ↓) is a transition
system space, and ↑ ∈ S.

Note that, by the requirement that there is a designated root state, a transition sys-
tem has a non-empty set of states. It will be technically convenient to also consider
the structure with an empty set of states, an empty transition relation, an empty set of



Sequential Value Passing yields a Kleene Theorem for Processes 3

accepting states and an undefined root state. This structure will be referred to as the
inconsistent transition system.

We write s a−→ s′ for (s, a, s′) ∈ → and s↓ for s ∈ ↓. We say that s′ is reachable from
s if, for some n ∈ N, there exist s0, . . . , sn ∈ S and a1, . . . , an ∈ A such that s = s0,
si

ai+1−−−→ si+1 for all 0 ≤ i < n, and sn = s′. A transition system that has finitely many
states reachable from the root state (if it exists) and finitely many transitions between
them is called a finite automaton.

By considering language equivalence classes of transition systems, we recover lan-
guages as a semantics, but we can also consider other equivalence relations. Notable
among these is bisimilarity.

Definition 2. Let (S,A,→ , ↓) be a transition system space. A symmetric binary rela-
tion R on S is a bisimulation if it satisfies the following conditions for every s, t ∈ S
such that s R t and for all a ∈ A:

1. if s a−→ s′ for some s′ ∈ S, then there is a t′ ∈ S such that t a−→ t′ and s′ R t′; and
2. if s↓, then t↓.

We write s ↔ t if and only if there a bisimulation relating s and t, and say that s is
bisimilar to t.

The results of this paper do not rely on abstraction from internal computations, so
we do not consider the silent step τ here, and we can use the strong version of bisimilar-
ity defined above, which does not give special treatment to τ -labelled transitions. But
in general (in other work) we have to use a version of bisimilarity that accomodates for
abstraction from internal activity; the finest such notion of bisimilarity is divergence-
preserving branching bisimilarity, which was introduced in [14] (see also [22] for an
overview of recent results).

We see that bisimilarity is an equivalence relation on a transition system space, so
it divides a transition system space into a number of equivalence classes.

3 Regular Expressions

In [23], Robin Milner considered regular expressions in the process setting (we define
these below), and found that not all finite automata can be defined by a regular ex-
pression (modulo bisimulation). He posed the question how the set of finite automata
defined by a regular expression can be characterized, a question that was solved in [2].
Here, we answer the question which ingredient needs to be added to regular expressions
to characterize all finite automata modulo bisimulation.

We present regular expressions as the closed terms in the theory TSP+IT of [8]. The
syntax of this theory has the following elements:

– 0 is the inactive and not accepting process (deadlock), the one-state automaton
without transitions where the state is not final;

– 1 is the inactive and accepting process, the one-state automaton without transitions
where the state is final;



4 J.C.M. Baeten and B. Luttik

– for a given set A of actions we have the prefix operators a. for each a ∈ A;
– the binary operator + is alternative composition or choice;
– the binary operator · is sequential composition;
– the unary operator ∗ is iteration or Kleene star.

We give the behaviour of terms over this algebra by means of structural operational
semantics (see [1]): we define a unary acceptance or termination predicate ↓ (written
postfix) and, for every a ∈ A, a binary transition relation a−→ (written infix), by means
of the transition system specification in Table 1. The rules in Table 1 should be read as
follows: if the premises above the line are satisfied for a certain substitution, then the
conclusion(s) below the line are also valid for the same substitution. These rules turn
the set of regular expressions into a transition system space. Each regular expression
has a transition system in which every step and every termination is provable from
this specification. Each regular expression has a transition system with finitely many
reachable states and finitely many transitions, so is a finite automaton.

A regular process is a bisimulation equivalence class of finite automata.

a.x
a−→ x

x
a−→ x′

x+ y
a−→ x′ y + x

a−→ x′

1 ↓
x ↓

x+ y ↓ y + x ↓

x ↓ y ↓
x · y ↓

x
a−→ x′

x · y a−→ x′ · y
x ↓ y

a−→ y′

x · y a−→ y′

x∗↓
x

a−→ x′

x∗
a−→ x′ · x∗

Table 1. Operational semantics for regular expressions.

Since the rules in Table 1 are in path format (see [7]), bisimilarity is a congruence
relation for the operators of regular expressions. Consequently, we can consider the
equational theory of regular expressions. From [10, 8], we know that there is no finite
axiomatization that is sound and ground-complete. For more information, see [16]. For
all regular expressions x, we have 1 ·x↔ x↔ x ·1 and 0 ·x↔ 0 (but not x ·0↔ 0!),
which gives us the motivation to use the symbols 1 and 0.

We see alternative composition is commutative and associative, and sequential com-
position is associative but not commutative, and so we can leave out brackets as usual.

We further note that, modulo bisimilarity, sequential composition distributes from
the right over choice ((x+ y) · z ↔ x · z + y · z), but not from the left (x · (y + z) 6↔
x · y + x · z). If we consider the classical algorithm that finds a regular expression with
the same language as a given finite automaton, we see that it makes essential use of the
distributivity law that is not valid for bisimulation.



Sequential Value Passing yields a Kleene Theorem for Processes 5

Each regular expression generates a finite automaton. The reverse direction is valid
in language equivalence, but not in bisimilarity, as the following example shows (here,
the state on the left is the root state, and both states are accepting).

a

b

Fig. 1. A finite automaton not denoted by a regular expression.

Theorem 1. There is no regular expression of which the transition system is bisimilar
to the finite automaton in Fig. 1.

Proof. Milner [23] proves this for a slightly more complicated example than the one in
Fig. 1. His proof can be easily transposed to the present situation.

Thus, we look for an extension of TSP+IT in order to find expressions for all fi-
nite automata. In [5], extensions with various forms of parallel composition are studied.
There, it is found that an extension with parallel composition and value passing com-
munication yields all regular processes. Here, we present an extension that is more
straightforward: just extending with sequential value passing suffices. In order to define
sequential value passing, we use operators for signals and conditions, based on [3, 8].

4 Signals and Conditions

The key to the extension is that information is needed about the state which the process
is in at a given time. In [4], we used expressions in propositional logic to express a
property of the current state of a process. This gives considerable overhead, as we need
to evaluate the expressions again at each step in a process, assigning truth values to the
propositional variables that occur in an expression. Here, we just assume that the states
of a process have an attribute that takes a unique value from a finite data set D. We
need that D is finite, since we will use in examples indexed summations over elements
of D, and we can use

∑
d∈D notation as an abbreviation. A difficulty is that we need

to ensure that the attribute of a state has a unique value: it is impossible to have two
different values of an attribute at the same time.

First, we introduce an operator, called the root-signal emission operator ∧N in [3, 8],
that exposes the value of the attribute. A term d∧Nx represents the process x that starts
out in a state in which the attribute has the value d. Only one value can be shown at a
time, so we need to declare terms like . We associate the inconsistent transition system
with these inconsistent terms. In the operational semantics, we add an extra predicate
C, indicating that the term is consistent, and giving the value if there is one.



6 J.C.M. Baeten and B. Luttik

Thus, for d ∈ D, x Cd means that (the initial state of) expression x is consistent,
and has value d. On the other hand, x C	 means that (the initial state of) expression
x is consistent, and no value is given. We write D	 for D ∪ {	}. We use d, e ∈ D
and δ, ε ∈ D	. We have a very simple partial ordering on D	: 	 is below all elements
of D, and elements of D are incomparable. We write δ � ε if δ = ε or δ = 	. We
define the predicate C by the operational rules in Table 2 for regular expressions and the
root-signal emission operator.

0 C	 1 C	 a.x C	
x Cδ y Cε δ � ε
x+ y Cε y + x Cε

x Cδ x6↓
x · y Cδ

x↓ x Cδ y Cε δ � ε
x · y Cε

x↓ x Cε y Cδ δ � ε
x · y Cε

x Cδ
x∗ Cδ

x Cδ δ � d
d ∧Nx Cd

Table 2. Operational semantics of consistency and state values (d ∈ D, δ, ε ∈ D	).

In Table 3, we repeat the rules of Table 1, with extra conditions to ensure consis-
tency. In addition, we give the operational rules for the signal emission operator.

1 ↓
x Cδ

a.x
a−→ x

x
a−→ x′ x+ y Cδ

x+ y
a−→ x′ y + x

a−→ x′

x ↓ x+ y Cδ
x+ y ↓ y + x ↓

x ↓ y ↓ x · y Cδ
x · y ↓

x
a−→ x′ x · y Cδ x′ · y Cε

x · y a−→ x′ · y
x ↓ y

a−→ y′ x · y Cδ
x · y a−→ y′

x Cδ
x∗↓

x
a−→ x′ x′ · x∗ Cδ
x∗

a−→ x′ · x∗

x ↓ d ∧Nx Cd
d∧Nx ↓

x
a−→ x′ d ∧Nx Cd
d∧Nx

a−→ x′

Table 3. Operational semantics for regular expressions and signal emission with consistency
conditions (δ, ε ∈ D	, d ∈ D).

Note that these rules ensure that a step can only occur between consistent terms, so
if we can derive x a−→ x′, then terms x and x′ are consistent. Also, if we can derive
x ↓, then x is consistent.



Sequential Value Passing yields a Kleene Theorem for Processes 7

Notice that the fifth rule in Table 2, the first rule for sequential composition, has
a so-called negative premise: we can conclude x · y Cδ provided x↓ does not hold.
It is well-known that transition system specifications with negative premises may not
define a unique transition relation that agrees with provability from the transition system
specification [17, 12, 15]. To show that the transition system specification presented here
does indeed define a unique transition relation that agrees with provability, it suffices to
define a stratification (see [17, Definition 2.11]). First note that, since the rules defining
the predicates Cδ and ↓ do not have premises referring to a−→, and the negative premise
only occurs in a rule defining Cδ, so we can ignore the rules with a−→ in the conclusion.
The mapping S from expressions of the form x Cδ and x↓ to natural numbers defined
by

S(0 Cδ) = S(1 Cδ) = S(a.x Cδ) = 0

S(x+ y Cδ) = S(x · y Cδ) = S(x Cδ) + S(y Cδ) + 1 , and
S(d ∧Nx Cδ) = S(x∗ Cδ) = S(x↓) = S(x Cδ)

is a stratification. In [17] it is proved that whenever a stratification exists, then the transi-
tion system specification defines a unique transition relation that agrees with provability
in the transition system specification.

The rules in Tables 2 and 3 turn the set of consistent expressions over the extended
syntax into a transition system space, and thus Definition 2 yields a notion of bisimilar-
ity on the consistent expressions. We will have no need to consider inconsistent expres-
sions in this paper, or to do calculations on expressions that may be inconsistent, so we
will not define bisimilarity on inconsistent expressions. By interpreting all inconsistent
expressions as the inconsistent transition system, that is not hard to do, however.

Note that the set of consistent expressions is not closed under alternative composi-
tion: d∧N1 and e∧N1 are both consistent, but, if d 6= e, then d ∧N1+e∧N1 is not consistent.
Further note that bisimilarity as defined in Definition 2 is not a congruence on the set
of all expressions, as d∧N1 ↔ e∧N1, but d ∧N1 +d∧N1 is not bisimilar to d ∧N1 +e∧N1.
It is not difficult to define a variant of bisimulation on the set of all expressions that is
a congruence. All that is required is that a term satisfying Cδ can only be related to a
term also satisfying Cδ. As all operational rules are in panth format, as defined in [24],
the resulting bisimilarity is a congruence. We leave the precise formulation as further
work, as we do not use this notion in the present paper.

An expression over this extended syntax that satisfies Cδ for some δ ∈ D	 is consis-
tent, and exposes the attribute d of the state when it satisfies Cd for some d ∈ D. We can
depict the attribute values in a state, as shown in Fig. 2 for the term d∧N(1+ a.(e∧N0)),
but we emphasize that these values are not part of the transition system, they just occur
to help the reader.

d e
a

Fig. 2. Example showing attribute values.



8 J.C.M. Baeten and B. Luttik

Next, we define the guarded command. Given a attribute value d, we write d :→ x,
with the intuitive meaning ’if the attribute of the current state has value d then x can be
executed’. Thus, d is a guard: x can only be executed in a state with attribute value d.

In the operational semantics, we use as additional relations the conditional steps
d,a−→

(d ∈ D, a ∈ A) and as additional predicates the conditional acceptance d↓ (d ∈ D). In
Table 4, we give the operational rules for guarded command.

x Cδ δ � d
d :→ x C	

x
a−→ x′ d :→ x C	

d :→ x
d,a−→ x′

x
d,a−→ x′

d :→ x
d,a−→ x′

x ↓ d :→ x C	
d :→ x d↓

x d↓
d :→ x d↓

Table 4. Operational semantics for guarded command (δ ∈ D	, d ∈ D).

In Table 5, we give the conditional steps and conditional acceptance for regular
expressions and root signal emission.

Notice that if d 6= e, then the term d :→ (e∧N1) is inconsistent, whereas the term
d∧N(e :→ 1) is consistent, and bisimilar to d∧N0. Notice that a consistent term of the
form d∧Nx can do no conditional steps and no conditional termination: all steps x

e,a−→ x′

and x e↓ for e 6= d disappear, and for all steps x
d,a−→ x′ and x d↓ the conditions are

removed.
We can easily extend the stratification given above to include the guarded command

operator by defining S(d :→ x Cδ) = S(x d ↓) = S(x Cδ); as above, there is no

need to consider rules with
d,a−→ in the conclusion. So the extended set of rules define

a transition system space on the consistent expressions, and we also have a notion of
bisimilarity on the extended set of consistent terms.

Now in order to get a notion of bisimilarity that is a congruence on the extended syn-
tax, we also need to relate the conditional steps and conditional acceptance of bisimilar
terms. We have no use for this bisimilarity in the present paper, so do not give the
details here. We emphasize that the conditional steps and conditional accceptance are
only needed to generate the (unconditional) steps and acceptance of the transition sys-
tem of a term. Thus, the conditional steps and conditional acceptance do not appear in
the generated transition system space.

In order to illustrate the interplay of root signal emission and guarded command,
and to show how nondeterminism can be dealt with, we give the following example.

Example 1. A coin toss can be described by the following term:

Toss = toss.(heads ∧N1) + toss.(tails ∧N1).



Sequential Value Passing yields a Kleene Theorem for Processes 9

x
d,a−→ x′ y Cd

x+ y
a−→ x′ y + x

a−→ x′
x

d,a−→ x′ y C	

x+ y
d,a−→ x′ y + x

d,a−→ x′

x d↓ y Cd
x+ y ↓ y + x ↓

x d↓ y C	
x+ y d↓ y + x d↓

x d↓ y d↓
x · y d↓

x d↓ y ↓ y Cδ δ � d
x · y d↓

x ↓ x Cd y d↓
x · y ↓

x ↓ x C	 y d↓
x · y d↓

x
d,a−→ x′ x · y Cd x′ · y Cδ

x · y a−→ x′ · y
x

d,a−→ x′ x · y C	 x′ · y Cδ

x · y d,a−→ x′ · y

x ↓ x Cd y
d,a−→ y′

x · y a−→ y′
x ↓ x C	 y

d,a−→ y′

x · y d,a−→ y′

x d↓ y
d,a−→ y′

x · y d,a−→ y′

x d↓ y Cδ δ � d y
a−→ y′

x · y d,a−→ y′

x
d,a−→ x′ x′ · x∗ Cδ
x∗

d,a−→ x′ · x∗
x d↓
d∧Nx ↓

x
d,a−→ x′

d∧Nx
a−→ x′

Table 5. Conditional steps and conditional termination for regular expressions and root signal
emission (d ∈ D, δ ∈ D	).

The behaviour of a player who wins one dollar when heads comes up and loses one
dollar when tails comes up is specified by the term

Player = heads :→ win1$ + tails :→ lose1$.

Process Toss · Player shows how sequential value passing is achieved.
For a more involved example consider the process of tossing a coin until heads

comes up:

Toss · (tails :→ Toss)∗ · (heads :→ 1).

We show the transition system of this process in Fig. 3. It is a finite automaton. We
have labelled two states with their attribute values to clarify the correspondence with
the given expressions, but the attributes are not formally part of the transition system.

Let us call the extended syntax TSP∗sc, TSP with iteration, signals and conditions.
Obviously, every consistent closed term over this syntax denotes a finite transition sys-
tem. We use the conditional steps, conditional acceptance and signals in the operational
rules to generate this transition system, but formally, they are not included in it. We now
have all ingredients to prove the Kleene theorem.

Theorem 2. Let t be a finite automaton. Then there is a consistent closed term over
TSP∗sc of which the transition system is isomorphic to t.



10 J.C.M. Baeten and B. Luttik

tails

heads

toss

toss

toss

toss

Fig. 3. The transition system of the coin toss.

Proof. Let t be a finite automaton. Assign a distinct value from D to each state, with i
for the initial state. The term in TSP∗sc consists of three parts, and has the form Init ·
Loop∗ · Exit.

– The initial part Init has a summand a.(d∧N1) whenever i a−→ d, and a summand 1
if i ↓;

– The looping part Loop has a summand d :→ a.(e∧N1) for every step d
a−→ e

(d, e ∈ D);
– The exit part Exit has a summand d :→ 1 whenever d ↓.

Notice that all three terms are consistent. The term Init ·Loop∗ ·Exit is also consistent;
the transition system associated with it is isomorphic to t, so it is certainly bisimilar to
t. Notice that the star height of this term is 1, i.e. there is no nesting of iterations. In fact,
there is only a single iteration. As a corrolary, each consistent TSP∗sc term is bisimilar
to a term with only one iteration, a result well-known for while programs, see [21].

To illustrate the general procedure, we give a consistent TSP∗sc-term for the regular
process of Fig. 1. We label the initial state by i, and the other state by j.

1+ a.(j∧N1) · (i :→ a.(j∧N1) + j :→ b.(i∧N1))∗ · (i :→ 1+ j :→ 1)

The term starts with the options of the initial state. Next, there is the iteration of the
behaviour of the process, with the final states encoded as the possible exits of the itera-
tion.

5 Sequencing

In [4], sequential composition is not used but sequencing, as this fits better with stacks
and pushdown automata (see Example 2 in the next section). It requires a number of
adaptations in the theory, but we can still obtain the Kleene theorem. As the operational
semantics of the iteration operator (Kleene star) is defined in terms of sequential com-
position, iteration based on sequencing is a different operator. When we use sequencing,
we can only continue with the second component if the first component cannot do any
further steps; e.g., the process (a.1+1);b.1 cannot do a b-step. Therefore, a loop cannot
be exited by a term composed with sequencing, and we need to incorporate iteration as
a binary operator (as, indeed, Kleene’s original iteration operator, see [10]).



Sequential Value Passing yields a Kleene Theorem for Processes 11

In this section we present TSP+IT with sequential composition · replaced by se-
quencing ;, and Kleene star ∗ replaced by ∗; . We denote this theory by TSP;IT. Se-
quencing with its operational rules was first considered in [11], and studied extensively
in [6, 9]. The Kleene star based on sequencing is new here.

In Table 6, we give the operational rules for sequencing and the binary Kleene star.
We write x a9 for “there does not exist x′ such that x a−→ x′” and x 9 for “x a9 for
all a ∈ A”.

x ↓ y ↓
x ; y ↓

x
a−→ x′

x ; y
a−→ x′ ; y

x ↓ x9 y
a−→ y′

x ; y
a−→ y′

x
a−→ x′

x∗;y
a−→ x′ ; x∗;y

y ↓
x∗;y↓

y
a−→ y′

x∗;y
a−→ y′

Table 6. Operational semantics for sequencing and binary Kleene star.

The crucial difference with the sequential composition operator is the third rule
for sequencing: it is only allowed to continue with the second component if the first
component cannot do any step. In the rules for binary Kleene star, we see again that
there is no premise of the form x↓, so termination of the body is irrelevant, and in the
last rule we see that y can take a step irrespectively of the fact whether or not x can take
a step.

Again, we see the occurrence of a negative premise here, so the rules may not de-
fine a unique transition relation that agrees with provability from the transition system
specification. Since the negative premises refer to the transition relation, and due to the
presence of (binary) Kleene star, defining a stratification in this case is considerably
more involved than before, and we leave it to future work to spell it out in detail.

To define sequential value passing, we use signals and conditions to pass state in-
formation along a sequencing operator, similar to what we did in the previous section.
First of all, we consider signal emission, and the C predicate, in Table 7. There, we write
x→ for “there exist a and x′ such that x a−→ x′”. Note that the term (d∧Na.1)∗;(e∧N1)
is inconsistent if d 6= e.

Next, we modify the rules of Table 6 by adding consistency conditions, in Table 8.
Subsequently, we add the guarded command, and conditional steps and conditional

termination. In Table 9, we use an extra abbreviation: we write x
d,9 for “there does not

exist x′ and a ∈ A such that x
d,a−→ x′” .

Let us call the extended syntax TSP;∗sc. Again, we have a Kleene theorem.

Theorem 3. Let t be a finite automaton. Then there is a consistent closed term over
TSP;∗sc of which the transition system is isomorphic to t.

Proof. As before. The term now becomes Init ; Loop∗;Exit .



12 J.C.M. Baeten and B. Luttik

x Cδ x6↓
x ; y Cδ

x↓ x→ x Cδ y 6↓
x ; y Cδ

x↓ x9 x Cδ y Cε δ � ε
x ; y Cε

x↓ x9 x Cε y Cδ δ � ε
x ; y Cε

x↓ y↓ x Cδ y Cε δ � ε
x ; y Cε

x↓ y↓ x Cε y Cδ δ � ε
x ; y Cε

x Cδ y Cε δ � ε
x∗;y Cε

x Cε y Cδ δ � ε
x∗;y Cε

Table 7. Consistency and signals for sequencing and binary Kleene star (d ∈ D, δ, ε ∈ D	).

x ↓ y ↓ x ; y Cδ
x ; y ↓

x
a−→ x′ x ; y Cδ x′ ; y Cε

x ; y
a−→ x′ ; y

x ↓ x9 y
a−→ y′ x ; y Cδ

x ; y
a−→ y′

x∗;y Cδ y↓
x∗;y↓

x
a−→ x′ x∗;y Cδ x′ ; x∗;y Cε

x∗;y
a−→ x′ ; x∗;y

y
a−→ y′ x∗;y Cδ
x∗;y

a−→ y′

Table 8. Operational rules for sequencing and binary Kleene star with consistency conditions
(δ, ε ∈ D	).

6 Pushdown processes

In [4], we considered the theory TSP;sc obtained by leaving out the binary Kleene star
operator from the theory of the previous section, and considering recursion over this
theory. Take P to be a finite set of process identifiers. The set P is a parameter of the
theory.

A recursive specification over TSP;sc is a mapping ∆ from P to the set of process
expressions, that may contain elements of P . The idea is that the process expression
y associated with a process identifier X ∈ P by ∆ defines the behaviour of X . We
prefer to think of ∆ as a collection of defining equations X def

= y, exactly one for every
X ∈ P .

In Table 10, we provide operational rules for recursion. As stated before, the oc-
curring negative premises may not define a unique transition relation that agrees with
provability from the transition system specification. This occurs in the defining equation
X

def
= X ; a.1 + 1. For then, if X 9, according to the rules for sequencing and recur-

sion we find that X a−→ 1, which is a contradiction. On the other hand, the transition
X

a−→ 1 is not provable from the transition system specification.



Sequential Value Passing yields a Kleene Theorem for Processes 13

x d↓ y d↓
x ; y d↓

x d↓ y ↓ y Cδ δ � d
x ; y d↓

x ↓ x Cd y d↓
x ; y↓

x ↓ x C	 y d↓
x ; y d↓

x
d,a−→ x′ x ; y Cd x′ ; y Cδ

x ; y
a−→ x′ ; y

x
d,a−→ x′ x ; y C	 x′ ; y Cδ

x ; y
d,a−→ x′ ; y

x ↓ x9 x Cd y
d,a−→ y′

x ; y
a−→ y′

x ↓ x9 x
d,9 x C	 y

d,a−→ y′

x ; y
d,a−→ y′

x d↓ x9 x
d,9 y

d,a−→ y′

x ; y
d,a−→ y′

x d↓ x9 x
d,9 y Cδ δ � d y

a−→ y′

x ; y
d,a−→ y′

x
d,a−→ x′ y C	 x′ ; x∗;y Cδ

x∗;y
d,a−→ x′ ; x∗;y

x
d,a−→ x′ y Cd x′ ; x∗;y Cδ

x∗;y
a−→ x′ ; x∗;y

y d↓ x C	
x∗;y d↓

y d↓ x Cd
x∗;y ↓

y
d,a−→ y′ x C	

x∗;y
d,a−→ y′

y
d,a−→ y′ x Cd
x∗;y

a−→ y′

Table 9. Conditional steps and conditional termination for sequencing and binary Kleene star
(d ∈ D, δ ∈ D	).

We remedy the situation by restricting our attention to guarded recursive specifica-
tions, i.e., we require that every occurrence of a process identifier in the definition of
some (possibly different) process identifier occurs within the scope of an action prefix.
If ∆ is guarded, then it is straightforward to prove that the mapping S from process
expressions to natural numbers inductively defined by S(1) = S(0) = S(a.x) = 0,
S(x1 + x2) = S(x1 ; x2) = S(x1) + S(x2) + 1, and S(X) = S(y) if (X def

= y) ∈ ∆
gives rise to a stratification S′ from transitions to natural numbers defined by S′(x a−→
x′) = S(x) for all a ∈ A and process expressions x and x′.

Example 2. Let us consider the stack S of unbounded capacity that is only accepting
when it is empty. In [8, Section 6.6], we give the following guarded recursive specifica-
tion.

S
def
= 1+

∑
d∈D

push(d).Td · S Td
def
= pop(d).1+

∑
e∈D

push(e).Te · Td

Now suppose that we want to define the stack that is always accepting, irrespective of
the contents. We show the one-state pushdown automaton of this stack in Fig. 4. The
transitions on the left show that we can execute push(d) for some d ∈ D whenever



14 J.C.M. Baeten and B. Luttik

y
a−→ y′ X

def
= y

X
a−→ y′

y↓ X
def
= y

X↓

y Cδ X
def
= y

X Cδ
y

d,a−→ y′ X
def
= y

X
d,a−→ y′

y d↓ X
def
= y

X d↓

Table 10. Operational rules for recursion (δ ∈ D	).

the stack is empty (denoted by the empty string) or has some e ∈ D on top, and the
transition on the right shows we can execute pop(d) for some d ∈ D whenever the stack
has d on top, replacing it by the empty string. Consider now the following specification.

S′
def
= 1+

∑
d∈D

push(d).T ′d · S′ T ′d
def
= 1+ pop(d).1+

∑
e∈D

push(e).T ′e · T ′d

This specification will not define the always accepting stack, as it is forgetful (can lose
part of the stack contents) and moreover, its transition system is unboundedly branching,
see [4]. The following specification does give the right result.

S′′
def
= 1+

∑
d∈D

push(d).T ′′d ; S′′ T ′′d
def
= 1+ pop(d).1+

∑
e∈D

push(e).T ′′e ; T ′′d

This provides the motivation to use sequencing rather than sequential composition for
stacks and pushdown automata.

push(d)[ε/d]
push(d)[e/de]

pop(d)[d/ε]

Fig. 4. Pushdown automaton of the always terminating stack (d, e ∈ D).

In [4], we proved that a process (i.e., a bisimulation equivalence class of transition
systems) is defined by a pushdown automaton if and only if it can be specified by a
finite guarded recursive specification over TSP with sequencing, propositional signals
and conditions. The following theorem shows that the simpler theory of sequential value
passing presented here can be used instead.

Theorem 4. A process is defined by a pushdown automaton if and only if it is defined
by a finite guarded recursive specification over TSP;sc.

The proof of this theorem is not so much different from the proof in [4]. The sim-
plification is in the setup by means of the operational semantics and the two-sorted
syntax.



Sequential Value Passing yields a Kleene Theorem for Processes 15

7 Conclusion

We investigated sequential value passing. By taking an unstructured finite data set for
signals and conditions instead of terms over propositional logic, the treatment is sim-
plified considerably. We presented this simplification both in a setting with sequential
composition and in a setting with sequencing.

In [3], propositional signals and conditions were introduced, and studied in a set-
ting with parallel composition, in order to study signal observation between processes
in a parallel or distributed setting. We think that there, the combination of different sig-
nals is more important, and our simplification does not work so well. This needs to be
investigated further.

We proved a Kleene theorem for processes: extending regular expressions with se-
quential value passing suffices to denote all finite automata.

In this paper we focussed on the correspondence results. We leave as future work
to investigate the equational theory of the theory presented here. We see that signal
emission and guarded command can lead to inconsistency, in the equational theory we
need to introduce the inaccessible process ⊥ that can never be reached, see [3, 8, 4].

This paper contributes to our ongoing project to integrate automata theory and pro-
cess theory. As a result, we can present the foundations of computer science using a
computer model with explicit interaction (as opposed to viewing automata just as lan-
guage acceptors). Such a computer model relates more closely to the computers we see
all around us.

Acknowledgements We are grateful to the two anonymous reviewers for their careful
reviews; their comments and suggestions led to improvements in the presentation.

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Bergstra, J.A.,
Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 197–292. North-Holland /
Elsevier (2001). https://doi.org/10.1016/b978-044482830-9/50021-7

2. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular expressions un-
der bisimulation. J. ACM 54(2), 6–28 (apr 2007). https://doi.org/10.1145/1219092.1219094

3. Baeten, J.C.M., Bergstra, J.A.: Process algebra with propositional signals. Theor. Comput.
Sci. 177(2), 381–405 (1997). https://doi.org/10.1016/S0304-3975(96)00253-8

4. Baeten, J.C.M., Carissimo, C., Luttik, B.: Pushdown automata and context-free grammars
in bisimulation semantics. Logical Methods in Computer Science 19, 15:1–15.32 (2023).
https://doi.org/10.46298/LMCS-19(1:15)2023

5. Baeten, J.C.M., Luttik, B., Muller, T., van Tilburg, P.: Expressiveness modulo bisimilarity
of regular expressions with parallel composition. Math. Struct. Comput. Sci. 26(6), 933–968
(2016). https://doi.org/10.1017/S0960129514000309

6. Baeten, J.C.M., Luttik, B., Yang, F.: Sequential composition in the presence of intermediate
termination (extended abstract). In: Peters, K., Tini, S. (eds.) Proceedings Combined 24th
International Workshop on Expressiveness in Concurrency and 14th Workshop on Struc-
tural Operational Semantics and 14th Workshop on Structural Operational Semantics, EX-
PRESS/SOS 2017, Berlin, Germany, 4th September 2017. EPTCS, vol. 255, pp. 1–17 (2017).
https://doi.org/10.4204/EPTCS.255.1, http://arxiv.org/abs/1709.00049



16 J.C.M. Baeten and B. Luttik

7. Baeten, J.C.M., Verhoef, C.: A congruence theorem for structured operational semantics with
predicates. In: Best, E. (ed.) CONCUR ’93, 4th International Conference on Concurrency
Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings. Lecture Notes in Computer
Science, vol. 715, pp. 477–492. Springer (1993). https://doi.org/10.1007/3-540-57208-2 33

8. Baeten, J.C., Basten, T., Reniers, M.: Process algebra: equational theories
of communicating processes, vol. 50. Cambridge university press (2010).
https://doi.org/10.1017/CBO9781139195003

9. Belder, A., Luttik, B., Baeten, J.: Sequencing and intermediate acceptance: axiomatisation
and decidability of bisimilarity. In: Roggenbach, M., Sokolova, A. (eds.) 8th Conference
on Algebra and Coalgebra in Computer Science, CALCO 2019. Leibniz International Pro-
ceedings in Informatics, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.CALCO.2019.11

10. Bergstra, J.A., Fokkink, W., Ponse, A.: Chapter 5 - process algebra with recursive operations.
In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 333–389. El-
sevier Science, Amsterdam (2001). https://doi.org/https://doi.org/10.1016/B978-044482830-
9/50023-0

11. Bloom, B.: When is partial trace equivalence adequate? Formal Aspects Comput. 6(3), 317–
338 (1994). https://doi.org/10.1007/BF01215409

12. Bol, R.N., Groote, J.F.: The meaning of negative premises in transition system specifications.
J. ACM 43(5), 863–914 (1996). https://doi.org/10.1145/234752.234756

13. Garavel, H.: Nested-unit petri nets: A structural means to increase efficiency and scalabil-
ity of verification on elementary nets. In: Devillers, R.R., Valmari, A. (eds.) Application
and Theory of Petri Nets and Concurrency - 36th International Conference, PETRI NETS
2015, Brussels, Belgium, June 21-26, 2015, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 9115, pp. 179–199. Springer (2015). https://doi.org/10.1007/978-3-319-19488-2 9

14. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation seman-
tics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.233556

15. van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II.
J. Log. Algebr. Program. 60-61, 229–258 (2004). https://doi.org/10.1016/j.jlap.2004.03.007

16. Grabmayer, C., Fokkink, W.J.: A complete proof system for 1-free regular expressions mod-
ulo bisimilarity. CoRR abs/2004.12740 (2020), https://arxiv.org/abs/2004.12740

17. Groote, J.F.: Transition system specifications with negative premises. Theor. Comput. Sci.
118(2), 263–299 (1993). https://doi.org/10.1016/0304-3975(93)90111-6

18. Groote, J.F., Ponse, A.: Process algebra with guards: Combining hoare logic with process al-
gebra. Formal Aspects Comput. 6(2), 115–164 (1994). https://doi.org/10.1007/BF01221097

19. Hennessy, M.: Value-passing in process algebras. In: Baeten, J.C.M., Klop, J.W. (eds.) CON-
CUR ’90 Theories of Concurrency: Unification and Extension. pp. 31–31. Springer Berlin
Heidelberg, Berlin, Heidelberg (1990)

20. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata Studies
pp. 3–41 (1956)

21. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443
(1997). https://doi.org/10.1145/256167.256195

22. Luttik, B.: Divergence-preserving branching bisimilarity. In: Dardha, O., Rot, J. (eds.) Pro-
ceedings Combined 27th International Workshop on Expressiveness in Concurrency and 17th
Workshop on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th Workshop
on Structural Operational Semantics, Online, 31 August 2020. EPTCS, vol. 322, pp. 3–11
(2020). https://doi.org/10.4204/EPTCS.322.2

23. Milner, R.: A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences 28(3), 439–466 (1984). https://doi.org/10.1016/0022-
0000(84)90023-0



Sequential Value Passing yields a Kleene Theorem for Processes 17

24. Verhoef, C.: A congruence theorem for structured operational semantics with predicates and
negative premises. Nord. J. Comput. 2(2), 274–302 (1995)

25. Visser, E., Benaissa, Z.: A core language for rewriting. In: Kirchner, C., Kirchner, H. (eds.)
1998 International Workshop on Rewriting Logic and its Applications, WRLA 1998, Abbaye
des Prémontrés at Pont-à-Mousson, France, September 1998. Electronic Notes in Theoretical
Computer Science, vol. 15, pp. 422–441. Elsevier (1998). https://doi.org/10.1016/S1571-
0661(05)80027-1


