
Utility-Oriented String Mining

Giulia Bernardini∗ Huiping Chen† Alessio Conte‡ Roberto Grossi‡

Veronica Guerrini‡ Grigorios Loukides§ Nadia Pisanti‡ Solon P. Pissis§¶

Abstract

A string is often provided with numerical scores (utili-

ties) which quantify the importance, interest, profit, or risk

of the letters occurring at every position of the string. For

example, every DNA fragment produced by modern sequenc-

ing machines comes with a confidence score per position.

Motivated by the abundance of strings with utilities, we

introduce Utility-oriented String Mining (USM), a natural

generalization of the classic frequent substring mining prob-

lem. Given a string S of length n and a threshold V, USM

asks for every string R whose utility U(R) is at least V,
where U is a function that maps R to a utility score based

on the utilities of all letters of every occurrence of R in S.

In addition, our work makes the following contributions: (1)

We identify a class U of utility functions for which USM ad-

mits an O(n2)-time algorithm. (2) We prove that no listing

algorithm solves the USM problem in subquadratic time for

every utility function, or even for every function in U. (3) We

propose an O(n logn)-time algorithm that solves USM for a

class of monotone functions from U. (4) We design another

O(n logn)-time algorithm for the same problem that is com-

parable in runtime but offers drastic space savings in prac-

tice when, in addition, a lower bound on the length of the

output strings is provided as input. (5) We demonstrate ex-

perimentally using publicly available, billion-letter datasets

that our algorithms are many times more efficient, in terms

of runtime and/or space, compared to an Apriori-like base-

line which employs advanced string processing tools.

Keywords: Strings, Patterns, Utility-Oriented Mining

1 Introduction

A string (sequence of letters over an alphabet) is a
fundamental data type that plays a key role in many
application domains. This is because a string can,
for example, model: (1) genomic information of an
organism, with each letter representing a nucleotide

∗University of Trieste, giulia.bernardini@units.it
†University of Birmingham, h.chen.13@bham.ac.uk
‡University of Pisa, {alessio.conte, roberto.grossi, veronica.

guerrini, nadia.pisanti}@unipi.it
§King’s College London, gloukides@acm.org
¶Centrum Wiskunde Informatica, solon.pissis@cwi.nl

in DNA [1]; (2) monitoring information in a sensor
network, with each letter representing a sensor [2]; (3)
advertising (or purchase) information in e-commerce,
with each letter representing an advertisement shown [3]
(or a product sold [4]) to a user. Mining patterns from
a string is thus greatly useful in various application
domains. In bioinformatics, it can improve clinical
diagnostics [1]; in sensor networks, it can detect whether
the sensors are performing as expected [2]; and in e-
commerce it can improve business decision making [4].

In all these application domains, a string comes to-
gether with numerical scores (utilities) that quantify the
importance, interest, profit, or risk of the letters occur-
ring at every position of the string [5, 4, 6, 7]. Specifi-
cally, in DNA sequencing data, each nucleotide is auto-
matically assigned a confidence score, which represents
the probability of this nucleotide being correctly read
by the sequencer and helps identifying sequencing er-
rors [8]. In networks, each sensor is often automatically
assigned a Received Signal Strength Index (RSSI), i.e.,
a signal strength value which helps assessing network
link quality [9]. In e-commerce, each advertisement is
often associated with a Click-Through Rate (CTR), i.e.,
an estimate of the probability a user clicks on the adver-
tisement, which helps advertisement pricing and rank-
ing [10]. Also, in e-commerce, each product is often as-
sociated with a profit made by a sale of the product [5].

Yet, despite significant research in pattern mining
from strings with utilities (see [5] for a survey), the
following general problem, coined Utility-oriented String
Mining (USM), has not been studied: Given an input
string S = S[0 . . n − 1], a function w : [0, n) → R that
assigns to each position i ∈ [0, n) of S a real number
(utility), and a utility threshold V, find every string R
whose global utility U(R) is at least V. The global utility
U(R) aggregates the local utility of all occurrences of R
in S, and the local utility of an occurrence of R in S
aggregates the utilities of the letters in the occurrence.
Every string R satisfying U(R) ≥ V is termed useful.
Since every such R is necessarily a substring of S, we
will refer to it as a useful substring of S.

Example 1. Consider the string S below and the util-
ities of its positions assigned by w. Consider also the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited190

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

following global utility function [11]: U(R) sums up the
local utilities of all occurrences of R in S, where the local
utility of an occurrence of R is the product of the utili-
ties of its letters. Let V = 1.4. Substring R = TACCCC

occurs in S at positions 1 and 12, and it is useful as
U(R) = (1 ·1 ·1 ·0.7 ·1 ·1)+(1 ·1 ·1 ·0.9 ·1 ·1) = 1.6 ≥ V.
Thus, R is in the output of USM with V = 1.4.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S A T A C C C C G A T A A T A C C C C C G

w .9 1 1 1 .7 1 1 .6 .5 .5 .5 .8 1 1 1 .9 1 1 .9 1

USM is a natural generalization of the well-known
frequent substring mining problem [12, 13, 14], which
asks for all substrings of an input string S that occur
frequently enough in S. The latter problem is obtained
from USM by considering utility 1 for each position
of S; a local utility of an occurrence of a substring
in S given by the product of utilities of the letters in
the occurrence; a global utility given by the sum of
local utilities of all occurrences of the substring in S
(i.e., the global utility sums 1 for each occurrence);
and setting V to the minimum frequency threshold.
Due to its generality, USM captures various application
requirements. For example, it can identify frequent
DNA patterns that have high confidence scores, sensors
with connectivity issues, or advertisements that are
effective, if displayed one after another.

USM poses a fundamental computational challenge:
identify when and how it can be solved efficiently, i.e.,
in time quadratic or subquadratic in the length n = |S|.
This is necessary, as n is usually large. It is impractical
to use a naive O(n3)-time method which considers all
O(n2) substrings of S and computes the global utility
of each substring in O(n) time, so as to identify the
complete set Γ of useful substrings of S. Furthermore,
existing mining methods for strings with utilities (e.g.,
[4, 6, 7]) are not applicable to USM, as they mine high-
utility subsequences from a collection of strings and use
utility functions that are not appropriate for USM.

Contributions. Our work introduces and studies the
USM problem, and it makes the following contributions:

1. We identify a special class U of global utility
functions that admit a simple O(n2)-time algorithm for
USM. Every function U in this class aggregates the
values of a local utility function with a sliding window
property: Let S[i . . j] be a fragment of S, S[i . . i′] be
its prefix and S[i′ + 1 . . j] be its suffix, for i′ ∈ [i, j).
The local utility of any of these three fragments can be
computed from the local utilities of the other two in
O(1) time. For instance, the local utility of S[0 . . 2] =
ATA in Example 1 can be computed in O(1) time from
the local utilities of S[0 . . 1] = AT and S[2 . . 2] = A.

2. We prove that no listing algorithm solves the
USM problem for every U in O(n2−ϵ) time, for any

ϵ > 0, even if U belongs to class U. In particular, we
show that |Γ| = Θ(n2) in the worst case. To circumvent
this difficulty, we explore several different avenues as
described by the following two contributions.

3. We identify a subclass UM of U for which
there exists a compact representation of Γ that takes
O(n) space, even though |Γ| can still be Θ(n2). This
representation consists of all maximal useful substrings
(i.e., we discard any X∈Γ that is a substring of another
Y ∈ Γ). Armed with this representation, we design an
O(n log n)-time and Θ(n)-space algorithm for USM, for
any function U ∈ UM . Our algorithm, called MIA,
constructs such a representation by employing string
indexes and several non-trivial combinatorial insights.

Example 2. Consider the string S, the functions
w and U , as well as the threshold V of Exam-
ple 1. MIA outputs ATAC, CCG, and TACCCC, as
these are the only maximal useful substrings. In-
deed, we can easily and uniquely reconstruct Γ =
{A, T, C, G, AT, TA, AC, CC, CG, ATA, . . . , ATAC, CCG, TACCCC}
by listing ATAC, CCG, TACCCC, and all their substrings.

4. The MIA algorithm uses an index of size Θ(n)
over the input string S, which can be impractical when
S is very long. To circumvent this, we consider a
parameterized version of USM which, for any U ∈ UM

and any integer L > 0, asks for the maximal useful
substrings in Γ of length at least L. We design MSA,
an O(n log n)-time algorithm for this version, which is
based on hashing and sketching. MSA is comparable to
MIA in terms of runtime, but it achieves drastic space
improvements in practice, via utilizing external memory,
even though its space is still Θ(n) in the worst case.

5. We present extensive experiments using 4 pub-
licly available, large-scale datasets from different do-
mains demonstrating that our algorithms are much
more efficient in terms of runtime and/or space com-
pared to an Apriori-like [15] baseline which utilizes ad-
vanced string processing tools [16, 17]. For example,
MSA needed only 4 GBs of RAM to process a DNA
dataset of size 22.5 GBs, while the baseline needed more
than 232 GBs of RAM! At the same time, MSA was 2.5
times faster than this baseline and comparable to MIA.

2 Showcasing Our Methods

Existing sequencers do not sequence a whole
genome at once but produce a collection of sequenced
genome fragments (reads), accompanied by confidence
scores. Thus, many methods perform DNA analyses, in-
cluding frequent substring mining, after processing the
reads using costly operations, e.g., genome assembly.
Current research aims to bypass such operations by de-
signing methods that operate directly on the reads [18].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited191

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

This is challenging due to the presence of se-
quencing errors, namely, of nucleotides with low con-
fidence scores [8]. The probability of a substring oc-
currence can be modeled as the product of the confi-
dence scores of its letters, and the sum of these prod-
ucts over all the occurrences of the substring in the
reads gives the expected frequency [11] of the sub-
string. This function is the same as U in Example 1.

25 50 100 500 1000
K

0

5

10

15

AR
I

Figure 1: ARI over V ∈ { c
4 ,

c
2 ,

3
4 c, c,

3
2 c, 2 c}, where c = 490 is

the coverage, and varying K.

By employ-
ing the expected
frequency as their
global utility func-
tion, our algorithms
mine higher-quality
substrings com-
pared to frequent
substring mining

algorithms, which, by design, do not consider the
confidence scores. We show this using a real reads
dataset, called ECOLI (see Table 1). In particular, we
show that MIA and MSA mine maximal substrings
which are more frequent in the standard ground truth
(reference) dataset for ECOLI [19] than those mined
by frequent substring mining algorithms.

For this: (1) We mine the set OK,V of the K
maximal substrings with the largest expected frequency,
for a givenK and utility threshold V that is a multiple of
coverage (i.e., the average number of reads that overlap
a position in the ground truth dataset). (2) We mine
the set OK,F of the K maximal substrings with the
largest frequency, for the same K as in step 1 and
frequency threshold F = V. (3) We compare these
two sets with respect to their cumulative frequency
F(OK,V) and F(OK,F) in the ground truth dataset, by

computing
F(OK,V)−F(OK,F)+1

F(OK,F)+1 . This measure quantifies

the relative improvement of OK,V compared to OK,F .
Fig. 1 shows the average value of this measure,

denoted by ARI (for Average Relative Improvement),
over different values of V and F = V, for varying K.
Our algorithms were at least 2 and up to 16 times more
effective than frequent substring mining algorithms in
this experiment, which highlights their benefit.

3 Preliminaries, Problems, and Results

Strings. An alphabet Σ is a finite nonempty set of
elements called letters. A string S = S[0 . . n − 1] of
length |S| = n is a sequence of n letters from Σ, where
S[i] denotes the i-th letter of the sequence. We refer
to each i ∈ [0, n) as a position of S. We consider
throughout that Σ is an integer alphabet.

A substring R of S may occur multiple times in S.

The set of its occurrences in S is denoted by occS(R);
we may omit the subscript S when it is clear from the
context. An occurrence of R in S starting at position
i is referred to as a fragment of S and is denoted
by fragS(i, |R|) = S[i . . i + |R| − 1]. Thus, different
fragments may correspond to different occurrences of
the same substring.

A prefix of S is a substring of the form S[0 . . j], and
a suffix of S is a substring of the form S[i . . n−1] (thus,
any fragment of S is a prefix of some suffix of S).

Utility Definitions. Let S be a string of length n
and let w : [0, n) → R be a function that assigns
to each position i ∈ [0, n) of S a real number w[i],
referred to as the utility of S[i]. We may refer to
the pair (S,w) as a weighted string. For any fragment
fragS(i, |R|), a local utility function u(i, |R|) aggregates
the utilities of all letters of the fragment (i.e., w[k], for
each k ∈ [i, i + |R| − 1]). For any substring R of S, a
global utility function U(R) aggregates the value of the
local utility of all the occurrences of the substring in S.

We define a class U of global utility functions, such
that for every U ∈ U: (1) U is linear-time computable
(e.g., sum, min, max, or avg); and (2) the local utility
function of U has the sliding window property (e.g.,
sum): for any three fragments of S, S[i . . j], its prefix
S[i . . i′], i ≤ i′, and its suffix S[i′ + 1 . . j], i′ + 1 ≤ j,
the local utility of any of these three fragments can be
obtained from the local utilities of the other two in O(1)
time. Specifically, given the local utilities of S[i . . j],
S[i], and S[j+1], the local utility of S[i+1 . . j+1] can be
computed in O(1) time yielding directly the following:

Lemma 3.1. Given a local utility function u with the
sliding window property, and any fixed length k, the
value of u for all fragments of length k of S can be
computed in O(n) time.

We also consider monotone functions in U that de-
crease (or stay the same) as a fragment gets longer and
increase (or stay the same) as local utilities of different
fragments u(i1, |R|), u(i2, |R|), . . . of R are aggregated.
We refer to these functions as UM (for monotone). Our
example in this paper is the “sum of products” func-
tion: U(R) =

∑
i∈occS(R) u(i, |R|). Its local utility func-

tion is u(i, |R|) =
∏i+|R|−1

k=i w[k], for i ∈ [0, n−|R|], and
u(i, |R|) = 0 otherwise, and w : [0, n) → [0, 1]. U is used
in [11] and is an adaptation of the widely-used expected
support [5] in our setting.

Example 3. Consider S, w, U , and the local utility u
as in Example 1. The fragment frag(9, 2) = TA has local
utility u(9, 2) = w[9]·w[10] = 0.25. The substring TA has
global utility U(TA) = u(1, 2)+u(9, 2)+u(12, 2) = 2.25,
as occS(TA) = {1, 9, 12}.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited192

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

A substring R of S is useful w.r.t. a global utility
function U and a given utility threshold V, if and only
if U(R) ≥ V. A useful substring R of S is maximal, if it
is not a substring of a useful substring R′ ̸= R of S.

Problems and Results. We prove that, for a
weighted string (S,w) of length n, solving USM by
listing all its useful substrings requires in general Ω(n2)
time, even if U belongs to U, and that it can be
performed in Θ(n2) time, for any U ∈ U.
Theorem 3.1. A weighted string (S,w) of length n can
have Θ(n2) useful substrings for a global utility function
U ∈ U and a threshold V. Thus, no algorithm lists all
useful substrings of S in O(n2−ϵ)-time, for any ϵ > 0.

Proof. Let S = A(ATA)ℓC(ATA)ℓA, where (ATA)ℓ concate-
nates ATA ℓ times, n = |S| = 6ℓ + 3 → ∞, and w be 1
(resp., −2 and 0) for each position containing A (resp.,
T and C). Let also U ∈ U be a function that sums up
the local utilities which in turn sum the utilities w, and
let V = 1.5. For any i, j ∈ [1, ℓ], the useful substrings
of type R = A(ATA)iC(ATA)jA have U(R) ≥ 2 > V and
there are ℓ2 = Θ(n2) of them, as ℓ = Θ(n). These sub-
strings contain among others the non-useful substrings
of type (ATA)iC(ATA)j and those starting with T that
are Θ(n2). Thus, there are Θ(n2) non-useful substrings
contained in the ℓ2 = Θ(n2) useful ones and the latter
cannot be listed in O(n2−ϵ) time for any ϵ > 0.

Theorem 3.2. There is a Θ(n2)-time algorithm that,
for any weighted string (S,w) of length n, global utility
function U ∈ U, and threshold V, lists all useful
substrings of S.1

Theorem 3.2 applies Lemma 3.1 for any feasible
k. To improve over Theorem 3.2, we consider a global
utility function U ∈ UM ⊂ U, so that there is a com-
pact representation of the useful strings, comprised of
inclusion-maximal useful substrings. Based on this rep-
resentation, we define our main string mining problem,
which is a special case of USM.

Problem 1. Maximal Useful String Mining
(MUSM) Given a weighted string (S,w) of length n,
a global utility function U ∈ UM , and a utility threshold
V, find all maximal useful substrings of S.

For any such U , MIA underlies the following result.

Theorem 3.3. There exists an O(n log kmax)-time al-
gorithm that solves MUSM using Θ(n) extra space,
where kmax ≤ n is the length of the longest useful sub-
string of S.

MSA takes O(n log n) time and Θ(n) extra space in
the worst case but with huge space savings in practice.

1All missing proofs are deferred to the full version.

4 MIA: An Index-Based Algorithm for MUSM

MIA (for MUSM Index-based Algorithm) is an effi-
cient algorithm for MUSM, comprised of three phases:

• In Phase I, MIA finds, for each position i ∈ [0, n)
of the input string S, the largest power of 2 that
is equal to the length of a useful substring of S
occurring at i. Let this power be 2pi . The fragment
at position i of length 2pi will be further considered
in Phase II for potential extension.

• In Phase II, MIA considers, for each position
i ∈ [0, n) of S, a potential extension of length
2pi−1 to the current fragment occurring at i (i.e.,
appending 2pi−1 letters to it). If this extension
leads to a useful substring, it is applied; otherwise,
it is discarded. Next, MIA repeats the process for
further potential extensions of length equal to the
next smaller power of 2, stopping after 20.

• In Phase III, MIA finds and outputs all maximal
useful substrings of S. This is performed by
discarding every useful substring that is output by
Phase II but is not maximal, as it cannot be part
of the output of MUSM.

Phases I and II of MIA each consist of at most log n
iterations; in each iteration d, MIA processes substrings
of length 2d. Two remarks are important for efficiency.
First, without Phases I and II, Phase III would be
applied to all substrings of S. This would solve MUSM
but in Ω(n2) time. Second, independently processing
each position i of S would need Ω(n2) time. To achieve
O(n log n) time, we introduce two key ideas: (1) We
factorize the length of the candidate useful substrings
into powers of 2 and use the sliding window property.
This allows us to compute, inO(n) time, the local utility
of all fragments of the same length (that is a power of
2) at the same time. (2) We use string indexing data
structures, in order to evaluate the global utility of all
the substrings considered in an iteration of Phase I or
II, and to test maximality in Phase III, in O(n) time.
Since there are log n powers of 2, the time complexity
of MIA is O(n log n).

Example 4 explains how the maximal useful sub-
string TACCCC in Example 2 is produced by MIA.

Example 4. Recall that V = 1.4. In Phase I, MIA
considers position i = 1 and finds that 2p1 = 22 is
the largest power of 2 that is equal to the length of the
useful string TACC occurring at i. This is because the
immediately larger power, 23, corresponds to TACCCCGA,
which is not useful. In Phase II, MIA considers a
potential extension of length 2p1−1 = 21 to the fragment
TACC (i.e., appending CC to TACC). As TACCCC is useful
(its utility is 0.7 + 0.9 = 1.6 ≥ V), TACC is extended
to TACCCC. Then, MIA considers 20, the next smaller

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited193

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

power of 2, which corresponds to G. However, TACCCCG
is not useful and thus TACCCC is not extended. In Phase
III, MIA outputs TACCCC, as it is maximal useful, and
discards ACCC, which occurs at i = 2, along with all
other non-maximal substrings.

We now discussMIA in detail; see also Algorithm 1.

Utility Functions. MIA works for any global utility
function U ∈ UM , but we describe it using our “sum
of products” function (see Section 3). MIA exploits
the fact that the local utility u of this function has the
sliding window property: For any non-negative integer
d ≤ log n, MIA computes an array of local utilities lud

such that lud[i] = u(i, 2d), for all i ∈ [0, n), in O(n) time
by Lemma 3.1.

Utility Check. Each iteration of Phase I and II relies
on the computation of the following utility check (lines 9
and 22): For a candidate substring R and a subset
IR ⊆ occS(R) of its occurrences, it verifies whether the
fragments corresponding to IR satisfy

∑
i∈IR

u(i, |R|) ≥
V. Note that when IR = occS(R), this condition is
actually a check on the global utility of R (i.e., on
U(R) ≥ V). We will later prove (Lemma 4.4) that:
(1) this is always the case when R is maximal; and (2)
checking for IR ⊆ occS(R) is necessary for correctness.

Lemma 4.1 states that the utility check can be per-
formed efficiently, using two string indexing data struc-
tures: suffix array (SA) [16] and LCP array (LCP) [17].

Lemma 4.1. At each iteration of MIA, the utility check
for all fragments can be computed in O(n) time using
the SA and LCP array of S, which occupy Θ(n) space.

To keep track of the outcome of the utility check at
each iteration, MIA uses arrays len and prod ; each is
of size n and initialized with zeros. For each position
i ∈ [0, n) of S, len[i] is the length of the longest
fragment fragS(i, len[i]) that passed the utility check at
some previous iteration, and prod [i] = u(i, len[i]) is the
local utility of this fragment. Also, in Phase III, len
will identify O(n) substrings as candidates for being
maximal (compared to the Θ(n2) possible candidates).

Phase I (lines 1–13). MIA runs at most log n + 1
doubling iterations for increasing values of d between 0
and log n, and performs the utility check on fragments of
length 2d (those in CandI in line 4). Only the positions
that pass the check (stored in set I ′) are then involved
in the next iteration for fragments of length 2d+1; for
them, len and prod are overwritten (lines 11–12). Phase
I can be implemented efficiently using string indexes:

Lemma 4.2. Phase I performs Θ(log kmax) iterations,
where kmax is the length of the longest useful substring
of S. Each iteration takes O(n) time. Thus, Phase I
requires O(n log kmax) time in total and Θ(n) space.

Algorithm 1 MIA (S,w, n, U, u,V)
/* Phase I */

1: len[0 . . n− 1]← 0s; prod [0 . . n− 1]← 0s;

2: d← 0; I ← {0, 1, . . . , n− 1};
3: while d ≤ logn do

4: CandI ← {frag(i, 2d) | i ∈ I}; ▷ set of distinct strings

5: for each i ∈ [0, n− 2d] do lud[i]← u(i, 2d); ▷ Lemma 3.1
6: I′ ← ∅;
7: for each R ∈ CandI do
8: IR ← {i ∈ I | R = frag(i, 2d)};
9: if

∑
i∈IR

lud[i] ≥ V then I′ ← I′ ∪ IR;

10: if I′ = ∅ then break;

11: for each i ∈ I′ do
12: len[i]← 2d; prod [i]← lud[i];

13: d← d+ 1; I ← I′;

/* Phase II */

14: d← d− 2; ▷ d and d− 1 surely fail to extend

15: while d ≥ 0 do
16: J ← {0 ≤ i ≤ n− 2d − len[i] | len[i] > 2d};
17: CandJ ← {frag(i, len[i] + 2d) | i ∈ J};
18: for each i ∈ [0, n− 2d] do lud[i]← u(i, 2d); ▷ Lemma 3.1

19: J ′ ← ∅;
20: for each R ∈ CandJ do
21: JR ← {i ∈ J | R = frag(i, len[i] + 2d)};
22: if

∑
i∈JR

(prod [i] · lud[i+ len[i]]) ≥ V then J ′ ← J ′∪JR;

23: for each i ∈ J ′ do
24: len[i]← len[i] + 2d;

25: prod [i]← prod [i] · lud[i+ len[i]];

26: d← d− 1;

/* Phase III */

27: K ← {0 ≤ i < n | len[i] > 0};
28: CandK ← {frag(i, len[i]) | i ∈ K};
29: sol← ∅;
30: for each R ∈ CandK do ▷ keep maximal useful substrings

31: if R is not substring of any R′ ∈ CandK \ {R} then
32: sol← sol ∪ {R};
33: return sol;

Phase II (lines 14–26). MIA applies a binary search for

d = d̂−2, d̂−3, . . . , 1, 0, similarly to Phase I, where d̂ is
the value of d at the end of Phase I. At iteration d, MIA
processes the set J of positions i whose current length
is len[i] > 2d (line 16). For each position i ∈ J , it tries
to extend fragS(i, len[i]) by 2d letters, which occur at
offset len[i] from i (line 17), and thus have local utility
stored in lud[i+ len[i]] (after line 18). Armed with this
information, in line 22, MIA performs the utility check
for J and stores the positions that pass the check in J ′.
The entries of len and prod are then updated only for J ′

accordingly (lines 24–25). Phase II can be implemented
efficiently using string indexes:

Lemma 4.3. Phase II performs Θ(log kmax) iterations,
where kmax is the length of the longest useful substring
of S. Each iteration takes O(n) time. Thus, Phase II
requires O(n log kmax) time in total and Θ(n) space.

Phase III (lines 27–33) MIA considers the fragments

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited194

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

with positive values in len and collects their corre-
sponding strings in set CandK (lines 27–28). Note that
|CandK | ≤ n, as |K| ≤ n and the distinct strings cannot
be more than the fragments they correspond to. Thus,
Phase III is applied to O(n) substrings of S.

MIA hinges on the crucial property that the maxi-
mal useful strings in S are all contained in CandK (see
Lemma 4.4), so that a test of substring inclusion iden-
tifies the maximal ones (lines 30-32). This is performed
efficiently using string indexes; see Lemma 4.5.

Lemma 4.4. If a maximal useful substring R of S
occurs at position i, then len[i] > 0 and MIA finds
that U(R) ≥ V.

Lemma 4.5. Phase III requires O(n) time and Θ(n)
space and it correctly returns the set of maximal useful
substrings of S.

Lemmas 4.1 to 4.5 yield directly Theorem 3.3.

5 MSA: A Scan-Based Algorithm for MUSM

MIA uses Θ(n) space for a string of length n with
significant constant factors, due to the use of the SA
and LCP array. Thus, it requires too much space when
S is very long. To address this, we: (1) consider a
parameterized version of MUSM asking for all maximal
useful substrings of an input weighted string (S,w) that
have length at least L, for a given integer L > 0; and
(2) develop MSA (for MUSM Scan-based Algorithm),
which solves this parameterized version, in far less space
than MIA in practice, while being equally efficient.

MSA is a data-scan based algorithm that is similar
to MIA but implements Phases I and II differently:
(1) It uses a hash dictionary to store some distinct useful
strings in main memory with random access to it. (2)
It maintains all other information in external memory,
using few arrays of size n each. These arrays are not
resident in main memory but are loaded in constant-
size buffers through sequential access. (3) It operates in
a streaming fashion for these arrays, as only small parts
of them are needed in the main memory at any time.

Data Structures. MSA relies on hashing strings with
the Karp-Rabin method [20] (a.k.a. rolling hash). We
denote by KR(X) the integer obtained by hashing string
X. Without loss of generality, we assume thatKR(X) =
KR(Y) if and only ifX = Y , as the Karp-Rabin method
can be tuned to have no collision with high probability.

MSA maintains arrays len and prod to keep track
of the utility check, described in Section 4. Along with
them, it keeps two other arrays lim and hval of size n
each, such that hval [i] = KR(frag(i, len[i])) stores the
Karp-Rabin hash value of the fragment frag(i, len[i]),
and lim[i] > len[i] is a strict upper limit on any value

that len[i] can get. All four arrays are read or written
in blocks of B entries, where B ≪ n is a user-defined
parameter that specifies the block size.

MSA uses a dictionary D which stores pairs (h, v),
where h is a Karp-Rabin hash value and v is a utility
value (i.e., D[h] = v), initially set to 0. D implements
the utility check

∑
i∈IR

u(i, |R|) ≥ V of Section 4 for a
substring R and a set IR of its occurrences (positions):
Given i ∈ IR, MSA increments D[hval [i]] by u(i, |R|), as
we guarantee that hval [i] = KR(R). When all positions
in IR are examined, D[KR(R)] =

∑
i∈IR

u(i, |R|) holds.
Thus, the utility check is D[KR(R)] ≥ V.
Phase I. Instead of performing O(log n) iterations,
MSA examines only fragments of L letters in S using
O(1) iterations, and it applies the utility check on
these substrings using a dictionary D it constructs. For
each position i, MSA sets len[i] = L if and only if a
useful string of length L occurs at i. If so, MSA sets
lim[i] = i′ + L, where i′ ≥ i is the largest position such
that len[i] = len[i+1] = · · · = len[i′] = L. This encodes
a run of consecutive occurrences of useful strings of
length L. These runs determine the minimum value
d′ such that 2d

′
> maxi∈[0,n){lim[i]− len[i]}.

Phase II. MSA applies iterations d = d′ − 2, d′ −
3, . . . , 1, 0. In each iteration d, MSA computes the sum
of the local utilities of each fragment frag(i, len[i] + 2d)
at position i ∈ [0, n) using D. After that, D is ready
for the utility check. Thus, MSA performs the utility
check on each fragment that was considered, using D: If
the check succeeds, len[i] = len[i] + 2d (as in MIA).
Otherwise, lim[i] = len[i] + 2d (new in MSA). The
arrays prod and hval are consequently updated in O(1)
time per entry as discussed. MSA uses array lim as a
key step to eliminate positions that have no chance to
be occurrences of maximal useful strings; this is crucial
to reduce the size of D. Namely, if [i, i + lim[i] − 1] ⊆
[i′, i′ + len[i′]] holds for i′ ̸= i, then i can be safely
removed from the set of positions, and the string of its
fragment can be deleted from D.

Phase III. Performed as in MIA.

Lemma 5.1. For any (S,w) of length n, MSA takes
O(n log n) time, as each of the O(log n) iterations re-
quires O(n) time (and a linear number of I/Os). As
for space, let Dmax be the largest size of dictionary D
at any moment. For a given block size B ≪ n, the
total additional space (not accounting for S and w) is
O(B + Dmax) in main memory, plus Θ(n) space in ex-
ternal memory.

Reducing the Dictionary Size via Sketching. As L
increases, the substrings of length L typically increase
in number but those leading to useful strings may be
few. We identify such candidates using small space by

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited195

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

a pre-filtering step in Phase I. We use a Count-Min
Sketch [21], denoted by CMS. CMS supports one-side
error queries [21] and is configured to trade off u(i, |R|)’s
approximation with space usage: If CMS[KR(R)] < V,
surely R is not useful and MSA discards R. Otherwise,
there is an error with bounded probability, so MSA
passes R to the dictionary. Thus, Dmax in Lemma 5.1
gets smaller. CMS works for a global utility function
aggregating local utilities by sum; pre-filtering for other
functions in UM is left for future work.

6 Related Work

Many works focus on mining patterns either from a
collection of strings (e.g., [13, 22]) or from a single long
string (e.g., [12, 23]). Unlike these works, we consider
strings with associated utilities.

As such, our work falls into utility-oriented pattern
mining, an emerging direction in data mining that con-
siders the utility of data elements [5]. There are algo-
rithms for mining utility-oriented itemsets, association
rules, and episodes (see [5] for a survey). These algo-
rithms are not applicable to strings. There are also algo-
rithms applied to a collection of short strings comprised
of letters or itemsets [4, 6, 7]. However, these algorithms
mine subsequences, which are not necessarily comprised
of consecutive elements, as in our case. Since the set of
these subsequences can be exponentially large, these al-
gorithms are inapplicable to a realistically long string.
Also, [4, 6, 7] use different utility functions than ours.

At each position of an uncertain string [24, 25], ev-
ery letter of the alphabet is associated with a probabil-
ity, and the sum of all probabilities at any position must
be equal to one. Thus, a weighted string (S,w) drawn
from an alphabet Σ can be converted into an uncertain
string when each w[i] is in [0, 1]: At each position i of the
latter string, the letter S[i] is associated with probabil-
ity w[i] and a letter # /∈ Σ representing all other letters
is associated with probability 1 − w[i]. The mining of
uncertain strings has been studied in [25]. However,
the mining method in [25] cannot solve MUSM, as it
employs a fundamentally different local utility function.

7 Experimental Evaluation

Datasets. We used 4 large-scale datasets; see Table 1.
The strings IoT and ECOLI in Table 1 are associated
to real utilities. In IoT, the utilities are RSSIs nor-
malized in [0, 1], and in ECOLI, confidence scores [8]
in [0, 1]; see Section 1. In XML and CHR, there are
no real utilities. Thus, we selected each utility w[i],
i ∈ [0, n), uniformly at random from {0.7, 0.75, . . . , 1}.
Setup. We compared MIA and MSA to an Apriori-
like [15], O(nkmax)-time baseline, called MBA (for
MUSM BAseline). MBA considers substrings of in-

Table 1: Dataset properties and values for V and L.
Dataset Length Alphabet Dataset Available at V L

n Size |Σ| Size (GBs)

IoT 1.9 · 107 63 0.171 https://bit.ly/3X3rpmE [101, 105] [1, 32]
XML 2 · 108 95 1.8 http://pizzachili.dcc.uchile.cl/texts.html [101, 105] [1, 32]
ECOLI 4.6 · 109 6 41.4 https://bit.ly/3pcU0d4 [101, 105] [1, 32]
CHR 2.5 · 109 4 22.5 https://github.com/koeppl/phoni [101, 105] [1, 32]

creasing length in each iteration, stops when no sub-
string is useful, and discards non-maximal useful sub-
strings as in MIA. It uses SA and LCP to compute the
global utility of all substrings of length k in Θ(n) time.
We did not compare MIA and MSA to utility-oriented
subsequence mining algorithms [4, 6, 7], as these algo-
rithms are not alternative to ours; see Section 6. We
used the “sum of products” function; see Section 3.

All our experiments ran on an Intel Xeon Gold
5318Y CPU at 2.10GHz with 512GB RAM. We imple-
mented all algorithms in C++. Our code is available at
https://github.com/gloukides/usm.

Results. We report the runtime and peak memory us-
age of all algorithms, noting that the external memory
usage of MSA was exactly 24n bytes. We configured
MIA and the baseline MBA to solve the same (param-
eterized) problem as MSA. In MSA, we set B = 256KB
and the error probability threshold to 1

e11 .

Impact of V. Fig. 2 shows the impact of V on the
runtime of all algorithms. MIA and MSA were more
than 2.3 times faster than MBA on average (over all
datasets). Note that kmax (the length of the longest
useful substring) decreases as V increases, which makes
MBA much faster, as it takes O(nkmax) time. MSA
also becomes faster, although it takes O(n log n) time,
as its dictionary D gets smaller and thus it is accessed
more efficiently. MIA becomes only slightly faster, as
it takes O(n log kmax) time.

Fig. 3 shows the impact of increasing V on the
peak memory usage of all algorithms. MSA uses 205
times less memory on average (over all datasets) than
MIA andMBA, which use a similar amount of memory,
as they employ the same Θ(n)-space indexes. Unlike
MSA, the amount of memory that MIA and MBA
require is several times larger than the dataset size (e.g.,
10.3 times larger in the case of CHR). In addition,MSA
needs less memory as V increases since its dictionary D
gets smaller. On the other hand, the indexes of MIA
and MBA occupy Θ(n) space, for any V.
Impact of L. Fig. 4 shows the impact of increasing L
on the runtime of all algorithms. MSA was more than
two times faster than MBA and comparable to (or
sometimes slower than) MIA, as the small V = 10 that
we used led to a large dictionary for MSA, especially
for small L. When V was larger, MSA was 21% faster
than MIA on average; see Figs. 6a and 6b. Note that
the runtime of MIA and MBA was not affected by L,
as they simply check whether a maximal useful pattern

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited196

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://bit.ly/3X3rpmE
http://pizzachili.dcc.uchile.cl/texts.html
https://bit.ly/3pcU0d4
https://github.com/koeppl/phoni
https://github.com/gloukides/usm

101 102 103 104 105


0

5

10

15

20
Ru

nt
im

e
(s

)
54

41
28

16
4

MIA
MSA
MBA

(a) IoT

101 102 103 104 105


0

100

200

300

Ru
nt

im
e

(s
)

51 47
33

19
11

MIA
MSA
MBA

(b) XML

101 102 103 104 105


0

5000

10000

15000

20000

25000

Ru
nt

im
e

(s
)

100 100 94

55

10

MIA
MSA
MBA

(c) ECOLI

101 102 103 104 105


0

2000

4000

6000

Ru
nt

im
e

(s
)

47
39

30
22 16

MIA
MSA
MBA

(d) CHR

Figure 2: Runtime in seconds vs V for L = 4: (a) IoT, (b) XML, (c) ECOLI, and (d) CHR. The number on
the top of each group of bars denotes kmax (length of the longest useful substring), which is the same for all
algorithms.

101 102 103 104 105


0.1

0.5

1

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(a) IoT

101 102 103 104 105


1

5

10

15

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(b) XML

101 102 103 104 105


1

100

200

300

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(c) ECOLI

101 102 103 104 105


1

100

200

Pe
ak

 m
em

or
y

(G
B) MIA

MSA
MBA

(d) CHR

Figure 3: Peak memory usage in GBs vs V for L = 4: (a) IoT, (b) XML, (c) ECOLI, and (d) CHR.

1 2 4 8 16 32
L

0

10

20

30

Ru
nt

im
e

(s
)

54 54 54 54 54 54

MIA
MSA
MBA

(a) IoT

1 2 4 8 16 32
L

0

100

200

300

400

500

Ru
nt

im
e

(s
)

51 51 51 51 51 51

MIA
MSA
MBA

(b) XML

1 2 4 8 16 32
L

0

10000

20000

30000

40000

Ru
nt

im
e

(s
)

100 100 100 100 100 100

MIA
MSA
MBA

(c) ECOLI

1 2 4 8 16 32
L

0

2500

5000

7500

10000

12500

Ru
nt

im
e

(s
)

47 47 47 47 47 47

MIA
MSA
MBA

(d) CHR

Figure 4: Runtime in seconds vs L for V = 10: (a) IoT, (b) XML, (c) ECOLI and (d) CHR. The number
on the top of each group of bars denotes kmax (length of the longest useful substring), which is the same for all
algorithms.

1 2 4 8 16 32
L

0.1

0.5

1

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(a) IoT

1 2 4 8 16 32
L

1

50

100

150

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(b) XML

1 2 4 8 16 32
L

30

90

150

210

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(c) ECOLI

1 2 4 8 16 32
L

1

100

200

Pe
ak

 m
em

or
y

(G
B)

MIA
MSA
MBA

(d) CHR
Figure 5: Peak memory usage in GBs vs L for V = 10: (a) IoT, (b) XML, (c) ECOLI, and (d) CHR.

1 2 4 8 16 32
L

0

10000

20000

30000

40000

Ru
nt

im
e

(s
)

94 94 94 94 94 94

MIA
MSA
MBA

(a) ECOLI

1 2 4 8 16
L

0

2000

4000

6000

8000

Ru
nt

im
e

(s
)

30 30 30 30 30

MIA
MSA
MBA

(b) CHR

5⋅106 109 1.5⋅109 2⋅109 2.5⋅109

n
0

2000

4000

6000

Ru
nt

im
e

(s
)

41
44

46
46

47MIA
MSA
MBA

(c) Prefixes of CHR

5⋅106 109 1.5⋅109 2⋅109 2.5⋅109

n
1

100

200

Pe
ak

 m
em

or
y

(G
B) MIA

MSA
MBA

(d) Prefixes of CHR

Figure 6: Runtime in seconds vs L for V = 1000: (a) ECOLI and (b) CHR. (c) Runtime in seconds vs n and
(d) peak memory usage in GBs vs n for V = 10 and L = 4 on prefixes of CHR. The number on the top of each
group of bars denotes the kmax (length of the longest useful substring) of all algorithms.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited197

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

has length at least L, which is very fast.
Fig. 5 shows the impact of increasing L on the peak

memory usage of all algorithms. MSA uses 25 times less
memory on average than MIA and MBA. For instance,
MSA needed less than 37 GBs of RAM to process
ECOLI, whose size is 41.4 GBs, while MIA and MBA
needed more than 230 GBs of RAM. In general, MSA
needs less memory as L increases, as we see the benefit
of CMS on making dictionary D smaller: although there
are potentially many substrings of length L, only few
of them pass the filtering performed by CMS. On the
other hand, MIA and MBA need a similar amount
of memory, as the space occupied by their Θ(n)-space
indexes is independent of L. The amount of memory
they use is several times larger than the dataset size.

Impact of n. Fig. 6c shows the impact of increasing n
on the runtime of all algorithms. Both our algorithms
substantially outperformed MBA, as they both scale
quasi-linearly with n. MSA is comparable to MIA but
much more memory-efficient (see Fig. 6d). For instance,
it needed less than 4 GBs of RAM to process the CHR
dataset, whose size is 22.5 GBs, while MIA and MSA
needed more than 232 GBs of RAM.

Acknowledgments

GB is supported by the microgrant J93C22001380002;

AC, RG, VG, NP by NextGeneration EU programme PNRR

ECS00000017 Tuscany Health Ecosystem; AC, RG, VG are
partially supported by MUR PRIN 20174LF3T8 AHeAD; AC

and RG by MUR 2022TS4Y3N EXPAND; NP by MUR PRIN

2022YRB97K PINC; SPP by the PANGAIA project (GA 872539);
and NP and SPP by the ALPACA project (GA 956229).

References

[1] D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K.
Wilson, and E. R. Mardis, “The next-generation se-
quencing revolution and its impact on genomics,” Cell,
vol. 155, no. 1, pp. 27–38, 2013.

[2] Y. Yan, L. Cao, S. Madden, and E. A. Rundensteiner,
“Swift: Mining representative patterns from large
event streams,” PVLDB, vol. 12, no. 3, p. 265–277,
2018.

[3] Y. Zhang, Y. Wei, and J. Ren, “Multi-touch attribution
in online advertising with survival theory,” in ICDM,
2014.

[4] J. Yin, Z. Zheng, and L. Cao, “USpan: an efficient
algorithm for mining high utility sequential patterns,”
in KDD, 2012.

[5] W. Gan, J. Lin, P. Fournier-Viger, H. Chao, V. S.
Tseng, and P. S. Yu, “A survey of utility-oriented
pattern mining,” TKDE, vol. 33, no. 4, pp. 1306–1327,
2021.

[6] O. K. Alkan and P. Karagoz, “Crom and huspext:
Improving efficiency of high utility sequential pattern
extraction,” TKDE, vol. 27, no. 10, pp. 2645–2657,
2015.

[7] W. Gan, J. C.-W. Lin, J. Zhang, H.-C. Chao, H. Fujita,
and P. S. Yu, “Proum: Projection-based utility mining
on sequence data,” Inf. Scie., vol. 513, pp. 222–240,
2020.

[8] B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-
calling of automated sequencer traces using phred. i.
accuracy assessment,” Gen. Res., vol. 8, pp. 175–185,
1998.

[9] A. Vlavianos, L. K. Law, I. Broustis, S. V. Krishna-
murthy, and M. Faloutsos, “Assessing link quality in
ieee 802.11 wireless networks: Which is the right met-
ric?,” in PIMRC, 2008.

[10] P. W. Farris, N. T. Bendle, P. E. Pfeifer, and D. J.
Reibstein, Marketing Metrics. Wharton School Pub-
lishing, 2nd ed., 2010.

[11] M. Xu and Z. Su, “A novel alignment-free method
for comparing transcription factor binding site motifs,”
PLOS One, vol. 1, no. e8797, 2010.

[12] H. Arimura and T. Uno, “An efficient polynomial
space and polynomial delay algorithm for enumeration
of maximal motifs in a sequence,” J. Comb. Optim.,
vol. 13, no. 3, pp. 243–262, 2007.

[13] J. Fischer, V. Heun, and S. Kramer, “Fast frequent
string mining using suffix arrays,” in ICDM, 2005.

[14] J. Dhaliwal, S. J. Puglisi, and A. Turpin, “Practical
efficient string mining,” IEEE Trans. Knowl. Data
Eng., vol. 24, no. 4, pp. 735–744, 2012.

[15] R. Agrawal and R. Srikant, “Fast algorithms for min-
ing association rules in large databases,” in VLDB,
p. 487–499, 1994.

[16] U. Manber and E. W. Myers, “Suffix arrays: A new
method for on-line string searches,” SIAM J. Comput.,
vol. 22, no. 5, pp. 935–948, 1993.

[17] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
“Linear-time longest-common-prefix computation in
suffix arrays and its applications,” in CPM, 2001.

[18] S. Vinga and J. Almeida, “Alignment-free sequence
comparison – a review,” Bioinformatics, vol. 19, no. 4,
pp. 513–523, 2003.

[19] www.ncbi.nlm.nih.gov/nuccore/556503834.
[20] R. M. Karp and M. O. Rabin, “Efficient randomized

pattern-matching algorithms,” IBM J. R&D, vol. 31,
no. 2, pp. 249–260, 1987.

[21] G. Cormode and S. M. Muthukrishnan, “Approximat-
ing data with the count-min sketch,” IEEE Softw.,
vol. 29, no. 1, pp. 64–69, 2012.

[22] J. Fischer, V. Mäkinen, and N. Valimaki, “Space
efficient string mining under frequency constraints,” in
ICDM, 2008.

[23] F. Zhu, X. Yan, J. Han, and P. S. Yu, “Efficient
discovery of frequent approximate sequential patterns,”
in ICDM, 2007.

[24] J. Jestes, F. Li, Z. Yan, and K. Yi, “Probabilistic string
similarity joins,” in SIGMOD, 2010.

[25] Y. Li, J. Bailey, L. Kulik, and J. Pei, “Efficient
matching of substrings in uncertain sequences,” in
SDM, 2014.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited198

D
ow

nl
oa

de
d

05
/2

7/
24

 to
 1

92
.1

6.
19

1.
13

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

www.ncbi.nlm.nih.gov/nuccore/556503834

	Introduction
	Showcasing Our Methods
	Preliminaries, Problems, and Results
	MIA: An Index-Based Algorithm for MUSM
	MSA: A Scan-Based Algorithm for MUSM
	Related Work
	Experimental Evaluation

