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Abstract

This paper studies hidden convexity properties associated with constrained optimization
problems over the set of rotation matrices SO(n). Such problems are nonconvex due to the
constraint X ∈ SO(n). Nonetheless, we show that certain linear images of SO(n) are convex,
opening up the possibility for convex optimization algorithms with provable guarantees for these
problems. Our main technical contributions show that any two-dimensional image of SO(n) is
convex and that the projection of SO(n) onto its strict upper triangular entries is convex. These
results allow us to construct exact convex reformulations for constrained optimization problems
over SO(n) with a single constraint or with constraints defined by low-rank matrices. Both of
these results are maximal in a formal sense.

1 Introduction
This paper studies a general class of optimization problems over rotations and orthogonal bases. This
class of problems covers applications such as the point registration problem in computer graphics
[24, 25], Wahba’s problem of satellite attitude determination [29], spacecraft orientation [23], and
obstacle avoidance in robotics [7]. The main goal of this paper is show that in certain cases of
interest, we can produce natural convex relaxations that exactly recover the optimal solutions for
such problems.

Recall, O(n) is the set of orthogonal matrices in Rn, or more explicitly,

O(n) := {X ∈ Rn×n : X⊺X = I}.

On the other hand, SO(n) is the set of (orientation-preserving) rotations on Rn, defined as

SO(n) :=
{

X ∈ Rn×n : X⊺X = I
det(X) = 1

}
.

These sets are groups under matrix multiplication, refered to as the orthogonal and special orthogonal
groups, respectively.

We consider optimization problems of the form

sup
X∈SO(n)

{⟨A, X⟩ : B(X) ∈ C} , (1)
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Figure 1: Consider the set S ⊆ R2 (white region with solid boundary) and its convex hull conv(S). The
projection of S onto the horizontal axis is convex. On the other hand, the maximum vertical direction achieved
by a point x ∈ S between the two vertical lines differs from the maximum vertical direction achieved by a point
x ∈ conv(S) between the two vertical lines.

and their O(n) counterparts. Here, the objective is a linear function defined by A ∈ Rn×n, and
the constraint is defined by a linear operator B : Rn×n → Rm and some convex set C ⊆ Rm. The
notation ⟨A, B⟩ denotes the trace inner product tr(A⊺B). We will also study feasibility variants of
(1) where the goal is to identify an X ∈ SO(n) or X ∈ O(n) satisfying B(X) ∈ C, or to declare that
no such X exists. We give additional motivation for these problems in Section 1.1, where we discuss
constrained versions of Wahba’s problem and point registration [24, 29].

Problems of the form (1) are ostensibly nonconvex due to the constraint X ∈ SO(n) or X ∈ O(n).
Nevertheless, we will show that certain families of such problems admit exact convex reformulations.
To achieve this, our main technical contributions show that the images of SO(n) or O(n) under
certain linear maps are convex. Such results—showing that certain transformations of nonconvex
sets are convex—are often referred to as hidden convexity results and enable the application of
convex optimization algorithms to nonconvex problems [26, 30].

To see how such a result might be useful in solving problems of the form (1), suppose that
L : Rn×n → R1+m is the linear map

L(X) :=
(

⟨A, X⟩
B(X)

)
.

If the image of SO(n) under L is convex, then we would have that L(SO(n)) = conv(L(SO(n))) =
L(conv(SO(n))). Here, conv(·) represents the convex hull of the argument. In this case, it would
then follow that

sup
X∈SO(n)

{⟨A, X⟩ : B(X) ∈ C} = sup
X∈conv(SO(n))

{⟨A, X⟩ : B(X) ∈ C} .

In other words, convexity of the image L(SO(n)) implies that the convex relaxation of (1) that
simply replaces SO(n) with conv(SO(n)) is exact. This exactness is in terms of objective value,
however we will also see how to numerically recover an actual optimizer in SO(n) or O(n) in the
settings we consider. Note that the convexity of B(SO(n)) alone does not imply exactness (see for
example Figure 1). Similar results can be derived for O(n) and/or feasibility variants of (1) under
corresponding convexity results.

The convex hulls of both O(n) and SO(n) can be described via linear matrix inequalities (LMIs).
The first fact is well-known while the latter fact is due to Saunderson et al. [27]. For ease of reference,
we collect both facts in the following proposition.
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Proposition 1 (Classical/[27]). The convex hull of O(n) is equal to the operator norm ball and can
be written as

conv(O(n)) = Bop(n) =
{

X ∈ Rn×n :
(

I X
X⊺ I

)
⪰ 0

}
.

There exist symmetric matrices Ai,j ∈ S2n−1 indexed by (i, j) ∈ [n]2 such that

conv(SO(n)) =

X ∈ Rn×n :
n∑

i=1

n∑
j=1

Xi,jAi,j ⪯ I2n−1

 .

In light of this fact, the convex relaxations we consider in the O(n) setting can be directly solved
with semidefinite programs (SDPs), assuming that C is itself efficiently SDP-representable. In
contrast, the convex relaxations we consider in the SO(n) setting result in exponentially sized SDPs.
For this reason, we also offer new algorithms for optimizing over conv(SO(n)) in the settings we
consider that do not rely on the description of conv(SO(n)) given in Proposition 1.

1.1 Motivation

We first discuss constrained variants of Wahba’s problem. To set up Wahba’s problem, imagine that
a satellite in space wants to determine its relative rotation (with respect to a reference rotation)
given the observed direction of some number of far-away stars (or other objects).

Formally, we are given a set of (unit) vectors v1, . . . , vk ∈ R3, corresponding to the known directions
of the k stars in the reference rotation, and (unit) vectors u1, . . . , uk ∈ R3, corresponding to the
observed directions of the k stars in the satellite’s frame. Our goal is to find a rotation minimizing
the observation error

min
X∈SO(3)

k∑
i=1

∥Xui − vi∥2
2 .

In [29], it was observed that this is equivalent to a linear optimization problem over SO(3)

max
X∈SO(3)

〈
k∑

i=1
uiv

⊺
i , X

〉
,

and that this problem can be solved in turn using a single SVD computation. We will formalize this
in Lemma 1.

Now, suppose we are given additional information about the true rotation X∗. We will incorporate
this additional information as hard constraints into Wahba’ problem to get a constrained optimization
problem over SO(3).

For example, we may know that the true rotation X∗ is within some angle, δ, of another rotation
X0 ∈ SO(3). In this case, we would need to solve the problem1

max
X∈SO(3)

{〈
k∑

i=1
uiv

⊺
i , X

〉
: ⟨X0, X⟩ ≥ 1 + 2 cos(δ)

}
.

1Any X ∈ SO(3) can be thought of as a rotation of some angle δ around some axis, and this angle satisfies the
equation tr(X) = 1 + 2 cos(δ), which can be seen by considering the eigenvalues of X. Here, we say X is at an angle δ
from Y if Y ⊺X is of angle δ.

3



Hidden convexity Algorithms
Diag. constraints [18, Theorem 8] Theorem 2
One constraint Theorem 3 and Corollary 1 Theorem 4
SUT constraints Theorem 5 and Corollaries 2 and 3 Theorem 6

Table 1: Summary of our hidden convexity results and algorithms for constrained optimization over SO(n).
We present accompanying results (Theorem 7) showing that our hidden convexity results are each “maximal”
in certain senses (see Section 7).

Theorem 3 below implies that this problem has the same optimal value as its convex relaxation. We
will additionally show that the optimum value of this problem can be efficiently computed using
convex optimization techniques, even for n ≥ 3.

As a second example, we may have a few high-fidelity observations, in which case we could introduce
constraints for those observations:

⟨Xui, vi⟩ = ⟨uiv
⊺
i , X⟩ ≥ cos(δi).

Theorem 5 below implies that feasibility problems with at most n − 1 such constraints and certain
optimization problems over such constraints can be solved efficiently using convex optimization
techniques.

High-dimensional settings, where n ≥ 3, have found use in modeling nonlinear transformations
on manifolds [25]. In this setting, the goal is to learn a nonlinear transformation mapping one
manifold to another based on given point–point correspondences. Ovsjanikov et al. [25] suggest
modeling this problem as that of finding an orthogonal (linear) transformation in the space of
functions on the manifolds.2 Note, this space of functions may be high dimensional. In this function
space, point–point correspondence constraints or symmetry constraints can be naturally expressed
as linear constraints on the linear transformation. Additional desirable properties of the nonlinear
transformation can be encoded as an orthogonality constraint. Thus, this problem has a natural
interpretation as an optimization problem of the form (1) over O(n).

1.2 Statement of Results

Our main contributions show that certain linear images of SO(n) are convex and that certain
problems of the form (1) and its variants can be solved efficiently. We give an overview of these
results in the order of the sections they appear in; see also Table 1. For our algorithms, we assume
we are able to perform basic arithmetic operations (including taking square roots) exactly.

1.2.1 Feasibility problems on SO(n) with diagonal constraints

A classical theorem of Horn, [18, Theorem 8], gives a first example of a hidden convexity result on
SO(n). Recall, the parity polytope is defined as

PPn := conv
{

x ∈ {±1}n :
n∏

i=1
xi = 1

}
.

2The function spaces are endowed with bases corresponding to (possibly a truncated set of) eigenfunctions of the
Laplace–Beltrami operators.
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Theorem 1. Let diag : Rn×n → Rn map a square matrix to its diagonal elements, then diag(SO(n))
is convex (in fact, polyhedral) and its image is given by the parity polytope PPn.

In Appendix A, we give efficient separation and optimization oracles for PPn. We give a definition
of a separation oracle in Section 4. It follows that feasibility problems on SO(n) with convex
constraints on the diagonal elements, i.e., given convex C ⊆ Rn, decide the feasibility of

{X ∈ SO(n) : diag(X) ∈ C} , (2)

can be decided by testing the feasibility of PPn ∩ C.

In Section 3, we complete this picture by showing how to construct an element of (2) given
d ∈ PPn ∩ C.

Theorem 2. Given d ∈ PPn, it is possible to construct X ∈ SO(n) satisfying diag(X) = d in time
O(n2).

1.2.2 Optimization on SO(n) with one constraint

The main result of Section 4 is that the intersection of SO(n) with any codimension-one affine space
is connected.

Theorem 3. Let n ≥ 3, A ∈ Rn×n, and c ∈ R. Then, the set SO(n) ∩ {X ∈ Rn×n : ⟨A, X⟩ = c} is
connected.

A corollary of Theorem 3, which we prove in Section 4, is the following:

Corollary 1. Let n ≥ 3 and let π : SO(n) → R2 be linear, then π(SO(n)) is convex.

This follows as a set is convex if and only if its intersection with any one-dimensional affine subspace
(i.e., a line) is connected. Theorem 3 may be of importance in its own right, as for some hyperplanes
H, it may be the case that the set SO(n) ∩ H is a connected submanifold of SO(n), in which case it
may be possible to use Riemannian optimization methods to optimize functions on this set.

While these results imply that it is possible to use convex optimization techniques to solve problems
of the form

max
X∈SO(n)

{⟨A, X⟩ : ⟨B, X⟩ ∈ [a, b]} (3)

(for example by replacing SO(n) with conv(SO(n))), it is not clear how to do so efficiently when n
is large. This is because Proposition 1 only guarantees an exponentially sized LMI representation
for conv(SO(n)).

To address this issue, we give an efficient algorithm for problems of the form (3) based on running
the ellipsoid algorithm on the two-dimensional image of SO(n). It is noteworthy that because we
use the ellipsoid algorithm in a constant-dimensional space, we do not face the infamously high
running times of the ellipsoid method in high-dimensional spaces.

Theorem 4. Let n ≥ 3, A, B ∈ Rn×n with ∥A∥tr = ∥B∥tr = 1. Here ∥ · ∥tr is the trace norm,
defined formally in Section 2. Let X∗ be the optimal solution to (3). We can compute ⟨A, X∗⟩ and
⟨B, X∗⟩ within an additive error of ϵ in time

O

(
n3 log

(1
ϵ

)2
)

.
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Here, n3 is the time complexity of computing the SVD of an n × n matrix.

Moreover, we will return α, β ∈ R so that |α| + |β| = 1 and

⟨αA + βB, X∗⟩ + ϵ ≥ max{⟨αA + βB, X⟩ : X ∈ SO(n)}.

Remark 1. Let α, β denote the quantities returned in Theorem 4. While Theorem 4 does not
directly return a minimizer of (3), we believe that any element of

arg max
X∈SO(n)

⟨αA + βB, X⟩

should be a good approximation of a true minimizer under mild conditions. Such an element can be
computed from αA + βB in the time of a single SVD decomposition. Analyzing this procedure is
outside the scope of the current paper and we leave this question for future work.

1.2.3 Feasibility and optimization on SO(n) with strictly upper triangular constraints

The last class of constraints we consider are constraints on the strictly upper triangular (SUT)
entries of X ∈ SO(n). Our main result in this direction shows that not only is the projection
of SO(n) onto its SUT entries convex, but furthermore, it is possible to optimize certain linear
functions subject to convex constraints on the SUT entries using convex optimization.

Let πT (X) = (Xij)i<j ∈ R(n
2) denote the projection of X onto its SUT entries (i.e., those entries

Xij such that i < j). We will consider constraining the value of πT (X) for X ∈ SO(n) and then
optimizing a linear function over this set. Let A ∈ Rn×n and let C be a nonempty closed convex
subset of πT (Bop(n)). Recall Bop(n) is the operator norm ball and is the same as conv(O(n)) by
Proposition 1. We consider the problems

sup
X∈SO(n)

{⟨A, X⟩ : πT (X) ∈ C} (4)

≤ sup
X∈O(n)

{⟨A, X⟩ : πT (X) ∈ C} (5)

≤ max
X∈Bop(n)

{⟨A, X⟩ : πT (X) ∈ C} . (6)

The max in (6) will be justified in Section 5. Our main result on this topic is:

Theorem 5. Let A ∈ Rn×n be a diagonal matrix and let C ⊆ πT (Bop(n)) be a nonempty closed
convex set. Then, equality holds between (5) and (6). If additionally det(A) ≥ 0, then equality holds
between (4) to (6).

A corollary of Theorem 5, which will be proved in Section 5, is the following:

Corollary 2. It holds that πT (SO(n)) = πT (O(n)) = πT (Bop(n)). In particular, all three sets are
convex.

We remark that any n−1 rank-one matrices u1v⊺1 , . . . , un−1v⊺n−1 can be made strictly upper triangular
simultaneously by left- and right-multiplying by SO(n) matrices using Gram–Schmidt. In particular,
optimization problems or feasibility problems with constraints on ⟨uiv

⊺
i , X⟩ are a special case of

problems with SUT constraints (see Lemma 7). This holds too for any n − 1 coordinate constraints.
See Section 5.2 for a more detailed explanation.
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Optimization over Bop(n) is tractable using a linearly sized SDP by Proposition 1, so the presentation
of this theorem also can be turned into an efficient algorithm for performing such optimization
whenever C is itself efficiently SDP-representable.

We will further show strong structural results about the matrices in SO(n) with fixed SUT entries.
These structural results allow us to explicitly construct an optimizer of (4) given an optimizer of
(6) under the assumptions of Theorem 5. They will additionally allow us to extend Theorem 5 to
an approximation result for SO(n) with det(A) < 0. These structural results are summarized below
and proven in parts throughout Section 6.

Theorem 6. Let σ ∈ int(πT (Bop(n))) ⊆ R(n
2) and let Vσ = {X ∈ O(n) : πT (X) = σ}. The following

assertions hold:

1. |Vσ| = 2n.

2. For each i ∈ [n], there exist functions αi(σ) < βi(σ), so that Xi,i ∈ {αi, βi} for each X ∈ Vσ.
We will suppress the dependence of αi and βi on σ for convenience of notation.

3. No two elements in Vσ have the same diagonal entries. That is, for each d ∈ {α1, β1} ×
{α2, β2} × · · · × {αn, βn}, there is a unique X ∈ Vσ so that diag(X) = d.

4. For each i ∈ [n], αi and βi are continuous functions of σ. The function βi is convex in σ, and
the function αi is concave in σ.

5. X ∈ Vσ is in SO(n) if and only if the number of i so that Xi,i = αi is even.

6. Given ρ ∈ {−1, 1}n, we can construct a matrix X ∈ Vσ so that Xi,i =
{

αi if ρi = −1
βi if ρi = 1

in

time O(n3).

1.2.4 Obstructions to Progress

Finally, Section 7 provides constructions showing that Theorem 1, Corollary 1, and Corollary 2
above are maximal in specific senses. We summarize the results here:

Theorem 7. The following assertions hold:

1. For any n ≥ 3, the images of SO(n) under linear maps to R2 are “maximally convex” in the
following sense: There exists π : Rn×n → R3 so that π(SO(n)) is nonconvex.

2. The projection of SO(n) onto its diagonal is “maximally convex” in the following sense: For
A ∈ Rn×n, let π(X) = (X11, X22, . . . , Xnn, ⟨A, X⟩). If A is not itself diagonal, then π(SO(n))
is not convex.

3. For any n ≥ 3, the projection of SO(n) onto its SUT entries is “maximally convex” in the
following sense: If π : Rn×n → Rm is any linear map with rank(π) >

(n
2
)
, then π(SO(n)) is

not convex.

4. The assumption det(C) ≥ 0 in Theorem 5 is necessary in the following sense: There exists
σ ∈ R(n

2) and a diagonal matrix C so that

max
X∈SO(n)

{⟨C, X⟩ : πT (X) = σ} < max
X∈conv(SO(n))

{⟨C, X⟩ : πT (X) = σ}

7



This theorem is proven in parts throughout Section 7.

1.3 Related literature

Hidden convexity results are scattered throughout the literature on optimization, numerical linear
algebra, and matrix analysis. We recommend the following surveys/chapters for introductions to this
subject [2, 26, 30]. Along these lines, our hidden convexity results and their subsequent applications
in deriving convex SDP relaxations of nonconvex problems parallel Dines’ Theorem [9] and its
application in deriving the S-lemma [12], a fundamental result in control theory and nonlinear
optimization.

Our results extend existing hidden convexity results related to the (special) orthogonal group. Some
of the earliest work in this line is [18, Theorem 8] stating that diag(SO(n)) = PPn. There are
other similar results concerning the convexity of the image of SO(n) under various nonlinear maps,
for example the famous Schur–Horn theorem [18]. Another paper along these lines is [11], which
characterizes the possible projections of SO(n) onto its rectangular submatrices. In particular, it is
not hard to show using their results that the projection of SO(n) onto a k × ℓ rectangular submatrix
is convex if and only if k + ℓ ≤ n. Our results extend [11] to nonrectangular coordinate patterns.
For further work in this direction, see [16, 28].

Another important piece of related work is [27], which gives a description of conv(SO(n)) in terms
of linear matrix inequalities (LMI). This LMI description is constructed using Lie group theory
applied to SO(n) and is related to the fact that the fundamental group of SO(n) is Z/2Z. This fact
will also be crucial in our proof of Theorem 3. Inspired by techniques from [27], we can view our
hidden convexity results as new quadratic convexity results on the sphere in the spirit of Brickman’s
Theorem [4]. Recall, Brickman’s Theorem states that for any A, B ∈ Sn and n ≥ 3, that{(

x⊺Ax
x⊺Bx

)
∈ R2 : x ∈ Sn−1

}

is convex. Here, Sn−1 is the sphere in Rn. We elaborate on this connection in Appendix B.

There are many other examples in which people consider optimization over the special orthogonal
group. These problems were implicitly studied for SO(3) in [23], where they consider a formulation
in terms of quadratic maps of quaternions. In another instance, [5] shows that certain standard
semidefinite programming approaches to quadratic optimization problems applied to SO(n) do
not always produce the correct result. For this, they use the theory of nonnegative quadratic
forms over real varieties developed in [3]. Some recent work of Gilman et al. [13] considers the
exactness of SDP relaxations of quadratic optimization problems with variables in the Stiefel
manifold

{
X ∈ Rn×k : X⊺X = Ik

}
for some k ≤ n. Note that when k = n, that this set is identical

to O(n). Gilman et al. [13] show that the natural SDP relaxation is exact for such problems when
the operator defining the quadratic form is close enough to being diagonalizable.

2 Preliminaries
If π : Rn → Rm is a linear map, we denote by π∗ : Rm → Rn the adjoint operator.

We will need to define a maximal torus in SO(n). Fix some n for this section. Let k = ⌊n
2 ⌋ and let
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R(θ1, . . . , θk) denote the matrix in SO(n) given by

R(θ1, . . . , θk) :=


cos(θ1) sin(θ1)

− sin(θ1) cos(θ1)
. . .

cos(θk) sin(θk)
− sin(θk) cos(θk)

 (7)

if n is even, and

R(θ1, . . . , θk) :=


cos(θ1) sin(θ1)

− sin(θ1) cos(θ1)
. . .

cos(θk) sin(θk)
− sin(θk) cos(θk)

1

 (8)

if n is odd.

We define the maximal torus T to be the set of matrices of the form R(θ1, . . . , θk) as the θi range
over [0, 2π). The following result is a special case of what is known as the Maximal Torus Theorem,
but is a simple corollary of the real spectral theorem [19, Theorem 2.5.8] in our setting.

Theorem 8. For any X ∈ SO(n), there exists U ∈ SO(n) so that U⊺XU ∈ T. That is, U⊺XU =
R(θ1, . . . , θk) for some θi ∈ [0, 2π).

For A ∈ Rn×n, let ∥A∥tr and ∥A∥op denote the trace norm and operator norm of A. These are
defined as the sum of the singular values of A and the maximum singular value of A respectively.

Define the special trace of A ∈ Rn×n to be
str(A) := max

X∈SO(n)
⟨A, X⟩ .

This function is well-defined as SO(n) is compact. Furthermore, str(·) is convex and 1-Lipschitz
with respect to the trace norm. This holds because str(·) is defined as the pointwise maximum of
linear functions which are individually 1-Lipschitz with respect to the trace norm. Finally, str(·)
can be computed exactly using a single SVD:

Lemma 1 ([29, Problem 65-1]). Given A ∈ Rn×n with singular values σ1 ≥ ... ≥ σn,

str(A) := max
X∈SO(n)

⟨A, X⟩ =
n−1∑
i=1

σi + sign(det(A))σn.

We will also make use of the concept of separation oracles and the ellipsoid algorithm. If C ⊆ Rn

is a compact convex set and x ̸∈ C, then there is a hyperplane that separates x and C. This
separating hyperplane is given by a nonzero vector y ∈ Rn so that ⟨y, x⟩ ≥ max{⟨y, c⟩ : c ∈ C}.
A ϵ-weak separation oracle for C is an oracle that on an input x ∈ Rn, either correctly declares
x ∈ C + B∞(0, ϵ), or outputs y ∈ Rn so that y is a separating hyperplane between x and C. Here,
B∞(a, r) is the ball of radius r in the L∞ norm centered at a. The algorithmic equivalence between
weak separation oracles and approximate optimization over convex sets is outlined in [15].

The ellipsoid algorithm as described in [14] provides the following guarantee for optimization in R2.

Theorem 9. Suppose we have access to an ϵ-weak separation oracle for closed compact C ⊆ R2,
we are given a R ∈ R so that C ⊆ B2(0, R) and C includes a ball of radius at least ϵ. There is an
algorithm that optimizes a linear function with unit L2 norm over C within an additive error of ϵ
using at most O(log(R

ϵ )) calls to the weak separation oracle.
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3 Feasibility problems on SO(n) with diagonal constraints
This section considers the feasibility problem

{X ∈ SO(n) : diag(X) ∈ C} , (9)

where C ⊆ Rn is convex. We will assume that C has an efficient separation oracle.

Horn [18, Theorem 8] shows that diag(SO(n)) = PPn. As an immediate corollary, (9) is feasible if
and only if PPn ∩ C is nonempty.

Appendix A shows how to efficiently separate from PPn. Combined with a separation oracle for C,
we may then run an ellipsoid-style algorithm for deciding feasibility of PPn ∩ C (up to the usual
errors). Supposing that d ∈ PPn ∩C is found, it remains to see how to construct a witness X ∈ SO(n)
with diag(X) = d.

We will need the following description of PPn given in [20, 22]:

PPn = {x ∈ [−1, 1]n : ⟨x, 1n − 2 · 1S⟩ ≤ n − 2, ∀ odd S ⊆ [n]} . (10)

Here, 1n is the all-ones vector, 1S is the indicator vector of the set S and S is odd if |S| is odd.

We will also need a constructive version of the Schur–Horn theorem. To state this, we need the
notion of majorization. If c, d ∈ Rn, let c↑ and d↑ be the results of sorting the entries of c and d in
nondecreasing order. We say c majorizes d if ∑n

i=1 ci = ∑n
i=1 di and for each ℓ ∈ [n],

ℓ∑
i=1

c↑
i ≤

ℓ∑
i=1

d↑
i .

The following lemma is essentially due to [6].

Lemma 2. Given c, d ∈ Rn such that c majorizes d, it is possible to construct a sequence of
matrices

Q1, . . . , Qn−1 ∈ SO(n)

in time O(n log n) satisfying

diag
((

n−1∏
i

Qi

)⊺

Diag(c)
(

n−1∏
i

Qi

))
= d.

Furthermore, each Qi differs from the identity on only one principal 2×2 block, where it is a rotation
matrix.

We are now ready to prove the following theorem.

Theorem 2. Given d ∈ PPn, it is possible to construct X ∈ SO(n) satisfying diag(X) = d in time
O(n2).

Proof. We focus on the case of even n for simplicity. The odd case follows analogously. Let m := n/2
and let θ1, ..., θm ∈ [0, 2π) to be fixed later. Recall the definition of R(θ1, . . . , θk) from (7) and (8),
and let c := diag(R(θ1, . . . , θm)). If we can find θ1, . . . , θm so that c majorizes d, then we can apply
Lemma 2 to produce the required element of SO(n) with diagonal d. Equivalently, we may pick
c1 = c2, c3 = c4, . . . arbitrarily in [−1, 1] and define θi = arccos(c2i).
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We will set ci as follows: Let t := 1
4(n−⟨d, 1n⟩) and let j −1 = ⌊t⌋ be the integer part and δ := t−⌊t⌋

be the fractional part of t. We set

c1 = ... = c2(j−1) = −1, c2j+1 = ... = cn = 1,

and the remaining elements we set as c2j−1 = c2j = 1 − 2δ. Note that 1 − 2δ ∈ [−1, 1] since the
fractional part δ ∈ [0, 1]. Then, we have

⟨c, 1n⟩ = −2(j − 1) + 2(1 − 2δ) + 2(m − j)

= −2
4 (n − ⟨d, 1n⟩ − 4δ) + 2(1 − 2δ) + 2

4(n + ⟨d, 1n⟩ − 4(1 − δ)) = ⟨d, 1n⟩,

where the second step was by our definition of c, and the third was by our choice of j.

Now we verify the majorization inequalities:

∀k ≤ 2(j − 1)
k∑

i=1
ci = −k ≤

k∑
i=1

d↑
i , and

∀k ≥ 2j + 1
n∑

i=k

ci = (n − k + 1) ≥
n∑

i=k

d↑
i .

Here, the last step in both inequalities hold because d ∈ [−1, 1]n. Since ⟨c, 1n⟩ = ⟨d, 1n⟩, the second
set of inequalities are equivalent to

∀k ≥ 2j
k∑

i=1
ci = −k ≤

k∑
i=1

d↑
i .

We now verify the final inequality for index k := 2j − 1:

k∑
i=1

ci = −2(j − 1) + (1 − 2δ) = 1 − 1
2(n − ⟨c, 1n⟩) = 1

2(⟨d, 1n⟩ − (n − 2)) ≤
k∑

i=1
d↑

i ,

where the first step was by definition of c, in the second step we used that j − 1 = t − δ, in the
third step we used that ⟨c, 1n⟩ = ⟨d, 1n⟩, and the final step was by the defining inequalities of PPn

given in Equation (10) for odd set S = [k] = [2j − 1].

Setting cos(θi) = c2i, we have R(θ1, ..., θm) ∈ SO(n) with diagonal c majorizing d.

Now, apply Lemma 2 to get a matrix U = ∏n−1
i=1 Qi ∈ SO(n) such that

diag(U⊺ Diag(c)U) = d.

For notational convenience, write R for R(θ1, . . . , θm). Then, U⊺RU ∈ SO(n) satisfies

diag(U⊺RU) = diag (U⊺ Diag(c)U) + diag (U⊺(R − Diag(c))U)
= diag(U⊺ Diag(c)U) = d.

Here, the second line follows as R − Diag(c) is skew symmetric so that U⊺(R − Diag(c))U must also
be skew symmetric. In particular, diag(U⊺(R − Diag(c))U) = 0.

The time complexity follows from the fact that each Qi differs from the identity only in a principal
2 × 2 block, so all n − 1 conjugations by Q1, ..., Qn−1 can be completed in O(n2) time. ■
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4 Optimization on SO(n) subject to one constraint
This section will discuss optimization of a linear function over SO(n) subject to a single (possibly
two-sided) linear constraint:

max
X∈SO(n)

{⟨A, X⟩ : ⟨B, X⟩ ∈ [a, b]} . (11)

We will provide a proof that for problems of the form (11), the convex relaxation that replaces
SO(n) with conv(SO(n)) is exact. Moreover, we will give a practical algorithm for this problem
that runs in roughly the same time as Wahba’s problem without additional constraints, i.e., in the
time to compute an SVD.

The technical core of these results lies in the following theorem:

Theorem 3. Let n ≥ 3, A ∈ Rn×n, and c ∈ R. Then, the set SO(n) ∩ {X ∈ Rn×n : ⟨A, X⟩ = c} is
connected.

This theorem implies the following fact using the observation that a subset of R2 is convex if and
only if its intersection with every one-dimensional affine subspace is connected.

Corollary 1. Let n ≥ 3 and let π : SO(n) → R2 be linear, then π(SO(n)) is convex.

Proof. Let x, y ∈ π(SO(n)) denote a pair of distinct points. By definition, there exist X, Y ∈ SO(n)
so that π(X) = x and π(Y ) = y. Let ℓ ∈ R2 \ {0}, α ∈ R parameterize the affine line so that
⟨ℓ, x⟩ = ⟨ℓ, y⟩ = α. Thus, π(SO(n)) ∩

{
z ∈ R2 : ⟨ℓ, z⟩ = α

}
is the linear image of the connected set

SO(n) ∩ {Z ∈ SO(n) : ⟨π∗(ℓ), Z⟩ = α} .

In particular, π(SO(n)) ∩
{
z ∈ R2 : ⟨ℓ, z⟩ = α

}
is connected so [x, y] is contained in π(SO(n)). ■

As we have seen, this fact implies that any optimization problem of the form (11) can be solved as
a convex optimization problem on conv(SO(n)). Thus, one could theoretically solve this problem
with an exponentially sized SDP using Proposition 1. Alternatively, we give an algorithm which can
successfully solve any such optimization problem in O(n3 log2(n)) time.

In the case of SO(3), Corollary 1 can be viewed as a corollary of Brickman’s theorem [4], which
states that the image of the unit sphere under a homogeneous quadratic map into R2 is always
convex. This, together with the fact that SO(3) is the image of a sphere under a quadratic map
shows the result in that case (see also Appendix B). On the other hand, Corollary 1 does not follow
directly from known quadratic convexity theorems for n ≥ 4.

4.1 Topological preliminaries for the proof of Theorem 3

The proof of Theorem 3 will require some topological techniques, which we review here. We attempt
to be as explicit as possible in our constructions and proofs to make them accessible to readers
that are less familiar with such arguments. As a general reference for (algebraic) topology, we refer
to [17].

As motivation, consider the (easy) problem of showing that the image of SO(n) under a continuous
map into R1 is connected (and hence convex). We can see this by appealing to two facts. First,
SO(n) is a connected set. Second, the image of a connected set under any continuous map is
connected. Our proof of Theorem 3 will be spiritually similar and will require generalizations of
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these two key ingredients. First, we will need to understand in what ways we can “move around”
SO(n). This will be answered in Lemma 4, where we will build “loops” in SO(n) with nice properties.
Second, we will need to understand how these loops behave under a continuous map into R2. This
will be answered in Lemma 3.

In order to formalize these statements, we will need some basic definitions from topology/homotopy
theory that we present below. We encourage the reader to keep the following topological spaces in
mind:

• SO(n) ⊆ Rn×n viewed as a subtopological space of Rn×n with the standard topology.

• The punctured plane R2 \ (0, 0) viewed as a subtopological space of R2 with the standard
topology.

Let X be a topological space with a designated base point x ∈ X. The fundamental group of
X, denoted π1(X), is a group whose elements are (equivalence classes of) continuous functions
γ : [0, 1] → X so that γ(0) = γ(1) = x. We will refer to such functions as loops. We will say that
two loops γ1 and γ2 are equivalent if there exists a continuous function T : [0, 1] × [0, 1] → X so that
T (0, t) = γ1(t) and T (1, t) = γ2(t) for all t ∈ [0, 1]. We refer to such a T as a homotopy. Intuitively,
two loops γ1 and γ2 are equivalent if γ1 can be continuously deformed into γ2. This set of loops can
be made into a group with the group operations being the concatenation of loops.

The identity element of X is represented by the constant loop given by i(t) = x for all t ∈ [0, 1]. If
X is path connected, then the fundamental group is independent of the choice of basepoint—this
will be the case for all topological spaces we consider.

For example, the fundamental group of the punctured plane R2 \ (0, 0) is Z. Explicitly, any loop in
R2 \ (0, 0) can be identified with the number of times it winds anticlockwise around the origin. Less
intuitively, we will also need the fact that for n ≥ 3, the fundamental group of SO(n) is Z/2Z. An
important consequence of this fact is that given any loop in SO(n) (for n ≥ 3), simply concatenating
this loop with itself results in the identity element in π1(SO(n)), which can then be continuously
deformed to a point. This will be used in Lemma 3 below, for which Figure 2 shows a cartoon of
the proof strategy.

This will be relevant to us in the following context:

Lemma 3. Let n ≥ 3. Suppose f : SO(n) → R2 is a continuous map and γ : [0, 1] → SO(n) is a
loop such that (0, 0) is not in the image (f∗(γ))([0, 1]). In this case, we may view f∗(γ) as a loop in
R2 \ (0, 0). If f∗(γ) is not equivalent to the identity element in π1(R2 \ (0, 0)), then (0, 0) ∈ f(SO(n)).

Proof. We may assume that γ is equivalent to the identity element in π1(SO(n)) by concatenating
γ with itself. Indeed, this produces the identity element in π1(SO(n)) as π1(SO(n)) = Z/2Z.
Additionally, if f∗(γ) is not equivalent to the identity element in π1(R2 \ (0, 0)), then concatenating
this loop with itself does not yield the identity element.

Let T be a homotopy between γ and the identity element i in π1(SO(n)), i.e., assume T (0, t) = γ(t)
and T (1, t) = i(t). Now, consider the image (f ◦ T )([0, 1] × [0, 1]). We claim that (0, 0) is in this
image. Indeed, supposing otherwise, we have constructed a homotopy between f∗(γ) and the identity
element in π1(R2 \ (0, 0)), a contradiction. ■

By adding a translation term to f , we can apply Lemma 3 with an arbitrary point β ∈ R2 in place
of the origin. Figure 3 depicts a two-dimensional linear image of SO(3) and a loop γ in SO(3) and
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f−→
SO(n)

R2

Figure 2: A cartoon of the proof of Lemma 3. On the left, we depict a loop (solid line) in SO(n), that is
equivalent to the identity element, and its deformations (dashed lines) to a point. On the right is the image
of the loop and its deformations under the map f : SO(n) → R2. The origin in R2 is shown in blue. By
assumption, f∗(γ) “winds” around the origin a nonzero number of times. We will show that the image of
the deformations must eventually “pass through” the origin. This shows that the origin is in the image of
f(SO(n)).

Figure 3: The solid red area is the image of SO(3) under a linear map into R2. The blue ellipse is the image
of a loop in SO(3) under the same linear map. The (image of the) loop begins at some point on the blue
ellipse and walks clockwise around the ellipse exactly once. Lemma 3 implies that every point in R2 contained
within this blue ellipse must be contained in the image of SO(3). The proof of Theorem 3 will follow a similar
idea with a continuous but nonlinear function.

gives some intuition on how we will use Lemma 3 to prove Theorem 3.

4.2 Proof of Theorem 3

This subsection will contain a proof of Theorem 3. Let H = {X ∈ Rn×n : ⟨A, X⟩ = c}. We will
require the following construction.

Lemma 4. Let U, V ∈ H ∩ SO(n). Then, there exists a continuous function γ : [0, 1] → SO(n) with
the following properties:

• γ(0) = γ(1) = U ,

• γ(1
2) = V ,

• either ⟨A, γ(t)⟩ = c for all t ∈ (0, 1
2) or ⟨A, γ(t)⟩ > c for all t ∈ (0, 1

2), and

• either ⟨A, γ(t)⟩ = c for all t ∈ (1
2 , 1) or ⟨A, γ(t)⟩ < c for all t ∈ (1

2 , 1).

14



Proof. We may write U = R(η1, . . . , ηk) for some ηi ∈ [0, 2π) and V = R(θ1, . . . , θk) for some
θi ∈ [0, 2π).

Let S1 denote the unit circle in R2, thought of as the points [0, 2π) where 0 and 2π are identified.
Let T denote the set of all matrices R(ϕ1, . . . , ϕk) as ϕ1, . . . , ϕk range over S1.

Now, consider the expression ⟨A, R(ϕ1, . . . , ϕk)⟩, which we can express as a sum over the blocks of
R(ϕ1, . . . , ϕk):

⟨A, R(ϕ1, . . . , ϕk)⟩ =
k∑

ℓ=1

〈(
A2i−1,2i−1 A2i−1,2i

A2i,2i−1 A2i,2i

)
,

(
cos(ϕi) sin(ϕi)

− sin(ϕi) cos(ϕi)

)〉
+ c0,

where c0 = Ann if n is odd and 0 otherwise. We may rewrite this as

⟨A, R(ϕ1, . . . , ϕk)⟩ =
k∑

ℓ=1

〈(
A2i−1,2i−1 + A2i,2i

A2i−1,2i − A2i,2i−1

)
,

(
cos(ϕi)
sin(ϕi)

)〉
+ c0

=
k∑

i=1
ci

〈(
cos(ϕ̂i)
sin(ϕ̂i)

)
,

(
cos(ϕi)
sin(ϕi)

)〉
+ c0

=
k∑

i=1
ci cos(ϕ̂i − ϕi) + c0,

where ci ≥ 0 and ϕ̂i ∈ S1 are the polar coordinates for
(

A2i−1,2i−1 + A2i,2i

A2i−1,2i − A2i,2i−1

)
.

We will construct the loop γ(t) by setting γ(t) = R(ϕ1(t), . . . , ϕk(t)) where ϕi(t) will be defined
shortly. Specifically, ϕi(t) will be a continuous function satisfying ϕi(0) = ϕi(1) = ηi and ϕi(1

2) = θi.
In particular, γ(t) will be continuous and satisfy γ(0) = γ(1) = U and γ(1/2) = V .

Now, fix some i ∈ [k]. We will parameterize ϕi(t) = ϕ̂i − δ(t). Note the requirement ϕi(0) =
ϕi(1) = ηi and ϕi(1/2) = θi is equivalent to δ(0) = δ(1) = ϕ̂i − ηi and δ(1/2) = ϕ̂i − θi. Note that
cos(ϕ̂i − ϕi(t)) = cos(δ(t)) is simply the “x-coordinate” of δ(t).

Consider the locations of ϕ̂i − ηi, ϕ̂i − θi on the unit circle S1. If ϕ̂i − ηi is on the bottom half of
the unit circle, then let δ(3/4) = π and set δ(t) to move counterclockwise along the bottom half of
the circle until δ(1) = ϕ̂i − ηi. Also set δ(0) = ϕ̂i − ηi and set δ(t) to move counterclockwise along
the bottom half of the circle until δ(1/4) = 0. On the other hand, if ϕ̂i − ηi is on the top half of
the unit circle, then let δ(3/4) = π and set δ(t) to move clockwise along the top half of the circle
until δ(1) = ϕ̂i − ηi. Also set δ(0) = ϕ̂i − ηi and set δ(t) to move clockwise along the top half of the
circle until δ(1/4) = 0. Note that in both cases, the function cos(δ(t)) is either constant or strictly
increasing on each interval [0, 1/4] and [3/4, 1]. Completely analogous ideas can be used to define
δ(t) on the intervals [1/4, 1/2] and [1/2, 3/4] so that δ(1/2) = ϕ̂i − θi and cos(δ(t)) is either constant
or strictly decreasing on each interval [1/4, 1/2] and [1/2, 3/4]. (See Figure 4 for two examples of
this construction.)

We then define γ(t) := R(ϕ1(t), ϕ2(t), . . . , ϕk(t)). We see that this loop satisfies all of the properties
desired based on properties of the individual ϕi(t). ■

We are now ready to prove Theorem 3.
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0

ϕ̂i − θi
ϕ̂i − ηi

t =
[
0, 1

4

]
0

ϕ̂i − θi
ϕ̂i − ηi

t =
[

1
4 , 1

2

]
0

ϕ̂i − θi
ϕ̂i − ηi

t =
[

1
2 , 3

4

]
0

ϕ̂i − θi
ϕ̂i − ηi

t =
[

3
4 , 1
]

0

ϕ̂i − θi

ϕ̂i − ηi

t =
[
0, 1

4

]
0

ϕ̂i − θi

ϕ̂i − ηi

t =
[

1
4 , 1

2

]
0

ϕ̂i − θi

ϕ̂i − ηi

t =
[

1
2 , 3

4

]
0

ϕ̂i − θi

ϕ̂i − ηi

t =
[

3
4 , 1
]

Figure 4: Two examples of the construction of δ(t) in the proof of Lemma 4. The first row corresponds to
ϕ̂i − ηi = π

4 and ϕ̂i − θi = −3π
4 . The second row corresponds to ϕ̂i − ηi = 3π

4 and ϕ̂i − θi = π
2 .

Proof of Theorem 3. Suppose for the sake of contradiction that H ∩ SO(n) is not connected, which
by definition means that there exist nonempty closed sets U , V ⊆ H ∩ SO(n) so that U ∩ V = ∅,
and U ∪ V = H ∩ SO(n). As U is closed, the distance function

distU (X) := min
U∈U

∥U − X∥op

is well-defined. Let δ := minV ∈V distU(V ). As U and V are compact and disjoint, we have that
δ > 0. Define f : SO(n) → R2 given by

f(X) =
(

⟨A, X⟩ − c
distU (X) − δ/2

)

We claim that (0, 0) /∈ f(SO(n)). Assume for contradiction that (0, 0) ∈ f(SO(n)), i.e., there exists
an X ∈ SO(n) so that ⟨A, X⟩ = c and distU(X) = δ

2 . As X ∈ H ∩ SO(n), we have that either
X ∈ U or X ∈ V . In the first case, distU(X) = 0, a contradiction. In the second case, we have
that minV ∈V distU(V ) ≤ distU(X) = δ/2 < δ = minV ∈V distU(V ), again a contradiction. Thus,
(0, 0) /∈ f(SO(n)).

Now, fix U ∈ U and V ∈ V and let γ be the loop constructed in Lemma 4. We claim that
⟨A, γ(t)⟩ > c for all t ∈ (0, 1

2). Indeed, by Lemma 4, if this is not the case, then ⟨A, γ(t)⟩ = c for all
t ∈ [0, 1

2 ] so that the path γ(t) for t ∈ [0, 1/2] connects U, V in H ∩ SO(n). This contradicts the fact
that U and V are not connected in H ∩ SO(n).

We now verify that f and γ satisfy the assumptions of Lemma 3. To do so, we will exhibit a
homotopy from f∗(γ) to the loop (sin(2πt), − cos(2πt)). Let

T (s, t) := sf∗(γ)(t) + (1 − s)(sin(2πt), − cos(2πt)).

This is clearly a continuous function from [0, 1] × [0, 1] → R2. Thus, to verify that it is a valid
homotopy in R2 \ (0, 0) it remains to check that T (s, t) ̸= (0, 0) for any (s, t) ∈ [0, 1] × [0, 1]. To
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see this, note that for t ∈ (0, 1
2), we have ⟨A, γ(t)⟩ > c so that f(γ(t))1 > 0. Additionally, for all

t ∈ (0, 1
2), sin(2πt) > 0. Thus, T (s, t)1 ̸= 0 for all t ∈ (0, 1

2) and s ∈ [0, 1]. Similar arguments show
that T (s, t)1 ̸= 0 for all t ∈ (1

2 , 1) and s ∈ [0, 1], and that T (s, t)2 ̸= 0 for all t ∈
{

0, 1
2 , 1
}

and
s ∈ [0, 1].

Finally, Lemma 3 implies that (0, 0) ∈ f(SO(n)), a contradiction. We conclude that H ∩ SO(n) is
connected. ■

4.3 Algorithms for One Constraint Optimization

Here, we aim to solve the optimization problem given in (3).

Theorem 4. Let n ≥ 3, A, B ∈ Rn×n with ∥A∥tr = ∥B∥tr = 1. Here ∥ · ∥tr is the trace norm,
defined formally in Section 2. Let X∗ be the optimal solution to (3). We can compute ⟨A, X∗⟩ and
⟨B, X∗⟩ within an additive error of ϵ in time

O

(
n3 log

(1
ϵ

)2
)

.

Here, n3 is the time complexity of computing the SVD of an n × n matrix.

Moreover, we will return α, β ∈ R so that |α| + |β| = 1 and

⟨αA + βB, X∗⟩ + ϵ ≥ max{⟨αA + βB, X⟩ : X ∈ SO(n)}.

To state the algorithm we note that for any A, B ∈ Rn×n, (3) is equivalent to the following
optimization problem

max
x∈R2

{x1 : x ∈ π(SO(n)), x2 ∈ [a, b]}.

Here, π(SO(n)) is the image of SO(n) in R2 given by π(X) = (⟨A, X⟩, ⟨B, X⟩). By Corollary 1, we
have that π(SO(n)) is convex. Therefore the above is a linear optimization problem over convex set
C := π(SO(n)) ∩ {x2 ∈ [a, b]}, and we can apply standard methods from convex optimization to
solve the above equivalent formulation of (3).

For this, we appeal to the ellipsoid algorithm, which we stated in Theorem 9. By Theorem 9, it
suffices to provide a weak separation oracle for the set C = π(SO(n)) ∩ {x2 ∈ [a, b]}. As the second
constraint is trivial to separate over, we focus on separating over the convex set π(SO(n)).

It will be useful to have a subroutine for minimizing h(y) over the unit ℓ1-ball in R2, where

h(y) := str(π∗(y)) − ⟨y, x⟩.

Lemma 5. Given x ∈ R2 with ∥x∥∞ ≤ 1 + ϵ, we can construct ŷ with ∥ŷ∥1 = 1 so that

h(ŷ) − ϵ ≤ min
y

{h(y) : ∥y∥1 = 1}

using at most O
(
log

(
1
ϵ

))
evaluations of h and additional computations.
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Proof. We note that {y : ∥y∥1 = 1} is a union of 4 line segments, so minimizing h on this set can be
done by minimizing the following 4 univariate functions on [0, 1]:

gσ1σ2(α) = h(σ1α, σ2(1 − α)) = str(σ1αA + σ2(1 − α)B) − σ1αx1 − σ2(1 − α)x2,

indexed by σ1, σ2 ∈ {±1}. Each of the four functions gσ1σ2 is a one-dimensional convex function
with Lipschitz constant bounded by

∥A∥tr + ∥B∥tr + ∥x∥1 ≤ 4 + 2ϵ.

For each σ1σ2 ∈ {±1}, we may use golden section search [21] to find a α̂σ1σ2 ∈ [0, 1] such that

gσ1σ2(α̂σ1σ2) ≤ min
α∈[0,1]

gσ1σ2(α) + ϵ.

Each application of golden section search requires O
(
log

(
1
ϵ

))
evaluations of gσ1σ2 , or equivalently,

evaluations of h. ■

Lemma 6. Let n ≥ 3 and A, B ∈ Rn×n with ∥A∥tr = ∥B∥tr = 1. There is a weak separation oracle
for the set π(SO(n)) that runs in time O(n3 log(1

ϵ )).

Proof. Suppose we are given A, B ∈ Rn×n and x ∈ R2. If ∥x∥∞ > 1 + ϵ, then in fact, x ̸∈
π(SO(n)) + B∞(0, ϵ) as, by Holder’s inequality,

X ∈ SO(n) =⇒ max{|⟨A, X⟩|, |⟨B, X⟩|} ≤ ∥X∥op max{∥A∥tr , ∥B∥tr} ≤ 1,

where the last step was by our assumption ∥A∥tr = ∥B∥tr = 1. Therefore, in this case, we may
immediately terminate with one of (±1, 0) or (0, ±1) as a separating hyperplane. For the remainder,
we assume that ∥x∥∞ ≤ 1 + ϵ.

A nonzero vector y ∈ R2 defines a separating hyperplane between x and π(SO(n)) if and only if

⟨y, x⟩ ≥ max
X∈SO(n)

⟨y, π(X)⟩.

Recalling the definition of str(·) from Section 2, the expression on the right can be written as

max
X∈SO(n)

⟨y, π(X)⟩ = max
X∈SO(n)

⟨π∗(y), X⟩ = str(π∗(y)).

Thus, a nonzero y ∈ R2 defines a separating hyperplane if and only if h(y) ≤ 0. Note that by
Lemma 1, we can compute h(y) for a given y using a single SVD. As h is 1-homogeneous, such a y
exists if and only if one exists with ∥y∥1 = 1.

Now, we apply Lemma 5 to compute ŷ approximately minimizing h(y) on the unit ℓ1 ball.

If h(ŷ) ≤ 0, then we may output ŷ as a separating hyperplane. For the remainder of the proof,
suppose h(ŷ) > 0. By Lemma 5 and 1-homogeneity, h(y) > −ϵ for all y ∈ B1(0, 1). We claim that
x ∈ π(SO(n)) + B∞(0, ϵ). If, to the contrary, x ̸∈ π(SO(n)) + B∞(0, ϵ), then by the separating
hyperplane theorem, there would be some y so that

⟨y, x⟩ ≥ max{⟨y, c + δ⟩ : c ∈ π(SO(n)), δ ∈ B∞(0, ϵ)} = max{⟨y, c⟩ : c ∈ π(SO(n))} + ϵ∥y∥1.

In particular, there would be some y with ∥y∥1 = 1 such that

h(y) = str(π∗(y)) − ⟨y, x⟩ ≤ −ϵ,

which is a contradiction. ■
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5 Optimization on SO(n) and O(n) with strict upper triangular
constraints

In this section, we consider optimization problems with strict upper triangular (SUT) constraints
over SO(n) and O(n): Let A ∈ Rn×n and let C be a nonempty closed convex subset of πT (Bop(n)).
We consider the problems (which we also stated in the introduction)

sup
X∈SO(n)

{⟨A, X⟩ : πT (X) ∈ C} (4)

≤ sup
X∈O(n)

{⟨A, X⟩ : πT (X) ∈ C} (5)

≤ max
X∈Bop(n)

{⟨A, X⟩ : πT (X) ∈ C} . (6)

where the last inequality is because Bop(n) is the convex hull of O(n). Here, we define the values
of (4) and (5) to be −∞ whenever they are infeasible. Since Equation (6) is always feasible (by
our assumptions on C), and Bop(n) is compact, the supremum is always acheived in this last case.
Nonetheless, by compactness, (4) and (5) both achieve their maxima as long as they are feasible.

The following theorem is the main result of this section and shows that one or both of these
inequalities hold at equality for certain choices of A.

Theorem 5. Let A ∈ Rn×n be a diagonal matrix and let C ⊆ πT (Bop(n)) be a nonempty closed
convex set. Then, equality holds between (5) and (6). If additionally det(A) ≥ 0, then equality holds
between (4) to (6).

We will prove Theorem 5 in Section 5.1. As a byproduct of the proof, we will also see a numerical
method for constructing optimizers of (4) or (5) from an optimizer of the convex program (6) by
solving an SDP. In Section 5.2, we verify that our results in this section can be applied to problems
with few coordinate constraints or rank-one constraints.

Before moving on, we note two hidden convexity properties implied by Theorem 5.

Corollary 2. It holds that πT (SO(n)) = πT (O(n)) = πT (Bop(n)). In particular, all three sets are
convex.

Proof. It is clear that πT (SO(n)) ⊆ πT (O(n)) ⊆ πT (Bop(n)). Now, let σ ∈ πT (Bop(n)) and set
A = I and C = {σ}. Theorem 5 implies the feasibility of (4), i.e., σ ∈ πT (SO(n)), whence
πT (Bop(n)) ⊆ πT (SO(n)). ■

Corollary 3. Let A ∈ Rn×n be a diagonal matrix, then{(
⟨A, X⟩ − γ

πT (X)

)
: X ∈ O(n)

γ ≥ 0

}
=
{(

⟨A, X⟩ − γ
πT (X)

)
: X ∈ Bop(n)

γ ≥ 0

}
.

If additionally det(A) ≥ 0, then{(
⟨A, X⟩ − γ

πT (X)

)
: X ∈ SO(n)

γ ≥ 0

}
=
{(

⟨A, X⟩ − γ
πT (X)

)
: X ∈ Bop(n)

γ ≥ 0

}
.
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Proof. We prove only the first claim as the second is proved analogously. For convenience, let L
and R denote the left- and right-hand side sets in the first claim. As O(n) ⊆ Bop(n), we have that
L ⊆ R. Now, suppose (v, σ) ∈ R, so there exists X ∈ Bop(n) such that πT (X) = σ, ⟨A, X⟩ ≥ v. Let

v′ = max
X∈Bop(n)

{⟨A, X⟩ : πT (X) = σ} .

By definition, v′ ≥ v. Next, by Theorem 5, there exists X ∈ O(n) such that πT (X) = σ and
⟨A, X⟩ = v′. Then (v′, σ) ∈ L. As L is closed under decreasing its first coordinate, (v, σ) ∈ L. As
(v, σ) ∈ R was arbitrary, we conclude R ⊆ L. ■

5.1 Proof of Theorem 5

We begin by proving the following special case of Theorem 5.

Proposition 2. Let A ∈ Rn×n be a diagonal matrix with det(A) ̸= 0 and let σ ∈ int(πT (Bop(n))).
Then,

max
X∈Bop(n)

{⟨A, X⟩ : πT (X) = σ} (12)

has a unique optimizer X̂. It holds that X̂ ∈ O(n). If additionally det(A) > 0, then X̂ ∈ SO(n).

Proof. First, note that Bop(n) is full-dimensional in Rn×n so its projection πT (Bop(n)) is also
full-dimensional. Thus, int(πT (Bop(n))) = πT (int(Bop(n))) and (12) is strictly feasible. We deduce
that strong duality and dual attainability hold in the following primal and dual problems

max
X∈Bop(n)

{⟨A, X⟩ : πT (X) = σ}

= min
Y ∈Rn×n, λ∈R(n

2)
{⟨σ, λ⟩ + ∥Y ∥tr : Y + π∗

T (λ) = A} .

Now, let (Ŷ , λ̂) optimize the dual problem. Note that Ŷ = A − π∗
T (λ̂) is upper triangular with

diag(A) on its diagonal, so det(Ŷ ) = det(A) ̸= 0 by assumption, i.e., rank(Ŷ ) = n.

Let X̂ ∈ Bop(n) be an arbitrary maximizer of (12), which exists by compactness of Bop(n). By
strong duality, ∥∥∥Ŷ ∥∥∥

tr
+
〈
σ, λ̂

〉
=
〈
A, X̂

〉
=
〈
Ŷ + π∗

T (λ̂), X̂
〉

=
〈
Ŷ , X̂

〉
+
〈
σ, λ̂

〉
.

Thus,
∥∥∥Ŷ ∥∥∥

tr
=
〈
Ŷ , X̂

〉
. Let UΣV ⊺ = Ŷ be an SVD of Ŷ . Then, tr(Σ) =

∥∥∥Ŷ ∥∥∥
tr

=
〈
Ŷ , X̂

〉
=〈

Σ, U⊺X̂V
〉

. Noting that U⊺X̂V ∈ Bop(n) and that Σ has only positive diagonal entries, we deduce
that U⊺X̂V = I so that X̂ = UV ⊺ ∈ O(n). This proves the first claim.

Now, suppose det(A) > 0. Then, det(Ŷ ) = det(A − π∗
T (λ̂)) = det(A) > 0. Thus, det(X̂) =

det(U) det(V ⊺) = det(Ŷ )
det(Σ) > 0. We conclude that X̂ ∈ SO(n). ■

We may now prove Theorem 5 in full generality.
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Proof of Theorem 5. Let X̂ be an optimizer of (6) and set σ = πT (X̂). Now, let ϵ ∈ (0, 1] and define
σϵ := (1 − ϵ)σ. As Bop(n) is full-dimensional, we have that σϵ ∈ πT (int(Bop(n))). If det(A) ̸= 0,
then define Aϵ := A. Otherwise, construct Aϵ ∈ Rn×n by setting each zero diagonal entry of A to
± ϵ

n in such a way that det(Aϵ) > 0, which is possible because A is diagonal and its determinant
is the product of its diagonal entries. Then, applying Proposition 2 with Aϵ and σϵ, there exists
Xϵ ∈ O(n) satisfying

⟨A, Xϵ⟩ ≥ ⟨Aϵ, Xϵ⟩ − ϵ ≥ (1 − ϵ)
〈
Aϵ, X̂

〉
− ϵ ≥ (1 − ϵ)

(〈
A, X̂

〉
− ϵ
)

− ϵ, (13)

where the first and third steps are because ∥A − Aϵ∥tr ≤ ϵ by our choice of Aϵ and the fact that
X̂, Xϵ ∈ Bop(n), and the second step follows as (1 − ϵ)X̂ is feasible in

max
X∈Bop(n)

{⟨Aϵ, X⟩ : πT (X) = σϵ} = ⟨Aϵ, Xϵ⟩ .

Next, consider a sequence {ϵk} ⊆ (0, 1] converging to zero and the corresponding sequence {Xϵk
} ⊆

O(n). As O(n) is compact, {Xϵk
} has a subsequential limit X̃ ∈ O(n). By continuity, we have that〈

A, X̃
〉

≥
〈
A, X̂

〉
and πT (X̃) = σ ∈ C. We deduce that equality holds between (5) and (6).

Finally, suppose det(A) ≥ 0 so that det(Aϵ) > 0. Then, the sequence {Xϵk
} lies in SO(n) so that

the subsequential limit X̃ may also be taken to live in SO(n). ■

Remark 2. The proof of Theorem 5 suggests a numerical method for recovering an optimizer of
(5) from an optimizer, X̂, of (6). Let ϵ > 0 be some small numerical parameter and let Aϵ, σϵ be as
defined in the proof of Theorem 5. Then, the unique maximizer of

max
X∈Bop(n)

{⟨Aϵ, X⟩ : πT (X) = σϵ}

is guaranteed to lie in O(n) and is approximately optimal in the sense of (13) and and approximately
feasible as σϵ ≈ σ ∈ C.

Alternatively, we may shortcut solving two separate convex optimization problems by preemptively re-
placing A and C with Aϵ and Cϵ, in such a way that guarantees det(Aϵ) ̸= 0 and Cϵ ⊆ int(πT (Bop(n))).
With these perturbed sets, Proposition 2 guarantees that any optimizer of

max
X∈Bop(n)

{⟨Aϵ, X⟩ : πT (X) ∈ Cϵ}

lies in O(n). Analogous statements hold for the SO(n) setting.

5.2 Applications to low-rank constraints

The following proposition shows that optimization and feasibility problems over SO(n) with convex
constraints on the values of ⟨Bi, X⟩, where Bi ∈ Rn×n are low-rank matrices, can be seen as a
special case of SUT constraints after a reparameterization of SO(n).

Proposition 3. Let k ≤ n − 1. Fix u1, . . . , uk ∈ Rn, and also fix v1, . . . , vk ∈ Rn. For i = 1, . . . , m,
let Bi = ∑k

j=1 βijujv⊺j , for some βi,j ∈ R. Let B(X) :=
(
⟨Bi, X⟩

)
i∈[m]

. Then B(SO(n)) is convex.

Theorem 5 then implies that we may decide feasibility of problems of the form B(SO(n)) ∩ C for
compact convex C via a simple SDP. As an example, Proposition 3 applies if m ≤ n − 1 and Bi are
each rank one as in the situation of Section 1.1.

In order to show this proposition, we will need a lemma.
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Lemma 7. Let {u1, . . . , un−1} ⊆ Rn and {v1, . . . , vn−1} ⊆ Rn. Then, there exists U, V ∈ SO(n)
such that for all i ∈ [n − 1], v⊺i (V ⊺XU)ui depends only on the strict upper triangular entries of X.

Proof. It follows from the existence of QR decompositions that we may upper triangularize the {ui}
with a special orthogonal matrix, i.e., there exists U ∈ SO(n) such that supp(Uui) ⊆ [1, i] for each
i ∈ [n − 1]. Similarly, we may lower triangularize the {vi} with a special orthogonal matrix, i.e.,
there exists V ∈ SO(n) such that supp(V vi) ⊆ [i + 1, n]. Then

supp(Uuiv
⊺
i V ⊺) ⊆ [1, i] × [i + 1, n] for i ∈ [n − 1].

Thus (V vi)⊺X(Uui) depends only the strictly upper triangular entries of X. ■

We now show Proposition 3.

Proof of Proposition 3. Note that B(SO(n)) is a linear image of the set{(
v⊺j Xuj

)
j∈[k]

: X ∈ SO(n)
}

. (14)

Let U, V ∈ SO(n) denote the matrices guaranteed by Lemma 7, then (14) is equivalent to{(
v⊺j (V ⊺XU)uj

)
j∈[k]

: X ∈ SO(n)
}

(15)

by the fact that SO(n) = V ⊺ SO(n)U . Finally, by the assumed properties of U and V , we have that
(15) is a linear image of πT (SO(n)) so that B(SO(n)) is convex. ■

6 Explicit constructions for elements of SO(n) with fixed strictly
upper triangular entries

This section gives full characterizations and explicit constructions for π−1
T (σ) ∩ SO(n) and π−1

T (σ) ∩
O(n), where T is the strictly upper triangular coordinates in Rn×n, for σ ∈ int(πT (Bop(n))). This
will allow us to extend Theorem 5 to an approximation result in the remaining setting det(C) < 0.

We overload notation below. Given A ∈ Sn
+, let

O(A) :=
{
X ∈ Rn×n : X⊺X = A

}
Bop(A) :=

{
X ∈ Rn×n : X⊺X ⪯ A

}
.

Note that O(In) = O(n) and Bop(In) = Bop(n). Furthermore, if A ∈ Sn
++, then

int(Bop(A)) =
{
X ∈ Rn×n : X⊺X ≺ A

}
is full-dimensional. Thus, int(πT (Bop(A))) = πT (int(Bop(A))).

We will require the following technical lemma.

Lemma 8. Let A ∈ Sn
++ and Ũ ∈ Rn×(n−1). Suppose Ũ⊺Ũ = A2,2, the bottom right (n − 1) × (n − 1)

submatrix of A. Suppose also that the bottom (n − 1) × (n − 1) submatrix of Ũ has full rank. Then,
there exist exactly two choices of u ∈ Rn such that

U =
(
u Ũ

)
∈ O(A)

and the two choices of u differ on their first coordinates. Furthermore, given A−1
2,2, the two choices

of u can be computed in O(n2) time.

22



Proof. Expanding the definition of U , we have that U ∈ O(A) if and only if(
u⊺u u⊺Ũ

Ũ⊺u Ũ⊺Ũ

)
=
(

A1,1 A1,2
A2,1 A2,2

)
,

i.e., if and only if ∥u∥2 = A1,1 and Ũ⊺u = A2,1.

We decompose Ũ⊺ as Ũ⊺ =
(
û Û⊺

)
, where û ∈ Rn−1 and Û ∈ R(n−1)×(n−1). By assumption, Û is

invertible. Thus, ker(Ũ⊺) is one-dimensional and spanned by the vector

z :=
(

1
−Û−⊺û

)
.

Next, note that u0 := ŨA−1
2,2A2,1 satisfies Ũ⊺u0 = A2,1. Thus, u0 + tz parameterizes the solutions of

Ũ⊺u = A2,1.

Note that u0 has squared norm

∥u0∥2 = A⊺
2,1A−1

2,2(Ũ⊺Ũ)A−1
2,2A2,1 = A1,2A−1

2,2A2,1 < A1,1,

where the last inequality follows by the Schur complement lemma and the assumption that A ∈ Sn
++.

We deduce that the quadratic equation ∥u0 + tz∥2 = A1,1 in t has exactly two solutions. In other
words, there are exactly two choices of u ∈ Rn such that U ∈ O(A). Then, as z1 = 1, we have that
the two possible choices of u differ in their first coordinates.

We now turn to the time complexity. Note that A2,2 = Ũ⊺Ũ = ûû⊺ + Û⊺Û . Thus, (Û⊺Û)−1 =
(A2,2−ûû⊺)−1. This quantity can be computed in O(n2) time given A−1

2,2 using the Sherman–Morrison
formula. Then, the quantity −Û−⊺û can be written as

−Û−⊺û = −Û−⊺Û−1Û û

= −(A2,2 − ûû⊺)−1Û û.

We deduce that the quantities u0 and z can both be computed in O(n2) time. Finally, computing
the two choices of t can also be done within this time limit. ■

Remark 3. The output of the construction in Lemma 8 is continuous in Ũ and A wherever it is
defined. Formally, there are two continuous functions u1 and u2 from(Ũ , A) ∈ Rn×(n−1) × Sn :

A ∈ Sn
++

Ũ⊺Ũ = A2,2
Û is invertible


to Rn that track the two possible choices of u in Lemma 8. This follows from continuity of z, u0,
and the coefficients in the quadratic equation ∥u0 + tz∥2 = A1,1 in the proof of Lemma 8.

The following proposition provides a parameterized construction for the entire set π−1
T (σ) ∩ O(n).

Proposition 4. Let A ∈ Sn
++ and σ ∈ int(πT (Bop(A))). Then,

∣∣∣π−1
T (σ) ∩ O(A)

∣∣∣ = 2n. Furthermore,
no two matrices in π−1

T (σ) ∩ O(A) agree on all of their diagonal entries.
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Proof. We will induct on n. The claim is vacuously true for n = 1, thus assume n ≥ 2.

Let X ∈ int(Bop(A)) satisfy σ = πT (X). Partition X and A as

X =
(

ξ x⊺

x̄ X2,2

)
, A =

(
α a⊺

a A2,2

)
.

As X ∈ int(Bop(A)), we have that A ≻ X⊺X so that its bottom-right blocks are also ordered:

A2,2 ≻ xx⊺ + X⊺
2,2X2,2.

Here, we have used the fact that the bottom-right block of X⊺X is xx⊺ + X⊺
2,2X2,2.

Now, subtracting xx⊺ from both sides, we have that A2,2 − xx⊺ ≻ X⊺
2,2X2,2 ⪰ 0, i.e. X2,2 ∈

int(Bop(A2,2 − xx⊺)) and A2,2 − xx⊺ is positive definite.

By induction, there exist exactly 2n−1 matrices U2,2 ∈ O(A2,2 − xx⊺) matching the strictly upper
triangular entries of X2,2. For each of these choices, the matrix U2,2 has rank n − 1. Define
Ũ ∈ Rn×(n−1) as

Ũ =
(

x⊺

U2,2

)
.

Note that Ũ⊺Ũ = xx⊺ + U⊺
2,2U2,2 = A2,2. By Lemma 8, for each choice of Ũ , there are exactly two

ways to append a column to the left of Ũ to construct a matrix U ∈ O(A). Furthermore, the two
choices differ in their diagonal entry. Finally, we note that the strictly upper triangular entries of U
match the strictly upper triangular entries of X. ■

For each ρ ∈ {±1}n, we may now define the map Xρ : int(πT (Bop(n))) → O(n) to be the output
of the above construction applied to σ ∈ int(πT (Bop(n))), where in the k × k submatrix we pick
the larger (or smaller) possible diagonal entry if ρn−k+1 is positive (or negative). For example, if
σ = 0 ∈ R(n

2), then Xρ(σ) = Diag(ρ) ∈ O(n). Inductively applying Remark 3, one may verify that
Xρ(σ) is continuous as a function of σ ∈ int(Bop(n)).

Lemma 9. Given σ ∈ int(πT (Bop(n))) and ρ ∈ {±1}n, we can construct Xρ(σ) in time O(n3).

Proof. We will apply the construction of Proposition 4 using Lemma 8 while recursively maintaining
A−1

2,2 in time O(n2). It is clear that we have access to A−1
2,2 at the very top of the recursion as

A−1
2,2 = I−1

n−1 = In−1. It remains to prove the following fact: Given A ∈ Sk and x ∈ Rk such that
A − xx⊺ ≻ 0, it is possible to compute the inverse of the bottom-right (k − 1) × (k − 1) block of
A − xx⊺ from the inverse of A in time O(n2).

Write

A − xx⊺ =
(

α a⊺

a A2,2

)
.

Note that α > 0 by the assumption that A − xx⊺ ≻ 0. Then,(
α

A2,2

)
= A − xx⊺ −

(
0 a⊺

a 0

)
.
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Thus, we can compute A−1
2,2 by computing the inverse of the expression on the right hand side and

taking its bottom right block. This can be done via the Sherman–Morrison formula in time O(n2).
Repeating once for each of the n entries results in O(n3) time in total. ■

By Proposition 4, diag
(
π−1

T (σ) ∩ O(n)
)

⊆ Rn is a set of 2n distinct elements. The following result,
due to Fiedler [11], allows us to deduce that the 2n elements correspond to the vertices of a (scaled)
hypercube.

Lemma 10 (Fiedler [11]). Let U ∈ O(n) and let R ∈ Ra×b be a submatrix of U where a + b > n.
Then, ∥R∥op = 1.

Lemma 11. Let σ ∈ int(πT (Bop(n))). There exist scalars αi < βi for i ∈ [n] (independent of ρ)
such that for all ρ ∈ {±1}n,

Xρ(σ)i,i =
{

αi if ρi = −1
βi if ρi = 1

.

Proof. Fix σ ∈ int(πT (Bop(n))) and let X ∈ int(Bop(n)) such that πT (X) = σ.

For i ∈ [n], let R̂i denote the i × (n − i + 1) dimensional submatrix of X with bottom-left entry at
coordinate (i, i). Note that

∥∥∥R̂i

∥∥∥
op

≤ ∥X∥op < 1 as X ∈ int(Bop(n)). Let Ri(s) ∈ Ri×(n−i+1) denote

the matrix that replaces the bottom-left entry of R̂i with s ∈ R. Then, Ri(s) parameterizes a line
that intersects the interior of the operator norm ball (which we will denote here by Bop(i, n − i + 1)).
As the operator norm ball is a compact convex body, there are exactly two choices of s, denoted
αi < βi, for which ∥Ri(s)∥op = 1.

Then, by Lemma 10, we deduce that diag
(
π−1

T (σ) ∩ O(n)
)

⊆
∏

i {αi, βi}. Combining with Proposi-
tion 4 completes the proof. ■

The following result states that the sign of det(Xρ(σ)) depends only on ρ.

Lemma 12. Let σ ∈ int(πT (Bop(n))) and ρ ∈ {±1}n. Then det(Xρ(σ)) = ∏
i ρi.

Proof. Fix ρ ∈ {±1} and σ ∈ int(πT (Bop(n))) and consider the continuous function f(α) :=
det(Xρ(ασ)) defined on α ∈ [0, 1]. As Xρ(ασ) ∈ O(n) for all α ∈ [0, 1], we have that f can only take
on the values ±1. As f is also continuous, it must be constant so that f(1) = f(0) = det(Xρ(0)) =
det(Diag(ρ)) = ∏

i ρi, where we used Xρ(0) = Diag(ρ) as mentioned above. ■

6.1 Refinements of Theorem 5

The following theorem extends Theorem 5 to an approximation result in the remaining case to
maximization over SO(n) with SUT constraints and det(A) < 0.

Theorem 10. Let A ∈ Rn×n be a diagonal matrix with det(A) < 0 and let C ⊆ πT (Bop(n)) be a
nonempty closed convex set. Then (6) provides a

(
1 − 1

n

)
-approximation of (4) in the following

sense:

max
X∈SO(n)

{⟨A, X⟩ : πT (X) ∈ C}

≥
(

1 − 1
n

)
max

X∈Bop(n)
{⟨A, X⟩ : πT (X) ∈ C} + 1

n
min

X∈Bop(n)
{⟨A, X⟩ : πT (X) ∈ C} .
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Proof. Let ρ̂ = sign(diag(A)) and X̂ := X̂ρ̂ ∈ Bop(n) maximize (6) with σ = πT (X̂). We will
only consider the case where σ ∈ int(πT (Bop(n))). The general case follows by continuity and
compactness.

We will fix σ in the remainder of the proof and write Xρ instead of Xρ(σ). Let (αi, βi) be the
quantities furnished by Lemma 11 applied to σ. For i ∈ [n], let ρ(i) ∈ {±1}n denote the vector that
negates the ith entry of ρ̂ = sign(diag(A)), and by Lemma 12, for all i ∈ [n], we have Xρ(i) ∈ SO(n)
and πT (Xρ(i)) = σ ∈ C.

Then,

max
X∈SO(n)

{⟨A, X⟩ : πT (X) ∈ C} ≥ max
i∈[n]

〈
A, Xρ(i)

〉
=
〈
A, X̂ρ̂

〉
− min

i∈[n]
|Ai,i(βi − αi)|

≥
〈
A, X̂ρ̂

〉
− 1

n

(
n∑

i=1
|Ai,i(βi − αi)|

)

= ⟨A, Xρ̂⟩ − 1
n

(⟨A, Xρ̂⟩ − ⟨A, X−ρ̂⟩)

=
(

1 − 1
n

)
⟨A, Xρ̂⟩ + 1

n
⟨A, X−ρ̂⟩ ,

where in the second line we used that diag(Xρi) differs from diag(X̂) = diag(X̂ρ̂) only in the
i-th entry, swapping αi, βi, and in the fourth line we used that ρ̂ = sign(diag(A)), so X̂±ρ̂ satisfy
πT (X±ρ̂) = σ ∈ C for σ ∈ int(πT (Bop(n))), and X̂±ρ̂ are the maximizer and minimizer of the
optimization problem Equation (5) over O(n). ■

The approximation factor of 1 − 1
n in the statement of Theorem 10 is optimal as can be seen by

considering the case A = Diag(1, 1, . . . , 1, −1) and C = {πT (0n×n)}. In this case, the optimal value
of the optimization problem over SO(n) is n − 2, whereas the maximum and minimum values over
O(n) are n and −n respectively.

7 Obstructions to further generalization
This section collects a number of results showing that our hidden convexity results are essentially
tight.

7.1 Maximality of Corollary 1

Recall that Corollary 1 shows any two dimensional linear image of SO(n) is convex. The following
result shows this is maximal in a specific sense.

Lemma 13. For any n ≥ 3, there exists a linear map π : SO(n) → R3 so that π(SO(n)) is
nonconvex.

Proof. We define

π(X) =
(

X11, X12,
n∑

i=3
Xii

)
.

Let H = {x ∈ R3 : x3 = n − 2}.
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To see that S = π(SO(n)) is nonconvex, we show that S ∩ H is nonconvex. Consider a general
X ∈ SO(n). It holds that ∑n

i=3 Xii = n − 2 if and only if Xii = 1 for all i > 2. This occurs if and
only if X is block diagonal, so that

X =
( cos(θ) sin(θ)

− sin(θ) cos(θ)
I

)
,

for some θ ∈ [0, 2π].

Now, if X has this form, then π(X) = (cos(θ), sin(θ), n − 2), i.e.,

S ∩ H = {(sin(θ), cos(θ), n − 2) : θ ∈ [0, 2π]}.

This is clearly nonconvex, for example, (0, 0, n − 2) ∈ conv(S ∩ H) \ (S ∩ H). ■

In fact, this construction gives us an example of a 2-constraint optimization problem over SO(n) for
which the conv(SO(n)) relaxation is not tight. Consider the following optimization problem:

max
X∈SO(n)

{
n∑

i=3
Xii : X1,1 = 0

X1,2 = 0

}
. (16)

We have seen that it is not possible for a matrix in SO(n) to attain a value of n − 2 in this problem,
since any matrix in SO(n) where ∑n

i=3 Xii = n − 2 has the property that X2
11 + X2

12 = 1. However,
n − 2 is attainable by a convex combination of matrices in SO(n),

1
2

((
1 0
0 1

I

)
+
(

−1 0
0 −1

I

))
.

Thus, the convex relaxation of (16) that replaces SO(n) with conv(SO(n)) achieves value n − 2.

7.2 Maximality of [18, Theorem 8]

Horn’s result [18, Theorem 8] shows that the diagonal projection of SO(n) is a convex polytope. A
slight modification of the construction from the previous subsection shows this is maximally convex
in the following sense:

Lemma 14. Let A ∈ Rn×n be a nondiagonal matrix. Consider the linear map πA : Rn×n → Rn+1,
so that πA(X)i = Xii for i = 1, . . . , n, and πA(X)n+1 = ⟨A, X⟩. Then πA(SO(n)) is not convex.

Proof. We first consider the case when A is not symmetric. By permuting coordinates, we may
assume A1,2 ̸= A2,1. Define H = {x ∈ Rn+1 : xi = 1 for i = 3, . . . , n} and consider π(SO(n)) ∩ H.

We have seen that if X ∈ SO(n) and Xii = 1 for i = 3, . . . , n, then

X =
( cos(θ) sin(θ)

− sin(θ) cos(θ)
I

)
,

and therefore,

⟨A, X⟩ = (A11 + A22) cos(θ) + (A1,2 − A2,1) sin(θ) +
n∑

i=3
Aii.
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We will consider the linear map of π(SO(n)) ∩ H into R2 that sends π(X) to(
X1,1,

⟨A, X⟩ − (A11 + A22)X1,1 −
∑n

i=3 Aii

A1,2 − A2,1

)
= (cos(θ), sin(θ)).

In other words, this linear map sends π(SO(n)) ∩ H to a circle. We conclude that π(SO(n)) is not
convex.

Now, we consider the case when A is symmetric but not diagonal. We may permute coordinates
to assume that A1,2 = A2,1 ̸= 0. Let D(i) be a diagonal matrix where D

(i)
ii = −1 and for all j ̸= i,

D
(i)
jj = 1. Then, define A′ = D(1)AD(2), which is not symmetric. Note that

πA′(X) = (X11, X22, X33, . . . , Xnn, ⟨A′, X⟩) = τ(πA(D(1)XD(2))),

where τ(x) = (−x1, −x2, x3, . . . , xn, xn+1). In particular, πA(SO(n)) is convex if and only if
πA′(SO(n)) is convex, from which the claim follows. ■

7.3 Maximality of Corollary 2

Corollary 2 gives an example of an m =
(n

2
)
-dimensional linear projection of SO(n) that is convex.

The following lemma shows this is maximal in terms of dimension.

Lemma 15. Suppose n ≥ 3 and π : Rn×n → Rm satisfies rank(π) >
(n

2
)
. Then, π(SO(n)) is

non-convex.

Proof. It suffices to show this statement in the case where rank(π) = m. Suppose that π(SO(n)) =
π(conv(SO(n))) is convex. A convex set has the property that it either contains an interior point or
is contained in a proper affine subspace. As conv(SO(n)) is full-dimensional for all n ≥ 3 and π has
full rank, we deduce that π(conv(SO(n))) cannot be contained in a proper affine subspace of Rm.

Therefore, π(SO(n)) must have an interior point and in particular, has a positive measure.

This is a contradiction to Sard’s lemma: SO(n) is
(n

2
)
-dimensional and Rm is m-dimensional, but

Sard’s lemma states that the image of a manifold of dimension less than m under a smooth map
into Rm must have measure zero. ■

7.4 Necessity of det(A) ≥ 0 in Theorem 5

We have shown that if A is a diagonal matrix with det(A) ≥ 0, then the optimization problem

max
X∈SO(n)

{⟨A, X⟩ : πT (X) = σ}

agrees with the convex relaxation replacing SO(n) with Bop(n) (see Theorem 5). The following
numerical example shows that the assumption that det(A) ≥ 0 cannot be dropped in Theorem 5
even if we strengthen the convex relaxation by replacing SO(n) with conv(SO(n)).

The following numerical example is computed using the cvxpy convex optimization package [8] and
the description of conv(SO(3)) given in [27][Theorem 1.3]:

max
X∈SO(3)

X1,1 + X2,2 − X3,3 :
X1,2 = 0.5
X1,3 = 0.3
X2,3 = 0.2

 = 0.921,
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whereas

max
X∈conv(SO(3))

X1,1 + X2,2 − X3,3 :
X1,2 = 0.5
X1,3 = 0.3
X2,3 = 0.2

 = 1.0.

8 Summary and open questions
In this paper, we proved new hidden convexity results inspired by solving constrained optimization
problems over SO(n) and O(n). These results in turn show that specific structured instances of
constrained optimization over SO(n) and O(n) can be efficiently solved via their convex relaxations.
We close by posing some natural questions surrounding hidden convexity.

Convex coordinate projections. In general, it seems to be difficult to fully characterize the
possible sets of coordinates S ⊆ [n] × [n] so that the projection of SO(n) onto the coordinates in S
is convex.

We will note some basic invariants of this question: clearly if πS(SO(n)) is convex, then for all T ⊆ S,
πT (SO(n)) is convex. We say that S has a property up to permutation if there are permutations σ
and ρ so that {(σi, ρj) : (i, j) ∈ S} has this property. Similarly we say that S has a property up to
transposition if either S or {(j, i) : (i, j) ∈ S} has this property. Clearly, S has the property that
πS(SO(n)) is convex if and only if it has this property up to permutations and transposition.

Note also that by Lemma 10, that πS(SO(n)) is not convex if S contains a rectangle of size a × b
where a + b > n. Here, by rectangle we mean a subset of S of the form A × B ⊆ S where A, B ⊆ [n]
and |A| = a and |B| = b.

Using this idea with additional casework (which we feel is ultimately uninformative) we can obtain
the following characterization of the coordinate subsets of [4] × [4] so that πS(SO(4)) is convex:

Lemma 16. Let S ⊆ [4] × [4] be such that πS(SO(4)) is convex. Then (up to permutations and
transpositions), S is a subset of one of the following:

• T = {(i, j) : i < j ∈ [4]}

• D = {(i, i) : i ∈ [4]}

• F = {(1, 1), (1, 2), (2, 3), (2, 4)}.

The structure of these examples suggest that there may be some rich combinatorial information
hidden in the question of whether or not a given coordinate projection of SO(n) is convex. In
particular, we suspect the following: consider the decision problem CONVEX whose input is a set
S ⊆ [n] × [n], and whose output is TRUE if πS(SO(n)) is convex, and FALSE otherwise.

Conjecture 1. The problem CONVEX is NP-hard.

We will remark that it is not even clear if this problem is in NP, as there does not seem to be
an efficient witness to the fact that πS(SO(n)) is convex. We note that determining whether
S ⊆ [n] × [n] is (up to permutations and transpositions) a subset of the upper triangular entries of
[n] × [n] is NP-hard [10].

Small semidefinite representation of two-dimensional images. It is known that the smallest
equivariant (see [27] for a definition) semidefinite representation of conv(SO(n)) is exponential in
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size [27]. We leave open the question of whether π(SO(n)), where π : Rn×n → R2, may have a small
(possibly linear-sized) semidefinite representation.

Hidden convexity of multiple copies of SO(n). Finally, we also leave the study of convex
images of direct products of SO(n) to future work. Such results may be useful in applications such
as cryo-EM [1], where the optimization problems contain multiple SO(n) matrices.
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A Separation and optimization oracles for the parity polytope
It is possible to implement separation and optimization oracles for PPn that run in O(n log n) time.

Separation. We will use the following description of PPn given in [20, 22]:

PPn := {x ∈ [−1, 1]n : ⟨x, 1n − 2 · 1S⟩ ≤ n − 2, ∀ odd S ⊆ [n]} .

Here, we will say that S ⊆ [n] is odd if |S| is odd. Else, S is even. The set of constraints can be
rewritten as

min
odd S⊆[n]

⟨x, 1S⟩ ≥ 1
2(⟨x, 1n⟩ − (n − 2)).

In O(n log n) time, we may sort the entries of x and compute the sums of all odd-length prefixes of
the sorted vector. If every sum is at least 1

2(⟨x, 1n⟩ − (n − 2)), then x ∈ PPn. Otherwise, we have
found a separating hyperplane.

Optimization. We will use the vertex description

PPn := conv {1n − 2 · 1S : even S ⊆ [n]} .

Then, given w ∈ Rn, we may optimize maxx∈PPn ⟨w, x⟩ by solving minevenS⊆[n] ⟨w, 1S⟩. We can
construct a minimizer of the latter problem in O(n log n) time by sorting w and computing the
even-length prefix sums of the sorted vector.
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B Connections with quadratic convexity theorems
This appendix interprets hidden convexity results on SO(n) as quadratic convexity results on the
unit sphere.

A basic result in the Lie group theory of SO(n) is the existence of a quadratic map Q : R2n−1 → Rn×n

and a subset Spin(n) of the unit sphere in R2n−1 such that Q(Spin(n)) = SO(n). This map is
quadratic in the sense that there exists a collection of n2 symmetric matrices {Aij} ⊆ S2n−1 indexed
by (i, j) ∈ [n]2 such that

(Q(x))i,j = ⟨x, Aijx⟩ .

This result and its construction are explained in detail in [27, Appendix A]. It is additionally shown
in [27, Theorem 1.1] that for any Y ∈ Rn×n,

max
X∈SO(n)

⟨Y, X⟩ = max
x∈Spin(n)

⟨Y, Q(x)⟩ = max
x∈S2n−1−1

⟨Y, Q(x)⟩ . (17)

Now, let π : Rn×n → Rm be a linear function. Then,

π(SO(n)) = (π ◦ Q)(Spin(n)) ⊆ (π ◦ Q)(S2n−1−1) ⊆ conv(π(SO(n))).

Here, the last inclusion follows by (17).

We deduce that if π(SO(n)) is convex, then equality holds throughout this chain and the image
of the unit sphere S2n−1−1 under the quadratic map π ◦ Q is convex. For example, combined with
Corollary 2, we have that {

(⟨x, Aijx⟩)i<j : x ∈ S2n−1−1
}

⊆ R(n
2)

is convex. As another example, combined with [18, Theorem 8], we have that
⟨x, A11x⟩

...
⟨x, Annx⟩

 : x ∈ S2n−1−1

 ⊆ Rn

is convex (and equal to the polytope PPn).
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