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Foreword

We are pleased to present the technical program of the 16th ACM International Workshop on Immersive
Mixed and Virtual Environment systems (MMVE) 2024. This workshop has always embraced a
multidisciplinary approach, exploring not only the evolution of immersive experiences but also the
crossroads where immersive technology intersects with diverse domains. Co-located with ACM
Multimedia Systems Conference (MMSys) 2024, MMVE allows the gathering and interaction of
researchers in the field of immersive technology, from both academia and industry, with multimedia
system researchers.

This year MMVE received an impressive number of 21 high-quality submissions spanning a broad
spectrum of multimedia topics, including virtual reality, multisensory experience, point cloud compression,
quality of experience, social virtual reality platform, avatar design, and gaming. Thanks to the hard and
valuable work of the 24 Technical Program Committee (TPC) members, each submission underwent a
rigorous review process and most of them received three high-quality reviews. As a result, 13 full papers
and 2 short ones will be presented in the workshop. Keeping the tradition of MMVE as an interactive and
discussion-oriented workshop that serves as an inclusive and interdisciplinary forum, the program has
been structured to facilitate engagement and collaboration. Two oral sessions will serve as an opportunity
to showcase 9 of the accepted papers, while a poster session for the remaining works will provide a
further chance to discuss and interact among authors and participants.
We would like to take this opportunity to thank all the people who have contributed to the success of
MMVE 2024, including all the authors for submitting their research efforts, the TPC members for their
valuable feedback during the review process, essential to create a high quality technical program. We
would also like to thank the MMVE Steering Committee and organisers of MMSys 2024 for their support
and help in shaping MMVE 2024.

We hope that MMVE 2024 will be an engaging, informative, and enjoyable experience for all participants.

MMVE 2024 Organizing Committee

Silvia Rossi, CWI, The Netherlands – General Chair
Débora Christina Muchaluat-Saade, UFF, Brazil – Technical Program Chair
Thomas Röggla, CWI, The Netherlands – Web Chair
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Evaluation 
Aspects NUM Questions                 Shorthand Response 

Type 

Presence 

1 I felt engaged during the simulation. Engagement Likert scale 
2 I felt immersed in the computer-generated world. Immersion Likert scale 
3 I was able to concentrate on the simulation without being distracted by my surroundings. Concentration Likert scale 
4 I forgot about the real world during the interaction. World Forgetfulness Likert scale 

Usability 

5 The equipment was comfortable to use. Equipment Comfort Likert scale 
6 I felt comfortable interacting with the child Avatar. Avatar Interaction Comfort Likert scale 
7 The interface of the tool was easy to understand and use. Interface Usability Likert scale 
8 I did not experience technical difficulties while interacting with the child Avatar. Technical Difficulty Likert scale 
9 I would feel very comfortable using this tool on my own next time. Ease of Future Use Likert scale 

Visual Fidelity  

10 The appearance of the child Avatar was realistic. Appearance Fidelity Likert scale 

11 The virtual environment where the child Avatar was located felt real and contributed to my 
overall immersive experience. Environment Fidelity Likert scale 

12 I perceived hand-movements/gestures from the child Avatar. Hand Movement Perception Likert scale 
13 The quality of the child Avatar’s movements was satisfactory (naturalness, realism, …). Movement Quality Likert scale 
14 The child Avatar’s lip movements were well synchronized with the speech. Lip Sync Accuracy Likert scale 

15 The child Avatar’s face expressions/movements felt realistic and were well synchronized 
with the speech. Facial Expression Fidelity Likert scale 

16 The overall perception was realistic and pleasant. Overall Realism Perception Likert scale 

Emotion 

17 I felt emotionally engaged during the interaction with the child Avatar. Emotional Engagement Likert scale 
18 I perceived emotions in the child Avatar’s responses.  Emotional Response Perception Likert scale 

19 The child Avatar’s emotional reactions (e.g. body language, facial expressions and 
behaviour) looked realistic. Emotional Reaction Realism Likert scale 

20 The child Avatar’s emotional reactions (e.g. body language, facial expressions and 
behaviour) consistently matched the content of the interview. Emotion-Content Match Likert scale 

Responsiveness 
21 The responsiveness of the system to my inputs felt right, natural and smooth (e.g. the 

system’s reaction time, the consequent responses/actions from the child Avatar). 
System Responsiveness 
 Likert scale 

22 I noticed a delay between my questions and the child Avatar’s responses/reactions. Response Delay Notice Likert scale 
23 The pace was the usual for a conversation with a child in such circumstances. Conversation Pace Normalcy Likert scale 

Appropriateness 
24 The child Avatar’s responses felt age appropriate.  Age-Appropriate Response Likert scale 
25 The child Avatar’s responses were consistent with respect to the general story. Story Consistency Likert scale 
26 The child Avatar’s responses were appropriate and on-topic with my questions. Response Relevance Likert scale 

Training 
Effectiveness 

27 From a learning perspective, my interaction with the child Avatar felt as effective as 
interacting with a human actor/trainer. Training Comparability Likert scale 

28 I think this tool should be included in investigative interviewing training programs. Tool Inclusion Recommendation Likert scale 

Empathy 
29 Please provide one or more examples of the aspects of the child Avatar that felt particularly 

effective in eliciting your empathy and understanding. 
Effective Empathy Elicitation 
Examples Open-ended 

30 Please provide one or more examples of the aspects of the child Avatar that felt particularly 
ineffective in eliciting your empathy and understanding. 

Ineffective Empathy Elicitation 
Examples Open-ended 
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A3Cplus - Efficient Anatomically Accurate Avatar Creation
Johannes Günter Herforth

University of Luxembourg
Esch-sur-Alzette, Luxembourg
johannes.herforth@uni.lu

Jean Botev
University of Luxembourg

Esch-sur-Alzette, Luxembourg
jean.botev@uni.lu

ABSTRACT
Virtual reality applications are witnessing increased adoption in
mental and physical health fields, from rehabilitation therapies
to psychological studies. The more advanced the application, the
greater the demand to incorporate realistic, custom avatars based on
the participant’s physical characteristics to enhance embodiment.
Current solutions focus on creating such avatars by using expen-
sive camera arrays to capture a 3D representation, which requires
technical skills and actively involves the participant in the process.
However, equipment and space requirements, setup complexity for
non-technical operators, and physical challenges for participants
often lead to difficulties and high costs for consistent adherence.
This paper presents A3Cplus, a tool to efficiently generate anatomi-
cally accurate avatars based solely on a small amount of participant
phenotypic data. An optimized processing pipeline uses this data
to manipulate specialized blend shapes automatically and mold a
generic model into the correct dimensions. We provide illustrative
examples of using our tool and discuss its general applicability to
immersive avatar-based virtual environments that require a high
degree of accuracy and embodiment.

CCS CONCEPTS
• Computing methodologies→ Shape modeling; Virtual real-
ity; • Human-centered computing→ Accessibility systems and
tools; • Applied computing → Psychology.

KEYWORDS
Avatar Creation, Blend Shapes, Clinical and Therapeutic Applica-
tions, Virtual Reality, Immersion
ACM Reference Format:
Johannes Günter Herforth and Jean Botev. 2024. A3Cplus - Efficient Anatom-
ically Accurate Avatar Creation. In 16th International Workshop on Immersive
Mixed and Virtual Environment Systems (MMVE ’24), April 15–18, 2024, Bari, 
Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3652212. 
3652215

1 INTRODUCTION
With the increasing availability and capabilities of Virtual Reality
(VR) technologies, their significance has surged, ushering in new
possibilities for immersive experiences and research. The unique
properties of VR systems that enhance these experiences are best

This work is licensed under a Creative Commons Attribution-NoDerivs International 
4.0 License.
MMVE ’24, April 15–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0618-9/24/04.
https://doi.org/10.1145/3652212.3652215

showcased when we can control the entire environment and pro-
vide a full-body immersion that engages the participant’s body
within a virtual environment. We are able to view objects and en-
vironments from multiple perspectives, observe changes in real
time, and visualize how they would appear with alterations. The
capability enables us to gain insights into aspects that are typically
challenging to perceive directly. More formally, a full-body immer-
sion within a virtual environment allows the user to experience
a sense of embodiment [5], which combines the feelings of being
present, owning their physical form, and exerting agency control
over it. By optimizing these three elements, more convincing body
illusions that enhance exploration and interaction with the virtual
world as if one is truly present can be established.

These illusions are particularly useful when considering research
combining VR and clinical psychological and physical treatments.
VR has already been successfully applied across a wide range of
issues, including pain management [9], anxiety [8] rehabilitation
of gait [2], and even learning to use new tools like wheelchairs [11].
While these studies have provided valuable insights into the ef-
fectiveness of these novel treatments, they are almost exclusively
conducted in isolation from a technical front, making it challenging
to compare results across various studies.

According to a meta-analysis published in 2018 [3], several obsta-
cles remain in VR applications for clinical settings and psychologi-
cal experiments. These challenges include limited trials in non-lab
settings, the technical expertise required, lack of standardization
across studies, and overall costs. As these applications of VR are
still in their infancy, it is not difficult to see that there are no trivial
problems to solve. In fact, a further analysis from 2022 [4] confirms
that many of the same challenges continue to persist in this field.

A major aspect that poses a significant barrier to entry for an
effective full-body illusion, is the requirement for a realistic 3D
avatar. Studies have demonstrated that realistic avatars can im-
prove the sense of body ownership [12] and enhance the subjective
experience for the participant [6]. For an effective experience, cus-
tomizing the avatar to align with body shape, dimensions, and
other phenotypic properties is crucial for achieving a high-quality
embodiment. Unfortunately, the most commonly used solution is
high-quality scanner-like systems, which introduce a substantial
ongoing cost for the end user. These costs are associated with ob-
taining and maintaining the scanning equipment, in addition to
the ongoing learning process. Furthermore, unique challenges also
present themselves due to the highly sensitive nature of the data in
a clinical or psychological application. These contexts demand strict
adherence to privacy and data protection regulations to protect
patient information. Another challenge is that not all users may
have the ability to enter the machine to get an optimal scan, limit-
ing their ability to receive treatment. Looking beyond stationary
care, chronic therapies also pose a challenge when the health of the
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body recovers (or worsens) at a faster rate, requiring more frequent
rescan sessions to keep up with the progress.

These problems can be summarized by three requirements for
this problem space. The first factor is the need for a dynamic and
consistent system that can adapt to changes in the user’s appearance
over time. This includes the ability to accommodate alterations such
as aging, body fitness or new features such as scars or a tan. These
changes should also be reversible and applicable live within the
VR application, enabling spontaneous, on-the-spot adjustments to
maximize embodiment in as many situations as possible.

Secondly, we need to focus on inclusive solutions that cater to
all participants involved in the process. This includes designing
user-friendly systems for operators, requiring minimal cost, space,
setup, maintenance, and reusability. Additionally, it should be opti-
mized for accessibility for the users, accommodating individuals
with physical impairments or forms of anxiety such as claustro-
phobia. Furthermore, it should be inclusive to developers of VR
applications, allowing them to easily integrate it into their own
projects, ensuring interoperability, compatibility, and consistency
across different therapies and experiments.

Lastly, we need to focus on user privacy by minimizing the use of
sensitive data for avatar creation. While creating the most accurate
3D representations is ideal, this usually requires using highly sen-
sitive personal information, such as body scans or images. Doing
so adds an extreme burden on operators to enact additional data
management, security, and dealings with liability and potentially
online 3rd parties. Scanning processes also affect participants by
requiring them to wear specialized slim-fit clothes, which can be
embarrassing and uncomfortable in front of others. It is crucial for
users to have access to realistic avatars without sacrificing their
privacy. Otherwise, it may deter and prevent them from receiving
the treatments they need.

This paper presents A3Cplus, aimed at creating a dynamic, in-
clusive, and privacy-preserving avatar creation process. In Sec-
tion 2, we provide an overview of existing tools used to create
humanoid models, including commercial options and an in-depth
analysis of two representative academic papers on their strengths
and weaknesses. Throughout Section 3, we discuss in more detail
the A3Cplus software, key features, and rationales that inspired its
creation. Additionally, we introduce the process workflow, demon-
strating how each feature contributes to simplifying its usage for
the operator. We conclude the paper by discussing the broader
implications of our tool along with areas for improvement, empha-
sizing the significance of general accessibility and applicability to
immersive avatar-based virtual environments.

2 3D CHARACTER CREATION
This section examines various commercial and open-source tools
on the market, and academic research conducted concerning 3D
character creation, discussing their features to provide the relevant
background behind the development of A3Cplus.

2.1 Commercial and Open-Source Software
Character creation tools are not limited to realistic avatars designed
specifically for VR applications. Many established software pack-
ages offer robust solutions for character design in various contexts,

including video games as prominent examples. Avatar-based video
game genres, such as role-playing games, provide a vast array of
character creation options for users to customize their characters.
However, if these models are not limited to a single game, they
can only be used in a narrow ecosystem of other games. Therefore,
we limit the scope of software to those capable of integrating with
any application by, e.g., exporting to 3D file formats. Overall, the
software availability can be differentiated between manual and
automatic creators.

A manual avatar creator is a software package focused on en-
hancing the experience for designers to configure different options
to do with avatar creation manually. Examples of such applications
include Reallusion Character Creator 1, DAZ3D 2 andMakeHuman 3.
All are intended to be used throughout the application develop-
ment cycle before the application is shipped to the customer. This
is because the tools have a high learning curve and have features
to automatically import them into various game engine editors or
export them to various 3D model data types.

While creating realistic, fully rigged, clothed, and textured avatars
using these tools is simple, it is challenging to customize them based
on accurate phenotypic measurements. However, this is not the
goal of most of these tools, which were created for designers to
make good-looking assets that fit into the specific design language
of their applications.

The largest benefit to using manual avatar creators is that they
operate offline and do not require any sensitive data to function,
which helps maintain the user’s privacy. As anatomical data cannot
be incorporated due to missing measures, designers must rely on
their artistic skills and knowledge of human anatomy to create a re-
alistic avatar. This shows that while they are very inclusive to users,
application developers, and operators who must prepare everything
in advance, they do not provide a consistent and easy-to-use system.
Looking at the output’s dynamics, each application can export a
functional humanoid rig. However, they each have their differences
in the types of blend shapes that are available to export. DAZ3D
stands out as the most dynamic manual creator as it enables the
operator to export any available blend shape, with the added benefit
of adding the body blend shape to attached clothes. Reallusion also
allows for the export of blend shapes, but only when they pertain
to facial expressions or are custom-made. However, the custom
blend shapes only work correctly within the Reallusion editor itself,
limiting their purpose outside the program. MakeHuman does not
export any blend shapes at all, providing the least dynamic avatar
export.

Automatic creators, on the other hand, rely on input images and
apply algorithms to generate an avatar that can be used similarly
to the manually generated avatar. Examples of such applications
include Meshcapade Me 4 and RealityScan 5. Both tools can pro-
duce lifelike representations of a human subject given a series of
input images. Meshcapade Me is based on the skinned multi-person
linear model (SMPL) [7], which operates via adjusting pose blend

1https://www.reallusion.com/character-creator/
2https://www.daz3d.com/
3http://www.makehumancommunity.org/
4https://www.meshcapade.com/
5https://www.unrealengine.com/en-US/realityscan/
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shapes learned from thousands of 3D body scans. The user inter-
face guides the operator through the process, allowing additional
manual adjustments via sliders altering different phenotypic body
measurements. RealityScan, like many other applications, applies
photogrammetry techniques to images captured on a mobile phone
to generate an output mesh automatically. This output mesh can
then be used with services such as Mixamo 6 to automatically gen-
erate a rig for the human mesh. Meshcapade Me’s avatars offer the
greatest flexibility among the commercial alternatives due to using
blend shapes as their building block. These shapes can be utilized
throughout the model, providing dynamic animations inside the
VR application. Note that these blend shapes may not have a clear
definition from a human perspective as they were trained on data
rather than being created by artists. On the other hand, applications
such as RealityScan offer simpler functionality by providing an ex-
act mesh that can be rigged for animation. They cannot dynamically
alter body shapes without requiring manual creation using separate
tools for each participant.

When looking at inclusivity from an operator’s perspective, these
tools provide a process of skipping the designing stage and going
straight for reality. Still, the process on either application intro-
duces opportunities for human error and requirements to rescan
if something goes wrong. In addition, since there is no straightfor-
ward method for importing the generated models directly into VR
applications, they must either be manually imported into an editor
or imported fully at runtime. In terms of privacy, both programs
require users to sign up for accounts and upload their input im-
ages for the service’s hardware to apply the relevant algorithms to
generate an output mesh. This process may raise concerns about
data security and potential misuse of sensitive information. This
feature alone makes it problematic or even impossible to include
these options in clinical applications.

Overall, commercial applications create realistic-looking avatars
and offer various customization options to adapt the avatar to the
user. They typically export their models to common formats such as
FBX, glTF, or obj, necessitating careful datamanagement by the user
and requiring developers to implement this functionality in their
programs. However, these tools’ significant limitations are either
the absence of exact body dimension measurements or reliance on
third-party platforms for generating anatomically accurate avatars.

2.2 Scientific Projects
3D character modeling encompasses a wide range of disciplines
and technologies to achieve high-quality results.

One of the projects best resembling the goals of our study aims
at creating a “Virtual Caliper” [10] for measuring the correct body
dimensions using an HTC Vive headset and two SteamVR Light-
house base stations. The authors present an application that allows
for the creation of metrically accurate body shapes by utilizing the
VR controllers as measuring points rather than relying on physi-
cally based methods. They employed user studies to identify the
most effective measurement points for accurately capturing body
dimensions in VR environments. By reducing the number of opti-
mal measurements, they further refined the results by optimizing

6https://www.mixamo.com/

SMPL-based regressors based on these measures, ultimately landing
on a few that became their user input in their process.

The result entails a process engaging the participant in following
a guidedwalkthrough in VR. It is important to note that the tasks are
entirely delegated to the participant rather than the experimenter.
The measurements gathered from the six placements, as well as
weight, are fed into custom SMPL linear regressors using least-
squared computation to produce an avatar.

The study presents a model generation process that offers fast,
guided, accurate, and privacy-aware body dimension measurement
within VR environments. Although the resulting anatomy appears
visually plausible based on input measurements, it lacks methods
for adding textures such as skin color, clothing, or facial features.
The application’s reliance on the HTC Vive system limits its com-
patibility with other controllers and necessitates porting to different
systems. Additionally, the user-guided process only applies to users
who can stand up and go through the process, which may not be
feasible for all individuals. The study showcases a desktop tool
that allows for adjusting and exporting the model into FBX format,
circumventing the virtual caliper process. Given that their results
show subpar performance with real-life measurements and require
post-processing adjustments to make the model more plausible, it
indicates that it may not be well-suited for this specific task.

Another related study [1] focuses primarily on advancements
in reconstructing human meshes out of a generic base model. To
customize the base avatar model, the user must go through two
separate 3D scanning steps. The first step consists of 40 DSLR
cameras which capture the full body from a standing A-Position. In
the second phase, a setup of 8 DSLR cameras captures the user from
a sitting position, resulting in consistent facial scan information.
For each scan, a point cloud is generated, where the goal is to align
the base model with the new point set. After manually selecting
nine landmarks on both the scan and the base model to wrap it
around the point cloud.

The objective is to position the base model within the generated
point cloud by automatically aligning nine key points from the
base model to the scan. This is completed via a pose-optimizing
pipeline, refining closest point correspondences and performing a
fine-scale deformation to the initial point set. Textures are then com-
puted based on camera images and refined or adjusted according to
the presence of artifacts and the effectiveness of capturing details
in unseen regions like under the arms. The facial reconstruction
pipeline is similar. However, more features are transferred from
the base model, such as its facial blend shapes. In addition, specific
facial details such as teeth and eyes are retained from the original
textures.

The finished product consists of the base mesh fitted and opti-
mized to the structure given in the scan’s point cloud. The authors
showcase the flexibility of their approach by demonstrating how the
textures of the newly created avatar can be effortlessly swapped be-
tween different scans having undergone the same treatment. This
allows visual modifications to be even faster if only the texture
needs to be altered. Since the procedure involved minimal manual
intervention, consisting of selecting reference points and transfer-
ring images, the authors assert that it can be completed rapidly
within 10 minutes.
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Figure 1: A3Cplus user interface.

Overall, both papers present distinct methods for generating
realistic-looking avatars using unique and specialized techniques.
Since both rely on base avatar models as their foundation, they
are both very dynamic for use in VR applications. Despite this,
they share limitations that may affect their inclusivity, such as
reliance on specific hardware, substantial space requirements, and
an assumption of a fully capable user to participate in the avatar
creation process.

3 THE A3CPLUS AVATAR CREATOR
A3Cplus is a tool for efficiently creating anatomically accurate
avatars designed to mitigate the limitations of existing solutions, as
discussed in Section 2.We placed particular emphasis on simplifying
the process and making it as non-technical as possible.

3.1 Tool Architecture
To achieve our goal of facilitating the avatar creation process, we
opted for the Keep it simple, Stupid! (KISS) andWhat you see is what
you get (WYSIWYG) philosophies. The KISS principle promotes
developing simple systems as they work best in contrast to more
complex systems. In the context of our tool, this means keeping
the number of variables low, letting the operator see the entire
program in one window without any drop-down menus or hidden
options. On the other hand, WYSIWYG techniques center on al-
lowing the resulting output to be seen directly within the editing
window. Within our tool, this provides a sanity check for operators
and a guarantee that the output model resembles the participant.
Combining both, we can ensure a straightforward and intuitive
user experience in our user interface, as shown in Figure 1.

The user interface is organized between two sections, featuring
a spacious and bifurcated layout consisting of an output view and
a controller view.
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Figure 2: Main body measurements.

On the left side, the output view displays a live 3D-rendered
scene with a uniformly lit humanoid model we use to project our
measurements onto. The operator is free to adjust the position
and rotation of the camera view to inspect the model from all
perspectives to ensure it is correct. While the operator may interact
and change the view on the model, they cannot alter any settings
to do with changing the model directly.

The right side provides the operator an interactive space to
seamlessly manipulate parameters that affect the model in real
time on the output view. Here, the individual measurements can
be applied, and non-visual metadata, such as participant ID, can be
altered.

Combining both sides, the operator is guided linearly from the
top to the bottom of the interface, ensuring a chronological and
straightforward interaction from input to output.

3.2 Base Avatar
Due to the many advantages of the model outlined in Section 2,
we chose to utilize DAZ3D’s Genesis 9 model as a starting point
for avatar creation. Compared to other options, by allowing full
blend shape export and automatic generation of blend shapes for
clothes, the avatars allow for simply and accurately incorporating
extra features. While we utilized the available model for our ini-
tial implementation, our tool can be easily adapted to work with
other base models. Utilizing a custom avatar could yield even more
benefits and tailored results.

3.3 Blend Shapes and Optimization
Rather than wrapping the base model around a scan or basing
the output on generalized blend shapes, we focus on modifying
pre-designed, highly specialized blend shapes that carry human
meaning, such as “Hip Size” or “Leg Length”. This approach of-
fers two advantages. First, by constraining changes to shapes that
are plausible as human bodies, we ensure that our models remain
realistic and grounded in human anatomy. Second, this enables
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developers to easily incorporate these shapes into their applica-
tions, allowing for live experiences where body shape can change
dynamically.

To measure and adjust blend shape values based on phenotypic
values, we first established methods of measuring the points of
interest using our base model. Our aim was to create intuitive,
systematic measurement processes that are easy for operators to
understand, apply to a user, and implement into their procedures.
We accomplished this by using the height and identifying key points
of interest on the base mesh, labeled as indicated in Figure 2. These
measurements represent specific aspects of human anatomy and
could be easily measured by operators and generalized into combi-
nations of blend shapes to represent an accurate body shape. The
simplicity of the measurement process enables accessibility options
as an avatar can be created while users are lying down, providing
avatar options that include users with physical limitations.

With the measurements established and obtained, they are trans-
ferred to the base model. Some measurements, such as shoulder,
leg, and arm length, are relatively simple to adjust since they oper-
ate independently of other measurements and can be achieved by
utilizing blend shapes that proportionally adjust the relevant body
parts. By making minute adjustments to these blend shapes, we can
ensure that the measurements between the key points reflect the
desired proportions.

The remaining measurements are more complex, as they involve
working with multiple blend shapes simultaneously. As leg length
is directly related to the height of the avatar, adjusting the height
parameter only affects the upper body by stretching it until the
height is reached, ensuring that each constraint is met. If both
height and leg length are not set correctly, this can result in an
unnatural body structure. On the other hand, when given valid
values (where height is at least greater than leg length), the tool
produces accurate and visually appealing height proportions.

The challenge becomes more complex when dealing with the
body core. Humans come in various shapes and sizes, making it
challenging to create a single set of blend shapes that accurately
represents all bodies. To address this issue, we leverage the princi-
ples of body shapes, which are well-established in fashion design,
as a starting reference to optimize clothes to a specific type of body
shape. Adapting this concept to our models allows us to tailor how
we utilize blend shapes based on the input body dimensions.

Using the measurements from Figure 1 and adapting the body
shape parameter results in the differences shown in Figure 3. As
only the body shape differs, the change leads to a more substantial
contrast in the chest region, accompanied by a smaller variation in
the pelvic area due to the reduced span between the waist and hips.
For instance, the avatar in Figure 3b shows how the chest region
narrows, whereas the pelvic area widens, leading to its triangular
shape. Comparing the hourglass avatar in Figure 3e to the rectan-
gular shape in Figure 3d, the hourglass-shaped avatar possesses
both a wider chest and pelvic area, creating a distinct sharp and
straight gradient extending from the waist. The optimizations for
each body shape type are designed by utilizing blend shapes that
impact the entire structure of the core body, ranging from the chest
to the hips and thighs.

There are also differences in weight and fitness between vari-
ous body shapes, with weight gain or loss having unique effects
depending on the general body shape.

Individuals with a circular body shape will experience more
weight gain around their waist. In contrast, those with a triangular
body shape will notice greater increases in their lower waist and
hip area. These differences are reflected by incorporating a final
fullness slider that adjusts the body shape, ranging from a more fit
representation to a more curved and full-body type. This enables
operators to create models that accurately reflect the individual’s
desired appearance based on their specific body shape and weight
distribution.

A3Cplus offers comprehensive customization options for the
most prevalent body shapes, including circle, triangle, inverted
triangle, rectangle, and hourglass. These shapes can be selected
through a shape selection interface, as shown in Figure 1. In cases
where an operator is unsure which body shape to select, they can
cycle through the options until they find a visually suiting match.

3.4 Model Export
A3Cplus’s export process is another major aspect, setting it apart
from the existing tools. Conventionally, as explored in Section 2,
tools require an export of the entire 3D model to a file to then
import them into another application. While it is possible to export
a complete model with applied blend shapes to the GL Transmis-
sion Format (glTF) file type in A3Cplus, it is not the recommended
method as it requires the export of large files and an overall frag-
mented user experience. As the base model is generic and already
contains all the potential positions that can be generated in the
tool, exporting entire models would be space inefficient and more
challenging to deal with in other software. Since the base model
is designed to handle a wide range of blend shape possibilities,
exporting the entire model is unnecessary or inefficient when only
blend shape values need to be modified.

Since we are onlymodifying blend shape values, we can avoid the
model exporting process altogether and save the blend shape values
in more widely used interchange formats like JSON. This approach
also makes it easier for users to work with the output in their 3D
applications, as they can import and optimize the same model as
seen in our tool into their editors. Editing their environments using
the same model enables the developer to test their 3D environment
with any potential blend shape combinations, guaranteeing that
their program will always work. In addition, game engines such
as Unity or Unreal do not support importing model files during
runtime natively as their importers are part of their Editor code
base, having to then rely on 3rd party importers.

Building on this point, exporting and manually managing the
file still adds friction and the potential for human errors. As we
simply want to pass the values into a different program, we do not
have the requirement of storing any of the resulting outputs. To
streamline the blend shape value use with A3Cplus, we developed
a feature that enables the direct transfer of blend shape values into
a custom target binary. This eliminates the need for manual file
management, significantly reducing the potential for human error
and further enhancing the user experience.
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(a) Circular. (b) Triangular. (c) Inverted triangular. (d) Rectangular. (e) Hourglass.

Figure 3: A3Cplus output examples of different body shape types based on identical measurements.

4 DISCUSSION AND FUTUREWORK
The proposed tool’s novel structural components leverage an ar-
tistically designed off-the-shelf base model to efficiently create
anatomically accurate avatars based on phenotypic measurements.

A3Cplus fulfills the initial requirement by being capable of dy-
namically adapting avatars to the user’s body in real-time, both
during creation and runtime. In addition to automatic rigging, it
enables the possibility of making real-time adjustments to its blend
shapes in the editor and within game engines. Results are determin-
istic within a specified tolerance, i.e., by inserting the same input
values, the output model remains consistent throughout each run.

A3Cplus also fulfills the inclusivity requirement for all involved
parties, from developer to operator and user. Firstly, by constituting
a low cost and a minimal space requirement, the tool provides a
low barrier to entry for realistic full-body illusions. Furthermore,
we have shown its advantages in development by incorporating
an easy-to-use interface and simple connectors into game engines
using command-line arguments. This makes it effortless for devel-
opers to create applications that require full-body illusions. The
intuitive user interface simplifies the process of creating avatars, al-
lowing users to customize their full-body illusions easily in a matter
of seconds. Whether the user is used to the tool or just starting out,
A3Cplus makes creating realistic and engaging full-body illusions
for various applications effortless. Lastly, by prioritizing accessibil-
ity, our tool accommodates individuals who would not be able to
take part in active scanning processes due to physical limitations
or anxiety around scanners or confined spaces, providing full-body
illusions accessible to anyone.

Regarding the final privacy requirement, we prioritized mini-
mizing data use throughout the entire life cycle of the process. We
mitigate contemporary privacy concerns by not utilizing photo-
graphic information and external online platforms for our tool’s
operation. If the final VR application does not store blend shape
values, our tool allows privacy-conscious individuals to utilize it
directly without disclosing their body measurement data to the
operator, as the tool does not store but passes on the blend shape
values to the application.

Although A3Cplus already aligns with our introduced primary
requirements, several areas remain that require further attention,
particularly for aspects such as the quality of the output. In its
current state, the tool operates under various assumptions that do

not accurately reflect reality, such as generating symmetrical bodies
and focusing uniquely on adults. Additionally, currently predefined
skin textures are used, i.e., visual features such as differing pigments,
scars, and birthmarks are not accounted for, which can influence
realism.

Introducing these elements into the user interface is complex, as
it could overwhelm an average user. Another limitation is the in-
ability to modify the head or facial features of the avatar, restricting
its applicability to an egocentric perspective where users cannot
view themselves in a mirror above the neckline. Lastly, as our blend
shape modifications are primarily based on common artistic or
fashion-based interpretations rather than scientific data, we cannot
be certain that every type of body shape is represented authentically.
The limitations conflict with creating a simple user experience to
create avatars for full-body illusions. We will address these issues
in future work and explore further user interface options that allow
more complex behavior to be seamlessly integrated.

5 CONCLUSION
This paper presents A3Cplus, a tool for efficiently creating anatom-
ically accurate avatars for clinical and therapeutic VR applications
and avatar-based immersive applications in general. In particular,
A3Cplus streamlines the creation process and provides an easy-
to-use, secure, and offline workflow that helps generate realistic
avatars without the need for complex scans and measurements.
During the process, a base avatar is adapted with blend shapes by
phenotypic measurements with a set of fundamental body types.
The results can be easily exported and integrated with other tools,
engines, or content creation pipelines.

A3Cplus is already employed in ongoing VR-based psychological
studies to help experimenters quickly create realistic, morphable
participant representations. Although the tool already satisfies the
core requirements and produces sufficiently detailed avatars for VR
applications in therapeutic or clinical contexts, several limitations
and potential improvements in terms of user experience remain. We
plan to address these and further refine the software to soon make
it available as a free and open-source resource for researchers.

Generally, A3Cplus is not limited to VR scenarios but can also
be used in less critical, non-therapeutic contexts where simple yet
anatomically accurate avatar creation is desired, such as in games,
digital fashion stores, or computer-aided design.
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ABSTRACT
The rapid expansion of virtual environments, particularlyMassively
Multi-user Virtual Environments (MMVEs), presents significant
challenges in scalability and performance. Traditional Client/Server
and Client/Multi-Server architectures often encounter limitations
such as server overload, which can lead to lag and reduced user
capacity, negatively affecting the user experience. Interest manage-
ment is an important mechanism in online games for improving
scalability, yet it typically involves the server sending duplicate
game state update messages for each client impacted by a game
state update. This paper introduces an approach that decouples state
update dissemination from state computation, enabling the server
to focus on state computation while a dedicated server manages the
dissemination of state updates to affected clients. Using the VAST
architecture, a Spatial Publish/Subscribe (SPS) library, allows for a
single updatemessage per game state update to be sent by the server,
thereby replacing the traditional interest management scheme. The
effectiveness of this approach is experimentally verified through
the implementation of SPS on an open-source, high-performance
Minecraft server, SpigotMC. Initial implementation and evaluation
demonstrate that the VAST architecture effectively reduces compu-
tational load and memory usage, while optimising network traffic
and latency. For up to six clients, the Minecraft server utilizing SPS
exhibits a six-fold decrease in the number of transmitted update
messages, marking a substantial reduction in packet transmission
compared to traditional methods. This research underscores the
potential of Spatial Publish/Subscribe systems in creating more
scalable and efficient virtual environments, addressing the evolving
demands of virtual world interactions.

CCS CONCEPTS
• Information systems→Datamanagement systems;Publish-
subscribe / event-based architectures; •Human-centered com-
puting → Visualization; • Theory of computation → Online
algorithms.
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1 INTRODUCTION
The rapid increase of virtual environments, notably in Massively
Multi-user Virtual Environments (MMVEs), large-scale simulations,
and Massive Multiplayer Online Games (MMOGs), underscores
the need for enhanced scalability and performance [9, 35]. These
environments, facilitating real-time interaction among widespread
users, face challenges in network performance and scalability, par-
ticularly when supporting thousands of simultaneous users in ex-
pansive worlds.

Traditionally, MMOGs employ centralised Client/Server (C/S) or
Client/Multi-Server (C/MS) architectures, handling game state com-
putations and user interactions centrally [35]. While relatively sim-
ple, these architectures struggle with scalability, leading to server
overload, communication latency, and restricted user capacity, neg-
atively impacting user experience. To mitigate this, Interest Man-
agement (IM) [3, 24] systems limit the game state accessible to a
user, confined to their Area of Interest (AOI) [17, 30], but this still
binds the server capacity to the number of users within an AOI.

Addressing these constraints, we propose a distributed architec-
ture, separating game state update dissemination from computation.
We integrate Spatial Publish/Subscribe (SPS) [14], an extension of
the Publish/Subscribe model with a spatial dimension, to replace
traditional IM. This approach of employing a single state update
message for each state change, which is disseminated by an SPS
broker, significantly improves scalability.

This paper explores the feasibility of substituting a commercial
MMOG’s IM with an SPS-based system, specifically in Minecraft,
by decoupling the game state update dissemination from the game
state computation. Using VAST, an open-source SPS communication
library [26], we replaced Minecraft’s AOI system with a SPS-based
IM system. The concept is experimentally verified using Koekepan
[10, 11], a research platform that extends SpigotMC (an open-source
Minecraft server clone) [32] to support server clusters.

Our contributions are twofold: introducing the SPS architecture
to improveMMOG scalability and performance, demonstrated using
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Minecraft, and providing experimental evidence of its efficiency in
state update dissemination with comparable latency to existing C/S
models.

2 BACKGROUND
2.1 Massively Multi-user Virtual Environments
MMVEs, particularly MMOGs, support interaction among thou-
sands to tens of thousands of users through avatars in a shared
virtual world [35]. MMOGs can be seen as state machines, where
game state changes (such as entity property changes), are updated
through state update messages sent to clients. Changes in game
state are caused by internal logic or user interactions, and are man-
aged through a cycle of event, processing, and update. This cycle
involves state update messages being disseminated to clients after
server processing ensures game logic compliance, known as state
computation. Packets, the primary data transmission units in net-
works, are crucial for communicating state changes. Efficient packet
management is key for real-time interaction in VEs, as they carry
essential metadata for routing and processing within the network.

The MMOG networking architecture must scale to handle dy-
namic user volumes. The prevalent Client/Server (C/S) architecture
features a central server maintaining the Global State of the game
world, with clients’ Local State being updated through state dissem-
ination. However, this architecture faces scalability limitations due
to the high cost and limitations on upgrading server processing
and network communication capacity.

Client/MultiServer (C/MS) architectures distributes the Global
State across multiple servers, whereas the Peer-to-Peer (P2P) model
utilizes each node as both client and server, sharing server computa-
tions. Hybrid architectures combine elements of these systems, like
using a central server for critical functions and P2P for less crucial
data, achieving a balance of control and scalability. Examples such
as the Distributed Scene Graph [18] demonstrate the effectiveness
of decoupling system components in hybrid models.

2.2 Interest Management
Interest Management (IM) is essential for scalability in multiplayer
games, acting as a data filtration system to manage state dissemi-
nation by limiting server-to-client updates, thus reducing network
traffic and packet transmission [13, 20, 24]. This restriction on data
access is based on the concept that players have limited sensing,
i.e. limited movement and vision based on their Area-Of-Interest
(AOI), a spatial area surrounding them. This means that game data
has both spatial and temporal locality [19], and leads to restricted
interaction capabilities outside a players immediate vicinity.

A common IM strategy is zoning or spatial partitioning, dividing
the game world into zones [6]. The player’s AOI can be the entire
zone the player is located in (i.e. the zone is the entire VE available
to the player) or a subarea within it, often visualised as a circle
or sphere centred on the player avatar’s location. The AOI adjusts
when the player moves, with the server updating the game state
relevant to a player’s AOI.

In C/MS architectures, a common issue is that players on the
borders of zones must still be able to see and interact with objects
that are just across the zone boundary in a neighbouring zone. This
requires more advanced interest management schemes that allow

Broker

Publisher 1

Publisher 2

Topic 1

Topic 2

Topic 3

Subscriber 1

Subscriber 2

Subscriber 3

Figure 1: A Publish/Subscribe (Pub/Sub) network, where pub-
lishers and subscribers interact through topics in a decoupled
system.

the AOI to overlap multiple zones. Managing AOIs across zone bor-
ders presents challenges like object replication [35], necessitating
solutions like mirroring, where servers replicate game object states
across neighboring zones [8, 21].

Despite its widespread adoption in MMOGs since its inception
[13], IM has seen little innovation until 2009, when Hu [14] made a
proposal to replace AOI-based IM with Spatial Publish/Subscribe
(SPS). SPS, an extension to the Publish/Subscribe messaging para-
digm, allows for the decoupling of game state update dissemination
from game state computation, effectively creating two distinct lay-
ers for IM and the VE hosting. SPS facilitates dynamic resource
allocation and removes IM overhead from VE hosting. This paper
validates the SPS-based IM scheme first proposed by [14].

3 RELATEDWORK
Yahyavi and Kemme [35] presented a comprehensive review of
interest management (IM) in MMOGs, highlighting the need for
efficient state synchronization in distributed virtual environments.
Their work underscored the significance of spatially-aware Pub/Sub
systems for enhancing scalability and reducing network traffic.
More recently [29] presented an survey of AOI management in
MMOGs, highlighting that IM is a core activity. Bharambe presents
Donnybrook [4], a P2P system that enables MMOGs with hundreds
of simultaneous players. Donnybrook reduces server bandwidth
demands by using “interest sets” to model players’ limited attention
and disseminate frequent updates to only a small set of peers each
player is focused on. It handles heterogeneity in peer capacity by
using a dynamic forwarding pool where high-capacity peers assist
lower-capacity peers.

The idea of using Publish/Subscribe messaging for IM was first
suggested by Morgan [23]. However, its topic-based approach falls
short for spatially-driven applications likeMMOGs. Addressing this,
Hu [14] proposed Spatial Publish/Subscribe (SPS) as a foundational
element for Virtual Environment (VE) systems. SPS enables nodes
in VEs to subscribe and broadcast within specific areas, refining
message dissemination based on spatial relevance.

Buyukkaya and Abdallah [5] introduced Voronoi-based spatial
partitioning in a fully distributed P2P architecture while also deal-
ing with data management for mutable and immutable objects. In
2016 Abdulazeez proposed a static AOI management scheme and
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evaluated using simulation in OPNET Modeler 18.0 to simulate
up to 1000 nodes [2] and in 2017 the static interest management
scheme was made dynamic [1].

Perhaps the most similar recent work is Cloud Imperium Games’
Star Citizen. It aims to enable massive-scale multiplayer spaceship
combat through what they call Server Meshing. This interconnects
game servers to distribute load by making use of a Replication Layer
which players are connected to and allows seamless transition be-
tween server instances and entity syncing. All data gets passed
through the replication layer to appropriate servers and clients.
Recent improvements have introduced Persistent Entity Streaming
(PES) across servers (via the replication layer) and allow servers
to unload data of neighbouring servers that are not applicable or
within view of the server’s geographic area. The replication layer
makes use of Object Container Streaming, which only transmits the
necessary subset of game data between servers. Although promis-
ing, server meshing currently only supports basic static meshing
and the technology is still in the early stages[27, 28].

To our knowledge, none of the related work addresses the is-
sue that update dissemination using AOI management still scales
linearly with the number of affected clients.

4 SPATIAL PUBLISH/SUBSCRIBE
ARCHITECTURE (SPS)

The Publish/Subscribe (Pub/Sub) architecture, crucial to SPS, pro-
vides a flexible alternative to traditional network architectures like
the C/S model for distributing information [12, 31]. In the basic
Pub/Sub system, illustrated in Fig. 1, publishers send messages to
a broker with a specific topic, and subscribers receive messages
of their subscribed topics, maintaining anonymity between them.
This model offers network scalability and supports event-driven ar-
chitectures through time and space decoupling between publishers
and subscribers.

However, the traditional Pub/Sub architecture, despite being
beneficial in IoT applications such as MQTT [25], falls short in
MMOGs due to its topic-based messaging. It does not accommodate
the spatial and temporal locality inherent in MMOG packets. Some
Pub/Sub protocols do offer geo-support but are restricted to spe-
cific locations and don’t acommodate generic spatial locations [26].
Additionally, Pub/Sub architectures typically don’t natively sup-
port multiple brokers, and often lack efficient message forwarding
algorithms or a partitioning overlay network for load management.

To overcome these spatial limitations, Hu introduced SPS, which
integrates spatial information into the Pub/Sub paradigm [14, 16],
making it suitable for spatially dynamic applications such asMMOGs.
As shown in Fig. 2, participants (publishers, subscribers and bro-
kers) define a Area Subscription or Point Subscription, with spatial
messages routed to clients whose Subscriptions intersect with a
Area Publication or Point Publication. SPS supports four opera-
tions: (1) PUBLISH messages to a spatial area, (2) SUBSCRIBE to
messages in a spatial area, (3) UNSUBSCRIBE from a spatial area,
and (4) MOVE the participant’s location. Hu [14] also provides a
brief overview of how SPS can be used in the context of MMOGs.

Figure 2: The operational framework of Spatial Pub-
lish/Subscribe (SPS) within a virtual environment.
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Figure 3: The VAST network implementation in Minecraft.

4.1 VAST
The VAST network library, developed in Javascript, is an implemen-
tation of the SPS paradigm, designed to enhance communication
in virtual environments [26]. VAST introduces multiple brokers,
termed Interest Matchers, each overseeing a specific region in the
Virtual Environment (VE). These regions are organised through
Voronoi Partitioning within the Voronoi Overlay Network (VON),
optimising load distribution and preventing node overload [15, 33].
The VoroCast algorithm is employed for efficient message forward-
ing to the appropriate broker when publications fall outside a bro-
ker’s region, creating a spanning tree for seamless inter-broker
communication [7].

VAST operates on a peer-to-peer (P2P) framework, allowing
nodes to dynamically join, leave, or change their positions within
the network. Its communication is based on spatial relevance, ensur-
ing that only relevant brokers and clients process and communicate
pertinent events. The library supports the fundamental SPS opera-
tions: publications (transmission of spatially relevant information)
and subscriptions (receiving updates on publications within a spe-
cific spatial area), with brokers accomodating these roles based on
client locations and interests.

Fig. 3 demonstrates VAST’s application in a C/MS MMOG ar-
chitecture, using Minecraft as an example. Minecraft clients and
servers correspond to SPS clients on the network. Each SPS client
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interacts only with the broker in their area, with Minecraft client
subscriptions (their AOI) depicted as red circles around SPS Clients.
Minecraft servers subscribe to the entire area under their broker’s
responsibility. Spatial messages published by SPS clients are for-
warded by the relevant broker to the appropriate client, possibly via
other brokers. Further details about VAST and its use of multiple
SPS brokers are available in [26].

5 METHODOLOGY
In this sectionwe introduce the popular commercialMMOGMinecraft,
which is used to experimentally evaluate the proposed SPS-based
IM scheme. After discussing the technical details of Minecraft, we
delve into the practical implementation of the VAST SPS library
within a Minecraft multiplayer server environment. We briefly dis-
cuss the system architecture and the modifications made to the
standard Minecraft C/S model for VAST integration.

5.1 Minecraft
Minecraft is a sandbox-style MMVE game developed by Mojang
Studios [22], which operates within a procedurally generated 3D
environment comprised of block elements. Its VE is divided into
"chunks" (16x16 block areas, extending vertically up to 265 blocks),
forming the basic unit of the game’s spatial structure.

In multiplayer mode, Minecraft adopts a C/S model [34]. The
server holds the global game state, managing all aspects of the game
world, including chunks, block types, entities, and other elements.
Clients connect to this server, receiving data and state changes nec-
essary to render their local game state – essentially, the immediate
surroundings they interact with.

Minecraft’s IM system is designed to optimize network traffic and
server load by transmitting information based on players’ locations
and actions, essentially an AOI system. For example, only chunks
within a player’s view are sent to their client, minimizing network
data transmission.

Minecraft’s architecture mirrors that of typical MMOGs, fea-
turing expansive, interactive worlds. It, however, uniquely allows
extensive player-driven modification of both game environment
and mechanics. This flexibility makes Minecraft a suitable platform
for networking research in MMVEs. However, its non-open-source
nature poses challenges for modifying core game components.

5.1.1 Bukkit and Koekepan. To enhance Minecraft’s functionality,
the community has developed tools like Bukkit, an open-source API
framework, and CraftBukkit, an open-source server clone. Bukkit
offers event-based software hooks into the Native Minecraft Server
(NMS) code, enabling third-party ‘mods’ to interact with events
processed by the server. SpigotMC, a high-performance version of
CraftBukkit [32], optimizes NMS server code by improving entity
handling, chunk loading, and packet transmission.

In previous work we proposed Koekepan [10, 11], an extension
to SpigotMC, enhancing the Minecraft server’s networking for
distributed server architectures. It uses spatial partitioning with
Voronoi diagrams to allocate server regions and introduces a proxy
between Minecraft clients and servers, facilitating entity migration
and load distribution.

5.2 System Architecture and Design
Integrating the VAST library into Minecraft’s multiplayer environ-
ment necessitated adapting the existing C/S model to accommodate
SPS mechanisms while preserving game functionality.

Integration into Minecraft: The integration involved two key
steps: removing Minecraft’s existing IM and implementing an SPS
Broker for packet management. Minecraft uses TCP connections for
C/S communication. We broadly catagorise the packets as Spatial,
Player Specific, and Global based on their spatial relevance [34].

Wemodified the Koekepan architecture, dividing the single proxy
into separate server and client proxies, connected via an SPS bro-
ker, as shown in Fig. 3. The server proxy manages TCP connec-
tions to the server for each client, forwarding packets without
direct client-server connections. The client proxy similarly man-
ages server message transmission to clients. This setup allows for
the indirect exchange of packets via the SPS broker.

In the original architecture, the server broadcasts game state
updates to all relevant clients, identified by their AOI. With SPS-
based IM, the server publishes a single update, offloading IM from
the NMS code to the SPS Broker, thus requiring modifications to
the SpigotMC and Koekepan server applications. Additionally, we
introduced a dedicated TCP connection between the Minecraft
server and server proxy for non-client-specific SPS Publications,
such as spatial packets.

The resultant SPS-Koekepan server architecture, depicted in
Fig. 3, integrates SPS-based IM within Minecraft’s architecture.

System Components: Key components in this architecture (Fig. 3)
include the SPS broker (VAST Matcher), handling subscriptions
and publications based on spatial dynamics, and corresponding
server and client proxies for Minecraft. The server proxy translates
between Minecraft and SPS packets, managing spatial packet pub-
lication. It also maintains a TCP connection with the server for
transmitting spatial packets.

Client proxies serve dual roles: interfacing between theMinecraft
client and the SPS network, and managing client-specific SPS in-
teractions. Each client proxy connects to an individual SPS client,
representing the Minecraft client in the SPS network, and interfaces
with the Broker for publications and subscriptions.

6 EXPERIMENTAL VALIDATION
6.1 Experimental Setup
Our experimental setup includes a single Minecraft server and up
to six clients, all running on a host equipped with a 12-core Intel
i7-12700 (4.8GHz) CPU and 32GB DDR4 memory, using POP!_OS
based on Debian 22.04.

We use two baseline systems: the Java native Minecraft server
(NMS) version 1.11.2 from Mojang Studios and the open-source,
high-performance SpigotMC server version 1.11.2, which includes
the NMS code. Both baselines implement AOI Management within
the NMS code. The version number refers to the Minecraft commu-
nication protocol for server-client information exchange.

Our system, termed SPS-Koekepan, is a modified version 1.11.2
SpigotMC server integrating the SPS interest management scheme.
We employ a single SPS broker, although VAST supports multiple
brokers. The evaluation involves three server configurations: NMS,
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SpigotMC, and SPS-Koekepan. The simulation procedure for each
configuration is as follows:

(1) Initialize all system components: server, clients, proxies, and
broker.

(2) Connect from 1 to a maximum of 6 clients, which then navi-
gates the environment for 120 seconds. All clients stay pre-
dominantly within each others’ AOI.

(3) Disconnect all clients from the server.
(4) Continue system operation for an additional 120 seconds to

collect post-operation performance data.
(5) Terminate all system components.

The “Superflat” Minecraft world is used, which does not influence
the size of the chunk data sent to the clients, with non-player entities
roaming. The presented results are the average of 10 simulation runs
for each experimental setup. A client emulator replicates avatar
movements and packet transmissions for consistency. We use a
client emulator that implements the version 1.11.2 communication
protocol, allowing each client to be programmed to repeat the same
avatar movement in each simulation. The client emulator sends the
same packets during each simulation.

The evaluation focusses on update dissemination efficiency, mea-
suring total messages sent from the server to clients. Fewer trans-
missions indicate better network efficiency and reduced duplication
of state updates. Additionally, we assess the latency added by SPS,
with less than 100 ms being acceptable for MMOGs, and evaluate
the SPS broker’s CPU and memory usage using Linux’s process
status (ps) application, providing insights into scalability.

6.2 Experimental Results
6.2.1 Update Dissemination Efficiency. Analysis of the total server
packet transmissions for the two baseline configurations, NMS
and SpigotMC, reveals a proportional increase in transmissions
with the number of connected clients. Notably, the NMS configu-
ration consistently sends more transmissions than SpigotMC. For
example, with six clients connected, the NMS server sends ap-
proximately 300,000 packets, while the SpigotMC server transmits
around 100,000, indicating that SpigotMC requires roughly one
third the number of packets compared to NMS. This reduction is
attributed to SpigotMC’s efficient handling of entity movement,
minimising redundant packet transmissions.

On the contrary, the SPS-Koekepan configuration demonstrates
even greater efficiency. With six clients, it averages around 50,000
packets, six times less than NMS and half of what SpigotMC trans-
mits. This efficiency becomes more pronounced with an increasing
number of clients, suggesting the superiority of the SPS scheme in
update dissemination. This is starkly illustrated when the server
packet transmission is compared in Fig. 4. SPS-Koekepan achieves
this by sending a single packet per state update, compared to the
multiple duplicate packets necessary for NMS and SpigotMC.

Interestingly, for a single connected client, both SPS-Koekepan
and SpigotMC transmit a similar number of packets, aligning with
expectations since SPS-Koekepan is an extension of SpigotMC and
thus should transmit the same number of server packets when only
a single client is connected. However, as client numbers increase to
six, SPS-Koekepan maintains its efficiency, transmitting approxi-
mately half the packets of SpigotMC and one-sixth of NMS. This
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Figure 5: Latency variations with packet delivery for five
clients connected to a server.

pattern, representing the SPS scheme’s update dissemination effi-
ciency, is highlighted in Fig. 4, which summarizes the server packet
transmissions across the different server configurations.

The data clearly show that while an increase in connected clients
results in more server packet transmissions for all configurations,
the rate of increase is substantially lower for SPS-Koekepan. This
trend underscores the enhanced efficiency of the SPS-based scheme,
particularly as the client count rises.

6.2.2 Latency Introduced by SPS scheme. We assess the commu-
nication latency added by the SPS scheme to server packets sent
to clients. Latency is measured by timestamping network packets,
with all simulations on the same host for accurate latency mea-
surements. The latency, from server packet transmission to client
reception, is reported for up to five clients connected to a single
SPS-Koekepan server.

Fig. 5 shows the average latency for five clients (Client-1 to Client-
5) during simulations. Each data point reflects the additional latency
from the SPS broker, server and client proxies, and SPS clients, as
network packets are transmitted from the SPS-Koekepan server
to the clients. The solid black line indicates the running average
latency, representing the typical additional latency introduced by
the SPS scheme. The packet index is increased each time the server
transmits a packet to a client, thus the packet index represents the
ordered sequence of sent packets to an individual client.

An initial latency ’spike’ is noted for each client at the start of
their connection session, particularly within the first 5000 packets.
This spike results from the server sending large chunk packets
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Figure 6: Average resource utilization of the SPS broker for each client scenario, after 5 simulation runs. Standard deviation is
indicated in solid colours.

containing game state data for Minecraft blocks when clients first
connect. Each chunk packet consists of the game state data for a
column of 16x16x256 Minecraft blocks, and the server sends about
441 chunk packets to each of the clients when they connect. The
chunk packets are needed so the client has a local copy of the game
state of the Minecraft virtual world. The transmission of these
chunk packets explains the increased latency initially observed of
up to 700ms. Once the chunk packet transmission is completed, the
latency introduced by SPS decreases and stabilizes under 100ms.
Occasional peaks in latency are likely due to player movements and
requests for more chunk data. A running average latency of around
20ms suggests that, even with five connected clients, the additional
latency from SPS is negligible and well below the 100ms MMOG
threshold. Considering separate host deployment, an additional
80ms is available for network-induced latency.

6.2.3 Computational and Storage Demand of SPS Broker. The SPS-
based scheme’s decoupling of game state update computation from
dissemination assigns the latter responsibility to the SPS broker.
We examined the computational and memory demands of the SPS
broker, focusing on CPU and memory usage. Figs. 6a and 6b display
the broker’s average CPU andmemory usage over time, respectively,
for one to six clients across five simulations.

Fig. 6a illustrates the CPU usage spike upon each client’s connec-
tion, indicating an approximate 2% CPU usage increase per client
for our test hardware. When clients disconnect, a corresponding
decrease in CPU usage is noticeable. Fig. 6b highlights the broker’s
memory usage, which also rises with client numbers. However,
the incremental memory increase per client diminishes with more
connections, hinting at a potential plateau in memory demand,
however an experiment with significantly more connected clients
is needed to verify this conclusion.

The data indicate that update dissemination burden placed on
the SPS broker is not significant, with a maximum of 10% CPU
usage for one core and no more than 90MB memory for six clients.
Assuming linear growth in CPU demand, as Fig. 6a implies, the
broker could theoretically support up to 60 clients on a single core.

7 CONCLUSION AND FUTUREWORK
In this paper, we have presented the Spatial Publish/Subscribe (SPS)
interest management scheme, which allows us to decouple the
game state dissemination from the game state computation per-
formed by a server within the context of Massively Multiplayer
Online Games (MMOGs). We highlighted the limitations of tradi-
tional area-of-interest management in commercial MMOGs and
introduced SPS, integrating spatial information into state updates.
This paper, building on Hu’s proposal of 2009 [14], provides the first
experimental validation of SPS using Minecraft, a widely played
commercial MMOG.

Our experiments demonstrated that for six connected clients, SPS
significantly reduces server packet transmission by up to six times
compared to the native Minecraft server. Moreover, the additional
latency introduced by the SPS broker remained below the critical
100ms threshold, averaging around 20ms, thus preserving user
experience. The computational and storage demands of the SPS
broker were also found to be moderate, with a maximum of 10%
CPU usage of a single core and 90MB memory usage, indicating
the capacity to handle up to 600 connected clients.

While promising, these preliminary results were obtained with
only six clients and should be validated with a larger number of
clients running on separate hosts, to also include the effects of
network latency. Nevertheless, we are of the opinion that the results
do indicate that the SPS-scheme can be used as a replacement for
the traditional area-of-interest management scheme.

Future work will focus on validating SPS’s performance with a
significantly larger number of clients on separate hosts and assess-
ing the impact of a real local area network on latency. Additionally,
we plan to test the SPS scheme in the Koekepan architecture, which
supports hosting a Minecraft virtual world on a server cluster with
up to 120 nodes, using Voronoi-based spatial partitioning. This
setup, allowing avatar migration between server nodes without the
need for mirroring [8, 21], will be a crucial test for SPS’s effective-
ness in a distributed server environment.

Furthermore, we aim to explore the scalability implications of us-
ingmultiple SPS brokers, as supported by the VAST implementation.
This includes examining the potential increase in transmission la-
tency and, if necessary, considering performance enhancements by
reimplementing the VAST library in a more efficient programming
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language. These steps will be critical in fully understanding and
leveraging the benefits of SPS in large-scale virtual environments.
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ABSTRACT
Inside-out tracking is growing popular in consumer VR, enhanc-
ing accessibility. It uses HMD camera data and neural networks
for effective hand tracking. However, limited user experience stud-
ies have compared this method to traditional controllers, with no
consensus on the optimal control technique. This paper investi-
gates the impact of control methods and gaming duration on VR
user experience, hypothesizing hand tracking might be preferred
for short sessions and by users new to VR due to its simplicity.
Through a lab study with twenty participants, evaluating presence,
emotional response, UX quality, and flow, findings revealed control
type and session length affect user experience without significant
interaction. Controllers were generally superior, attributed to their
reliability, and longer sessions increased presence and realism. The
study found that individuals with more VR experience were more
inclined to recommend hand tracking to others, which contradicted
predictions.
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1 INTRODUCTION
Virtual Reality (VR) headsets are rapidly gaining popularity, with
sales expected to triple in three years by 2023 [18]. The develop-
ment of standalone head-mounted displays (HMDs) with inside-
out tracking has surely contributed to their success. This device
type opens up the platform to a wider audience by eliminating
the need for advanced technical abilities, high-performance PCs,
and sensor setups. VR headsets, like game consoles, are typically
controlled using specialised handheld controllers. These controllers
allow for low-latency interaction with 3D material by tracking
them in space. Immersion in virtual environments relies heavily
on input, with more natural-looking input leading to higher levels
of immersion [12]. VR systems try to simulate real-world interac-
tions as precisely as feasible. The next step for input is to eliminate
controllers and use only hand tracking. Modern headsets include
integrated cameras for inside-out tracking, which can be used to
track hands and fingers with great precision [6]. The Meta Quest
platform demonstrates this capability. Using hand tracking instead
of a controller can lower the barrier of entry for those unfamil-
iar with VR, eliminating the need for button mappings. Previous
evaluations of these control systems in user experience (UX) have
shown inconsistent results [5, 8, 19], suggesting another element
may be at play. This paper aims to explore the impact of gameplay
time in relationship with the control method, as well as assessing
users’ willingness to interact with technology to see if those who
are more open to new systems [4] are more likely to be convinced
by hand tracking, given the limitations of current methods.

1.1 Gameplay Duration and Technology Affinity
In the field of user study design, it is usual practice to keep the
duration of the experience uniform throughout the experiment.
However, there have been cases where researchers deviated from
this pattern, undertaking studies that investigated the impact of
different experience durations on user satisfaction and engagement.
For example, in one study, participants engaged with a VR game for
2 and 5 minutes, providing insight into the possible implications
of time on user experience. Intriguingly, the data revealed a poten-
tial link between longer durations and increased flow experiences,
though it should be noted that this study did not provide thorough
insights into other critical aspects of user experience [20].

In order to explore more into the world of user adaptation to in-
novative technologies, it becomes clear that the process frequently
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necessitates a time and effort investment on the part of the user.
This investment might vary greatly depending on things such as
previous experiences and personal character features. Some users
are naturally hesitant to face the obstacles of unknown technology,
but others are eager to embrace and study new systems and func-
tionalities in order to solve problems more efficiently. The Affinity
for Technology Interaction (ATI) questionnaire accurately captures
and models these two conflicting preferences [4]. Interestingly,
while the ATI questionnaire is a repeating component of user stud-
ies involving participants’ interactions with technology, it is rarely
used as an independent variable in research designs.

1.2 Hand Tracking as Control Method
Inside-out tracking technology is widely used in consumer VR
systems, with recent examples including the Meta Quest and Pico.
This system uses data from a series of integrated cameras to detect
complex hand motions in three-dimensional space in real time.
Hand tracking’s exceptional accuracy makes it a very practical way
to navigate some of the different virtual environments. However,
despite many advantages, hand tracking technology is not without
disadvantages.

One prominent challenge is the complexity of hand-to-hand
interactions and the tracking of unusual hand positions [6]. The
headset’s camera system has a limited field of view, which is a major
concern. While many hand activities occur directly in front of the
user’s face, because they are naturally focused on these actions,
some tasks, particularly those that replicate natural movements,
take place in the peripheral and lower fields of vision. This offers an
important challenge because gestures conducted in these locations
may not be efficiently caught by as many cameras, resulting in
a decrease in tracking accuracy. In rare situations, specific move-
ments may fall totally outside the scope of the cameras, resulting
in a complete loss of tracking functionality [3]. As a result, while
inside-out tracking technology has transformed VR interaction,
overcoming the issues associated with field of view constraints and
guaranteeing consistent tracking precision in all hand positions
remains an important focus of research and development within
the VR industry.

While hand tracking technology is not without its limitations, it
presents an promising potential for enhancing immersion within
virtual reality environments. One of its main advantages is its ability
to improve the user experience by expanding the range of "natural
sensorimotor contingencies for perception" offered by VR systems
[16]. Modern VR controllers, while effective in many respects, are
limited by their design. They can only track certain parts of the
hands, such as individual fingers, and restrict the range of hand
poses that users can perform while holding them. This constraint
is especially apparent when considering scenarios involving com-
plicated 3D manipulation activities, in which the VR system must
collect and duplicate details of these manipulations [14]. In these
cases, hand tracking technology appears as a more appealing option
than controllers, at least when physical feedback is not the major
concern. Hand tracking’s capacity to accurately simulate natural
hand movements and gestures has the potential to provide users
with a more intuitive and immersive virtual experience.

Several studies have investigated the potential of hand tracking
technologies in virtual reality (VR), resulting in a complex findings
and suggestions. In one such study, which intended to determine
the comparative usefulness and satisfaction levels of VR controllers
and hand tracking within a medical training simulation, no signif-
icant differences were discovered [8]. In contrast, another study
investigated the effectiveness of these two control approaches in
carrying out simple reach-pick-place tasks. Surprisingly, the results
favoured controllers, both in terms of objective performance mea-
sures and participant subjective ratings [5]. This finding highlights
the complex character of the hand tracking vs. controller argument,
implying that the choice between different control systems may be
determined by the unique environment and job at hand.

Furthermore, a third study added another degree of complexity
to this discussion by concluding that, while hand tracking technol-
ogy resulted in a more positive overall user experience, it appeared
to come at the expense of lower perceived dominance in contrast to
controllers [19]. This intriguing contradiction highlights the com-
plex nature of the comparison between these two control modalities,
implying that factors other than usability may influence the final
preference for one over the other. It is important to note that, while
these studies provide useful insights, they only partially overlap
in their judgements, and they do not give a clear consensus on
how hand tracking technology compares to traditional controllers
in the VR landscape. As a result, additional study and a thorough
examination of the unique situations and user preferences will be
needed to untangle the details of this ongoing research and reach
more definitive findings.

1.3 Objectives
In terms of VR games, hand tracking and controllers both offer
advantages and disadvantages. Previously mentioned studies have
been conducted to determine how they affect the user experience,
but few have examined how the handling mechanism and game
length interact.

While hand tracking technology has huge potential, it has yet to
become widely used in consumer products. This raises interesting
questions about the factors influencing its adoption. Specifically, it
is important to explore the effect of users’ ATI in shaping users will-
ingness to embrace hand tracking. A higher ATI score may indicate
an increased interest to investigate and experiment with this tech-
nology, regardless of its occasional technical difficulties. As a result,
understanding how ATI interacts with the popularity and use of
hand tracking in VR experiences aims to give insight into its future
direction in the constantly evolving arena of VR technology.

Therefore two research questions have been created for this
paper as:

• How do control method and gameplay duration influence
user experience for virtual reality gaming, and is there an
interaction effect between the two?

• Is hand tracking more popular with people who are less
experienced with virtual reality, and does this preference
vary over different gameplay durations?
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2 METHODOLOGY
The study was mainly aimed to evaluate the user experience in
VR and to collect additional data as needed to answer our research
questions. To ensure consistency, we carried out the experiment in
a controlled laboratory setting on the university campus. For the
practical VR component of the research, we chose two different
gaming durations and two separate control approaches. Each period
related to a separate VR game.

The shorter duration lasted three minutes and included the puz-
zle game Cubism. We restart the game for each player, beginning
with the first levels. Each level introduced a new three-dimensional
geometric form that players had to "assemble" using a predeter-
mined set of smaller pieces. The solution options were restricted,
but both the goal form and the smaller shapes could be freely ro-
tated and shifted, expanding the number of potential locations. All
of the forms floated inside the available area, and players were free
to shift their viewpoint. Interactions focused mostly on grabbing
moving, rotating, and releasing shapes. The longer duration lasted
nine minutes and included the interactive narrative game Vacation
Simulator. Like the shorter game, we reset it for each player, begin-
ning with a special lesson. Participants played the game’s "Back
to Job" option, which provided an infinite simulation of a recep-
tionist’s job at a holiday resort. The space was restricted to a main
workstation and a kitchen area. Players were required to complete
the resort’s visitors’ basic demands by discovering and interacting
with the appropriate items in their surroundings. The game has an
episodic format, with each episode comprising one or more main
tasks. A virtual screen showed visuals of what participants should
be looking for and what actions they needed to do with the items.
Interactions mostly consisted on grabbing, moving, rotating, and
releasing items, with rare interactions with virtual buttons.

The average session time for VR headsets, excluding those that
rely on mobile phones, is about 46 minutes [17]. To avoid possible
VR-induced symptoms and consequences, it is recommended that
session lengths be limited to 55 to 70 minutes while conducting
user research in VR [9]. Given that many participants may be expe-
riencing VR for the first time, it is best to aim for somewhat shorter
periods to avoid problems. Given the necessity for participants to
complete surveys and follow instructions, the overall study time
was set at around 60 minutes. A bit less than half of this time was
spent within the VR headset, comfortably falling below of the limit.

The study’s control techniques included two options: controllers
and hand tracking. This research used the Meta Quest 2 (previ-
ously known as Oculus Quest 2), a commercial VR headset with six
degrees of freedom. This independent headset removes the need
for any attached connections, giving users a great deal of mobility.
With a per-eye resolution of 1832x1920 and built-in audio output
speakers, the device provides an immersive experience. Participants
simply had to set up the room setup once, enabling them to get
started right away. The only extra step was to adjust the head strap
for comfort. Both games featured Hand Tracking 2.0, the most ad-
vanced hand tracking technology available from Meta at the time
of the research. This system performed well in reliably tracking
hand motions, especially in difficult situations like fast gestures or
short hand-to-hand contact.

The research used a within-subjects design, which ensured that
every participant encountered each condition. The combination of
differed gaming durations, including both short and long sessions,
and two control modalities (controllers and hand tracking), resulted
in four separate experimental conditions with the order of condi-
tions set by a Latin square layout. The study’s procedure included
a number of brief introduction sessions. Whenever participants
began a new gaming session, they were given a short description of
the setting and the tasks they were given, supported by illustrations
such as screenshots. Similarly, control method adjustments were ac-
companied by short instructions that included controller use demos,
button functionality, and explanations of hand tracking movements.
Following each gaming session, participants were asked to answer
a series of UX questions, finishing in a final post-questionnaire at
the end of the research.

The demographics part of pre-questionnaire asked participants
about their gender, age, employment, and self-assessment of their
VR experience. Responses were scored on a scale of 1 ("not at all")
to 5 ("very experienced"). The part of pre-questionnaire was the
standardised ATI (Affinity for Technology Interaction) question-
naire. This questionnaire had nine questions, each with a 6-point
Likert scale ranging from 1 ("completely disagree") to 6 ("completely
agree"). The ATI score was calculated by taking the average of all
item scores and adjusting for three items that were reverse-worded
in compared to the others [4].

Following, several UX questionnaires were used to measure dif-
ferent ascepts of UX for each condition.

• The igroup presence questionnaire (IPQ) was used to assess
presence, with questions scored on a 7-point Likert scale and
altering anchor points [15].

• In addition, the Self-Assessment Manikin (SAM) was used
to assess different emotional responses. SAM used a 5-point
Likert scale and had a nonverbal, picture-oriented design,
that included several sorted variants of an image reflect-
ing different aspects. This questionnaire, well-established
and notably concise, has found application across diverse
contexts, offering an advantage when presented alongside a
variety of questionnaires.

• The final UX questionnaire used was the Short User Experi-
ence Questionnaire (UEQ-S), which is a simplified version of
the User Experience Questionnaire (UEQ). This condensed
version reduced the original 26-item collection to only 8,
while additionally lowering the number of categories from
six to two: pragmatic and hedonic quality. The average score
from both of these categories might be viewed as an overall
assessment [11].

• Lastly, the Flow State Scale (FSS) was used to assess the state
of flow, representing a comprehensive questionnaire with
36 individual items distributed across the 9 dimensions of
flow [7].

In a subsequent post-questionnaire, participants were given the
opportunity to express their willingness to recommend VR con-
trollers and hand tracking to others. They could also provide rea-
soning for their decisions and offer feedback on the overall study
experience.

24



MMVE ’24, April 15–18, 2024, Bari, Italy Tanja Kojić, Maurizio Vergari, Simon Knuth, Maximilian Warsinke, Sebastian Möller, and Jan-Niklas Voigt-Antons

(a) Cubism (b) Vacation Simulator

Figure 1: Screenshots of games: a) A scene from Cubism depicting a partially solved puzzle with some shapes inserted, one
in the player’s left hand and additional shapes floating in the play space, b) A scene from Vacation Simulator: Back to Job
depicting the player pulling a lever on a stylized blender that’s filled with fruits while standing in a kitchen with a pool in the
background.

2.1 Participants
The study included a total of 20 participants, recruited via the in-
stitution’s online portal for test subjects. Within the sample of 20
individuals, 7 identified as female and 13 as male. In particular, 65%
of the participants identified as students, which matches our predic-
tions given the recruiting methods. The participants’ average age
was 28.65 years, with the youngest being 20 years old and the oldest
being 57 years old, for a standard deviation of 9.25. Additionally,
the mean level of VR experience, measured on a scale of 1 ("not at
all") to 5 ("very experienced"), was 2.50, with a standard deviation
of 0.95.

3 RESULTS
To analyze the collected questionnaire data, two separate statistical
approaches were used. The results from the UX questionnaires (IPQ,
SAM, UEQ-S, FSS) were analysed using a two-way repeated mea-
sures analysis of variance (ANOVA). This statistical test determines
if two variables have a statistically significant interaction impact on
a continuous dependent variable. To reduce the probability of type
I errors, Bonferroni correction was used. The ANOVA’s assumption
of normality was tested using the Shapiro-Wilk test, which is con-
sidered a more trustworthy technique than utilising raw data [10].
It is worth noting that non-normal data was obtained; yet, ANOVA
is often recognised as resilient in the face of departures from the
normality assumption. The research results show that there are no
significant effects on type I error rates [2], confirming the validity
of using ANOVA even in the absence of strict normality [13]. For
the remaining dataset, including the ATI score, the VR experience
rating, and the hand tracking recommendation, a binomial logistic
regression analysis was performed.

3.1 Presence
Significant differences were revealed across all dimensions of the
IPQ questionnaire when comparing different gameplay duration
conditions. Before proceeding with the analysis, the original 1/7
scale used in the study was converted to a 0/6. Figure 2 provides a
complete overview of how gaming duration affects the IPQ dimen-
sions.

In terms of general presence, gaming time had an effect, with
a significant difference between short and long durations (F(1,19)
= 7.006, p =.016, partial 𝜂2 =.269). Overall, the long duration con-
dition (4.500±0.185) was reported to make users feeling more in
presence compared to the short duration condition (4.025±0.225),
with a mean difference of 0.475 (95% CI, 0.099 to 0.851). In the con-
text of spatial presence, a statistically significant main effect of
gameplay duration was found as well (F(1,19) = 19.413, p = .001,
partial 𝜂2 = .505). Spatial presence increased significantly in the
long duration condition (4.450±0.142) compared to the short dura-
tion condition (3.895±0.184), with a mean difference of 0.555 (95%
CI, 0.291–0.819). Involvement was significantly higher when using
controllers (3.925±0.249) than hand tracking (3.450±0.300) for short
durations (F(1,19) = 7.228, p =.015), with a mean difference of 0.475
(95% CI, 0.105 to 0.845). However, long-term participation with
controllers (3.738±0.280) did not show a statistically significant dif-
ference from hand tracking (3.750±0.282) (F(1,19) = 0.005, p =.944).
In the scope of experienced realism, the main effect of gameplay
duration produced statistical significance (F(1,19) = 4.367, p = .050,
partial 𝜂2 = .187). Experienced realism increased significantly in the
long length condition (2.656±0.237) compared to the short duration
condition (2.363±0.237) where users due to less time to play have
felt environment is less realistic, with a mean difference of 0.294
(95% CI, 0 to 0.588).

25



Influence of Gameplay Duration, Hand Tracking, and Controller Based Control Methods on UX in VR MMVE ’24, April 15–18, 2024, Bari, Italy

(a) IPQ and Gameplay Duration (b) UEQ-S and Control Methods

Figure 2: Overview of results: a) Chart depicting estimated marginal means by gameplay duration for IPQ dimensions, b) Chart
depicting estimated means by control method for UEQ-S dimensions.

3.2 Pragmatic Quality
Pragmatic quality, one of the dimensions of the UEQ, showed sig-
nificant differences in this research, resulting in it being the only
dimension within the UEQ to show statistical significance. Prag-
matic quality evaluates a system or interface’s usefulness, efficiency,
and usability from the standpoint of the user. The study’s 1/7 scale
was transformed into a −3/+3 scale prior to analysis.

The main effect of control method showed a statistically signif-
icant difference between controllers and hand tracking (F(1,19) =
6.252, p =.022, partial 𝜂2 =.248). The study found that controllers
(0.938±0.156) outperformed hand tracking (0.569±0.130) in terms of
pragmatic quality, with a mean difference of 0.369 (95% CI, 0.060 to
0.677). Figure 2 shows an overview of how control methods effected
the UEQ-S dimensions.

3.3 Clear Goals, Concentration and Sense of
Control

The study of the Flow State Scale (FSS) data revealed significant
results in important elements of the flow experience. Particularly,
participants’ assessments for specific goals, attention, and sense of
control changed significantly throughout the analysed activities,
giving insight on these important features of the flow state.

The study revealed a statistically significant difference in the
main impact of gameplay length (F(1,19) = 7.404, p =.014, partial 𝜂2
=.280) on the dimension associated with specific goals. Clear goals
were significantly greater during short length sessions (4.488±0.109)
than long duration sessions (4.019±0.163), with a mean difference
of 0.469 (95% CI, 0.108 to 0.829). When it comes to the focus on the
task, the main effect of control method was statistically significant
(F(1,19) = 5.000, p =.038, partial 𝜂2 =.208), indicating that controllers
(4.475±0.109) were significantly more focused on the task at hand
than hand tracking (4.350±0.124), with a mean difference of 0.125
(95% CI, 0.008 to 0.242). The main effect of gaming time was sta-
tistically significant (F(1,19) = 6.491, p =.020, partial 𝜂2 =.255) in
terms of the feeling of control dimension. Short length sessions
resulted in a stronger sense of control (4.238±0.102) compared to
long duration sessions (3.813±0.196), with a significant mean dif-
ference of 0.425 (95% CI, 0.076-0.774). The main effect of control

method was statistically significant (F(1,19) = 15.073, p =.001, partial
𝜂2 =.442). Additionally, controllers were reported to have a signif-
icantly higher sense of control (4.281±0.121) than hand tracking
(3.769±0.170), with a mean difference of 0.513 (95% CI, 0.236 to
0.789).

3.4 Previous VR experience
In terms of participants’ past VR experience, a binomial logistic
regression was used to determine its impact on the probability of
recommending hand tracking technology. In this respect, the model
explained 26.1% of the variation in hand tracking suggestions while
correctly classifying 74.1% of instances. It is worth mentioning that
the predictor variable, VR experience, was statistically significant
(p =.042). This finding points out to a relationship: as individuals’
levels of VR experience increased, their tendency to recommend
hand tracking to others showed a significant rise.

4 DISCUSSION
The study’s findings provide intriguing insights into how gaming
time and control approaches affect VR user experience. While con-
trollers received recognition for their precision and ease of use,
hand tracking received mixed reviews, with some appreciating its
inventive potential but others criticising its current technological
limits.

4.1 Feedback on control methods
Participants provided their opinions on the control methods and
hand tracking through a concluding survey, after testing each for
approximately 12 minutes. The controllers received equally positive
feedback, including recognition for their precision and reliability.
Participants rated it easier to use, with many noticing that grab-
bing items in VR felt very comparable to real-world interactions. In
contrast, evaluations on hand tracking differed. It was recognised
as an innovative and exciting technology that provided a better
level of immersion and realism by allowing users to see their hands
in the virtual world. However, it was stated that the technique re-
quired additional refinement. There were issues with its accuracy
and the strange feeling caused by delay. The need to keep hands
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inside the camera’s view was criticised, and the lack of actual sen-
sation when grabbing digital objects. The tactile sense provided
by controller buttons was preferred to the absence of feedback in
hand tracking. Observations throughout the study revealed chal-
lenges with hand-to-hand interactions and the cameras’ narrow
field of vision, resulting in unpredictable motions when hands went
out and then back into the monitored region. Hand tracking also
did not work with precision activities like turning items, which
significantly impacted the gameplay experience.

4.2 User Experience Insights
The data mainly showed the independent effects of gaming duration
and control method on several metrics, with significant effects de-
tected. Longer gaming durations increased measures of presence
and realism, indicating that prolonged VR experiences improve the
perception of being in a real environment. Surprisingly, despite
user feedback, hand tracking had no equivalent effect on perceived
realism. The study noted differences in clarity of objectives and
control sensation between short and long gameplay sessions, po-
tentially influenced by the nature of the games used. Controllers
were shown to considerably improve task attention, probably due
to experience with comparable gaming gadgets and their inher-
ent reliability. The lack of tactile feedback in hand tracking has
a negative effect on user experience, highlighting the advantages
of controllers for replicating realistic interactions. Gameplay dura-
tion also played a significant role in immersion and presence, with
longer sessions resulting in better outcomes.

General presence, spatial presence, and experienced realism, all
of which were measured using the IPQ, were statistically signifi-
cantly higher for the long gameplay duration. This could indicate
that spending more time in a VR experience helps to convince
the player of being a part of a real environment, instead of just
playing a game. Interestingly, hand tracking did not show a com-
parable effect on the experienced realism, even though multiple
participants explained that the control method felt more real in
the post-questionnaire. However, the goals seemed clearer, and the
sense of control was statistically significantly improved for the
short gameplay duration, as measured using the FSS. This could be
ascribed to the nature of the two games. Vacation Simulator is a bit
more expansive compared to Cubism, which may have had an ef-
fect on the Clear goals dimension. Additionally, Vacation Simulator
requires the use of two hands for some scenarios, which perhaps
impacted the sense of control due to players typically using just a
single hand for Cubism as observed during the study. This is not in
line with another study that indicated higher flow for the longer
duration. However, that experiment also labelled 2 minutes as the
short duration and 5 minutes as the long duration, as opposed to 3
and 9 minutes here [20].

Hedonic quality however was not impacted by gameplay dura-
tion or control method, even though controllers were objectively
and subjectively worse. Bothweremeasured using the UEQ-S. Sense
of control was statistically significantly higher for controllers as
well, in addition to the effect caused by the gameplay duration,
which probably also stems from the reliability discrepancy and was
measured using the FSS. Participants commented that hand track-
ing does not feel natural at all due to the delay between moving

one’s hands and seeing the result in VR. The average temporal delay
for hand tracking is a significant 38.0 milliseconds [1]. Measured
using the IPQ, involvement showed a two-way interaction effect
and was higher for controllers for the short gameplay duration.
This could again have been influenced by the controller’s superior
reliability.

4.3 VR Experience Level and ATI Score
The study also aimed to investigate the relationship between partici-
pants’ VR experience and their willingness to suggest hand tracking.
Interestingly, people with greater VR expertise were more likely
to recommend hand tracking, contrary to our hypothesis. This
might indicate that experienced users are more willing to accept
the limits of existing VR technology. Participants with the least
experience reported regular problems with hand tracking, but those
with the most experience did not, indicating a better tolerance or
acceptance. The technology interaction affinity (ATI) score had
no significant effect on hand tracking suggestions, indicating that
other characteristics were not evaluated.

4.4 User Study Limitations
A critical limitation of the study was the use of different games
for varying gameplay durations, driven by the impracticality of
developing a custom VR application. The games were chosen based
on compatibility with both control techniques, ethical acceptabil-
ity, and beginning accessibility, resulting in the choice of using
different games for short and long sessions. This provided a vari-
able that might influence the perception of findings, particularly
regarding feeling of presence and realism due to different game de-
sign. The short-duration game Cubism and the long-duration game
Vacation Simulator presented distinct experiences that might im-
pact user feedback and performance measures, needing additional
caution when using these outcomes.

5 CONCLUSION
In conclusion, our findings align with the expected results regard-
ing the comparison between controllers and hand tracking within
virtual reality (VR) environments. As assumed, the comparison of
controllers and hand tracking revealed that controllers are the more
rational choice in every way, at least for the specified VR games,
corroborating previous findings [5]. This advantage is attributed
to the controllers’ more reliability, their perception of control, and
users’ increased task attention, all of which lead to a more immer-
sive VR experience. However, it is important to note that previous
study has shown that hand tracking can outperform controllers for
some interactions [19], demonstrating a context-dependent prefer-
ence that changes with the nature of the interaction and the users’
experience with VR technology. The mixed findings point to a dy-
namic environment for VR interaction approaches, with the option
between controllers and hand tracking potentially evolving as tech-
nology progresses and user experiences expand. Future research is
encouraged to further explore these interactions and the potential
shifts in user preference as the fidelity of hand tracking improves.
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Figure 1: Common bimanual VR interaction tasks

ABSTRACT
Virtual reality (VR) has the potential to transform work, collab-
oration, and socialization in diverse settings. Nevertheless, most
immersive interactions are inaccessible to individuals who use one
hand, as their design assumes that VR users have simultaneous
usage of two hands, excluding individuals who use hand from the
VR community. It is also unclear the extent to which existing VR
applications are accessible to individuals who use one hand. We,
therefore, conducted a systematic review of mainstream VR appli-
cations for collaboration, productivity, and socialization to identify
in what ways they support one-handed interactions. Our review
showed that the assumption of bimanual input was pervasive in
the design of VR tasks, that more than half the applications were
inaccessible to individuals who use one hand, and that none of
the applications supported customizations for physical disabilities.
Our findings underscore the need for increasing access to VR by
devising and supporting unimanual input paradigms for key VR
tasks.
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1 INTRODUCTION
Thanks to the advances in display and tracking technology, head-
mounted display-based (HMD-based) virtual reality (VR) is becom-
ing more and more immersive. With increased immersion comes in-
creased reliance on the assumption that VR users have non-disabled
bodies, however. The design of existing VR systems places an em-
phasis on non-disabled bodies and makes certain assumptions re-
garding hardware and interaction design from their perspective.
For example, one such ableist assumption baked into the design
of most VR interfaces and interactions is that all VR users have
simultaneous usage of two hands and can complete VR interaction
tasks requiring bimanual input (executed with two hands). This
implicit assumption of the ‘corporeal standard’ leads to inaccessible
VR systems and experiences that fail to cater to the needs of indi-
viduals with disabilities, rendering VR an ableist technology [4].
While certain VR experiences do have accessibility options (mostly
addressing sensory disabilities), they are usually added after the
experience has been designed. This accessibility-after-the-fact ap-
proach is antithetical to the basic tenets of human-centered design,
since it fails to incorporate the needs and expectations of disabled
users into the design of these interactive systems from the initial
stages of hardware and software development.

Within the context of VR, bimanual interactions require users to
use both controllers (or hands when hand-tracking is available) to
perform canonical interaction tasks [9]. For instance, in existing VR
experiences, object manipulation (scaling and positioning an object
in 3D) is usually achieved using a bimanual metaphor, one example
of which is illustrated in Figure 1a. As seen in the figure, the user
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begins by selecting an object with both controllers (image 1) and
needs to move controllers apart to scale up the object (images 2-3).
In this bimanual metaphor, the scale of the object is tied to the
distance between the controllers (or tracked hands).Another exam-
ple of a key task requiring bimanual interaction is locomotion (i.e.,
navigation in virtual environment) while interacting with an object.
In most VR experiences, locomotion and object interaction tasks
are assigned to different controllers, with one controller dedicated
to locomotion and the other to object selection and manipulation.
This is illustrated in Figure 1b, where the left controller is used
for locomotion (with raycasting) and the right controller is used
for interactions with virtual objects. Yet another example pertains
to applications where menu access is essential and is performed
in conjunction with object interaction. In this task, as illustrated
in Figure 1c, the menu is tied to one controller, and users use the
other controller to interact both with the menu (e.g., select a menu
item) and with virtual objects. These examples illustrate common
interaction tasks in VR and demonstrate the extent to which VR
interactions rely on bimanual metaphors based on the assumption
of VR users being able to use two hands. While these three examples
are essential VR tasks and are pervasive in most VR experiences, it
is not possible to perform these tasks for a user who can use one
hand only.

In order for these users to have equitable access to VR experi-
ences and their potential benefits, it is crucial for VR designers
and developers to support unimanual (executed with one hand)
interactions in VR applications. Yet, it is not clear the extent to
which existing VR applications are accessible to individuals with
mobility impairments. In this paper, we aimed to address this need
by conducting a systematic review of popular VR applications, fo-
cusing on the extent to which they are usable by individuals who
use one hand. We contribute the first review of mainstream VR
applications (n = 16) from an accessibility lens for individuals with
mobility impairments. Our review was guided by the following
research questions:

(1) RQ1: To what extent do mainstream VR applications rely on
the assumption of bimanual input?

(2) RQ2: To what extent is unimanual input supported in main-
stream VR applications?

2 RELATEDWORK
2.1 3D Interaction in VR
In virtual environments, users perform a variety of 3D tasks to
interact with the VR system and to complete their desired goals.
Broadly speaking, 3D interaction tasks can be categorized into ob-
ject selection, object manipulation, navigation, and system control
[1, 5]. Object selection involves identifying or acquiring an object or
subset of objects among a larger set of objects. Common selection
tasks include pointing to a target, pressing a button, and grabbing
an object in the virtual environment. Object selection is usually
achieved through directly pointing to and selecting an object in 3D
space. It can also be achieved by indirect selection using raycasting,
which involves casting a virtual ray to point to objects that are
located beyond the area of reach. Regardless of which method is
used, 3D selection tasks usually support unimanual input and do
not require the simultaneous usage of two hands.

3D object manipulation refers to virtually handling objects, and
common manipulation tasks include positioning, rotating, and scal-
ing an object in 3D space [1, 5]. In most cases, it is possible to change
the position of virtual objects using unimanual input. That said,
rotation and scaling tasks are usually implemented using bimanual
input and thus require the simultaneous usage of two hands.

3D navigation is an integral part of VR applications, as it is
through locomotion that users explore the virtual environment and
perform other 3D tasks. When real walking is not possible due to
physical space constraints or desirable due to user preferences and
needs, the teleportation metaphor is commonly used in existing
VR applications, which instantly translates the user from one point
to another by updating their 3D position vector to that of the des-
tination often specified by raycasting. While teleportation can be
completed using unimanual input, it often requires bimanual input
when users are holding a virtual object in one hand, as illustrated in
Figure 1b. In this usage scenario, users cannot perform navigation
tasks in conjunction with other interaction tasks.

System control refers to the ways in which users communicate
their intentions to the VR system [1, 5]. Common system control
tasks include menu interactions and text entry. Most menu interac-
tions in existing VR applications are designed with the bimanual
input assumption in mind and cannot be completed using uniman-
ual input alone. As for VR text entry, the majority of text entry
tasks can be completed using unimanual input. However, based on
the assumption of bimanual input, existing VR applications pre-
dominantly use a virtual keyboard using the QWERTY layout [12].
This typically translates into slower performance and increased
physical demand if a user relies solely on unimanual input for these
text entry tasks, as the design of the QWERTY layout assumes that
users will provide bimanual input.

2.2 VR Accessibility for Individuals with
Limited Mobility

Previous research has shown that individuals with limited mobil-
ity do have an interest in using VR applications for a variety of
use cases, including entertainment, socialization, and productivity
[6, 7, 10]. One example of these use cases is being able to experience
physical world activities that are otherwise inaccessible to them
(e.g., paragliding) [2]. Therefore, it is essential that VR applications
be made accessible and usable for individuals with limited mobil-
ity. Addressing the lack of efforts to make VR gaming accessible
for wheelchair users, Gerling et al. [3] developed three VR games
based on a survey of needs and expectations of wheelchair users. In
the design of the games, the researchers ensured wheelchair users
could play the games while controlling their wheelchair. While
wheelchair users were not directly involved in the design of these
games, they were involved in the evaluation of the games. Ger-
ling et al. found that wheelchair users enjoyed being able to play
VR games while using their wheelchairs. Their findings also high-
lighted the importance of making controls flexible and adaptable
so that wheelchair users can customize how they provide input
based on their mobility limitation. Gerling et al.’s study [3] also
demonstrated that by including disabled users in the design of VR
games, these accessibility issues could be mitigated and that VR
games that match the abilities of disabled users could be developed,
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enabling disabled users to take advantage of immersive capabilities
of VR gaming.

Mott et al. [7] explored the challenges faced by individuals
with mobility limitations when setting up and using VR systems,
focusing on hardware-related challenges. They conducted semi-
structured interviews with 16 individuals with mobility limitations
and identified seven categories of accessibility issues. These include
challenges associated with (1) setting up the VR system; (2) prepar-
ing VR peripherals; (3) donning and removing the VR headset; (4)
managing cords; (5) holding and using two motion controllers
simultaneously; (6) reaching and pressing the buttons on VR con-
trollers; (7) keeping the VR controllers in view of the cameras on the
VR headset. Of relevance to our proposed research plan, Mott et al.’s
findings showed that the requirement of using two controllers at
the same time would prevent individuals with mobility limitations
from using these systems. This highlights the importance of mov-
ing away from the assumption of two-handed interactions in VR.
While Mott et al. identified the hardware-related accessibility issues
faced by individuals with limited mobility, their study provides no
unimanual interaction solutions.

In the only study that focuses on the (in)accessibility of biman-
ual VR tasks for individuals with limited mobility, Yamagami et
al. [11] proposed a taxonomy to facilitate the design of unimanual
counterparts of bimanual interaction techniques. Their taxonomy
categorized bimanual tasks into synchronous/asynchronous and
coordinated/uncoordinated tasks. They did not provide any uni-
manual alternatives or involve users in the design of unimanual
interaction techniques. That said, they conducted a video elicitation
study with individuals with limited mobility to gather their feed-
back on some prototypes. Their findings highlighted the importance
of providing customizable input techniques and underscored the
need for devising unimanual interaction techniques for common
VR tasks.

As the foregoing review indicates, there is a scarcity of research
into accessibility challenges faced by individuals with limited mobil-
ity when using VR systems [4]. The few studies that addressed this
growing need have shown that VR is largely inaccessible for indi-
viduals with limited mobility [3, 7]. It is clear that the simultaneous
use of two controllers to interact with the immersive environment
is a barrier to the physical accessibility of VR technology for individ-
uals with limited mobility. Nevertheless, to what extent do existing
VR applications consider this limitation and support unimanual
input? That is precisely the question this review aims to answer, as
outlined in the following sections.

3 METHOD
To better understand the current practices and to determinewhether
and how existing VR applications provide accessibility features
supporting unimanual input, we conducted a systematic review
of mainstream VR applications. We performed searches on Meta
Quest Store [8], one of the mainstream stores for VR applications.
We chose to focus on Meta Quest store, as it features VR applica-
tions that can be used on standalone, tetherless VR headsets. Prior
research has shown that individuals with mobility impairments ex-
perience difficulty when setting up and using tethered VR systems
[7]. We, thus, surmised that VR applications that run on standalone

VR headsets would be more accessible to individuals with mobility
impairments. In addition, we intentionally excluded VR games from
this review because our focus was on VR applications for collabo-
ration, productivity, and socialization. The exclusion of VR games
from our review is a deliberate choice, grounded in our objective
to concentrate on applications that foster collaboration, produc-
tivity, and socialization. While VR games are a prominent and
popular segment of VR applications, their design and interaction
paradigms often differ substantially from non-gaming applications.
The insights gleaned from examining VR games may not seamlessly
translate to applications centered on collaboration, productivity,
and socialization, warranting their exclusion from this review.

On the Meta Quest store, we searched through all the applica-
tions. We filtered the search results by category and sorted the
applications by popularity, which was supported when the review
was conducted in Summer 2023. The initial filtering by category
revealed a total of 55 VR applications for socialization (13), 3D
design and collaboration (17), and office/work productivity (25).
Given the scope of the review, we chose to focus on most popular
VR applications. The popularity of these applications suggests a
higher likelihood of their adoption and use, making them particu-
larly relevant for assessing the state of one-handed accessibility in
mainstream VR applications. The search revealed a total of 16 most
popular VR applications for socialization (n = 8), 3D design and col-
laboration (n = 4), and office/work productivity and collaboration
(n = 4), as listed in Table 1.

Table 1: The 16 Reviewed VR Applications

VR App App Category
Horizon Worlds Socialization
Horizon Workrooms Office productivity and collaboration
RecRoom Socialization
ShapesXR 3D design and collaboration
vSpatial Office productivity and collaboration
Spatial Socialization
Engage Socialization

Noda Office productivity and collaboration
(ideation)

Vtime XR Socialization
Gravity Sketch 3D design and collaboration
VRChat Socialization
bigscreen Socialization
MeetinVR Socialization
Ribla Studio 3D design and collaboration
immersed Office productivity and collaboration
Arkio 3D design and collaboration

Our review involved the author running the 16 identified ap-
plications on a Meta Quest 2 headset and going through the main
tasks of a given application. While reviewing the applications, we
paid particular attention to the previously mentioned four canon-
ical tasks in VR: selection, manipulation, navigation, and system
control (including UI and menu interaction and text entry). For
each of these broader task categories, we identified whether biman-
ual input was necessary or whether the task could be completed
using unimanual input. We also examined the accessibility settings
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available in the applications, focusing on customizations for accom-
modating physical disabilities by enabling unimanual input. Given
our research objectives, our review did not focus on sensory disabil-
ities (e.g., visual/hearing impairments). An application was deemed
inaccessible to individuals with limited mobility if any of its key
tasks could not be completed using unimanual input. For instance,
Shapes XR required bimanual input for object manipulation and
UI/menu interaction, with users having to use two controllers for
scaling objects and to hold the menu in one hand and select items
with another hand. Because these two tasks could not be completed
with unimanual input, Shapes XR was marked as inaccessible to
individuals who use one hand.

4 RESULTS
The results from the review of all 16 identified VR applications are
summarized in Table 2. Of the 16 applications reviewed, only 5
(31.25%) were fully usable by individuals who use one hand, and
2 (12.5%) were partially usable (manipulation tasks could not be
completed using unimanual input, but they were not the key tasks
in the application). The remaining 9 applications (56.25%) were
not usable without bimanual input, rendering them inaccessible to
individuals who use one hand.

4.1 Prevalence of Bimanual Input Assumption
For selection tasks, the majority of the 16 reviewed applications
(n = 14) supported selecting objects or menu options with either
controller, whereas two applications, VRChat and Ribla Studio,
designate the right controller for selection tasks.

In applications where 3D object manipulation (rotation and scal-
ing) is applicable, namely ShapesXR, Spatial, Noda, Gravity Sketch,
Ribla Studio, immersed, and Arkio, there is a tendency to default to
bimanual input. In fact, all of these seven applications require the
simultaneous use of two hands for 3D manipulation.

Of the nine applications where navigation is applicable, four (i.e.,
Horizon Worlds, RecRoom, Engage, and Arkio) assume bimanual
input in that they designate different functionality to different
controllers, with one controller being used for navigation and the
other being used for interacting with objects and environment.
This separation of functionality necessitates that VR users always
use both controllers while using the application. If a user were
to use only one controller, all the functionality assigned to the
other controller would simply be unavailable. The remaining five
applications (i.e., Spatial, Noda, VRChat, bigscreen, and MeetinVR)
afford users the ability to use either controller for navigation tasks,
because they tie navigation functionality to the same button(s) on
both controllers.

When it comes to interacting with UIs and menus, bimanual
input is commonly required, with half of the 16 applications neces-
sitating it. The principle of separation of functionality is applied to
these tasks, wherein the UI or menu is tied to one controller and
users are expected to use the other controller to interact with the
UI elements or menu items on the other controller, as illustrated in
Figure 1c. For instance, popular 3D design and collaboration appli-
cations, such as ShapesXR and Gravity Sketch, operate based on
this assumption, and it is not possible to change this control setup.
In relation to text entry tasks, which represents another category

of system control tasks, most applications use virtual keyboards
supporting unimanual input.

4.2 Physical Accessibility Settings
The review revealed that none of the 16 reviewed applications
provided any accessibility settings to support unimanual input for
individuals with mobility impairments. While these applications
featured some accessibility options for sensory disabilities, they
failed to incorporate any options to accommodate the needs of
individuals with mobility impairments. For instance, in applications
where bimanual input was assumed by default, there was no option
to switch to using one controller only. Neither was there a setting
to change the coupling of key functionality to different controllers.

5 DISCUSSION
Our study addressed a gap in the VR accessibility literature by
providing the first application review on the extent to which main-
stream VR applications are accessible to individuals who use one
hand. Results from our systematic review point to the importance of
moving away from the assumption of bimanual input in VR applica-
tions and underscore the need for devising unimanual counterparts
to key bimanual interaction metaphors. We discuss our findings in
relation to the research questions that guided this review.

5.1 RQ1: To what extent do mainstream VR
applications rely on the assumption of
bimanual input?

Our review showed that more than half of the 16 reviewed appli-
cations (56.25%) relied on the assumption that all VR users can
simultaneously use both controllers. Their interaction design re-
flected this implicit assumption in that most key VR tasks such as
object manipulation, navigation, and UI/menu interaction required
the use of both controllers. This directly translates into individuals
who use one hand not being able to use these applications and ben-
efit from what they have to offer. This points to the importance of
incorporating the needs of individuals with mobility impairments
into the design and development of VR interactions and of making
VR interactions more accessible to individuals who have various
mobility impairments [7, 11].

5.2 RQ2: To what extent is unimanual input
supported in mainstream VR applications?

The review revealed that only five out of 16 VR applications (31.25%)
were fully usable by individuals who use one hand. In these appli-
cations, one common pattern was that they were mostly stationary
experiences. Another common aspect was that they supported some
of the key interaction tasks on both controllers. Users could, for
example, teleport in the virtual environment using either controller.
That said, it should also be noted that most of these applications
(four out of five) did not include any object manipulation tasks. The
only application that included object manipulation tasks and was
still rated as fully usable was Spatial, in which object manipulation
was not a key aspect of the application itself (it was available for
adding more interactivity to the application). Therefore, it is not
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Table 2: Summary of VR Applications and Accessibility Features

VR App Selection Manipulation Navigation UI/Menu Typing A11y Usable
Horizon Worlds Either NA B U V None No
Horizon Workrooms Either NA S U P None Yes
RecRoom Either NA B U V None No
ShapesXR Either B S B V None No
vSpatial Either NA S U V None Yes
Spatial Either B U U V None Yes
Engage Either NA B B V None No
Noda Either B U U V None Partially
Vtime XR Either NA S U V None Yes
Gravity Sketch Either B S B V None No
VRChat Right NA U B V None No
bigscreen Either NA U U V None Yes
MeetinVR Either NA U B V None No
Ribla Studio Right B S B V None No
immersed Either B S B P None No
Arkio Either B B B V None Partially
A11y refers to the presence of accessibility settings for physical disabilities.
B: bimanual input. U: unimanual input. S: stationary.
V: virtual QWERTY keyboard. P: Physical keyboard

possible to conclude that these applications truly supported uni-
manual input for all key interaction tasks. These findings highlight
the need for devising unimanual counterparts of common bimanual
VR tasks [11].

5.3 Design Implications for Accessible VR
Interaction Design

Based on our review, we present the following design implications,
in the hope that VR designers and developers will apply them to
existing and new VR applications to increase their compatibility
with the needs of individuals with mobility impairments. These
design implications are drawn from the insights from the review
and are in line with other valuable guidelines established in prior
work by [3], [6] and [7].

Make it possible to customize physical accessibility set-
tings.Our results showed that none of the 16 reviewed applications
included a physical accessibility settings menu, where users could
customize controller input options and choose unimanual input.
VR designers and developers should urgently incorporate such
settings to accommodate the needs of individuals with mobility
impairments.

Provide bilateral support for control input. Our review
showed that separation of functionality between the two controllers
was a common design decision.While thismaywork for able-bodied
users, it is inaccessible to individuals who use one hand, for it re-
quires bimanual input. Therefore, VR designers and developers
should provide the option to decouple the functionality from two
controllers and combine them into one controller. This could be
achieved by presenting this option in a dedicated physical accessi-
bility settings menu.

One specific way in which bilateral control input can be accom-
plished is through assigning different tasks to different buttons on

the same controller. Most modern HMD-based VR systems use con-
trollers that have a joystick, a trigger button, a grip button, and two
functionality buttons. One way in which VR designers and develop-
ers could take advantage of this universal control design is through
designating the trigger button for selection task, the grip button for
grabbing, the joystick for navigation tasks, the combination of grip
and joystick for rotating objects, and the combination of primary
button and joystick for scaling objects. This way a single controller
would be sufficient to perform the canonical VR interaction tasks
without the need for bimanual input. Regardless of which controller
is used, the same functionality would be available.

Place contextual menus in the environment rather than
on the controller. One common pattern in 3D design applications
was the use of a contextual menu attached to the controller, which
automatically requires bimanual input. To free up the controller and
move away from the bimanual input requirement, VR designers and
developers could instead leverage the spatial environment when
placing the contextual menus. Rather than attach the contextual
menu to the controller(s), VR designers and developers could inte-
grate them spatially into the environment (e.g., the menu sits on a
hovering platform in front of the user). This can also be presented as
an option in physical accessibility settings so that they can choose
how and where the contextual menu should appear.

Leverage toggling to switch between different interaction
tasks. For VR applications where interaction tasks need not be
performed simultaneously, it is possible to enable users to switch
between different interaction tasks (navigation, manipulation, etc.)
by toggling a designated option. For instance, for a 3D design appli-
cation, a contextual menu tied to the controller could still be used
when users are afforded the ability to press a designated button on
the controller to switch to navigation mode. This would eliminate
the need to require the use of two controllers, while at the same
time ensuring that all functionality is still available to users.
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5.4 Limitations and Future Work
In this review, we intentionally focused on a certain category of
VR applications in the Meta Quest Store library. We identified the
most popular applications for collaboration, productivity, and so-
cialization and included them in the review. In a future review, we
intend to include a wider selection of VR applications from multiple
application stores (although most of the reviewed applications are
available across all stores). Another point to consider is that we
completely excluded VR games from the review. As noted before,
there is a vast number of VR games available in the market, some
of which may have interesting solutions for supporting unimanual
input. In future work, we plan on expanding this review to include
VR games, as well.

6 CONCLUSION
In this paper, we contributed the first systematic review of main-
stream VR applications for collaboration, productivity, and social-
ization to ascertain the extent to which these applications are ac-
cessible to individuals who use one hand. Our review showed that
the assumption of bimanual input was pervasive in the applications
reviewed, that separation of functionality to different hands was
common, and that accessibility options to accommodate physical
disabilities were nonexistent in mainstream VR applications. Our
findings highlight the urgent need for supporting unimanual inter-
actions in VR. We hope that VR community will join the efforts to
make VR more accessible and usable for individuals with mobility
impairments.
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ABSTRACT
The use of 360◦ content with sensory effects can enhance user
immersion. However, creating such effects is complex and time-
consuming as authorsmust annotate the spatial position (i.e.,´´origin
of the effect”) in 360◦. To tackle this mutimedia authoring issue, this
paper presents an extensible architecture to automatically recog-
nize sensory effects in 360◦ images. The architecture is based on a
data treatment strategy that divides multimedia content into several
manageable parts, operates on each part independently, and then
joins the responses. The proposed architecture is capable of taking
advantage of the diversity of recognition solutions and adapting to a
possible author configuration. We also propose an implementation
that provides three effect recognition modules, including a neural
network for locating effects in equirectangular projections and a
computer vision algorithm for sun localization. The results offer
valuable insights into the effectiveness of the system and highlight
areas for improvement.

CCS CONCEPTS
• Applied computing → Hypertext / hypermedia creation; •
Information systems → Multimedia information systems; •
Computing methodologies→ Object recognition.
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1 INTRODUCTION
The term “immersion” has been widely used to describe the quality
of multimedia content such asmovies, games, and presentations. Im-
mersion refers to the user’s perception of being physically present
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in a virtual world [13]. With the rise of head-mounted displays
(HMDs), 360◦ multimedia content has become more prevalent, with
a strong correlation between 360◦ experiences and the user’s per-
ception of immersion [18]. The industry has focused primarily on
improving audiovisual quality to increase immersion. However,
other senses beyond hearing and sight also play a role in perceiving
and interacting with the world. 360◦ Multisensory or Mulsemedia
(from Multiple Sensorial Multimedia) refers to 360◦ multimedia con-
tent combined with stimuli that engage additional senses such as
wind, fog, heat, etc. Sensory effects have been shown to improve
the quality of experience (QoE) [5] and sense of presence [10].

The authoring of 360◦ multimedia applications with sensory
effects is a two-step endeavor where the mulsemedia author first
identifies the sensory effects, i.e., identifies their spatio-temporal
location in the audiovisual content and then annotates it with meta-
data describing their occurrence. This process, done on the mulse-
media authoring tool, can be challenging, costly, and prone to errors.
In the context of addressing these limitations, the work of Amorim
et al.[7] explores the use of crowdsourcing as a method to author
coherent sensory effects associated with video content. To facilitate
the authoring process, several studies [1, 17, 19] are focused in
to create multimedia content analyzing algorithms into authoring
tools to aid the identification of sensory effects, which we call sen-
sory effect recognition in this paper. However, limitations such as
the difficulty of annotating sensory effects and the subjectivity of
the authoring process still exist [6].

The common approach for automatically recognizing sensory
effects in multisensory media is to train a DNN (Deep Neural Net-
work) to identify them [6]. However, this integration is not simple
due to a few key challenges. Firstly, there is a wide variation in
DNN architectures for content recognition, leading to different in-
put modalities and outputs for the same content. The mulsemedia
authoring tool must be able to handle these varying outputs, but this
raises a problem of subjectivity, as the authoring of sensory effects
is based on personal preferences and artistic decisions. Training a
recognition method like a DNN can actually hinder this process, as
it may not align with the author’s preferences and retraining the
network would be time-consuming.

Each DNN is is limited to the scenarios it was trained on, making
it crucial for the network to return descriptive labels. However,
standards for relating these labels to sensory effects are lacking,
and label selection is influenced by various factors. In addition,
deciding the the placement of sensory effects in 360◦ images is com-
plex and requires the author’s sense of combining sensory effects.
Disambiguation is necessary in some cases, as sensory effects may
overlap. For instance, if a wind effect is coming from the left and
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a flower scent from the right, the author must decide whether to
render the aroma or not.

The challenges mentioned above motivates the integration of
multiple DNNs into a single tool that would enable the author to
not only specify the effects to be recognized but also determine how
these effects should be combined to create a uniform description.
This paper proposes an extensible 360◦ image processing architec-
ture for recognition of sensory effects to address these issues. To
perform this, The primary contribution of this research is an archi-
tecture that allows for interoperability with multiple recognition
methods. Moreover, we propose the implementation of a mecha-
nism to control and analyze recognition method results, aiming to
produce a combination of the recognized sensory effects.

The rest of the paper is organized as follows. Section 2 presents
concepts related to mulsemedia authoring, methods to perform sen-
sory effect annotation using deep learning techniques, and related
work that delve into sensory effect recognition. Section 3 presents
an overview of the proposed architecture and each of its compo-
nents. Section 4 implements this architecture in the task of locating
sensory effects in 360◦ images and validates with a use case the
integration of recognition modules. Section 5 concludes this paper
by presenting future work and research directions.

2 RELATEDWORK
In order to recognize sensory effects, there are twomain approaches
based on content analysis. The first approach [17] involves training
an algorithm to specifically identify sensory effects inmedia content
and return them as labels. For instance, the trained algorithm may
associate the red color with the heat sensory effect, resulting in
the “heat” label being returned as an annotation of sensory effects
for that content. For 2D content, some studies have utilized DNN
architectures for recognition. Siadari et al. [17] present a DNN
framework for classifying sensory effects in videos, identifying
activation moments of four effects: movement, vibration, wind,
and flash. Zhou et al. [19] use a combination of DNN methods to
detect sensory effect activation times and predict accompanying
rendering attributes. Abreu et al. [1] build a DNN architecture
that leverages both audio and video information to infer activation
times of sensory effects, identifying effects such as explosions, wind,
thunder, rain, and gunshots. All of these methods employ the first
approach, which aims to completely identify sensory effects in the
media content.

In previous work, we presented a second approach to recognize
sensory effects that involves the use of an algorithm to output
generic labels from the audiovisual scene, such as sun, water, and
trees, and relate them to the activation of sensory effects [2, 6]. This
current paper expands upon the existing approach to encompass the
recognition of 360◦ images and to enable the utilization of multiple
algorithms in combination.

In search of DNN for sensory effect recognition in 360◦, we made
a search in the Google Scholar database with the following string:
(sensory effects OR 4D effects) AND 360. The first 100 returned stud-
ies were selected. In this set, there was no mention of automated
authoring of sensory effects in 360◦ content. Thus we performed
a broader search to find work that utilizes DNN content recogni-
tion with 360◦ in search for recognition tasks similar to the ones

being presented in this paper. Query results preset DNN capable of
locating objects in equirectangular images [4] or predicting where
the user should be looking in the 360◦ content [14]. Therefore, it is
clear that although there is no work with the recognition of sensory
effects in 360◦ content, some recognition methods can already be
used in this context. As far as we are concerned, this work presents
the first proposal of an extensible architecture to recognize the
location of sensory effects in 360◦ images.

Apart from 360◦ content, several models specifically tailored to
detect objects are also present in the literature and can be integrated
into our architecture. One prime example is the detection of weather
events. Zhu et al. [20] presents a machine learning solution that can
detect extreme weather divided into four classes (sunny, rainstorm,
blizzard, and fog). Another context is the detection of specific types
of plants and associating them with the corresponding aroma.In
adittion, Dias et al. [8] presents several models capable of detecting
fifty species of plants and cultivars commonly cultivated in Brazil
and also worldwide.

3 PROPOSED ARCHITECTURE
As discussed in Section 2, there are several ways to perform con-
tent recognition and associate it with sensory effects. The core
challenge we address with our proposed architecture is the need
to harness the power of multiple object detection methodologies
while respecting the diverse preferences of the mulsemedia author.
However, achieving a one-size-fits-all solution for comprehensive
detection is a formidable task, given the variations introduced by
different image contexts, such as animations or low-light conditions.
Consequently, we propose an innovative approach that prioritizes
flexibility. Our architecture empowers authors to leverage a wide
array of machine-learning methods and tools. This approach al-
lows them to tailor the architecture to their specific requirements,
mixing and matching techniques to achieve the desired results. Fig-
ure 1 presents a high-level view of the proposed architecture. Each
component of this architecture will be explained in detail in the
remainder of this section.

The proposed architecture is composed of three basic compo-
nents: Map, Inference Module and Filter and combine. There may
be an extensible number of inference modules that encapsulate a
content recognition algorithm. Each inference module implements
three inner components (pre-process, post-process and labels2Effects)
responsible for handling the recognition algorithm and converting
to sensory effects annotations. This coupling of modules allows
integration with any method for media content recognition. Finally,
the responses from the modules are passed to the Filter and combine.
There the responses will be combined and possibly complemented
for a better decision on the specification of the sensory effect type
and rendering characteristics.

Map. Its purpose is to read the audiovisual content and dis-
tribute it to the modules, according to the input needed by each
module. The Map component can run all the loaded modules and
their respective inputs. Furthermore, natively it provides a series of
possible transformations to be applied to the audiovisual content
to suit the modules’ input. We chose to leave these transformations
in the Map component to avoid an unnecessary amount of conver-
sions in each inference module. This is evident by assuming a 360◦
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Figure 1: Extensible architecture for SE recognition

video input and several modules requiring only audio. To prevent
each module from converting, the Map component performs only
one conversion and provides the data for each module. The Map
component is also responsible for passing configuration parameters
to modules through a JSON file. For example, a module might need
a specific API key to access a web service.

Pre-process. This component is the entry point for each module.
Although the Map has already made a preliminary adaptation of the
multimedia input, this step also aims to adapt the multimedia con-
tent received to the recognition algorithm used in the module. For
example, in a module that uses a DNN for audio recognition, it may
be necessary to separate the audio into 10s chunks for recognition,
as done by [6, 15].

Recognition. This is the third-party component that performs
the execution of the recognition algorithm. Therefore, its implemen-
tation details are outside the scope of the architecture. However, a
requirement a third-party recognition component to be used in the
proposed architecture is to return a set of labels that describe the
multimedia content. As seen in Section 2, common strategies for
the Recognition component are using deep learning methodologies
or classical computer vision approaches.

Post-process. This component aims to adapt the output of the
recognition module to a spatial representation consistent with the
one needed for sensory effect annotation (e.g., spherical coordi-
nates). It also applies necessary conversions and corrections in the
returned data, besides its aggregation when several recognition
module calls were made. In that case, individual call responses are
aggregated to generate a single label response to describe the whole
content.

Labels2Effects. As discussed in the earlier sections, it is essential
to allow a configuration of which labels can represent which sen-
sory effects. Since each recognition method may follow a different
label nomenclature, one must know in advance the possible labels
used by the specific recognition method. Therefore, this component
receives a the set of labels recognized by the recognition algorithm,
and correlates them to the chosen types of sensory effects. Each
module must be accompanied by a dictionary of labels related to
sensory effect types that will be passed to this labels2effects. The

dictionary correlates labels and a sensory effect type and its presen-
tation characteristics as illustrated in Listing 1. Output examples
of labels2effects components are given in Listing 2. The dictionary
approach solves two problems related to authoring sensory effects
using content recognition. The first is to allow greater control over
which labels represent the sensory effect types according to the
author’s possible preferences. The second is to enable extensibility
and interoperability of the tool, as the file can be adapted to match
any labels that are returned by the chosen recognition method.

Listing 1: Labels to effects dictionary for the scene under-
standing module
1 ...
2 "Heat": {"sun": {"intensity": 40}, "summer": {

"intensity": 30}},
3 "Aroma": {"flower": {"intensity": 20, "

aromatype":"flower"}, "garden": {"
intensity": 40,"aromatype":"flower"}, "
tree": {"intensity": 40,"aromatype":"tree"
}}

Filter and combine. Individually thee modules can be inter-
esting on their own. However, they can be used to inform the
construction of more sophisticated hierarchical rules. Such a strat-
egy is based on the notion of cooperative data fusion, in which
several independent modules recognize information to provide in-
formation that would not be available in the individual modules [9].
This component, therefore, completes the proposed architecture by
enabling the author to define rules to fuse recognized information
into the final sensory effect annotation for the multisensory appli-
cation. This component oversees the sensory output of all modules,
resolving conflicts and optimizing synergies at a higher abstraction
level.

The application of fusion rules can follow the same principles
of XSLT transformations [3], and more recently for JSON transfor-
mations1. The transformations can be a set of template rules that
associate a data pattern of sensory effects coming from the modules.
Then the application of those rules can transform this data based
on the preferences of the author. As an output, it will construct a
new set of sensory effects that may have been combined, filtered,
or restructured according to those rules. The final output of the
architecture comprises annotations of sensory effectsin the 360◦
image. The following section presents an implementation of this
architecture for inferring sensory effects as to their placement, type,
and intensity using 360◦ images.

4 PROPOSAL VALIDATION
To validate our proposal, we implemented an extensible architec-
ture comprising three recognition modules for 360◦ image content.
This discussion will explain how to construct such a module and
present the threemodules afterwards. Before constructing amodule,
a crucial preliminary step is to determine the content recognition
algorithm that aligns with the desired functionality. This could
involve deep learning models, classical computer vision techniques,
or any other suitable method for the media context. Then the devel-
oper must construct the module’s steps and integrate them into the

1https://github.com/bazaarvoice/jolt
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architecture. The steps involved in building the module include: (i)
Developing the Pre-process component to adapt the multimedia in-
put for accurate recognition. (ii) Integrating the chosen recognition
algorithm into the Recognition component to output meaningful
labels. (iii) Designing the Post-process component to handle la-
bel conversion and rearrangement for spatial representation in
360◦ or address any labeling inconsistencies. (iv) Developing the
Labels2Effects component to correlate recognized labels with pre-
defined sensory effect types. Finally, (v) returning the recognized
sensory effects to the map component.

In our implementation, each inference module encapsulates a
specialized recognition component for different purposes. The first
module is called Effect localization and uses a convolutional neural
network for object detection. The second module is called Scene
understanding and uses a public API capable of recognizing concepts
in the visual content. The third module is called Sun localization
and uses computer vision for localizing the sun in a 360◦ image.

Together with the three modules, we instantiate the Map com-
ponent to have an equirectangular image as input. The Map com-
ponent then converts this input to a cubic projection image for
the Effect localization module and just relays the equirectangular
projection image to the Scene understanding and Sun localization
modules. The following sections explain in detail the process of
creating and running each module. Finally, Section 4.4 describes the
Filter and combine component instantiated to combine the three
modules’ output.

4.1 Effect localization module
The Effect Localizationmodule instantiates the proposed module ar-
chitecture to locate sensory effects in 360◦ images. Having received
a cubic projection image as input (from the Map component), this
module’s pre-processing component calls the recognition compo-
nent for each face of the cubic projection.

The recognition component uses YOLO V3, a CNN-based object
localization network architecture, trained on the Google OpenIm-
ages dataset [12, 16]. This dataset includes 14.6 million bounding
boxes for 600 objects in 1.74 million images, covering a wide range
of object labels, such as animals, clothing, vehicles, food, and more.
YOLO identifies objects in a projection and returns a set of labels
and bounding boxes for those objects.

Thismodule’s post-processing component combines the responses
for each face of the cube, converts these responses back to the
equirectangular projection and then to latitude and longitude coor-
dinates. That conversion is performed for visualization on an HMD.
This representation follows the proposal of Josué et al. [11].

The post-processing component outputs a list of labels, detection
reliability, and the four coordinates that specify the corners of
the bounding box. The Labels2Effects component analyzes that list
to decide which labels should become sensory effects and their
rendering attributes. For example, a plant label may be converted
to a tree aroma effect with 50% intensity. An example of output
from the Effect localization module is shown in Listing 2.

Listing 2: Return from the effect localization module
1 {'effect ': 'aroma ','type ': 'tree ','intensity ':

50,'location ': [(-93,-43),(-45,-34),(-93,
11),(-45,8)]}

4.2 Scene understanding module
The Scene understanding module is a part of a system that identifies
sensory effects in a 360◦ environment, without specifying their
locations. It associates the concepts present in the visual content,
represented by the labels from a neural network output, with sen-
sory effects. Having received an equirectangular image as input,
this module’s pre-processing component decreases the image size
and performs a call to the recognition component.

This module uses as its recognition component a cloud-based
neural network API, specifically the General recognition model
from Clarifai2. It returns more than 11,000 descriptive scene labels,
including travel, beach, architecture, tree, sky and sun. No neural
network training was required to use it.

Since the recognition component returns labels to the whole
image, there is no post-process of labels. The Labels2Effects com-
ponent converts the labels from Clarifai to sensory effects using
a predefined dictionary (Listing 1), where labels are associated to
sensory effect types and an initial intensity. The conversion also
sets the specific type of the effect for those that have characteristics
such as aroma. An example of the conversion of labels to aroma
and heat effects.

4.3 Sun localization module
The Sun Localization module uses a classical computer vision al-
gorithm to identify the sun in an image by finding the brightest
pixels. Having received an equirectangular image as input, this
module’s pre-process component is simply a call to the recognition
component.

The recognition component is implemented using the OpenCV
library, which returns a bounding-box indicating the location of
the sun. However, this approach has limitations, such as the in-
ability to work when the sky is cloudy or there are multiple light
sources, which could be addressed in future work by improving the
recognition method.

The post-processing component converts the bounding-box tag
to latitude and longitude coordinates that conform to the spherical
coordinates system. Equation 1 is used to convert each of the (x,y)
points to spherical coordinates based on the size of the input image.

𝑙𝑎𝑡 =
𝑦 ∗ 180

ℎ𝑒𝑖𝑔ℎ𝑡 − 90
𝑙𝑜𝑛 =

𝑥 ∗ 360
𝑤𝑖𝑑𝑡ℎ − 90 (1)

Lastly, the Labels2Effects component converts the bounding-box
information to the activation of the heat sensory effects. This phase
was parameterized by the dictionary in 1 that sets a heat effect with
the initial intensity of 20◦C.

4.4 Filter and combine
Finally, considering the sensory effects identified by each individ-
ual module, this component filters and combines sensory effects
to generate the final output. In our current implementation, a sim-
ple association rule was used to define that: if there is an ambient
sensory effect (obtained by the Scene understanding module) and
a localized effect (obtained by the Effect localization or the Sun lo-
calization modules, then the intensity of the localized effect should
be the highest value between the ambient and the localized effect.
2https://clarifai.com
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Thus, aroma effects and heat localized effects will have their inten-
sities updated by the highest intensity of the same effects suggested
by the modules. Listing 3 presents a snippet of the final list of sen-
sory effects obtained after combining the output of the modules,
including aroma and heat effects.

Listing 3: Example output of aroma and heat effects after
filter-and-combine
1 {'effect ': 'heat ','intensity ': 35, 'location ':

[(-59,-85.),(-59,-59),(-43,-85),(-43,-59)
]},

2 {'effect ': 'aroma ','type ': 'tree ','intensity ':
40,'location ': [(-93,-43),(-45,-34),(-93,

11),(-45,8)]}

4.5 Implementation Results
To showcase the performance of the recognition system, this section
provides a visual representation of its ability to identify sensory
effects in 360◦ images. A diverse set of real-world images was
selected to demonstrate the system’s capabilities, with the results
displayed in Figure 2. The demonstration involved the application of
the recognition architecture to identify tree aroma (in red) and heat
effects from the sun (in purple). The results offer valuable insights
into the system’s effectiveness and highlight areas for improvement.
In particular, it can be observed from Figure 2 (f) and (g) that the sun
recognition module failed to fully recognize the sun. This limitation
underscores the need for continued development and improvement
of new modules based on novel vision-based recognition systems.

Figure 3 displays the runtime analysis of the effect recognition
module’s components across eight images. Tests were conducted
on a laptop with an Intel i9 11900H processor, with all processing
done on the CPU. Effect recognition was executed in each image
ten times, and their average runtime was recorded. Notably, across
all images the average pre-processing time, recognition time and
post-processing time was ≈ 0.04s, ≈ 0.8s, and ≈ 0.4s, respectively.
The "labels2effects" component’s runtime, although not shown in
the figure due to its minimal impact, averaged at 7µs.

5 CONCLUSION
This work presented an extensible architecture to automatically
recognize sensory effects in 360◦ images. The architecture is capable
of using different recognition modules, combining their results
to provide both localization and presentation characteristics of
sensory effects. The proposed architecture was instantiated with
three recognition modules for 360◦ image content. The first used
a DNN focused on identifying the position of sensory effects. The
second used a DNN API focused on identifying the context of
the scene as a whole. The third used classical computer vision
algorithms to locate the sun and associate it with a heat effect.

As future work, an improvement of the sensory effect localization
module is the most important step. There is a need to build DNN
architectures to fully utilize equirectangular images and fasten the
recognition process. Also in this module, the post-process phase
can perform the union of multiple bounding-boxes of the same label
that are close together, to represent a large and/or close object. An-
other important future work is to define a domain-specific language

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Sensory Effects Recognition in 360 Images

Figure 3: Average runtimes for each component of the effect
localization module (with 90% confidence interval)

to apply JSON transformations on the filter-and-combine step. An-
other future work is to extend the proposed architecture for the
recognition of sensory effects in 360◦ video content. Lastly, another
future work is to develop an authoring tool to receive the output of
recognition modules and evaluate sensory effect recognition with
authors.
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ABSTRACT
In recent years, a large variety of online communication tools have
emerged, including social Virtual Reality (VR) platforms for inter-
acting in a virtual world with participants being represented as
virtual avatars. Given their popularity, an active area of research
focuses on improving the user experience in these virtual experi-
ences. To enable experimentation at large scale on online platforms,
it is however essential to collect behavioural data (e.g. movements
and audio information). In this work, we present a toolchain that
enables the running of experiments using a modified version of
the social VR platform Mozilla Hubs. Specifically, our toolkit en-
ables collection and tracking or user positions and movements at a
central location, enabling fine-grained analysis of user behaviour
during a social VR experience. The proposed tool is available at
https://github.com/cwi-dis/mozillahubs-datalogger
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1 INTRODUCTION
Over the past few years, a new era for remote communication has
begun thanks to technological advances and the introduction of
novel online services in the realm of Virtual Reality (VR). VR goes
beyond traditional remote communication technologies, putting
the users at the center of the action and providing them with a
sense of immersion and new interactive capabilities. Going one step
further, social VR applications enable the virtual co-presence of
multiple users within the same virtual environment, allowing body
interactions similar to face-to-face communication and creating
new possibilities not only for remote communication but also for
collaboration and social presence, redefining the way individuals
engage in virtual experiences [6, 17, 18, 23].

Social VR has been used by researchers and practitioners to en-
able collaborativework [4, 5, 7] and design experiences in areas such
as health care [16], food [19], learning and training [1, 10, 15, 27],
artistic design [22] and museum exploration [20]. A key aspect
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of social VR is its ability to enable embodied interactions so that
users can navigate the space and interact with one another using
body language and non-verbal cues as well as verbal communi-
cation. Thus, the spatial dynamics of social interaction, such as
proxemics, play a significant role in understanding interpersonal
relationships and communication patterns within virtual environ-
ments. Physical displacement and proxemic interactions have been
analyzed to investigate which social cues are the most influential
and relevant to ensure presence and immersion [14, 25]. To do so,
however, researchers are in need of social VR platforms that enable
the accurate logging of behavioural data (e.g. body position and
rotation, interaction modalities or audio information) to analyse
user behaviour [21]. Platforms such as Ubiq [9] and VR2Gather [24]
were developed to enable such logging and support researchers in
running user studies in controlled environments. However, such
frameworks require Unity knowledge to design and develop VR ex-
periences, which might prove difficult for designers and researchers
with low technical skills in this software. Moreover, their deploy-
ment over the network needs to be orchestrated by the researchers,
posing further challenges. Current commercial platforms such as
Mozilla Hubs [8], Spatial.io [12], Rec Room [11] and VRChat [13]
offer easy design and deployment, but do not offer data logging.
This is the research gap we aim to address in this paper.

In this work, we present a toolkit that enables the running of
experiments using a modified version of the popular social VR
platformMozilla Hubs [8]. The main advantage of this experimental
platform relies on its versatility in working with immersive devices,
such as head mounted displays, but also traditional web browsers
on computers or mobile devices. Specifically, we further extend
the toolkit presented in [25] such that position and movement of
head and hands can be collected and tracked at a central location,
enabling fine-grained analysis of user behaviour during a social
VR session (Figure 1). In the following sections, we describe the
implementation of the platform and we give some examples of
deployment to demonstrate how it can be used to foster research
in the field.

2 PLATFORM
Figure 1 outlines the workflow enabled by the system presented in
this paper. The first step is data acquisition, which is realised by a
plugin for the popular Social VR platform Mozilla Hubs. Then, the
gathered data is streamed via HTTP to a data collection component,
an optimised purpose-designed web server that validates and stores
the data in a compressed format. Finally, the collected data can
be visualised and checked for validity before being more deeply
analysed. In following, we further describe these components.

Data Acquisition. Mozilla Hubs completely runs within a browser
environment and is based on open-source libraries: ThreeJS [3] for
WebGL support and AFrame [2] for integration with VR headsets.
Our toolchain consists of a client-side, which runs in the user’s
browser and is responsible for collection and transmission of the
data and a server-side, which validates the received data and stores
it for further processing. Communication between the two is en-
abled through the HTTP protocol using POST requests.

The client-side consists of a JavaScript module which is regis-
tered in the global scope of the A-Frame library. This gives the
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Figure 2: Architecture of the system, showing the relation-
ship between Hubs and the data collection server.

module access to all objects within the virtual world and is exe-
cuted by A-Frame on every tick of its event loop. After system
initialisation, the tick function is activated and runs on every frame
update of the system. The module extracts a variety of informa-
tion from the browser’s DOM tree and the virtual environment.
In the current version of the client-side module, system-related
metrics, such as timestamp and frame rate are collected from the
browser environment while behavioural data is extracted from the
DOM tree. A complete list of metrics collected by these two sources
are given in Table 1a and 1b, respectively. All this data is updated
and saved based on the frame rate of the user’s headset. To min-
imise the number of requests sent to the data collection server, the
data is buffered and a POST request containing all the data as a
JSON-formatted payload is only sent every 4000 ticks.

Data Collection. The data collection is done on a separate cloud
server which is responsible for validating and storing all session
data. As shown in Figure 2, the cloud server with a single HTTP
POST endpoint is implemented using the Go programming lan-
guage to achieve adequate performance and keep system load to a
minimum. Running as a background process, the server listens for
incoming POST requests on TCP port 6000. Further, all requests are
handed to the server through a Nginx reverse proxy, which takes
care of CORS policy validation to allow the Mozilla Hubs clients to
communicate directly with the data collection server via AJAX.

Upon reception of a request on the right endpoint, a streaming
JSON decoder is instantiated, ready to receive the payload body
of the POST request. Once the entire payload is received and val-
idated, the program checks the presence of all required fields. If
all required fields are present, the decoded payload is converted
to a comma-separated format and appended to a compressed CSV
file via a streaming GZip compressor. The server also adds a UNIX
timestamp to each record, which can be used to correct possible
time drift and/or inaccuracies in the timestamps received from the
clients. To prevent file corruption through concurrent access, the
write operation is guarded by a mutex. After a successful write,
the request handler returns a message with HTTP status 200 to
the client; if the submitted data did not pass validation, the server
returns an error with HTTP status 400; and if the data could not
be written, an error with HTTP status 500 is returned. Through
the use of GZip compression, the data collected in a session, which
typically amounts to about 2 GB, can be compressed to about 500
MB, keeping storage space use to a minimum. Further, by using
a streaming compressor, the file handle can be held onto without
having to close and reopen for every request.
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timestamp Device’s UNIX timestamp
fps Current frame rate
uuid Random UUID
user_agent Device user agent
isBrowser Device type
isLandscape Device orientation
isWebXRAvailable VR availability
avatarID Avatar ID
isHeadsetConnected Headset connection status
isRecording Recording status
pathname Current URL
urlQuery Query section of the URL

(a) Data collected from the browser environment

isLoaded Has user finished loading
isEntered Has user joined room
isFlying Is user flying
isVisible Is user visible
isSpeaking Is user speaking
isMuted Is user muted
volume Current user volume
rigPos{X, Y, Z} Avatar position
rigDir{X, Y, Z} Avatar direction
rigQuat{X, Y, Z, W} Avatar quaternion rotation
povPos{X, Y, Z} POV position
povDir{X, Y, Z} POV direction
povQuat{X, Y, Z, W} POV quaternion rotation

(b) Data collected from the DOM tree

Table 1: User metrics collected by the toolchain

Figure 3: Use case of instrumented Mozilla Hubs in an aca-
demic workshop [25].

Data Visualisation. The presented toolchain also offers the possibil-
ity to perform a quick sanity check on the collected data by taking
the data stream and replaying it using a crudely rendered model
of a head and hands, placed into a 3D environment. This allows
researches to quickly assess the viability of the collected data be-
fore analysing it. From this point onward, the data that consists
of a CSV format with a column for all the properties in Table 1,
indexed and sorted by timestamp. The file can be decompressed
and analysed using conventional data analysis tools. For reference,
Figure 3 shows an example of a visualisation generated from results
obtained using the toolchain during a previous study.

3 DEPLOYMENT AND USE CASES
The deployment of the proposed toolchain involves a series of pre-
requisites. Chief among them is a private instance of Mozilla Hubs
that can be achieved by using Mozilla’s official AWS CloudFor-
mation recipe. This recipe will deploy all the needed services on
a selected AWS account and start them. After configuration of a
custom domain, email settings for login and the admin panel, the
custom client including the data collection JavaScript submodule
can be checked out from Github and deployed to the running in-
stance directly from the command line, following the guides found
in the Hubs documentation. The second prerequisite to complete
the system is the server to collect and validate the data. The Go-
based server can be checked out from Github and, after compilation
of the sources to a self-contained binary, can be launched and will
start listening for incoming HTTP requests on port 6000. If the
server runs on a domain different from the Mozilla Hubs instance,
the clients will refuse to send AJAX requests to the data collection

server because it would violate the Cross-Origin Security Policy
(CORS). To address this, we encourage putting the data collection
server behind a reverse-proxy such as Nginx and configure it to
allow requests from the domain name of the Hubs instance. This
way, Nginx handles CORS negotiation and hands off authorised
requests to the server. From this point onward, the logger is automat-
ically enabled for any client that joins a room with the parameter
?log=true appended to the query string of its URL and will start
streaming content to the data collection server. Arrival of data can
be monitored on the standard output of the server.

Our proposed toolkit can be essential to investigate interactions
in social VR. The system [25] on which we based our work has
enabled investigation on digital proxemics, an emerging area fo-
cused on understanding the human use of space within virtual
environments. Specifically, it has been used to analyse how people
use space in a virtual academic workshop [25] and how personal
displacement changes between VR and traditional desktop users
[26]. In both cases, the system supported the gathering and collect-
ing of data from participants allowing data visualisations as shown
in Figure 3 and enabling new behavioural analysis. The use of our
novel toolkit will enable the augmentation of collected data, paving
the way to new investigations such as the impact of the design of
virtual environments and how interaction unfolds in social VR.

It should be noted, however, that Mozilla recently announced
the sunset of their AWS deployment recipe, complicating the use
of their private instances. As alternative, Mozilla started offering a
new professional plan, which outsources the hosting and manage-
ment completely to Mozilla, while still allowing to deploy custom
clients. This makes use of Hubs easier, as the management of the
infrastructure is completely taken care of, albeit slightly changing
the deployment process of our toolchain.

4 CONCLUSION
This work described an easy-to-deploy tool for collecting and stor-
ing behavioural data from the popular social VR tool Mozilla Hubs.
Our solution can be integrated into a running instance of Hubs to
gather metrics from participants within a browser environment.
Collected data is stored off-site using an optimised purpose-built
web server in a compressed format, making it possible to store
substantial amounts of data without placing too much load on the
host system.

43



MMVE ’24, April 15–18, 2024, Bari, Italy Thomas Röggla, David A. Shamma, Julie R. Williamson, Irene Viola, Silvia Rossi, and Pablo Cesar

ACKNOWLEDGMENTS
This work was in part supported through the European Commis-
sion Horizon Europe program under grant 101070109 TRANSMIXR
(https:// transmixr.eu/).

REFERENCES
[1] Sara Arlati, Vera Colombo, Daniele Spoladore, Luca Greci, Elisa Pedroli, Silvia

Serino, Pietro Cipresso, Karine Goulene, Marco Stramba-Badiale, Giuseppe Riva,
et al. 2019. A social virtual reality-based application for the physical and cognitive
training of the elderly at home. Sensors 19, 2 (2019), 261.

[2] A-Frame Authors. 2015. A-Frame. https://aframe.io/.
[3] ThreeJS Authors. 2010. ThreeJS. https://threejs.org.
[4] Steve Benford, John Bowers, Lennart E Fahlén, Chris Greenhalgh, and Dave

Snowdon. 1995. User embodiment in collaborative virtual environments. In
Proceedings of the SIGCHI conference on Human factors in computing systems.
242–249.

[5] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock. 2001. Collab-
orative virtual environments. Commun. ACM 44, 7 (2001), 79–85.

[6] Frank Biocca and Mark R. Levy. 1995. Virtual reality as a communication system.
Communication in the age of virtual reality (1995), 15–31.

[7] Elizabeth F Churchill and Dave Snowdon. 1998. Collaborative virtual environ-
ments: an introductory review of issues and systems. virtual reality 3 (1998),
3–15.

[8] Mozilla Corporation. 2017. Mozilla Hubs. https://hubs.mozilla.com.
[9] Sebastian J Friston, Ben J Congdon, David Swapp, Lisa Izzouzi, Klara Brandstätter,

Daniel Archer, Otto Olkkonen, Felix Johannes Thiel, and Anthony Steed. 2021.
Ubiq: A system to build flexible social virtual reality experiences. In Proceedings
of the 27th ACM Symposium on Virtual Reality Software and Technology. 1–11.

[10] Simon Gunkel, Hans Stokking, Martin Prins, Omar Niamut, Ernestasia Siahaan,
and Pablo Cesar. 2018. Experiencing virtual reality together: Social VR use case
study. In Proceedings of the 2018 ACM International Conference on Interactive
Experiences for TV and Online Video. 233–238.

[11] Rec Room Inc. 2016. Rec Room. https://recroom.com.
[12] Spatial Systems Inc. 2017. Spatial. https://www.spatial.io.
[13] VRChat Inc. 2014. VRchat. https://hello.vrchat.com.
[14] Duc Anh Le, Blair Maclntyre, and Jessica Outlaw. 2020. Enhancing the experience

of virtual conferences in social virtual environments. In 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, New
York, NY, USA, 485–494.

[15] Quang Tuan Le, Akeem Pedro, and Chan Sik Park. 2015. A social virtual reality
based construction safety education system for experiential learning. Journal of
Intelligent & Robotic Systems 79, 3 (2015), 487–506.

[16] Jie Li, Guo Chen, Huib De Ridder, and Pablo Cesar. 2020. Designing a social vr
clinic for medical consultations. In Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–9.

[17] Jie Li, Vinoba Vinayagamoorthy, Julie Williamson, David A Shamma, and Pablo
Cesar. 2021. Social VR: A new medium for remote communication and collab-
oration. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
1–6.

[18] Joshua McVeigh-Schultz, Anya Kolesnichenko, and Katherine Isbister. 2019. Shap-
ing pro-social interaction in VR: an emerging design framework. In Proceedings
of the ACM CHI conference on human factors in computing systems. Association
for Computing Machinery, New York, NY, USA, 1–12.

[19] Yanni Mei, Jie Li, Huib de Ridder, and Pablo Cesar. 2021. Cakevr: A social virtual
reality (vr) tool for co-designing cakes. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–14.

[20] Ignacio Reimat, Yanni Mei, Evangelos Alexiou, Jack Jansen, Jie Li, Shishir Sub-
ramanyam, Irene Viola, Johan Oomen, and Pablo Cesar. 2022. Mediascape XR:
A Cultural Heritage Experience in Social VR. In Proceedings of the 30th ACM
International Conference on Multimedia. 6955–6957.

[21] Silvia Rossi, Irene Viola, Jack Jansen, Shishir Subramanyam, Laura Toni, and Pablo
Cesar. 2021. Influence of narrative elements on user behaviour in photorealistic
social vr. In Proceedings of the International Workshop on Immersive Mixed and
Virtual Environment Systems (MMVE’21). 1–7.

[22] Asreen Rostami, Kasper Karlgren, and Donald McMillan. 2022. Kintsugi VR:
Designing with Fractured Objects. In ACM International Conference on Interactive
Media Experiences (Aveiro, JB, Portugal) (IMX ’22). Association for Computing
Machinery, New York, NY, USA, 95âĂŞ108. https://doi.org/10.1145/3505284.
3529966

[23] Ralph Schroeder. 2010. Being There Together: Social interaction in shared virtual
environments. Oxford University Press.

[24] Irene Viola, Jack Jansen, Shishir Subramanyam, Ignacio Reimat, and Pablo Cesar.
2023. Vr2gather: A collaborative social vr system for adaptive multi-party real-
time communication. IEEE MultiMedia (2023).

[25] Julie Williamson, Jie Li, Vinoba Vinayagamoorthy, David A Shamma, and Pablo
Cesar. 2021. Proxemics and social interactions in an instrumented virtual reality
workshop. In Proceedings of the 2021 CHI conference on human factors in computing
systems. 1–13.

[26] Julie R Williamson, Joseph O’Hagan, John Alexis Guerra-Gomez, John H
Williamson, Pablo Cesar, and David A Shamma. 2022. Digital proxemics: Design-
ing social and collaborative interaction in virtual environments. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–12.

[27] Chiara Zizza, Adam Starr, Devin Hudson, Sai Shreya Nuguri, Prasad Calyam,
and Zhihai He. 2018. Towards a social virtual reality learning environment in
high fidelity. In 2018 15th IEEE Annual Consumer Communications & Networking
Conference (CCNC). IEEE, 1–4.

44

https://aframe.io/
https://threejs.org
https://hubs.mozilla.com
https://recroom.com
https://www.spatial.io
https://hello.vrchat.com
https://doi.org/10.1145/3505284.3529966
https://doi.org/10.1145/3505284.3529966


Untethered Real-Time Immersive Free Viewpoint Video
Javier Usón, Carlos Cortés, Victoria Muñoz, Teresa Hernando, Daniel Berjón, Francisco Morán,

Julián Cabrera and Narciso García
Grupo de Tratamiento de Imágenes,

Information Processing and Telecommunications Center,
ETSI Telecomunicación, Universidad Politécnica de Madrid

Madrid, Spain
j.usonp@upm.es

WebRTC
 Server

Synthetic View Synthetic View

Virtual World 
ViewHead Position

Synthetic 
Camera

Head Position

Figure 1: FVV Live Immersive System Diagram.

ABSTRACT
The recent development of new video capture systems has led to
the adoption of volumetric video technologies to replace 2D video
in use cases such as videoconference, where this enhancement
promises to solve videoconference fatigue. In particular, volumetric
capture allows the content to be viewed from different points of
view, enabling more natural interaction during the videoconference.
One of the solutions proposed for this scenario is Free Viewpoint
Video (FVV). It makes use of a set of calibrated cameras that allows
the use of real life information to generate a synthetic view from
any arbitrary point in space. Although there are real-time capture
developments of FVV systems, theymake use of 2D displays and joy-
sticks to control the point of view. In our opinion, this undermines
the possibilities of volumetric video for the videoconferencing use
case. Building on a previously developed FVV system, we present
a novel untethered HMD-based immersive visualization system
that enables point of view control with the user’s natural position
and visualization of live volumetric content in a 3D environment.
Synthetic views are generated in real-time by the FVV system, and
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streamed with low latency protocols to a Meta quest 3 HMD using
a WebRTC-based server. This work discusses the architecture of the
end-to-end system and describes the bitrate, framerate and latency
values at which the system works.

CCS CONCEPTS
• Human-centered computing→ Visualization systems and
tools; • Information systems→Multimedia streaming.
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1 INTRODUCTION
The latest technological developments in the area of video transmis-
sion are directing the focus towards the volumetric video. Recent
studies link 2D streaming media with negative effects on user expe-
rience [14]. This is known as videoconferencing fatigue [1]. Further-
more, these studies relate this effect to the technological limitations
of 2D video. In particular, the impossibility of free movement and
two-dimensional representation. In this context, volumetric video
is postulated as a solution because it allows the natural visualiza-
tion of content from different points of view, allowing freedom of
movement [11, 13, 14]. In the literature there are different methods
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Figure 2: Diagram of the complete architecture of the immersive FVV system. The left side presents the components from FVV
Live: RGB-D information from the scene is obtained thanks to a set of stereo cameras and transmitted to the view renderer,
which is capable of synthesizing a new view from any arbitrary point of view. The right side presents the wireless connection
of the user HMD to the view renderer through a WebRTC server: the parameters of the HMD virtual camera are transmitted
using a WebRTC data channel, and the requested point of view is rendered and forwarded to the HMD using RTP.

to generate volumetric video. For example, [16] presents a volu-
metric videoconference system based on active depth cameras to
generate a 3D volume. Another way to generate volumetric video is
free-viewpoint, this technique consists of generating an on-demand
3D view using the information from a set of cameras. Although
there are different implementations of this type of video [2, 15, 18],
these systems use a display based on 2D. Moreover, these works
implement techniques to modify the point of view using devices
such as mouse and joysticks, lacking natural interaction. An alter-
native solution to solve these issues is the use of head mounted
displays (HMDs). HMDs allow the visualization of volumetric con-
tent through the use of displays in front of your eyes, Furthermore,
the current HMDs incorporate a head tracking system with 6DoF
that allows the user to move around the virtual world. Thus, taking
advantage of all the benefits of volumetric video. This type of solu-
tion has already been addressed in [18]. However, due to technical
limitations at the time, their solution requires a wired connection,
limiting the user’s freedom of movement. Another problem is the
impossibility of that FVV system to display video in real time, mak-
ing interactive use cases impossible. In this paper, we present what
to our knowledge is the first development of real-time FVV with
immersive visualization and interaction. In summary, this work
contributes to:

• Present the first implementation of a videoconference FVV
system with immersive control and display.

• Present an analysis of the technical characteristics including
bitrate, latency and resolution.

The paper is structured as follows: section 2 presents literature
related to 3D video systems; section 3 presents the operation scheme
of our FVV system with a detailed description of its processes;
section 4 presents an analysis of the performance of our system
with other 3D video systems; section 5 presents the conclusions of
the work along with directions for future work.

2 RELATEDWORK
2.1 Volumetric Video
Volumetric video consists of capturing three-dimensional space
through the use of video cameras [15]. Thanks to this technology
it is possible to offer multimedia content with greater interactivity
due to the freedom of movement [11]. This is because the content
can be viewed from different points of view. Among the techniques
that can be found to generate volumetric video are: LIDAR based,
structured light based, lightfields or calibrated stereo cameras [8].

Volumetric video is being adapted for integration into a mul-
titude of use cases: surgery [12], creative storytelling [19] and
immersive videoconference or Social XR [16]. Specifically, volumet-
ric video is very promising in the area of videoconferencing. It is
postulated as a technology that can help overcome current issues,
like video conferencing fatigue, mainly caused by the lack of free
movement or flat representation of users [14]. In addition, there are
studies that claim that this type of video, coupled with immersive
visualization, improves the user experience substantially, taking
videoconferencing to its maximum exponent of realism [11, 14].

One way to generate volumetric video is through free viewpoint
video. In this case, a set of calibrated cameras is used to generate a
synthetic view at a given point of view. By modifying this point,
the system generates a new viewport, allowing to see the content
from different perspectives. Finally, FVV systems usually generate
the final viewport, not requiring a point cloud or mesh format.
Thanks to this, it is possible to take advantage of all the existing
multimedia transmission infrastructure to enable volumetric video.
Therefore, this solution does not need to adapt the transcoding
stages to specific volumetric data type.

2.2 FVV Systems
FVV systems, unlike those based on generating complete volumes,
try to generate the view that the user demands at that moment. In
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the literature, there are different implementations that make use of
this technique to generate volumetric video [2, 15, 18]. The advan-
tages of this form of volumetric capture over others is that it allows
higher image quality, as it does not depend on lower resolution
sensors such as active depth cameras. Thus being able to take full
advantage of the color resolution of the camera. Another advantage
is the ease with which this type of solution can be integrated into
established video transcoding and transmission workflows. Since
the generated view is a video that follows pre-existing encoding
standards. This allows to reuse all the software/hardware with
which current video players and decoders are already compatible.
However, free viewpoint video is slower when it comes to changing
the viewpoint, since the display device does not receive the full
volume, being at the mercy of the network when changing the
viewpoint.

Viewport-based FVV systems are ideal for immersive systems.
Current HMDs are battery-dependent and their processing power
is limited. In addition, their mobile GPUs make volume-based volu-
metric video rendering more complex, whereas current HMDs are
very well prepared to receive and decode standard video.

This work presents an extension to the FVV Live system proposed
in [2, 10] to enable untethered immersive HMDs. Previous work
covered the end-to-end FVV pipeline: volumetric capture of the
scene, media encoding and transmission, and view synthesis, all
while working in real-time with low latency.

3 SYSTEM ARCHITECTURE
Figure 1 presents an overview of the architecture proposed. The
system can be divided into three blocks: The FVV Live system with
all its internal components, a WebRTC server, and the user HMD
working as a wireless WebRTC client. Figure 2 provides a detailed
diagram of this architecture at the process level.

FVV Live is formed by a set of Stereolabs ZED cameras that
capture RGB-D information from the scene. These media streams
are processed, encoded and transmitted from a group of capture
servers to a view render server. This server chooses the three closest
cameras to the desired viewpoint and uses their RGB-D information
to render the new view point. The FVV Live pipeline is a black box
for the other blocks, the view renderer takes a camera position and
synthesizes the view from that view point. The WebRTC server is
in charge of communicating the FVV Live view renderer with the
HMD using low latency protocols.

Live volumetric video transmission requires a huge amount of
resources, namely processing power, network bandwidth, a set of
volumetric cameras and a stage to be recorded. With the approach
proposed, all of these requirements are managed by the FVV Live
system, leaving the end user with minimal processing and band-
width restrictions.

3.1 FVV Live
The FVV Live system is in charge of performing the volumetric
capture of the scene and rendering said scene from the viewpoint
requested by the HMD.

The volumetric capture stage is performed by a group of syn-
chronized stereo cameras which allows the computation of the
geometrical information from the scene as depth images. Depth

information is heavily affected by traditional lossy video compres-
sion, so it is encoded with a lossless scheme. To reduce the bitrate
for the transmission, foreground segmentation is performed to send
only foreground depth information.

Since the system discards depth data from the background, this
information has to come from an alternative source. Assuming the
background is static, it can be reconstructed offline, free of real-
time constraints, using more compute-intensive techniques such as
structure from motion (SfM) [4].

As explained by [5], the system performs a layered synthesis
separating the live (online) foreground from the pre-computed
(offline) background. Firstly, to synthesize the foreground, online
depth maps from the closest three reference cameras are combined
to build a virtual depth map that can then be used to trace back
the colour to the reference cameras using backwards Depth Image
Based Rendering (DIBR). Secondly, to synthesize the background,
the high-quality offline depthmaps are used in a similar way. Finally,
the holes between both layers are filled.

3.2 WebRTC server
The wireless transmission of synthetic view to the HMD is pro-
vided through WebRTC (Web Real-Time Communication) [17], a
widely-used and open source real-time communication protocol for
web applications, allowing peer-to-peer communication. The FVV
Live system is connected to a WebRTC server that enables bidirec-
tional data transmission. The choice of WebRTC is motivated by its
ability to handle real-time media streaming with low latency and
adaptability to various network conditions. This WebRTC server
acts as an intermediary between the FVV system and the HMD.
The server is implemented using aiortc [9], a library for WebRTC
and Object Real-Time Communication (ORTC) in Python.

In WebRTC, media and data streams are transmitted via a peer-
to-peer connection. Session Description Protocol (SDP) [6] and
Interactive Connectivity Establishment (ICE) [7] are two important
protocols used in WebRTC connection establishment. While SDP is
responsible for negotiating the parameters of a multimedia session
between the devices, ICE is responsible for providing the connec-
tion between devices over the network. To establish the WebRTC
connection, the peers need to complete a signaling process first.

This process starts with an “Offer” SDP from the HMD client
so the media streams details such as the type of codec, transport
protocol and other related information can be negotiated. After that,
once the WebRTC server receives the “Offer” SDP previously sent
by the HMD client, It returns an “Answer” SDP to the HMD client
containing its media details. In order to establish the connection
between the server and the HMD client, the “ICE gathering” takes
place. This process starts with the HMD client sending its network
address (known as ICE Candidate) to the WebRTC server so when
the latter checks for unprocessed Ice Candidates and receives the
one sent by the HMD client, it returns its own ICE Candidate. This
information is used to determine the best available network path
for the session, ensuring a successful connection.

Once the signaling process has finished, the connection is estab-
lished and transmission can begin. In the proposed approach, the
streams involved are a reliable data channel, and both video and
audio streams being transmitted to the HMD.
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(a) View fully rendered by FVV Live (b) Avatars rendered by FVV Live

Figure 3: Examples from the two proposed scenarios. In (a),
the full scene is rendered by FVV Live. In (b), only the avatars
are rendered by FVV Live, while the rest of the scene is a
virtual scenario rendered by the HMD.

3.3 Integration with HMDs
The client application which runs on the HMDwas developed using
Unity. It handles WebRTC connection establishment, presentation
of the received video and sending the camera position information.

For the presentation of the received video, the virtual environ-
ment consists of a plane displaying the video which is placed in
front of the user’s point of view, covering their entire field of vision.
The plane is attached to the virtual camera, so it follows the user
when he/she moves its head. Finally, the Unity engine is the one
in charge of generating the left and right views to be presented by
the HMD.

The camera pose from the Unity scene is transmitted to the
FVV Live system so the virtual cameras from both virtual scenarios
match accurately. This transmission is performed by aWebRTC data
channel every frame. The pose is encoded as a JSON containing the
position (X, Y and Z coordinates) in meters, rotation (Euler angles)
in degrees, and the horizontal field of view in degrees of the main
camera (“center eye”). This camera is controlled by the HMD using
the user’s head movement.

With this configuration, the user is able to visualize and control a
FVV scene in an immersive way: the new synthetic view is rendered
by the FVV Live and visualized on an HMD. In this configuration,
the synthetic view occupies the user’s entire viewport in the virtual
world. Additionally, a different scenario is proposed, where only
some elements from the FVV scene are presented on top of a virtual
world. Figure 3 shows an example of such scenario, where the FVV
Live only renders people, and those “avatars” are integrated with a
virtual scene.

To achieve this integration, the live scene has to be segmented,
and as explained in subsection 3.1, the FVV Live system already
performs segmentation. To take advantage of this, all the discarded
pixels are given an specific color (green), so the HMD can remove
them and show what is behind in the virtual scene.

If virtual elements are added to the Unity scene, the user will be
able to visualize them behind the FVV avatars. This approach has
the particularity that background objects are rendered by the HMD,
free from the delay and bandwidth restrictions of transmission.

(a) Time reference (b) HMD display

Figure 4: End-to-end latency measurements method, involv-
ing one computer with a clock reference synchronized to the
HMD. The HMD presents a timestamp shown by the screen
of the computer captured by the cameras and rendered by
the system next to its current timestamp. The end-to-end
latency is the difference between them.

4 PERFORMANCE ANALYSIS
This section addresses the performance of the proposed system in
terms of transmission resolution, framerate, bitrate and latency. A
Meta Quest 3 headset was used for these tests.

Resolution and framerate restrictions are imposed by the FVV
Live system. Given the capture hardware used, the system can work
either with 720p or 1080p resolution and at 5, 10, 15, 20 and 30
fps. The resolution can be reduced in the WebRTC transmission to
assure low latency in challenging network conditions.

Regarding the bitrate, the information transmitted to and from
the client involves one 2D video stream, one monophonic audio
stream, and a secure data stream to send camera information. The
video stream bitrate can be adapted depending on the content and
network conditions. As an example, for a videoconference scenario
with people moving around the scene, with 1080p resolution at 30
fps, the resulting bitrate was 3 Mbps. The other streams require
negligible bandwidth, with audio generating approximately 125
kbps and data 120 kbps.

Volumetric video transmission from the FVV Live capture mod-
ule to the view renderer requires high bandwidth given the lossless
encoding of depth information, up to 100 Mbps per reference cam-
era. Nevertheless, the system acts as a black box in the scenario
proposed, so the communication can be performed under a con-
trolled wired network. This way, bandwidth restrictions do not
affect the end user.

To measure end-to-end latency, a USB cable is used to synchro-
nize the clocks of a PC and the HMD. Then, using the capture
system, images are taken of the clock. In the HMD, the capture of
the PC clock can be observed together with the internal clock of
the HMD. Figure 4 shows a snapshot of the view in the HMD. Here
the time at which the snapshot was taken (upper clock) and the
current time (lower clock) can be seen. This technique is an Android
adapted version of [3]. The results show an average end-to-end
delay of 380±16 ms.

Table 1 presents a summary of the results from the performance
analysis carried out on the proposed system. This analysis shows
how the system is capable of delivering high resolution requiring
low network bandwidth and with latency similar to state-of-the-art
immersive systems such as [16].
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Table 1: Summary of the system performance analysis

Resolution Framerate Bitrate End-to-end latency

720p or 1080p from
5 to 30 fps

Adjustable
∼3Mbps 380±16 ms

5 CONCLUSIONS
In this work we propose what to our knowledge is the first im-
plementation of real-time FVV with immersive visualization and
interaction. It allows the user to navigate a live scene freely using
an HMD, and covers the end-to-end pipeline: volumetric capture,
synthetic view rendering, transmission to the HMD and visualiza-
tion.

The implementation involves the FVV Live system, which is
in charge of capturing the live scene and rendering the synthetic
views, and a WebRTC server that enables communication between
the client HMD and the rendering process. The HMD requests an
specific point of view, the rendering server synthesises said view
and the result is transmitted, encoded as a video, to the HMD.

Two different scenarios are studied, the first one being the sim-
plest approach, where the FVV Live renders the full scene and the
HMD only presents the received video. The second one involves
segmentation of the FVV scene (e.g. FVV Live only renders people),
so it can be integrated with a virtual scenario rendered by the HMD.
Thus enabling its integration into Social XR. Figure 3 shows both
scenarios.

Performance tests were conducted on the system, with results
showing that this approach is able to provide HD resolution (views
rendered at 1080p and 30 fps) with low end-to-end delay (∼380 ms)
on a Meta Quest 3 headset, all with a low bandwidth requirement
for the end user (∼3 Mbps).

This solution for volumetric video transmission is an important
contribution to the area of immersive communications. Specifically,
this solution concentrates the efforts of viewpoint synthesis and en-
coding under the same infrastructure, leaving the client as a simple
receiver of 2D video. In this way, all the infrastructure present in
the world of video transmission is fully valid. However, we have yet
to study the delay and bitrate implications of our proposal when it
is taken out of the lab. As future work in this regard, we propose the
evaluation of different technical parameters in the QoE to elucidate
the limits of the system when transmitting over the network and
to compare it to other state-of-the-art solutions. Moreover, further
development of the WebRTC server is proposed to allow for more
manual control over the video transmission to reduce motion-to-
photon latency (M2P). Furthermore, adding transmission of depth
information (RGB-D) will also be explored, aiming to use it for the
stereo view generation in the HMD, and to be able to correctly
solve occlusions in the virtual scene.
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ABSTRACT
The quality-bitrate relationship is not necessarily as straightforward
in volumetric video content as in 2D video. This is caused by the
different volumetric video components affecting the overall quality
of the content disproportional to their bitrates. Therefore, switching
to a combination of higher bitrate components to improve the
quality may not always produce the best outcome when making
rate-adaptation decisions for streaming. To address this problem,
this study proposes a new rate-adaptation logic named Volumetric
Video Rate Adaptation (V2RA). The experiments performed using
the MPEG Immersive Video (MIV) standard show that V2RA can
significantly reduce bandwidth consumption at the expense of an
acceptable loss in quality. In some cases, V2RA even achieves quality
gains together with bandwidth savings.

CCS CONCEPTS
• Networks → Application layer protocols; • Information
systems→ Multimedia streaming.

KEYWORDS
Viewport-dependent streaming, immersive video, MIV, 3D, virtual
reality, adaptive streaming.
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1 INTRODUCTION
Themost recent evolution of the media has been the development of
volumetric video, in particular, MPEG Immersive Video (MIV). The
MIV standard defines a framework for coding and representation
of immersive visual content, also known as volumetric video. MIV
is a part of the family of Visual Volumetric Video-based Coding
(V3C) standards. More details about the V3C standards are available
in [2, 5, 6, 8, 9]. As with any other change, the MIV standard
introduces unique challenges to overcome. One challenge is to
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adapt to the irregular bitrate vs. quality relationship among different
components of MIV content, such as texture and geometry.

MIV content is created using multiple camera views and depth
maps from a 3D environment. Multiple view-depth map pairs
captured from different perspectives in the scene are then pruned to
remove the inter-view redundancies. Each resulting pruned video
is called an atlas. The MIV main profile has two types of atlases:
geometry and texture.

The geometry atlases are created from the depth maps, as
illustrated in Figure 1. This atlas type contains the depth
information of the objects in the scene. It is usually significantly
smaller than the attribute atlas in size since it requires only one
channel. Effects of the quality of this atlas are most evident when
there is parallax in the scene. The texture atlases are created using
the camera views. This atlas type contains information about the
color of the pixels in the scene. The texture component typically
has the largest bitrate among all components.

Camera View

Depth Map

MIV 
Encoder

Video 
Encoder

Texture
Components

Geometry
Components

Figure 1: An MIV encoding pipeline.

The atlases are essentially 2D video bitstreams. Since V3C is
codec agnostic, any existing 2D video codec, e.g., AVC, HEVC,
VVC, can be used to encode the atlases. Encoded atlases are then
sent to the client and decoded to render a 3D environment using
the texture and depth information about the scene. For adaptive
streaming, the atlases can be encoded in multiple qualities to stream
the content in a rate-adaptive manner. In such a scenario, the client
can independently request the geometry and texture components,
as illustrated in Figure 2. Different quality geometry and texture
components can be combined to achieve different overall qualities.

We argue that the combined bitrate of a set of MIV components
and the overall quality resulting from this combination are not
always positively correlated. In our testing, we observed that some
combinations could achieve very close or even better picture quality
compared to another combination despite totaling a significantly
lower bitrate. In such cases, the geometry component was the
deciding factor for the overall quality. Some parts of an MIV content
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Figure 2: Workflow for adaptive streaming of MIV content. V2RA’s main components are shown in green color.

composed of lower-quality texture and higher-quality geometry
components could outperform those composed of higher-quality
texture and lower-quality geometry components in terms of overall
quality despite being smaller in size. This implies that when making
adaptive bitrate decisions, we cannot assume that higher bitrate
components will have a higher quality. Since there are cases where
MIV content can be delivered in higher quality using less bandwidth,
adaptation decisions need to be made smartly based on the content
and the user viewport.

Current adaptive bitrate (ABR) algorithms work on the
assumption that higher bitrates lead to better quality. This causes
the common ABR algorithms to make sub-optimal decisions when
used for MIV content. To prevent such decisions, the overall quality
of different component combinations must be assessed beforehand
to create a quality ladder. Since the quality of the content can differ
significantly for different viewports even when using the same
components, the quality ladders must be created in a viewport-
dependent fashion.

In this paper, we propose a preprocessing step to create quality
ladders for a subset of possible viewports. Since measuring the
quality of every possible viewport is not viable, we sample the
whole viewing space using some representative viewports on a
grid. By rendering the content using different quality component
combinations for these viewports on the grid, we can approximate
a quality ladder for any viewport. After generating the quality
ladders, we demonstrate how these ladders can be used to stream
MIV content more efficiently. The proposed rate-adaptation logic
is called Volumetric Video Rate Adaptation (V2RA) and its main
components are shown in Figure 2.

2 RELATEDWORK
Streaming immersive video typically requires higher resolution (4K
or more) and frame rates (at least 60 fps) than 2D video to provide
a satisfactory user experience and avoid motion sickness that may
be induced if the viewing experience is not in sync with the user’s
movement. However, in most cases, only a part of the scene is

visible to the user at a given time. Therefore, streaming only the
part of the scene that lies inside the user’s viewport or streaming
the background with lower quality/resolution (viewport-dependent
streaming) is a feasible solution to achieve high bandwidth savings.
For example, in [10], the visible parts of the atlases inside the
user’s viewport were extracted to reduce the video bitrate. [18]
demonstrated how VVC [7] subpictures could be used to implement
viewport-dependent streaming for volumetric video. [11] developed
a visual saliency-based tiling and QoE-based transmission scheme
for optimal transport of volumetric video.

One of themost critical aspects of viewport-dependent streaming
is viewport prediction. As the segments are requested for a future
viewport, correctly predicting the future viewports is the key
to achieving the full potential of viewport-dependent streaming.
Thus, viewport prediction has been an active research field for 360-
degree videos. Some approaches used the past data for prediction
(e.g., [14, 19, 20]), while others used models for head motion
(e.g., [15, 21]) or learning algorithms (e.g., [13, 22]). Some techniques
have also been developed for six degrees of freedom (6DoF) [4].

Content saliency in a 2D video is not equally distributed over
the whole scene, which is also true for 3D videos. By extracting
the salient regions in a 3D scene and allocating more bits to such
regions, the available bandwidth can be used more effectively to
increase the quality of the regions the user’s attention is directed
to. The authors of [17] explored the advantages of such delivery
methods for 3D video. [16] evaluated visual attention models
for omnidirectional videos using publicly available testbed and
subjective user data.

3 THE V2RA LOGIC
In this section, we introduce V2RA, a new rate-adaptation logic for
streaming MIV content. It uses a grid to approximate the viewport
and makes ABR decisions based on the approximated viewport. To
achieve this, we draw a grid in the viewing space. Then, we render
the video for every point on the grid for multiple orientations, using
every possible quality combination of the available components.
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After the quality assessment of all the renders, a quality ladder is
created for every point and a set of pre-determined orientations on
the grid. The combination with the lowest bitrate with a quality
score close enough to the highest quality available is chosen as the
preferred combination for each segment. The desired closeness to
the highest available quality can be adjusted for different content
and applications. When viewing the content, the client finds the
closest grid point to itself and the closest pre-determined orientation
and uses the quality ladder for that point and orientation.

3.1 Grid-Based Viewport Approximation
To use a viewport-dependent approach for rate adaptation, we
first need to be able to compute the user’s viewport efficiently.
However, matching the exact pixels within the MIV atlases to
viewports is difficult because of the complex nature of the MIV
encoding and complications, such as occlusions. Hence, we reduce
the possible viewing space to a smaller representative subset of
viewports. The viewports included in this set are evenly spaced on
the intersections of an 𝑛-by-𝑚 grid. For each grid point, i.e., the
intersections of vertical and horizontal lines, there can be multiple
viewports because of different orientations on the same grid point.
In Figure 3, a top-down view of a 4-by-5 grid is depicted. In this
example, there are four orientations for each point on the grid, with
the yaw values of 0, 90, 180 and 270 degrees.

00

1800

900

2700

00

300

Figure 3: An example 4-by-5 grid with four orientations for
each intersection (left) and viewport approximation (right).

After setting the viewport positions and creating the quality
ladder, as described in Section 3.2, the client needs to approximate its
actual viewport to one of the viewports on the grid. The Euclidean
distance between the viewer position and the grid intersections
is calculated to find the closest viewport. After that, the viewport
on that point with the closest orientation to the actual viewport
is chosen as the user’s approximated viewport, and the calculated
quality ladder for that viewport is used whenmaking ABR decisions.
In Figure 3, the actual viewport is illustrated as the semi-transparent
smiling face, facing 30 degrees clockwise from the 𝑥-axis. The
opaque smiling face represents the approximated viewport for the
actual pose. It is on the closest grid intersection and the orientation
it faces is the closest to 30 degrees.

3.2 Quality Ladder
In 2D video, a bitrate ladder is used to switch the quality up
and down as the available bandwidth changes. However, for MIV
content, the relationship between bitrate and quality may not be as

straightforward as it is for 2D video. Since anMIV sequence consists
of different video components such as texture and geometry, the
joint effect of adapting the bitrate of each of these components
on the quality of the reconstructed video needs to be considered.
Especially in cases where a higher-quality texture component
and a lower-quality geometry component are paired, they usually
consume more bandwidth than a lower-quality texture, higher-
quality geometry pair. However, in some cases, the latter has
superior quality despite consuming less bandwidth. In some other
cases, the small quality gain by changing between the two does
not justify the bandwidth waste. Therefore, we propose a quality
ladder consisting of the objective quality metrics calculated for the
viewports on the grid. The video is rendered for each viewport
on the grid and an objective quality score is calculated for every
possible combination.

The quality ladder is then sent to the client for the decision
process. There are multiple ways to relay this information to the
client. The most likely scenario would be to send the quality ladders
for every segment as an auxiliary manifest upfront. The SARA
algorithm proposed in [1] uses a similar auxiliary manifest to
communicate the specific segment sizes. A similar approach for the
manifest delivery can be used for the quality ladders.

After receiving the manifest, the client can use the quality ladder
for the viewport belonging to the closest grid point to make the
decisions. In order to achieve high quality using a reasonable
bandwidth, the client requests the segments for each component
of the MIV bitstream (geometry and texture components in our
experiments) with the lowest total bitrate that also has an overall
quality close enough (within a specified margin) to the highest
possible one for the particular available bandwidth. The pseudocode
for pair selection logic is given in Algorithm 1.

Algorithm 1 Select a Pair of Segments

1: procedure SelectPairOfSegments(availablePairs, margin)
2: 𝑏𝑒𝑠𝑡𝑃𝑎𝑖𝑟 ← maxQuality(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑃𝑎𝑖𝑟𝑠)
3: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {}
4: 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟 ← 𝑏𝑒𝑠𝑡𝑃𝑎𝑖𝑟

5: for each 𝑝𝑎𝑖𝑟 in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑃𝑎𝑖𝑟𝑠 do
6: 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ←

(
𝑏𝑒𝑠𝑡𝑃𝑎𝑖𝑟 .quality−𝑝𝑎𝑖𝑟 .quality

𝑏𝑒𝑠𝑡𝑃𝑎𝑖𝑟 .quality

)
7: if 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ≤ margin then
8: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.append(𝑝𝑎𝑖𝑟 )
9: end if
10: end for
11: for each 𝑝𝑎𝑖𝑟 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
12: if 𝑝𝑎𝑖𝑟 .bitrate < 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟 .bitrate then
13: 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟 ← 𝑝𝑎𝑖𝑟

14: else if 𝑝𝑎𝑖𝑟 .bitrate == 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟 .bitrate and
𝑝𝑎𝑖𝑟 .quality > 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟 .quality then

15: 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟 ← 𝑝𝑎𝑖𝑟

16: end if
17: end for
18: return 𝑐ℎ𝑜𝑠𝑒𝑛𝑃𝑎𝑖𝑟

19: end procedure
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4 EXPERIMENTAL RESULTS
4.1 Setup
To evaluate the performance of our approach, we simulated the
adaptation process. We used the Chess video, containing multiple
moving and stationary objects with varying distances to the viewer,
and the Classroom video, containing a smaller number of objects
and a more dynamic texture but no movement in geometry. The
dynamic elements of the texture components of the Classroom
video are lighting changes and some film grain that increases
the texture component’s size. We used different quantization
parameters (QP) for each component for different quality levels.
QP values of 4 and 11 were used for the geometry component,
and for the texture component, QP values of 22 and 27 were used.
These values were selected among the empirical values used in [2].
All components were encoded using an HEVC encoder1 with the
following parameters:

• Segment duration: 16 frames
• Group of pictures (GoP) duration: 16 frames
• Frame rate: 30 fps
• Video duration: 10 seconds (Chess) and four seconds
(Classroom)

The grid was drawn around the 3-by-3 square around the origin.
Every grid point was 0.25 units away from its neighbors. For each
position, there were four rotations 0, 90, 180 and 270 degrees around
the 𝑦-axis. Each grid pose was rendered with a slight uniform
motion to account for the effects of parallax. We first rendered the
necessary grid poses with all quality combinations and computed
their qualities. Then, we created a quality ladder for the ABR
decisions. Finally, we rendered videos using natural pose traces
and compared the total bandwidth usage and the resulting overall
quality by (𝑖) using the quality ladder, and (𝑖𝑖) blindly picking the
highest possible bitrate.

Since we did not have the means to stream and render MIV
content in real time, the decision process was simulated after
rendering the video using a previously known pose trace. In practice,
the viewport belonging to the closest grid point cannot be known
before sending a request. Therefore, this closest grid point and
the user orientation must be predicted before selecting the most
suitable pair of segments2.

Two quality metrics were used for the experiments in this paper:
Immersive Video Peak Signal-to-Noise Ratio (IV-PSNR) and Video
Multimethod Assessment Fusion (VMAF). To assess the quality
of the MIV content, we first took renders using pose traces and
evaluated the resulting viewport.

• IV-PSNR is a specialized metric designed for assessing
the quality of 3D video content adjusted for the common
artifacts in 3D video [3]. It is a weighted PSNR calculation
with weights tuned specifically for 3D video content. IV-
PSNR is particularly relevant in 3D video rendering, where
the dynamic nature of the content influences the viewer’s
experience.

1FFmpeg: Available at https://ffmpeg.org/
2In this study, we assume perfect viewport prediction to better demonstrate the effects
of the proposed rate-adaptation logic.

• VMAF is a comprehensive quality metric developed by
Netflix that combines multiple assessment methods to
provide a unified score for video quality evaluation [12].
It integrates various perceptual quality metrics, including
spatial and temporal aspects, to emulate human perception
accurately.

4.2 Results
Table 1 shows the calculated IV-PSNR scores for the segments of the
Chess video. The values outside the [−1.5%, 0] range are highlighted
with a colored background. A similar table for the VMAF scores of
the Chess video’s segments is given in the Appendix (see Table 2).
The overall sizes for both the texture and geometry components
are shown in Figure 4 for various QP combinations.

Figure 4: The total size of the component combinations for
the Chess video (10 seconds).

The V2RA logic selects the pair of segments with the lowest total
bitrate within the desired margin of the highest possible overall
quality for the available bandwidth. Since only the qualities of the
grid positions are known beforehand, decisions are made based
on the quality of the closest grid position and not the viewer’s
actual pose trace. The grid positions are named after the 𝑥 and
𝑦 coordinates and the yaw angles in that order. The closest grid
positions for Pose 01 are 25_0_0 for the first four segments, 0_25_90
for the subsequent four segments, -25_0_180 for the following seven
segments and 0_-25_270 for the last four segments.

The initial hypothesis was that the quality levels of the
combinations were not directly correlated with the overall bitrate of
the videos. We see that this hypothesis holds for several segments.
For example, in Table 1 under the last (Pose 01) column, the fourth
through the ninth segments have higher quality for the g4-t27
combination than the g11-t22 combination despite having a lower
bitrate. Another example in Table 1 is under the 0_25_90 column.
Most of the IV-PSNR scores are higher for the g4-t27 combination
compared to the g11-t22 combination despite having a lower bitrate.
In such cases, switching to a higher bitrate can reduce the overall
quality in addition to wasting bandwidth.

When the available bandwidth is insufficient for the highest
bitrate, we observe V2RA’s superiority over the blind approach. By
choosing the combination with the highest approximated quality
among the available combinations instead of the highest bitrate one,
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-25_0_180 0_-25_270 0_25_90 25_0_0 Pose 01
GoP g4-t22 g11-t22 g4-t27 g11-t27 g4-t22 g11-t22 g4-t27 g11-t27 g4-t22 g11-t22 g4-t27 g11-t27 g4-t22 g11-t22 g4-t27 g11-t27 g4-t22 g11-t22 g4-t27 g11-t27
1 51.7 51.7 51.0 51.1 49.0 48.6 48.5 48.3 49.6 49.2 49.2 48.9 52.4 52.1 51.8 51.6 54.6 54.2 53.4 53.4
2 46.8 46.8 46.4 46.5 48.3 48.0 47.9 47.7 46.9 46.7 46.7 46.5 50.3 50.0 50.1 49.8 52.6 52.2 52.0 51.8
3 48.0 48.0 47.6 47.6 48.7 48.5 48.4 48.3 47.3 47.1 47.1 46.9 51.0 50.6 50.6 50.3 49.6 49.4 49.3 49.1
4 49.0 48.9 48.3 48.3 49.4 49.2 48.8 48.7 49.2 48.8 48.9 48.5 52.4 52.3 51.9 51.8 49.7 49.3 49.4 49.2
5 53.0 52.7 51.7 51.6 49.4 49.3 49.0 48.9 50.7 50.3 50.3 49.9 53.3 53.0 52.6 52.4 49.9 49.5 49.7 49.3
6 49.7 49.4 49.2 49.0 48.6 48.4 48.1 48.0 49.4 49.1 49.2 48.9 52.1 51.9 51.5 51.4 51.7 51.2 51.3 50.8
7 52.3 51.9 51.6 51.4 48.8 48.7 48.4 48.3 49.4 48.7 49.1 48.5 52.9 52.9 52.2 52.3 51.7 50.7 51.3 50.3
8 50.1 50.1 49.4 49.4 49.8 49.7 49.3 49.2 49.4 48.8 49.2 48.5 53.2 53.0 52.6 52.4 48.7 48.2 48.4 48.0
9 51.7 51.6 50.9 51.0 49.5 49.3 49.1 49.0 49.3 49.0 48.9 48.7 52.7 52.0 52.1 51.5 48.6 48.1 48.3 47.9
10 46.9 46.9 46.6 46.6 47.9 47.8 47.6 47.5 46.7 46.5 46.5 46.3 49.5 48.6 49.2 48.4 50.8 50.5 50.5 50.2
11 48.7 48.7 48.3 48.3 48.5 48.4 48.2 48.1 46.3 46.1 46.1 45.9 51.2 50.8 50.6 50.4 51.5 51.0 51.2 50.7
12 50.1 50.0 49.4 49.4 49.9 49.7 49.4 49.3 47.6 47.3 47.4 47.0 51.4 51.1 50.7 50.6 53.3 52.9 52.7 52.4
13 52.6 52.0 52.0 51.6 49.1 49.0 48.7 48.6 49.6 49.2 49.3 48.9 48.4 47.7 47.8 47.2 53.6 53.3 52.3 52.2
14 49.7 49.6 49.2 49.2 48.3 48.2 47.9 47.8 48.8 48.4 48.6 48.2 49.6 49.3 49.2 48.9 48.9 48.6 48.4 48.3
15 51.8 51.6 51.3 51.2 48.4 48.3 48.1 48.0 48.3 47.7 48.0 47.4 45.3 45.3 45.2 45.1 47.9 47.9 47.5 47.5
16 50.2 50.1 49.5 49.5 49.5 49.3 49.0 48.8 49.0 48.3 48.7 48.0 49.8 49.4 49.5 49.1 48.9 48.8 48.6 48.5
17 51.7 51.7 51.1 51.1 49.4 49.2 49.0 48.9 49.2 49.0 48.9 48.7 49.7 49.0 49.4 48.8 50.2 49.8 49.9 49.5
18 46.7 46.7 46.4 46.4 47.9 47.8 47.6 47.5 46.5 46.3 46.4 46.1 50.0 49.7 49.7 49.4 52.5 52.2 52.1 51.7
19 47.8 47.8 47.5 47.5 48.0 47.9 47.8 47.6 46.8 46.7 46.6 46.5 48.8 48.8 48.6 48.5 47.9 47.6 47.4 47.1

Table 1: IV-PSNR scores for the Chess video segments. Red indicates values outside [−1.5%, 0] range.

Figure 5: Bandwidth gain and IV-PSNR score loss for different
IV-PSNR margins for the Chess video.

we can save 11.21% (and increase quality by 0.02%) or 5.88% (and
decrease quality by 0.03%) bandwidth, if we make a decision based
on IV-PSNR or VMAF, respectively. The reason for the increase in
the IV-PSNR score (despite using less bandwidth) is that the blind
approach preferred the g11-t22 combination (higher bitrate) over
the g4-t27 combination (lower bitrate) even when the latter had a
higher quality.

Another implication of this irregular bitrate-quality relationship
is a less drastic one. Sometimes, switching to a higher bitrate
combination may increase the quality, but the increase in quality
may not be significant enough to justify the extra bandwidth to
make the switch. The proposed approach is to pick the lower-quality
combinations if their qualities are within a certain range of the
highest available quality for the available bandwidth. By changing
the acceptable quality loss margin, we can analyze the bandwidth
gain vs. quality loss tradeoff.

Figure 5 shows the bandwidth gain and IV-PSNR score loss
by changing the acceptable quality margin when no bandwidth
restrictions are assumed. The suitable margin for any desirable
application and content may vary; therefore this analysis must be
conducted for different use cases. The plot for the same analysis on
VMAF can be found in the Appendix (see Figure 6).

By choosing the lowest bitrate combination with a VMAF score
within the [−3.5%, 0] range from the highest score for the segment,
we can achieve 38.97% bandwidth savings while only losing 2.08%
of the overall quality. By using the IV-PSNR score as the deciding
factor, and accepting qualities within the [−1.5%, 0] range from
the highest quality for the segment, we can save 41.30% of the
bandwidth while only losing 1.35% in the quality.

5 CONCLUSION AND FUTUREWORK
This paper introduces a new method to make better ABR decisions
based on some pre-rendered scenes for MIV content. We created a
testbed and evaluated the quality loss and bandwidth savings that
can be achieved with this method. By making the switch decisions
based on the predicted qualities of the viewport, we saw bandwidth
savings up to 25% with only a 0.75% decrease in the IV-PSNR score.

The main purpose of the study was to find a better approach to
creating a bitrate ladder, considering the peculiarities of the bitrate
quality relationship in MIV content. Nevertheless, it is essential to
validate these initial findings through subjective studies.

APPENDIX
Here we present the VMAF scores for the segments of the Chess
video in Table 2 with the values outside a margin of 3.0% highlighted
in red. For the same video, the corresponding bandwidth gain
and VMAF score loss vs. the acceptable quality margin graph is
presented in Figure 6. In addition, we present the same results for
the Classroom video in Tables 3 and 4 and Figure 7.
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Table 2: VMAF scores for the Chess video segments. Red indicates values outside [-3.0%, 0] range.

Figure 6: Bandwidth gain and VMAF score loss for different
VMAF margins for the Chess video.

Figure 7: The total size of the component combinations for
the Classroom video (four seconds).
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Figure 1: Predicted trajectory and orientation of two GIMOmodel training variations evaluated in a low-vision, complex task
scene. The diverse model takes into account complex interactions (pressing traffic button), and adapts to user walking speed.

ABSTRACT
This work tackles the challenge of predicting human trajectories
while carrying out complex tasks in contextually-rich virtual en-
vironments. We evaluate the CREATIVE3D multimodal dataset
on human interaction and navigation in 3D virtual reality (VR).
In the dataset, navigating traffic crossings with simulated visual
impairments are used as an example of complex or unpredictable
situations. We establish evaluations for a base multi-layer percep-
tron (MLP) and two state-of-the-art models: TRACK (RNN) and
GIMO (transformer), on tasks with varying levels of complexity and
visual impairment conditions. Our findings indicate that a model
trained on normal visual conditions and simple tasks does not gen-
eralize on test data with complex interactions and simulated visual
impairments, despite including 3D scene context and user gaze. In
comparison, a model trained on diverse visual and task conditions
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is more robust, with up to 84% decrease in positional error and
9% in orientation error, but with the trade-off of lower accuracy
for simpler tasks. We believe this work can benefit real-world ap-
plications such as autonomous driving, and enable context-aware
computing for diverse scenarios and populations.
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1 INTRODUCTION
Human trajectory forecasting aims to predict future human move-
ments and is of strong interest especially for high-stake scenarios
such as pedestrian behavior prediction and understanding in self-
driving applications [5]. The complexity of pedestrian behavior,
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characterized by their individual intentions, interactions with other
pedestrians, vehicles and the environment, present a significant
challenge for autonomous systems [16]. Acknowledging these com-
plexities, our work focuses on ensuring that models for autonomous
vehicles consider the diverse behaviors of pedestrians, including
those with vision inequalities and their interactions with traffic
lights, to enhance prediction accuracy and fairness.

Multiple approaches to human motion prediction have been pro-
posed using machine learning and deep learning techniques, with
an unsolved challenge of efficiently taking into account scene and
social context [1]. In this work, we are the first to approach model
performance for pedestrian trajectory and attention prediction un-
der the light of fairness for the visually impaired. We do so thanks
to virtual reality (VR) technologies where realistic scenarios can
be simulated to investigate human behaviour in-context. One such
dataset is the CREATTIVE3D multimodal dataset of user behavior
in VR [15]1 which collects user behaviours in complex tasks such
as seeking, taking, and transporting objects, and real walking in
simulated road intersections [12], including conditions with simu-
lated visual impairments – a virtual scotoma (area in the central
visual field with little or no acuity).

We present evaluations of motion prediction models on this
newly introduced dataset to identify key weaknesses of existing
reference prediction models and research challenges ahead. Specifi-
cally, our contributions are:
• We identify how brittle the models are in case of distribution
shifts, that is (1) when training on normal-vision data and predict-
ing on low-vision data (up to 90% and 8% error increase in position
and attention prediction, respectively), (2) when training on simple
tasks and predicting on complex tasks (up to 900% and 44% error
increase), and
•We show how a diverse training set with different types of vision
conditions and tasks can alleviate the performance unfairness. We
reveal that the models exhibit performance trade-offs between the
different populations and scenarios when trained on a diverse and
balanced dataset (e.g., error increase of up to 25% and 10% for posi-
tion and attention of normal vision data, 72.3% and 1% for simple
tasks), hence exhibiting their inability to properly condition the
output based on context. We propose future important research
avenues based on the findings.

We first present the related work in Sec. 2. We then introduce our
models and testing conditions in Sec. 3 and present the results in
Section 4. Finally, we provide a discussion in Sec. 5 and conclusions
with the future research avenues Sec. 6.

2 RELATEDWORK
Predicting human motion or attention trajectory from multiple
modalities has been a long-standing endeavor in various appli-
cation scenarios (pedestrian trajectory forecast for self-driving,
optimization of VR rendering, etc.). We briefly discuss and position
our approach within the existing prediction models, and the avail-
able datasets with varied contextual conditions (type of vision, type
of tasks, physical environment) and representation (unstructured
such as point cloud, or structured such as scene graphs).

1https://zenodo.org/doi/10.5281/zenodo.8269108

2.1 Models for human motion prediction
The prediction of human motion is adequately approached as a
sequence-to-sequence problem, with prior movements providing
the basis for forecasting subsequent sequences, and possibly in-
formed by the context. Current models employ a variety of archi-
tectures, notably Recurrent Neural Networks (RNN), Graph Convo-
lutional Networks, Generative Adversarial Networks , and Trans-
formers. An example of a multimodal RNN-based prediction model
is TRACK, which predicts attention in 3 Degrees of Freedom (DoF)
VR [13]. Leveraging correlations within a single modality and across
several modalities has known substantial progress with Transform-
ers [14], fueling so-called cross-modal Foundation Models that are
pre-trained on large-scale datasets [9, 11]. An example of human
motion prediction using attention mechanisms to exploit spatial
and temporal correlation between joints is STTran[2].

However, transformers are plagued with quadratic complexity
in the size of the input, often high-dimensional for images, videos
and text, incurring heavy computational costs both in train and test.
Several approaches aim to counteract the high complexity, amongst
which the family of Perceiver models [8], avoiding computationally-
heavy self-attention on a high-dimensional input. Recently, Zheng
et al. introduced a Perceiver-based architecture for motion predic-
tion in 6 DoF VR, named GIMO. The GIMOmodel [17] exploits gaze
data from an eponym dataset to improve human motion prediction
(center of gravity displacements and positions of joints).

In the present work, we consider TRACK and GIMO as reference
representatives of RNN-based and Transformer-based models for
motion prediction in VR. To our knowledge, no existing prediction
model has neither considered the impact of low vision on prediction
accuracy, nor that of different tasks.

2.2 Datasets for human motion prediction
The context in which actions are carried out by people, including
the vision condition, environment and tasks, can be represented in
three forms: images (2D), point clouds (3D), and scene graphs. The
endeavor to accurately model human motion is extensively pur-
sued through the utilization of high-caliber motion capture datasets.
These range from the more compact CMU Graphics Lab motion
capture database[4] to large collections like AMASS [10] and Hu-
man3.6M dataset [7]. The latter is distinguished by its high-quality
motion capture with a multi-view camera system, establishing itself
as a benchmark for motion prediction and 3D pose estimation. For
rich contexts, datasets such as GIMO [17] and CIRCLE [3] have
emerged taking advantage of virtual and augmented reality tech-
nologies, concentrating on simple tasks like reaching for an object
or navigating to a location.

Nevertheless, these datasets do not portray realistic interactions
with the environment that are often chained and overlapping. The
recent CREATTIVE3D dataset [15] addresses this gap having key
interesting features to address our objective. Indeed, it is the largest
dataset of humanmotion in context (over 2.6 million poses), it is cap-
tured in fully annotated and dynamic 3D scenes with multivariate –
gaze, physiology, and motion – data, and it investigates the impact
of simulated low-vision conditions using dynamic eye tracking
under real walking and simulated walking conditions. It therefore
allows the analysis of predicted pedestrian behavior disaggregated
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over simple and complex tasks, such as interacting with the traffic
light before crossing, as depicted in Fig. 1, and over normal and
simulated low-vision conditions. It also provides point clouds of the
environments, which can be processed as input and incorporated
into existing models such as TRACK and GIMO.

3 METHODS
We investigate how predictive models trained on normal-vision
and simple navigation tasks perform on simulated low vision and
higher task complexity at inference time. We introduce the dataset
for this analysis and the models chosen for benchmarking.

3.1 Problem Definition
We consider predicting the future trajectory of a human, modeled
by the head position and orientation in 3D space from past position
and possibly context (depending on the models).

The human model comprises of, at any given time t (in frames),
the head position pt ∈ R3, each component in meters, and head
orientation rt ∈ R3 in Euler angles (roll, pitch, yaw). Head po-
sition represents the user’s absolute position in the scene where
they walk physically with a 1:1 ratio between the real and virtual
distance in the 10 by 4 meters tracked space. Head orientation
corresponds to the direction of the center of the headset field of
view.

The problem consists in predicting a full motion sequence over
a future horizon H , represented asMt+1:t+H = {(p̂t+1, r̂t+1), . . . ,
(p̂t+H , r̂t+H )} from a given time t . We employ a sampling rate of 2
fps, utilize 3 seconds of past motion and gaze data for input, and
aim to forecast motion for the subsequent 5 seconds. Specifically,
for any time-stamp t , our prediction spans {Mt+s }

H
s=1 for each

time-step s across a horizon of H = 10. The model accounts for a
past motion history Mt−L+1:t with L = 6.

3.2 The CREATTIVE3D multimodal dataset
We take advantage of our newly released CREATTIVE3D dataset [15]
of human interactions and navigation in VR, specifically scenes of
road crossings. The CREATTIVE3D dataset includes an extensive
collection of simulated pedestrian behaviors, designed to capture
a wide range of human activities, from basic motion to complex
interactions with objects and urban infrastructure. Its richness lies
in the multimodal data collected allowing for an in-depth analysis
of pedestrian dynamics under varying conditions.

This dataset stands out due to its comprehensive multivariate
data including gaze, physiology, and motion in fully-annotated dy-
namic 3D scenes. It explores the impact of simulated low-vision
conditions, incorporating real-time eye tracking to simulate visual
impairments. The dataset supports a broad spectrum of research,
from cognitive studies to computational modeling for understand-
ing human behavior in VR. The dataset includes 6 scenarios of
two task complexities: simple tasks (ST) with only navigation, and
complex tasks (CT) with simultaneous navigation and interaction.
An example of a complex tasks consisting of interacting with the
traffic light then crossing is shown in Fig. 1. Each scenario is further
observed under two visual conditions: Normal Vision (NV) and
simulated Low Vision (LV).

Training. We consider 4 types of models: trained on normal
vision and simple tasks, as well as a combinations of low vision
or complex task. Specifically, we designed training and validation
datasets that (1) for the scenario, comprise of either simple tasks
only (ST) or diverse simple and complex tasks (DT), and (2) either
normal vision only (NV) or diverse normal and low vision (DV). The
resulting four training and validation sets, along with the number
of samples per scenario/visual condition are summarized in Table 1.
Note that each sample across all models is unique to ensure a diverse
and comprehensive dataset for model training and validation.

Table 1: Summary of models: training and validation sets

Model Training Samples Validation Samples
NV-ST NV-ST: 251 NV-ST: 63

NV-DT NV-ST: 139
NV-CT: 139

NV-ST: 35
NV-CT: 35

DV-ST NV-ST: 139
LV-ST: 138

NV-ST: 35
LV-ST: 35

DV-DT
NV-ST: 139
NV-CT: 139
LV-CT: 138

NV-ST: 35
NV-CT: 35
LV-CT: 35

Test. To investigate the robustness of reference models to dis-
tribution shifts over vision conditions and task complexities, we
consider 4 test sets (with number of samples) to assess their per-
formance across the spectrum of tasks and visual conditions: Test
NV-ST (78), Test NV-CT (44), Test LV-ST (42), Test LV-CT (43)

3.3 Prediction models
We evaluate three reference models for human motion prediction:
MLP, TRACK, and GIMO, as depicted in Fig. 2 on their accuracy and
robustness across various vision conditions and task complexities.
The models take as input different feature vectors processed from
scene point cloud, gaze point cloud, and pose data. As shown in
top of Figure 2 using PointNet++ for feature extraction, we obtain
a per-point feature map (FP ) and a global scene descriptor (FO ).

MLP baseline model [6]. includes fully connected layers, trans-
pose operations, and layer normalization to merge information
across frames effectively. Each MLP block has a fully connected
layer and layer normalization, iteratively applied to capture the
temporal dynamics in the motion sequence, as shown in Figure 2-
(a). Our adaptation uses 4 MLP blocks, leveraging its ability to
effectively model temporal dependencies for improved accuracy.

TRACK [13]. based on RNN, a sequence-to-sequencemodel where
the past ego motion and scene features are each processed by in-
dividual LSTMs, before being fused by a third LSTM. As shown
in Figure 2-(b), the scene context is the gaze-interpolated feature
fд . Given the per-point feature FP , the gaze point feature fд is
computed through inverse distance-weighted interpolation [17],
this interpolated gaze feature thus encapsulates relevant scene in-
formation, offering clues to deduce the subject’s intention.
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Figure 2: Our workflow takes into account scene, gaze, and humanmotion data, building different feature vectors.We evaluate
the dataset on three models: a baseline MLP, TRACK (LSTM) and GIMO (transformer).

GIMO model [17]. a tranformer model composed of three cross-
attention modules, where self-attention is first applied to the key-
value modality, followed by cross-attention with the query modality
(Figure 2-(c)). The modalities attending to each other are the po-
sition, the scene context around the body, and the scene context
around the gaze target. All three latent vectors are then combined
in a last cross-modal transformer, producing estimates of the future
positions and orientations over a prediction horizon of 5 seconds
with a history length of 3 seconds. The hyper-parameters are kept
as in the original GIMO article.

Each of the three architectures is trained on the four training
and validation sets detailed in the previous section. Each of the
three architectures undergoes training on the four training and
validation sets outlined in the preceding section. Each of the three
architectures is subjected to learning processes on the four training
and validation sets outlined in the preceding section.

3.4 Evaluation Metrics
For assessing prediction accuracy on position and head orientation,
we use the following metrics:

Position error. We measure prediction error on position with the
Mean Squared Error (MSE). MSE calculates the average distance,
in square meters, between ground truth and predicted trajectory
position across all time steps in the future horizon H (5 seconds).

Orientation error. The error prediction on head orientation is
measured with the Orthodromic Distance (OD). OD quantifies the
average angular distance, in radians, between ground truth and

predicted orientations across all time steps in the future horizon H .
The OD is defined as:

OD =
1
H

H∑
i=1

2 arccos(|rt+i · r̂t+i |) (1)

where H = 10 is the total number of predictions, rt+i and r̂t+i are
the unit quaternions representing the ground truth and predicted
orientations for the t+ith prediction.

4 EXPERIMENTAL EVALUATION
In this section, we address the following research questions:
RQ1 How do the models compare to each other in different train-

test configurations, and can we identify a superior model?
RQ2 To what extent can models trained on normal vision tasks

maintain accuracy in low vision scenarios? Does refining the
training dataset to reflect low vision test conditions optimize
predictions, and what inherent model limitations does this
approach reveal?

RQ3 How well do models designed for tasks under normal vi-
sion adapt to more complex challenges? Is the accuracy of
predictions enhanced by aligning the training data with the
complexities of the test environment, or does this strategy
expose fundamental flaws in the models?

4.1 Global analysis
Table 2 shows the median values of MSE and OD for the position
and orientation predictions respectively. GIMO has the lowest MSE
values in all tests except LV-ST.

60



Human Trajectory Forecasting in 3D Environments: Navigating Complexity under Low Vision MMVE ’24, April 15–18, 2024, Bari, Italy

GIMO’s architecture under simple tasks (NV-ST, LV-ST) has the
lowest OD, with relatively consistent performance across different
conditions. TRACK and MLP architectures on the other hand, seem
sensitive to test conditions, as evidenced by fluctuating OD values.

Table 2: MSE and OD values for position and orientation on
(1) three architectures (MLP, TRACK and GIMO), (2) four
model variations (Table 1), and (3) on the four test sets.

Tests NV-ST NV-CT LV-ST LV-CT

Arch Model MSE OD MSE OD MSE OD MSE OD

MLP

NV-ST
NV-DT
DV-ST
DV-DT

0.141
0.718
0.152
0.744

0.838
0.805
0.862
0.797

0.854
0.267
0.668
0.261

0.889
0.877
0.901
0.854

0.160
0.285
0.142
0.520

0.725
0.704
0.774
0.691

0.761
0.214
0.607
0.252

0.936
0.819
0.939
0.833

TRACK

NV-ST
NV-DT
DV-ST
DV-DT

0.088
0.284
0.136
0.260

0.864
0.669
0.929
0.631

0.845
0.250
0.527
0.193

0.913
0.697
0.861
0.685

0.174
0.260
0.163
0.184

0.790
0.709
0.832
0.616

0.767
0.201
0.598
0.188

1.066
0.777
0.917
0.732

GIMO

NV-ST
NV-DT
DV-ST
DV-DT

0.083
0.143
0.104
0.223

0.557
0.562
0.618
0.649

0.829
0.167
0.855
0.167

0.804
0.688
0.806
0.640

0.157
0.225
0.144
0.180

0.597
0.590
0.646
0.646

0.832
0.186
0.879
0.137

0.714
0.679
0.762
0.647

Answer to RQ1: Under the NV-ST test for simple tasks, the MLP
model displays moderate to high MSE values, achieving its best
performance at 0.141m2 for the NV-STmodel. TRACK demonstrates
an improvement over MLP, while GIMO surpasses both MLP and
TRACK in the NV-ST configuration by recording the lowest MSE
of 0.083m2. Upon including low vision and complex tasks into the
test, the performances of MLP, TRACK, and GIMO vary, with each
showing their best results in DV-DT model. GIMO’s architecture
outperforms with both NV-ST and DV-DT models, offering the
most accurate predictions. GIMO consistently exhibits lower OD
values, which confirms it as the superior model across all tests.

4.2 GIMO analysis
We conduct a detailed examination of the GIMO architecture’s
performance. The whisker plots in Figure 3 show the MSE and OD
distribution along the prediction horizon and the median estimation
using the sliding window along the task sequence length, computed
between the ground truth and predicted future motion across the
four different training and validation sets for GIMO.

Figure 3: Comparative Analysis of Position and Orientation
Errors in the GIMO Architecture: (Left) MSE Box plots for
position estimation and (Right) OD for orientation estima-
tion.

Model NV-ST stands out for its consistency in NV-ST test as de-
picted with Figure 3 (left), demonstrated by tight interquartile range
(IQRs) and low median MSE value. However, wider IQRs in the NV-
CT and LV-CT tests indicate significant prediction errors under
complex conditions. Model NV-DT shows wider IQRs in NV-ST
and LV-ST, reflecting greater MSE variability for simple tasks than
NV-ST, however reducing the IQRs in NV-CT and LV-CT. Model
DV-ST maintains narrow IQRs in NV-ST and LV-ST tests, indicat-
ing stable performance, but struggles with increased variability
in NV-CT and LV-CT. Model DV-DT exhibits similar trends, with
variable median MSE values and considerable outliers in NV-ST,
NV-CT, and LV-CT, underscoring challenges in complex and low
vision conditions. Overall, while NV-DT and DV-DT models offer
accuracy and consistency, NV-ST and DV-ST highlight increased
variability and occasional large errors, especially in complex task
scenarios.

Across all models, the transition from simple to complex tasks
tends to result in a slight increase in orientation error under both
normal and low vision conditions. The variability of OD, as shown
by the IQR and outliers in Figure 3 (right), does not change drasti-
cally, which could mean that the models maintain a similar level of
consistency in orientation prediction despite task complexity. In
the following sections we extend our evaluation to focus on the
impact of vision conditions and task complexity using Table 2.

4.2.1 Impact of vision condition. Comparing the NV-ST model’s
performance across tests sets reveals a significant shift when go-
ing from normal to low vision: position MSE increases by 89.16%
(+0.074m2) and orientation OD by 7.18%. Training on diverse vision
(DV-ST) introduces a 8.2% (−0.013m2) decrease in position MSE
over the base model (NV-ST), but an increase (also 8.2%) in orienta-
tion OD. Meanwhile, The MSE and OD for the NV-ST test condition
also increase by 25.30% (+0.021m2) and 10.95% respectively, further
reinforcing the notion of a trade-off in model performance.

Answer to RQ2: The Model NV-ST trained on normal vision and
simple tasks exhibit poor robustness when predicting on low vision
with increase in position (MSE) and orientation (OD) error. Modi-
fying the training set to include diverse vision conditions (model
DV-ST) improves the position error but worsens the orientation
error, and even more increases the position and orientation error for
the simple task test NV-ST. While the model becomes more adapt-
able to low-vision trajectories, its performance slightly degrades in
normal-vision conditions.

4.2.2 Impact of task complexity. Comparing the NV-ST model per-
formance on various test sets, we notice a 898.80% (+0.746m2)
increase in position MSE and 44.34% increase in orientation OD
when going from simple to complex tasks. The substantial increase
in both MSE and OD under the complex task condition reflects
that task complexity has a more profound impact on the model’s
performance than changes in vision conditions.

In contrast, the model trained on diverse tasks (NV-DT) outper-
forms the NV-ST model on complex tasks, with 79.98% (−0.662m2)
decrease in position MSE, and 14.43% decrease in OD. However,
this is at the expense of accuracy for NV-ST test, with an 72.29%
(+0.06m2) increase for position MSE. The orientation OD is less
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impacted, only resulting in a 0.9% increase. This reflects that train-
ing on diverse tasks (NV-DT) improves the model’s ability to tackle
complex challenges, enhancing both positional accuracy and orien-
tation precision. However, this focused improvement on complex
tasks can potentially lead to a reduction in performance on simpler,
baseline tasks (NV-ST).

Figure 4: Disaggregated results for MSE and OD along the
task duration, under NV-ST (left) and LV-CT (right) test con-
ditions.

Finally, if we evaluate the performance of the DV-DT model
against the baseline model NV-ST across the four different test
conditions, we observe that the DV-DT model shows a remarkable
improvement in handling position prediction in complex tasks and
scenarios involving low vision (-83.53% on positionMSE−0.695m2),
with also a moderate improvement to orientation OD (-9.38%). How-
ever, when evaluated under low vision conditions with simple tasks
(LV-ST test), the model’s performance slightly deteriorates. Signifi-
cant concern arises from the model’s performance in standard test
conditions (NV-ST test), where the MSE position error increases by
168.67% (+0.14m2), with also a notable increase in OD orientation
error (+16.52%).

Answer to RQ3: The Model NV-ST trained on normal vision and
simple tasks exhibit poor robustness when predicting on complex
tasks. Modifying the training set to include diverse tasks, generally
improves model performance in those specific conditions. However,
this focused improvement comes with compromises, on the base-
line tasks (NV-ST). The quantified data reveal that training on a
broad spectrum of conditions significantly improves performance,
evidenced by up to an 89% reduction in positional error and 20% in
orientation error, but introduces a trade-off, resulting in reduced
accuracy for simpler baseline tasks.

The disaggregated plots in Figure 4 shows MSE and OD across
models under NV-ST (right) and LV-CT (left) test. The model NV-
ST demonstrates impressive accuracy, contrasting with the model
DV-DT, where a pronounced increase in MSE is observed towards
the task’s end. In the LV-CT test, models NV-ST and DV-ST exhibit

heightenedMSE at the task’s onset due to their training void of com-
plex tasks, whereas NV-DT and DV-DT models show initial MSE
reductions, only to rise again as tasks progress. This trend is paral-
leled by escalating OD errors from the outset, particularly when
individuals engage with traffic lights, highlighting increased posi-
tional uncertainty. The influence of low vision introduces amplified
uncertainty in tracking ground truth positions and orientations,
notably exacerbating as tasks conclude. Moreover, the onset of
complex tasks elevates orientation errors, especially during initial
traffic light interactions, leading to escalated positional errors by
the task’s end.

5 DISCUSSIONS
The experimental evaluation described in Section 4 details the im-
pact of low-vision and task complexity conditions on humanmotion
prediction.

Our findings reveal GIMO as the superior model, taking advan-
tage of the extra contextual information in this model, consistently
outperforming MLP and TRACK in prediction for both position and
orientation, especially in the NV-ST and DV-DT tests. However,
performing a deeper analysis on the models trained with GIMO,
reveals issues in the NV-ST model’s ability to predict tasks with
low vision and complex task conditions. And even if we refine the
training data set to include diversity of conditions (NV-DT, DV-ST
and DV-DT) marginally improved position and orientation predic-
tion errors, but at the cost of increased prediction errors in tasks
with normal conditions.

Our study specifically addresses the challenges faced by individ-
uals with scotoma, a condition resulting in partial vision loss, in
the context of human motion forecasting but also highlights the
urgent need for a more inclusive approach in subsequent research
efforts.

6 CONCLUSIONS
Our study provides a foundational understanding of model perfor-
mance in predicting human motion in immersive environments
under low visual conditions and complex tasks. We found that mod-
els trained with a diverse range of task conditions stands out for
its robustness in reducing position and orientation prediction er-
rors by 84% and 9%, respectively. Nonetheless, the subtle trade-offs
observed across normal vision and simple task conditions high-
light the complexity of designing predictive models. Future work
could explore more training strategies or architectural improve-
ments to enhance performance under these challenging conditions,
a promising direction involves using context annotations from the
CREATIVE3D dataset to deepen our understanding of human be-
havior during task execution, particularly in complex scenarios.
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ABSTRACT
Volumetric video, which is typically represented by 3D point clouds,
requires efficient point cloud compression (PCC) technologies for
practical storage and transmission. Particularly, developed by the
Moving Picture Experts Group (MPEG), video-based PCC (V-PCC)
converts 3D point clouds into 2D image maps and compresses them
with 2D video codecs, showing excellent compression performance.
However, understanding the impact of compression on the percep-
tual quality of volumetric videos, which consist of both geometry
and texture components, remains challenging. In this study, we pro-
pose a quality of experience (QoE) model to predict the subjective
quality with respect to the compression level of geometry and tex-
ture, quantifying the impact of geometry and texture compression
on perceptual quality. To the best of our knowledge, this study is the
first to accurately model the perceptual quality of V-PCC-encoded
volumetric videos. The QoE model is built based on a volumet-
ric video quality assessment dataset, VOLVQAD, collected by us.
We further evaluate our QoE model on the vsenseVVDB2 dataset,
which was collected from diverse study settings, to validate its ro-
bustness and generalization ability. Both evaluations demonstrate
the effectiveness of our model in various compression scenarios.
This study makes a valuable contribution to our understanding of
the factors that influence the QoE in V-PCC-encoded volumetric
videos. The proposed model also holds potential for various other
applications, such as adaptive bitrate allocation.

CCS CONCEPTS
• Computing methodologies→ Volumetric models; • Infor-
mation systems → Multimedia streaming.

KEYWORDS
Volumetric video; MPEG V-PCC; Subjective quality evaluation; Sub-
jective quality modeling
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1 INTRODUCTION
Volumetric video is a promisingmedia format used in virtual/augmented
reality systems. The 3D point cloud is a popular way to represent
volumetric video. To enable efficient point cloud compression (PCC),
the Moving Picture Experts Group (MPEG) standardized two com-
pression technologies: video-based PCC (V-PCC) and geometry-
based PCC (G-PCC) [11]. In particular, V-PCC uses a projection-
based approach to convert 3D point clouds into multiple 2D image
maps that represent the texture, geometry, and occupancy of the
points. These image sequences are then compressed as a 2D video
using state-of-the-art video codecs. V-PCC shows significant po-
tential for the applications of volumetric videos.

Unlike 2D videos, volumetric videos consist of both geometry
(the shape and structure) and texture (the color and visual appear-
ance). When these components are compressed, they may exhibit
different types of visual imperfections or artifacts that can impact
the overall perceptual quality of the video. Understanding the spe-
cific effects of compression on geometry and texture is crucial for
optimizing the perceptual quality of volumetric videos. By analyz-
ing these effects, researchers can develop techniques to minimize
artifacts and enhance the viewing experience for users.

There are limited works available in the literature for evaluat-
ing the perceptual quality of volumetric video [5, 10, 25, 29–31],
with only one study considering the individual impact of geome-
try and texture compression. Among these studies, Cox et al. [3]
took the initial step by investigating the effect of compression lev-
els for texture and geometry maps on the perceptual quality of
V-PCC-encoded volumetric videos. They conducted a subjective
quality assessment study, creating a volumetric video quality as-
sessment (VVQA) dataset called VOLVQAD. The volumetric videos
from 8i dataset [6] were encoded using MPEG V-PCC with sixteen
different compression levels for texture and geometry. Participants
were asked to provide mean opinion scores (MOS) based on the
rendered test videos. By analyzing the subjective assessment data,
they made a qualitative observation that compressing the texture
map resulted in a more significant reduction in perceptual quality
compared to compressing the geometry map. Nevertheless, they
failed to model the relationship between compression artifacts and
perceptual quality.

Building upon this previous work, we take a further step by
developing a statistical model to quantify the impact of geome-
try and texture compression on perceptual quality. We trained a
machine-learning model using the VOLVQAD dataset, which was
generated from 8i dataset [6]. To evaluate our model, we conducted
additional subjective quality assessment experiments with 36 users
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(a) Matis. (b) LongDress. (c) RedAndBlack. (d) Soldier. (e) Loot. (f) Basketball Player. (g) Dancer.

Figure 1: Volumetric videos for user study selected from (a) vsenseVVDB1 [29], (b-e) 8i dataset [6], and (f-g) Owlii dataset [28].

and created a new VVQA dataset 1 that consists of 864 ratings
of V-PCC-encoded videos with different compression levels of ge-
ometry and texture. The raw volumetric videos of this evaluation
dataset were taken from not only the 8i dataset but also Owlii
dataset [28]. Our model yields great performance with an overall
Pearson correlation coefficient (PCC) of 0.98, Spearman rank cor-
relation coefficient (SRCC) of 0.93, root mean square error (RMSE)
of 0.50, and mean absolute error (MAE) of 0.45. Additionally, we
included the vsenseVVDB2 VVQA dataset [30], which was collected
from different user study settings. This additional VVQA dataset
allows for a more comprehensive assessment of our model across
diverse scenarios. Our model shows outstanding performance with
PCC of 0.99, SRCC of 1.00, RMSE of 0.09, and MAE of 0.07. These
results of our evaluation demonstrate the effectiveness and general-
ization ability of our model, highlighting its capability to accurately
predict perceptual quality in varying compression scenarios.

The paper is structured as follows: Section 2 provides an overview
of related datasets and highlights the distinctions between our
datasets and existing ones. In Section 3, we explain the process of
generating volumetric video sequences and conducting the subjec-
tive quality assessment study. The training and evaluation of our
proposed QoE model are discussed in Section 4, followed by the
conclusion in Section 5.

2 RELATEDWORK
The establishment of perceptual quality prediction models for 2D
videos has been extensively investigated in the literature. Numerous
studies on video quality assessment [8, 9, 15, 16] have revealed that
video quality is influenced by encoder-related parameters, such as
quantization factor. For instance, Eden proposed a video quality
prediction model that highlights the quantization parameter of
the encoder as a primary factor impacting QoE [9]. Khan et al.
developed a QoE prediction model by considering the distortions
caused by the encoder [16].

1This dataset is publicly available at https://github.com/nus-vv-streams/qoe-model
for sharing with the research community.

As video capturing and processing techniques advance, the ex-
ploration of perceptual quality assessment and modeling has ex-
tended to the realm of 3D space. This research can be broadly
categorized into two groups based on the data format used to con-
struct the 3D models: perceptual quality modeling of point cloud
[1, 2, 4, 12, 17, 23, 24] and mesh [19, 20]. Among the works fo-
cusing on point cloud QoE modeling, the majority predominantly
investigate impairments introduced to single-frame 3D models. For
instance, Alexiou et al. conducted subjective studies to explore the
influence of V-PCC and G-PCC-induced distortions on QoE for
static point cloud models [2]. However, volumetric videos possess
a dynamic nature, which introduces additional factors affecting
QoE, including motion smoothness, temporal consistency, and the
perception of movement within the scene.

Although a few recent studies have addressed volumetric video
quality assessment and modeling [3, 10, 21, 25, 27, 29, 30], the
individual impact of geometry and texture compression of V-PCC
has not been adequately considered in most of them. Among these
works, Cox et al. [3] explored the individual roles of geometry
and texture compression and developed the VVQA dataset called
VOLVQAD. Our work serves as a follow-up study to VOLVQAD,
focusing on the development of a statistical model to quantify the
impact of geometry and texture compression on perceptual quality.
In addition, we conducted further subjective quality assessment
experiments involving 36 users, resulting in the creation of a new
VVQA dataset comprising 864 ratings of V-PCC-encoded videos
with varying levels of geometry and texture compression.

3 SUBJECTIVE QUALITY ASSESSMENT
3.1 Stimuli Generation
Volumetric Video Dataset. We utilize a set of seven dynamic
point clouds as our raw data, which are depicted in Figure 1. These
point clouds are sourced from various datasets, including the vsen-
seVVDB1 [29], the 8i dataset [6], and the Owlii dataset [28]. The first
volumetric video, named Matis, originates from the vsenseVVDB1
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(a) (b) (c) (d)

Figure 2: Sample frames of the RedAndBlack model showing quality levels: (a) (GR0, TR3), (b) (GR3.5, TR1), (c) (GR4, TR2.5), (d)
(GR5, TR0).

and is employed for the training task in our user study. The remain-
ing four point cloud sequences (LongDress, RedAndBlack, Soldier,
and Loot) are extracted from the 8i dataset. We additionally include
two dynamic point clouds, Basketball Player and Dancer, which
have been obtained from the Owlii dataset. It is worth noting that
the Basketball Player and Dancer sequences are twice as large as
the avatars in the 8i dataset. The size of the point cloud can have
an impact on compression and rendering processes. To ensure con-
sistency in point density, we address this by down-scaling and
down-sampling the Owlii dataset. This adjustment allows us to
maintain the same point density as the 8i dataset, ensuring compa-
rable results in compression and rendering.

Compression. V-PCC projects the volumetric video into 2D
geometry and texture maps and compresses them separately. The
overall compression rate of V-PCC is thus determined jointly by
the geometry compression rate (GR) and texture compression rate
(TR) with each having its quantization parameter (QP): geometry
QP (𝑄𝑃𝑔) and texture QP (𝑄𝑃𝑡 ). Based on the V-PCC Common
Test Condition (CTC) [7], the compression rates are defined into
five levels, labeled as R1 to R5. Additionally, to explore the rate-
distortion performance comprehensively, we further increase the
QP values for R1 to obtain an additional compression rate called R0,
as demonstrated in previous works [3, 22]. Following this notation,
we represent these compression rates by GR and TR so that R𝑖 can
be denoted as (GR𝑖 , TR𝑖), where 𝑖 ∈ {0, 1, 2, 3, 4, 5}.

Cox et al. [3] made the first work to explore the impact of geom-
etry and texture compression on QoE. They built a VVQA dataset
called VOLVQADwhich was collected from a user study. In the user
study, two sets of volumetric videos that encompassed a total of six-
teen quality levels were generated for rating. The first set of videos
was generated with compression rates (GR𝑖 , TR𝑖), 𝑖 ∈ {0, 1, 2, 3, 4, 5}.
The second set of videos were generated by varying the GR across
the quality levels while maintaining a constant TR of TR5, that is,
(GR𝑖 , TR5), 𝑖 ∈ {0, 1, 2, 3, 4}. They also generate the videos with
compression rates (GR2, TR𝑖), 𝑖 ∈ {0, 1, 3, 4, 5}, which means vary-
ing the TR across the quality levels (TR0 to TR5) while keeping the
GR constant at GR2.

As our QoE prediction model is built on the VOLVQAD dataset,
wemade a careful selection of the compression rates for building our

testing dataset, so that we can assess the performance of our model
on unseen data with different compression settings. We specifically
choose four settings of GR and TR: (GR0, TR3), (GR3.5, TR1), (GR4,
TR2.5), and (GR5, TR0). These settings allow us to generate four
distinct sets of videos with different compression configurations
than those in VOLVQAD. Besides, the settings of (GR3.5, TR1) and
(GR4, TR2.5) change the GR and TR in finer granularity respectively,
which can help in understanding the impact of small variations
in GR and TR on the perceptual quality of volumetric videos. The
MPEG V-PCC reference software (v15.0) 2 is used to encode the raw
point cloud sequences. Table 1 summarizes our encoder settings.

Table 1: Settings of V-PCC encoder for the testing set

(GR0, TR3) (GR3.5, TR1) (GR4, TR2.5) (GR5, TR0)

𝑄𝑃𝑔 36.0 22.0 20.0 16.0
𝑄𝑃𝑡 32.0 42.0 34.5 47.0

Rendering and Video Generation. We follow the guidelines
presented by Cox et al. [3] for rendering and video generation.
Specifically, we decode the compressed V-PCC streams and use the
Open3D Python library (v0.14.1) to generate images for each frame
in the point cloud sequences. The image size is fixed at 600×1080,
and we set the camera viewport to a frontal view with the object
positioned at the center. The background color is gray (#898B88)
with a point size of 1, and these settings remain consistent for
all frames of the same model. For video generation, we utilize
FFmpeg 3 to create videos at 30fps with a duration of 10 seconds.
We apply visually lossless H.264 parameters (-c:v libx264 -crf 15) to
control distortion while maintaining high quality. Figure 2 shows
the rendered frames of RedAndBlack with four quality levels.

3.2 Participants
We conducted participant recruitment through a university adver-
tisement web page, where potential participants were invited to

2https://github.com/MPEGGroup/mpeg-pcc-tmc2/releases/tag/release-v15.0
3https://ffmpeg.org
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take part in our study. The recruitment criteria specified that par-
ticipants needed to be at least 18 years old, have no (uncorrected)
visual impairments or color blindness and possess no prior experi-
ence in picture quality evaluation. We offered a reimbursement of
S$6 upon completion of the user study, which typically took around
10 to 15 minutes to finish. Before proceeding with the evaluation
of the videos, participants underwent in-person vision tests, which
were conducted by our research team. Participants who did not
pass the vision tests were unable to continue with the user study.
In total, we recruited 36 participants for the study, with an average
age of 21.5 (ranging from 19 to 24 years old). Out of the participants,
20 identified as female, while 16 identified as male.

3.3 Procedure
The user studies were conducted following the recommendations of
the International Telecommunication Union (ITU) [13, 14]. Partici-
pants were placed in a dimly lit room and seated at a fixed viewing
distance of 120 cm (four times the display height) away from the
display (Dell P2319H). At the start of the user study, the study’s
workflow and goals were explained to the participants. The par-
ticipants were also asked to provide their consent to participate.
Following the ITU guidelines, participants completed a visual acu-
ity test (using a Snellen eye chart) and a test for normal color vision
(using Beck color plates).

Participants who successfully passed the vision tests received
detailed instructions regarding the tasks they would perform. They
then went through training to familiarize themselves with the in-
terface and experimental procedures. During the training phase,
participants completed five video rating tasks, following the same
procedure as the main study. The model used in training is not
used in the main study. The videos shown during training covered
a range of low- and high-quality to ensure participants were fa-
miliar with a full spectrum of quality impairments before the start
of the study. A member of the research team was present in the
room throughout the user studies to address any questions that
participants may have had.

Upon completing the training, participants proceeded to the
main rating tasks. In this phase, participants viewed two videos,
both from the same model, displayed side-by-side on the screen for
ten seconds. The reference video, which represented unimpaired
quality, appeared on the left; while the trial video, potentially con-
taining impairments, appeared on the right. Participants were then
instructed to rate the quality impairment of the trial video using
the degradation category rating (DCR) method. After the videos
finished playing, participants were asked to rate the quality impair-
ment of the trial video relative to the reference video using a scale
consisting of the following options: “1 - Very annoying,” “2 - An-
noying,” “3 - Slightly annoying,” “4 - Perceptible but not annoying,”
and “5 - Imperceptible.”

During the rating process, participants had the option to replay
videos as many times as they deemed necessary, and no time limit
was imposed on providing video ratings. Participants were pre-
sented with 24 pairs of videos, and the order of video presentation
was randomized for each participant.

4 SUBJECTIVE QUALITY MODELING
4.1 Experimental Settings
QoETraining Set. VOLVQAD is used as the training set to train our
QoE prediction model. VOLVQAD comprises 376 video sequences
and 7,680 ratings collected from 120 users. These video sequences
are encoded with MPEG V-PCC using four avatar models from the
8i dataset, covering 16 different quality levels controlled by 𝑄𝑃𝑔

and𝑄𝑃𝑡 . The subjective quality assessment methodology employed
in VOLVQAD is consistent with our study.

QoE Testing Set. In addition to the testing dataset collected
by ourselves, as mentioned in Section 3, we also incorporate vsen-
seVVDB2 [30] as an additional testing set. VsenseVVDB2 consists of
ratings for eight volumetric videos sourced from vsenseVVDB1 [29]
and 8i dataset. These videos were encoded using V-PCC with com-
pression rates ranging from R0 to R5. Because the ratings range
from 0 to 100, we perform a discretization process to map these rat-
ings into the range [1, 2, 3, 4, 5]. Specifically, we divided the rating
range into five equal intervals of 20 units each. Each interval was
then assigned a discrete value, starting from 1. Finally, we mapped
each rating to its corresponding discrete value based on the interval
it fell into.

It is worth noting that the user study procedure for vsenseVVDB2
differs from ours. In their study, the videos were placed within a
scene, and the camera was set to orbit the avatar’s initial origin
twice in a clockwise direction within a 10-second interval. The
inclusion of this additional testing data collected from different
study settings allows us to evaluate the generalization ability of our
model, assessing its performance beyond the specific conditions of
our dataset.

Evaluation Metrics. Four metrics are used to evaluate the QoE
model: PCC, SRCC, RMSE, and MAE. The PCC and SRCC provide
insights into the correlation and ranking accuracy of the predictions
of the model. Meanwhile, RMSE considers the average magnitude
of these differences, and MAE focuses on their average absolute
value.

4.2 Model Training and Selection
To achieve accurate quality prediction, we utilize supervised ma-
chine learning (ML) algorithms. We consider five ML models: (i)
Polynomial Regression (PR), (ii) Support Vector Regression (SVR),
(iii) Random Forest (RF), (iv) Multi-Layer Perceptron (MLP), and
(v) K-Nearest Neighbors (K-NN). During the training stage, we
conduct 5-fold cross-validation to tune the hyperparameters us-
ing the grid search algorithm. Our primary objective criterion for
hyperparameter tuning is RMSE.

Following the hyperparameter tuning process, we carefully select
specific hyperparameter values for each ML model. The PR model is
configured with two degrees, while the SVR model utilizes a linear
kernel. The RF model incorporates 100 estimators and a maximum
depth of 5. The MLP model employs a learning rate of 0.001 and
a hidden layer consisting of 100 neurons. Lastly, the K-NN model
is set to consider two neighbors with uniform weights. All other
hyperparameters are maintained at their default values.

The prediction performance of the five models is reported in Ta-
ble 2. We find that PR achieves the best performance with 0.99 PCC,
1.00 SRCC, 0.06 RMSE, and 0.20 MAE, compared to other methods.

67



Quality Assessment and Modeling for
MPEG V-PCC Volumetric Video MMVE ’24, April 15–18, 2024, Bari, Italy

We thus adopt PR to predict the subjective quality of volumetric
videos with respect to 𝑄𝑃𝑔 and 𝑄𝑃𝑡 , given its effectiveness and
efficiency.

Formally, for a volumetric video encoded by V-PCC with 𝑄𝑃𝑔

and 𝑄𝑃𝑡 , we can predict its subjective quality 𝑞 with:

𝑞 = ®𝑋𝑇 · ®𝛽 + 𝜀, (1)

where
®𝑋𝑇 =

[
𝑄𝑃𝑔, 𝑄𝑃𝑡 ,

(
𝑄𝑃𝑔

)2
, 𝑄𝑃𝑔 ·𝑄𝑃𝑡 ,

(
𝑄𝑃𝑡

)2]
,

®𝛽 = [−0.002, 0.208,−0.005, 0.006,−0.007]𝑇 , 𝜀 = 2.29.
(2)

Table 2: Comparison of the QoE models

Model PCC ↑ SRCC ↑ RMSE ↓ MAE ↓
SVR 0.16 0.10 0.53 0.47
MLP 0.45 0.30 0.92 0.77
KNN 0.81 0.75 0.40 0.34
RF 0.96 0.90 0.49 0.41
PR 0.99 1.00 0.06 0.20

4.3 Model Evaluation
We first evaluate the performance of our QoE prediction model on
the testing dataset collected by ourselves, which consists of 864
ratings of V-PCC-encoded videos from 8i dataset and the Owlii
dataset. Figure 3 plots the predicted MOS of our model. Table 3
presents the performance of the QoE model on the encoded videos
from the 8i and Owlii datasets.

Table 3: Performance of QoE model on 8i and Owlii datasets

Dataset PCC ↑ SRCC ↑ RMSE ↓ MAE ↓
8i 0.99 1.00 0.43 0.42

Owlii 0.98 0.80 0.55 0.48
Overall 0.98 0.93 0.50 0.45

Recall that the training set is collected based on the encoded
videos from the 8i dataset, which serves as the foundation for train-
ing our model. Therefore, when predicting the QoE of encoded
video from 8i dataset, our model shows exceptional performance
results, with a high PCC of 0.99, a perfect SRCC of 1.00, a low RMSE
of 0.43, and a small MAE of 0.42. On the other hand, the Owlii
dataset is not part of the training process, thus containing new and
unseen features that the model may not learn from the 8i dataset.
Nevertheless, the QoE model exhibited a high PCC of 0.98 and a
good SRCC of 0.80, indicating a strong positive linear relationship
and a reasonable monotonic relationship between the predicted
and actual ratings. The RMSE of 0.55 and MAE of 0.48 indicate
slightly larger average differences between the predicted and actual
ratings compared to the 8i dataset. Despite these small differences,
the performance of our model on the Owlii dataset highlights its
ability to generalize well to new and unseen data, demonstrating
its robustness and generalization ability.

Figure 3: Prediction of QoE model on 8i and Owlii datasets.

Figure 4: The QoE surface fitted by the predictions.

Figure 5: The QoE matrix of the predictions.

Moreover, using the predictions generated by our model, we
create a visualization of the results by fitting a surface of QoE in
a 3D space, as shown in Figure 4. We also plot the QoE matrix
constructed from the prediction of our model in Figure 5. Both
visualizations allow us to gain insights into how the QoE varies
based on different combinations of geometry QP and texture QP
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Figure 6: Prediction of QoE model on vsenseVVDB2.

values. It is generally observed that the MOS tends to increase as
the geometry QP and texture QP values decrease. However, an
interesting finding is that when the texture QP is high, the MOS
remains consistently low regardless of the change in geometry QP.
On the contrary, when the texture QP is low, the MOS increases as
the geometry QP decreases. This observation suggests that users are
more sensitive to changes in texture quality compared to geometry
quality, which aligns with previous research findings [3, 18]. It
implies that variations in texture QP have a more pronounced
impact on the perceived quality of the content.

Table 4: Performance of QoE model on vsenseVVDB2

Dataset PCC ↑ SRCC ↑ RMSE ↓ MAE ↓
vsenseVVDB2 0.99 1.00 0.09 0.07

Besides, we evaluate our model on vsenseVVDB2. We only se-
lected the ratings of volumetric videos from the 8i dataset. This is
because the other avatar models from vsenseVVDB1 have sparser
point clouds, resulting in fewer data points to represent the de-
tails of texture and geometry. Therefore, the generated videos from
these models tend to have lower quality compared to the volumetric
videos from the 8i dataset. We plot the predictions and actual rat-
ings from vsenseVVDB2 in Figure 6 and present the performance of
our model in Table 4. As can be seen, our QoE model demonstrates
excellent performance on the vsenseVVDB2 dataset, with PCC of
0.99, SRCC of 1.00, RMSE of 0.09, and MAE of 0.07. The results in-
dicate that our model effectively generalizes its predictions beyond
specific conditions of the training dataset, and accurately predicts
the QoE for videos in different user study settings.

5 CONCLUSION
In this paper, we conduct a subjective quality assessment study
and develop a QoE model that predicts the quality of experience by
considering the features of V-PCC. The evaluation results demon-
strate the effectiveness and generalization ability of our model. This
work contributes to the understanding of factors influencing QoE
in V-PCC-encoded volumetric videos and provides a valuable tool
for video encoding and delivery optimizations to enhance user sat-
isfaction. However, the proposed QoE model focuses primarily on

geometry QP and texture QP of V-PCC. While these factors have
been shown to influence QoE, there may be other important aspects,
such as lighting, color accuracy, or motion smoothness, that were
not explicitly considered in the model. Future research could ex-
plore incorporating additional relevant features to further improve
the accuracy and completeness of the QoE model. Moreover, differ-
ent visualization modalities, such as using Head-Mounted Displays
(HMDs), can introduce unique factors that may influence users’
perception, immersion, and overall satisfaction [26]. Examining
the performance of the proposed prediction model with data from
experiments involving different visualization modalities is crucial
for understanding the impact of these modalities on the quality of
experience.
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ABSTRACT
Volumetric video, a technique used in augmented reality (AR) and
virtual reality (VR) applications, presents unique challenges in ren-
dering and compression. To enable efficient compression, video-
based point cloud compression (V-PCC) techniques have been in-
troduced by the Moving Picture Experts Group (MPEG). Given
the interaction nature of volumetric videos, it is important to un-
derstand the impact of user behavior for the optimizations of vol-
umetric video transmission and compression. In this study, we
investigate the influence of rendering face quality of the avatars
on users’ viewing experience in MPEG V-PCC-encoded volumet-
ric videos. We conducted a subjective quality assessment study
using the Degradation Category Rating (DCR) method, manipulat-
ing facial quality by controlling the compression level of V-PCC.
Our analysis reveals the significant role of facial quality in influ-
encing users’ overall perceptual quality in volumetric videos. The
generated videos and subjective assessment data is made public at
https://github.com/nus-vv-streams/facial-quality to support fur-
ther research.

CCS CONCEPTS
• Computing methodologies→ Volumetric models; • Infor-
mation systems → Multimedia streaming.

KEYWORDS
Volumetric video; MPEG V-PCC; Subjective quality evaluation; Vi-
sual saliency
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1 INTRODUCTION
Volumetric video is an emerging technique utilized for creating
content in augmented reality (AR) and virtual reality (VR) applica-
tions. Typically, these videos are represented as either point clouds
or 3D textured mesh sequences, offering viewers the freedom to
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Figure 1: The face of the avatar in volumetric videos usually
attracts more attention: (a) Heat map of users’ location [14],
(b) Visual attention map of Longdress [15].

observe the content from various angles. To facilitate efficient com-
pression of point cloud data, the Moving Picture Experts Group
(MPEG) has introduced video-based point cloud compression (V-
PCC) techniques, which have been standardized andwidely adopted
[5]. V-PCC employs a projection-based approach to transform com-
plex 3D point clouds into multiple 2D image maps. These image
sequences are subsequently compressed using cutting-edge video
codecs, treating them as conventional 2D videos. The implementa-
tion of V-PCC holds immense promise for enhancing the storage
and transmission efficiency of volumetric videos.

Volumetric videos present distinct challenges compared to tra-
ditional 2D videos, necessitating a deeper understanding of the
effects of rendering and compression on perceptual quality [1]. One
notable difference is the freedom for users to move and view volu-
metric videos from various angles, introducing user behavior as a
new factor in assessing the impact of rendering and compression on
perceptual quality. A particularly complex aspect is visual attention,
as different regions of the volumetric video naturally draw vary-
ing levels of viewer focus. Consequently, compression techniques
may introduce distortions that affect the overall perceptual quality
differently across different regions.

Numerous prior studies [7, 10–12, 14, 15] have consistently
shown that users tend to direct their attention towards the frontal
body of avatars in volumetric videos, with particular focus on the
avatar’s face. For instance, Zerman et al. [14] conducted an AR user
study to collect behavior data in volumetric videos, revealing that
participants allocated a substantial amount of their viewing time
towards the face and frontal body of the volumetric avatars. Figure
1(a) shows an example of a heat map of users’ location collected
by them. Similarly, Zhou et al. [15] developed a comprehensive
eye-tracking-based visual attention dataset. They observed that
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subjects predominantly fixated on the faces and front view of dy-
namic point clouds, despite the random rotation of the avatar, as
shown in Figure 1(b).

Building upon these findings, a subjective quality assessment
study was conducted to investigate the influence of facial quality
on users’ viewing experience. In the user study, the Degradation
Category Rating (DCR) method is used to evaluate MPEG V-PCC-
encoded volumetric videos. The quality of the avatar’s face was
manipulated by controlling the compression level of V-PCC, and
enlisted participants to rate the videos based on their perception
and satisfaction. Upon analyzing the assessment data collected from
the participants, we found that the volumetric videos with higher
facial quality get up to 39.7% higher mean opinion score (MOS)
compared with the control group, demonstrating the crucial role
of facial quality in influencing users’ overall perceptual quality
with volumetric videos. The findings highlight the importance of
optimizing compression techniques to preserve the quality and
realism of facial features, as they significantly contribute to users’
immersive viewing experience. The generated videos and collected
data is made publicly available to support further studies 1.

2 SUBJECTIVE QUALITY ASSESSMENT
2.1 Volumetric Video Generation
Volumetric Video Dataset. Four dynamic point clouds obtained
from the 8i dataset [3] are employed for our study. These point
clouds, namely LongDress, RedAndBlack, Soldier, and Loot, consist
of 300 frames captured at a frame rate of 30 frames per second over
10 seconds.

Compression. In the compression step, we utilize the MPEG
V-PCC reference software TMC2 (v15.0) 2 to encode the raw point
cloud sequences. The compression rates in V-PCC are controlled
by the geometry and texture quantization parameter (QP). The
V-PCC common test condition (CTC) [4] defines five compression
rates denoted as R5 to R1, where R5 corresponds to the highest
quality (lowest compression), and R1 represents the lowest quality
(highest compression). Additionally, an extra compression level is
introduced, denoted as R0, which exhibits higher distortion levels
compared to R1. The geometry QP and texture QP are set to 36 and
47, respectively. Detailed information regarding the CTC encoder
settings, along with our additional setting, is summarized in Table 1.

Rendering. For rendering, we decode the compressed V-PCC
streams using the MPEG V-PCC reference software TMC2 (v15.0)
and employ the Open3D Python library (v0.14.1) to generate images
for each frame in the point cloud sequences. The image dimensions
are fixed at 600×1080, and the camera viewport is set to a frontal
view with the object positioned at the center. The background color
is gray (#898B88), and a point size of 1 is maintained consistently
across all frames of the same model.

To introduce variations in the quality of the face region, we uti-
lize the OpenCV Python library (v4.6.0) to detect the face of the
avatar in each frame. This detection process provides us with the
precise boundaries of the detected face region. To ensure a grad-
ual transition in quality, a foveated-rendering-like strategy [6] is

1https://github.com/nus-vv-streams/facial-quality
2https://github.com/MPEGGroup/mpeg-pcc-tmc2/releases/tag/release-v15.0

Table 1: Settings for MPEG V-PCC Reference Encoder

Rate Level Occupancy Q Factor Q Factor
Resolution (Geometry Map) (Attribute Map)

5 2 16 22
4 4 20 27
3 4 24 32
2 4 28 37
1 4 32 42
0 4 36 47

adopted. In addition to the detected face region, we include a pe-
ripheral area that encompasses the head and neck of the avatar. The
size of this peripheral area is determined empirically, considering
the anatomical proportions.

Therefore, each generated video consists of three distinct re-
gions with decreasing qualities. The first region is the detected
face region, which represents the highest-quality portion of the
video. The second region is the peripheral area of the face, covering
the head and neck, which exhibits a slightly lower quality level.
The third region comprises the remaining body parts, exhibiting
the lowest quality among the three regions. Figure 2(a) provides a
visual representation of these regions for better understanding.

For comparative analysis, we incorporate a control group where
higher qualities are assigned to the center of the human model. In
these videos, three regions with decreasing qualities are present: (i)
the region centered around the human body, with a size equivalent
to that of the detected face region, (ii) the peripheral region, which
matches the size of the peripheral region in the experimental (face)
group, and (iii) the remaining body regions.

Consequently, for each avatar model, a total of eight videos are
generated, each exhibiting a distinct quality switch pattern.

• Face-L𝑖 , 𝑖 = 1, 2, 3, 4: Video quality starts with high-quality
representation from the detected face region and gradually
transitions to lower quality levels. This gives us four patterns:
R5-R4-R3, R4-R3-R2, R3-R2-R1, and R2-R1-R0, which are
labeled as Face-L4 to Face-L1.

• Center-L𝑖 , 𝑖 = 1, 2, 3, 4: Video quality starts high from the
body center region, and progresses to low quality, following
the same four patterns: R5-R4-R3, R4-R3-R2, R3-R2-R1, R2-
R1-R0. These patterns are denoted as Center-L4 to Center-L1,
respectively.

Video Generation. Finally, we utilize FFmpeg 3 to create videos
at 30fps with a duration of 10 seconds. Visually lossless H.264
parameters (-c:v libx264 -crf 15) are applied to control distortion
while maintaining high quality.

2.2 Participants and Procedure
Participants were recruited through a university advertisement
web page, meeting the criteria of being at least 18 years old, having
normal vision, and no prior experience in picture quality evaluation.
A total of 36 participants (21.5 years old on average) completed the
study, with 20 identifying as female and 16 as male. They underwent

3https://ffmpeg.org
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(a) Reference. (b) Face-L1. (c) Face-L2. (d) Face-L3. (e) Face-L4.

Figure 2: Sample frames of the Soldier model: (a) Reference, (b) Face-L1 (R2-R1-R0), (c) Face-L2 (R3-R2-R1), (d) Face-L3 (R4-R3-
R2), (e) Face-L4 (R5-R4-R3). The quality switch regions are plotted in (a) for better illustration.

in-person vision tests before video evaluation. Participants failing
the tests were excluded. Reimbursement of S$6 was offered for
study completion, requiring 10-15 minutes on average.

The study procedure was conducted following the methodology
proposed by Cox et al. [2], while adhering to the guidelines recom-
mended by the International Telecommunication Union (ITU) [8, 9].
The user studies took place in a dimly lit room, with participants
positioned at a fixed viewing distance equivalent to four times the
height of the displayed model. Before the commencement of the
study, participants were provided with a detailed explanation of the
workflow and objectives, and their informed consent was obtained.
Following ITU guidelines, participants underwent visual acuity
tests using a Snellen eye chart to assess visual acuity, as well as
Beck color plates to evaluate normal color vision.

After successfully passing the vision tests, participants received
detailed instructions for the tasks and completed training to famil-
iarize themselves with the interface and experimental procedures.
During training, the participants were shown quality variations
of the Matis (football player) model from the VSenseVVDB1 [13].
Following the training, participants proceeded to the main rating
tasks. They viewed side-by-side videos for ten seconds, both origi-
nating from the same model. The left video represented unimpaired
quality (reference), while the right video potentially contained im-
pairments (trial). During the rating process, participants had the
freedom to replay videos as needed, and no time limit was imposed
for providing video ratings. Using the DCR method, participants
were asked to rate the trial video’s quality impairment using the
scale:

• “1 - Very annoying,”
• “2 - Annoying,”
• “3 - Slightly annoying,”
• “4 - Perceptible but not annoying,” and
• “5 - Imperceptible.”

A total of 32 pairs of videos were presented, with the order of
video presentation randomized for each participant.

3 RESULT ANALYSIS
We compare differences inmean ratings between Face-L𝑖 andCenter-
L𝑖 , 𝑖 = 1, 2, 3, 4. Independent samples t-test is used to compare the
mean rating. Table 2 shows mean differences and 𝑝-values for each

Figure 3: Mean ratings with the change of quality levels.

Table 2: Difference between mean ratings for Face-L𝑖 and
Center-L𝑖, 𝑖 = 1, 2, 3, 4. The SD (standard deviations), SE (stan-
dard errors), the mean differences, and the 𝑝-values are also
shown.

Quality N Mean SD SE Mean t-test
Switch Difference p-value
Face-L1 36 2.04 0.59 0.10 0.81 <0.001
Center-L1 36 1.23 0.30 0.05 -0.81 <0.001
Face-L2 36 3.10 0.64 0.10 0.91 <0.001
Center-L2 36 2.19 0.57 0.09 -0.91 <0.001
Face-L3 36 4.15 0.39 0.06 0.78 <0.001
Center-L3 36 3.37 0.53 0.09 -0.78 <0.001
Face-L4 36 4.44 0.40 0.07 0.41 <0.001
Center-L4 36 4.03 0.46 0.07 -0.41 <0.001

comparison. Figure 3 plots the mean ratings with the change in
quality levels. We can observe consistent and statistically signifi-
cant differences (𝑝 < 0.001) in mean ratings between the Face-L𝑖
and Center-L𝑖 conditions across all quality switch patterns. The
Face conditions consistently yield superior viewing quality in com-
parison to the Center conditions, with a notable increase of up to
39.7% in Mean Opinion Scores (MOS).
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Moreover, we can find that the mean differences at lower quality
levels (L1 and L2) are larger than at higher quality levels (L3 and
L4). Meanwhile, the mean difference increases with the increase
of the quality level until L2, then decreases in subsequent levels,
as shown in Figure 4. These observations indicate that when the
quality level is lower, participants may be more sensitive to any
improvement in the face stimuli since even small enhancements
can have a noticeable impact on perceived quality. As the quality
level increases, participants may reach a point where the quality
is already satisfactory or meets their expectations. At this stage,
further increases in quality may become less discernible or have
diminishing returns in terms of perceived improvement. This could
lead to a ceiling effect, where participants find it challenging to
differentiate or appreciate additional quality increases.

4 CONCLUSION
In this paper, we conducted a user study to investigate the influence
of facial quality on users’ overall perceptual quality in MPEG V-
PCC-encoded volumetric videos. The findings from the subjective
quality assessment study emphasize the significant influence of
facial quality on the perceptual experience when viewing volumet-
ric videos. Our research highlights the importance of optimizing
compression techniques to preserve the quality and realism of facial
features, as they significantly contribute to users’ immersive view-
ing experience. Further studies can build upon these findings to
improve the design and implementation of compression algorithms
for volumetric videos, considering the perceptual impact of facial
quality and user behavior.

It is important to recognize the constraints of our work. In our
study, we worked with volumetric videos which contain 3D data.
However, when it comes to how our participants interacted with
these videos, they did so using 2D displays. This is because the
prevailing way people consume volumetric videos at present is
through standard screens that provide a 2D viewing experience.
We thus conducted our quality assessments based on how the par-
ticipants perceived the videos in this 2D format. However, we are
fully aware of the significance of assessing perceptual quality in a
more immersive and realistic 3D context. In the future, we plan to
expand our research to explore how viewers perceive volumetric
videos when experienced in a true 3D environment.
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ABSTRACT
Progressive coding is a valuable technique for networked immersive
media. As users approach objects in an immersive environment,
progressive coding enables a gradual improvement of content qual-
ity. This effectively reduces bandwidth consumption compared to
non-progressive methods that require to fully exchange a content
representation by an independent, new representation.

In this work, we introduce an approach to progressively code
point cloud attributes in a learned manner by compressing quanti-
zation residuals of each preceding representation through a learned,
lightweight transformation in the entropy bottleneck. This allows
to progressively reduce quantization errors using a single model
in an end-to-end learning manner given the quantization residuals.
In contrast to the state of the art that conditions the compression
on a fixed rate-distortion, i.e. it requires an ensemble of models to
build an adaptive streaming system, our approach requires only a
single model during compression and decompression. We present
preliminary results of our method, showing bandwidth savings
for the scenario of a user approaching an object and gradually
transitioning from low to high quality representations.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Computing
methodologies→ Point-based models.
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1 INTRODUCTION
Point clouds are a popular representation format for volumetric data.
They are easy to acquire through sampling points on an object’s
surface allowing to model arbitrary shapes. In terms of multimedia
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Figure 1: As a user approaches content of interest, progressive
coding allows to gradually increase the quality through a
number of enhancement layers.
applications, that require textured representations of the object, an
attribute vector is assigned to each point. One main challenge in
the processing and distribution of point clouds stems from their
immense data demand. Coupled with the user free movement to
explore an immersive environment this effectively results in only a
small subset of content actually being visible in the users’ view-port
at the cost of requiring very high data rates.

Adaptive streaming techniques, being the de-facto standard in
video streaming [2, 31] and allowing considerable bandwidth sav-
ings in free view-port video [18], have been transferred to point
cloud content [19, 38] to reduce the bandwidth demand in scenes
with multiple objects. Here, the proximity of the content to the
users’ view-port introduces an additional dimension [30] when
adaptively selecting a set of qualities to maximize the Quality-of-
Experience (QoE) given the clients’ bandwidth constraints. With
this in mind, we assume that content will be repeatedly re-trans-
mitted, gradually exchanging the representation to increase the
quality as the object gains of importance for a user. This stands in
contrast to the currently available point cloud compression meth-
ods. V-PCC [1] and G-PCC [3] operate in static manner, i.e., they
compress an independent bitstream per quality representation. Sim-
ilarly, promising rate-distortion performance has been shown in
a number of learning-based point cloud compression algorithms,
handling the geometry [16, 32, 34, 43, 44], attributes [37, 42] or both
modalities together [46]. However, with the exception of the latter,
all learned compression approaches are conditioned on a fixed rate-
distortion trade-off, leading to the need for an ensemble of models to
build an adaptive streaming system.

In this work, we argue that progressive coding, i.e. a coding
technique that compresses the point cloud into a layered bitstream,
is a perfect match for the described requirements, allowing grad-
ual increase in quality without the re-transmission of independent
representations. While progressive coding has been prominently
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employed in JPEG [40] and used in video compression [35], it re-
gained traction recently, as it allows to convert learned, fixed-rate
image compression methods into progressive codecs [24, 25, 27].

Summarizing our contributions given the need for progressive
point cloud compression:

• We propose an approach for progressive point cloud attribute
compression, requiring a single encoder and decoder model.
The approach is optimized on all quality layers in an end-to-
end manner.

• By stacking a sequence of entropy bottlenecks, we allow
to extract individual features of the latent presentation to
iteratively refine the reconstruction.

• Our evaluation shows significant potential for bandwidth
savings when gradually transitioning from low quality to
high quality in comparison to fixed-rate models.

2 PROBLEM STATEMENT
To introduce our problem we first briefly review the transform
coding framework from [4]. There, the source data x is transformed
in an autoencoder, consisting of an encoder used for the analysis
transform 𝑔𝑎 and a synthesis transform 𝑔𝑠 for the decoder as

y = 𝑔𝑎 (x;𝜙𝑎) (1)
ŷ = 𝑄 (y) (2)
x̂ = 𝑔𝑠 (ŷ;𝜙𝑠 ) (3)

where 𝑔𝑠 and 𝑔𝑎 are realized as neural networks parameterized
by 𝜙𝑎 and 𝜙𝑠 , respectively. After quantization, the latent repre-
sentation ŷ is entropy coded for compression. To further exploit
spatial correlation in the down-sampled latent representation y, it
is common practice to estimate the local means 𝜇 and variances 𝜎
of the elements in y, which can be compressed as side-information
through a hyperprior model [5, 29]. This hyperprior model consists
of a hyperanalysis ℎ𝑎 and a hypersynthesis ℎ𝑠 , allowing to locally
model the distribution of latents y through a Gaussian distribution.

During training, quantization is then substituted through addi-
tive uniform noise, serving as a proxy for the actual quantization
effect while allowing to back-propagate gradients through the bot-
tleneck. As a result, this approach is restricted to a single rate con-
figuration, imposed by introducing a trade-off parameter 𝜆 during
training to balance the loss terms for rate and distortion as in

L = R + 𝜆D (4)

Now the main problem is that allowing encoding to multiple
rate configurations requires training an ensemble of models con-
ditioned by 𝜆, resulting in a set of parameters for the encoder
and decoder, namely Θ𝑎 = {𝜃 (𝑖 )𝑎 |𝑖 = 1, ..., 𝑛} for the encoder and
Θ𝑠 = {𝜃 (𝑖 )𝑠 |𝑖 = 1, ..., 𝑛} for the decoder. Additionally, as each bit-
stream is compressed independently, this requires to fully exchange
the representation at the client side when transitioning from a low
quality to a high quality representation, resulting in repeated re-
quests for the same content and thus high bandwidth utilization.
Motivated by these observations, our goal in this work is to achieve
an additive decomposition of the latent representation which is
reminiscent of training a model with stacked entropy bottlenecks.

Note that this stands in contrast to approaches from image compres-
sion, that reduce quantization residuals in a fixed manner through
nested quantization [24, 25, 27].

3 RELATEDWORK
Point Cloud compression for multimedia content is challenging.
Standard approaches mainly handle geometry and attributes indi-
vidually to address their different characteristics.

Geometry Compression While we focus on attribute com-
pression, assuming the availability of a perfect geometry of the
point cloud, it is worthwhile to also review methods for learned
geometry compression approaches. Early work [16, 32] proposes
to use 3D convolutions on voxelized point clouds and leverage
learned entropy models [4]. Through introducing elaborate entropy
models [29], and more capable architectures for encoding and de-
coding, rate-distortion performance has subsequently improved as
in [34, 44]. Most notably, the introduction of sparse convolutions [9]
allows to drastically reduce the latency and memory requirements
when operating on voxelized representations [43]. Finally, employ-
ing group-based decoding allows to leverage correlations between
upsampled voxels in a parallelized manner [42] and to extend this
approach to allow inter-frame coding for dynamic point cloud se-
quences [41].

Attribute Compression Attribute compression is mainly dom-
inated by traditional approaches that rely on Graph Transform [45]
or Region Adaptive Hierarchical Transforms (RAHT) [11] to trans-
form coefficients on the irregular geometry. On the other hand,
V-PCC [1] leverages projections into 2D patches, which are then
compressed using video codecs. Investigating more natural fold-
ing techniques, the authors of [33] explored a learned projection
method to fold a 2D grid on a point cloud.

With the emergence of learning-based approaches, the work
in [14] uses a deep entropy model to capture the probability dis-
tribution of coefficients after applying RAHT [11], thus increasing
its compression performance. Fully relying on learned transfor-
mations, the authors of [37] use a point-based model to compress
attributes, relying on computationally expensive multilayer percep-
trons, and thus requiring to only process small blocks of the point
cloud at a time. Recently, sparse tensor autoencoders from [42]
have shown comparable results to traditional attribute compres-
sion approaches, which may be related to drastically increasing
the availability of training data through synthetically projecting
textures on uncolored point clouds.

Point Cloud Codecs Combining selected methods from above,
numerous full-fledged compression algorithms have been proposed
to jointly handle geometry and attribute compression. Mekuria et
al. [28] developed a codec utilizing octree partitions and intra-frame
prediction while projecting the attributes to 2D grids and compress-
ing them with legacy image codecs, enabling further user-centered
studies for immersive video [39]. Recently, two MPEG standard
proposals emerged [36], distinguishing between static point cloud
compression using Geometry-based PCC (G-PCC) and dynamic
point cloud compression with Video-based PCC (V-PCC). While
G-PCC relies on octree partitions for geometry compression and
methods such as RAHT [11] or lifting schemes for attributes, V-
PCC projects geometry and attribute information into video frames
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Figure 2: (a) Stacking entropy bottlenecks for layered coding. The representation x̂𝑖 is reconstructed by decoding the first 𝑖
layers of the bitstream. (b) Entropy Bottleneck (EB), as proposed by [5, 29], locally models the distribution of latents 𝑐𝑖 through
a Gaussian distribution with mean 𝜇 and variance 𝜎 . (c) A non-linearity 𝑓𝑎 extracts relevant features for compression at each
stage, while (d) 𝑓𝑠 reprojects the quantized coefficients to subtract from the latents of the previous stage.

and leverages video codecs for compression to exploit temporal
correlations between frames. Most recently, the first learning based
approach for geometry and attribute compression, has been pro-
posed [46], allowing rate-control through adaptive quantization.

Progressive Coding To the best of our knowledge, Progressive
Coding has not been studied for the domain of point cloud com-
pression, but attracted some interest in learned image compression
mainly building on the framework proposed in [4, 5, 29]. Early
work partitions the latent representation of an image signal derived
through an encoder network into a base and enhancement repre-
sentation, both being decoded through dedicated decoder networks,
allowing a preview representation of the content [8]. Following a
similar goal and encoding a set of enhancement layers, multiple
approaches utilize Recurrent Neural Networks to iteratively encode
the quantization residuals [12, 20, 21], therefore requiring repeated
execution of both the encoder and decoder during compression.

Following a different approach, Lu et al. [27] propose a nested
quantization approach for transforming a trained, fixed-rate model
into a progressive one. In detail, multiple quantization grids are
proposed, allowing to reduce the quantization error from the coarse
to the fine grid using a conditional probability model for each
refinement. Additionally, they propose to order elements of the
latent representation by their estimated variance, allowing for even
more fine-grained rate-control. Progressively dividing quantization
bins into 3 segments [24] follows a similar approach, but requires
learned post-processing to reduce artifacts in lower-quality results
caused by not considering the progressive coding scheme at training
time. Similarly, Li et al. [25] replace the uniform quantizer through
a dead-zone quantizer to counteract symbol redundancy when
performing nested quantization.

Extending the ideas of TailDrop [23], a progressive learning
scheme is proposed in [17] to order the channels of the latent
representation by importance, thus allowing to select arbitrary

ranges of the channels for progressive decoding without the need
for nested quantization.

Most relevant for our approach are the works on nested quantiza-
tion [24, 25, 27], which aim at progressively encoding quantization
residuals, but rely on a trained, fixed-rate model. As a result, the
encoder and decoder are not conditioned on variable quantization
at training time. Hence, it shows reduced performance when aim-
ing for low-rate representations, which is partially counteracted by
learned post-processing models in [24].

4 METHOD
4.1 Model Architecture for additive

decomposition of the latent representation
Our model follows the transform coding framework [4], reviewed
in Section 2, implementing the encoder 𝑔𝑠 , the decoder 𝑔𝑎 and the
hyperprior modelsℎ𝑎 andℎ𝑠 according to the architecture proposed
in [42]. The latent representation y is then iteratively decomposed
using a number of stacked hyperprior models [5, 29] to achieve
an additive decomposition of the latent representation, as depicted
in Fig. 2a. Specifically, at each level, we encode the compression
residual y𝑖 of the preceding layer, using

y𝑖 =

{
y if 𝑖 = 1
y𝑖 − r̂𝑖−1 otherwise

(5)

where y1 = y is used for the base layer.
Instead of directly encoding y𝑖 at each stage, we introduce two

neural network blocks 𝑓𝑎 and 𝑓𝑠 , depicted in Fig. 2c and Fig. 2d to
wrap each entropy model. This is motivated by the following goals
and observations: i) We want the model to learn which features
should be compressed at each stage, allowing to disable certain
elements of the current residual, and ii) directly computing the
residual after quantization might not result in a representation
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suiting further entropy coding as quantization errors are not lin-
early linked to distortions in the reconstruction. Consequently, at
each stage, a transformed latent representation c𝑖 = 𝑓𝑎 (y𝑖 ;𝜓 (𝑖 )

𝑎 ) is
extracted and entropy coded using the hyperprior-model of the cur-
rent stage. After decoding, the quantized representation ĉ𝑖 = 𝑄 (ci)
is then expanded through r̂ = 𝑓𝑠 (ĉ𝑖 ;𝜓 (𝑖 )

𝑠 ). This allows to compute
the residual of the latent representation of the next layer through
Eq. 5 to compress the next refinement layer of the bitstream. Dur-
ing decoding, the latent representation of the 𝑖 layers available at
decoding time is obtained through

ŷ𝑖 =
𝑖∑︁
𝑗=0

r̂𝑗 (6)

and used to reconstruct the attributes of the point cloud x̂𝑖 =

𝑔𝑠 (ŷ𝑖 ;𝜙𝑠 ) through the synthesis transform. Hereby, the analysis
and synthesis transforms’ parameters are shared over all levels to
reduce the model size.

4.2 Training
For training, we follow common procedure (cf. [4]), using a La-
grangian loss function to balance rate and distortion. However, as
we aim for a set of quality representations, which we jointly opti-
mize, we decode all quality levels x̂𝑖 during training and introduce
a set of weighting parameters 𝜆 = {𝜆1, ..., 𝜆𝑛}, one for each level of
the decomposition.

As quantization hinders optimization using gradient descent,
additive uniform noise is used as a drop-in proxy for quantiza-
tion in the bottleneck, allowing to back-propagate gradients to
the encoder [4]. Note that this hinders training of further layers,
effectively rendering the computed residuals of the consecutive
level useless through the additive uniform noise. To allow effec-
tive training of the 𝑖th consecutive layer, we exchange the residu-
als r̃𝑗 , 𝑗 = 1, ..., 𝑖 − 1 through their actual quantized counterparts
r̂𝑗 , 𝑗 = 1, ..., 𝑖 − 1, resulting in the training latent residual to be
compressed at the 𝑖th stage as

ỹ𝑖 = ỹ𝑖 +
𝑖−1∑︁
𝑗=1

r̂𝑗 . (7)

This results in gradients only being back-propagated through the
bottleneck belonging to the last stage of the 𝑖th reconstruction
and ensures that each level is optimized over an equal amount of
samples, opposed to [17]. Finally, we formulate the loss function as
a weighted sum of all reconstruction errors and approximate the
rate of the latents for each level by concatenating all likelihoods of
the previous layers into c̃1:i = [𝑐0, ..., 𝑐𝑖 ] and z̃1:i = [𝑧0, ..., 𝑧𝑖 ] in

L = E𝑥∼𝑝 (𝑥 )

𝑛∑︁
𝑖=1

𝜆𝑖 ∥x − x̃𝑖 ∥22 − log2 𝑝c̃ (c̃1:𝑖 ) − log2 𝑝z̃ (z̃1:𝑖 ) (8)

This allows joint optimization of all levels, ensuring the shared
encoder and decoder being conditioned on all latent residuals.

5 EVALUATION
5.1 Implementation
We implement our approach in PyTorch, usingMinkowskiEngine [9]
to leverage sparse convolutions in our model and CompressAI [6]
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Figure 3: Rate-Distortion curves, averaged on the test point
clouds in Table 1, comparing our approachwith the fixed-rate
model [42] and G-PCC [3]. Rate is calculated per configura-
tion.
for the implementation of entropy bottlenecks. For training, 240
point clouds from the UVG dataset [15] in 10 bit resolution are
sampled and sliced into cubes of size 1283. As the variation of
textures in the dataset is limited, images from the Describable Tex-
ture Dataset [10] are projected on the point clouds, similar to the
approach in [42].

We select Adam [22] as an optimizer, using an initial learning
rate of 10−3 for the model, which is reduced by factor 0.5 after
30 epochs. The auxiliary loss is optimized with learning rate 0.01.
Gradient norm clipping with threshold 0.1 is used to stabilize the
training. Training and inference is conducted on a NVIDIA GeForce
4090. The fixed-rate model is derived from [42] and retrained under
the same conditions as our progressive approach.

The code for training and testing our model is made available
on GitHub1.

5.2 Results
For the rate-distortion evaluation, test frames from the 8iVFBv2 [13]
and MVUB [26] dataset are selected. The resulting rate-distortion
curves are depicted in the left column of Fig. 3, comparing our pro-
gressive scheme against G-PCC [3] and the fixed-rate approach [42]
on both datasets. The right-hand side of the figure depicts potential
rate-savings according to the Bjøntegaard rate delta [7], using the
fixed-rate method as a reference. Hereby, negative values indicate
rate savings while positive values indicate the increased bandwidth
requirement to deliver the same quality. Note that the Bjøntegaard
model used to compute the right-hand column of Fig. 3 is fitted
to the averaged rate-distortion points over all selected frames in
the dataset using the least squares method. Additionally, per-frame
results are reported in Table 1 for Y-PSNR and weighted YUV-PSNR

1https://github.com/mic-rud/ProgressivePCAC
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Table 1: Rate-Distortion Performance of our progressive model, using the fixed-rate model as reference (left) and the progressive
approach, accumulating bits over five qualities from low to high quality (right). While the fixed-rate model requires less bits
when requesting a specific quality, our model offers substantial reduction in bandwidth when progressively transitioning from
low to high quality.

Rate-Distortion Performance Transition from low to high
Y YUV Y YUV

Dataset Sequence Frame Δ𝑟 ↓ Δ𝑃𝑆𝑁𝑅 ↑ Δ𝑟 ↓ Δ𝑃𝑆𝑁𝑅 ↑ Δ𝑟 ↓ Δ𝑃𝑆𝑁𝑅 ↑ Δ𝑟 ↓ Δ𝑃𝑆𝑁𝑅 ↑

8iVFBv2 [13]

Longdress 1300 4.71% -0.07 dB 5.87% -0.08 dB -41.03% 1.06 dB -39.30% 1.05 dB
Soldier 690 23.31% -0.46 dB 8.58% -0.48 dB -32.47% 1.22 dB -40.82% 1.77 dB
Loot 1200 23.82% -0.12 dB 2.50% 0.29 dB -36.28% 2.01 dB -46.53% 2.62 dB
Redandblack 1550 13.45% -0.02 dB 7.87% 0.03 dB -34.88% 1.50 dB -37.17% 1.52 dB

MVUB [26]

Andrew 1 -2.04% 0.05 dB -16.17% 0.18 dB -45.82% 0.62 dB -52.40% 0.88 dB
David 1 8.99% 0.30 dB -3.30% 0.40 dB -41.43% 2.02 dB -46.41% 2.09 dB
Phil 1 7.95% -0.15dB 5.05% 0.02 dB -38.98% 1.42 dB -40.25% 1.41 dB
Sarah 1 44.45% 1.09 dB 12.23% 1.05 dB -18.85% 2.32 dB -22.82% 2.32 dB
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Figure 4: Progressive Rate-Distortion curves, assuming the
transition from low to high quality with cumulative bits for
the fixed-rate model [42].
using weights ( 68 ,

1
8 ,

1
8 ), showing a comparison between our ap-

proach with the fixed-rate model as a reference. Over all frames in
both datasets, we notice a decrease in compression performance
when aiming for higher quality representations using the progres-
sive model compared to both G-PCC and the fixed-rate counterpart.
However, when aiming for higher compression ratio, the progres-
sive model shows potential for rate reduction, i.e. a more attractive
rate-distortion trade-off at lower rates compared to it’s fixed-rate
counterpart. Overall, the progressive model requires on average
16.32% more bits on the 8iVFBv2 [13] dataset and 14.85% more
bits on the MVUB [26] dataset. Considering the results in Table 1,
a significant, data-dependent differences between the sequences
becomes apparent: While the point clouds Longdress and Andrew

with their demanding colors show very little differences between
the performance of the fixed-rate baseline and the progressive ap-
proach, the point cloud Sarahwith attributes that can be considered
simple, results in strong deterioration for the performance of the
progressive approach compared to the fixed-rate model. Similarly,
the point clouds Loot and Soldier can be compressed more efficiently
using the fixed-rate model.

While the capabilities of delivering higher rate representations
using a progressive model compared to the fixed-rate baseline is
reduced, progressive coding shows its strength when gradually
transitioning from a low to a high quality representation. Given
this assumption, we accumulate the bits per point (bpp) required
for the transition over five quality levels in Fig 4 and the right-
hand columns of table 1. As a result, the fixed-rate model requires
substantially more bandwidth, as it requires to fully exchange the
representation of a point cloud, while the progressive model only
requires an additional layer. This contributes to substantial rate-
savings considering the Y-PSNR and YUV-PSNR quality over all
tested frames as shown in Table 1. Similarly, the averaged rate-
distortion points in Fig. 4 and the resulting rate-delta curves confirm
this observation. However, the presented results for the potential of
progressive transitioning have to be interpreted with caution: If the
transition in the fixed-rate model is performed by skipping a rate-
level, the consecutive rate-distortion points are shifted to the left as
the bandwidth for the omitted representation is saved. In contrast,
the progressive model does not allow skipping quality levels, i.e. to
decode a specific quality, it always requires all preceding layers.

Finally, the resulting reconstructions are rendered in Fig. 5, se-
lecting the first, second and fifth layer of the progressive model
and the corresponding fixed-rate reconstructions at similar qual-
ity. The last row shows the error in attribute reconstruction in
the luminance channel (Y-PSNR) for each layer of the progressive
model, showcasing how high-frequency details are omitted in the
first layers of the bitstream to be compressed in later enhancement
layers. For the fifth layer, the progressive model achieves 0.75 dB
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Figure 5: Renders of Phil [26] at multiple rate configurations.
Y-PNSR and bpp for the reconstruction reported on the top.
For the fixed-ratemodel [42], cumulative bit for transitioning
through all qualities are given in red.
less Y-PSNR quality using the same bandwidth when directly re-
questing the respective quality, but allows saving 51% bandwidth
when transitioning over all five quality levels.

6 DISCUSSION AND FUTUREWORK
In this work, we presented an approach for progressive point cloud
attribute compression, decomposing the latent representation from
the encoder into a set of additive residuals, which are consecu-
tively coded through a number of stacked entropy bottlenecks. This
allows progressive coding in a low-to-high quality approach, de-
livering comparable rate-distortion to its fixed-rate counterpart
conditioned for a low-rate encoding, but a decreased rate-distortion
performance for higher rate encodings. Assuming an immersive
client approaching an object and hence gradually exchanging the
representation of the object from low to high quality over mul-
tiple levels, we find that the progressive coding approach allows
for considerable bandwidth savings. This can be attributed to only
requiring to request enhancement layers, while fixed-rate mod-
els force users to request an independent representation for each
quality switch.

The high quality for low rate encodings of our approach stands in
contrast to the observations made by authors of progressive coding
techniques proposed for image compression [24, 25, 27], who notice
a drop in rate-distortion performance when aiming for lower rates.
However, for a fair comparison this requires transferring these
methods to the application of point cloud compression.

Finally, applying progressive coding techniques to point cloud
geometry compression remains an open topic. While the presented
approach is restricted to static point clouds, extending progressive
schemes to dynamic point clouds is a promising direction. We
anticipate that this allows for more flexibility when optimizing

the user QoE during playout, reducing the cost for increasing the
quality of a segment after the base layer has already been requested.
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ABSTRACT
Volumetric video offers immersive exploration and interaction in 3D
space, revolutionizing visual storytelling. Recently, Neural Radiance
Fields (NeRF) have emerged as a powerful neural-based technique
for generating high-fidelity images from 3D scenes. Building upon
NeRF advancements, recent works have explored NeRF-based com-
pression for static 3D scenes, in particular point cloud geometry. In
this paper, we propose an end-to-end pipeline for volumetric video
compression using neural-based representation. We represent 3D
dynamic content as a sequence of NeRFs, converting the explicit
representation to neural representation. Building on the insight
of significant similarity between successive NeRFs, we propose to
benefit from this temporal coherence: we encode the differences
between consecutive NeRFs, achieving substantial bitrate reduction
without noticeable quality loss. Experimental results demonstrate
the superiority of our method for dynamic point cloud compression
over geometry-based PCC codecs and comparable performance
with state-of-the-art PCC codecs for high-bitrate volumetric videos.
Moreover, our proposed compression based on NeRF generalizes to
arbitrary dynamic 3D content.
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• Information systems→Multimedia streaming; • Comput-
ing methodologies → Animation.
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(a) Point cloud representation. (b) NeRF reresentation.

Figure 1: Sample rendered images from a point cloud (left)
showing visual artifacts due to its discrete nature which does
not affect images rendered with NeRF (right).

1 INTRODUCTION
Volumetric video captures a 3D representation of a real-world scene
or subject, allowing viewers to explore and interact with the cap-
tured content in six degrees of freedom (6DoF). Volumetric video is
likely to play an increasingly important role in various industries,
enabling new forms of visual storytelling and immersive experi-
ences. In contrast to traditional 2D video, which has standard and
mature forms of representation, 3D volumetric video has a plethora
of representation formats. The representations of volumetric video
can be categorized into explicit and implicit representations.

Most existing works are based on explicit 3D representations be-
cause they are easy to process through classical rendering pipelines.
Textured mesh is the most classical 3D model, but 3D point clouds,
which consist of a set of 3D points with coordinates and color, have
gained much popularity as the choice for high-quality represen-
tation for volumetric video as they are more adapted to dynamic
acquisition. In order to provide a high-quality immersive experi-
ence with limited network conditions and computational resources,
point cloud compression (PCC) techniques are paramount for volu-
metric video streaming. For example, Google’s Draco [8], MPEG’s
video-based PCC (V-PCC), and MPEG’s geometry-based PCC (G-
PCC) [22] are three typical PCC codecs. Nevertheless, because of
their discrete nature, point clouds can easily present visual artifacts
that affect the visual quality [15]. For instance, point clouds may
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Frame #1450 Frame #1451

(a) Neighboring frames. (b) Similarity matrix of NeRFs.

Figure 2: Example of temporal redundancy in (a) point clouds
and (b) NeRFs.

cause holes when being projected to screen space [16], which can
be seen in Figure 1(a).

Given that explicit representations fail to achieve photo-realistic
rendering quality, the latest advancements in implicit neural rep-
resentations, especially neural radiance fields (NeRF) [18], have
gained more popularity. NeRF [18] is a neural-based novel view
synthesis technique. Given a set of 2D RGB images of a 3D scene,
NeRF can model it as a neural radiance field with multilayer percep-
trons (MLPs), and render immersive and high-fidelity novel views
from this representation. Figure 1(b) shows an example of the ren-
dered images from NeRF. Overall, NeRF has gained recognition
as an effective approach [14, 27] for accurately representing the
dynamic interactions between light and color in three-dimensional
space. Because of its ability to generate highly realistic images from
3D scenes, utilizing the recent advancements in NeRF for 3D con-
tent compression has become an attractive avenue. For instance,
Bird et al. [3] adopt NeRF to represent 3D static scenes and apply
an entropy penalty for model compression. Hu et al. [10] leverage
NeRF to represent the geometry of 3D point clouds. Quantization
and entropy encoding are then applied to compress neural net-
works, achieving comparable rate-distortion (R-D) performance
with G-PCC. Although previous works make an effective step to-
ward NeRF-based 3D content compression, there is still a big gap
into practical volumetric video compression. The key challenge is
to maintain the high-quality representation of volumetric videos
while reducing the size of the representation itself [15].

In this paper, we present an end-to-end pipeline for volumetric
video compression utilizing neural-based representation. We rep-
resent each frame of volumetric video as a NeRF, constructing a
sequence of NeRFs. By representing volumetric video with neural
networks, the problem of volumetric video compression becomes
neural model compression.

Our work builds upon the key insight that there is significant
similarity between successive NeRFs, which suggests the temporal
redundancy in latent neural space. Figure 2(a) gives an example
of temporal redundancy in explicit representation (i.e., dynamic
point clouds), where consecutive point cloud frames contain similar
visual content. We find that such temporal redundancy still exists
in latent neural space. For better illustration, we train ten NeRFs
to represent ten consecutive point cloud frames and then measure
their correlation. We present the similarity matrix of those neural

representations in Figure 2(b). As shown, neighboring NeRFs share
significantly high similarities, with over 0.98 correlation coefficient.
Based on this observation, temporal compression is proposed for
model compression. Specifically, instead of encoding each NeRF sep-
arately, we only encode the differences between consecutive NeRFs.
This way, we achieve a significant reduction in bitrate without a
noticeable loss of rendering quality. We apply an exponent-based
non-uniform quantization scheme [5] to our temporal compression.

We propose an efficient, NeRFs-based representation for 3D dy-
namic scenes; the compression ratio benefits from the temporal
coherence of the model. Here, we consider dynamic point cloud
compression as a possible application scenario and thus compare
the proposed method with state-of-the-art PCC codecs. We con-
duct extensive experiments on 8iVFBv2 and 8iVSLF Dataset [6, 13]
with the original NeRF [18]. Experimental results demonstrate the
superiority of our method compared with geometry-based PCC
(i.e., G-PCC and Draco). We also show that the proposed method
can achieve comparable R-D performance w.r.t. V-PCC which is
regarded as the state-of-the-art PCC codec, when dealing with
high-bitrate volumetric videos.

The focus of our work lies in leveraging the high temporal coher-
ence in neural models, independent of specific 3D representations
and neural architectures. Specifically, our work is not limited to
processing point clouds as the input source, but it can be applied
to any dynamic content for which a sequence of images may be
generated, and used as input of the NeRF sequence. Our approach
inherently represents the scene using an implicit representation,
thus allowing for the application of our NeRF model to a wide range
of volumetric video-related tasks and scenarios. Meanwhile, it is
worth highlighting that recent studies [4, 14] have shown that state-
of-the-art NeRF variations, despite their improved rendering quality
and speed, often sacrifice model size, hindering their suitability for
streaming applications. Given our research’s specific focus on the
streaming context and the challenges associated with achieving a
favorable rate-distortion trade-off, we chose to evaluate the original
NeRF model as a baseline. Nonetheless, our methodology remains
adaptable to incorporate other models, enabling further exploration
of compression and trade-offs while considering specific application
requirements.

2 NEURAL-BASED VOLUMETRIC VIDEO
COMPRESSION

We represent the volumetric video with a sequence of NeRFs [18]
and achieve volumetric video compression by compressing the
neural representations themselves. Figure 3 shows the overall ar-
chitecture of our framework. Our framework consists of two key
components: model training and temporal compression, which are
elaborated in Section 2.1 and Section 2.2, respectively.

The system design stems from the insight that neighboring NeRF
models share considerable similarities. In the model training stage,
each NeRF is initialized based on the previous frame’s NeRF, except
for the first frame’s NeRF, which is trained from the beginning
as the starting point. This training strategy not only achieves sig-
nificant time and resource savings but also further encourages
temporal redundancy between subsequent NeRFs. Then, the tempo-
ral compression idea is applied to model compression. That is, for
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Figure 3: Overview of the proposed NeRF-based volumetric
video compression.

a sequence of trained NeRF models, we regard the first model as a
“key-frame” or “I-frame” [2] and compress only the deltas between
successive models. The models can be restored by accumulating
the decoded deltas to the reference model.

2.1 NeRF-based Representation
Given a volumetric video with 𝑁 frames, we can generate𝑀 views
for each frame 𝑖 , and construct a multi-view image set

D𝑖 =

{(
𝑉 𝑖
𝑚, 𝑋 𝑖

𝑚

)}𝑀
𝑚=1

, (1)

where 𝑉 𝑖
𝑚 is the camera pose and 𝑋 𝑖

𝑚 is the corresponding image
captured from this pose. A NeRF 𝐹𝑖 is trained based on D𝑖 , and we
simply use its weights Θ𝑖 to represent the model, to avoid cluttering
the notation. Therefore, we represent a volumetric video with 𝑁

frames as a NeRF sequence {Θ𝑖 }𝑁𝑖=1.
We adopt a transfer-learning-like strategy for efficient model

training. To be specific, each frame of the volumetric video is mod-
eled by a NeRF initialized using the previous frame’s NeRF. The
NeRF representing the model at the starting time is trained from
scratch and is then taken as a starting point for training subsequent
times. By taking advantage of the learned knowledge from a pre-
vious model, considerable time and resources, which would have
been required to train a model from scratch, can be saved. Mean-
while, such a training strategy further forces successive NeRFs to
be closer and thus enhance the compression.

Formally, a NeRF Θ𝑖 , which is trained to represent the 𝑖-th volu-
metric video frame, is initialized with the weights of its previous
model Θ𝑖−1 and optimized by minimizing the distance from their
renderings to the ground truth images:

LΘ𝑖
=

𝑀∑︁
𝑚=1

∥𝑋 𝑖
𝑚 − 𝑋 𝑖

𝑚 ∥22, (2)

where ∥ · ∥22 is the Euclidean norm, 𝑋 𝑖
𝑚 is the predicted image, and

𝑋 𝑖
𝑚 is the ground truth.

2.2 Model Compression
In order to depict complex geometry and appearance, NeRF requires
huge neural networks with billions of parameters, which poses a
great challenge for the transmission with limited bandwidth. In this
section, we introduce the proposed model compression techniques
to considerably reduce the size of NeRF models while keeping good
quality of the rendered images, to achieve good R-D performance.

Temporal Compression. To achieve efficient and scalablemodel
compression, we propose to leverage high similarity between adja-
cent models and only encode and store the difference between them.
Each model can be restored by applying the delta values to its pre-
vious model. Formally, we can represent a set of models {Θ𝑖 }𝑁𝑖=1 as
{Θ1, {𝛿𝑖 }𝑁𝑖=2}, where Θ1 is the first frame model and 𝛿𝑖 = Θ𝑖 −Θ𝑖−1
which is the delta values between Θ𝑖 and Θ𝑖−1. Our compression
task is to compress the delta values while keeping good rendered
image quality of the restored model Θ̂𝑖 , where Θ̂𝑖 = Θ1 +

∑
𝑡≤𝑖 𝛿𝑡

and 𝛿𝑡 is decoded from the compressed 𝛿𝑡 .
An efficient and scalable model compression scheme, called LC-

Checkpoint [5], is adopted in our proposed compression pipeline.
The compression pipeline consists of two components. First, exponent-
based quantization and then priority promotion are performed for
lossy compression. The core idea of exponent-based quantization
comes from the representation of floating points. Specifically, a
floating point 𝑣 is represented by 𝑣 = (−1)𝑠 ×𝑚 × 2𝑒 , where 𝑠 is
the sign,𝑚 is the mantissa, and 𝑒 is the exponent. Exponent-based
quantization partitions the floating-point numbers in 𝛿𝑖 into mul-
tiple buckets, based on their exponent 𝑒 and sign 𝑠 . Consequently,
the elements with the same exponent and sign will be assigned to
the same bucket. Then, the elements in each bucket are represented
by the average of maximum and minimum values in the bucket.
The number of buckets can be further limited with a priority pro-
motion approach by keeping 2𝑁𝑏 − 1 buckets with larger exponent
𝑒 only, where 𝑁𝑏 is the number of bits for bucket indexing. The
rest buckets are merged into one bucket, which is represented by 0.
By doing so, only 𝑁𝑏 bits are required to index buckets. Secondly,
the quantized values are further compressed using Huffman coding
[26]. We can trace the performance of the compressed model at
different bitrates by changing the number of bits 𝑁𝑏 to plot the R-D
curves.

Neural Architecture Search. The ability of 3D representation
of NeRF is determined by its model architecture. Generally speaking,
with a larger number of parameters, NeRF can represent more
complex detailed scenes. Meanwhile, as reported by previous works
[11, 19, 29], not all parameters are crucial for accurate rendering and
one can significantly reduce the model size with a limited impact on
performance by properly adapting the number of network layers.

Therefore, inspired by such observation, we explore the effect
of model architecture on the rendering performance of NeRF, and
analyze the R-D performance by tracking the change of model
architecture. Specifically, we choose the network depth (number of
layers) and the network width (number of neurons in each layer) as
our neural architecture search space, which are set to {1, 2, 4, 6, 8}
and {64, 128, 256}, respectively. We first conducted experiments to
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Figure 4: The performance of NeRFs with different neural
architectures.

narrow down the search space. We trained NeRFs with different
combinations of network depth and width on a volumetric video
frame (i.e. RedAndBlack Frame #1450) and measured the quality of
images rendered from NeRFs using the peak signal-to-noise ratio
(PSNR), as shown in Figure 4. Our crucial observation from Figure
4 is that the rendering quality of NeRF monotonically decreases
when we reduce the network width, while with the decrease of
the network depth, the rendering quality first improves and then
drops when the network depth is smaller than 2. These results
can be explained by previous works [9, 24, 30], which suggest
that network depth provides the model with the ability to learn
hierarchical representations, while width provides the model with
the capacity to “memorize” the training data. Hence, we narrow
down the search space of network depth and network width to
{2, 4} and {128, 256}, respectively, for the following evaluation.

3 EVALUATION
3.1 Experimental Settings
Dataset. We use four dynamic point cloud sequences for evalua-
tion: RedAndBlack, Loot, Soldier, and Thaidancer. The first three
sequences are from the 8iVFBv2 Dataset [6], and Thaidancer is
from the 8iVSLF Dataset [13] which has a much greater number
of points and higher bitrate. We select the first 30 frames of each
sequence for the experiment. The average number of points per
frame and corresponding bitrates (in Gbps) of the uncompressed
volumetric videos are summarized in Table 1.

Table 1: Dynamic 3D Point Cloud Dataset

RedAndBlack Loot Soldier Thaidancer

Points (×106) 0.7 0.8 1.1 3.1
Bitrate (Gbps) 3.6 3.9 5.5 20.7

Rendering and Evaluation Parameters. Open3D [31] version
0.15.1 1 is used for 2D rendering, where the width and height of the
rendered images are 600 and 600, respectively. For NeRF training
and testing, we generate 100 views as the training set and 200 views
as the testing set for each frame of each point cloud sequence, where
1https://github.com/isl-org/Open3D/releases/tag/v0.15.1

the camera settings are the same as [18]. Similarly, to evaluate the
performance of other PCC codecs, we generate 200 rendered images
for each decoded point cloud using the same camera settings of the
testing set. PCC Arena [28] is used to measure the 2D quality of
volumetric videos. PSNR and structural similarity index (SSIM) are
used to quantify the 2D quality of rendered images. We calculate
the average quality among the testing set for every frame.

Comparison Methods. Three PCC codecs are introduced:

i. V-PCC stores point cloud frames into 2D video frames and
passes the 2D videos to 2D video codecs for compression. As
defined in the V-PCC common test condition (CTC) [7], five
compression rates controlled by the geometry and texture
quantization parameter are used to generate the R-D curve.

ii. G-PCC utilizes an octree [17] or spatial data structures and
applies arithmetical encoding to attributes. G-PCC quantizes
the coordinates from floating-point numbers to integers with
the parameter positionQuantizationScale. As defined in PCC
Arena [28], eight compression rates, which are controlled by
the quantization parameter, are used in our experiment.

iii. Draco adopts the K-D tree [1] data structure to compress
point clouds. It employs quantization to reduce the number
of bits, controlled by the quantization bit and compression
level. The quantization bit determines the level of precision
for the data. The compression level strikes a balance between
the rate of compression and the computational complexity
involved. According to PCC Arena [28], we use eight com-
pression rates to track the R-D performance.

NeRF Settings. We keep the same settings for the NeRF model
as [18], except for the model architecture. The Adam optimizer
[12] is used for optimization. The learning rate begins at 5 × 10−4
and decays exponentially to 5 × 10−5. ReLU [20] is used as the
activation function. The first NeRF corresponding to the first frame
is trained from scratch, with 300k iterations. The following NeRFs
are initialized with the previous NeRF, and we find the optimization
typically only takes 20k to converge.

As discussed in Section 2.2, we compressed the NeRF-based
representation by simplifying the neural architecture to further
improve its performance. Hence, we train five NeRF sequences for
every dynamic point cloud sequence by changing the model archi-
tecture. Specifically, according to the experiments, we narrowed
down the search space of network depth 𝑑 and width 𝑤 to {2, 4}
and {128, 256} so that four model architectures are considered. We
additionally train the NeRF with default model architecture (𝑑 = 8,
𝑤 = 256) for sanity check. We denote these five model settings
as 𝑁𝑒𝑅𝐹 (8, 256), 𝑁𝑒𝑅𝐹 (4, 256), 𝑁𝑒𝑅𝐹 (4, 128), 𝑁𝑒𝑅𝐹 (2, 256), and
𝑁𝑒𝑅𝐹 (2, 128).

Encoder Settings. As mentioned in Section 2.2, two trade-off
parameters are utilized to balance between bitrate and distortion in
the proposed method: (i) number of bits 𝑁𝑏 , which determines the
quantization level for temporal compression, and (ii) model archi-
tecture which controls the size of neural networks. Based on our
observations, we found that the rendered quality of the compressed
NeRF remained stable when the number of bits 𝑁𝑏 exceeded 5,
while dropping significantly below 3. This observation is reason-
able since using less than 22 − 1 buckets to store the weights can
result in substantial distortion. Therefore, we limited the number
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Figure 5: R-D curves for PSNR: (a) RedAndBlack, (b) Loot, (c) Soldier, and (d) Thaidancer.
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Figure 6: R-D curves for SSIM: (a) RedAndBlack, (b) Loot, (c) Soldier, and (d) Thaidancer.

of bits to a range of 3 to 5 to ensure a reasonable trade-off between
bitrate and distortion. For five NeRF architectures, we perform
temporal compression with different number of bits to trace the
R-D performance, which gives us a total of five R-D curves for each
point cloud sequence.

3.2 Experimental Results
We report the R-D curves in Figure 5 and Figure 6 showing how
the quality of the four point cloud sequences changes w.r.t. the
encoded bit-rate. To have better insights on howmuch quality is lost
during the quantization process, we also plot the quality of rendered
images from 𝑁𝑒𝑅𝐹 (8, 256) without compression and denote it as
Undistorted, which serves as the upper bound of visual quality.
These figures specifically focus on bit-rates below 100 Mbps, so not
all the R-D curves are displayed. By truncating the curves, we can
have a clearer visualization of the R-D performance of the proposed
method and thus make a better comparison with other PCC codecs.
Notably, most of the points in R-D curves for Draco are not within
the shown bit-rate range due to its significantly lower compression
ratios. This indicates that Draco falls behind another geometry-
based PCC, i.e. G-PCC, in terms of R-D performance. Consequently,
we have chosen not to include Draco in the quantitative comparison
to focus on the codecs that are more relevant and competitive in
the displayed bit-rate range.

As observed in Figure 5 and Figure 6, the proposed method
clearly outperforms G-PCC, always achieving better quality at the
same bitrate for all the point cloud sequences. Specifically, our

method outperforms G-PCC by at most 15.92 dB in PSNR and 6.15%
in SSIM on RedAndBlack, 17.33 dB in PSNR and 7.48% in SSIM on
Loot, 15.45 dB in PSNR and 7.41% in SSIM on Soldier, and 11.76 dB
in PSNR and 7.94% in SSIM on Thaidancer. Furthermore, the R-D
curves of our method demonstrate that, by utilizing the proposed
temporal compression technique, the NeRF size can be effectively
reduced with only a minor increase in rendering distortion. This
finding highlights the effectiveness of our method in achieving
substantial compression gains while maintaining acceptable quality.

Particularly, in the case of high-bitrate sequences, i.e. Thaid-
ancer with a bitrate exceeding 20 Gbps, our method achieves better
R-D performance compared to V-PCC, with up to 2.59 dB improve-
ment in PSNR and 1.11% improvement in SSIM. The advantages
of neural-based representation in this context are well-founded.
Neural networks empower NeRF with the capability to capture
fine-grained details by learning a compact implicit representation.
Unlike explicit representations like point clouds, the size of the im-
plicit representation in NeRF is determined by the neural networks
and is not directly proportional to the complexity of geometry and
attribute of the volumetric video. This decoupling allows for more
efficient storage and transmission of the video data. In contrast, as
an explicit representation, point cloud requires larger data size and
potentially higher bitrate requirements.

We also employ the Soldier sequence as an example, presenting
the compression ratio vs. SSIM in Figure 7. The compression ratio
denotes the ratio of the compressed model’s bitrate to that of the un-
compressed baseline model (𝑁𝑒𝑅𝐹 (8, 256), labeled as Undistorted).
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Figure 7: Compression ratio vs. SSIM for Soldier. Each NeRF
architecture has three points corresponding to three different
𝑁𝑏 : 3, 4, and 5.

Notably, our method achieves a wide range of compression ratios,
spanning from 35 to 442, while exhibiting minimal degradation in
quality, with quality drop ranging from 0.1% to 3.6% in SSIM. These
compelling results underscore the exceptional performance of our
proposed method in effectively balancing efficient compression and
preservation of visual quality.

Besides the quantitative analysis above, we also show the sample
rendered images of RedAndBlack and Thaidancer using compressed
NeRF models under different bitrates in Figure 8, for qualitative
analysis. The figure shows a view of Frame #1454 of RedAndBlack
and Frame #6487 of Thaidancer. As can be found, the proposed
method well restores the details of cloth texture. Moreover, the
visual quality of the renderings remains relatively intact even when
compressing the NeRF model from 84 Mbps to 26 Mbps, which
suggests that our method can provide similar levels of detail and
visual quality even at low bitrate.

In summary, the objective results reported in Figures 5, 6, and 7,
and the sample rendered images from compressed NeRFs shown
in Figure 8 demonstrate that our proposed method achieves high
compression for volumetric video with minimal loss of detail.

4 CONCLUSION AND DISCUSSION
In this paper, we introduce an extendable and general pipeline for
compressing volumetric video using a neural-based representation,
which leverages the similarities between consecutive NeRFs and
exploits temporal coherence and neural architecture to achieve
effective and efficient model compression. We primarily tested our
method on point cloud compression. Through experimental evalu-
ations, we demonstrate the superiority of our method compared to
geometry-based PCC codecs. Moreover, our approach achieves com-
parable results with state-of-the-art PCC codecs for high-bitrate
volumetric videos. However, it is important to note that our pro-
posed approach has wider applicability and is not restricted to
point clouds as the sole input source. The inherent nature of our
method, which models the scene using an implicit representation,
enables its usage with any volumetric video data. The advantage

Ground Truth

Ground Truth

45.0 Mbps84.6 Mbps 26.8 Mbps

44.9 Mbps84.6 Mbps 26.5 Mbps

Figure 8: Sample images of RedAndBlack and Thaidancer
using the compressed NeRF models at different bitrates.

of NeRF representation of offering a joint, realistic geometry and
appearance model holds for our proposed solution. Therefore, our
NeRF-based compression framework applies to any dynamic 3D
content that may be rendered, expanding its compression perfor-
mance to potential applications including a diverse range of tasks
and scenarios.

There are several directions for future research based on the lim-
itations and opportunities identified in our work. Firstly, although
the PSNR and SSIM results offer valuable insights into the visual
quality, conducting user studies would provide a more comprehen-
sive understanding of the effectiveness of our method. Secondly, our
current approach models volumetric videos frame by frame, which
essentially represents the scene as a set of static NeRFs. Recent
research efforts [21, 23, 25] have extended static NeRF to dynamic
NeRF, enabling the representation of dynamic scenes with a single
model. However, in the context of NeRF-based volumetric video
streaming, modeling a dynamic scene with onemodel canmake rate
and viewport adaptation impractical [15]. One potential solution
could be to split the video into several equal-size groups of frames
(GOF) and train dynamic NeRFs for each group. Then, exploring
the temporal redundancy among consecutive dynamic NeRFs and
the relationship between the size of GOF and the level of temporal
redundancy would be an interesting avenue for future research.
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ABSTRACT
With NeRF, neural scene representations have gained increased pop-
ularity in recent years. To date, many models have been designed
to represent dynamic scenes that can be explored in 6 degrees-of-
freedom (6-DoF) in immersive applications such as virtual real-
ity (VR), augmented reality (AR), and mixed reality (MR). In this
paper, we aim to evaluate how newer neural representations of
6-DoF video compare with more-traditional point cloud-based rep-
resentations in terms of their representation and transmission ef-
ficiency. We design a new methodology for fair comparison be-
tween K-Planes, a new dynamic neural scene representationmodel,
and video-based point cloud compression (V-PCC). We conduct
extensive experiments using three datasets with a total of 11 se-
quences with different characteristics. Results show that the current
K-Planes models excel for moderately dynamic content, but strug-
gle with highly dynamic scenes. In addition, in emulated volumetric
data capture scenarios, the recorded point cloud data can be highly
noisy, and the visual quality of views rendered by trained K-Planes
models are significantly better than V-PCC.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Comput-
ing methodologies → Point-based models; Volumetric mod-
els.
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1 INTRODUCTION
In recent years, both the ubiquity and sophistication of devices for
video collection have grown. Concurrently, the capabilities of neural
network models for fusing information from multiple video signals
have seen substantial growth. These two general developments set
the stage for more-immersive multimedia streaming applications
aimed at enhancing user experiences. Among immersive applica-
tions, 6-DoF volumetric video, which captures a real-world scene
from a multitude of perspectives over time, enables the greatest
level of immersion. Traditional 6-DoF representations include 3D
triangular meshes with texture and point clouds. These representa-
tions rely on more-direct storage and rendering of 3D scenes. On
the other hand, neural representations are often implicit represen-
tations of a scene: the stored data powering the representation is
often not interpretable by humans. For example, NeRF [23] uses
a single multi-layer perceptron (MLP) for representing a scene.
Both generating such representations by training from collected
imagery and rendering these representations can require significant
computational resources.

Although many lines of research have explored 6-DoF repre-
sentations for individual scenes, addressing the additional tem-
poral dimension in 6-DoF videos presents more challenges. Tradi-
tional 6-DoF representations can be adapted for video transmissions
by transmitting standard video-encoded streams of RGB-Depth
data, as demonstrated in prior work such as [17]. Alternatively,
representation-specific codecs [22, 27, 29] such as video-based
point cloud compression (V-PCC) [26, 28] and Draco [9, 18] can
be employed. However, neural representations for 6-DoF video
are less-well explored. These representations must simultaneously
capture temporal and spatial characteristics and also allow for space-
efficient network transmission and compute-efficient rendering.

In this paper, we set to evaluate how newer neural representa-
tions of 6-DoF videos compare with more-traditional point cloud-
based representations in terms of their representation and transmis-
sion efficiency. For our comparison, we use the K-Planesmodel [14]
as the state-of-the-art approach for future neural 6-DoF video rep-
resentation that can be efficiently transmitted. This model strikes a
balance between space and computational efficiency, using a repre-
sentation that factors over both space and time dimensions coupled
with a small neural network. For traditional point-cloud-based rep-
resentations, we select V-PCC as it is an emerging standard for
compressing dynamic point cloud data.
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To perform fair comparison, we design a new methodology in-
cluding the generation of training data for K-Planes and testing
data for both K-Planes and V-PCC as well as the implementation of
experiment procedures. Our study uses three different datasets of
dynamic 6-DoF scenes. Among them, two are derived from existing
datasets, while the third has been created by our team. We have
conducted extensive experiments across these three datasets with
11 dynamic sequences with different characteristics. To the best of
our knowledge, we are both the first to propose such a comparison
methodology and the first to present results from such a comparison
study of 6-DoF video representations. The configuration files used
for K-Planes training in our experiments along with the trained
models are available at: https://github.com/symmru/MMVE-2024.

Results show that for dynamic 6-DoF content with little to moder-
ate motion, using K-Planesmodels for representation can save the
storage size and improve visual quality of rendered views compared
to using V-PCC -based encoding. However, the current K-Planes
models cannot represent highly dynamic content very well. More-
over, in a emulated real-world scenario where point cloud data is
derived from recorded RGB and depth information, we find that
the derived point cloud data is very noisy. This confirms the in-
sights from previous studies, e.g., [19, 20]. The visual quality of
V-PCC suffers significantly. On the other hand, neural-based solu-
tion K-Planes performs substantially better compared to V-PCC in
such emulated scene capture scenario.

2 BACKGROUND AND RELATEDWORK
Traditional 6-DoF representations. Volumetric videos capture
frame sequences in a 3D space, allowing users to view in 6 degree-
of-freedom (6-DoF): from arbitrary positions, (𝑥,𝑦, 𝑧), in 3D space
and arbitrary orientations, (𝜙, 𝜃, 𝜌). 6-DoF content is widely em-
ployed in today’s computer gaming and virtual reality platforms.
In these platforms, objects and scenes are represented as synthetic
models using 3D triangular meshes with texture information that
describes how faces of the mesh should appear. Besides trianglular
meshes, another volumetric video representation, point clouds,
has received increased interests in recent years. Point clouds asso-
ciate color information with 3D pixel/point positions. They can be
captured from real-world scenes using RGB-Depth cameras. Typical
point cloud scenes contain millions of points and are infeasible to
store in raw formats. Point cloud compression (PCC) is currently
under active development under Moving Picture Experts Group
(MPEG). Among the efforts, video-based point cloud compression
(V-PCC) [15, 26] aims to leverage existing 2D video codecs for com-
pressing dense point cloud data.
NeRF-basedneural representations.Neural radiance field (NeRF)
is an emerging representation of 3D scenes. It uses the volume ren-
dering technique for rendering color of pixels on an image. To
render a view of a scene, rays are traced from the camera origin
through each pixel in the rendered image. The original NeRF [23]
proposes to use a simple multi-layer perceptron (MLP) to estimate
the volume density 𝜎𝑖 and color c𝑖 of sample 𝑖 on a ray as a function
of its position x𝑖 and direction of the ray d𝑖 . The training time of
the original NeRF is known to be very long. The authors described
in their paper that a typical training can take 1 to 2 days on a Nvidia
V100 GPU.

TensoRF [11] is a more recent work that represents the radiance
field as a 4D tensor. The main idea of TensoRF is to use tensor de-
composition to represent the 4D tensor as the sum of vector-matrix
outer products. Compared to the original NeRF, TensoRF models
can be trained substantially faster (more than 100x improvement)
and with better rendering quality.
Neural representations for dynamic 6-DoF content. For mod-
eling dynamic scenes, many NeRF-variants exist, e.g., D-NeRF [24]
and DyNeRF [21]. Among them, K-Planes [14] is a novel approach
that represents dynamic volumetric content as a 4D volume (as
opposed to the static 3D volume). K-Planes factorizes a 4D vol-
ume into 6 planes: 3 space-only planes and 3 space-time planes.
Given 𝑞 = (𝑖, 𝑗, 𝑘, 𝑡) on the 4D volume, it is projected onto each
of the 6 planes and bilinearly interpolated to obtain 6 feature vec-
tors. Features from all 6 planes are combined using the Hadamard
product (elementwise multiplication). Additionally, K-Planes uses
multi-scale planes with different resolutions. Features obtained
from different scales 𝑠 ∈ 𝑆 are concatenated. To determine the den-
sity and color, it uses two MLPs. The first MLP F𝜎 is for mapping
the feature into volume density 𝜎 and an additional feature 𝑓 (𝑞).
The second MLP F𝑐 estimates the color using the additional feature
𝑓 (𝑞) and input of ray direction d.

3 METHODOLOGY
To compare the performance of V-PCC and K-Planes for 6-DoF
video representation, we use three datasets with a total of 11 dy-
namic volumetric sequences.We next describe details of ourmethod-
ology for conducting this comparative analysis, including the gen-
eration of datasets generation as well as the selection of metrics
used for comparison.

3.1 Datasets
We use three datasets in this study. The front-facing images of all
11 sequences in the three datasets are shown in Figure 1. The 8iVFB
dataset [13] consists of four dynamic point cloud sequences, Long-
dress , Loot, Soldier, and Redandblack as shown in Figure 1(a)-(d). It
is a voxelized full body dataset, with the spatial resolution of each
sequence being 1024x1024x1024. The vsenseVVDB2 dataset [31]
also includes four dynamic point cloud sequences, AxeGuy, Lub-
naFriends, Rafa2, and Matis. Similar to 8iVFB , the spatial resolution
of sequences in vsenseVVDB2 is also 1024x1024x1024.

Both 8iVFB and vsenseVVDB2 are datasets created for evaluat-
ing the performance of V-PCC . They only contain raw points data
for each sequence. To use these datasets for comparable K-Planes
evaluation, we must generate camera views from different per-
spectives with known camera extrinsic parameters. Unfortunately,
neither of these datasets provide the raw camera-captured video
frame data. To obtain data for training the K-Planes models, we
use Blender 3.5.1 [5] to render the raw point clouds and use them as
the groundtruth data. We describe how we generate training data
for K-Planes in Section 3.1.1.

The third dataset Blender is created by our team. It includes
three animated Blender 3D models, Lego [23], Pig downloaded
from Blender Market [7], Amily downloaded from Blender Demo
Files [6]. For the “Lego” model, we created animation raising and
lowering the bulldozer’s bucket by moving the control panel built
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(a) Longdress (b) Loot (c) Soldier (d) Red&Black (e) AxeGuy (f) Lubna (g) Rafa2 (h) Matis (i) Lego (j) Pig (k) Amily

Figure 1: Front-facing images all 11 testing traces. (a)-(d): 8iVFB dataset; (e)-(h): vsenseVVDB2 dataset; (i)-(k): Blender dataset. All
traces contain dynamic sequences that can be explored in 6-DoF.

in original .blend file. For “Pig” and “Amily” models, we used
the animations in the downloaded .blend file. Since V-PCC only
takes point cloud data .ply as input, for fair comparisons, we also
need to convert these three models in the Blender dataset into
point clouds. We emulate the process of capturing real-world point
clouds via RGB-Depth cameras within the Blender environment.
We must also note, however, that despite accurate camera intrinsics
and extrinsics data provided by Blender, due to other factors such
as depth data quantization, the recorded depth data is inherently
noisy, as with real-world LiDAR sensors [19, 20].

3.1.1 K-Planes Training Data Generation. For all three datasets,
we place the center of the model (.blend model or the imported
point cloud) at the origin (0,0,0). We follow the original NeRF
work [23] and generate K-Planes training data by placing virtual
cameras in the scene at 80 different positions, starting at position
(0,4.0,0.5), which is approximately 4.03 units away from the origin.
All 80 positions are obtained by rotation around the origin by a set
of randomly generated Euler angles. At any position, the virtual
camera is set to “look at” the origin. Since 9 out of 11 sequences
are persons, we limit the camera positions to the upper hemisphere
only. Note that with this setup, regardless of the camera positions,
the distance from the origin is not changed. For each frame in a
dynamic sequence, we render 80 views as recorded by 80 virtual
cameras with a resolution of 800x800 and save them as .png files.

3.1.2 Testing Data Generation. For comparing the visual quality
of rendered views, we generate ground truth testing data in a simi-
lar way as K-Planes training data generation. For the 8iVFB and
Blender datasets, we use 20 views from 20 differently-positioned
cameras for testing. For the vsenseVVDB2 dataset, since we use all
300 frames of the dataset, we use views from 10 different perspec-
tives for evaluation. Besides, we set the same random seed for each
dataset to make sure all consecutive frames of each model have the
same camera parameters.

3.2 Comparison Metrics
To characterize the performance of different codecs, the video com-
pression community commonly uses the rate-distortion (RD) curve
e.g., [16, 30]. Here, “rate” represents the bitrate of the encoded
media content. “Distortion” represents the visual quality of the
compressed representation compared to the ground truth, uncom-
pressed, representation. In this work, we focus on two distortion
metrics: peak signal-to-noise ratio (PSNR) and video multi-method
assessment fusion (VMAF) proposed by Netflix [1].

To plot the RD-curve for V-PCC , we use five different qp combi-
nations described in common test conditions (CTC) by MPEG [25].
Details of the five settings are shown in Table 1. Among the five

Table 1: qp combinations used in V-PCC common test condi-
tions (CTC) [25]

qp settings r1 r2 r3 r4 r5
𝑄𝑔 : qp for geometry map 32 28 24 20 16
𝑄𝑐 : qp for attribute (color) map 42 37 32 27 22

Table 2: K-Planes overall settings

Multi-scale S=1,2; S=1,2,4; S=1,2,4,8
Time dimension 30; 60; 75
Feature length F=4; F=8; F=16; F=32

configurations, r1 and r5 result in the lowest and highest bitrates,
respectively.

K-Planes uses multi-scale planes with different resolutions for
storing parameters. Following the setup in the K-Planes paper [14],
we consider four spatial scale settings, {1, 2, 4, 8}. With different
spatial scale settings, the resolution of the feature plane differs. For
example, with 𝑆 = 1, each spatial feature plane has the resolution of
64×64, and the scene contains 643 voxels. With 𝑆 = 8, the resolution
of the spatial feature plane is 512 × 512. To inference the density
and color of a sample on a ray, features obtained from multi-scale
planes are concatenated before being passed into the MLPs. In our
experiments, we consider 3 different multi-scale settings, as shown
in Table 2. In addition, we consider the impact of setting the time
dimension to different values for representing the 4D volume. For
feature vector at a plane position, we consider four different feature
length settings: 4, 8, 16, and 32.

The RD-curve allows us to calculate the average difference in
bitrates among different encoding mechanisms under the same
distortion. This metric is called the Bjøntegaard-Delta bitrate (BD-
rate) [3, 4, 10]. A negative BD-rate represent bitrate/bandwidth
savings while achieving the same visual quality and is thus consid-
ered better. Similarly, a BD-PSNR metric can be calculated, where a
positive number represents the improvement in PSNR while using
the same bitrate/bandwidth. We report numerical results of the
following metrics: BD-PSNR, BD-Rate𝑝 calculated using PSNR as
the visual quality metric; BD-VMAF, and BD-Rate𝑣 calculated using
VMAF.

4 K-PLANES RESULTS
In this section, we first characterize the performance of K-Planes
for dynamic 6-DoF video representation under different model
configurations. Specifically, we compare three multi-scale settings
as listed in Table 2 and two time dimension settings.

4.1 Multi-Scale Settings
Figure 2 shows the the RD-curve results, using PSNR and VMAF as
the visual quality metric, for the “Lego” sequence in the Blender
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Figure 2: RD-curve result for the “Lego” sequence when using
different numbers of spatial plane scales.

Table 3: BD-Rate⇓, BD-PSNR⇑, BD-VMAF⇑ results on scale
performance, using S=1,2 as the anchor for calculation.

Settings BD-Rate𝑝⇓ BD-PSNR⇑ BD-Rate𝑣⇓ BD-VMAF⇑
S=1,2 0% 0 0% 0
S=1,2,4 37.6% -0.29 15.7% -0.94
S=1,2,4,8 122.4% -1.09 68.1% -2.32

dataset. This sequence has 60 frames. We set the time dimen-
sion of the model to 30 (half of the number of frames as used
in K-Planes [14]). The figure shows three curves, representing the
RD-curve for multi-scale settings S=1,2; S=1,2,4; S=1,2,4,8, respec-
tively. For each curve, we vary the “rate” by using different feature
length 𝐹 ∈ {4, 8, 16, 32} for the model. Overall, 12 K-Planesmodels
are trained, each using 40 training videos with a learning rate of
0.001. Following the configuration file used for K-Planes dynamic
scene training [14], we set the number of the training epochs to
120, 000. For each K-Planes model, 20 testing videos are used for
visual quality evaluation. We calculate the “rate” by considering the
frame rate of the sequence to be 30 frames-per-second (fps). That
is, 2 seconds to playback 60 frames in the sequence.

The RD-curves confirm that with larger feature length (thus
more parameters), the visual quality consistently improves. We
further analyzed the BD-Rate, BD-PSNR, and BD-VMAF results in
Table 3. Note here that BD-Rate𝑝 is calculated using PSNR as visual
quality, while BD-Rate𝑣 is calculated using VMAF. We use S=1,2,
the smallest multi-scale setting as the anchor setting for calculating
BD-* results. Results show that neither S=1,2,4 nor S=1,2,4,8 can
outperform the smallest multi-scale setting, S=1,2. Their BD-Rates
with respect to S=1,2 are positive, indicating more bitrates are
needed to reach the same visual quality; and their BD-PSNR and BD-
VMAF results are negative, indicating worse visual quality under
the same bitrates. Based on these findings, we focus the remaining
experiments of K-Planes on the S=1,2 multi-scale setting.
4.2 Time Dimension Settings
For representing a dynamic 3D scene, K-Planes includes six planes,
three space-only planes and three space-time planes. While the
space dimension is determined by the multi-scale settings, the time
dimension is typically set to half of the number of frames in the
dynamic scene [14]. We set to examine if by using larger time
dimension setting (and thus larger space-time planes) can help to
further improve the visual quality of highly dynamic scenes.

For this evaluation, we use the “Longdress” sequence from the
8iVFB dataset. We use the first 60 frames from this sequence, and
we use two different time dimension settings: 30 and 60.
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Figure 3: RD-curve result for the “Longdress” sequence when
using different time dimension.

Table 4: BD-Rate⇓, BD-PSNR⇑, BD-VMAF⇑ results on time
dimension, using time dimension=30 as the anchor. Results
show that the improvement is limited.

Settings BD-Rate𝑝⇓ BD-PSNR⇑ BD-Rate𝑣⇓ BD-VMAF⇑
time_dim= 30 0% 0 0% 0
time_dim= 60 -4.0% 0.12 -4.4% 1.18

The RD-curve results for PSNR and VMAF are shown in Figure 3.
The “rate” in the figure is varied by using different feature lengths
𝐹 ∈ {4, 8, 16, 32}. The figure shows that these two different time di-
mension settings are comparablewhen compressing the “Longdress”
sequence. At lower bitrates, i.e., shorter feature lengths, setting the
time dimension to 30 gives better results; while at higher bitrates,
using larger time dimension helps. However, the improvement is
very limited. Table 4 shows the BD-Rate, BD-PSNR, and BD-VMAF
results. These results are obtained using time dimension 30 as the
anchor. Results show that by using the longer time dimension, the
bitrate can be reduced by approximately 4% while achieving the
same visual quality, and that the PSNR can improve by 0.12 dB with
the same bitrate.

Given that “Longdress” is among the sequences with the most
motion in our datasets, and that the improvement by using longer
time dimension is very limited, we choose to use shorter time
dimension (e.g., half of the number of frames) in the remaining
experiments.

4.3 Model Precision
Mixed precision. PyTorch provides an automatic mixed precision
package called TORCH.AMP [8]. It allows operations to use a mix-
ture of float32 and float16 precision. This allows us to explore
the feasibility of compacting the model by saving the model in
float16 and load the parameters later for inference. We note that
K-Planes also use float16 to speed up model training.
Further model compression.We explore lossless data compres-
sion via the zip tool [2] for further reducing the stored K-Planes
representation size. While the trained models vary for different
parameter settings and content, we observe that lossless data com-
pression can further reduce the saved model size by 25% to 54%.

We conduct the experiment using all 11 sequences from all three
datasets. For 8iVFB and Blender datasets with 60 frames, we set
the time dimension to 30. For vsenseVVDB2with 300 frames, we set
the time dimension to 75. The trained models are further losslessly
compressed via zip, and we use the .zip file size for calculating the
“rate” for the rate-distortion curve. Figures 4 shows the RD-curve
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Figure 4: RD-curve result for the Blender dataset: float16 vs.
float32.

Table 5: BD-Rate⇓, BD-PSNR⇑, BD-VMAF⇑ results of float32
on the 8iVFB dataset, using float16 as the anchor. (When
using float16 as the anchor, results of float16 will be all 0s
and are thus omitted in the table. Negative BD-PSNR and
BD-VMAF results indicate that with the same model size,
the quality of views rendered from float16 models is better
compared to float32models.)

Sequence BD-Rate𝑝⇓ BD-PSNR⇑ BD-Rate𝑣⇓ BD-VMAF⇑
Longdress 120.3% -1.67 120.2% -17.05
Loot 128.7% -2.74 128.9% -19.45
Soldier 166.7% -1.98 166.2% -5.73
Redandblack 119.5% -2.08 119.3% -18.99

Table 6: BD-Rate⇓, BD-PSNR⇑, BD-VMAF⇑ results of float32
on the vsenseVVDB2 dataset, using float16 as the anchor.

Sequence BD-Rate𝑝⇓ BD-PSNR⇑ BD-Rate𝑣⇓ BD-VMAF⇑
Rafa 170.9% -2.15 171.3% -7.34
Lubna 163.6% -2.75 162.8% -10.44
Matis 132.7% -1.99 132.4% -15.15
Axeguy 174.1% -1.82 174.6% -7.44

Table 7: BD-Rate⇓, BD-PSNR⇑, BD-VMAF⇑ results of float32
on the Blender dataset, using float16 as the anchor.

Sequence BD-Rate𝑝⇓ BD-PSNR⇑ BD-Rate𝑣⇓ BD-VMAF⇑
Lego 115.7% -2.28 114.7% -14.92
Amily 142.6% -2.35 143.3% -11.47
Pig 128.9% -1.39 128.7% -12.45

results for both PSNR and VMAF for the Blender datasets. The
BD-Rate, BD-PSNR, and BD-VMAF results of the three datasets are
shown in Tables 5, 6, and 7. In these tables, the float16 results are
used as an anchor for calculating the BD-* results of using float32
for storing the trained model.

The RD-curve results show that the visual quality results of
float16 are comparable to float32 while float16 saves more
than half of the saved model size. The BD-PSNR results show that
when using the same bitrate for representing the dynamic scene, the
visual quality of float32 is 1.39 dB to 2.75 dB worse than float16,
and the BD-VMAF results show that the VMAF results of float32
is 5.73 to 19.45 worse than float16. Thus, we will use float16
results for K-Planes vs. V-PCC comparison in the next section.

5 V-PCC VS. K-PLANES
In this section, we report our findings comparing V-PCCwith K-Planes
for dynamic 6-DoF volumetric video representation. For V-PCC, we
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Figure 5: RD-curve result for the 8iVFB dataset.
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Figure 6: RD-curve result for the vsenseVVDB2 dataset.

compress the raw .ply files using five different quantization pa-
rameter settings in Table 1. We obtain the V-PCC compressed binary
file sizes and use them for calculating the “rate” in the RD-curve.
We then decode and reconstruct the point cloud .ply files, ren-
der them, and compare them with the groundtruth test views. For
K-Planes , we use multi-scale setting S=1,2, train the models for
150, 000 epochs with a learning rate of 0.001, and save the model
in float16. We further losslessly compress the saved K-Planes
models using the .zip tool and use the compressed .zip file for
calculating the “rate”. We do not use zip for compressed V-PCC
binary files as no data deflation can be achieved.

5.1 Results of 8iVFB and vsenseVVDB2 Datasets
We discuss the results of the 8iVFB and vsenseVVDB2 datasets first
since both datasets are carefully curated raw point cloud data and
are made for V-PCC . The RD-curve results are shown in Figures
5 and 6. We notice that in a few cases, for V-PCC, with increased
rate, e.g., the r5 setting, the visual quality can become worse than
lower rate, e.g., the r3 setting. This finding is consistent with the
subjective study performed by Cox et al. [12]. We have also checked
our experiments and made sure it is the correct results. We thus
report these results in the paper.

We report the BD-PSNR and BD-VMAF results in Tables 8 and
9. (We do not report the BD-Rate results in these tables because
the RD-curves of comparative setups are very far away with no
overlap in their “distortion” coordinates.) The results show that
for the 8iVFB dataset, V-PCC outperforms K-Planes in all but one
(“Soldier”) sequence; while for the vsenseVVDB2 dataset, K-Planes
outperforms V-PCC in all but one (“Matis”).

We find that the performance of K-Planes and V-PCC appear
to be correlated with the amount of motion in the dataset. For
example, the four sequences that K-Planes perform well in (i.e.,
“Soldier”, “Rafa”, “Lubna”, and “AxeGuy”) are with little to moderate
motion. For the remaining four highly dynamic sequences, however,
K-Planes struggles to achieve a good performance, and V-PCC can
compress them better.
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Figure 7: Visual quality comparison of “Lego” in the Blender dataset created by our team. The top row shows the groundtruth
view and views rendered by trained K-Planesmodels with different feature length 𝐹 ∈ {4, 8, 16, 32} . The bottom row shows views
rendered by point clouds compressed by V-PCC in one of the five settings r1 (lowest bitrate), r2, r3, r4, and r5 (highest bitrate).

Table 8: 8iVFB dataset: BD-PSNR⇑ and BD-VMAF⇑ results of
V-PCC , using K-Planes as the anchor.

Sequence BD-PSNR⇑ BD-VMAF⇑
Longdress 3.20 39.58
Loot 2.20 30.11
Soldier -6.45 -21.29
Redandblack 0.49 21.20

Table 9: vsenseVVDB2 dataset: BD-PSNR⇑ and BD-VMAF⇑ re-
sults of V-PCC , using K-Planes as the anchor.

Sequence BD-PSNR⇑ BD-VMAF⇑
Rafa -4.12 -10.10
Lubna -9.69 -45.45
Matis 0.76 23.68
Axeguy -6.06 -23.67

Table 10: Blender dataset: V-PCC results

Sequence Metric r1 r2 r3 r4 r5

Lego
PSNR (dB) 20.67 20.96 21.02 20.92 20.80
VMAF 1.39 1.38 0.80 0.35 0.98

Size (MB) 5.23 11.13 22.94 43.00 75.81

Amily
PSNR (dB) 26.55 26.29 25.63 24.97 24.92
VMAF 8.65 5.50 0.95 0.01 0.01

Size (MB) 0.84 1.31 2.86 8.25 20.21

Pig
PSNR (dB) 29.94 29.94 29.39 28.67 28.68
VMAF 21.47 21.57 14.60 6.60 8.78

Size (MB) 1.37 2.01 4.46 12.86 31.70

Table 11: Blender dataset: K-Planes results

Sequence Metric F=4 F=8 F=16 F=32

Lego
PSNR (dB) 25.97 27.96 29.07 30.01
VMAF 38.78 51.19 58.78 64.76

Size (MB) 1.28 1.70 2.48 4.11

Amily
PSNR (dB) 34.10 35.29 36.34 37.42
VMAF 56.85 63.32 68.76 72.97

Size (MB) 0.93 1.46 2.15 3.48

Pig
PSNR (dB) 35.73 37.16 37.79 38.08
VMAF 49.34 61.45 66.56 70.78

Size (MB) 1.15 1.56 2.29 3.70

5.2 Results of the Blender Dataset
For the three models in the Blender dataset, we first generate point
clouds using a procedure that emulates real-world point cloud
capture via RGB-Depth images. For this evaluation, we use the
original textured mesh model for generating groundtruth test views.

We report our results in Tables 10 and 11. For V-PCC, while the
structural information of the scene is correct, the visual quality
is very low. For the “Lego” sequence, the PSNR is only about 20
dB; for “Amily”, and “Pig”, the PSNR results are lower than 30
dB. The obtained VMAF scores are also very low. We conjecture
that the poor visual quality of V-PCC is partially caused by the
point clouds recorded via RGB-Depth data, which is inherently
noisy. In comparison, the 8iVFB and vsenseVVDB2 datasets are
carefully curated. Additionally, another possible cause is that for
8iVFB and vsenseVVDB2 experiments, the groundtruth is rendered
using the raw, uncompressed point cloud; while for the Blender
experiments, the groundtruth is photorealistic rendering of the
model. This results in significantly lower visual quality of V-PCC.

For K-Planes, the results are substantially better. For “Lego”, the
PSNR can be as high as more than 30 dB; while for “Amily” and “Pig”,
the PSNR can reach over 37 dB, with a K-Planes representation size
of only about 4 MB (or 16 Mbps for the 2-second long sequence.)
We further present visual results of four sets of rendered views of
the “Lego” sequences in the Blender dataset in Figure 7.

6 CONCLUSION
In this paper, we performed a comparative study of a new dynamic
neural scene representation model, K-Planes, and V-PCC for repre-
senting and efficiently transmitting 6-DoF volumetric video data.
We find that for K-Planes, increasing the length of feature vectors
can improve the visual quality faster than increasing the number of
multi-scale planes. Results show that the current K-Planes models
can outperform V-PCC when there is little to moderate amount of
motion in the 6-DoF video sequence. We also find that in a volumet-
ric data capturing scenario emulated by Blender, the visual quality
of views rendered from K-Planes is significantly better than V-PCC.
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