
LiveRec: Prototyping Probes by Framing Debug Protocols

Jean-Baptiste Döderleina , Riemer van Rozenb , and Tijs van der
Stormb,c

a ENS Rennes, Bruz, France
b Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
c University of Groningen, Groningen, The Netherlands

Abstract
Context In the first part of his 2012 presentation “Inventing on Principle” [31], Bret Victor gives a demo of a
live code editor for Javascript which shows the dynamic history of values of variables in real time. This form of
live programming has become known as “probes” [3, 15, 18]. Probes provide the programmer with permanent
and continuous insight into the dynamic evolution of function or method variables, thus improving feedback
and developer experience.
Inquiry Although Victor shows a working prototype of live probes in the context of Javascript, he does not
discuss strategies for implementing them. Later work [18] provides an implementation approach, but this
requires a programming language to be implemented on top of the GraalVM runtime [32]. In this paper we
present LiveRec, a generic approach for implementing probes which can be applied in the context of many
programming languages, without requiring the modification of compilers or run-time systems.
Approach LiveRec is based on reusing existing debug protocols to implement probes. Methods or functions
are compiled after every code change and executed inside the debugger. During execution the evolution of
all local variables in the current stack frame are recorded and communicated back to the editor or IDE for
display to the user.
Knowledge It turns out that mainstream debug protocols are rich enough for implementing live probes. Step-
wise execution, code hot swapping, and stack frame inspection provide the right granularity and sufficient
information to realize live probes, without modifying compilers or language runtimes. Furthermore, it turns
out that the recently proposed Debugger Adapter Protocol (DAP) [16] provides an evenmore generic approach
of implementing live probes, but, in some cases, at the cost of a significant performance penalty.
Grounding We have applied LiveRec to implement probes using stack recording natively for Java through the
Java Debug Interface (JDI) [20], and through the DAP for Java, Python, C, and Javascript, all requiring just
modest amounts of configuration code. We evaluate the run-time performance of all four probes prototypes,
decomposed into: compile-after-change, hot swap, single step overhead, and stack recording overhead. Our
initial results show that live probes on top of native debug APIs can be performant enough for interactive use.
In the case of DAP, however, it highly depends on characteristics of the programming language implementa-
tion and its associated debugging infrastructure.
Importance Live programming improves the programmer experience by providing immediate feedback about
a program’s execution and eliminating disruptive edit-compile-restart sequences. Probes are one way to
shorten the programmer feedback loop at the level of functions and methods. Although probes are not new,
and have been implemented in (prototype) systems, LiveRec’s approach of building live probes on top of
existing and generic debug protocols promises a path towards probes for a host of mainstream programming
languages, with reasonable effort.

ACM CCS 2012
Software and its engineering → Development frameworks and environments;
Human-centered computing → Interactive systems and tools;

Keywords live programming, debugging protocols, language engineering, integrated development
environments

The Art, Science, and Engineering of Programming

Submitted October 2, 2023

Published February 15, 2024

doi 10.22152/programming-journal.org/2024/8/16
© Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm
This work is licensed under a “CC BY 4.0” license
In The Art, Science, and Engineering of Programming, vol. 8, no. 3, 2024, article 16; 36 pages.

https://orcid.org/0000-0002-9741-8571
https://orcid.org/0000-0002-3834-682X
https://orcid.org/0000-0001-8853-7934
https://doi.org/10.22152/programming-journal.org/2024/8/16
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

LiveRec: Prototyping Probes by Framing Debug Protocols

1 Introduction

Live programming [7, 10, 15, 26] promises a better programming experience by
bringing the execution of a program closer to the abstractions of the source code. By
erasing the distinction between a program on the one hand, and its execution on the
other, programmers may enjoy a more fluid experience, with immediate dynamic
feedback after every code change.
Live programming has a rich history, both in academia and industrial research,1

originating in the original Lisp systems (e.g., [24, 28]) and Smalltalk [9] which
allowed dynamic replacement of code units (hot swapping) and inspection of program
structures at run-time (sometimes referred to as “programming in the debugger”).
However, live programming became center stage after Bret Victor’s influential talk
“Inventing on Principle” in 2012.

In that presentation Victor makes a compelling case that (paraphrasing) “creators
need to see what they are creating”. In the case of programming, this entails continuous
inspection of the run-time behavior of a program, and immediate and seamless
adaptation after a code change. While all the prototypes demonstrated by Victor are
impressive, for the purpose of this paper we zoom in on one of them: a live editor for
Javascript with a side pane showing the history of values of local function variables
during an execution (see Figure 1 below). Although not mentioned by Victor himself,
this live programming feature has become known as “probes” [15, 18].
The question left unanswered in Victor’s presentation is: how to build such probes?

While there has been research showcasing implementation approaches [18], they
depend on a specific run-time system (e.g., GraalVM), or employ language specific
implementation tricks [25], and hence cannot be easily transferred to other languages.
So a more specific question is: how to engineer probes generically, without having to
deeply modify a programming language’s compiler and/or runtime?
In this paper we present LiveRec, an approach to implement probes by reusing

standard debugger protocols and APIs. Most language implementations support an
API to facilitate the implementation of debugger UIs and other run-time tools (e.g.,
profilers, tracers, etc.). It turns out that such facilities are sufficiently powerful for
implementing live probes. The key to the approach of LiveRec is to use a scripted
debugger to (re)execute a function or method of the debuggee, step by step, and
at each step record a snapshot of the current stack frame. After the method has
finished executing, the resulting stack recording is communicated back to the IDE
and visualized alongside the code, matching stack recording entries to the source
code using source location information.
We first detail how to implement probes using a native debugger interface, the

Java Debug Interface (JDI). Then we generalize the approach to employ the recently
proposed Debugger Adapter Protocol (DAP) [16], a generic interface layer to decouple
IDE debug affordances and debugger servers for specific programming language
implementations. This implementation, called DaProbe, is showcased with probe

1 For brief and incomplete overview of some of the history of live programming, see [30]

16:2

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

implementations in Java (again), C, Python, and Javascript. As a result, probes can
be supported in any programming language that provides a reasonably complete
implementation of the DAP, with only limited amount of configuration code. Our
prototypes demonstrate that LiveRec allows us to obtain probes in languages that
do not share any run-time infrastructure at all.
Since live programming (and hence probes) is all about immediate feedback, it is

important that the performance overhead of LiveRec’s strategy does not impede
practical use. We therefore provide a preliminary analysis and measurement of the
performance of (re)compilation, hot swapping, step-wise execution, and stack record-
ing. To assess the overall overhead of LiveRec, we furthermore decompose a small
editing scenario (derived from Victor’s presentation) in 19 logical steps, replay it on
every probe implementation, and measure the performance of each edit step.
This paper is further organized as follows. We analyze the requirements for imple-

menting probes in Section 2, and discuss the scope and baseline assumptions of the
paper in Section 3. Section 4 then provides an overview of LiveRec and introduces
stack recording as a technique to obtain the required information through standard
debug protocols. The implementation of LiveRec on top of the Java Debugger Inter-
face (JDI) is described in Section 5. We then show how to generalize LiveRec in the
context of the Debugger Adapter Protocol (DAP) in Section 6 by presenting DaProbe,
a generic base component for DAP-based probes. We provide an initial assessment
of LiveRec in Section 7, demonstrating feasibility of LiveRec by implementing
probes for Java, Python, C and Javascript using DaProbe. We provide preliminary
performance results of the individual steps, and reproduce an editing scenario to
assess practicality. The paper is concluded with a discussion of limitations (Section 8)
and related work (Section 9), and concluding remarks with directions for further
research.

2 Background and Overview

Programmers can use probes to assess the behavior of a single function (or method)
under investigation. By subjecting this function to a series of inputs, and observing
associated outputs together with the values of local variables over time, a programmer
can immediately see the impact minor code changes have on the behavior.
The basic concept of function probing is illustrated in Figure 1. The left pane shows

an editor containing the function’s source code, in this case an implementation of
binary search in Javascript. The right pane shows the values the local variables have
next to the source lines they were last updated. The top two rows specify example
input data that the function is executed on. The consecutive values of variables that are
updated in a loop (e.g. low, high, mid and value) are displayed in sequence hirozontally.
So for low, the history of values is 0, 3, and 5. Apparently, the update of high in the
else-if branch has never executed since there is no (redundant) value display in the
right pane. Finally, the last line shows the return value of the function. We learn that
the key was not found in the array.

16:3

LiveRec: Prototyping Probes by Framing Debug Protocols

Figure 1 Screenshot of Bret Victor’s 2012 talk “Inventing on Principle” (23rd minute) [31]

What makes this process live is that while the programmer is editing the program
on the left (or the input arguments to the function), the value display on the right
continuously updates to make it apparent what happens at run time.
Implementing programming environments with probe functionality is non-trivial.

Dissecting the example leads to the following technical requirements:
there should be a way to specify a function’s input arguments (e.g., key and array);
after every change to the code, the function needs to be recompiled and reexecuted;
during execution, the values of local variables need to be recorded and linked to
the source locations where they were updated.
the resulting list of historical values should be displayed to the programmer.
To meet these requirements, we propose LiveRec, a language agnostic approach

to probes, built on top of off-the-shelf debugging infrastructure. In particular, we
introduce the Live Probe Server, to abstract the details of debug protocols behind a
reusable and generic interface. The IDE communicates with the Live Probe Server
whenever the code of a probed method is edited, and whenever its input values
change.
The Live Probe Server’s scripting harness simulates execution by issuing step-over

commands until the probed function completes. To keep stack recording local to
the current function, it never steps into a call to another function, but such calls are
nevertheless still executed.
In between steps, the Live Probe Server takes snapshots of the current stack frame

to record the values of local variables. These snapshots are stored in a data structure,
called stack recording, which supports displaying the values in the IDE, for instance like
the tabular style of Figure 1, inline [18, 25], or using another dedicated UI affordance.
To allow multiple functions to be probed in a single debug sessions, the debuggee

is actually loaded into a “mock debuggee”, the Keep Alive Agent (KAA). This driver

16:4

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

program prevents unnecessary restarts of the debugger, and gives the Live Probe Server
full control about its execution. The KAA itself simply consists of a main function with
while-true-loop, halted on a breakpoint, and will be the host environment for executing
functions.

3 Scope and Assumptions

The design and engineering space of probes is both deep and wide. There are a lot
of trade-offs at play, ranging from the most bespoke implementation strategies to
completely language parametric approaches. This section aims to clarify the place this
paper takes by discussing its scope and baseline assumptions. For potential solutions
or mitigations we refer to Section 8.
This paper considers probes from a live programming angle for mainstream, im-

perative and/or object-oriented languages, with readily available and mature im-
plementations, either in the form of compilers, virtual machines, interpreters, or a
combination of any subset of those three. Whereas probes would be valuable for
languages that are less widely used (e.g., Clojure, Haskell, Prolog, to name a few),
we focus on mainstream imperative languages, because precisely their similarities
allow us to abstract over minor differences, and obtain a generic, language agnostic
approach. We also do not specifically focus on dynamic programming languages (even
though we include Javascript), in which live programming facilities have been much
more common (e.g., Lisp, Smalltalk), and may in fact be much easier to implement.
The challenge this paper aims to address is to engineer probes in language ecosystems
where it would be, in fact, very hard to do this natively, yet which offer a variety of
tools which could be “abused” for the task.
One such set of tools are debuggers. We assume that those language implemen-

tations are accompanied with source-level debuggers, which allow programmers to
debug their code through debug services in the IDE. The standard arsenal of debugger
services that we assume to be available are:

Launch: run a program (the debuggee) in “debug mode”.
Step-over: execute a single statement, abstracting over intermediate method calls.
Intermediate method calls are executed, but do contribute to granularity of stepping
through code.
Set breakpoint: instruct the debugger to halt the execution upon hitting a particular
statement.
Hotswap: reload modified code modules, such as functions, classes, files, etc., into
the debuggee, without restarting.
Evaluate expression: request the debugger to evaluate a sourcecode snippet in a
particular execution context (e.g., object, stack frame, etc.) of the debuggee.
One feature we do not consider to be “standard” is watchpoints (also known as data

breakpoints, in the context of DAP). A watchpoint is like a breakpoint, but instead of
halting execution on a statement, execution is stopped when the value of a variable is
modified. This could indeed provide a generic implementation strategy for probes: put

16:5

LiveRec: Prototyping Probes by Framing Debug Protocols

watchpoints on all local variables, run the method to completion, and in the meantime
collect the values of the variables. In certain sense, even, probes could be seen as
“watchpoints with memory”. Nevertheless, it turns out that watchpoints are far less
commonly implemented than the debug services above. For instance, in the Java
ecosystem, watchpoints are only supported on fields, and not on local variables. While
the DAP offers interface definitions to implement watchpoints, they are only fully
realized in the context of C (i.e., GDB). The Java DAP implementation has the same
limitations as JDI (only fields); there are no Javascript or Python DAP implementations
supporting watchpoints.
No code is an island. Although this paper studies probes in the context of small and

isolated methods, we are aware that realistic code always executes in the context of
other source code, method dependencies, libraries, etc. All these factors may influence
the performance and scalability of our approach. Nevertheless, we would like to
distinguish two things: method size, computational complexity, and size of the unit
of hot swapping (typically, the compilation unit: class, file, module).
The first dimension influences the performance of LiveRec in that the larger the

method, the more steps (typically) need to be performed by the debugger. Computa-
tional complexity has an even higher impact: it would probably not be very useful to
probe a method implementing an exponential algorithm. The third dimension, unit of
hot swap, affects probe performance in that the larger the compilation unit, the more
overhead potentially is generated by compiling and reloading the code. Note however,
that hot swap unit size does not affect the performance of stepping through code.
In this initial work we delegate such considerations to future work, acknowledging
that this implies our results cannot yet be generalized to realistic, industrial software
development settings.
No invocation is an island. To invoke a procedure or function requires actual values

for the formal parameters. In many probe implementations these values are specified
as examples so that execution can be continuous. Nevertheless, executing code in
imperative and OO languages depends on much more than just the parameters. In OO
languages, methods need a self object: this requires a constructor invocation, to initial-
ize field, and this constructor, in turn has formal parameters. Often the parameters are
non-primitive, without a literal source notations. In that case initializing parameters
requires the instantiation of classes, which have constructors with parameters, ... etc.
The same holds for global variables, which need to be initialized to meaningful

values. Moreover, it holds for any state invariant that needs to be satisfied in order
to invoke a method or procedure. In this paper we consider such complications out
of scope. It is generally infeasible to ensure all required invariants, so we currently
assume the dependencies of an invocation are limited to obtaining values for formal
parameters. In the context of Java instance methods, we construct the self-object
using simple heuristics.
Yet another complication that we presently gloss over is recursion. If a method is

recursive, either directly or indirectly, there is the question what to do with arriving
back in the probed method: should we limit the value display to the history of a single
stack frame? Or should we include the values of all intermediate recursive stack frame
histories as well? While our implementation could easily be changed to support either

16:6

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

option, the fact that this also presents a problem of visualization, we currently deem
this issue out of scope.
No application is an island. Every realistic software system interacts with the outside

world through input and output. This can range to simple updates of the screen, to
writing files on disk or other actions that can be considered dangerous. The continuous
execution of methods is at odds with the fact that methods may not be reentrant
because of such side-effects. In the present paper we do not provide any solution to
this predicament, and delegate the responsibility to the programmer for not causing
any serious harm.
No compilation is an island. For compiled languages, such as C or Java, and any

other language that requires software to be build using build scripts and/or depen-
dency management tools, we assume that a program is built accordingly. When the
programmer runs the application in debug mode and makes use of probes, the code
reloading after a source change is implemented in a custom fashion, through the
debugger protocol of the language implementation. In other words we assume that
a session with probes enabled is not affected by the (overhead of) the build system.
Whether this is realistic, is out of scope of this paper and merits further research. It is
however instructive to note that it is already possible to invoke hot swapping facilities
from mainstream IDEs for many programming language implementations/debuggers,
albeit with certain restrictions.
Live programming is about programmer experience (PX), a particular kind of user

experience (UX). Therefore, probes require dedicated user interface affordances to
support the programmer in a way that is not disrupting or confusing the programming
activity. All our prototypes and demonstrations employ only the bare minimum of
UI design, basically to demonstrate feasibility of the approach, without claiming any
benefits in terms of UX. How the value histories should be conveyed to the user is
of paramount importance for acceptance of probes in general, however outside the
scope of this paper.
While this paper approaches live programming and probes from the use case of

application programming, we note that other situations might benefit from probes
as well. One area that could be investigated is the debugging of (unit) tests. In this
case example data is already available, and probes could help to diagnose failing
tests. However, the probe is then “one step removed” from the starting point (the
test). Another area that could benefit from probes is basic programming education:
since programming assignments are typically small and isolated, this could provide
an ideal scale to apply probes.

4 Framing Debug Protocols

This section provides a high-level overview of the general architecture of LiveRec,
and introduces the concept of stack recordings.

16:7

LiveRec: Prototyping Probes by Framing Debug Protocols

Integrated
Development
Environment

Live
Probe
Server

Debuggee

Keep
Alive
Agent

Changes

Stack
recording

DAP
or JDI

Figure 2 General architecture

4.1 High-Level Architecture

A programming environment with probes must be able to react to two different events:
a change in the code, or a change in the input data to the method. If the code changes,
it needs to be reexecuted, possibly preceded by a compilation step in the case of
compiled languages. Likewise, if one or more input values change, the probed method
needs to be reexecuted, but in this case no recompilation is required. Both compilation
(if any) of its enclosing compilation unit and reexecution of the probed method needs
to be fast enough to avoid noticable delays in updating the display values of the
method’s variables.
The high-level architecture of LiveRec is shown in Figure 2. The IDE is used by the

programmer to edit source code. For any primitive edit, the programmer is editing
at most one method, so there is at most one reload/re-execute operation to run. Of
course, the cursor can be outside any method, but this is irrelevant to probes. If a
method has been annotated with input values for its parameters (indicating that the
programmer wants to probe the method), the code and the input values are sent to
the Live Probes Server after every edit.
The server communicates with a debuggee through a custom scripting harness

implemented using a debug protocol, such as JDI or DAP. This debugger component
has been initialized with a dummy program, called the Keep Alive Agent (KAA). The
code for a probed method is dynamically loaded into the KAA whenever possible,
so that the method can be invoked through API calls of the debug protocol. By
hot-swapping the code into the KAA we avoid a significant performance penalty of
restarting the debugger itself every time a change is received by the Live Probes Server.
During execution of the probed method, the Live Probes Server collects all interme-

diate stack frame states in a stack recording, which is sent back to the IDE for display
to the programmer.

4.2 Stack Recording

Displaying the dynamic evolution of variable values requires linking the consecutive
values of each variable to their respective source locations. In LiveRec this information
is collected in stack recordings, which records the consecutive states of a single stack
frame. In other words, a stack recording is a chained list of stack frame snapshots
mapping the variables contained in them to the source location where they were
modified. This data structure is illustrated in Figures 3 and 4.

16:8

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

1 //@foo(3)
2 int foo(int n) {
3 int i = 0;
4 while (i < n) {
5 i++;
6 }
7 return i;
8 }

Figure 3 Stack Recording Example

time→ t1 t2 t3 t4 t5 t6 t7 t8 t9

1 //foo(3)
2 int foo(int n) {
3 int i = 0; n=3
4 while(i < n) { n=3; i=0 n=3; i=1 n=3; i=2
5 i++; n=3; i=0; n=3; i=1
6 }
7 return i; n=3; n=3
8 } return 3

Figure 4 Tracking variable values across time and space (= source code)

Figure 3 displays a simple method annotated with input values using the special
comment //@foo(3), indicating that the programmer wants to probe the method with
input 3. The right side of the figure shows the corresponding stack recording. After
every debug-step through the method, the current stack frame is cloned and added
to the linked list, associating it with the source location (simplified as line numbers
here) of the current statement.
Another way of visualizing stack recordings is shown in Figure 4, which details how

stack recordings capture stepping through both time (= debug steps) and space (=
source code). The right-hand part of the table can be “zipped” together, as it were, to
obtain a tabular display like shown in Figure 1.
Stack recordings are simple and highly versatile: most mainstream programming

languages feature a run-time stack and every debugger or debug interface has access
to them.
Figure 5 illustrates how stack recordings are constructed using a UML message

sequence diagram. After the probed method has been hot swapped into the KAA, the
Live Probes Server sets a breakpoint on the first statement, and initiates its execution.
It then continually steps through the method until the method completes. The stepping
is performed using “step over” to avoid collecting stack frames of called methods.
After each step the server asks for the current stack frame, and adds it to the stack
recording, together with the current source location.

16:9

LiveRec: Prototyping Probes by Framing Debug Protocols

Figure 5 Record Stackrecording

5 Java Probes with JDI

Listing 1 Pseudo Java code capturing the gist of the Java Live Probes Server
1 public class LiveProbesServer {
2 KeepAliveAgent kaa = new KeepAliveAgent();
3
4 public void run() {
5 launchVM(kaa);
6 setBreakpointOnWhileTrue();
7 }
8
9 public void loadClass(String className) { kaa.loadClass(className); }

10
11 public StackRecording execute(Method method, Object[] arguments){
12 setBreakpointAtMethod(method);
13 invokeMethod(method, arguments);
14 var stackRecording = new StackRecording();
15 while (!isMethodFinished()) {
16 stackRecording.add(getStackFrame(), getSourceLocation());
17 stepDebuggee();
18 }
19 return stackRecording;
20 }
21 }

16:10

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

Listing 2 Simplified JDI Keep Alive Agent
1 public class KeepAliveAgent {
2 DynamicClassLoader dynamicClassLoader = ... // initialization omitted
3
4 public void loadClass(String className) { dynamicClassLoader.loadClass(className); }
5
6 public static void main(String[] args){ while (true) ; }
7 }

In this section we describe a Java implementation of the high-level approach in-
troduced above, using the Java Debug Interface (JDI). Skeleton code of the key
implementation classes are shown in Listing 1 (Live ProbesServer) and Listing 2 (Keep
Alive Agent). The JDI is a complex API involving multi-threading and asynchronous
computation (waiting for events etc.). The code snippets in the figures are therefore
highly simplified, and function merely to give a flavor of how various components
interact.
The LiveProbesServer (Listing 1) starts by initializing the KAA in a local field. Then,

in the run method, a Java VM is launched with the KAA as the debuggee. When all
the classes are loaded, just before main starts executing, a break point is set. (This is
where the code snippet is a bit misleading; the real implementation involves waiting
for an all-classes-loaded event, and then setting the breakpoint.) The breakpoint is
needed to keep the debuggee in a state of suspension. This waiting state is necessary
to use JDI reflective operations, such as newInstance (to instantiate classes), and
invokeMethod (to call methods). Without the KAA the debug-enabled VM would
need to be restarted after every code change, whereas now the changed code is hot
swapped without starting a new debug session.
Whenever the programmer modifies a probed method in a class, the class is loaded

into the KAA, using the loadClass method. Subsequently, the execute method is the
trigger for probed method execution and stack recording, to be invoked by the IDE.
Again, the code is simplified: we assume the probed method and its arguments have
been parsed, compiled, and loaded into the VM, and hence are represented as reflective
objects. A breakpoint is set at the start of the probed method (line 13), after which it
is invoked. The while-loop then steps through the method as part of the KAA (which
now contains the user code) until it completes, and then returns the collected stack
recording.
Run-time class loading is implemented using a standard dynamic class loader,

extended to support appending class paths at run time, in order to load the user code,
which might reside in a location unknown to our scripting harness. Class loading is a
lazy process: only if a dependency is needed it is loaded as well. If a dependency has
been loaded previously, it is simply reused and not loaded again. The standard class
loader infrastructure of Java does not support reloading classes if the class signature
changes, which happens when fields or methods are added or removed, or when the
inheritance hierarchy changes. Note however, that there are JVMs that do not suffer
from those limitations (see, e.g., [12, 33]).
The above description of dynamic class loading for stack recording is sufficient for

probing static methods, since all the required context for executing such a method is

16:11

LiveRec: Prototyping Probes by Framing Debug Protocols

either static (as in static fields), or provided through method parameters. Ordinary
methods require an instance of its enclosing class before they can be invoked. In our
current implementation, the enclosing class is instantiated through the “smallest”
constructor, measured by the number of constructor parameters. For each of the
constructor parameters a default value is provided if the type is primitive, or null
otherwise. The same strategy is used in the DAP Java implementation. We return to
the issue of finding appropriate initializer arguments in Section 9.

6 DaProbe: Implementing Probes through the DAP

The implementation of probes using JDI introduced in the previous section is language
specific, because it is based on the native Java debug API JDI. The Debug Adapter
Protocol (DAP) is a commonly accepted interface to communicate from an IDE to
a programming language debugger. Designed to be used in modern IDEs like VS
Code [17], the DAP offers a uniform interface for presenting a debugger user interface
for any programming language implementing the DAP.
In this section we introduce DaProbe, a generic probe server implemented in

Python, which leverages the DAP for hot swapping, method execution, and stack
recording. In Section 7 we evaluate this implementation for language implementations
of C, Python, Java, and Javascript. This implementation is largely generic: all details
regarding stack recording are handled language independently. A probe implemen-
tation for a specific language X should provide implementations for the following
extension points in the DaProbe framework:

A keep-alive agent in language X

An implementation of how to reload code
How to compile X code (if applicable).
Whether method execution is triggered by the debugger or in the debuggee itself.

Given language-specific implementations for the above four hooks, DaProbe utilizes
the DAP to provide probe functionality at modest implementation cost. The relevant
DAP requests are summarized in Table 1.
We have instantiated DaProbe for four languages: Java, C, Python, and Javascript.

How the four extension points are realized is summarized in Table 2. Both the Java
and C implementations compile code using their respective command line compilers.
The way the code is loaded also depends on the programming language. For Python,

the code is loaded by being interpreted by the debug console during execution. For
Javascript, a line is added at the end of the imported file to export all the functions
in the file as a module, which is then loaded into the KeepAliveAgent with require .
For Java, as with the JDI version, a Dynamic ClassLoader is used. For C, the code is
loaded into a shared library that can be added and reloaded at run time.
Method execution can be divided into two categories. For DAP Java, Python and

Javascript, calling methods directly from the debugger does not trigger breakpoints.
To remedy this, execution must be initiated by the KeepAliveAgent rather than by
a debugger command. To do this, the KeepAliveAgent code in these languages has

16:12

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

Table 1 DAP requests used in implementing probes (see https://microsoft.github.io/debug-
adapter-protocol/specification)

Request Usage

Initialize and Launch Initialize the DAP server and launch the debuggee

SetBreakpoints Set breakpoints at location in source code

StackTrace Get the state of the current stacktrace

Scopes and Variables Get the current scopes and variables in it

Evaluate Evaluate expression in the debuggee

Next and Continue Request to step or continue in the debuggee

Table 2 Language specific configuration of DaProbe

Implementation Compile Load Code Execution Caller

DAP Java javac Dynamic ClassLoader Debuggee

DAP Python From debug console Debuggee

DAP C gcc Loaded as shared library Debugger

DAP Javascript Imported as module Debuggee

fields for referencing a method and its arguments (see Appendix E for the example of
Python); when this information is entered, the agent starts the execution. In C, as in
Java with JDI, the method is called directly from the debugger.

7 Evaluation

In this section we evaluate LiveRec, by demonstrating feasibility, assessing effort of
implementation, and measuring the performance of probed method execution.

7.1 Demo: A Minimal Live Programming Environment

7.1.1 Victor Style
We have developed a prototype dynamic programming environment to demonstrate
probes for Java, C, Python, and Javascript. It is implemented as a simple web-based
IDE, showing the source code editor on the left (based on CodeMirror 5 [11]), and
the probe visualization on the right. Each time a change is made in the code editor,
the code is sent to the server, which then tries to compile it. If the code contains a
comment beginning with @, followed by a function call, the server attempts to create
a stack recording of that function, with the parameters provided.

16:13

https://microsoft.github.io/debug-adapter-protocol/specification
https://microsoft.github.io/debug-adapter-protocol/specification

LiveRec: Prototyping Probes by Framing Debug Protocols

Figure 6 Demo of the live programming environment for C.

Figure 7 Exploring stack recordings: the slider moves through time and space of a single
method execution.

Figure 6 shows a screen shot of a session using the C probe implementation. The
left shows a binary search function, and the right panel displays the values of the
probed variables.

7.1.2 Exploring Stack Recordings
We further have developed a stack recording exploration mode, allowing the program-
mer to travel in time through a method execution. Figure 7 shows four screen shots,
each detailing a point in time in the history of the stack recording, namely, points 0,
2, 5, and 9. At each point in time the actual values of the variables are shown, and the
corresponding point in space is highlighted in the editor in yellow. The slider at the
bottom of each panel is used to move through time and space of the method.

16:14

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

Table 3 Effort of implementing probes, measured in Source Lines of Code (SLOC)

Implementation #SLOC Probe Server #SLOC Keep-Alive Agent

Java JDI 521 Java 75 Java
DaProbe 270 Python —
DAP Python 142 Python 26 Python
DAP Java 360 Python 114 Java
DAP Javascript 256 Python 24 Javascript
DAP C 181 Python 14 C

For instance, the top left panel, shows the initial variable assignment just after the
method has been invoked (the 0th snapshot of the stack frame); at this point in time,
only n has a value, namely, 3. The top-right panel shows the stack frame after i = 0
has been executed, as visualized accordingly. The bottom right panel shows the final
configuration, where the return value is shown as well.

7.2 Implementation E�ort

Table 3 shows the number of lines of code for the server part and the KAA for each
implementation, next to the implementation language. The DaProbe row corresponds
to the base line code that is extended by the other DAP-based implementations. As
can be seen from the table, probes can be implemented with very modest effort. Even
the native JDI implementation requires less than 600 lines of code. The DaProbe
framework itself requires a mere 270 lines of code. With the exception of DAP Java,
the required configuration code to instantiate DaProbe is below 300 lines of code
for all other languages. Appendices C, D, and E show the full implementations for
the LiveRec base class (Python), the Python DAP extension, and the Python KAA,
respectively.

7.3 Performance

In the context of live programming, it is essential to have short response times after
user interactions. Hickups in the programmer’s flow destroy the value that probes
are supposed to provide in the first place. In this section we present preliminary
performance results to appreciate the feasibility and scalability of LiveRec. Note
however, that given our assumptions detailed in Section 3, no strong conclusions can
as of yet be derived from the results. In particular, the presented figures paint a rather
mixed picture, in which many aspects require further investigation and benchmarking.
We run micro-benchmarks to assess the overhead of using LiveRec to implement

probes, to better understand the following questions:
What is the performance cost of compiling and (re)loading code into the debugger
(in s), depending on the size of the method (in LOC)?
What is the performance of executing a method using consecutive debug-steps while
constructing the stack recording (in s), depending on the number of debug-steps?

16:15

LiveRec: Prototyping Probes by Framing Debug Protocols

What is the overall performance overhead (in s) during a realistic scenario of
developing a method?

All experiments were carried out with OpenJDK 20.0.2 for Java, Python 3.11.2 for
Python and Node 18.16.1 for Javascript. The C code was compiled using GCC 13.1.1 and
GDB 13.2 was used for stack recording. The machine used to carry out the evaluations
has an AMD Ryzen 5 2500U CPU and 8Gb of RAM.

7.3.1 Performance of Compiling and Loading Code

(a) Compile code time (b) Load code time

Figure 8 Performance of compiling and loading depending code size (with DAP)

In our evaluation, we assessed the time required to compile and load code into the
debuggee for Python, C, Java and Javascript. To accomplish this, we compiled and
loaded programs ranging from 5 to 100 lines of code. The summarized results can be
found in Figure 8. Sub-figure 8a shows compilation time for Java and C relative to the
number of lines of code. The compilation process was executed from the command-line
using javac and gcc, respectively.
The compilation times seem to remain nearly constant, regardless of the number

of lines of code, with an average of 34.6 ms for Java and 8.5 ms for C. Experiments
on realistic code sizes are required however, to assess whether these numbers do not
simply account for start-up costs of the respective compilers; naturally, in the limit,
compilation time should depend on code size. Moreover, these measurements are
based on compiling and loading an isolated function. While 100 lines of code seems a
reasonable estimate for an average function or a method definition, we gloss over the
fact such functions are typically contained in (much) larger modules or files (see also
Section 3).
Sub-figure 8b depicts the loading time in the debugger for C, Java, Python and

Javascript as a function of the number of lines of code. The data suggests that loading
time remains constant irrespective of the number of lines of code. The same caveats
mentioned above apply in this scenario as well: in the limit hot swapping should
depend on the unit size of code that is loaded. One difference, however, is that hot
swapping, by definition, does not require the operating system to start a new process.

16:16

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

7.3.2 Performance of Step-wise Execution

(a) C, Python, Java, Javascript: DAP (b) Java: DAP vs JDI (log-scale)

Figure 9 Performance of stack recording per number of executed steps (in seconds)

Next, we look at the performance of probing as a function of the number of steps
taken by the debugger. The results are shown in Figure 9, showing total execution
time per number of steps during stack recording.
Figure 9a shows the results for the DAP implementations. The trend in this graph

suggests a linear relationship with the number of steps taken by the probed function,
which is to be expected, since obtaining a stack frame is a constant operation. The
difference in time between the different DAP languages may be explained by the
implementation of respective debuggers. For instance, in the case of C, the debug
server is a simple wrapper around gdb, which has very good performance. Nevertheless,
the results also seem to suggest that DAP itself adds considerable overhead: in an
absolute sense the measured times are simply too high for viable probes.
The picture is different in the case of JDI, shown in Figure 9b, plotted against Java

DAP measurements (in log-scale). There is a significant difference in performance
between the two implementations, despite the fact that the DAP server implementation
in Java also uses JDI internally. As a result, we hypothesize that indeed DAP overhead
(JSON-RPC communication, cost of process context switching, serialization, etc.) is
the culprit here. On a positive note, the JDI probes seem to at least stay well below
the 1 second threshold.

7.3.3 Overall Performance of Probes
The measurements discussed above looked at the performance of isolated phases of
going from a change in code to its execution using LiveRec. Here we investigate the
combined performance of all phases in a simple coding scenario. To do that we have
recreated the live programming scenario presented in the video by Bret Victor, and
executed it in all the probe implementations, measuring time after each code change.
The scenario is based on the development of a binary search function on an array

of characters (cf. 1). It consists of 19 steps: 10 steps where the source code is modified
and 9 steps where the input parameters are changed. The full scenario is included
in Appendix A. Step 16 of the scenario causes the method to not terminate, so we
set the maximum size of the stack recording at 80 snapshots, to avoid crashing the

16:17

LiveRec: Prototyping Probes by Framing Debug Protocols

(a) C (b) Java

(c) Python (d) Javascript

Figure 10 Execution time and stack recording size for the binary search scenario

debugger. When the recording exceeds this limit, the debugger is stopped gracefully,
and restarted. While 80 seems an arbitrarily low limit, it is easily made configurable
through a configuration parameter. Since the code in Bret Victor’s presentation is
in Javascript, it has been ported to the other languages studied in this paper (see
Appendix A).
Figure 10 shows the time and number of stack frame snapshots recorded for each

stage of the scenario in Python, C, Java and Javascript. When the initialisation is
executed for Java and C, the time taken at each stage follows the same trend as the
number of stack frame snapshots in the stack recording. At step 16, we also observe
the case of an infinite loop in the scenario.
As can be seen from the plots, with the exception of C, the performance of probing

method execution roughly floats between 1 and 3 seconds, which is above the 0.1
second limit that users of interactive systems begin to notice, so we have to conclude
that the DAP based probe implementations incur too much performance overhead for
realistic use.

7.4 Investigating DAP Overhead

The experiments above suggest that the DAP incurs a significant overhead. It is
particularly visible comparing Java DAP to direct JDI usage, despite the fact that the
Java DAP server also utilizes JDI internally. To understand the discrepancy better, we
profiled the execution of the StackTrace request in the Java DAP implementation and
measured the time spent in the DaProbe client (implemented in Python) and in the
Java DAP server separately.

16:18

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

Figure 11 Consecutive requests with pausing

Figure 12 Consecutive requests without pausing

The initial experiment stresses the Java DAP server with 200 requests interleaved
with 100ms pauses, as illustrated in Figure 11. The measurements show that the time
of one roundtrip is roughly 1ms. However, if the 100ms pauses are eliminated, even
though it still requires 1ms in Java to send the response , the message arrives back in
the client only after 40ms. This is shown in Figure 12.
These findings suggest that issue stems from the Java DAP server, or the DAP

protocol layer, and not the DaProbe client. We hypothesize two possible causes:
Communication at the Java DAP level occurs via a socket, which might not flush
quickly enough, causing delays.
The Java DAP’s integration into the Java Language Server Protocol (LSP) in a
separate thread might lead to inefficient thread scheduling, contributing to the
time lag.

Further investigations are needed to find the root cause of the performance penalty.

8 Discussion

While our approach to implement live probes on top of off-the-shelf debuggers
promises to be a viable strategy to add live probes to many mainstream languages,
some limitations and open questions remain. Below discuss these in more detail.
The abstraction boundaries provided by generic interfaces allow software developers

to decouple clients and servers—yet that often creates other problems. This state of

16:19

LiveRec: Prototyping Probes by Framing Debug Protocols

affairs can be recognized in some of the performance results of the DAP-based live
probes discussed above. Layering another level of abstraction (the DAP) between the
native debuggers and the live probe server, seems to cause performance to degrade,
possibly due to serialization overhead, inter-process communication, and potential
process context switches.
In our current approach, the programmer specifies input arguments to functions

or methods using special comments in the code. This choice is motivated by the fact
that it works in every programming language, does not require special UI affordances,
and allows example data to be committed to version control systems. Nevertheless,
while most primitive data types have a convenient, human readable literal notation,
this can become cumbersome with complex, hetergeneous, structured data, such as
arrays, objects, records, etc. Moreover, these literal notations are language specific:
how to specify a constant array in C, Java or Javascript is very different, and needs
to be parsed into actual data values from their textual representation in the special
comments.
Another challenge is most visible in the case of object-oriented languages, such

as Java, where methods typically live in classes, and can only be invoked when an
instance of a class is available. This means the programmer has to specify not just
the input parameters, but also values for fields, or arguments to constructors, so that
the live probe server can construct the object. This situation becomes worse if, e.g.,
the constructor depends on other objects as argument, which, in turn, require initial-
ization, and so on. Our current implementation constructs basic objects with default
values for all constructor arguments. This could be extended to let the programmer
gradually improve the binding of such parameters using more detailed and structured
annotations.
The above problem of objects and initialization hints at a more basic and general

question: how to obtain useful example data in the first place. In this paper we have
assumed the programmer provides the data, but there are other strategies worth
considering. For instance:

Random value generation, as is employed in random testing [1, 5], could be used
to assign values to parameters. However, in this case it is unclear if it leads to the
insight the programmer wants, and would be very confusing if the values would
change in every iteration.
If a test suite is available, an off-line tool could observe frequently occurring
values and objects passed into methods, through dynamic analysis of the test suite
execution. Such common values could also be harvested from production runs. Just
like with random generation, however, the problem is to make the assignments
stable somehow.
Finally, the search for values could be coverage guided, i.e. to use sets of values
that maximize the path coverage of a function [13].

The above strategies absolve the programmer from having to specify the example
values, but potentially at the cost of reduced quality of feedback. Further research is
needed to find an appropriate middle ground between full manual specification, and
fully automatic techniques.

16:20

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

Live probes require continual execution of methods and functions. This is fine
if the code does not perform any harmful side-effects, such as sending out email,
writing files, or launching missiles. While it is probably undecidable to statically check
whether a piece of code might eventually perform such a side effect, we leave it to
the programmer to indicate whether the live probing feature is switched on, e.g., by
providing the annotation of the input arguments.
Possible future directions to solve this problem would include sandboxed execution,

or intercepting all calls to IO libraries or the operating system. The latter technique
would also allow the live probes to not only display variable values, but also, e.g.,
console output. A more disciplined solution would be offered by languages with
built-in notions of capability-based security (such as, e.g., Newspeak [4]), so that the
live probes can be configured to execute in an environment where dangerous features
(such as IO) are not available.

While the probes that we have demonstrated support variables updated in loops by
displaying them in tabular form, we have not discussed what happens with recursion.
The probe execution repeatedly instructs the debugger to step-over function calls,
so intermediate stack frames are automatically excluded from the stack-recording,
except for when execution arrives back at the function that is currently being probed,
since it has a breakpoint on entry. The current implementation simply continues, and
adds stack frame snapshots to the recording, even though we are on a different level
of the stack. Further research is needed to explicitly deal with this case, and find an
appropriate tree-based or nested visualization.

9 Related Work

Live programming is a research area that studies how to make the programming
activity more fluid and seamless, by eliminating mental gaps and improving imme-
diate feedback [30]. The term refers to a wide array of techniques and approaches
that crosscut Human Computer Interaction (HCI) and Programming Languages (PL)
research. By providing immediate and continuous feedback, live programming envi-
ronments improve code comprehension and potentially accelerate programming and
debugging.
Tanimoto has introduced “levels of liveness” that indicate increasing amounts of

feedback, responsiveness, interactivity, and predictive feed forward (design sugges-
tions) [26]. LiveRec operates at level 3: informative, significant, and responsive. As
an early example, Tanimoto describes VIVA a language for image processing [27].
VIVA expresses visual flows of image processing algorithms and communicates the
effects on images in a human-friendly manner.
McDirmid was the first to study probes as part of a complete language design [15].

It is one of the live programming features that has seen the most adoption [22].
McDirmid describes a design to probes focused on debugging and problem diagnosis.
Similar to LiveRec, his approach traces program executions that link stack frame
states to source locations. The author demonstrates how this technique can be applied
in a dedicated live programming environment for the YinYang language. In this

16:21

LiveRec: Prototyping Probes by Framing Debug Protocols

case, the language design follows from the desire to have a better live programming
experience. In the case of LiveRec, however, we assume the language design is
fixed, and attempt to find a solution strategy that is a widely applicable to as many
programming languages as possible.
Another example of probes was presented by Van der Storm and Hermans, as “Live

Literals” [25]. In this case the resulting value histories of the probes are displayed
inline in the source code itself as actual source code. The implementation is based on
run-time instrumentation and origin tracking to update the literal source text in the
editor.
Example-centric programming aims to add IDE support for examples to support

the programming process [7]. Edwards demonstrates the “EG tool” an Eclipse plugin
for example-centric programming in Java. Based on BeanShell, a custom JVM, EG
tool provides live feedback about evaluated examples. LiveRec can be seen as a form
of example-based programming, in the sense that the example inputs are guiding the
probed method execution.
Niephaus et al. combine GraalVM and Truffle with the Language Server Protocol

(LSP) to support example based programming for multiple languages [18]. Truffle is
an interpreter framework designed for efficient language execution on the GraalVM
Java virtual machine [32]. As far as we know, this is the only work offering a generic,
reusable engineering approach for probes; nevertheless, it requires that the program-
ming language runs on the GraalVM. LiveRec is more generic: we have demonstrated
prototypes in languages that do not share any run-time infrastructure at all.
Omniscient debugging [2, 14, 19, 21], also known as back-in-time debugging, allows

programmers travel back in time during debugging. Bousse et al. propose a reusable
omniscient debugger for executable Domain-Specific Lanugages (DSLs) [2]. This is
similar in aims to our work in that the omniscient debugging framework is language
parametric. While not the explicit goal of LiveRec, the stack exploration tool demon-
strated in Section 7 provides a limited, scoped form of time-travel, namely within the
scope of a single method.
Amuchmore ambitious approach to improving the construction of live programming

systems with immediate feedback, is the Cascade meta-language [23]. The hypothesis
of this work is that if one defines their language using Cascade, one obtains live run-
time updates “for free”. In particular, this approach solves the problem of migrating
run-time state (e.g., the heap) after a program change [8, 29]. The key concept is that
Cascade sees every change, both to the source code, and those triggered by users in
the running application, as an edit transaction, thereby effectively fusing program
change and user change. In the case of LiveRec, we assume the method execution is
relatively stateless: if a method or function should depend on some form of ambient
state (fields, global variables, etc.), then this state will be reset to its default values
after hot swapping the code.
Executing methods in isolation requires input values. This topic has received at-

tention in work on randomized testing (e.g., [1, 5, 6]) and symbolic and/or concolic
execution (e.g., [13]). In both domains the challenge is twofold: input values are
needed and functions have to be executed in isolation. Further research in these areas
could help lift some of the assumptions that we made in Section 3.

16:22

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

10 Conclusion

Live programming technology promises to improve the programmer experience by
providing immediate dynamic feedback about the execution of a program. Probes, as
initially demonstrated by Bret Victor in his talk “Inventing on Principle”, allow the
programmer to observe the dynamic evolution of values of variables of a single method
or function, for instance in the form of a tabular display, inline hints, or tool-tips. This
display is live: after every code change or change in the example values, the display is
updated immediately.
Probes have been researched before, but how to implement them for a wide range of

languages has not received much attention. Either the implementations are bespoke,
dependent on specific language designs or situations. Or, the implementation strategy
depends on a specific run-time system, such as the GraalVM. In this paper we present
a language-agnostic approach to probes. We show that by reusing facilities offered by
debug protocols, we can implement live probes at low implementation cost.
We present LiveRec, an approach to record the stack frame evolution of a method’s

execution in a stack recording, which can be displayed in the user’s IDE and linked to
the statements of the code where the variable values were active. We demonstrate
how this can be realized using the native Java Debug Interface (JDI), and the generic
Debug Adapter Protocol (DAP). In the latter case we have implemented probes for C,
Java, Python, and Javascript, with very modest language specific configuration code.
An initial performance evaluation shows that native JDI probes are fast enough for
interactive use; in the case of the DAP implementations, the performance is insufficient
in most cases. Further research is needed to understand the precise reasons, and to
find strategies to optimize.

LiveRec can be seen as a first attempt to adding probes to the standard arsenal
of IDE features for mainstream languages. We hope it will provide a stepping stone
to make probes as mainstream as C, Java, Python, and Javascript. Further research
directions include: exploring probes for end-user programming environments and
DSLs, further optimizing the DAP-based probes, and investigating how a first-class
probe API can be integrated into the DAP or LSP.

Acknowledgements We thank the anonymous reviewers for helpful comments in
improving this paper, especially reviewer 3 was of great help.

A Binary Search Scenario

The full binary search programming scenario as derived from Bret Victor’s presenta-
tion [31] (see also Figure 1; full source code snippets after stage 19 can be found in
Appendix B):

1. The function is defined and the parameters are defined to be an array of charac-
ters([’a’,’b’,’c’,’d’,’e’,f’]) and a target character(’d’).

2. A new variable low is defined.

16:23

LiveRec: Prototyping Probes by Framing Debug Protocols

3. A new variable high is defined.

4. A new variable mid is defined.
5. The variable mid is changed to be a integer.
6. A new variable value is defined.
7. A if and else snippets is added.
8. The target is changed to ’b’ .
9. The target is changed to ’c’ .

10. The target is changed to ’d’ and the code from the mid is refactored to be in a
while(true) loop.

11. The target is changed to ’a’ .
12. The target is changed to ’b’ .
13. The target is changed to ’c’ .
14. The target is changed to ’d’ .
15. The target is changed to ’e’ .
16. The target is changed to ’f’ .
17. The target is changed to ’g’ .

18. The condition of the while loop is changed to low <= high .
19. A return -1 is added at the end of the function.

B Source Code of the Binary Search Function in Java, C, Python, and
Javascript

B.1 Java

1 public class BinarySearch {
2 public static int binarySearch(char[] array, char key) {
3 int low = 0;
4 int high = array.length - 1;
5
6 while(low <= high){
7 int mid = (low + high) / 2;
8 char value = array[mid];
9

10 if (value < key) {
11 low = mid + 1;
12 } else if (value > key) {
13 high = mid - 1;
14 } else {
15 return mid;
16 }
17 }
18 return -1;
19 }
20 }

16:24

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

B.2 C

1 int binary_search(char arr[], int length, char target) {
2 int left = 0;
3 int right = length - 1;
4
5 while(left <= right){
6 int mid = (left + right) / 2;
7 char value = arr[mid];
8
9 if(value < target) {

10 left = mid + 1;
11 } else if(value > target) {
12 right = mid - 1;
13 } else {
14 return mid;
15 }
16 }
17 return -1;
18 }

B.3 Python

1 def binary_search(arr, target):
2 left = 0
3 right = len(arr) - 1
4
5 while left <= right:
6 mid = (left + right) // 2
7 value = arr[mid]
8
9 if value < target:

10 left = mid + 1
11 elif value > target:
12 right = mid - 1
13 else:
14 return mid
15
16 return -1

B.4 Javascript

1 function binary_search(arr, target){
2 var low = 0;
3 var high = arr.length - 1;
4 while (low <= high) {
5 var mid = Math.floor((low + high) / 2);
6 var value = arr[mid];
7

16:25

LiveRec: Prototyping Probes by Framing Debug Protocols

8 if (value < target) {
9 low = mid + 1;

10 }
11 else if (value > target) {
12 high = mid - 1;
13 }
14 else {
15 return mid;
16 }
17 }
18 return -1;
19 }

C Abstract Base Class for Live Agents

import subprocess
import os
from abc import ABC, abstractmethod
from typing import Any
from debugpy.common.messaging import JsonIOStream

from livefromdap.utils.StackRecording import StackRecording

class DebuggeeTerminatedError(Exception):
def __init__(self):

super().__init__("Debuggee terminated")

class BaseLiveAgentInterface(ABC):
omited for brevity

class BaseLiveAgent(BaseLiveAgentInterface):
seq : int = 0
debug : bool = False

io : JsonIOStream

def __init__(self, **kwargs : Any):
self.debug = kwargs.get("debug", False)
self.seq = 0

def __del__(self):
try:

self.stop_server()
except:

pass

def new_seq(self):
self.seq += 1
return self.seq

def _handleRunInTerminal(self, output : dict):
if output["type"] == "request" and output["command"] == "runInTerminal":

if not exists, create the tmp folder
if not os.path.exists("tmp"):

os.makedirs("tmp")

debuggee = subprocess.Popen(
output["arguments"]["args"],

16:26

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

stdout=open("tmp/stdout.txt", "w"),
stderr=open("tmp/stderr.txt", "w")

)
process_id = debuggee.pid
self.debugee = debuggee
send the response
self.seq+=1
response = {

"seq": int(output["seq"]) + 1,
"type": "response",
"request_seq": output["seq"],
"success": True,
"command": "runInTerminal",
"body": {

"shellProcessId": process_id
}

}
self.io.write_json(response)
return True

return False

def set_breakpoint(self, path : str, lines : list):
breakpoint_request = {

"seq": self.new_seq(),
"type": "request",
"command": "setBreakpoints",
"arguments": {

"source": {
"name": path,
"path": path

},
"lines": lines,
"breakpoints": [

{
"line": line

} for line in lines
],
"sourceModified": False

}
}
self.io.write_json(breakpoint_request)

def set_function_breakpoint(self, names : list):
breakpoint_request = {

"seq": self.new_seq(),
"type": "request",
"command": "setFunctionBreakpoints",
"arguments": {

"breakpoints": [
{

"name": name
} for name in names

]
}

}
self.io.write_json(breakpoint_request)

def configuration_done(self):
complete_request = {

"seq": self.new_seq(),
"type": "request",
"command": "configurationDone"

}
self.io.write_json(complete_request)

def get_stackframes(self, thread_id : int = 1, levels : int = 100) -> list:
stackframe_request = {

16:27

LiveRec: Prototyping Probes by Framing Debug Protocols

"seq": self.new_seq(),
"type": "request",
"command": "stackTrace",
"arguments": {

"threadId": thread_id,
"startFrame": 0,
"levels": levels

}
}
self.io.write_json(stackframe_request)
output = self.wait("response", command="stackTrace")
return output["body"]["stackFrames"]

def next_breakpoint(self, thread_id : int = 1):
continue_request = {

"seq": self.new_seq(),
"type": "request",
"command": "continue",
"arguments": {

"threadId": thread_id
}

}
self.io.write_json(continue_request)

def step(self, thread_id : int = 1):
step_request = {

"seq": self.new_seq(),
"type": "request",
"command": "next",
"arguments": {

"threadId": thread_id
}

}
self.io.write_json(step_request)

def step_out(self, thread_id : int = 1):
step_request = {

"seq": self.new_seq(),
"type": "request",
"command": "stepOut",
"arguments": {

"threadId": thread_id
}

}
self.io.write_json(step_request)

def get_scopes(self, frame_id : int) -> list:
scopes_request = {

"seq": self.new_seq(),
"type": "request",
"command": "scopes",
"arguments": {

"frameId": frame_id
}

}
self.io.write_json(scopes_request)
output = self.wait("response", command="scopes")
return output["body"]["scopes"]

def get_variables(self, scope_id: int) -> list:
variables_request = {

"seq": self.new_seq(),
"type": "request",
"command": "variables",
"arguments": {

"variablesReference": scope_id
}

16:28

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

}
self.io.write_json(variables_request)
output = self.wait("response", command="variables")
return output["body"]["variables"]

def evaluate(self, expression : str, frame_id : int, context : str = "repl") -> dict:
evaluate_request = {

"seq": self.new_seq(),
"type": "request",
"command": "evaluate",
"arguments": {

"expression": expression,
"frameId": frame_id,
"context": context

}
}
self.io.write_json(evaluate_request)
return self.wait("response", command="evaluate")

def wait(self, type: str, event : str = "", command : str = "") -> dict:
while True:

output : dict = self.io.read_json() # type: ignore
if self.debug: print(output, flush=True)
if output["type"] == "request" and output["command"] == "runInTerminal":

if self._handleRunInTerminal(output):
continue

if output["type"] == type:
if event == "" or output["event"] == event:

if command == "" or output["command"] == command:
return output

if output["type"] == "event" and output["event"] == "terminated":
raise DebuggeeTerminatedError()

D Full Implementation of the Python Probe Server

import os
import subprocess
import sys
import debugpy
from debugpy.common.messaging import JsonIOStream
from livefromdap.utils.StackRecording import Stackframe, StackRecording

from .BaseLiveAgent import BaseLiveAgent

class PythonLiveAgent(BaseLiveAgent):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.runner_path = kwargs.get("runner_path", os.path.join(os.path.dirname(__file__), "..", "runner", "py_runner.py

,→ "))
self.debugpy_adapter_path = kwargs.get("debugpy_adapter_path", os.path.join(os.path.dirname(debugpy.

,→ __file__), "adapter"))

def start_server(self):
self.server = subprocess.Popen(

["python", self.debugpy_adapter_path],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
restore_signals=False,
start_new_session=True,

)

16:29

LiveRec: Prototyping Probes by Framing Debug Protocols

self.io = JsonIOStream.from_process(self.server)

def restart_server(self):
self.server.kill()
self.start_server()

def stop_server(self):
self.server.kill()
if getattr(self, "debugee", None) is not None:

self.debugee.kill()

def initialize(self):
init_request = {

"seq": self.new_seq(),
"type": "request",
"command": "initialize",
"arguments": {

"clientID": "vscode",
"clientName": "Visual Studio Code",
"adapterID": "python",
"pathFormat": "path",
"linesStartAt1": True,
"columnsStartAt1": True,
"supportsVariableType": True,
"supportsVariablePaging": True,
"supportsRunInTerminalRequest": True,
"locale": "en",
"supportsProgressReporting": True,
"supportsInvalidatedEvent": True,
"supportsMemoryReferences": True,
"supportsArgsCanBeInterpretedByShell": True,
"supportsMemoryEvent": True,
"supportsStartDebuggingRequest": True

}
}
launch_request = {

"seq": self.new_seq(),
"type": "request",
"command": "launch",
"arguments": {

"name": f"Debug Python agent live",
"type": "python",
"request": "launch",
"program": self.runner_path,
"console": "internalConsole",
get the current python interpreter
"python": sys.executable,
"debugAdapterPython": sys.executable,
"debugLauncherPython": sys.executable,
"clientOS": "unix",
"cwd": os.getcwd(),
"envFile": os.path.join(os.getcwd(), ".env"),
"env": {

"PYTHONIOENCODING": "UTF-8",
"PYTHONUNBUFFERED": "1"

},
"stopOnEntry": False,
"showReturnValue": True,
"internalConsoleOptions": "neverOpen",
"debugOptions": [

"ShowReturnValue"
],
"justMyCode": False,
"workspaceFolder": os.getcwd(),

}
}
self.io.write_json(init_request)

16:30

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

self.io.write_json(launch_request)
self.wait("event", "initialized")
self.setup_runner_breakpoint()
self.wait("event", "stopped")
return 5

def setup_runner_breakpoint(self):
self.set_breakpoint(self.runner_path, [16])
self.configuration_done()

def load_code(self, path: str):
stacktrace = self.get_stackframes()
frameId = stacktrace[0]["id"]
self.evaluate(f"set_import('{os.path.abspath(path)}')", frameId)
self.next_breakpoint()
self.wait("event", "stopped")

def execute(self, method, args, max_steps=50):
self.set_function_breakpoint([method])
stacktrace = self.get_stackframes()
frameId = stacktrace[0]["id"]
self.evaluate(f"set_method('{method}',[{','.join(args)}])", frameId)
We need to run the debug agent loop until we are on a breakpoint in the target method
stackrecording = StackRecording()
while True:

stacktrace = self.get_stackframes()
if stacktrace[0]["name"] == method:

break
self.next_breakpoint()
self.wait("event", "stopped")

We are now in the function, we need to get all information, step, and check if we are still in the function
scope = None
initial_height = None
i = 0
while True:

stacktrace = self.get_stackframes()
if initial_height is None:

initial_height = len(stacktrace)
height = 0

else:
height = len(stacktrace) - initial_height

if stacktrace[0]["name"] != method:
break

We need to get local variables
if not scope:

scope = self.get_scopes(stacktrace[0]["id"])[0]
variables = self.get_variables(scope["variablesReference"])
stackframe = Stackframe(stacktrace[0]["line"], stacktrace[0]["column"], height, variables)
stackrecording.add_stackframe(stackframe)
i += 1
if i > max_steps:

we need to pop the current frame
self.restart_server()
self.initialize()
return "Interrupted", stackrecording

self.step()
We are now out of the function, we need to get the return value
scope = self.get_scopes(stacktrace[0]["id"])[0]
variables = self.get_variables(scope["variablesReference"])
return_value = None
for variable in variables:

if variable["name"] == f'(return) {method}':
return_value = variable["value"]

for i in range(2): # Needed to reset the debugger agent loop
self.next_breakpoint()
self.wait("event", "stopped")

return return_value, stackrecording

16:31

LiveRec: Prototyping Probes by Framing Debug Protocols

E Python Keep-Alive Agent

method = None
method_name = None
method_args = None
import_file = None

def set_import(import_fromp):
global import_file
import_file = import_fromp

def set_method(import_methodp, method_argsp):
global method_name, method_args
method_name = import_methodp
method_args = method_argsp

if "__main__" in __name__:
while True:

if import_file is not None:
with open(import_file, "rb") as source_file:

code = compile(source_file.read(), import_file, "exec")
exec(code)
import_file = None

if method_name is not None and method_args is not None:
try:

method = eval(method_name)
res = method(*method_args)

except Exception as e:
pass

method_args = None
method_name = None

References

[1] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. “Random Test-
ing: Theoretical Results and Practical Implications”. In: IEEE Transactions on
Software Engineering 38.2 (2012). doi: 10.1109/TSE.2011.121.

[2] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, and Benoit
Baudry. “Omniscient Debugging for Executable DSLs”. In: Journal of Systems
and Software 137 (2018). doi: 10.1016/j.jss.2017.11.025.

[3] Gilad Bracha. “Making Methods Live”. 2013. url: https://gbracha.blogspot.
com/2013/04/making-methods-live.html (visited on 2024-02-02).

[4] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox,
and Eliot Miranda. “Modules as Objects in Newspeak”. In: ECOOP 2010 - Object-
Oriented Programming, 24th European Conference. Volume 6183. LNCS. Springer,
2010. doi: 10.1007/978-3-642-14107-2_20.

[5] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. “ARTOO:
Adaptive Random Testing for Object-Oriented Software”. In: Proceedings of
the 30th International Conference on Software Engineering 2008 (ICSE’08). May
2008. doi: 10.1145/1368088.1368099.

16:32

https://doi.org/10.1109/TSE.2011.121
https://doi.org/10.1016/j.jss.2017.11.025
https://gbracha.blogspot.com/2013/04/making-methods-live.html
https://gbracha.blogspot.com/2013/04/making-methods-live.html
https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1145/1368088.1368099

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

[6] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: ACM SIGPLAN Notices 35.9 (Sept. 2000). doi:
10.1145/357766.351266.

[7] Jonathan Edwards. “Example Centric Programming”. In: ACM SIGPLAN Notices
39.12 (2004). doi: 10.1145/1052883.1052894.

[8] Jonathan Edwards, Tomas Petricek, and Tijs van der Storm. “Live & Local
Schema Change: Challenge Problems”. In: CoRR abs/2309.11406 (2023). doi:
10.48550/arXiv.2309.11406. arXiv: 2309.11406.

[9] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, 1984. isbn: 978-0-201-11372-3.

[10] Christopher Michael Hancock. “Real-time Programming and the Big Ideas of
Computational Literacy”. PhD thesis. Massachusetts Institute of Technology,
2003. HDL: 1721.1/61549.

[11] Marijn Haverbeke. “CodeMirror 5”. 2024. url: https :// codemirror . net/ 5/
(visited on 2024-01-07).

[12] Jevgeni Kabanov. “JRebel Tool Demo”. In: Proceedings of the Fifth Workshop on
Bytecode Semantics, Verification, Analysis and Transformation, Bytecode@ETAPS
2010. Volume 264. Electronic Notes in Theoretical Computer Science 4. Elsevier,
2010. doi: 10.1016/j.entcs.2011.02.005.

[13] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. “Generalized Sym-
bolic Execution for Model Checking and Testing”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Springer Berlin Heidelberg, 2003. doi:
10.1007/3-540-36577-X_40.

[14] Bil Lewis. “Debugging Backwards in Time”. In: Proceedings of the Fifth Interna-
tional Workshop on Automated Debugging (AADEBUG 2003), September 2003,
Ghent. Oct. 2003. doi: 10.48550/arXiv.cs/0310016. arXiv: cs/0310016v1.

[15] Sean McDirmid. “Usable Live Programming”. In: ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13,
Indianapolis, IN, USA, October 26–31, 2013. ACM, 2013. doi: 10.1145/2509578.
2509585.

[16] Microsoft. “Debug Adapter Protocol”. 2021. url: https://microsoft.github.io/
debug-adapter-protocol/ (visited on 2024-01-07).

[17] Microsoft. “VS Code”. 2024. url: https://code.visualstudio.com/ (visited on
2024-01-07).

[18] Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian König, Kolya
Opahle, Nico Scordialo, and Robert Hirschfeld. “Example-Based Live Program-
ming for Everyone: Building Language-Agnostic Tools for Live Programming
with LSP and GraalVM”. In: Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2020. ACM, 2020. doi: 10.1145/3426428.3426919.

16:33

https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/1052883.1052894
https://doi.org/10.48550/arXiv.2309.11406
https://arxiv.org/abs/2309.11406
http://hdl.handle.net/1721.1/61549
https://codemirror.net/5/
https://doi.org/10.1016/j.entcs.2011.02.005
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.48550/arXiv.cs/0310016
https://arxiv.org/abs/cs/0310016v1
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://code.visualstudio.com/
https://doi.org/10.1145/3426428.3426919

LiveRec: Prototyping Probes by Framing Debug Protocols

[19] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. “Engineering Record and Replay for Deployability”. In: 2017
USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA,
July 12–14, 2017. System: https://rr-project.org/. USENIX Association, 2017,
pages 377–389. isbn: 978-1-931971-38-6.

[20] Oracle. “Java Debug Interface”. 2023. url: https://docs.oracle.com/javase/8/
docs/jdk/api/jpda/jdi/index.html (visited on 2024-02-13).

[21] Guillaume Pothier, Éric Tanter, and José M. Piquer. “Scalable Omniscient
Debugging”. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2007. ACM, 2007. doi: 10.1145/1297027.1297067.

[22] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
“Exploratory and Live, Programming and Coding. A Literature Study Comparing
Perspectives on Liveness”. In: The Art, Science, and Engineering of Programming
3.1 (2019). doi: 10 .22152/programming- journal .org/2019/3/1. arXiv: 1807.
08578v1 [cs.PL].

[23] Riemer van Rozen. “Cascade: A Meta-Language for Change, Cause and Effect”.
In: Proceedings of the 16th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2023, Cascais, Portugal, October 23–24, 2023. ACM,
2023. doi: 10.1145/3623476.3623515.

[24] Erik Sandewall. “Programming in an Interactive Environment: the LISP Experi-
ence”. In: ACM Computing Surveys 10.1 (Mar. 1978). doi: 10.1145/356715.356719.

[25] Tijs van der Storm and Felienne Hermans. “Live Literals”. In: Workshop on Live
Programming, LIVE’16. 2016. url: https://www.cwi.nl/~storm/livelit/livelit.html
(visited on 2024-02-02).

[26] Steven L. Tanimoto. “A Perspective on the Evolution of Live Programming”. In:
Workshop on Live Programming, LIVE 2013. IEEE Computer Society, 2013. doi:
10.1109/LIVE.2013.6617346.

[27] Steven L. Tanimoto. “VIVA: A Visual Language for Image Processing”. In:
Journal of Visual Languages & Computing 1.2 (June 1990). doi: 10.1016/S1045-
926X(05)80012-6.

[28] Warren Teitelman and Larry Masinter. “The Interlisp Programming Environ-
ment”. In: IEEE Computer 14.4 (1981). doi: 10.1109/C-M.1981.220410.

[29] Ulyana Tikhonova, Jouke Stoel, Tijs van der Storm, and Thomas Degueule.
“Constraint-based run-time state migration for live modeling”. In: Proceedings
of the 11th ACM SIGPLAN International Conference on Software Language Engi-
neering, SLE 2018, Boston, MA, USA, November 05–06, 2018. ACM, 2018. doi:
10.1145/3276604.3276611.

[30] Unknown. “A History of Live Programming”. 2013. url: https://liveprogram
ming.github.io/liveblog/2013/01/a-history-of-live-programming/ (visited on
2024-02-02).

16:34

https://rr-project.org/
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/index.html
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/index.html
https://doi.org/10.1145/1297027.1297067
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://arxiv.org/abs/1807.08578v1
https://arxiv.org/abs/1807.08578v1
https://doi.org/10.1145/3623476.3623515
https://doi.org/10.1145/356715.356719
https://www.cwi.nl/~storm/livelit/livelit.html
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1109/C-M.1981.220410
https://doi.org/10.1145/3276604.3276611
https://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
https://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/

Jean-Baptiste Döderlein, Riemer van Rozen, and Tijs van der Storm

[31] Bret Victor. “Inventing on Principle”. 2012. url: https://www.youtube.com/
watch?v=PUv66718DII (visited on 2024-02-13).

[32] ThomasWürthinger. “Graal and Truffle:Modularity and Separation of Concerns
as Cornerstones for Building a Multipurpose Runtime”. In: 13th International
Conference on Modularity, MODULARITY ’14. ACM, 2014. doi: 10.1145/2584469.
2584663.

[33] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. “Unrestricted and
safe dynamic code evolution for Java”. In: Science of Computer Programming
78.5 (2013). doi: 10.1016/j.scico.2011.06.005.

16:35

https://www.youtube.com/watch?v=PUv66718DII
https://www.youtube.com/watch?v=PUv66718DII
https://doi.org/10.1145/2584469.2584663
https://doi.org/10.1145/2584469.2584663
https://doi.org/10.1016/j.scico.2011.06.005

LiveRec: Prototyping Probes by Framing Debug Protocols

About the authors

Jean-Baptiste Döderlein is a Master student at ENS Rennes. He
performed this research during an internship at CWI, Amsterdam.
Contact him at jean-baptiste.doderlein@ens-rennes.fr.

https://orcid.org/0000-0002-9741-8571

Riemer van Rozen is a researcher at CWI who is committed to
making programming “more fun, visual and for everyone”. He con-
ducts applied research on languages and tools that help create
better code more quickly. His research focuses on generic solutions
(meta-languages) for domain-specific languages and live program-
ming environments in general, and automated game design in
particular. Contact him at rozen@cwi.nl.

https://orcid.org/0000-0002-3834-682X

Tijs van der Storm is senior researcher at CWI where he heads
the Software Analysis & Transformation (SWAT) group, and full
professor in software engineering at the University of Groningen,
Groningen. His research is centered around the questions: how
to make better programming languages? and how to better make
programming languages? He is co-designer of the Rascal meta
programming system and language workbench. Contact him at
storm@cwi.nl.

https://orcid.org/0000-0001-8853-7934

16:36

mailto:jean-baptiste.doderlein@ens-rennes.fr
https://orcid.org/0000-0002-9741-8571
mailto:rozen@cwi.nl
https://orcid.org/0000-0002-3834-682X
https://www.rascal-mpl.org
mailto:storm@cwi.nl
https://orcid.org/0000-0001-8853-7934

	1 Introduction
	2 Background and Overview
	3 Scope and Assumptions
	4 Framing Debug Protocols
	4.1 High-Level Architecture
	4.2 Stack Recording

	5 Java Probes with JDI
	6 DaProbe: Implementing Probes through the DAP
	7 Evaluation
	7.1 Demo: A Minimal Live Programming Environment
	7.1.1 Victor Style
	7.1.2 Exploring Stack Recordings

	7.2 Implementation Effort
	7.3 Performance
	7.3.1 Performance of Compiling and Loading Code
	7.3.2 Performance of Step-wise Execution
	7.3.3 Overall Performance of Probes

	7.4 Investigating DAP Overhead

	8 Discussion
	9 Related Work
	10 Conclusion
	A Binary Search Scenario
	B Source Code of the Binary Search Function in Java, C, Python, and Javascript
	B.1 Java
	B.2 C
	B.3 Python
	B.4 Javascript

	C Abstract Base Class for Live Agents
	D Full Implementation of the Python Probe Server
	E Python Keep-Alive Agent
	References
	About the authors

