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We congratulate Professors Eckardt and Moradi on their fine paper in which they survey
the state of the art of summary statistics for marked point processes. The authors focus
on non-stationary point processes and distinguish between discrete, real-valued and object-
valued marks. The case of point processes in an Euclidean space with discrete marks is by
far the most well studied. Here, centre stage is taken by the cross K , H and J statistics.
After a brief detour into the frequency domain, the authors consider point processes on
linear networks. The concept of intensity-reweighted moment pseudo-stationarity (IRMPS)
is introduced and used to define counterparts of the cross statistics just mentioned.

From a measure-theoretic point of view, point processes are counting measures. It is
therefore interesting to note that the cross K , H and J statistics have been generalised to
multivariate random measures as well (Van Lieshout 2018). The basic ideas are to replace
λ(m) in (3) by pm , the m-point coverage function, and to let the role of the generating
functional be taken over by the Laplace transform. For example,

H inhom
i j (r) = 1 − E
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under coverage-reweighted moment stationarity assumptions that are satisfied, for instance,
by the lognormal random field models of Ballani et al. (2012) for which

�i (B) =
∫
B

�i (x)1{x ∈ Xi }dx .
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Here, �i = eZi is lognormally distributed, sufficiently smooth and such that the covariance
functions of Z = (Zi )i are translation invariant, and (Xi )i is a non-trivial multivariate
stationary random closed set. Note that H inhom

i j is related to the hitting intensity proposed by
Stoyan andOhser (1982) for the stationary case. In practice, such extensions are useful when
complete mapping of events is either too costly or too impractical but smoothed quadrat
counts are available. For an application to the quantification of biodiversity in a tropical rain
forest, we refer to (De Jongh and Van Lieshout 2022; Van Lieshout 2018).

Point processes with real-valued marks are less well studied. For stationary point pro-
cesses, a few summary statistics are available such as Stoyan’s mark correlation function
kmm or mark variogram. The construction of inhomogeneous versions appears to be an open
problem and is not discussed at length in the paper. Do the authors believe that, say, kmm is
inherently tied to stationarity? Or do they see a way forward?

A second question concerns models. In the plane, a wide range of models is available
that are either stationary or intensity-reweighted moment stationary, and in many cases the
summary statistics can be calculated explicitly. For point processes on linear networks,
the situation seems to be somewhat different. Can the authors comment on this point. In
particular, are there flexible classes of models known that satisfy the pseudo-stationarity or
IRMPS assumptions? For which models can (20)–(31) be calculated?

The paper focuses on methodology. In practice, one would need to estimate the summary
statistics. For example, consider H inhom

i j for i �= j . Then,
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(1)

is a ratio-unbiased estimator based on the Hamilton principle (Stoyan and Stoyan 2000).
Since λi and λ j , the intensity functions of Xi and X j , are unknown, they must be esti-
mated. By far the most widely used technique to do so is kernel estimation (Diggle 1985).
Specifically, for x ∈ W , the observation window, set

λ̂i (x; h, Xi ) = 1

hd
∑

xi∈Xi∩W
w(x, xi , h) κ

(
x − xi

h

)
, (2)

where w(x, xi , h) is some edge correction factor and κ a kernel, for example, the Gaussian
one. The crucial parameter is the bandwidth h > 0 that rules the amount of smoothing
applied.Leave-one-out cross-validation (Loader 1999) assumes that Xi is an inhomogeneous
Poisson process. Its leave-one-out cross-validation log likelihood reads

L(h; Xi ) =
∑

xi∈Xi∩W
log λ̂i (xi ; h, Xi \ {xi }) −

∫
W

λ̂i (u; h, Xi ) du, (3)

which is then maximised over h to select the bandwidth. An alternative is the method
of Cronie and Van Lieshout (2018), which minimises the difference F(h; Xi ) =
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|T (h; Xi ) − |W || between the volume of W and the test function

T (h; Xi ) =
∑

xi∈Xi∩W

1

λ̂i (xi ; h, Xi )
, (4)

when Xi ∩ W is non-empty and |W | otherwise. In both cases, conditions must be imposed
to ensure that the function λ̂i is strictly positive.

When the density of points is highly spatially varying, using a fixed bandwidth throughout
the window may lead to oversmoothing in dense regions and spurious hot spots in sparser
ones. A solution is to apply adaptive kernel estimators (Abramson 1982; Davies et al. 2018;
Van Lieshout 2021) defined as

λ̂A
i (x; h, Xi ) =

∑
xi∈Xi∩W

w(x, xi , h)

c(xi )d hd
κ

(
x − xi
h c(xi )

)
(5)

where

c(y) =
(

λi (y)∏
xi∈Xi∩W λi (xi )1/N (Xi∩W )

)−1/2

. (6)

Thus, h c(y) is larger when λi (y) is smaller. A two-step approach to bandwidth selection
would run as follows. In the first step, given a realisation of Xi , (3) or (4) is used to select
a global bandwidth hg . This hg is then used to calculate an edge-corrected pilot estimate
λ̂p, which in turn is plugged into (6) to obtain ĉ(y). In the second step, (3) or (4) is applied
to λ̂A

i and optimised over h to find the best local bandwidth ha with which to calculate
the final estimate (5). From a computational point of view, (3) is more costly than (4). The
practical efficacy of both techniques for a range of point process models is investigated by
Van Lieshout (2023).
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