
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Dynamic Group Time-based One-time Passwords
Xuelian Cao, Zheng Yang, Jianting Ning, Chenglu Jin, Rongxing Lu, Fellow, IEEE, Zhiming Liu and Jianying

Zhou

Abstract—Group time-based one-time passwords (GTOTP)
is a novel lightweight cryptographic primitive for achieving
anonymous client authentication, which enables the efficient
generation of time-based one-time passwords on behalf of a
group without revealing any information about the actual client’s
identity beyond their group membership. The security properties
of GTOTP regarding anonymity and traceability have been
formulated in a static group management setting (where all group
members should be determined during the group initialization
phase), yet, a formal treatment for real-world dynamic groups
(i.e., group members may join and leave at any time) is still an
open question. It is non-trivial to construct an efficient GTOTP
scheme that can provide a lightweight password generation
procedure run by group members and support dynamic group
management, allowing group members to join and leave without
affecting other members’ states (non-disruptively). To address the
above challenge, we first define the notion and the security model
of dynamic group time-based one-time passwords (DGTOTP) in
this work. We then present an efficient DGTOTP construction
that can generically transform an asymmetric time-based one-
time passwords scheme into a DGTOTP scheme utilizing a
chameleon hash function family and a Merkle tree scheme.
Within our construction, we particularly tailor an outsourcing
solution realizing an issue-first-and-join-later (IFJL) strategy,
enabling smooth joining and revocation without disrupting other
group members. Moreover, our scheme minimizes symmetric
cryptographic operations and maintains constant storage for
group members, compared to the linear storage cost that grows
rapidly with respect to the lifetime of the GTOTP instance in the
previous static GTOTP scheme. Our DGTOTP scheme satisfies
stronger security guarantees in a dynamic group management
setting without random oracles. Our experimental results confirm
the efficiency of our DGTOTP scheme.

Index Terms—Group Time-based One-Time Passwords, Dy-
namic Group Management, Anonymity, Traceability, Authenti-
cation, Security Model.

X. Cao, Z. Yang, and Z. Liu are with Southwest University,
Chongqing 400715, China (e-mails: xueliancao7@email.swu.edu.cn,
{youngzheng,Zhimingliu88}@swu.edu.cn).

J. Ning is with the Key Laboratory of Analytical Mathematics and
Applications (Ministry of Education), College of Computer and Cyber
Security, Fujian Normal University, Fuzhou 350117, China, and also with the
Faculty of Data Science, City University of Macau, Macau 999078, China
(e-mail: jtning88@gmail.com).

C. Jin is with Centrum Wiskunde & Informatica, 1098 XG Amsterdam,
Netherlands (e-mail: chenglu.jin@cwi.nl).

R. Lu is with University of New Brunswick, Fredericton, NB E3B 5A3,
Canada (e-mail: rlu1@unb.ca).

J. Zhou is with the iTrust, Singapore University of Technology and Design,
8 Somapah Rd, Singapore, 487372 (e-mail: jianying zhou@sutd.edu.sg).

Xuelian Cao and Zheng Yang share the first authorship. Zheng Yang and
Jianting Ning are the corresponding authors.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
main notations, a DGTOTP variance with cache, proofs of Theo-
rem 1 and Theorem 2, and security enhancement for ACACCE. Contact
youngzheng@swu.edu.cn for further questions about this work.

This work is supported by the Natural Science Foundation of China (Grant
No. 62372386, 62032019, 62032005, and 61972094) and the Natural Science
Foundation of Chongqing (Grant No. CSTB2022NSCQ-MSX0437).

I. INTRODUCTION

Traditional user authentication relies on passwords, which
are prone to hacking [1], [2] and are not suitable for authenti-
cating a client’s device. To enhance the security of password-
based authentication, Lamport [3] (hereinafter referred to
as the Lamport’81 scheme) first proposed the cryptographic
notion of one-time passwords (OTP), forcing users to fre-
quently update their passwords for better security. To resist
password reusing, traditional OTP methods incorporate time
constraints to yield an important variant named time-based
one-time passwords (TOTP), which is widely used in modern-
day multi-factor authentication [4], [5]. In a TOTP scheme,
each password can only be used within a pre-determined time
slot (e.g., 30 seconds). A standard TOTP (RFC 6238) [6] is
implemented using traditional client and server shared secret
keys and HMAC. This implies that, in the RFC 6238 standard
scheme, the server must store the user password generation key
in plaintext. If the server is compromised, the password seeds
of all users will be leaked to the attacker, enabling further
impersonations. Hence, a TOTP scheme that can resist server
compromise is desirable in practice.

Applying asymmetric key distribution is a standard way to
achieve server-compromise resilience in TOTP. That is, the
server only stores the public verification key of the passwords
instead of the password seeds. One classic asymmetric time-
based one-time passwords construction method is the one-way
function (OWF) chain structure introduced in the Lamport’81
scheme [3]. Each password is the seed (OWF pre-image) of the
next password, i.e., pwi := OWF(pwi−1). The last generated
password is taken as the verification key, and the first password
is used as the password seed for all other passwords. Most of
the state-of-the-art asymmetric time-based one-time passwords
algorithms adopt the framework of the Lamport’81 scheme,
such as the T/Key [7] and the TOTP schemes [8] used in the
constructions of proof of aliveness protocols. Since most of
the existing TOTP schemes can be implemented with hash
functions efficiently, they can survive the quantum attacks
with an appropriate parameter setting [9], [10], [11]. This fact
makes asymmetric TOTP schemes more appealing.

However, in traditional asymmetric TOTP schemes [7], [8],
each user in TOTP schemes has an independent password
verification key. As a result, TOTP can provide no privacy
of user identity. In practice, entities (e.g., mobile users and
vehicles) in many applications (e.g., federated learning, indoor
positioning, and V2X communication) usually need to protect
their identity privacy when sharing information or requesting
services. To protect user identity privacy in TOTP schemes,
Yang et al. [12] recently proposed a cryptographic primitive
named group time-based one-time passwords (GTOTP), al-

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

lowing users to prove their group membership to arbitrary
verifiers without revealing their real identity. It has been
shown in [12] that GTOTP can be used as a useful tool to
build an efficient privacy-preserving proof of location scheme
(in which the distributed location witnesses and prover can
jointly use GTOTP passwords for anonymous authentication).
The seminal GTOTP scheme proposed by Yang et al. [12]
(hereinafter referred to as YJN+ scheme) can generically
transform an asymmetric TOTP scheme into a GTOTP scheme
based on a permutation scheme and a Merkle tree structure,
whose root is taken as the group public key. The Merkle tree
leaves are bound to verification points of TOTP instances of
group members, where each verification point is just used in
a short time period called verification epoch. All leaves are
randomly shuffled to achieve anonymity. However, the YJN+
scheme had certain limitations. It only considered a static
group, namely, the group structure needed to be established
during initialization. This assumption may not align with
many real-world scenarios, such as business memberships and
human resources management, where group members can join
and leave at any time. Another shortcoming of the YJN+
scheme is its substantial storage overhead for group members.
Suppose the YJN+ scheme is initialized with E verification
epochs for U pre-determined group members. Then, it must
involve U · E TOTP instances, which will be divided into ϕ
groups for building ϕ Merkle trees. The roots of the generated
Merkle trees are inserted into a Bloom filter, which is the
final group public key. Therefore, the size of the group public
key has a magnitude of O(ϕ), which is not a constant. The
password of a group member consists of the password of the
original TOTP instance and the corresponding Merkle proof,
which is pre-stored by the group member. Namely, when we
set ϕ = 1 to have a constant size of the group public key, then
each group member needs to store the Merkle proofs of all
its verification points that have a size of O(E · logU ·E). Thus,
the storage cost grows rapidly when a long lifetime (large E)
of the TOTP is expected.

Our Works. In this work, we take a significant step towards
addressing the open question of building a GTOTP scheme
in a dynamic group setting. However, designing an efficient
dynamic time-based one-time passwords (DGTOTP) scheme
with provable security guarantees is not a trivial task. In
general, we have two main challenges. First, because group
members may often use resource-constrained devices in prac-
tice, the algorithms used by group members in DGTOTP need
to be efficient and avoid expensive public cryptographic op-
erations. Otherwise, if public cryptographic operations can be
run efficiently by group members, we can use more powerful
cryptographic primitives (e.g., dynamic group signatures [13])
instead to realize the similar functionalities of DGTOTP. Sec-
ond, the dynamic group management procedure for handling
the joining and leaving operations of a group member should
not affect the local states of all the other group members.
This requirement is essential in many real-time applications
(e.g., video surveillance and manufacturing execution) where
group members cannot be interrupted by any group update
procedures. Such a requirement poses a significant challenge

in constructing a DGTOTP scheme.

To tackle the above challenges and requirements, we inno-
vatively design an efficient DGTOTP scheme called DGTOne
that provides provable security in our defined security model
without random oracles. One of the novelties is that DGTOne
only needs each group member to run a few symmetric
cryptographic operations (e.g., pseudo-random function and
hash function) and maintain a small constant-sized local state
(either secret or public). We present a novel issue-first-and-
join-later (IFJL) strategy based on the chameleon hash func-
tion to handle the join procedure and a creative outsourcing
solution to realize efficient password generation. According
to our IFJL strategy, a registration authority (RA), which
takes charge of group management, first creates a Merkle tree
using dummy verification points as leaves, and then issues
independent secret seeds for joined group members on the fly.
Each group member’s secret seed is used as the chameleon
hash function secret key (and many other secret keys) to
dynamically bind a real verification point of a TOTP instance
to a Merkle tree leaf during password usage. The generation of
Merkle proofs and chameleon hash public keys are outsourced
to RA, so each group member does not need to run any public
key cryptographic operations. Moreover, such an outsourcing
procedure results in a cost-free revocation feature. That is, to
revoke a group member, RA only needs to stop generating
chameleon hash public keys for it.

Furthermore, we also solve secure integration issues of
DGTOTP passwords in practice. Unlike TOTP schemes,
(D)GTOTP passwords are supposed to be used at different
verifiers, i.e., the passwords should be publicly verifiable.
However, a (D)GTOTP password itself does not provide
any message authentication feature, so it may be subject to
password replay attacks in an arbitrary-verifier setting, where
some verifiers may reuse the received password to impersonate
the password owner. Yang et al. [12] made the first attempt to
solve this issue in a commitment-based message authentication
scenario that uses a GTOTP password to commit a message
and open the password after it expires. One shortcoming of
such a message authentication method is that its verification
suffers a long delay in waiting for the commitment to open.
To overcome this limitation, we aim to enhance the security
integration of (D)GTOTP to realize a novel lightweight anony-
mous client authentication approach with low latency in an
arbitrary-verifier setting with usage privacy.

Our Contributions. The contributions of this paper are sum-
marized as follows:

• We define the notion and the security model of DGTOTP
based on the framework of [12]. Compared with the previous
work, our security model particularly formulates the threats
regarding dynamic group management. In particular, we
define new queries to simulate the joining of honest and
malicious group members, and the revocation feature.

• We design an efficient DGTOTP scheme called DGTOne,
leveraging a novel IFJL strategy we proposed. DGTOne
provides provable security in our newly defined security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

model without random oracles.1 In particular, our scheme re-
quires no public key cryptographic operations for each group
member. The storage cost maintained by each group member
is a relatively small constant, instead of O(E · logU ·E)
in [12]. The revocation cost of DGTOne is optimal.

• We propose a security enhancement for resisting the pass-
word replay attacks in the traditional application scenario
regarding passwords over TLS [15], [16]. In our solution,
we develop a password usage token (i.e., the hashes of a
password and the verifier’s identity, respectively) and use
a semi-honest authentication server (AS) to record those
password usage tokens for faithful-public retrieval. Mean-
while, the third-party AS only needs to store each token for
a short time, so it will not incur much storage overhead.
Thus, it can ensure that passwords are used at most by one
verifier. In this way, a group member can instantly open
the password in a server-only authenticated TLS channel
(where the server can be the verifier) to complete the client’s
anonymous authentication.

• We evaluate the performance of DGTOne on a mobile
phone. The results show that the password generation time
is 119.5 microseconds on average. We also compare the
performance of DGTOne with the YJN+ scheme based
on the main operations. Although DGTOne provides more
features for dynamic group management, the additional cost
introduced to each group member is small and only consists
of a few more modular additions and multiplications.

Organizations. Section II describes the preliminaries. Sec-
tion III defines the security notions of DGTOTP. Section IV
introduces an efficient DGTOTP scheme. Section V discusses
possible use cases. Section VI shows the performance evalua-
tion of our proposal. Section VII presents the related work.
We discuss privacy issues and a further comparison with
anonymous client authentication schemes in Section VIII.
Section IX concludes the paper.

II. PRELIMINARIES

We denote the security parameter by κ, an empty string by ∅,
and the set of integers between 1 and n by [n] = {1, . . . , n} ⊂
N. We let x

$← X denote the operation of sampling x
uniformly at random from a set X . Let negl(κ) : N → R+
be a negligible function, i.e., for every polynomial P (κ) there
exists a e0 ∈ N s.t. for all e > e0, negl(e) ≤ 1/P (e). Let ∥ be
the string concatenation operation, and # be an operation to
calculate the size of an element. In the following, we review
the syntax and security definitions of the main cryptographic
building blocks of our upcoming constructions.
Time-based One-time Passwords. We consider an asym-
metric TOTP scheme which consists of four algorithms.
Setup(1κ, Ts, Te,∆s) takes as input the security parameter
1κ, the start and end times Ts and Te, and the password
generation interval ∆s, and outputs the password number

1Cryptographic schemes proven secure in the standard model, where adver-
saries are restricted only by time and computational power, are preferable. In
this model, security analysis relies solely on the properties of the underlying
(mathematical) assumptions, without relying on (idealized) random oracles.
Canetti et al. [14] showed that some schemes secure in the random oracle
model become insecure when used with specific hash functions.

pmsTOTP = N = (Te − Ts)/∆s. PInit(sd) takes as input
a secret seed sd ∈ KTOTP, and outputs the initial verification
point vp ∈ VPTOTP, where KTOTP is the key space for the
input secret seed and VPTOTP is a verification point space.
PGen(sd, T) takes as input the secret seed sd and a time
slot T , and outputs a one-time password pw ∈ PWTOTP for
T , where PWTOTP is a password space. Verify(vp, pw, T)
takes as input the verification point vp, a password pw,
and time slot T , and outputs 1 if the password is accepted
and 0 otherwise. For tailoring the verification algorithm in
our DGTOTP constructions, we require that the verification
point of the TOTP scheme can be computed based on the
corresponding secret seed sd or password. This requirement
can be easily realized by any chain-based TOTP, such as [7],
[8]. We define a security game GTOTP Forge

A,TOTP (κ, Ts, Te,∆s) for
a time-based one-time passwords scheme TOTP in Figure 1,
with a key space KTOTP for the input secret seed, a verification
point space VPTOTP, and a password space PWTOTP. We
assume that the challenger keeps a system clock Tct which is
updated every ∆s. The goal adversary in the game is to forge
a valid password of TOTP for a future time.

GTOTP Forge
A,TOTP (κ, Ts, Te,∆s) :

Initialize(Ts, Te,∆s) : Finalize() :
pmsTOTP ← TOTP.Setup(1κ, Ts, Te,∆s) IF ∃(pw∗, T ∗) ∈ HD

sd
$← KTOTP s.t. (TOTP.Verify(vp, pw∗, T ∗) = 1

vp← TOTP.PInit(sd) and no GetNextPw() at T̃ s.t. T̃ ≥ T ∗

OUTPUT pmsTOTP, vp OUTPUT 1
OUTPUT 0

GetNextPw() : ReceivePw(pw) :

OUTPUT TOTP.PGen(sd, Tct) APPEND (pw, Tct)→ HD
OUTPUT TOTP.Verify(vp, pw, Tct)

Fig. 1: Procedures Used to Define Security for TOTP.

Definition 1: We say a TOTP protocol
is secure if no PPT adversary has a non-
negligible advantage AdvTOTP Forge

A,TOTP (κ, Ts, Te,∆s) :=

Pr
[
GTOTP Forge

A,TOTP (κ, Ts, Te,∆s) = 1
]

with given parameters.

Pseudo-random Function Family. A pseudo-random function
(PRF) family consists of two algorithms. Setup(1κ) takes as
input the security parameter 1κ, and outputs a random secret
key k

$← KPRF and system parameters pmsPRF, where KPRF

is the key space. Eval(k, x) takes as input the secret key k
and a message x ∈ MPRF, and outputs the evaluation result
r ∈ RPRF, where MPRF and RPRF are the message space
and the range space, respectively. For a specific PRF function
family F, we may write F(k, x) to represent F.Eval(k, x) for
short. Let F be a pseudo-random function family associated
with a key space KPRF, a message space MPRF, and a range
space RPRF. We define a security game GPRF

A,F (κ, qf) (see also
in Figure 2) that is played between a probabilistic polynomial
time (PPT) adversary A and a challenger based on F and the
security parameter κ.

GPRF
A,F(κ, qf) :

Initialize() : Finalize(b∗) :
(pmsPRF, k)← F.Setup(1κ) IF b∗ = b and x∗ /∈ FL, OUTPUT 1
OUTPUT pmsPRF ELSE OUTPUT 0
Challenge(x∗) : FuncQ(x) :

b
$← {0, 1}; r0

$←RPRF; r1 ← F.Eval(k, x∗) APPEND x→ FL
OUTPUT rb OUTPUT F.Eval(k, x)

Fig. 2: Procedures Used to Define Security for PRF.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

Definition 2: We say F is secure if the advantage
AdvPRFA,F (κ, qf) :=

∣∣∣Pr[GPRF
A,F (κ, qf) = 1]− 1

2

∣∣∣ of any PPT
adversary A is negligible under κ.

Collision-resistant Hash Functions. A collision-resistant
hash function CRH is defined by the following two algo-
rithms. Setup(1κ) takes as input 1κ, and outputs the parameter
pmsCRH and a random key hk

$← KCRH, where KCRH is the
hash key space. Eval(hk,m) takes as input a random key
hk and a message m ∈ MCRH, and outputs a hash value
y ∈ YCRH, where MCRH is the message space and YCRH is
the hash value space. For a specific collision-resistant hash
function H, we write H(m) to represent H.Eval(hkCRH,m)
when hkCRH is clear from the context. The CRH security game
GCR

A,H(κ) based on an adversary A and a CRH family H is
defined in Figure 3, where H has key space KCRH, message
space MCRH and hash value space YCRH.

GCR
A,H(κ) :

Initialize() : Finalize(m,m′) :
(pmsCRH, hk)← H.Setup(1κ) IF m ̸= m′ and H.Eval(hk,m) = H.Eval(hk,m′)
OUTPUT hk OUTPUT 1

OUTPUT 0

Fig. 3: Procedures Used to Define Security for CRH.

Definition 3: We say H is secure if no PPT adversary has
non-negligible advantage AdvCRA,H(κ) := Pr[GCR

A,H(κ) = 1]
under κ.

Chameleon Hash Function. We define a chameleon hash
function by the following three algorithms. Setup(1κ; rkCH)
takes as input the security parameter 1κ, and a randomness
rkCH ∈ RCH for key generation, and outputs the system
parameters pmsCH, and a pair of secret and public key
(skCH, pkCH) ∈ KCH, where KCH is key space and RCH is
randomness space. Eval(pkCH,m, r) is an evaluation algorithm
that takes as input a public key pkCH ∈ KCH, a message
m ∈ MCH and a randomness r ∈ RCH, and outputs a value
y ∈ YCH, where MCH and YCH are message space and hash
value space, respectively. Coll(skCH,m, r,m′) is an efficient
deterministic collision algorithm that takes as input the secret
key skCH and tuple (m, r,m′) ∈MCH×RCH×MCH, outputs
a random value r′ ∈ RCH such that CH.Eval(pkCH,m, r) =
CH.Eval(pkCH,m

′, r′). We require that the secret key skCH can
be efficiently generated by rkCH. For example, for a discrete
logarithm based CH, it is possible to set skCH := rkCH.
We define two standard security properties (i.e., collision
resistance (CR) and uniformity (UN)) of a chameleon hash
family CH in a single game GCHS

A,CH(κ) shown in Figure 4,
where CH is associated with key space KCH, randomness space
RCH, message space MCH, and hash value space YCH.

GCHS
A,CH(κ) :

Initialize() : Finalize(m,m′, r1, r2) :

rk
$←RCH IF one of the following conditions is held:

(pmsCH, pk, sk)← CH.Setup(1κ; rk) i) m ̸= m′ and CH.Eval(pk,m, r1) = CH.Eval(pk,m′, r2);
OUTPUT pmsCH, pk ii) r1 ̸= r2 and CH.Eval(pk,m, r1) = CH.Eval(pk,m, r2);

OUTPUT 1
OUTPUT 0

Fig. 4: Procedures Used to Define Security for CH.

Definition 4: We say CH is secure if no PPT adversary has
non-negligible advantage AdvCHSA,CH(κ) := Pr[GCHS

A,CH(κ) = 1]
under κ.

Merkle Tree. We define a Merkle tree scheme with three
algorithms. Build({lfi}i∈[ℓ]) takes as input ℓ data items (which
form the leaves of the target tree) and builds a Merkle tree
instance MTI on top of them. We will reuse the notion of MTI
to denote the root of the Merkle tree instance as well. Let H
be a collision-resistant hash function. Specifically, each non-
leaf node is a hash value H(node.LeftChild||node.RightChild).
GetPrf(MTI, lfi) takes as input a Merkle tree MTI and a leaf
lfi, and outputs a proof Pflfi that can attest the inclusion
of lfi in the tree. The proof Pflfi encompasses the siblings
of every node on the path from lfi to the tree’s root MTI.
Verify(MTI, lfi,Pflfi) takes as input the root MTI, a leaf node
lfi, and the corresponding proof Pflfi . It computes a root MTI′

based on lfi and proof Pflfi , and returns 1 if MTI′ = MTI and
0 otherwise. For a secure Merkle tree scheme, the adversary
must not forge the Merkle proof for a leaf node that does
not belong to the Merkle tree. We define a security game
GMT Forge

A,MT (κ) in Figure 5 for a Merkle tree scheme MT, which
encompasses the following procedures. For a secure Merkle
tree scheme, the adversary must not forge the Merkle proof
for a leaf node which does not belong to the Merkle tree.

GMT Forge
A,MT (κ) :

Initialize({lfi}i∈[ℓ]) : Finalize(lf∗, Pf∗) :
MTI← MT.Build({lfi}i∈[ℓ]) IF 1← MT.Verify(Rt, lf∗, Pf∗)
OUTPUT MTI and lf∗ /∈ {lfi}i∈[ℓ], OUTPUT 1

OUTPUT 0

Fig. 5: Procedures Used to Define Security for MT.
Definition 5: We say MT is secure if no PPT ad-

versary has non-negligible advantage AdvMT Forge
A,MT (κ) :=

Pr[GMT Forge
A,MT (κ) = 1] under κ.

Unpredictable Permutation. We consider a keyed permuta-
tion scheme with two algorithms. Setup(1κ) takes as input
the security parameter 1κ, and outputs a random permutation
key k

$← KPM and other the system parameters pmsPM, where
KPM is a key space. Shuffle(k,X) takes as input a permutation
key k and a set of elements X = {xi}i∈[n] ∈ MPM of
size n ∈ N, and outputs a permuted set Y ∈ MPM, where
MPM is an element space. In Figure 6, we define a security
game GUP

A,PM(κ) that is played between a PPT adversary A
and a challenger based on a permutation scheme PM and the
security parameter κ, where PM has the key space KPM and
the element space MPM.

GUP
A,PM(κ) :

Initialize(n) : Finalize(β∗) :
(pmsPM, k)← PM.Setup(1κ, n) IF β∗ = β0, OUTPUT 1
OUTPUT pmsMT OUTPUT 0
Challenge({xi}i∈[n], w0, w1) :

IF w0, w1 /∈ [n] or w0 = w1 OUTPUT ⊥
{yi}i∈[n] := PM.Shuffle(k, {xi}i∈[n])
Let β0 and β1 be indices s.t. yβ0

= xw0 and yβ1
= xw1

OUTPUT {yi}i∈[n\{β0,β1}]

Fig. 6: Procedures Used to Define Security for PM.
Definition 6: We say PM is secure if for any

PPT adversaries, the advantage AdvUPA,PM(κ) :=∣∣∣Pr[GUP
A,PM(κ) = 1]− 1

2

∣∣∣ is negligible under κ.

Authenticated Symmetric Encryption. An authenticated
symmetric encryption scheme ASE has three algorithms.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Setup(1κ) takes as input the security parameter 1κ, and
outputs the parameter pmsASE and a random key k

$← KASE,
where KASE is the key space. Enc(k,m; re) takes as input
an encryption key k, a message m ∈ MASE, and a random
value re ∈ RASE, and outputs a ciphertext C ∈ CASE, where
MASE is the message space, CASE is the ciphertext space,
and RASE is the randomness space. Due to the randomness r,
the encryption algorithm Enc is a probabilistic (randomized)
algorithm. Dec(k,C) takes as input an encryption key k, and
a ciphertext C ∈ CASE, and outputs a message m ∈ MASE.
Let ASE be an authenticated symmetric encryption scheme
associated with key space KASE, message space MASE, ci-
phertext space CASE, and randomness space RASE. We define
a security game GIND-CCA

A,ASE (κ, qe) in Figure 7 to formulate the
standard notion of indistinguishability under chosen-ciphertext
attacks (IND-CCA), that is played between a PPT adversary
A and a challenger based on ASE and κ.

GIND-CCA
A,ASE (κ, qe) :

Initialize() : Finalize(b∗) : Challenge(m0,m1) :

(pms, k)← ASE.Setup(1κ) IF b∗ = b and C∗ /∈ CL b
$← {0, 1}

OUTPUT pms OUTPUT 1 C∗ ← ASE.Enc(k,mb)
OUTPUT 0 OUTPUT C∗

DecP(C) : EncP(m) :

APPEND C → CL OUTPUT ASE.Enc(k,m)
OUTPUT ASE.Dec(k,C)

Fig. 7: Procedures Used to Define Security for ASE.

Definition 7: We say ASE is secure if for any
PPT adversaries, the advantage AdvIND-CCA

A,ASE (κ, qe) :=∣∣∣Pr[GIND-CCA
A,ASE (κ, qe) = 1]− 1

2

∣∣∣ is negligible under κ.

III. SECURITY NOTIONS OF DYNAMIC GROUP
TIME-BASED ONE-TIME PASSWORDS

This section defines the security notions of DGTOTP.
Entities. In a DGTOTP scheme, there are three kinds of
entities encompassing group members, verifiers, and an honest
registration authority (RA). Each group member has a unique
identity ID. RA is trustworthy and takes responsibility for
initializing the system and enrolling group members.
Syntax. We define a DGTOTP scheme via the following eight
algorithms and a sub-protocol.
• (pms, gpkG,GMG,RLG, skRA) ← RASetup(1κ, setpms):
RA runs the system setup algorithm to initialize the system
based on the security parameter and the setup parameters
setpms = (G, U, Ts, Te,∆e,∆s). This algorithm outputs the
system parameters pms, the initial group public key gpkG
of a group G, the corresponding initial group management
message GMG, a revocation list RLG, and a secret key
skRA

$← KRA for RA, where KRA is a key space of RA,
the parameter U ∈ N specifies the maximum number of
group members that a group can hold, Ts and Te are the
start and the end time of a DGTOTP protocol instance, ∆s

is an interval between two passwords, and ∆e is a parameter
to define the verification epoch of a verification point of a
TOTP instance. The group management message GMG is
stored privately by RA.

• (skIDj
, vstIDj

)← PInit(IDj): A group member IDj runs the
member initialization algorithm to generate its secret key

skIDj

$← KID and the initial verification state vstIDj , where
KID is a key space of the group members.

• (AxIDj
, gpk′G,GM

′
G) ← Join(skRA, gpkG, IDj , vstIDj

): RA
runs this join algorithm to handle the enrolment of the group
member IDj (who provides with its verification sate vstIDj

)
to the group with public key gpkG. It returns the auxiliary
information AxIDj as registration receipt to IDj , and updates
the group management message GM′

G and the group public
key gpk′G (if necessary).

• sdiIDj
← GetSD(skIDj

, T): A group member IDj runs this
seed generation algorithm using its secret key skIDj

to
compute the secret seed sdiIDj

∈ SDGTOTP for generating
the password at T , where SDGTOTP is a secret seed space.

• pwi,z
IDj
← PwGen(sdiIDj

, T): A group member IDj runs the
password generation algorithm using its secret seed sdiIDj

for the time slot T to generate the corresponding one-time
password pwi,z

IDj
, where z is an index of the password in the

i-th verification epoch defined by T .
• {0, 1} ← Verify(gpkG, pw

i,z
IDj

, T,RLG): A verifier runs the
password verification algorithm based on the group public
key gpkG and the revocation list RLG to verify the the
password pwi,z

IDj
for the time slot T . This algorithm outputs

1 if pwi,z
IDj

is accepted, and 0 otherwise.
• RL′

G ← Revoke(skRA, IDj , gpkG,RLG,GMG): RA runs the
revocation algorithm using its secret key skRA, the revoking
identity IDj , and the group management message GMG,
to revoke the credentials of IDj with respect to gpkG and
update the revocation list to RL′

G.
• IDj ← Open(skRA, gpkG, pw

i,z
IDj

, T): RA runs the identity
extraction algorithm using its secret key skRA to extract the
identity IDj of the owner of a password pwi,z

IDj
w.r.t. the time

slot T and group public key gpkG. The algorithm outputs IDj

if the extraction procedure is successful and ⊥ otherwise.

Threat Model. We introduce the threats against DGTOTP in
terms of the entities in the system following the similar settings
in literature (e.g., [17], [7], [18], [19], [20]). We assume a
system that exists at least two honest group members. In
other words, most of the group members can be malicious and
controlled by attackers. Those malicious group members can
be seen as insider threats against the privacy of other honest
group members. In the dynamic group management setting, an
attacker may adaptively register new malicious group members
with arbitrary identities at any time. The verifier can also
be malicious. The malicious group members and verifiers
may infer the private information of honest group members.
Meanwhile, we consider RA to be a semi-honest and non-
colluding third party. RA might faithfully handle the enrolment
of group members and trace the identity of malicious group
members but may be curious about how (where and when)
those passwords are used. We assume the attackers take
control of the network traffic, so they can intercept, inject,
and manipulate the communication. In addition, the attackers
may also try to either impersonate honest group members
(i.e., breaking the traceability of DGTOTP) by forging their
unused passwords or creating passwords that cannot be traced

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

GGvar
A,Σ(κ, setpms) :

Initialize() : Finalize(b∗, pw∗, T ∗) :
(pms, gpkG,GMG,RLG, skRA)← Σ.RASetup(1κ, setpms) ID∗ := Σ.Open(skRA, gpkG, pw

∗, T ∗)
Create lists (CML,CSL,HML)← ∅ vr := Σ.Verify(gpkG, pw

∗, T ∗,RLG)

Init a monotonically increasing (in ∆s) system clock Tct := Ts i :=
⌈T∗−Ts⌉

∆e
; T̃ ∗ := T ∗ − ((T ∗ − Ts) mod ∆s)

OUTPUT pms, gpkG,RLG IF Gvar = Corr and pw∗ ∈ PL and (vr = 0 ∨ ID∗ /∈ HML)
Challenge(ˆID0, ˆID1) : OUTPUT 1

IF (ˆID0, ˆID1) /∈ HML or ˆID0 = ˆID1, OUTPUT ⊥ IF Gvar = Anony and b = b∗ and ˆID0 /∈ (CML ∪ OL) and ˆID1 /∈ (CML ∪ OL)

b
$← {0, 1} OUTPUT 1

Switch to the next verification epoch IF Gvar = Trace and vr = 1

sd ˆIDb
← Σ.GetSD(sk ˆIDb

, Tct) and
((

ID∗ /∈ (HML ∪ CML)
)
∨

(
(pw∗, T̃ ∗) /∈ PL ∧ ID∗ /∈ CML ∧ sdiID∗ /∈ CSL

))
Switch to the next verification epoch OUTPUT 1
OUTPUT sd ˆIDb

OUTPUT 0

Corrupt(IDj) : AddHM(IDj) :

IF IDj /∈ HML, OUTPUT ⊥ (skIDj
, vstIDj

)← PInit(IDj)

CML← IDj (AxIDj
, gpk′G,GM

′
G)← Σ.Join(skRA, gpkG, IDj , vstIDj

)
OUTPUT skIDj

HML← IDj

CompromiseSD(IDj) : OUTPUT AxIDj
, gpk′G,GM

′
G[IDj]

IF IDj /∈ HML, OUTPUT ⊥ AddMM(IDj , vstIDj
) :

sdiIDj
← Σ.GetSD(skIDj

, Tct) (AxIDj
, gpk′G,GM

′
G)← Σ.Join(skRA, gpkG, IDj , vstIDj

)

CSL← sdiIDj
CML← IDj

OUTPUT sdiIDj
OUTPUT AxIDj

, gpk′G,GM
′
G[IDj]

GetNextPw() : ReceivePw(pw) :

FOR ∀IDj ∈ HML: OUTPUT Σ.Verify(gpkG, pw, Tct,RLG)
sdiIDj

← Σ.GetSD(skIDj
, Tct) OpenID(pw, T) :

pwIDj
← Σ.PwGen(sdiIDj

, Tct) OL← pw

PL← ({pwIDj
}IDj∈HML, Tct) OUTPUT Σ.Open(skRA, gpkG, pw, T)

OUTPUT {pwIDj
}IDj∈HML RevokeID(IDj) :

OUTPUT RL′
G ← Σ.Revoke(skRA, IDj , gpkG,RLG,GMG)

Fig. 8: Procedures Used to Define the Security of a DGTOTP Scheme.

by RA.2 Like pseudonym schemes (e.g., [22], [23], [24],
[25]), attackers are interested in the privacy of an honest
group member’s passwords belonging to different verification
epochs. That is, an attacker, who knows all identities in a
group, may try to link a password to the real identity of its
owner (i.e., breaking the anonymity of DGTOTP). However,
we do not consider the privacy leakage from the usage pattern
of passwords (in one verification epoch). We present more
discussions on the privacy issue in Section VIII.
Security Definition. As DGTOTP is a lightweight crypto-
graphic primitive, we here consider the most desirable se-
curity properties we can achieve without introducing much
performance overhead. We define the correctness (Corr) and
security properties of DGTOTP within a unified game-based
framework [26]. The security properties that we consider
include the anonymity (Anony), and traceability (Trace) 3.
Each property is associated with a game indexed by a variable
Gvar ∈ {Corr,Anony,Trace}. These games consist of a series
of procedures, as shown in Figure 8, which are simulated by a
challenger. An adversary can start a game by calling Initialize
and end the game with Finalize. All other procedures can
be queried sequentially and adaptively by the adversary. The
adversary seeks to achieve its capabilities via given queries to
meet the winning conditions (defined in Finalize) of the cor-
responding game, i.e., resulting in Finalize(b∗, pw∗, T ∗) = 1.

2Namely, the traceability of DGTOTP, like group signatures [21], [13], is
formulated to cover both unforgeability and accountability. Hence, traceability
can deter malicious behavior within the group, thus mitigating insider threats
(as individuals may be less likely to engage in malicious activities if they
know their actions can be traced by RA).

3According to the two security properties, the adversaries can be divided
into two types on breaking them respectively, i.e., anonymity adversaries and
traceability adversaries.

The anonymity and the traceability are adapted from [12]
but under a dynamic group member setting. To generically
model the attacks against join operations (e.g., malicious
registration attacks and adaptive chosen identity attacks), we
allow an adversary to adaptively add (at any time of the
game) either honest group members via the AddHM procedure
or malicious group members via the AddMM procedure,
respectively. Hence, an adversary can control those mali-
ciously registered parties, which also covers insider threats.
For a malicious group member IDj , the adversary generates
the verification state vstIDj , so the corresponding secrets of
IDj are not known to the challenger. The adversary can
reveal an honest member’s long-term secret key and secret
seeds via Corrupt and CompromiseSD queries, respectively.
This models the real-world compromise of the credentials
of an honest party (e.g., key stolen by insiders, poor key
management, and cryptanalysis). The password generation and
verification procedures of honest group members are simulated
by the GetNextPw and ReceivePw procedures, respectively.
The GetNextPw query is used to model the known password
attacks that require the leaked passwords of honest parties not
to affect the security properties of their unexposed passwords.
Meanwhile, the ReceivePw procedure allows an adversary to
test her forged passwords, exemplifying scenarios such as
impersonation attacks. The adversary can also revoke a group
member anytime via the RevokeID procedure. This procedure
(working together with AddMM and AddHM procedures) can
be used to model the malicious capabilities of an adversary
in manipulating the group organization structure and then
inferring the privacy information of other honest group mem-
bers. In addition, an adversary can ask the OpenID procedure
to disclose the identities of passwords belonging to honest

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

group members. For privacy, it is imperative that the revelation
of one password does not compromise the other unrevealed
passwords.

Meanwhile, the anonymity requires that the adversary can-
not distinguish which two honest members’ secret seeds in
the Challenge procedure. The traceability requires that the ad-
versary cannot generate a valid password-time pair (pw∗, T ∗)
that meets one of the following conditions: i) it is opened to
an identity (including ⊥) which is not involved in any AddHM
and AddMM queries; ii) it belongs to an uncorrupted honest
party (either its long-term key or secret seed for generating
pw∗ is not exposed) and is not generated by the challenger in
any procedure.

Definition 8: We say that a DGTOTP scheme Σ is cor-
rect if the probability Pr

[
GCorr

A,Σ(Gpm) = 0
]
≈ 1 holds for

any PPT adversary A and parameters Gpm = (κ, setpms)
and setpms = (G, U, Ts, Te,∆e,∆s). We say that a cor-
rect Σ (with the above parameters) is secure if the advan-
tages AdvAnonyA,Σ (Gpm) :=

∣∣∣Pr [GAnony
A,Σ (Gpm) = 1

]
− 1/2

∣∣∣ and

AdvTraceA,Σ (Gpm) := Pr
[
GTrace

A,Σ (Gpm) = 1
]

of any PPT A are
negligible in the corresponding games.

Model Comparison. Our DGTOTP security model is strength-
ened and adapted from the static GTOTP security model [12]
though they have similar security properties. In Table I,
we summarize the differences between these two models.
Specifically, the GTOTP security model only formulates the
selectively chosen identity attacks. All identities should be
chosen by the adversary (without being capable of choosing
their secret keys) at the beginning of the security game, and the
adversary cannot revoke them. As a result, it cannot model the
group structure manipulation capabilities of the adversary as
in our new DGTOTP model. Contrastingly, our new model
provides the AddHM, AddMM, and RevokeID procedures,
allowing stronger adversaries to adaptively manipulate the
group structure at any time throughout the security game,
including chosen identities and credentials of malicious group
members. In particular, the AddMM and the RevokeID queries
empower adversaries to plant malicious insiders adaptively.
Essentially, these new procedures strengthen the security prop-
erties of anonymity and traceability of DGTOTP compared to
the GTOTP security model.

TABLE I: Model Comparison

Model
Adversarial Capabilities

Differences Common Procedures
AddMM AddHM RevokeID Init Finalize, Challenge, OpenID

GetNextPw, ReceivePw
Corrupt, CompromiseSDGTOTP × × × Keys & Parameters

& Group Members
DGTOTP

√ √ √
Keys & Parameters

IV. AN EFFICIENT DGTOTP SCHEME

This section presents an efficient dynamic group time-based
one-time passwords scheme DGTOne.

A. Construction Overview

Design Goals. There are four major design goals (require-
ments) that we aim to achieve in DGTOne:

• G1: Efficient dynamic group management. Since it might
be inconvenient for group members to update the group pub-
lic key whenever the group is changed, we want to design a
dynamic group management solution without disrupting the
exiting group members (i.e., without changing the group
public key and the local states of existing group members)
while keeping the lightweight feature of TOTP.

• G2: Constant storage overhead at group members. It
is always important to reduce storage costs for resource-
constrained devices, saving for critical applications.

• G3: Usage privacy of passwords against RA. Since RA is
semi-honest by assumption, it should not know the usage
status (e.g., usage time and verifier) of passwords from
the protocol messages it sent and received, unless RA is
explicitly requested by a trustworthy authority to trace the
identity of a password.

• G4: Standard model security. We aim to build a provable
secure DGTOTP scheme in our DGTOTP security model
without random oracles.

Construction Problems and Challenges. A fundamental
construction problem is how to generate unlinkable group
membership proofs of passwords in different verification
epochs with the above design goals. In the meantime, the
lightweight requirement of DGTOTP would exclude many
public key cryptographic primitives (such as zero-knowledge
proof systems, and oblivious pseudo-random functions).

To achieve anonymity, we stick to the traditional idea of
pseudonym schemes, which is efficient to implement and
allows a modular design of DGTOTP. Namely, we intend
to generically transform a TOTP scheme into a DGTOTP
scheme. In this way, each party can generate many TOTP
verification points, each of which is used for verifying pass-
words in one verification epoch. A key problem regarding
the design of unlinkable group membership proofs lies in
devising a randomization solution capable of eliminating the
linkability among the group membership proofs of verification
points. It is a challenging task since all group members can
dynamically join and leave the group with random verifica-
tion points (which are unpredictable). Hence, the customized
randomization scheme must remain independent of the post-
determined verification points.4 The randomization solution
may significantly impact the storage cost of either RA or
group members. For a group with U group members and E
verification epochs, O(U ·E) group membership proofs need
to be randomized. A naive randomization procedure based
on symmetric-key based techniques (e.g., permutation) may
incur a considerable storage cost concerning the randomization
results (e.g., O(E) new positions in a permuted set for a
group member), and therefore violates the design goal G2.
One of our goals is to design a storage-friendly randomization
solution. In addition, another challenge arises in designing an
authentication scheme that can adaptively bind a verification
point to a randomized group membership proof. Because of
the requirement of G3, we cannot rely on RA (as in [27], [28])

4For example, we can no longer use the randomization technique in the
static GTOTP scheme (i.e., YJN+), which permutes all verification points of
group members in advance.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

to online authenticate information (e.g., verification points) for
group members during the usage of passwords. Meanwhile, all
construction details should satisfy G4, which makes it harder
to build, especially when considering adversaries who can
adaptively register both honest and malicious group members
and compromise honest group members.

Design Ideas. In order to avoid using public cryptographic
operations for group members, we will leverage the hash-
based Merkle tree scheme to generate group membership
proofs. Namely, each verification point is supposed to be
linked with a Merkle proof somehow (which will be detailed
later). However, we cannot directly build the Merkle tree based
on permuted verification points (as in the YJN+ scheme), since
they are not pre-determined in the dynamic group management
scenario. In addition, we also want to avoid the high storage
cost of the YJN+ scheme on the side of each group member.

Hence, our construction starts from figuring out a new
Merkle tree organization approach that can fit our design goals.
We observe that the verification epochs of all verification
points are public information that cannot be hidden by the
randomization operations. In other words, it is only necessary
to randomize the order of the verification points of different
group members in each verification epoch. Therefore, we can
organize the leaves (i.e., associated with verification points)
of the Merkle tree in terms of verification epochs. Namely,
we can split the Merkle tree into E sub-Merkle trees, each of
which contains the verification points belonging to the same
verification epoch. The roots of sub-Merkle trees can be used
as leaves to create the final Merkle tree, whose root is taken
as the group public key. In this way, all parties will share the
roots of sub-Merkle trees, which can be stored by any parties
(incl. group members and RA) without any privacy leakage. In
particular, a segment of a Merkle proof for the path from the
root of the corresponding sub-Merkle tree to the group public
key can be generated by the parties who have the roots of sub-
Merkle trees. This fact can reduce Merkle proofs’ storage. In
a nutshell, we stress that the new Merkle tree organization
approach lays down the foundation of our other construction
gadgets (in particular for our randomization and outsourcing
solutions, and security reduction).

For realizing G1 and G4, we implement an issue-first-
and-join-later (IFJL) strategy by leveraging chameleon hash
function (CH) [29] to handle the join operations. Specif-
ically, RA can compute all Merkle tree leaves {hi

j :=

CH.Eval(pkij , dvp
i
j , rd

i
j)}i∈[E],j∈[U] based on U · E dummy

verification point and randomness pairs. Note that each leaf is
associated with a fresh chameleon hash key pair (skij , pk

i
j), so

that we can faithfully answer the AddMM queries to correctly
generate the collisions generation for maliciously chosen veri-
fication points (i.e., resilient to malicious registration attacks).
Then, RA builds a Merkle tree using {hi

j}i∈[E],j∈[U], and the
resulting root is the group public key. We particularly bind
each leaf with a chameleon hash key pair, which will be used
for generating the chameleon collision for a real verification
point of a group member. However, an open problem is how
to randomly map a dynamically joined identity to achieve
anonymity. Notably, RA cannot directly link an identity (that

could be an arbitrary string) to a randomly allocated Merkle
tree leaf in advance. To overcome this obstacle, we first map
the joined identities to a sorted set of numbers in [U] (e.g.,
according to their joined time). RA can run a timestamp service
to sequentially generate timestamps for the joined group
members, ensuring each group member can get a unique joined
time stamp. It’s worth mentioning that all other join steps can
be run in parallel. The benefit of such an identity-transforming
strategy enables us to further indirectly randomly map. Recall
that each sub-Merkle tree (for a verification epoch) has U
leaves, and each group member can have at most one leaf in
that sub tree. Since the transformed identities and the leaves in
each sub-Merkle tree have a bijective relation, we can apply
a permutation scheme with verify-epoch dependent keys to
create random one-to-one connections among them in each
verification epoch to realize anonymity with G4 (e.g., using an
independent permutation key to simulate the challenge query).

To fully implement the above IFJL strategy and G2 under
the restriction of G3, we also need a solution that can generate
chameleon collisions to bind a verification point with a Merkle
tree leaf on the fly while preserving the usage privacy against
RA. We first observe that the requirement G3 would certainly
rule out the chameleon-hash adaption at RA. To realize both
G2 and G3, we let RA reversely outsource chameleon-collision
generation capability to group members themselves. I.e., RA
generates independent chameleon secret keys to group mem-
bers in the join procedure. This can relieve the heavy burdens
of group members from storing the chameleon collisions. Our
outsourcing solution is bilateral. Namely, RA should also help
group members to generate chameleon public keys and Merkle
proofs for verification. For efficiency, RA can compute them
epoch by epoch. That is, RA only needs to compute and
publish the chameleon public keys and the necessary ingre-
dients for generating the Merkle proofs used in the current
active verification epoch. A direct benefit of our whole IFJL
strategy is that it can free a group member from generating all
verification points in the initialization algorithm PInit, thereby
reducing the memory overhead for the group member. Besides,
our IFJL strategy also enables an optimal revocation feature
since RA can simply terminate the outsourcing service of a
revoked group member.

B. Detailed Algorithms

The algorithms of DGTOne are described as follows:
• RASetup(1κ, setpms): RA defines parameters setpms =
(U, Ts, Te,∆e,∆s) for a group instance G according to the
security parameter κ, where Ts is particularly set to the
current time Tct, and U is even (for sub-Merkle-tree gen-
eration). Next, RA initializes one PRF as (pmsF1

, kRA) ←
F1.Setup(1

κ) (if its has not been initialized before). We
assume that the ranges of the PRFs used in the following
algorithms match the corresponding spaces of other crypto-
graphic building blocks (e.g., the key space of ASE and the
randomness space of CH). Then, RA initializes a collision-
resistant hash function (pmsCRH, hk)← H1.Setup(1

κ). For
TOTP instances, RA sets the parameters N := (Te−Ts)/∆s

and E := (Te − Ts)/∆e, where E is the number of TOTP

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

protocol instances to be used and N is the number of
passwords in a TOTP instance. Subsequently, RA initializes
the group public key gpkG through the following steps:

- Generate E sets of dummy verification points
{dvpij}j∈[U] for U group members, where dvpij :=
F1(ksj ,G||“DVP”||i) and ksj := F1(kRA,G||“KS”||j);

- Generate E sets of chameleon hash keys {pkij}j∈[U],
where pkij := CH.Setup(1κ; rkij) and rkij :=
F1(ksj ,G||“CHR”||i);

- Compute E sets of hash values {hi
j}j∈[U] with dummy

verification points and random values, where hi
j :=

CH.Eval(pkij , dvp
i
j , rd

i
j) and rdij := F1(ksj ,G||“DR”||i);

- For i ∈ [E], compute the i-th permutation key
kip := F1(kRA,G||“PM”||i) and permuted set Xi =
{xi

1, . . . , x
i
U} := PM.Shuffle(kip, {1, . . . , U}), where

xi
j ∈ [U] for j ∈ [U];

- Build E sub-Merkle trees SMT = {MTIi}i∈[E], where
MTIi := MT.Build(Vi) and Vi := {hi

xi
j
}j∈[U];

- Generate the group public key gpkG = MT.Build(SMT).

Meanwhile, we define the group management message
GMG to store a list IDLG recording the identities of reg-
istered group members, and a set of variables {MPIxi

j
=

(pki
xi
j
, Ci

xi
j
)}j∈[U], where each variable MPIxi

j
only stores

elements of current-active verification epoch. We stress that
the set {MPIxi

j
= (pki

xi
j
, Ci

xi
j
)}j∈[U] is mutable. There-

fore, RA should regularly remove those expired tuples in
{MPIxi

j
= (pki

xi
j
, Ci

xi
j
)}j∈[U], and also update it to include

the tuples being used in the next valid verification epoch. We
change the revocation list RLG to store U 1-bit elements,
each of which denotes whether or not the corresponding
group member in IDLG is revoked. The RLG is initialized
with zero bits.

• PInit(IDj): A group member IDj executes (pms, ktIDj) ←
F2.Setup(1

κ) to initialize a PRF, and the general parameters
(i.e., Ti, ∆e, and ∆s) of TOTP. The secret key skIDj

is
initially set as skIDj

:= ktIDj
, which will be updated after

the join procedure.
• Join(skRA, gpkG, IDj , vstIDj): We assume that all joined

identities kept in IDLG are sorted in their join time. Hence,
RA can map a group member IDj to a number αIDj

∈ [U]
according to its join order (hereafter αID will be referred
to as a transformed identity of IDj). Once the member’s
position in IDLG is determined, it should not be changed
during the whole life-span of the group. Namely, RLG is
an append-only data structure. Let αIDj = IDLG[IDj] ∈
[U] denote the position of IDj in IDLG. RA handles the
enrollment of an unregistered party IDj by generating a
secret seed ksαIDj

:= F1(kRA,G||“KS”||αIDj
) for IDj , and

appending IDj to IDLG and the tuple (ksαIDj
, αIDj) to AxIDj ,

respectively. IDj will include the tuple (ksαIDj
, αIDj) as a

part of its secret key skIDj . Note that vstIDj can be empty
in this algorithm. Namely, we allow a post-authorization
strategy to bind a verification point of a party during the
usage of passwords.

• GetSD(skIDj
, T): If the i-th TOTP instance is not initialized,

then IDj first runs pmsiTOTP := TOTP.Setup(1κ, Ti, Ti +

∆e,∆s), where Ti = Ti−1 + ∆e and T0 := Ts.
This algorithm computes i-th password seed as sdiIDj

:=
F2(ktIDj

, IDj ||i).
• PwGen(sdiIDj

, Tct): IDj carries out the following steps to
generate a password pwi,z

IDj
= (p̄wi,z

IDj
, riIDj

, Ci
αIDj

):

- Compute the corresponding TOTP password p̄wi,z
IDj

:=

TOTP.PGen(sdiIDj
, Tct), where z := ⌈Tct−Ts−i·∆e⌉

∆s
is

password index in the i-th verification epoch;
- Derive the i-th ASE key keiαIDj

:= F1(ksαIDj
, “KG”||i),

and a random value reiαIDj
:= F1(ksαIDj

, “ER”||i) to
encrypt IDj resulting in the identity ciphertext Ci

αIDj
:=

ASE.Enc(keiαIDj
, αIDj

; reiαIDj
);

- Compute the i-th random key rkiαIDj
:=

F1(ksαIDj
,G||“CHR”||i) and get the chameleon secret

key skiαIDj
from rkiαIDj

;

- Compute a new variant of the verification point v̂piIDj
:=

H1(vp
i
IDj
||Ci

αIDj
||i) and the corresponding collision

riIDj
:= CH.Coll(skiαIDj

, dvpiαIDj
, rdiαIDj

, v̂piIDj
), where

dvpiαIDj
:= F1(ksαIDj

,G||“DVP”||i) and rdiαIDj
:=

F1(ksαIDj
,G||“DR”||i).

• Verify(gpkG, pw
i,z
IDj

, T,RLG): RA should first handle out-
sourced proof generation procedure regularly for the group
members and the verifier. Specifically, at the end of (i-1)-
th verification epoch, RA generates and publishes i-th per-
muted sets Vi = {hi

xi
j
} and {MPIxi

j
}j∈[U], and the Merkle

proof PfgpkMTIi . RA is able to compute MPIxi
j

based on her
secret seed kRA, the permuted set Xi, and the registration
identity list IDLG. The verifier can download supplementary
verification materials Vi, {MPIxi

j
}j∈[U], and PfgpkMTIi when

i-th verification epoch starts. On receiving a password
(p̄wi,z

IDj
, riIDj

, Ci
αIDj

), the verifier does the following steps:

- Return 0, if Ci
αIDj

is not contained in {MPIxi
j
}j∈[U];

- Get the position x such that MPIx contains the identity
ciphertext Ci

αIDj
;

- Compute Merkle proof PfMTIi
vpi

IDj

based on hi
y ∈ Vi and

Vi, the verification point vpiIDj
from p̄wi,z

IDj
and T , and

v̂piIDj
:= H1(vp

i
IDj
||Ci

αIDj
||i);

- Assemble the Merkle proof PfiIDj
:= (PfMTIi

vpi
IDj

,PfgpkMTIi) for

verifying the password under gpkG;
- Return 0, if hi

y ̸= CH.Eval(pkix, v̂p
i
IDj

, riIDj
);

- Output 1, if and only if MT.Verify(gpkG, h
i
y,PfiIDj

) = 1

and TOTP.Verify(vpiIDj
, p̄wi,z

IDj
, T) = 1.

• Revoke(skRA, IDj , gpkG,RLG,GMG): Let IDLG[IDj] denote
the bit that corresponds to IDj . To revoke a group member
IDj , RA sets RLG[IDj] := 1, and stops updating MPI
relevant to IDj in all future verification epochs.

• Open(skRA, gpkG, pw
i,z
IDj

′
, T): This algorithm requires a up-

dated password pwi,z
IDj

′
= (pwi,z

IDj
, pkiαIDj

,PfiIDj
). RA does

the following steps to reveal the identity of a group member:
- Derive the verification point vpiIDj

from
p̄wi,z

IDj
and T , and compute the variant of

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

verification point v̂piIDj
:= H1(vp

i
IDj
||Ci

αIDj
||i) and

hi
y := CH.Eval(pkiαIDj

, v̂piIDj
, riIDj

);

- Abort, if either TOTP.Verify(vpiIDj
, p̄wi,z

IDj
, T) = 0 or

MT.Verify(gpkG, h
i
y,PfiIDj

) = 0 ;
- Compute the permutation key kip := F1(kRA,G||“PM”||i)

and the permuted set Xi = {xi
1, . . . , x

i
U} :=

PM.Shuffle(kip, {1, . . . , U}), where xi
j ∈ [U] for j ∈ [U];

- Get the value of y in terms of the position of hi
y in

the Merkle proof PfiIDj
, and then obtain the transformed

identity αIDj
= xi

y;
- Retrieve IDLG using αIDj

to find the identity IDj .
Nevertheless, RA still needs to confirm it. RA computes
the secret seed ksαIDj

:= F1(kRA,G||“KS”||αIDj) and the
encryption key keiαIDj

:= F1(ksαIDj
, “KG”||i) to decrypt

the transformed identity α′
IDj

:= ASE.Dec(keiαIDj
, Ci

αIDj
).

If α′
IDj

= αIDj
, then RA returns IDj .

Main Steps for Executing DGTOne. We also high-levelly
show the seven main executing steps of DGTOne in Figure 9.
Initially, RA generates the parameters in setpms in terms of a
specific application (as exemplified in Section V) and runs
the initialization algorithm DGTOne.RASetup(1κ, setpms),
as depicted in Figure 9.(1), to particular creates a group
public key gpkG for a group G. gpkG is mainly gener-
ated as the root of a Merkle tree, based on a set of
dummy verification points {dvpij}j∈[U] organized by verifica-
tion epochs. After this, each group member IDj can initialize
(Figure 9.(2)) its secret key skIDj

and local parameters by
running DGTOne.PInit(IDj) to prepare for registration. Then,
IDj can send a registration request to RA which will run
(Figure 9.(3)) the DGTOne.Join(skRA, gpkG, IDj , vstIDj) to
handle the enrollment of the group member IDj . RA would
update GMG accordingly (to mainly append its transformed
identity αIDj

into the registration list IDLG) and return the
generated secrets (ksαIDj

, αIDj) to IDj . The registered party
IDj can then use (Figure 9.(4)) the passwords generated by
DGTOne.PwGen(sdiIDj

, Tct) at any verifiers (determined by
specific applications), where the i-th password seed sdiIDj

is computed by running the algorithm GetSD(skIDj
, Tct).

To verify a password pwi,z
IDj

= (p̄wi,z
IDj

, riIDj
, Ci

αIDj
), the

verifier should first download (Figure 9.(5)) the supple-
mentary verification materials Vi, {MPIxi

j
}j∈[U] from RA

at the beginning of the i-th verification epoch related to
pwi,z

IDj
. Then, the verifier can run the verification algorithm

DGTOne.Verify(gpkG, pw
i,z
IDj

, T,RLG) to check the password
(also shown in Figure 9.(5)).

Additionally, there are two steps executed upon special
demands. A party may ask RA to withdraw its mem-
bership of the group G. Upon receiving the revocation
request, RA runs (Figure 9.(6)) the revocation algorithm
DGTOne.Revoke(skRA, IDj , gpkG,RLG,GMG) to revoke a
party IDj . This step is almost computationally free since
RA only needs to change a bit of the revocation list to
RLG[IDj] := 1, and stop updating MPI for IDj thereafter.
When necessary, at the request of a third party (e.g., hos-
pital and judicial institution), RA can open (Figure 9.(7))

the identity of the generator of a password by running
DGTOne.Open(skRA, gpkG, pw

i,z
IDj

′
, T).

Remarks. For usage privacy, we require the verifier to down-
load the Merkle proof generation ingredients of the current-
active verification epoch, i.e., Vi, {MPIxi

j
}j∈[U], and PfgpkMTIi , in

the algorithm Verify. Although RA can generate the complete
Merkle proof PfiIDj

for the verifier once she receives the
identity-ciphertext Ci

αIDj
as a query token, she would know the

usage status of IDj’s password. Because each group member
may not want RA to know with whom she is communicating.
Fortunately, the verifier can download those ingredients once
and use them to verify all passwords in that verification
epoch. If the storage is allowed, RA can also compute those
ingredients of multiple upcoming verification epochs to ease
the download frequency. Besides, each group does not have
any interaction with RA during the password usage phase, no
privacy on the password usage status is leaked to RA.
Correctness. Generally speaking, the correctness of DGTOne
is guaranteed by that of its building blocks. First, an honest
group member’s password p̄wi,z

IDj
is generated from a TOTP

instance, so its verification correctness is ensured by that of the
underlying TOTP scheme. Furthermore, the verification point
of such a TOTP password p̄wi,z

IDj
is uniquely bound to a leaf of

the Merkle tree gpkG via the collision feature of the chameleon
hash function CH. The security and the correctness of CH and
the Merkle tree can guarantee an honest verification point will
be correctly verified. Second, as the registration authority is
honest, all identity ciphertexts {Ci

αIDj
}IDj∈HML are encrypted

by RA honest without ambiguity. Therefore, the correctness of
ASE ensures that each identity ciphertext of an honest group
member can be decrypted to its identity.

C. Security Analysis

Theorem 1: Assuming that the building blocks TOTP,
H1, {Fi}i∈[2], MT, ASE, and PM are secure, then DGTOne
provides anonymity.

Here, we briefly introduce the high-level idea behind the
proof of Theorem 1. The full proof is presented in the
supplementary document (Appendix C). Basically, the security
of PRF, ASE, and H1 ensures that a PPT adversary cannot
infer any useful information regarding the challenge TOTP
seeds from the outputs of these building blocks with non-
negligible probabilities. We can first change the outputs of
pseudo-random function families {Fi} to truly random values
to exclude the collision among secret keys of group members
and enable the security reduction to other building blocks
(e.g., ASE and CH). The security of CH implies that each
verification point is uniquely bound to a leaf of Merkle tree
gpk. Without the encryption key of ASE, the adversary cannot
decrypt the identity ciphertext. Moreover, the mapping relation
between a verification point and a leaf is random, so the
adversary cannot gain a non-negligible advantage over 1/2
to guess the identity linked to a leaf.

Theorem 2: DGTOne provides traceability under the same
assumptions of Theorem 1.

The security proof of this theorem is similar to that of
Theorem 1. Nevertheless, we just additionally reduce the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

Fig. 9: Overview of DGTOne with U = 4 and E = 2. Assuming that ID3 and ID2 join the group in the 2-th verification epoch (VE).

unforgeability of DGTOne to that of the TOTP scheme and the
Merkle tree, respectively. The proof of Theorem 2 is included
in the supplementary document (Appendix D).

V. USE CASES

In the following, we list a few (but not limited to) typical
use cases of DGTOTP. We are going to show that, unlike other
password-based anonymous authentication schemes (e.g., [27],
[30], [28], [31]), DGTOTP can be not only used as a building
block to construct secure application protocols (in the first
two use cases) but also used independently (in the third one).
In the first use case, we will also discuss the limitations and
solutions for enhancing the security of DGTOTP in practice.
Anonymous-Client Authenticated Confidential Channel
Establishment. Unlike the typical application of TOTP (e.g.,
[6], [7]) that authenticates a party (as the second authentication
factor) to a fixed verifier (at which the party is registered),
DGTOTP is designed to be a public verifiable authentication
factor. Namely, a password of a DGTOTP scheme can be
verified by an arbitrary verifier at a time. We will describe
our idea in conjunction with the traditional password-based
client authentication over Transport Layer Security Proto-
cols (TLS) [32], [27], where TLS can only provide server
authentication only. Here, we formally consider TLS as a
server-only authenticated confidential channel establishment
(S-ACCE) protocol [15], [16], [33]. That is, we will design
a client-anonymous authentication scheme based on S-ACCE
to yield an anonymous-client ACCE (ACACCE) scheme. Note
that the verifier just takes the role of ‘server’ in S-ACCE, but
it does not have to be a real web server – namely, the verifier
could be any entities (e.g., roadside unit in V2X) due to the
public verifiability of DGTOTP. Once such a secure channel
is established, the group member can continuously send any
messages (e.g., printing or psychological counseling data) over
that channel efficiently and anonymously.

However, naively sending a (D)GTOTP password over TLS
may be subject to password replay attacks. That is, a malicious
verifier receiving a DGTOTP password can use it at other
verifiers. To avoid such a security issue, the first application of
GTOTP in [12] adopts a commitment-based secure application
scenario in which a group member commits a message using
a GTOTP password as a commitment key and opens the
password after it was expired, so the password cannot be

abused anymore. However, an obvious shortcoming of such
an application is the authentication latency. Here, we are
motivated to provide a solution for securely using DGTOTP
passwords in real-time. Our idea is to use introduce a third-
party and semi-honest authentication server (AS) to ensure
a one-time usage of a DGTOTP password. Meanwhile, we
need a hash function H2 : {0, 1}∗ → {0, 1}κ to implement
a commitment scheme. We shall use the AS’s authenticated
public database (e.g., each item is digitally signed by the AS)
to record the usage status (i.e., a hash of the password and a
one-time pseudonym of the verifier) of a GTOTP password.
However, we only require the AS to provide a ‘time-based
append-only’ feature for efficiency. That is, the AS only needs
to guarantee that an added item will be stored without being
modified or deleted for a short time (e.g., the life span ∆s of
a password). Before verifying a password, an honest verifier
should check the corresponding usage status on the AS. I.e., if
its usage status is stored on the AS, the verifier would reject the
session immediately; otherwise, it should generate and upload
the usage status to the AS.

The above resulting scheme can be used as a privacy-
preserving federated identity management system (note that
regular FIMS also involves an AS). We present the detailed
steps of the above security enhancement solution in the
supplementary document (Appendix E).

Privacy-Preserving Proof of Location. In [12], Yang et al.
have demonstrated that the GTOTP can be used as a build-
ing block to construct distributed privacy-preserving proof
of location (PPPoL) schemes. A PPPoL scheme itself finds
application in numerous real-world scenarios, such as secure
measurement of the location proximity of a (say borrowed)
mobile device to the local network [34] and location attestation
in Vehicular Ad Hoc Networks [35]. A simple way to improve
Yang et al.’s PPPoL scheme is to replace YJN+ with DGTOne
to support dynamic group management. However, another
drawback of Yang et al.’s scheme is the long delay in the
location proof verification. As aforementioned, Yang et al.’s
scheme leverages a GTOTP-based commitment scheme to
authenticate location proofs of witnesses. Consequently, the
committed location proofs can only be verified after the
corresponding passwords are expired, introducing a long delay
in verification. There’s potential to alleviate this delay by
applying our above DGTOTP based ACACCE scheme to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

boost the message authentication and verification involved
in the Yang et al. scheme. We leave such a straightforward
replacement as future work.
Privacy-preserving Contact Tracing. We notice that DG-
TOTP can also be used alone to realize approximately private
automated contact tracing for pandemics (e.g., Covid-19), as
long as the majority of the participants are honest.Specifically,
users can keep sending and collecting DGTOTP passwords
with short-range communication methods (e.g., Bluetooth).
Once a patient is confirmed, RA can publish its historical DG-
TOTP passwords (together with many dummy passwords for
privacy) so that others can check whether they received his/her
passwords or not. Thanks to the traceability of DGTOTP, the
identities of contacts can also be revealed by RA from the
passwords (unlike other decentralized private contact tracing
scheme [36], [37]) to alert them of a health check. Meanwhile,
the privacy of all contacts (incl. the patient) can be preserved
to each other because of the anonymity of passwords.

VI. EVALUATION

In this section, we experimentally evaluate the performance
of our proposed DGTOTP scheme DGTOne. We also include
a comparison to the static GTOTP scheme YJN+ [12].
Experiment Setup. We implemented DGTOne with the
Bouncy Castle FIPS Java API [38]. The source codes of our
implementation are made available at [39]. Our experiments
are conducted respectively on a 64-bit machine with an In-
tel(R) i7-10700 at 2.90GHz at 2.2 GHz and 16 GB RAM to
benchmark the algorithms (i.e., RASetup, Join, Revoke, Open,
DGTOne.Verify) of RA and verifier, and on mobile phone
with Snapdragon 855 CPU (up to 2.84GHz) and 8GB RAM to
benchmark the algorithms (i.e., PInit, GetSD and PwGen) of
a group member. In our implementation, we instantiate the
TOTP scheme with the T/Key [7]. The hash functions H1

and H2 are implemented with SHA256. We implemented the
chameleon hash function using the discrete logarithm based
one in [29] (but using the NIST elliptic curve P-256 for
the implementation), which has a fast collision generation
algorithm. The prime numbers (p, q) used in the chameleon
hash function are set to be 256-bit and 3072-bit (respectively)
for providing 128-bit security [40]. We also use AES-GCM-
SIV [41] with 128-bit key to implement the authenticated
symmetric encryption ASE. The permutation scheme PM is
implemented by the Shuffle function of Java.

For comparison, we adopt similar TOTP parameters as
in [12] in the experiments. Specifically, we set the life span
∆e = 300 seconds (s) for each verification point and the
password generation interval ∆s = 5s, which lead to the
passwords in a chain N = ∆e

∆s
= 60. The parameters U and

E are variables. We just benchmark DGTOne with a proof-
of-concept prototype without considering any optimizations
utilizing all available CPU cores.

A. Performance of DGTOne

RA Setup Time. The setup time of RA is determined by
the parameters U and E, respectively. We show the con-
crete costs of DGTOne.RASetup in Figure 10 (a). Since the

DGTOne.RASetup can be run at any time by RA (which is
also powerful), it is still practical.

Fig. 10: Runtimes of RA Setup and GM Update.

Group Member Initialization Time. The DGTOne.PInit runs
only one Setup algorithm of PRF. Since PRF is implemented
by AES with 128-bit key, the setup of AES needs 23.4
microseconds (µs) on the mobile phone.
TOTP Seed Generation Time. The TOTP secret seed genera-
tion runs one PRF evaluation. To meet the secret seed of TOTP,
a group member needs to run twice the encryption algorithm
of AES to generate a 256-bit secret seed of the TOTP scheme.
Hence, the runtime of GetSD is 1.8 µs.
Join Time. The cost of the join procedure is constant as well,
which is dominated by one encryption algorithm of AES to
generate a 128-bit secret key of a group member. As a result,
the runtime of DGTOne.Join is approximately 0.9µs.
Password Generation Time. For simplicity, we benchmark
the runtime of DGTOne.PwGen without caching any TOTP
passwords. However, each group member can cache the
TOTP secret seed, identity ciphertext, and the chameleon
hash collision to save computational costs for continuous
password usage. In the worst case, a group member needs
to run N = 60 times of H1 to go through the whole
chain to get the first password being used in one verification
epoch. Note that the computation of each element in the set
{keiIDj

, reiIDj
, dvpiαIDj

, rdiαIDj
} needs two AES encryptions to

meet the corresponding spaces. Nevertheless, a group mem-
ber only needs to run N/2 hash evaluations in the average
case with caching materials. Overall, the worst-case costs of
DGTOne.PwGen requires 10 AES encryptions, 1 AES-GCM-
SIV encryption, 62 hashes, and 1 chameleon hash collision
evaluation. The runtimes of the password generation algorithm
DGTOne.PwGen in the worst case and the average case are
152µs and 105.5 µs (respectively), which are practical. Of
course, each group member can pre-generate the passwords
being used in the next verification epoch during her idle time
as in [7], [12] to boost password generation. We do not take
into account such a time-space trade-off since the storage cost
is considered a priority.
Group Management Message Update Time. For verifi-
cation, RA is required to update Vi, {MPIxi

j
}j∈[U], and

PfgpkMTIi in the group management message GMG. However,
we assume that RA will cache the most expensive computa-
tions (i.e., the generation of sub-Merkle trees) to save time
and compute the less costly ones on the fly. So RA can
cache all roots of sub-Merkle trees and the corresponding
Merkle proofs {MTIi,PfgpkMTIi}i∈[E]. The computations of Vi

and {MPIxi
j
}j∈[U] involve 1 permutation, in the worst case,

U chameleon hash setups and evaluations, 9U + 1 AES

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

encryptions, and U encryptions of ASE. The runtime of group
management message update time is shown in Figure 10 (b).
For simplicity, we assume that the RA only cache the roots of
sub-Merkle trees.

Fig. 11: Runtimes of Verification.
Password Verification Time. Similar to the password gener-
ation, the performance of DGTOne.Verify needs to compute
N = 60 hash evaluations in the worst case, and compute
N/2 times on average in the TOTP verification. Meanwhile,
it needs 1 hash evaluation and 1 chameleon hash evaluation
to compute the Merkle tree leaf. Moreover, the verifier should
run U -1 times hash evaluations to generate the missing part of
the Merkle proofs in the worst case (in particular for the first
time in that verification epoch). The Merkle proof generation
procedure of the verifier is only needed to run once in each
verification epoch, and can run at idle time. Therefore, it has
not much impact on the performance of password verification.
Alternatively, RA could compute the whole sub-Merkle tree for
the verifiers, but it may incur more communication overhead.
Since U might not be big, we assume that the verifier has
enough storage to cache the internal node of the Merkle tree.
Such a cache strategy can facilitate the computation of the
other Merkle proofs (PfMTIi

vpi
IDj

), which is free in the average

case. The verification of the Merkle proof associated with the
password requires logU ·E (i.e., the height of the Merkle tree
gpkG) times hash evaluations. Since the costs are dominated by
the parameter U in the worst case, we fix E = 630, 720 (for a
six-year usage) in our measurements. We show the worst-case
and average-case performance of DGTOne.Verify in Figure 11
(a) and (b), respectively. The password verification time is in
the order of milliseconds (ms) which is efficient.
Identity Open Time. The procedure of DGTOne.Open is sim-
ilar to DGTOne.Verify. However, it does not need to generate
the Merkle proof anymore and has one more ASE decryption
operation. The runtimes of it are shown in Figure 12.

Fig. 12: Runtimes of Open.

Storage and Communication Costs. We consider the com-
munication costs from the view of group members and ver-
ifiers, respectively. The communication overhead of a group
member is determined by the size of each password, and it
consists of 1 hash value with 256 bits, an identity ciphertext
with 352 bits, and a 256-bit chameleon hash collision. It is

864 bits in total. The communication and storage costs of
the verifier are mainly dominated by the sizes of a password
and the group management messages downloaded from RA.
In particular, the downloaded message consists of U + logE

hash values, U chameleon public keys (each of which has 520
bits), and U ciphertexts. Figure 13 shows the storage costs of
RA and verifier, respectively.

Fig. 13: Storage Costs of RA and Verifier.
We further evaluate the communication cost over an LTE

network with 16Mbps bandwidth. For our first application,
the TLS connection is implemented using javax.net.ssl to
protect the communication between the corresponding entities
(considering the aforementioned use cases). Approximately,
the communication delays between the group member and
the verifier are 0.45s (without TLS) and 0.9s (over TLS),
respectively. The data transfer time between the RA and the
verifier (with TLS) for U = 5000 and E = 525600 (as an
example) is 1.25s. This delay is linear in U . However, such
transmission is carried by each verifier only one time per
verification epoch, and can be done at idle time.

B. Comparison

We mainly compare the group management setting and
performance of our scheme with that of the YJN+ scheme [12]
in the worst (Wo) case and the average (Av) case, respectively.
We notice that YJN+ is the only scheme that allows us to
make a relatively fair comparison because they satisfy similar
security properties and functionalities. Both DGTOne and
the YJN+ scheme provide anonymity and traceability, but
DGTOne can satisfy them under a stronger dynamic group
management setting.

We conduct the performance comparison based on the
main operations of the corresponding algorithms. Here we
compare the GVSTGen algorithm of the YJN+ scheme with
DGTOne.RASetup since both of them aim to generate the
group public key (which is known as the group verification
state in the YJN+ scheme). The comparison results are shown
in Table II (which also implies the results shown in the
above figures). Meanwhile, we let ‘BFc’ and ‘BFi’ denote the
costs of the check and the insert algorithms of Bloom filter,
respectively. Moreover, we let ‘ASEe’ and ‘ASEd’ denote the
encryption and decryption algorithms of AES-GCM-SIV, re-
spectively. The cost of the setup and the encryption algorithms
of AES is denoted with ‘AESs’ and ‘AESe’, respectively. We
also let ‘CHe’, ‘CHs’, and ‘CHc’ denote the costs of the
evaluation, setup, and collision algorithms of CH. The cost
of permutation is denoted with ‘PM’.

Although DGTOne can offer more complex dynamic (Dyn)
group management than the static (Sta) group management in
the YJN+ scheme, it does not introduce significantly higher

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

TABLE II: (D)GTOTP Comparison

Schemes Group
Setting

Execution Time Storage Cost (Byte) Password
Size (Byte)RASetup PInit Revoke Join GetSD PwGen GMUpdate Verify Open Member Verifier RA

YJN+ Sta

Av 2U · E ·H + ϕ ·Bfi E(60H + 2AESe) - - 2AESe 30H - (32 + log
U·E
ϕ)H

+1BFc
(32 + log

U·E
ϕ)H

+1BFc+ 1ASEd 1004E · log
U·E
ϕ

+16
1.44ϵ · ϕ 16

76+

32 log
U·E
ϕ

Wo 2U · E ·H + ϕ ·Bfi E(60H + 2AESe) - - 2AESe 60H + 2AESe - (62 + log
U·E
ϕ)H

+1BFc
(62 + log

U·E
ϕ)H

+1BFc+ 1ASEd

DGTOne Dyn

Av
(6U · E + U + 1)AESe
+U · E · CHe+ E · PM

+(E · U − 1)H + U · E · CHs
1AESs 1Ass 1AESe 2AESe 30H

(9U + 1)AESe+ 1PM
+U(CHe+ASEe+ CHs)

(32 + logU·E)H
+1CHe

(32 + logU·E)H + 1CHe
+1PM + 1ASEd+ 3AESe

36 32 + 460U
+32logE

16 + 32E · logE
+32E + 5U

108

Wo
(6U · E + U + 1)AESe
+U · E · CHe+ E · PM

+(E · U − 1)H + U · E · CHs
1AESs 1Ass 1AESe 2ASEe

62H + 10AESe
+1ASEe+ 1CHc

(9U + 1)AESe+ 1PM
+U(CHe+ASEe+ CHs)

(62 + logU·E +U)H
+1CHe

(62 + logU·E)H + 1CHe
+1PM + 1ASEd+ 3AESe

overheads. In particular, for password generation, DGTOne
incurs only a single additional chameleon hash collision eval-
uation (involving only some modular additions and multipli-
cations) and a few more efficient symmetric cryptographic
operations. As RA is powerful, the additional costs incurred
are tolerable. The costs increased to the verifier are also not
substantial. Moreover, our scheme has the advantage of shorter
passwords sent by each group member. This is achieved by
outsourcing the computation of the Merkle proof of a password
to RA and the verifier, respectively.

VII. RELATED WORK

(Group) Time-based One-time Passwords. To overcome the
weakness of server compromise threat, the recent time-based
one-time passwords schemes prefer to adopt asymmetric key
settings that can originate from Lamport construction [3]. One-
time passwords (OTP) as an important authentication factor
has a long research history that can date back to the seminal
work by Lamport [3]. In recent years, Yu et al. [42] proposed
a Time-based OTP authentication via Secure Tunnel (TOAST)
to use the seed value stored on mobile phones to create OTP.
Sun et al. [43] presented an OTP solution called TrustOTP to
securely implement (existing) OTP schemes (e.g., S/Key [44]
and HMAC-based TOTP [6]) over smartphones that can resist
malicious mobile OS. Kogen et al. [7] revisited the Lamport
scheme and proposed a variant with a tight security reduction
in the random oracle model. Jin et al. [8] presented the new
proof of the Lamport scheme in the Standard Model and
innovatively used it to create a new cryptographic application
called proof of aliveness.

However, the above-mentioned traditional TOTP schemes
cannot provide anonymity since a party will only use her
TOTP passwords at the server (verifier) where she registered.
Erdem et al. [30] develop a cloud-based OTP service called
OTPaaS for users. To achieve privacy, the users in OTPaaS
need to register different pseudonyms and user-memorable
passwords at the service provider and OTP provider. However,
it cannot provide usage privacy against the OTP provider since
the OTP provider needs to pair a user profile with a specific
service provider. Besides, OTPaaS is only designed for single-
sign-on applications without considering some important se-
curity properties and functionalities of DGTOTP (i.e., group
membership proofs, traceability, and public verifiability). In
order to achieve lightweight anonymous authentication with
group membership proofs, Yang et al. [12] recently gen-
eralized the asymmetric TOTP to a group setting to yield
a new cryptographic notion, named GTOTP. However, the
first GTOTP construction introduced by Yang et al. does
not support dynamic group management, and suffers a large
storage overhead at each group member.

Other Anonymous Authentication Techniques. In view of
the importance of identity privacy protection in real life, it has
always been valued by cryptographers. After decades of devel-
opment, many related anonymous authentication technologies
have been proposed. A classic technology to achieve identity
privacy is to use pseudonyms [22], [45], [46] to anonymously
identify entities, which are usually implemented based on
the existing Public Key Infrastructure (PKI). That is, each
entity has a long-term fixed identity certificate issued by a
Certificate Authority (CA) used as its main certificate, and it
also has a set of short-term identity certificates for temporary
use as a pseudonym. By frequently replacing pseudonymous
certificates, entities can avoid privacy threats such as long-term
tracking and identity linking. However, common pseudonym
technologies are not required to provide either group member-
ship proofs or traceability, unlike DGTOTP.

For the client-server authentication scenario (i.e., without
RA), anonymous password-based authenticated key exchange
(APAKE) [47], [48], [31] is proposed to achieve anonymous-
client session key establishment with user-memorable pass-
words. However, to realize client anonymity, these schemes
leverage expensive public cryptographic primitives (such
oblivious transfer [47], [49], oblivious pseudo-random func-
tions [50], [31] and smooth projective hashing function [48],
[51]). Hence, APAKE protocols may not be efficient enough
for resource-constrained devices. Also, they are not suitable
for devices in Cyber-physical Systems that do not use user
passwords. Moreover, the password verifier in APAKE has to
be the server where the client is registered, so it cannot provide
public verifiability. On the contrary, one of our motivations
for DGTOTP is to achieve public verifiability, so that it can
be used in many distributed applications (as presented in
Section V) in which the verifiers are post-determined and can
be arbitrary entities.

Another important cryptographic technique related to
anonymous authentication is Group Signature (GS) proposed
by Chaum and Heyst [17], which allows a party to anony-
mously sign a message on behalf of a group. To study the
provable security of group signatures, Bellare et al. [21] first
defined a formal security model of static group signatures in
2003, which formally formulated many security threats faced
by group signatures as two security properties: anonymity and
traceability. In this paper, Bellare et al. proposed a generic
group signature construction that can convert ordinary single-
user digital signatures into group signatures through non-
interactive zero-knowledge proof technology (NIZK). Many
recent group signature algorithms (e.g. [52], [53], [13])
adopted a similar construction framework.

We note that some public key cryptography (PKC) based
anonymous authentication technologies (such as pseudonym

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

certificates and group signatures) can be used to implement
DGTOTP. However, DGTOTP is proposed as a lightweight
anonymous authentication primitive. The main construction
challenge is the performance of the DGTOTP scheme on
resource-constrained devices. Unfortunately, most PKC-based
anonymous authentication technologies involve many expen-
sive public key cryptographic operations, so they cannot be
used efficiently on resource-constrained devices.

VIII. DISCUSSIONS

Further Discussions on Privacy Issues. We do not con-
sider privacy leakage caused by either the usage pattern of
passwords or human behaviors in one verification epoch. In
practice, a group member may run various applications using
DGTOTP within one verification epoch. If two colluding
verifiers belonging to different applications, who verify the
passwords using the identical verification point, may link
the behaviors of the corresponding group member across
applications to learn extra privacy information, thus increasing
the threats of breach of anonymity. Group members should
also be aware of this kind of threat while using DGTOTP
passwords. Such privacy leakage due to usage patterns also
exists in other pseudonym schemes. To mitigate the privacy
leakage within one verification epoch, a naive solution is to
shorten the lifespan of verification epochs (say one password
per verification epoch). However, this solution may not be
fit for the applications (e.g., distributed privacy-preserving
proof of location [12]) that need multiple passwords of a
verification epoch. Alternatively, a standard solution can be
letting RA create multiple DGTOTP instances (which can run
in parallel) for group members, so each group member can
use disjoint DGTOTP instances in different applications. The
group member can select an available DGTOTP instance for
each application during the verification epoch without binding
it to a specific application.

Comparison with (Anonymous) Client Authentication
Schemes. We compare our client authentication scheme (i.e.,
the first use case shown in Section V) with the password-
based anonymous client authentication schemes [27], [28]. In
addition, we also list the performance of the standard HMAC-
based TOTP scheme [6], and two (T)OTP-based authentication
schemes TOAST [42] and OTPaaS [30] over secure channels
for performance comparison. Meanwhile, we assume that the
HMAC-based TOTP is used to instantiate the generic TOAST
and OTPaaS frameworks in our comparison. We show the
comparison results in Table III. We assume each tuple stored at
the AS is signed using ECDSA to provide integrity. We let GE
and mGE denote the exponentiation and multi-exponentiation
in a multiplicative group, respectively. And Let ‘ECM’ denote
a point multiplication in ECC. We abuse TLS to denote the
cost of establishing a secure channel using it. In the com-
parison, we mainly compare the security properties regarding
anonymity and traceability, and the password usage privacy
(UPriv) to RA (or IdP). We also compare the main performance
on computation overheads for client authentication and client
communication (Comm) over TLS. Password verifiability im-
plies the usage scope in practice. The main difference among

the compared protocols is the password type which determines
the applications of the designed scheme. That is, our scheme
is designed for the device of clients (with high entropy
passwords). The other two constructions [27], [28] are based
on user-memorable passwords (with low entropy). So our
scheme can be either used alone for machine authentication,
or used as a second authentication factor to strengthen the
user-centric client authentication schemes. Nevertheless, our
scheme provides more security guarantees and has fewer
client computation overheads. Although HMAC-based TOTP,
TOAST, and OTPaaS are more efficient than DGTOTP, they
cannot provide group membership proofs, traceability, and
public verifiability as DGTOTP.

IX. CONCLUSIONS

In this paper, we have defined the security notion for a
dynamic group time-based one-time passwords scheme (DG-
TOTP) by extending the framework of static GTOTP [12].
An efficient DGTOTP is proposed to satisfy the security of
our defined model without random oracles. Our proposal can
achieve constant-sized storage for group members (via an
elaborately tailored outsourcing approach) compared to the
previous static GTOTP scheme. We also presented a secure
DGTOTP password application approach with low latency
based on the context of the traditional client authentication us-
ing passwords over TLS, that can particularly resist password
replay attacks in an arbitrary-verifier setting. This can make
DGTOTP more practical in the real world. However, since
DGTOTP passwords are publicly verifiable, they can be used
as a generic tool to build other distributed privacy-preserving
application protocols. That is, the verifier in such an applica-
tion can be any entities beyond a web server. Nevertheless, we
encourage readers to explore more applications of DGTOTP.

As DGTOTP is in its early stages of development, there are
still many open questions. For example, it might be interesting
to construct a DGTOTP scheme with stronger security (such
as membership privacy [53] and non-frameability [13]). It is
also worthwhile to devise a DGTOTP solution with constant
communication costs at the verifiers. Another open challenge
is to optimize the maximum number of members that can join,
particularly for a long life span, while ensuring efficiency.

REFERENCES

[1] C. Garman, K. G. Paterson, and T. van der Merwe, “Attacks only get
better: Password recovery attacks against RC4 in TLS,” in Security.
USENIX, 2015, pp. 113–128.

[2] S. Ji, S. Yang, T. Wang, C. Liu, W. Lee, and R. A. Beyah, “PARS:
A uniform and open-source password analysis and research system,” in
ACSAC. ACM, 2015, pp. 321–330.

[3] L. Lamport, “Password authentication with insecure communication,”
Commun. ACM, vol. 24, no. 11, pp. 770–772, 1981.

[4] Google, “Google 2-step verification,” https://www.google.com/landing/
2step/, 2018, Accessed: Dec. 2018.

[5] Duo, “Duo security,” https://duo.com/, 2018, Accessed: Dec. 2018.
[6] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-

based one-time password algorithm,” 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6238

[7] D. Kogan, N. Manohar, and D. Boneh, “T/key: Second-factor authenti-
cation from secure hash chains,” in CCS. ACM, 2017, pp. 983–999.

[8] C. Jin, Z. Yang, M. van Dijk, and J. Zhou, “Proof of aliveness,” in
ACSAC. ACM, 2019, pp. 1–16.

https://www.google.com/landing/2step/
https://www.google.com/landing/2step/
https://duo.com/
https://tools.ietf.org/html/rfc6238

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 16

TABLE III: Comparison of Password-based (Anonymous) Client Authentication.

Password
type

Security Properties Group membership
proof

Public
Verifiable

Computation Overhead Comm (Bytes)
Anony Trace UPriv Client Verifier RA

[6] Machine-usage × × × × × 2H + 1TLS 2H + 1TLS - 32
[42] Machine-usage

+ User-Memorable × × × × × 2H + 1TLS 2H + 1TLS - 44

[30] Machine-usage
+ User-Memorable

√
× × × × 2H + 2TLS 2H + 2TLS 2H + 2TLS 44

[27] User-Memorable
√

× × × × 3GE + 2mGE + 1TLS 3GE + 1mGE + 1TLS - 8192
[28] User-Memorable

√
× × ×

√
3ECM + 2H + 2TLS 6ECM + 2H + 2TLS 4ECM + 2H + 2TLS 129

Ours Machine-usage
√ √ √ √ √ 64H + 10AESe+ 2ECM

+1ASEe+ 1CHc+ 1TLS
(64 + logU·E +U)H

+1CHe+ 2ECM + 2TLS
(9U + 1)AESe+ 1PM + 1ECM

+U(CHe+ASEe+ CHs)
108

[9] G. Brassard, P. Høyer, and A. Tapp, “Quantum cryptanalysis of hash
and claw-free functions,” in LATIN. Springer, 1998, pp. 163–169.

[10] A. Hosoyamada and Y. Sasaki, “Finding hash collisions with quantum
computers by using differential trails with smaller probability than
birthday bound,” in EUROCRYPT. Springer, 2020, pp. 249–279.

[11] X. Dong, S. Sun, D. Shi, F. Gao, X. Wang, and L. Hu, “Quantum
collision attacks on aes-like hashing with low quantum random access
memories,” in ASIACRYPT. Springer, 2020, pp. 727–757.

[12] Z. Yang, C. Jin, J. Ning, Z. Li, A. Dinh, and J. Zhou, “Group time-based
one-time passwords and its application to efficient privacy-preserving
proof of location,” in ACSAC. ACM, 2021, pp. 497–512.

[13] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth, “Foundations
of fully dynamic group signatures,” J. Cryptol., vol. 33, no. 4, pp. 1822–
1870, 2020.

[14] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodol-
ogy, revisited,” J. ACM, vol. 51, no. 4, pp. 557–594, 2004.

[15] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” Tech. Rep., 2008.

[16] E. Rescorla, “The transport layer security (tls) protocol version 1.3,”
Tech. Rep., 2018.

[17] D. Chaum and E. van Heyst, “Group signatures,” in EUROCRYPT.
Springer, 1991, pp. 257–265.

[18] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: an asymmetric PAKE
protocol secure against pre-computation attacks,” in EUROCRYPT.
Springer, 2018, pp. 456–486.

[19] D. Wang and P. Wang, “Two birds with one stone: Two-factor authentica-
tion with security beyond conventional bound,” IEEE Trans. Dependable
Secur. Comput., vol. 15, no. 4, pp. 708–722, 2018.

[20] K. Emura, T. Hayashi, and A. Ishida, “Group signatures with time-
bound keys revisited: A new model, an efficient construction, and its
implementation,” IEEE Trans. Dependable Secur. Comput., vol. 17,
no. 2, pp. 292–305, 2020.

[21] M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group
signatures: Formal definitions, simplified requirements, and a construc-
tion based on general assumptions,” in EUROCRYPT. Springer, 2003,
pp. 614–629.

[22] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[23] ——, “Showing credentials without identification: Signatures transferred
between unconditionally unlinkable pseudonyms,” in EUROCRYPT.
Springer, 1985, pp. 241–244.

[24] M. Khodaei, H. Noroozi, and P. Papadimitratos, “Scaling pseudonymous
authentication for large mobile systems,” in WiSec. ACM, 2019, pp.
174–184.

[25] E. Verheul, C. Hicks, and F. D. Garcia, “IFAL: issue first activate later
certificates for V2X,” in EuroS&P. IEEE, 2019, pp. 279–293.

[26] M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in EUROCRYPT.
Springer, 2006, pp. 409–426.

[27] Z. Zhang, K. Yang, X. Hu, and Y. Wang, “Practical anonymous password
authentication and TLS with anonymous client authentication,” in CCS.
ACM, 2016, pp. 1179–1191.

[28] Z. Zhang, Y. Wang, and K. Yang, “Strong authentication without temper-
resistant hardware and application to federated identities.” in NDSS,
2020.

[29] H. Krawczyk and T. Rabin, “Chameleon signatures,” in NDSS. The
Internet Society, 2000.

[30] E. Erdem and M. T. Sandikkaya, “Otpaas - one time password as a
service,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 743–756,
2019.

[31] M. I. G. Vasco, A. L. P. del Pozo, and C. Soriente, “A key for john
doe: Modeling and designing anonymous password-authenticated key
exchange protocols,” IEEE Trans. Dependable Secur. Comput., vol. 18,
no. 3, pp. 1336–1353, 2021.

[32] S. Gajek, M. Manulis, A. Sadeghi, and J. Schwenk, “Provably secure
browser-based user-aware mutual authentication over TLS,” in AsiaCCS.
ACM, 2008, pp. 300–311.

[33] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the TLS 1.3 handshake protocol candidates,” in CCS. ACM,
2015, pp. 1197–1210.

[34] B. R. Waters and E. W. Felten, “Secure, private proofs of location,”
Tech. Rep., 2002. [Online]. Available: www.cs.princeton.edu/research/
techreps/TR-667-03

[35] F. Boeira, M. Asplund, and M. P. Barcellos, “Vouch: A secure proof-
of-location scheme for vanets,” in MSWiM. ACM, 2018, pp. 241–248.

[36] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli et al., “Decentralized
privacy-preserving proximity tracing,” Data Eng. Bull., vol. 43, no. 2,
pp. 36–66, 2020.

[37] R. L. Rivest, D. Weitzner, L. Ivers, I. Soibelman, and M. Zissman, “Pact:
Private automated contact tracing,” 2020.

[38] B. Donlan and ForClojureGuy., “Legion of the bouncy castle inc. bc-fja
1.0.2 (bouncy castle fips java api),” https://downloads.bouncycastle.org/
fips-java/BC-FJA-UserGuide-1.0.2.pdf, 2022.

[39] “Source codes of dgtotp,” https://github.com/I123T/DGTOTP, accessed:
2022-10-1.

[40] E. Barker and W. C. Barker, Recommendation for Key Management:
Part 2 – Best Practices for Key Management Organizations. US De-
partment of Commerce, Technology Administration, National Institute
of Standards and Technology, 2019.

[41] S. Gueron, “Aes-gcm-siv implementations (128 and 256 bit),” 2018.
[Online]. Available: https://github.com/Shay-Gueron/AES-GCM-SIV

[42] M. L. T. Uymatiao and W. E. S. Yu, “Time-based otp authentication via
secure tunnel (toast): A mobile totp scheme using tls seed exchange and
encrypted offline keystore,” in ICIST. IEEE, 2014, pp. 225–229.

[43] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming smart-
phones into secure one-time password tokens,” in CCS. ACM, 2015,
pp. 976–988.

[44] N. Haller, “The s/key one-time password system,” 1995.
[45] E. Zimmer, C. Burkert, T. Petersen, and H. Federrath, “PEEPLL:

privacy-enhanced event pseudonymisation with limited linkability,” in
SAC. ACM, 2020, pp. 1308–1311.

[46] Z. Yang, T. T. A. Dinh, C. Yin, Y. Yao, D. Yang, X. Chang, and J. Zhou,
“LARP: A lightweight auto-refreshing pseudonym protocol for V2X,”
in SACMAT. ACM, 2022, pp. 49–60.

[47] D. Viet, A. Yamamura, and H. Tanaka, “Anonymous password-based
authenticated key exchange,” in INDOCRYPT. Springer, 2005, pp.
244–257.

[48] X. Yang, H. Jiang, Q. Xu, M. Hou, X. Wei, M. Zhao, and K. R. Choo,
“A provably-secure and efficient verifier-based anonymous password-
authenticated key exchange protocol,” in Trustcom/BigDataSE/ISPA.
IEEE, 2016, pp. 670–677.

[49] G. Couteau, P. Rindal, and S. Raghuraman, “Silver: Silent VOLE and
oblivious transfer from hardness of decoding structured LDPC codes,”
in CRYPTO. Springer, 2021, pp. 502–534.

[50] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries,”
J. Cryptol., vol. 23, no. 3, pp. 422–456, 2010.

[51] J. Katz and V. Vaikuntanathan, “Smooth projective hashing and
password-based authenticated key exchange from lattices,” in ASI-
ACRYPT. Springer, 2009, pp. 636–652.

[52] M. Bellare, H. Shi, and C. Zhang, “Foundations of group signatures: The
case of dynamic groups,” in CT-RSA. Springer, 2005, pp. 136–153.

[53] M. Backes, L. Hanzlik, and J. Schneider-Bensch, “Membership privacy
for fully dynamic group signatures,” in CCS. ACM, 2019, pp. 2181–
2198.

[54] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “Authenticated confiden-
tial channel establishment and the security of TLS-DHE,” J. Cryptol.,
vol. 30, no. 4, pp. 1276–1324, 2017.

www.cs.princeton.edu/research/techreps/TR-667-03
www.cs.princeton.edu/research/techreps/TR-667-03
https://downloads.bouncycastle.org/fips-java/BC-FJA-UserGuide-1.0.2.pdf
https://downloads.bouncycastle.org/fips-java/BC-FJA-UserGuide-1.0.2.pdf
https://github.com/I123T/DGTOTP
https://github.com/Shay-Gueron/AES-GCM-SIV

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 17

[55] S. Schäge, J. Schwenk, and S. Lauer, “Privacy-Preserving Authenticated
Key Exchange and the Case of IKEv2,” in PKC. Springer, 2020, pp.
567–596.

[56] C. Culnane and S. A. Schneider, “A peered bulletin board for robust use
in verifiable voting systems,” in CSF. IEEE, 2014, pp. 169–183.

[57] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in CCS. ACM, 2017, pp. 719–728.

[58] A. Kiayias, A. Kuldmaa, H. Lipmaa, J. Siim, and T. Zacharias, “On
the security properties of e-voting bulletin boards,” in SCN. Springer,
2018, pp. 505–523.

Xuelian Cao received her MS degree in Computer
Application Technology from Southwest University,
in 2021. She is currently studying for a Ph.D.
degree in Computer Science and Technology at the
Southwest University. Her research interests include
Blockchain and applied cryptography.

Zheng Yang received his Ph.D. degree from Horst
Görtz Institute for IT Security, Ruhr-University
Bochum, in 2013. He is currently a Professor with
the College of Computer and Information Science,
Southwest University, China. He was a post-doc
researcher with the University of Helsinki, and the
Singapore University of Technology and Design. His
main research interests include information security,
cryptography, and privacy.

Jianting Ning (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Engineering, Shanghai Jiao Tong University, in
2016. He is currently a Professor with the Key Lab-
oratory of Analytical Mathematics and Applications
(Ministry of Education) and the Fujian Provincial
Key Laboratory of Network Security and Cryptol-
ogy, College of Computer and Cyber Security, Fujian
Normal University, Fuzhou, China, and also the
City University of Macau, Macau, China. Previously,
he was a Research Scientist with the School of

Computing and Information Systems, Singapore Management University, and
a Research Fellow with the Department of Computer Science, National Uni-
versity of Singapore. He has published papers in major conferences/journals,
such as ACM CCS, NDSS, ASIACRYPT, ESORICS, ACSAC, TIFS, and
TDSC. His research interests include applied cryptography and information
security.

Chenglu Jin received his Ph.D. degree from the
Electrical and Computer Engineering Department,
University of Connecticut, USA, in 2019. He is
currently a tenure-track researcher in the Computer
Security Group in Centrum Wiskunde & Informatica
(CWI Amsterdam), the Netherlands. His research in-
terests are cyber–physical system security, hardware
security, and applied cryptography

Rongxing Lu (Fellow, IEEE) is the Acting Director
of Canadian Institute for Cybersecurity (CIC), a
Mastercard IoT Research Chair, and a full professor
at the Faculty of Computer Science (FCS), Univer-
sity of New Brunswick (UNB), Canada. Before that,
he worked as an assistant professor at the School
of Electrical and Electronic Engineering, Nanyang
Technological University (NTU), Singapore from
April 2013 to August 2016. Rongxing Lu worked as
a Postdoctoral Fellow at the University of Waterloo
from May 2012 to April 2013. He was awarded the

most prestigious “Governor General’s Gold Medal”, when he received his PhD
degree from the Department of Electrical & Computer Engineering, University
of Waterloo, Canada, in 2012; and won the 8th IEEE Communications Society
(ComSoc) Asia Pacific (AP) Outstanding Young Researcher Award, in 2013.
Dr. Lu is an IEEE Fellow. His research interests include applied cryptography,
privacy enhancing technologies, and IoT-Big Data security and privacy. He
has published extensively in his areas of expertise with H-index 86 and
citations 33,100+ from Google Scholar as of January 2024, and was the
recipient of 10 best (student) paper awards from some reputable journals and
conferences. Dr. Lu served/ serves as the Chair of 2022-2023 IEEE ComSoc
CIS-TC (Communications and Information Security Technical Committee),
and the founding Co-chair of IEEE TEMS Blockchain and Distributed Ledgers
Technologies Technical Committee (BDLT-TC). Dr. Lu is the Winner of 2016-
17 Excellence in Teaching Award, FCS, UNB.

Zhiming Liu ’s area of research is software theory
and methods. He is known for his work on Transfor-
mational Approach to Fault-Tolerant and Real-Time
Systems Design and Analysis, Probabilistic Dura-
tion Calculus for System Dependability Analysis,
Relational Semantics of Object-Oriented Programs,
and rCOS Method for Model-Driven Development.
His current interests focus on modelling, design and
analysis of Human-Caber-Physical Systems which
ever evolving hierarchical architecture of hetero-
geneous resources and components. Zhiming Liu

studied Mathematics in university. He holds a MSc in Computing Science
from the Software Institute of CAS (1988) and a PhD in Computer Science
from the University of Warwick (1991). He joined Southwest University as a
professor of computer science in 2016, and he heads the development of the
Centre for Research and Innovation in Software Engineering (RISE). Before
Southwest University, he had worked in three universities in the UK and the
United Nations University – International Institute for Software Technology.

Jianying Zhou is a professor and center director
for iTrust at Singapore University of Technology and
Design (SUTD). He received PhD in Information Se-
curity from Royal Holloway, University of London.
His research interests are in applied cryptography
and network security, cyber-physical system security,
mobile and wireless security. He is a co-founder &
steering committee co-chair of ACNS. He is also
steering committee chair of ACM AsiaCCS, and
steering committee member of Asiacrypt. He has
served 200+ times in international cyber security

conference committees (ACM CCS & AsiaCCS, IEEE CSF, ESORICS, RAID,
ACNS, Asiacrypt, FC, PKC etc.) as general chair, program chair, and PC
member. He is associate editor-in-chief of IEEE Security & Privacy. He has
also been in the editorial board of top cyber security journals including IEEE
TDSC, IEEE TIFS, Computers & Security. He is an ACM Distinguished
Member. He received the ESORICS Outstanding Contribution Award in 2020,
in recognition of his contributions to the community.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 18

SUPPLEMENTARY DOCUMENT FOR
Dynamic Group Time-based One-time Passwords

A LISTS OF NOTIONS

We list the main notations used in this paper in Table IV.

TABLE IV: Some Important Notations.

G Group identity
ID, αID The original identity and transformed identity (in terms of join time)

of a group member
Ts, Te Start and end times of a protocol instance, respectively
∆e, ∆s Life-spans of verification point and password, respectively.
U,E,N Numbers of group members, verification epochs, and passwords

(in one verification epoch), respectively.
vpID Verification point of a group member ID
gpkG Group public key
sdiID The i-th secret seed for generating the i-the verify-point of ID.
skID Secret key for generating the secret seeds of ID.
pwi,z

ID The z-th password of ID in the i-th verify-epoch.
Ti, Tct The i-th time slot and the current system time slot, respectively.
GM Group management message
MPI A list of public keys of chameleon hash and identity ciphertexts
IDL A list of registered group members’ identities
RL Revocation list

B A DGTOTP VARIANT WITH CACHE

If each group member has enough storage space, DGTOne
can also be straightforwardly modified to let each group
member cache the Merkle proofs, and chameleon collisions
and public key pairs during the join procedure. That is, a
group member IDj can generate and include all her verification
points in vstIDj

= {vpiIDj
}i∈[E] in the PInit algorithm. So

that RA can compute all chameleon collisions, and append the
corresponding Merkle proofs, and chameleon hash collisions
and public key pairs into AxIDj

which will be stored by IDj

locally. As a result, the storage cost of each group member
has a magnitude in O(E · logU). Consider a scenario with
U = 5, 000 (for a small group) and E = 105, 120 (for one-
year usage under ∆e = 5min), the size of DSTG in GMG

is around 108.5MB (with the implementation parameters in
Section VI), which might be also acceptable.

Another storage optimization strategy that each group mem-
ber could adopt is to cache the Merkle proofs segmented
by a fixed number of verification epochs (e.g., one week).
In this way, each group member can periodically submit the
verification points used for the next segment to RA and receive
back the corresponding Merkle proofs and chameleon hash
public keys. As after the registration is done, RA and a
group member can share a symmetric key which can used
to derive a key for generating message authentication code
to authenticate the subsequent verification points in other
segments. Hopefully, such a poof-segmented caching strategy
can reduce the storage cost of each group member to be less
than 1MB. We stress that this strategy is different from letting
a group member join many times, since each join operation
would consume a transformed identity (This may affect the
size of each sub-Merkle tree).

C PROOF OF THEOREM 1

We present proof with the following sequence of games
starting from the real Anony game. We will gradually change
the games one after another until the advantage of the adver-
sary in a game is vanished. Meanwhile, we let BKAnony

i be an
event that the Anony game returns 1 in the i-th game.
Game 0. This game is the real Anony game. We have that

Pr[BKAnony
0] = 1/2 + AdvAnonyA,DGTOne(κ, setpms).

Game 1. This game proceeds exactly like the previous game,
but the challenger aborts if two F2.Setup executions output
the same key. This abort event would occur with negligible
probability, otherwise we can break the security of PRF.
Consider the case that the PRF challenger runs F2.Setup to
get a challenge key k∗. F can run F2.Setup algorithms herself
U − 1 times to get PRF keys k1, . . . , kU−1. Then, the abort
event implies that there are two identical keys (k′1, k

′
2) in the

set (k∗, k1, . . . , kU−1). With a probability 2/U , either k′1 or
k′2 equals to k∗. If so, the adversary knows the k∗ that can
enable her to break the security of PRF. Due to the security
of F2, we have

Pr[BKAnony
0] ≤ Pr[BKAnony

1] +
U

2
· AdvPRFA,F2

(κ, 1).

Game 2. We change this game from the previous game by
adding one abort condition. Namely, the challenger aborts if
it fails to guess which two honest group members’ TOTP
instances that are involved in the Anony Challenge query.
Specifically, the challenger needs to guess correctly not only
the transformed identities α ˆID0

and α ˆID1
(from at most U

group members) but also the verification epoch i∗ ∈ [E] (from
E verification epochs), which will be chosen in the Anony
Challenge query. The probability of a correct guess is bound
to 1/2U · E. Hence, we have that

Pr[BKAnony
1] = 2U · E · Pr[BKAnony

2].

Game 3. In this game, we change the PRF-derived secrets
(from RA’s secret seed kRA) in the set {ksα ˆID0

, ksα ˆID1
} to

truly random values. We claim that if there exists an adver-
sary that can distinguish this game from the previous game
then she must be able to break the PRF security of F1.
To prove this claim, we can further play three sub-games
{G2.0, G2.1, G2.2}, in which G2.0 is identical to Game 2.
In G2.1 and G2.2, we change {ksα ˆID0

, ksα ˆID1
} to random

values, respectively. So G2.2 is just identical to this game.
Any adversary D that can distinguish between G2.0 and G2.1
can be used to build an efficient algorithm B to break the PRF
security of F1. B can simulate the Anony game for D. As for
the generation of kr, B can query Challenge(G||“KS”||α ˆID0

)
to get r∗b and return it to D. Meanwhile, B can simulate the
rest of the values using the secret keys of her own choice.
If r∗b is a result of the F1 then the simulation is identical to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 19

G2.0, otherwise the game is the same as G2.1. B can forward
the distinguishing result of D to its PRF challenger to win the
PRF game by our assumption. Similarly, we can generalize
this argument to any game pair G2.x and G2.(x − 1) (for
1 ≤ x ≤ 2), which can prove the claim of this game. Since
there are PRF-derived secrets, we have that

Pr[BKAnony
2] ≤ Pr[BKAnony

3] + 3 · AdvPRFA,F1
(κ, 1).

Game 4. The game proceeds exactly as the previous
game, but we further change the outputs of F1 in the set
{kei∗α ˆID0

, kei
∗

α ˆID1

, rei
∗

α ˆID0

, rei
∗

α ˆID1

, dvpi
∗

α ˆID0

, dvpi
∗

α ˆID1

, rdi
∗

α ˆID0

, rdi
∗

α ˆID1

,

rki
∗

α ˆID0

, rki
∗

α ˆID1

} with truly random values, where i∗ denotes
the guessed challenge verification epoch. With the similar
arguments in the Game 3, we have that

Pr[BKAnony
3] ≤ Pr[BKAnony

4] + 10 · AdvPRFA,F1
(κ,E).

The modifications in this game imply that all those values
(including the chameleon keys) are sampled randomly to be
independent of the secret seed of the corresponding group
members.
Game 5. We change this game from the previous game by
using the real verification points (v̂pi

∗

ˆID0
, v̂pi

∗

ˆID1
) and two ran-

dom values (riˆID0
, ri

∗

ˆID1
) to compute their assigned Merkle tree

leaves via CH (instead of computing the chameleon collision).
Since the chameleon secret keys, and dummy verification
point and randomness pairs are replaced with truly random
values. The random values (r∗0 , r

∗
1) are statistically close with a

negligible distance negl(κ) to the chameleon collisions derived
following the specification of DGTOne. Namely, we have that

Pr[BKAnony
4] ≤ Pr[BKAnony

5] + negl(κ).

For all other chameleon collisions (including those from
malicious group members joined via AddMM queries), the
challenger can use its secret key to compute the collision
as in the original DGTOne (as all chameleon hash keys are
independently generated).
Game 6. In this game, we let the challenger abort if
the dummy verification point and randomness pairs in the
set {dvpi

∗

ˆIDj
, rdi

∗

ˆIDj
}0≤j≤1 result in the same chameleon hash

value. Obviously, if such an abort event occurs with non-
negligible probability, then it can be used to break the security
of CH. As the randomness for generating the chameleon keys
are replaced with random values, we can set pki

∗

α ˆID0

as a
chameleon-challenge key pk∗. The other chameleon key pairs
(ski

∗

α ˆID1

, pki
∗

α ˆID1

) are generated as before. By assumption, we

have that ski
∗

α ˆID1

· rdi∗ˆID1
+ dvpi

∗

ˆID1
= ski

∗

α ˆID0

· rdi∗ˆID0
+ dvpi

∗

ˆID0
.

Then, we can compute ski
∗

α ˆID0

:=
ski∗

α ˆID1

·rdi∗
ˆID1
+dvpi∗

ˆID1
−dvpi∗

ˆID0

rdi∗
ˆID0

.

Namely, we have that

Pr[BKAnony
5] ≤ Pr[BKAnony

6] + AdvCHSA,CH(κ).

Game 7. The game proceeds exactly as the previous game,
but the challenge always uses ˆID0 to generate the ciphertext
used by the Anony Challenge query without considering the
challenge-bit b. If there exists an adversary A who can
distinguish this game from the previous game then we can

make use of it to build an algorithm C to break the security
of ASE. Specifically, C can query the identities (α ˆID0

, α ˆID1
) to

the ASE challenger and use the result to simulate the challenge
ciphertext used in the Anony Challenge query. All other
identity-ciphertexts can be obtained by calling an encryption
oracle simulated by the ASE challenger. Let bc be the bit
sampled by the ASE challenger. Note that if bc = 0, the
simulated game is identical to the previous game, otherwise it
equals to this game. Thus, we have that

Pr[BKAnony
6] ≤ Pr[BKAnony

7] + AdvIND-CCA
A,ASE (κ,E).

The changed game implies that the adversary cannot infer any
information regarding the identity from the ASE ciphertext.
Game 8. This game proceeds as before but the challenger
randomly chooses a leaf from the two leaves that are meant to
use for ˆID0 and ˆID1 without using the result of the permeation
scheme. If there exists a PPT adversary A that can distinguish
this game from the previous game, then we build an efficient
algorithm B using A to break the security of PM. During the
simulation for A, B can query a PM-challenge query with
input ({1, . . . , U}, w0, w1), where w0 and w1 refer to the
joined orders of ˆID0 and ˆID1, respectively. The leaf chosen
by B has a probability 1/2 to be failing to match the output
of PM, then the game is equal to this game. In this case, A’s
output bit b′ (we assume b′ = 0 denotes the previous game)
can be used to help B to output the right yβ0 with a non-
negligible probability by assumption. Namely, if b′ = 0 B
submits the index of the leaf chosen by itself to PM Finalize;
otherwise, it submits the other one. Thus, we have that

Pr[BKAnony
7] ≤ Pr[BKAnony

8] + AdvUPA,PM(κ).

Finally, we claim that the leaf positions assigned to ver-
ification points do not leak any information regarding their
owners. For the extreme case that all group members except
for ˆID0 and ˆID1 are malicious and created by adversary via the
AddMM procedure, there are still at least two leaf positions
which are randomly assigned to the verification points of ˆID0

and ˆID1. Namely, the probability that a leaf is bound to a
verification point is at least 1/2. In other words, the adversary
cannot gain any non-negligible advantage over 1/2 in this
game, so that we have Pr[BKAnony

8] = 1/2.
Putting together the advantages in all the above games can

only result in negligible advantage, which proves Theorem 1.

D PROOF OF THEOREM 2

We denote with BKTrace
i an event that the i-th (modified)

Trace game outputs 1.
Game 0. This game is original Trace game. I.e., we have that

Pr[BKTrace
0] = AdvTraceA,DGTOne(κ, setpms).

Game 1. This game proceeds as the same as the previous
game but the challenger aborts if two honest group members
have the same PRF keys. By applying the similar argument in
the Game 1 of the proof of Theorem 1, we have that

Pr[BKTrace
0] ≤ Pr[BKTrace

1] +
U

2
· AdvPRFA,F2

(κ, 1).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 20

Game 2. Let vp∗ be the verification point derived from
the pw∗ (provided by the adversary in the Finalize query.
We change this game from the previous game by adding an
abort rule to let challenger abort if the following conditions
are satisfied: i) H1(vp

∗||CID∗
j
||i∗) = H1(vp

u
IDj
||Cu

IDj
||u); ii)

and ID∗ is registered by AddHM, where i∗ and u can be
arbitrary indices. The adversary which can make such an abort
event with non-negligible probability can be used to break the
security of H1. Thus, we have that

Pr[BKTrace
1] ≤ Pr[BKTrace

2] + AdvCRHA,H1
(κ).

Game 3. This game proceeds exactly as the previ-
ous game but the challenger aborts if A outputs a pass-
word pw∗ = (¯pw∗i,z

IDj
, riID∗ , Ci

ID∗ ,PfiID∗) for T ∗ s.t.: i)
Verify(gpkG, ¯pw∗i,z

IDj
, T ∗,RLG) = 1; ii) PfiID∗ is not computed

by the challenger (in either AddHM or AddMM procedures).
If the adversary can lead to the abort event occurring with
a non-negligible probability, then we can make use of A to
break the security of the Merkle tree scheme. Thus, we have
that

Pr[BKTrace
2] ≤ Pr[BKTrace

3] + AdvMT Forge
A,MT (κ).

Game 4. The challenger proceeds with this game as before
but aborts if it fails to guess the owner and the verification
epoch of the forged password of the adversary. The overall
probability of a correct guess is bound by 1

U ·E . Thus, we
have that Pr[BKTrace

3] = U · E · Pr[BKTrace
4]. We particularly

denote the guessed verification epoch by i∗-th and the target
uncorrupted group member by ID∗, respectively.
Game 5. The game proceeds exactly as the previous
game, but we further change the outputs of F1 in the
set {kei∗αID∗ , re

i∗

αID∗ , dvp
i∗

αID∗ , rd
i∗

αID∗ , rk
i∗

αID∗} with truly random
values, where i∗ denotes the guessed challenge verification
epoch. With similar arguments in the Game 3 of the proof of
Theorem 1, we have that

Pr[BKTrace
4] ≤ Pr[BKTrace

5] + 5AdvPRFA,F1
(κ,E).

Game 6. We change this game from the previous game
by using the real verification point v̂piID∗ and random value
riID∗ to compute its assigned Merkle tree leaves via CH. This
change is just conceptual since the random value riID∗ is
statistically close to the collision generated as the original
scheme. Namely, we have that

Pr[BKTrace
5] ≤ Pr[BKTrace

6] + negl(κ).

Game 7. In this game, we let the challenger abort if the adver-
sary submit a password pw∗ resulting in a (vpi

∗

IDA
, ri

∗

IDA
}) s.t.

CH.Eval(pki
∗

αID∗ , vp
i∗

IDA
, ri

∗

IDA
) = CH.Eval(pki

∗

αID∗ , vp
i∗

ID∗ , riID∗).
If such an abort event occurs with non-negligible probability,
then it can be used to break the security of CH. I.e., the
collision event can be exploited to extract the chameleon secret
key. Namely, we have that

Pr[BKTrace
6] ≤ Pr[BKTrace

7] + AdvCHSA,CH(κ).

As a result, the adversary cannot bind a Merkle tree leaf with
verification point and identity ciphertext chosen by herself.

Game 8. The challenger proceeds with this game as before as
before, but aborts if an adversary A outputs a valid password
p̄w∗ of ID∗ at some time T ∗ such that T ∗ is greater than all
previously opened password values. Obviously, such a tuple
(p̄w∗, T ∗) can be used to break the TOTP security. We can
build an algorithm B by running A as a sub routine and
simulate the modified Trace game (as the previous game).
B can appropriately query GetNextPw() from the TOTP
challenger to simulate the passwords of ID∗ before time T ∗.
By applying the security of TOTP, we have that

Pr[BKTrace
7] ≤ Pr[BKTrace

8] + AdvTOTP Forge
A,TOTP (κ, Ts, Te,∆s).

The advantage of this game is 0 since the adversary cannot
manipulate the elements in any passwords of uncorrupted
group members in this game. This concludes the proof.

E SECURITY ENHANCEMENT FOR ACACCE

The formal security definition of anonymous client authenti-
cation over TLS can be found in [27]. Informally speaking, an
anonymous client authentication protocol should prevent any
PPT adversary from either impersonating an honest (uncor-
rupted) group member in a group G to the server or inferring
the identity of an honest group member from the protocol
transcript (We refer the readers to [27] for more details).5

Fig. 14: Overview of Anonymous Client Authentication with
DGTOTP.

We assume that a semi-honest authentication server (AS)
exists to sign all stored elements with its private key. We
specifically describe the main steps of our solution below (See
also in Figure 14):

1) A group member IDj first establishes a S-ACCE secure
channel SCH(IDj ,Va) with an arbitrary verifier Va;

2) IDj computes a commitment CM i,z
IDj

:= H2(pw
i,z
IDj

,
“used”) as a password-usage token, samples a random-
ness rv

$← {0, 1}∗ and computes a randomized identifier
of the verifier IVa

:= H2(Va||rv);

5Zhang et al. [27] defines the anonymous client authentication in authenti-
cated key exchange (AKE). As discussed in [54], [55], an AKE security model
can be transformed into an ACCE security model with slight modifications
(i.e., change the formulation of session key security to the security of data
sent over the established credential channel). Since the DGTOTP passwords
are the data sent over the TLS channel, so we prefer to use the security notion
of ACCE.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 21

3) IDj sends (CM i,z
IDj

, IVa
) to Va over SCH(IDj ,Va), i.e.,

the tuple is encrypted by an ASE scheme and the resulting
ciphertext is protected by a MAC scheme based on the
session key of SCH(IDj ,Va);

4) Va checks whether CM i,z
IDj

has been recorded at the AS.
If so, it rejects in SCH(IDj ,Va) immediately. Otherwise,
it stores the tuple (CM i,z

IDj
, IVa

) at the AS and notifies
IDj to open the password;

5) Upon receiving the open notification from SCH(IDj ,Va),
IDj queries the tuple (CM i,z

IDj
, IVa

) to the AS. If such a
tuple exists at the AS, then IDj opens the pwi,z

IDj
to Va

over SCH(IDj ,Va);
6) Finally, Va verifies whether CM i,z

IDj
= H2(pw

i,z
IDj

,
“used”) to complete the client authentication.

The performance of the above scheme at group members
would be much more efficient than the previous anonymous
client authentication (e.g., [28] using NIZK (involving many
exponentiations). Our solution only needs a few hash function
evaluations to generate the DGTOTP passwords and some
operations (e.g., regular signature verification) for verifying
the integrity of the tuple (CM i,z

IDj
, IVa

) stored at the AS.
However, unlike [28], we do not need a trustworthy identity
provider (IdP) to online generate the assertions for clients (that
may leak the usage privacy to the IdP). Since the stored data
at AS are random values, both RA and AS in our scheme
do not know the password usage status (e.g., usage time
and communication partners) of group members. We further
summarize comparison results in Appendix VIII.

For intuition and simplicity, we only illustrate our security
enhancement based on S-ACCE. It might be interesting to
extend the above idea to build a mutual anonymous authenti-
cated credential channel establishment scheme using DGTOTP
passwords of both parties. That is, it is needed to tailor the
messages stored at the AS to ensure the one-time usage of
each password. We leave the detailed construction as future
work.

In practice, the AS can also be realized by public bulletin
board (PBB) [56], [57], [58]. Some volunteers (say group
members) can monitor the historical data of the PBB to
detect malicious behaviors of it. Of course, some of the
existing PBBs (e.g., [56], [57], [58]) can be slightly weakened
(by allowing short-time storage of data) to meet the above
requirements.

Security Analysis. We assume that the AS provides time-
based integrity, the S-ACCE protocol and the DGTOTP
scheme are secure, and H2 can be modeled as a random oracle,
then the DGTOTP password used in the above scheme can
resist the password replay attacks and provide anonymous
client authentication. It is straightforward to see that the
client anonymity is realized by DGTOne. So we focus on
the security analysis against password replay attacks. We can
slightly modify our DGTOTP model to formulate the password
replay attacks. Specifically, we can change the ReceivePw(pw)
procedure to use a variable cntpw to record the number of
times that a password pw has passed the verification. We add
another condition in Finalize(b∗, pw∗, T ∗) for outputting 1 if
cntpw∗ > 1.

As the DGTOTP scheme is secure, no PPT adversary can
query H2 with an unused password of an honest group mem-
ber. The tuple (CM i,z

IDj
, IVa

) means that the password will be
verified by Va. And the security of AS can ensure that CM i,z

IDj

is uniquely and securely stored. This fact can preliminarily
convince the verifier at step 4 that the corresponding password
has not been used before and will not be used at other places.
The verifier can further verify the commitment at the step 6
once the password is securely opened within the channel
SCH(IDj ,Va). Last but not least, the identifier IVa can not
only help the group member to the password-usage target (at
the AS) but also hide the identity of the verifier to achieve the
usage privacy of the password. So no one (incl. RA) can infer
where the password is used from the values stored at the AS.
Here we mainly present the proof idea of the above scheme.
The formal security definition and the full proof are left as
future work.
Other Security Considerations. For efficiency, we do not
consider a separate open authority to handle the traceability
of malicious group members in DGTOne. In some real-world
settings, RA might not be fully trusted. A well-known way
widely used in group digital schemes is to use two independent
authorities to deal with the tasks of group member manage-
ment and malicious member trace separately. This needs to
incorporate the other authority known as open authority (OA).
Like in many group digital signature schemes (e.g., [21], [53]),
a group member can use a public encryption scheme (PKE)
to encrypt its identity based on OA’s public key, and creates a
proof using non-interactive zero knowledge (NIZK) system to
show that the ciphertext is well-formed while carry out the join
procedure with RA. In this way, it is possible to achieve public
verifiable traceability as well. However, a side effect of such a
solution is that it will introduce much more either storage or
computation overheads (with caching or computing the PKE
ciphertexts and NIZK proofs). So it may violate the original
motivation of DGTOTP on providing lightweight anonymous
authentication. Efficiency is our primary concern in this work.
We leave the concrete DGTOTP construction with stronger
security for future work.

	Introduction
	Preliminaries
	Security Notions of Dynamic Group Time-based One-time Passwords
	An Efficient DGTOTP Scheme
	Construction Overview
	Detailed Algorithms
	Security Analysis

	Use Cases
	Evaluation
	Performance of DGTOne
	Comparison

	Related Work
	Discussions
	Conclusions
	References
	Biographies
	Xuelian Cao
	Zheng Yang
	Jianting Ning
	Chenglu Jin
	Rongxing Lu
	Zhiming Liu
	Jianying Zhou

	 A: Lists of Notions
	 B: A DGTOTP Variant with Cache
	 C: Proof of Theorem 1
	 D: Proof of Theorem 2
	 E: Security Enhancement for ACACCE

