
Computers & Operations Research 167 (2024) 106633

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Centralized multi-visitor trip planning with activity reservations in crowded
destinations
Joris Slootweg a,b,c,∗, Rob van der Mei a,c, Caroline J. Jagtenberg d, Frank Ottenhof b

a CWI, Stochastics, Science Park 123, Amsterdam, 1098 XG, Netherlands
b The Driving Force, J.N. Wagenaarweg 6, Uithoorn, 1422 AK, Netherlands
c Vrije Universiteit, Mathematics, De Boelelaan 1111, Amsterdam, 1181 HV, Netherlands
d Vrije Universiteit, School of Business and Economics, Operations Analytics, De Boelelaan 1111, Amsterdam, 1181 HV, Netherlands

A R T I C L E I N F O

Keywords:
OR in service industries
Combinatorial optimization
Tourist trip design
Orienteering problem
Practical applications

A B S T R A C T

We study the problem of centralized planning of leisure trips in congested areas for visitor groups with
reservations for activities. We develop an algorithm that through a combination of customization and
coordination can improve average happiness considerably. Extensive numerical experimentation with both
synthetic and real-life data show that our algorithm strongly outperforms the classical First-Come-First-Served
reservation policy, both in terms of visitor happiness and in terms of fairness among visitors. Moreover, our
results show that our algorithm leads to good solutions for small-sized problem instances (with errors typically
within 5%–10% from an optimal solution obtained via Integer Linear Programming). Finally, the computational
effort with regard to number of visitors is bounded by the capacity and the number of activities, while the
increase in computation time for the number of attractions is bounded by the average number of activities
that fit into a trip. As a result, our approach leads to good solutions within minutes in realistic settings with
more than 10 thousand visitors a day.
1. Introduction

Several cities suffer from negative effects of over-tourism. In those
cities residents or visitors feel like the quality of experiences deterio-
rates because of the number of visitors (Goodwin, 2017). In Dichter and
Manzo (2017) five methods to cope with over-tourism are mentioned:
(1) smooth visitors over time, (2) spread visitors across sites, (3) adjust
prices to balance supply and demand, (4) regulate accommodation sup-
ply, and (5) limit access and activities. We will focus on an algorithmic
approach to facilitate the first two methods that can be used in a
personal electronic travel guide. For optimal spreading of visitors over
time and space a centralized decision agent is needed. Since industry
partners think such a centralized agent is possible if the benefits are
clear, we assume such an agent exists.

Personal electronic travel guides can assist with this task by pro-
viding recommendations, generating a route and allowing visitors to
customize such a route (Kenteris et al., 2011). The route-generation
functionality of these applications is studied as the tourist trip design
problem. This problem is often modeled as a profitable tour or an ori-
enteering problem (Gavalas et al., 2014). In many of these applications
only a single trip at a time is considered. However, to facilitate spreading
visitors over time and locations our algorithm should consider other

∗ Corresponding author at: CWI, Stochastics, Science Park 123, Amsterdam, 1098 XG, Netherlands.
E-mail address: joris.slootweg@cwi.nl (J. Slootweg).

visitors as well. Hence, effective trip generation functionality should
consider the interest of all visitors, the availability of the activities, and
the congestion generated by their trips. When generating these trips, a
proposed algorithm should customize based on individual preferences,
while at the same time coordinate between them. Although trip gen-
eration has been studied quite extensively, algorithms that coordinate
between visitors have received far less attention.

Besides considering multiple people at the same time, such a cen-
tralized system needs to be able to do reservations as well. Doing
reservations for slots ensures that people can do their recommended
trip and at the same time this can provide an incentive to join the
system by providing users priority access. Therefore, a trip-planning
system should be able to interact with booking systems. In tourism,
slot management is already a widely adopted mechanism. Hence, an
algorithm that generates trips while spreading visitors over time and
attractions should also be able to perform this task based on slot
management. In this case, a trip generated by an algorithm can di-
rectly result in a set of bookings at the activities. To the best of our
knowledge, the combination of orienteering multiple agents with time
slot reservations has not been studied yet.
vailable online 28 March 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2024.106633
Received 31 July 2023; Received in revised form 25 March 2024; Accepted 26 Mar
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ch 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
mailto:joris.slootweg@cwi.nl
https://doi.org/10.1016/j.cor.2024.106633
https://doi.org/10.1016/j.cor.2024.106633
http://creativecommons.org/licenses/by/4.0/


Computers and Operations Research 167 (2024) 106633J. Slootweg et al.

b
t
g
p
F
b
r
(
a
g
s
u
p
s

Finally, these algorithms can only be implemented in practice if they
scale very well to large numbers of visitors. Since popular cities or
theme parks have millions of visitors per year (Rubin, 2019; Robino,
2019), handling ten-thousand or more visitors should be possible.
To the best of our knowledge three papers studied multi-agent ori-
enteering (Luo et al., 2022; Wang et al., 2017; Chen et al., 2014).
However, the algorithms discussed in these papers focused on small
scale instances and require about an hour to compute solutions for
40 visitors. Therefor, scalability for these type of algorithms is an
important research gap that this paper aims to fill.

Motivated by this, the contribution of this paper is three-fold.
First, we formulate a mathematical model for multiple-visitor route
generation with activity reservations at crowded destinations. Second,
we propose an algorithm that solves this model effectively and effi-
ciently for large number of agents and attractions. Finally, we show the
benefits of a centralized approach with a case study based on tourists
in Amsterdam in cooperation with industry partners.

The remainder of this paper is organized as follows. In Section 2
we discuss previous research on algorithms for tour generation in the
tourist-trip design problem with a special focus on variants that include
congestion. Section 3 formulates the model as an ILP and Section 4
describes our solution heuristic in detail. In Section 5, the experimental
results are discussed with respect to accuracy and computation times,
using the classical FCFS policy as a benchmark for the large real-life
instance and an ILP for a small example. In Section 6 we summarize
our findings and discuss open research areas within this topic.

2. Literature review

Tourist-trip-generation and electronic tourist guides have received
much attention in literature. In Gavalas et al. (2014), a survey of algo-
rithms used for trip-generation is provided. Frequently, trip generation
is modeled as a profitable tour or an orienteering problem with additional
constraints, depending on the requirements of the specific problem. In
orienteering problems, the goal is to collect as much reward as possible
by visiting nodes with individual rewards within a travel-time limit,
where each node can only be visited once (Gunawan et al., 2016). In
the profitable tour, rewards are also obtained for visiting nodes, but
the travel time or cost contributes negatively to the objective function.
For many applications, including tourist-trip planning, additional re-
strictions to these problems are necessary, e.g., to include the opening
hours of facilities. In our case, we consider the orienteering model
more appropriate since the travel time is guaranteed to be part of the
constraints. Although reducing travel time or cost will make visitor
happier, this is indirectly achieved by optimizing the number of visits
in the orienteering problem.

Excellent surveys of variants and solution methods for the orien-
teering problem are provided in Gunawan et al. (2016) and Ruiz-Meza
and Montoya-Torres (2022). Some of the more relevant variants are the
orienteering problem with time windows, the time-dependent orien-
teering problem, and the orienteering problem with functional profits.
The orienteering problem with time windows is of particular interest
ecause it shares the similarity that visitors might have to wait before
hey can start their visit. Righini and Salani (2009) use dynamic pro-
ramming with state-space relaxation and smart initialization on this
roblem, which is capable of solving many instances to optimality.
or large instances, their algorithm can turn any incumbent infeasi-
le solution to a feasible, though possibly sub-optimal, solution by
emoving double visits. As an alternative, Ant Colony Optimization
ACO) was used in Verbeeck et al. (2017, 2014), which can deal with
considerable variety of problems. The solution quality is generally

ood. However, it is never known how close to optimal an incumbent
olution is, which makes early termination harder. Several researchers
se Iterated Local Search (ILS) to solve variants of the orienteering
roblem (Vansteenwegen et al., 2009b). This meta-heuristic delivers
olutions of decent quality very fast. However, it is highly dependent
2

on an appropriate combination of local search and shake methods. For
the problem described here, especially local search is more complicated
due to the rigidness imposed by the slot reservations. For extensions
of the problem the time-dependent orienteering problem is of interest
since it allows varying travel times for instance based on the arrival and
departure time of public transport. An example is given in Gavalas et al.
(2015), who use a more extensive time-dependent travel-time table.
Finally, the orienteering problem with functional profits is of interest,
since it allows for varying the profit dependent on the expected crowds
of a location at a given time or obtaining an associated reward when
one of the locations in a set is visited (e.g., a visit to the beach). This
problem is solved using ACO in Mukhina et al. (2019).

Algorithms that consider the capacity of the visited activities are
studied far less extensively. Usually, these are implemented by gen-
erating a single trip but adding a queuing time to the visit time,
depending on the time of arrival. An example of this approach is Testa
and Dozier (1999), where evolutionary computing is used to generate
theme-park tours with queue-awareness based on the arrival time at
an attraction. However, this study does not consider the effect that
scheduled or suggested trips have on the queues. In Chen et al. (2014)
and Varakantham et al. (2015), the effect of scheduled trips on the
queues of the activities is considered by focusing on the calculation of
a Nash equilibrium with multiple self-interested agents. Although these
agents have more knowledge than regular visitors on the effect of their
and others’ decisions on the outcome, the final result still does not
necessarily maximize the average (global) happiness. Optimization of
the average trip happiness is the objective in Wang et al. (2017). In
this study, three methods are investigated to solve the problem: (1) a
sequential algorithm, (2) an iterated local search, and (3) a probabilistic
version of ILS. However, the last two of these algorithms are not
able to handle large numbers of visitors, since the computation time
is typically more than one hour for 100 visitors and seems to scale
exponentially. The sequential algorithm is able to deal with a large
number of visitors. Furthermore, the sequential algorithm proposed
in that paper produces decent results on random scenarios. However,
in hard instances the solution quality is considerably worse compared
to the two other algorithms especially since it does not consider the
heterogeneity in visitor preferences. Luo et al. (2022) expand upon the
research done by Wang et al. (2017) by improving the computational
efficiency of their exact algorithm and proposing constructive heuristics
based on Vansteenwegen et al. (2009a) and Labadie et al. (2011) and
combining it with a Variable Neighborhood Search. However, their
proposed algorithms are only able to handle very limited numbers of
visitors.

A different approach is taken by Ruiz-Meza et al. (2021) where they
simultaneously make a pre-defined number of trips and match tourists
to them. To prevent congestion each trip has a maximum number of
participants and each location can only be visited by one trip. However,
for the goal of our algorithm their approach has several limitations. The
main one is that the algorithm does not increase the utilization of the
locations by distributing visitors over time; and second, the algorithm
cannot handle a large number of trips, making individual customized
tour generation nearly impossible. Finally, we refer to Ruiz-Meza and
Montoya-Torres (2021) for an algorithm that creates trips for groups
of tourists with heterogeneous preferences within the group. This study
only creates one trip, hence is less relevant in the multi-agent setting
that we study.

3. Problem definition and model formulation

Before visiting an area, each group of visitors indicates which activ-
ities (the set of all activities is referred to as 𝐴) they would like to do by
assigning a reward to each of them, and with how many people they are
visiting. We assume a homogeneous preference within a group, but the
preferences between different groups are heterogeneous. Furthermore,
the other input variables are (1) a travel-time table indicating the travel



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.

𝑡
t
d
i
t
w

e
a
m
𝐶
t
o
d
o
c

v
a
𝑖

S

time between all pairs of activities, (2) the start times of all possible
reservation slots, (3) their respective capacities, (4) the overall capacity
of each activity when people from multiple slots can be present at the
same time, and (5) their duration. The goal is to generate a trip for
each visitor group where the happiness is considered to be the total
reward of all the visited activities. Formulating this as an ILP leads to
the following model.

Let 𝑈 be the set of visitor groups where each group 𝑘 has size 𝑆𝑘.
Each group 𝑘 ∈ 𝑈 has a start location 𝐿start

𝑘 , an earliest start time
min
𝑘 , an end location 𝐿end

𝑘 , and an end time 𝑡max
𝑘 when he has to be

here. Note that we assume that it is always possible to reach the final
estination in time from the start position for all visitors to prevent
nfeasibility. Each group 𝑘 specifies a score 𝑃𝑖,𝑘 for each activity 𝑖, when
hey visit this activity this amount is added to their level of happiness
ith their trip.

The travel-time matrix contains entries 𝑇mode
𝑖,𝑗 indicating the travel

time from activity 𝑖 to activity 𝑗 for a specific mode. Furthermore, we
assume that modes can be switched at any stage of the trip. This is
a realistic assumption when walking, bike sharing systems, taxis or
frequent public transport are considered. We also note that visitors
do not like all modes of transport equally. So using a not preferred
mode of transport comes at a penalty. Which is very small compared
to the rewards obtained by visiting activities. Finally, this matrix is
not necessarily symmetric since activities can have different start and
end locations. However, for our experiments we do assume the triangle
inequality holds. Our ILP formulation only considers one mode of travel
since including multiple travel modes and a travel time penalty has too
much impact on computation time.

Furthermore, we define a set of time slots or batches for each
activity 𝐵𝑖, where each slot 𝑠 ∈ 𝐵𝑖 has capacity 𝐶𝑖,𝑠, start time 𝑡start

𝑖,𝑠 and
nd time 𝑡end

𝑖,𝑠 . All the time slots (𝑇 ) from which people will be present
t activity 𝑖 at the moment time slot 𝑠 starts are in 𝐽𝑖,𝑠, at each of those
oments the activity can have at most 𝐶𝑇𝑖,𝑡 people present. Notice that
𝑖,𝑠 is not sufficient since allowing the maximum number of people all

he time can lead to overcrowding and reducing 𝐶𝑖,𝑠 leads to a reduction
f daily capacity due to the slower inflow of people at the start of the
ay and less flexibility. Hence, it is not desirable. Furthermore, we have
pted to make both flexible in time in our model to allow a part of the
apacity to be reserved for other purposes.

The ILP formulation has two types of decision variables: (1) a binary
ariable 𝑥𝑖,𝑗,𝑘 that indicates that visitor 𝑘 travels from 𝑖 to 𝑗, and (2)
nother binary variable 𝑦𝑖,𝑚,𝑘 that indicates that visitor 𝑘 visits activity
at time slot 𝑚. This results in the following ILP formulation:

max
∑

𝑖∈𝐴

∑

𝑠∈𝐵𝑖

∑

𝑘∈𝑈
𝑆𝑘𝑃𝑖,𝑘𝑦𝑖,𝑠,𝑘 (1)

ubject to:
∑

𝑖∈𝐴∪𝐿end
𝑘

𝑥𝐿start
𝑘 ,𝑖,𝑘 =

∑

𝑗∈𝐴∪𝐿st
𝑘

𝑥𝑗,𝐿end
𝑘 ,𝑘 = 1 ∀𝑘 ∈ 𝑈 (2a)

∑

𝑖∈𝐴∪𝐿start
𝑘

𝑥𝑖,𝑚,𝑘

=
∑

𝑗∈𝐴∪𝐿end
𝑘

𝑥𝑚,𝑗,𝑘 =
∑

𝑠∈𝐵𝑚

𝑦𝑚,𝑠,𝑘 ∀𝑘 ∈ 𝑈,∀𝑚 ∈ 𝐴 (2b)

∑

𝑠∈𝐵𝑖

𝑦𝑖,𝑠,𝑘 ≤ 1 ∀𝑘 ∈ 𝑈,∀𝑖 ∈ 𝐴 (2c)

∑

𝑠∈𝐵𝑖

𝑦𝑖,𝑠,𝑘𝑡
end
𝑖,𝑚 + 𝑇𝑖,𝐿end

𝑘
≤ 𝑡𝑚𝑎𝑥𝑘 ∀𝑘 ∈ 𝑈,∀𝑖 ∈ 𝐴 (2d)

𝑡min
𝑘 + 𝑇𝐿st

𝑘 ,𝑖
≤

∑

𝑠∈𝐵𝑖

𝑦𝑖,𝑠,𝑘𝑡
start
𝑖,𝑗 ∀𝑖 ∈ 𝐴,∀𝑘 ∈ 𝑈 (2e)

∑

𝑠∈𝐵𝑖

𝑦𝑖,𝑠,𝑘𝑡
end
𝑖,𝑚 + 𝑇𝑖,𝑗

≤
∑

𝑦𝑗,𝑠,𝑘𝑡
start
𝑗,𝑚 + (1 − 𝑥𝑖,𝑗,𝑘)𝑀 ∀𝑖, 𝑗 ∈ 𝐴,∀𝑘 ∈ 𝑈 (2f)
3

𝑠∈𝐵𝑗
∑

𝑘∈𝑈
𝑦𝑖,𝑠,𝑘𝑆𝑘 ≤ 𝐶𝑖,𝑠 ∀𝑖 ∈ 𝐴,∀𝑠 ∈ 𝐵𝑖 (2g)

∑

𝑗∈𝐽𝑖,𝑡

∑

𝑘∈𝑈
𝑦𝑖,𝑗,𝑘𝑆𝑘 ≤ 𝐶𝑇𝑖,𝑡 ∀𝑖 ∈ 𝐴,∀𝑡 ∈ 𝑇 (2h)

𝑥𝑖,𝑗,𝑘, 𝑦𝑖,𝑠,𝑘 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝐴,∀𝑘 ∈ 𝑈,∀𝑠 ∈ 𝐵𝑖

The objective function (1) is the total visitor happiness; note that the
group size is added to the objective to prevent a strong preference for
small groups of visitors on capacity-scarce activities. In our numerical
experiments we validated that this resulted in no correlation between
group size and trip happiness (see the end of Section 5.2). Constraint
(2a) ensures that each trip starts and ends at the right locations. Con-
straint (2b) ensures that a location of a scheduled time interval is in the
route as well and that only the locations where an event is scheduled
are part of the trip. Constraint (2c) prevents multiple bookings from one
visitor for one event. Constraint (2d) ensures that the final destination is
reached in time, while constraint (2e) ensures that a visitor reaches his
or her first activity in time. Constraint (2f) ensures that an activity can
be reached in time from the previous activity. Furthermore, as a side
effect this constraint also prevents sub- and self-tours, since it enforces
strictly increasing start times. The maximum travel time plus the last
end time of an activity is sufficiently large to serve as big 𝑀 for this
constraint. Constraint (2g) ensures that the capacity of an interval is
not exceeded. Constraint (2h) ensures that at the sum of visitors at the
same time never exceeds the capacity of the activity.

4. Solution approaches

The inspiration for the algorithm comes from the following insights
based on many years of practice, consultation of experts in the tourism
industry, and early experiments with a FCFS policy:

1. Leisure trips with activities tend to include a small number of
activities.

2. There is usually significant heterogeneity in the preferences be-
tween groups of visitors. This opens the way to customize and
optimally coordinate trips for different visitor groups.

3. People accept the fact that in congested settings they cannot do
everything they want to do.

4. Allowing visitors to book a congested activity which they do not
value highly hurts total visitor happiness when it prevents others
who value it highly from visiting that activity

Based on these realistic assumptions, we propose an iterative scheme in
which at every iteration routes of visitors are expanded with only one
activity from a small subset of their top rated activities. For this scheme,
we need a trip-generating algorithm with route expanding heuristics
that are fast while delivering decent quality solutions. Furthermore, we
require computationally efficient methods to escape local optima in a
given trip.

4.1. Efficient single agent route expanding heuristics

We use two greedy route expansion heuristics: (1) Insert an activity
at the first feasible place in the route given the already planned activ-
ities, capacities and start and end location of the visitor. The activities
are inserted based on their ranking, inserting the one with the highest
reward first. (2) A novel minimum blocking heuristic where the time
slot is chosen such that we minimize the loss of options for unscheduled
activities (explained in more detail in the next paragraph).

When we plan activity 𝑖 for visitor group 𝑘, we want to pick the time
slot that gives the highest number of possibilities for scheduling other
activities. This is equivalent to selecting the time slot that blocks the
minimum number of time slots at other activities for this visitor. When
time slot 𝑡 of activity 𝑖 is booked, all time slots of activity 𝑗 that start
between 𝑡start

𝑖,𝑡 − 𝑇𝑗𝑖 − 𝑑𝑗 and 𝑡end
𝑖,𝑡 + 𝑇𝑖𝑗 will become unavailable. We take
the fraction of slots that fall in this interval relative to the total number



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.

c
b

𝐵

v
a
𝛼
s
f
t
𝛼
p
o

u

S
S

S

S
S
S
S

4

a
t
c

s

I
w
o
a
b
v
t
r
w
a
t
I
f
i
c
u
𝑥
u

i
i
c
a

h
t
i
b

(
i
v
6
i
o
o
l
a
m
t

t
i
v
o
r
u
e
d
s
t
a

of available time slots of activity 𝑗 to calculate a blocking fraction 𝑏𝑗 .
Since in practice the number of activities of interest to a visitor group
is quiet limited. This algorithm is made more efficient by considering
only activities (𝐴𝑟𝑒𝑙

𝑘 ) that are not yet in the trip and have a positive
ontribution to their happiness (𝑆𝑖,𝑘 > 0). This allows us to calculate a
locking score for a time slot 𝐵𝑖,𝑡 using the following equation:

𝑖,𝑡 =
∑

𝑗∈𝐴rel
𝑆𝑖,𝑘𝑏

𝛼𝑗
𝑗 (3)

In this equation 𝐴rel is the set of activities which the visitor wants to
isit, 𝑆𝑖,𝑘 is the reward for activity 𝑗, 𝑏𝑗 is the fraction of time slots of
ctivity 𝑗 that is blocked by selecting time slot 𝑡 at activity 𝑖. Finally,
𝑗 is a system parameter that can be used to make blocking more/less
evere depending how detrimental blocking part of your possibilities is
or that activity. For highly crowded activities 𝛼𝑗 ∈ (0, 1) will increase
he severity of blocking the available options, for uncrowded activities
𝑗 > 1 will decrease the severity of blocking, since it probably is
ossible to book this as long as there is still a time slot available. In
ur experiments we used 𝛼𝑗 = 1.

To construct a full trip for a single agent using this algorithm we
se the following stepwise procedure:

tep 1: Sort activities based on their reward
tep 2: Discard events with a reward lower than a pre-determined

cut-off point
tep 3: Calculate 𝐵𝑖,𝑡 for each time slot 𝑡 of the first activity 𝑖 using

Eq. (3)
tep 4: Choose the time slot 𝑡 where 𝐵𝑖,𝑡 is minimal
tep 5: Remove Blocked time slots from all remaining activities
tep 6: Remove activities that cannot be booked anymore from the list
tep 7: Start at Step 3 again until the list is empty

.2. Multi-agent algorithm approach

In instances where the capacity is very tight it could be wise to do
n assignment of activities to visitors without considering routing and
ime scheduling as an initialization of our algorithm. This assignment
an easily be formulated as the following ILP:

max
∑

𝑗∈𝐴

∑

𝑘∈𝑈
𝑆𝑘𝑃𝑖,𝑘𝑦𝑖,𝑘 (4a)

ubject to:

1 ≤
∑

𝑖∈𝐴
𝑦𝑖,𝑘 ≤ 𝑛𝑘 ∀𝑘 ∈ 𝑈 (4b)

∑

𝑘∈𝑈
𝑆𝑘𝑥𝑖,𝑘 ≤ 𝐶𝑖 ∀𝑖 ∈ 𝐴 (4c)

𝑦𝑖,𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝑈,∀𝑖 ∈ 𝐴

n this ILP, we have binary decision variables 𝑦𝑖,𝑘 that determine
hether visitor 𝑘 goes to activity 𝑖. The input 𝑆𝑘 is the group size
f visitor group 𝑖 with, 𝑃𝑖,𝑘 is the reward visitor 𝑘 obtains by visiting
ctivity 𝑖 like before. Constraint (4b) ensures that everyone will visit
etween 1 and 𝑛𝑘 events, where the maximum number of assigned
isits can be based upon the visitor level and the duration of the
rip. Constraint (4c) ensures that the daily capacity 𝐶𝑖 of activity 𝑖 is
espected. We calculate this daily capacity based on the available slots,
here we maximize the number of total visitors while respecting 𝐶𝑖,𝑠
nd 𝐶𝑖,𝑠. In the objective function, Eq. (4a), we include the group size
o prevent the assignment from having a preference for small groups.
t is worth noting that including a visitor level in the objective allows
or diversification between different visitors if necessary. Although this
s a potentially large ILP, our numerical experiments show negligible
omputational effects (see Section 5.4). Furthermore, since it is only
sed for initialization it is possible to drop the integer constraint on
𝑖,𝑗 . In this case, solving the relaxed version and rounding the variables
4

p would speed this process up. Although this probably leads to an
nfeasible solution of this assignment problem, this will not be an
ssue for the algorithm since the addition of routing and scheduling
onstraints mean that some assigned activities need to be dropped
nyway for some visitors.

For the final solution our goal is to have a trip for each visitor with a
igh average visitor happiness. Furthermore, it is considered beneficial
o prevent especially bad trips since those visitors can in practice result
n bad publicity. The outline of the algorithm is shown in Algorithm 4.1
elow.

Algorithm 4.1 Multi-Agent Trip Planing Algorithm
1: Assign Activities to Visitors Using ILP
2: for all Visitors do
3: Create Trip With Assigned Activities
4: end for
5: for 𝑖 in { 𝑖start,… , 𝑖max } do
6: Sort Visitors on Trip Happiness
7: for all Visitors ∈ VisitorList do
8: Expand trip with one activity from the top 𝑖 Activities
9: if Expansion Not Successful and 𝑖 ≥ 𝐼max then

10: Remove Visitor From VisitorList
11: end if
12: end for
13: if VisitorList empty or Activities Fully Booked then
14: break
15: end if
16: end for
17: Sort Visitors on Trip Happiness
18: for all Visitors do
19: Optimize Trip
20: end for

We solve the assignment problem (line 1) and use it to create a set of
initial trips (line 3). Next on every iteration we expand this route with
one activity they would like to visit (line 8). We start this expansion
with 𝑖start activities available, since computational experiments showed
that allowing slightly more flexibility at the start (as an example, the
top 3 instead of only the top 1) often resulted in better final results. The
maximum 𝑖𝑚𝑎𝑥 can be used to limit the computational effort. However,
we used the number of activities in all our experiments to get the
maximum solution quality. In case this fails we stop trying to improve
this visitor if we are past iteration 𝐼max, which is a system parameter
line 10). This prevents using a lot of computation time on trips that are
mpossible to improve further. After performing this operation for all
isitors, we rank the visitors based on their current trip quality (line
). In case we want to diversify between visitors, the visitor ranking
s also used for sorting. In the next iteration we do the exact same
peration for all visitors that still can be improved, until we either hit
ur maximum number of iterations (line 5), or there is no more capacity
eft (line 14) or all trips are fully booked. Finally, we go over all trips
gain to see if we can improve them further by using another preferred
ode of transport or switching slots of activities to reduce (perceived)

ravel time (line 19).
An important part of our proposed algorithm is the expansion of

rips from visitors at line 8 of Algorithm 4.1 which is done in every
teration. Therefore, it is important that this step is computationally
ery efficient. However, we should also prevent being stuck in a local
ptimum too soon. For that reason, we use the logic described in Algo-
ithm 4.2 to expand trips. First, we always try to insert an extra activity
sing one of our insertion heuristics. Only in case this fails, we try to
scape the local optimum using either full enumeration or ILS which are
iscussed in more detail in Section 4.3. Our computational experiments
howed that for small instances full enumeration results in an optimal
rip while being computationally efficient. In contrast, ILS only explores

limited set of solutions starting at our initial trip and is therefore



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.

o
s
f

4

l
t
s
p
t
v
(
e

p
f
t
h
i
t
d

computationally bounded when there are more solutions possible. To
that end, we use full enumeration if 𝑖 ≤ 𝐼enum and ILS otherwise. Based
n computational experiments we usually set the threshold 𝐼enum = 6,
ince at that point they require comparable computational efforts, while
ull enumeration quickly explodes for more activities.

.3. Shake mechanisms

Greedy heuristics to create a route can potentially get stuck in a
ocal optimum based on choices made earlier. Hence, we need a way
o try to improve a route by changing some previous choices. For very
mall instances, the quickest and easiest way is full enumeration of all
ossible permutations of the itineraries. For larger instances, we apply
he shake mechanism often seen in ILS since it is applicable to many
ariants of the orienteering problem as shown in Vansteenwegen et al.
2009b) and combines decent solution quality with good computational
fficiency.

For a route with five destinations there are 5! = 120 possible
ermutations of the visit and since not all activities have to be per-
ormed ∑5

𝑘=0
(5
𝑘

)

𝑘! = 326 possible trips if we disregard variation in
ime slot selection. The resulting trip is the permutation with the
ighest reward for consecutive visits that can still be transformed
nto a feasible tour for visitor 𝑗. To transform a permutation into a
our, we use the last activity after which we can still reach the final
estination in time. So if in permutation 𝐴1

𝑗 ←←→ 𝐴2
𝑗 ←←→ 𝐴3

𝑗 ←←→ 𝐴4
𝑗 ←←→ 𝐴5

𝑗 we
cannot visit 𝐴5

𝑗 and reach 𝐿end
𝑗 in time the resulting route will be 𝐿start

𝑗 ←←→

𝐴1
𝑗 ←←→ 𝐴2

𝑗 ←←→ 𝐴3
𝑗 ←←→ 𝐴4

𝑗 ←←→ 𝐿end
𝑗 . However, for computational performance we

apply a simple early pruning principle that is guaranteed to not miss
candidate solutions: If in a permutation as a result of visiting the
activity at position 𝑖 it is not possible to reach the final location
in time all permutations with the same starting sequence including
this activity are considered explored. This will not skip any candidate
solutions since skipping the visit of this activity will be considered
by another permutation that has this activity later in the sequence.
Example: if in permutation 𝐴1

𝑗 ←←→ 𝐴2
𝑗 ←←→ 𝐴3

𝑗 ←←→ 𝐴4
𝑗 ←←→ 𝐴5

𝑗 activity 𝐴3
𝑗 cannot

be reached in time the resulting route will be 𝐿start
𝑗 ←←→ 𝐴1

𝑗 ←←→ 𝐴2
𝑗 ←←→ 𝐿end

𝑗
and the permutation 𝐴1

𝑗 ←←→ 𝐴2
𝑗 ←←→ 𝐴3

𝑗 ←←→ 𝐴5
𝑗 ←←→ 𝐴4

𝑗 will not be considered.
However, all options with 𝐴1

𝑗 and 𝐴2
𝑗 later in the route will be explore

by other permutations.
In our algorithm we use ILS as described in Vansteenwegen et al.

(2009b) on an existing route when insertion fails for all additional
activities. Since the computational costs of this method can easily be
controlled by limiting the number of times we execute this procedure.
This method is discussed in more detail in Appendix.

Finally, we included an implementation of ACO as described by Ver-
beeck et al. (2017). This algorithm is known to be able to handle
the same set of problem variants for a single agent as our proposed
algorithm and usually produces good quality results. However, since
this algorithm makes is harder to bound the computational effort
without suffering too much in solution quality we did not use it in our
proposed solution. We do use this mechanism to construct trips on a
FCFS basis and include these as a benchmark.

In our proposed solution someone has to enter their preferences in
order for our solution to work. We assume that in a system without

Algorithm 4.2 Trip Expansion
1: Try Greedy Expansion Algorithm
2: if Expansion Not Successful then
3: if 𝑖 ≤ 𝐼enum then
4: Use ILS
5: else
6: Use Full Enumeration
7: end if
8: end if
5

coordination a visitor would at this moment book his entire trip. Hence,
our FCFS uses the order of entering preferences as the order for FCFS.
Note that this is not necessarily equal to order of arrival at the site. In
our computational experiments this order will be reflected by the index
of the visitor group.

5. Computational results

This section consists of five parts. First, we investigate the solution
quality and computational efficiency of our trip-construction heuristics.
For this test we use our data from the case study in Amsterdam with
random tourist preferences. Second, in Section 5.2 the algorithm is used
on small instances where we compare the results of our method to a
FCFS policy and a global optimum computed using ILP. In Section 5.3,
we report on a large case study based on tourists in Amsterdam. In
Section 5.4 we perform a set of experiments on randomly generated
instances to see the impact of different input sizes on the algorithm
performance. Finally, in Section 5.5 we study some examples where we
expect our algorithm to be outperformed by FCFS. To ensure that the
values of the rewards 𝑟𝑖,𝑗 were similar between several visitors we used
a ranked wish list for each visitor to compute 𝑟𝑖,𝑗 , the reward visitor 𝑗
gets for visiting activity 𝑖 as follows:

𝑟𝑖,𝑗 = 100 exp

(

𝑥2𝑖,𝑗
−𝐵

)

(5)

In this equation 𝑥𝑖,𝑗 is the position on the wish list and 𝐵 is a parameter
that determines how quickly the rewards deteriorate based on the
position of the wish list. In our computational experiments, we used
a value of 𝐵 = 20, since commercial partners stated that this would
generally reflect how visitors would feel about a scheduled trip. We
only differed for the ILP where we used 𝐵 = 5 since higher differences
between the rewards allowed the ILP to prune more efficiently and
compute optimal solutions for small instances.

Our solutions were implemented in C++. Gurobi (Gurobi Optimiza-
tion, 2020) was used to solve (I)LPs. All experiments where run on a
personal notebook with 16 GB of RAM and a Intel Core i7-7700HQ
CPU.

5.1. Trip-construction

Since our algorithm needs to construct many trips it is important to
compare several trip-construction algorithms with regard to solution
quality and computational performance. Fig. 1 shows the solution
quality for ACO, ILS, full enumeration with the top 6 (enum6) or top 8
(enum8) activities as discussed in Section 4.3 and our greedy insertion
(insert) algorithm and blocking algorithm as discussed in Section 4.1.
Furthermore, we also show the computational effort of these algorithms
in Fig. 2. It is clear that full enumeration of the top eight activities
results in the best results. However, this is also computationally the
most expensive method. Furthermore, both enumeration algorithms
benefit a lot from the method we use for computing the rewards. This
means that the performance with regard to solution quality will not
generalize well if the rewards are more equally distributed over a larger
set of activities. The median solution quality of ACO, ILS, enumeration
of the top six and our proposed blocking algorithm are very close,
although the variance varies a bit. Furthermore, it is important to note
that the blocking algorithm is computationally at least a factor ten less
expensive than those others. Finally, the greedy insertion heuristic gives
the worst solutions. However, it also requires the least computational
effort.

In our large computational experiments, we have chosen the greedy
insertion heuristic as our expansion method since the computational
effort is by far the lowest. For short trips (with less than six possible
activities), we use full enumeration as a shake mechanism since the
computational effort is comparable to the other algorithms while guar-
anteeing an optimal trip given the small subset of activities allowed to



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.
Fig. 1. Visitor happiness for several algorithms.
Fig. 2. Computation time for several algorithms.
be planned. We decided to use ILS for longer trips, since it uses the
previously created trip and is computationally inexpensive. Although
the blocking algorithm is creating comparable trips when used as a
construction mechanism it cannot use the existing trip as a starting
point for further improvements.

5.2. Comparison to optimal solutions

For a comparison between our algorithm and an optimal solution
computed with ILP we used a small set of activities within the city
of Amsterdam with real travel times on foot between those locations.
Since this instance is relatively small we reduced the capacity and the
number of slots available so the visitor capacity ratio remains similar
to realistic instance sizes. A summary of our instance set up is shown
in Table 1. The mentioned slots are evenly spread between the first
and the last service and the duration is in minutes. All visitors have
6

no travel time to their first activity or from their last activity. All trips
start at 9:00 and end at 13:00, so all slots are available for all visitors.
For our comparison we generated rewards for 30, 40 and 50 groups of
travelers all traveling with a group size uniformly distributed between 1
and 3. For the test instance with 50 groups of travelers we doubled the
capacity mentioned in Table 1. We generated a ranked wish list for the
five activities for each group of visitors and calculated the associated
rewards with Eq. (5). We generated these ranked wish lists in two ways.
First, we generated these independent uniformly at random. Second,
we generated them independent random but with similar preferences
so that it was more likely that people had the same activities high on
their wish list.

The results of the previous experiment for the ILP, our iterative
algorithm with and without an initial assignment as described in Model
(4a)–(4c) and FCFS are shown in Table 3. The FCFS policy delivers
the worst performance on all instances. However, depending on the



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.

a
g
r
o

Table 1
A summary of the instance used for the comparison.

Location #Slots First service Last service Duration Slot capacity

ScheepvaartMuseum 3 11:00 12:20 40 10
Rijksmuseum 2 09:00 10:15 120 10
Museum Ons’Lieve Heer op Solder 4 10:00 12:15 30 10
Hermitage 1 11:00 11:00 45 20
Stedelijk Museum 4 09:00 10:30 90 10
Table 2
The objective function for the optimization model on random instances.

ILP Assignment Iterative

Instance Found Bound FCFS Objective Gap Bound Gap Found Objective Gap Bound Gap Found

5-30-0-0 9364 10672 8866 9327 12.60% 0.40% 9352 12.37% 0.13%
5-30-0-1 9493 10478 8864 9358 10.69% 1.42% 9299 11.26% 2.04%
5-30-0-2 8932 9853 8475 8834 10.34% 1.10% 8606 12.66% 3.65%
5-30-0-3 9428 10583 9154 9399 11.19% 0.31% 9371 11.45% 0.60%
5-30-1-0 8794 9062 8095 8635 4.71% 1.81% 8169 9.86% 7.11%
5-30-1-1 8108 8484 7834 8356 1.51% −3.06% 7829 7.72% 3.44%
5-30-1-2 8540 8836 8131 8095 8.39% 5.22% 8065 8.73% 5.57%
5-30-1-3 9032 10055 8314 8642 14.05% 4.32% 8652 13.96% 4.21%
5-30-2-0 9371 10094 8795 9355 7.32% 0.17% 9131 9.54% 2.56%
5-30-2-1 9799 9980 8920 9880 1.00% −0.83% 9340 6.41% 4.68%
5-30-2-2 8684 9856 8381 8522 13.53% 1.86% 8692 11.81% −0.10%
5-30-2-3 8610 9907 8108 8717 12.02% −1.24% 8655 12.64% −0.52%
5-50-0-0 12750 12876 11690 12687 1.47% 0.49% 12299 4.48% 3.54%
5-50-0-1 13385 13516 11877 13237 2.07% 1.11% 12589 6.86% 5.95%
5-50-0-2 12922 13181 12079 13015 1.26% −0.72% 12470 5.39% 3.50%
5-50-0-3 12897 12994 11494 12592 3.10% 2.37% 12429 4.35% 3.63%
5-50-1-0 11843 11960 9180 11707 2.11% 1.15% 11786 1.45% 0.48%
5-50-1-1 11794 11912 8794 11500 3.46% 2.49% 11181 6.13% 5.20%
5-50-1-2 11253 11365 9101 11182 1.61% 0.63% 11139 1.99% 1.01%
5-50-1-3 11507 11622 8907 11152 4.05% 3.09% 10885 6.34% 5.41%
5-50-2-0 12389 12513 10881 12160 2.82% 1.85% 11616 7.17% 6.24%
5-50-2-1 12388 12512 10781 12204 2.46% 1.49% 12174 2.70% 1.72%
5-50-2-2 11959 12078 10723 12052 0.22% −0.77% 11720 2.97% 2.00%
5-50-2-3 11684 11800 10262 11551 2.11% 1.13% 11756 0.38% −0.62%

Average Gap 5.59% 1.07% 7.44% 2.98%
instance, the pure iterative algorithm or the algorithm that allocates
first performs second best. On the tight instances with 40 visitors allo-
cation first clearly outperforms sequential only. On the other instances,
it varies which one of the two performs better. On these instances, both
algorithms perform within 5% of the optimum found by the ILP.

To verify that our results are not caused by the network structure
we also tested on randomly generated instances with 5 activities and
30 or 50 visitor groups. We generated 7 locations on a 100 by 100 grid
of which one was used as start location and the other as final location.
The time to travel in minutes between two locations is the euclidean
distance. The other 5 indicated the locations of the activities. For each
activity we randomly chose the capacity of the activity between 10 and
15, the capacity of a slot between 5 and 10, the duration and the time
between slots where independently chosen between 15 and 120 min,
the opening time between 8:00 and 10:00 and the closing time (last
entry) between 13:00 and 14:00. All visitors visit between 8:00 and
17:00.

All instances were solved using the FCFS approach, the pure iter-
ative strategy and the Assignment and than Iterative strategy. Each
instance described in the table is first the number of activities, than
the number of visitors, the network/activity instance and the vis-
itor instance. The ILP was solved using Gurobi with a time limit
of 4 h or an optimality gap of 1% whichever was reached first
on the Dutch National Supercomputer Snellius. In Table 2 we show
the bound and the best solution found for the objective function
(∑𝑖∈𝐴

∑

𝑚∈𝐵𝑖

∑

𝑘∈𝑈 𝑆𝑘𝑃𝑖,𝑘𝑦𝑖,𝑚,𝑘) for the ILP and compare that to FCFS
nd our two approached methods. For our methods we present also the
ap between the bound and the best found solution of the ILP. These
esults are comparable to the results shown on the small instance based
n our case study. It also shows that our approach works also well in
7

Table 3
Comparison of the algorithms for several instances.

# Visitor Groups 30 40 50 30 40 50
Wishlist similar similar similar random random random
# Visitors 63 78 99 63 78 99

FCFS Score 8810 8699 15522 9973 10314 16225
Gap 18.26% 19.39% 4.14% 10.85% 19.97% 10.81%

Pure Iterative Score 10401 9919 15534 10755 11734 17864
Gap 3.50% 8.08% 4.07% 3.86% 8.95% 1.80%

Iterative + Score 10268 10167 15789 10704 12159 17840
Allocation Gap 4.73% 5.78% 2.49% 4.32% 5.65% 1.93%

ILP Score 10778 10791 16193 11187 12887 18192

other instances, it could even indicate that our created instance was
relatively hard.

To put these numbers in perspective, we compare them to Wang
et al. (2017) and Luo et al. (2022) since their goal was similar to ours.
The solution quality of Wang et al. (2017) seems to deteriorate with
the number of visitors. Furthermore, their best performing algorithm
is 6.1% from the optimal solution with just 20 visitors when the have
the same preferences. However, the sequential algorithm described in
that paper performs considerably worse than their Probabilistic ILS
method on instances with variable rewards and 20 to 40 visitors. Since
their sequential algorithm is the only one that scales well enough to
handle problem instances, we consider the results of our proposed
method very promising. Luo et al. (2022) only report on optimal
solutions for the instances with 7 nodes (5 activities) and 10 visitors.
For these instances, they have an optimality gap between 0 and 20%.
Hence, our solution approach results in similar results on small scale
instances. Furthermore, our approach scales considerably better than



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.
Table 4
A summary of the configuration of the events used for testing.

Activity Location D First Entry Last Entry SF DC

Old maps of Amsterdam Hermitage 60 10:00:00 A.M. 05:00:00 P.M. 20 880
Treasures from the Golden Age Scheepvaartmuseum 40 10:00:00 A.M. 05:00:00 P.M. 20 1760
Rembrandt and the Golden Age Rijksmuseum 120 09:00:00 A.M. 05:00:00 P.M. 20 2500
Portrait Gallery of the Golden Age Hermitage 60 10:00:00 A.M. 05:00:00 P.M. 15 1160
Discover a church in the Attic Museum Ons’Lieve Heer op Solder 30 10:00:00 A.M. 06:00:00 P.M. 10 2940
Discover the world in a painting Hermitage 45 11:00:00 A.M. 02:00:00 P.M. 60 120
The influence on maritime history Scheepvaartmuseum 90 10:00:00 A.M. 05:00:00 P.M. 15 1160
Architecture by Boat Lovers 60 09:00:00 A.M. 10:00:00 P.M. 15 1750
Avondje Rembrandt Rijksmuseum 120 07:00:00 P.M. 08:00:00 P.M. 60 300
Best Windmill in Amsterdam Gooyer 15 09:00:00 A.M. 05:00:00 P.M. 20 250
Discover the invisible life at Micropia Micropia 75 10:00:00 A.M. 05:00:00 P.M. 15 2900
Verzetsmuseum Amsterdam Dutch Resistance Museum 120 10:00:00 A.M. 05:00:00 P.M. 15 900
Vintage in Foam Foam Amsterdam 90 10:00:00 A.M. 06:00:00 P.M. 20 5000
The Secret Annex of Anne Frank Anne Frank House 45 09:00:00 A.M. 07:00:00 P.M. 15 2050
Portraits of Modernity Huis Marseille 90 11:00:00 A.M. 06:00:00 P.M. 15 4250
Exhibition ’Welcome Today’ Stedelijk Museum 45 10:00:00 A.M. 06:00:00 P.M. 5 4850
The inspirator of van Gogh van Gogh Museum 75 09:00:00 A.M. 06:00:00 P.M. 15 1640
A multi-headed Snake Cobra Museum 60 11:00:00 A.M. 05:00:00 P.M. 20 950
The Netherlands in World War II Dutch Resistance Museum 90 10:00:00 A.M. 05:00:00 P.M. 10 435
Plantage Area Walk Dutch Resistance Museum 45 10:00:00 A.M. 05:00:00 P.M. 30 450
Banksy Laugh Now Moco Museum 60 09:00:00 A.M. 08:00:00 P.M. 10 3450
Visit the Batavia BataviaLand 60 09:00:00 A.M. 05:00:00 P.M. 10 980
Batavia Museum Batavia Museum 60 09:00:00 A.M. 05:00:00 P.M. 10 980
Dutch Windmills Zaanse Schans 20 09:00:00 A.M. 05:00:00 P.M. 20 1000
Dutch Flowers Keukenhof 20 09:00:00 A.M. 05:00:00 P.M. 20 1000
Table 5
The highlighted tour, #WL indicates the position of the activity on the wishlist.

Activity #WL Location Start End Walk time

1. Discover the invisible life at Micropia 2 Micropia 10:15 11:30 11 min
2. Discover the world in a painting 1 Hermitage 12:00 12:45 12 min
3. Vintage in Foam 6 Foam 13:00 14:30 14 min
4. Banksy Laugh Now 7 Moco Museum 15:30 16:30 1 min
5. The inspirator of van Gogh 3 Van Gogh Museum 16:45 18:30 28 min
6. The Secret Annex of Anne Frank 4 Anne Frank House 19:00 19:45
their proposed methods. Finally, we confirmed that the correlation
between happiness and group size in our solution was close to zero
in all solution methods. Thus, confirming that none of the algorithms
optimized unfairly in this regard.

5.3. Real-life use case: The city of amsterdam

In cooperation with commercial partners in the region of Amster-
dam we got a realistic set up for tourist activities in the region. A
summary of the activities is shown in Table 4. In this table, the duration
of the activity in minutes is in column D, SF denotes the interval of the
arrival slots in minutes and DC is the maximum daily capacity. The
last four tourist destinations in the table are outside of Amsterdam (in
a range of 20 to 60 km from the city center) to test the multi-modal
functionality of the algorithm. We used the walking time between the
locations according to OSRM1 as travel time. For our multi-modal test,
we added a transport option. For this option, we took the travel time by
car from the same source and added flat 15 min. We used our algorithm
to schedule 2500 till 10000 groups of tourists with group sizes varying
between 1 and 4. We generated their preferences at random with a large
preference for the Rijksmuseum, the Anne Frank House and the Van
Gogh museum, which reflect the true preferences of tourists.

In Fig. 3, we show twenty of the generated tours on a map of
Amsterdam with one trip highlighted in orange. For clarity, we show
the activities (including their position on the wish list) and travel
time of that trip in Table 5. Based on this table, we can see that
the trip scheduled a lot of activities the visitor wanted to do. The
only thing skipped from the top 7 of their wish list is ’The influence

1 see http://project-osrm.org/.
8

on maritime history’ in the Scheepvaartmuseum which was ranked
number 5. Finally, the route between the activities is sensible, which
will increase the acceptance of the suggested trip.

In Fig. 4, we show a comparison of FCFS and our scheduling
algorithm. It clearly shows that with FCFS the first visitors get very nice
trips. However, the quality of the trips quickly deteriorates as events
get fully booked. As a result, the average happiness is considerably
lower for FCFS than with our approach. Furthermore, the distribution
of visitor happiness is also a lot more fair since the minimum happiness
is a lot higher and low happiness occurs less frequent. Fig. 5 illustrates
very well that the distribution of visitor happiness is also more fair.
As a result, the variability in happiness is reduced, three quarters of
the visitors are happier with their trip than the median using a FCFS
policy, and only a few negative outliers of our algorithm perform in the
worst 25% range of FCFS which results in a far lower maximum of the
minimum.

To validate that our algorithm also works for multi-modal transport
options, we ran a test where we included the last four activities of
Table 4. In this case, the algorithm is slightly slower taking about 25 s
instead of around 20 s for 2500 visitors. This can be explained by
multi-modal trip generation taking slightly longer, but is also caused
by the higher capacity due to the four extra activities. However, the
results we obtained are similar as can be seen in Fig. 5, where we
see that the distribution of visitor happiness for both FCFS and our
proposed algorithm is similar to the single mode case used for the
Amsterdam region. In this case, the algorithm performs even slightly
better in comparison since it makes better use of the extra capacity
and opportunity to diversify provided by the extra activities. We also
used our approach on an instance with required visits and using our
greedy blocking heuristic for the initial trip creation. We got similar

results with regards to computational effort and solution quality.

http://project-osrm.org/


Computers and Operations Research 167 (2024) 106633J. Slootweg et al.
Fig. 3. A selection of generated trips (each in different colors), the trip in fat orange is explained in Table 5, the numbers indicate the activities of that trip. Map data ©2022
Google.
Fig. 4. The Scores per visitor (note that in FCFS the trips are generated in order of index).
5.4. Algorithm performance on varying instance sizes

One of the focus points of our approach is scalability. Hence, we
investigate the computational performance for varying input sizes. To
that end we generated activities with associated parameters randomly
and used our algorithm on them. The results for increasing the number
of activities while keeping the number of visitors at 500 is shown on the
left in Fig. 6. This figure makes clear that adding activities has almost
no effect on the computation time. Since our algorithm aims to insert
activities in order of their reward most of these extra activities can be
ignored by individual insertion since visitors do not have time to attend
them. The extra overhead for keeping track of the reservations and
9

capacity is negligible. So the available time per trip can be considered
bounding for the computational effort.

Even more important is the effect of the number of visitors on the
computation time, as for most applications these could vary quiet a
bit on a daily basis. To test this effect we generated activities with
random but regular slot patterns and random travel times. Furthermore,
we generated visitors with random preferences and kept track of the
computational effort to generate all tours. In Fig. 6 we notice that
computational effort first increases linearly and stabilizes at some point
and becomes constant. When the number of visitors becomes extreme
compared to the capacity, the computational effort even starts to
decrease. The intuition behind the first effect is that the computational



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.
Fig. 5. The boxplot for the trip happiness using FCFS and our proposed scheduling algorithm in Amsterdam and an extended area where multi-modal transport is used.
Fig. 6. The effect of the problem size on computation time.
effort is limited by the capacity since at one point all events are
fully booked and it is not possible to improve the tours of any visitor
anymore. The second effect happens since improving short tours is
computationally a lot easier than expanding longer tours. Therefore, the
computational effort of our algorithm decreases when the tours become
extremely short due to overcrowding. In our computational experiment
we witnessed the same effect for higher capacity problems when the
number of visitors got sufficiently high. In practice this will mean that
although the algorithm might be faster on very quiet days it will not
take excessively long on busy days since on those days capacity will be
the limiting factor.

5.5. Hard instances

The algorithm we propose uses specific properties of the problem
to reach good results. First, we assume that there is variability in
the preference of visitors. Second, we assume that capacity is scarce.
However, in situations where these conditions do not apply our algo-
rithm can be further from optimal or even be outperformed by a FCFS
policy. In situations with homogeneous preferences our algorithm will
be comparable or even slightly worse to FCFS with regards to average
visitor happiness since the reward on each activity is exactly the same
for each visitor. However, our method should still performs better
with regard to fairness since it will try to ensure that everyone can at
least visit some activities. The result of an instance with homogeneous
preferences is shown in Fig. 7 where we show the trip scores per visitor.
As expected the first visitors with FCFS are happy, but scores start to
go down when activities get fully booked. In this case the average trip
happiness score is almost identical, but our proposed solution is clearly
fairer.
10
To illustrate what will happen when capacity is not scarce, we use
our approach on an instance with abundant capacity. In this instance,
it would probably be better or just as good to construct full tours
after each other in a FCFS manner since early bookings will not block
later arrivals at all. To illustrate this we did a test with just 100
visitors for our Amsterdam instance. The result of this test is shown
in Fig. 8, where there is indeed almost no difference between FCFS and
our proposed algorithm. In cases like these using more sophisticated
and computationally intensive methods to create individual trips could
make this difference more significant.

6. Conclusion and future research

In this paper we outlined an approach to generate leisure trips
at crowded destinations which include reservations for activities. The
main advantages of our approach are as follows:

1. Average visitor happiness increase substantially compared to a
FCFS benchmark

2. On small instances our approach produces good results com-
pared to optimal solutions (optimality gap of about 5%)

3. Our solution scales well with regards to increases in the problem
size with regards to number of activities and visitors

Furthermore, we propose a novel greedy blocking algorithm to solve
the orienteering problem with fixed time slots. We show that this algo-
rithm performs very well with regard to efficiency while still providing
good solutions. In tight instances, our approach benefits from an initial
assignment of activities to visitors, where the assigned activities are the
only activities a visitor is allowed to use in his trip in the first round
of our iterative approach. Finally, we have used our proposed solution



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.
Fig. 7. Our algorithm compared to FCFS when everybody has the exact same preferences.
Fig. 8. Visitor happiness with only 100 visitors.
approach on several variations of the tourist trip design problem such as
required visits, multi-modal transport and entries or exits with limited
capacity (e.g. ticket booth or ferry). In these cases the approach works
with slight modifications to the initial trip creation (Algorithm 4.1
line 3) or the trip expanding method (Algorithm 4.1 line 8), but the
conclusions with regard to solution quality compared to FCFS and
computational complexity still stand.

Our approach shows that a combination of coordination and cus-
tomization for leisure trips has potential to increase visitor satisfaction.
In practice this combination could be used in cities that suffer from
over-tourism, theme parks and large events to facilitate a proper spread
of visitors. Furthermore, we note that this approach will remain valid if
only part of the capacity is reserved for a centralized agent to still allow
non-participants to be in the system. Since our trip design mechanism
was tested with required visits it can also work with tourist groups that
already made some reservations before joining the system. In this case
the system will book a trip around their existing reservations.

In practice algorithms that facilitate spreading visitors over time can
be combined with recommendation systems to steer demand away from
over-crowded highlights in the preparation phase. While people are
on their trip it would also be nice if an application can continuously
guide them. Furthermore, having an algorithm in these applications
that also facilitates coordination and customization makes it possible to
continuously improve trips. Since in reality there are always no-shows,
last minute cancellations, and early and late arrivals, it would help out
visitors as well as service providers if their trips can be updated in real
time. Our approach is fast enough that it can be used by such systems.

These options leave open possible research opportunities for online
variants of our solution approach. This approach also allows creation
or updates of trips at the moment visitors make their booking. Further-
more, such mechanisms can also be used to facilitate coordination of
visitors through suggestions. Since at the moment a good trip for a
visitor considering other preferences is known, it is possible to steer
them towards that trip. Since leisure visitors often do not want to have
11
their entire day planned they usually want a combination of flexibility
and guarantees. Our current solution gives a lot of guarantees, but
has no flexibility. This is another point that can be improved upon by
online variants that throughout the day continuously extend the trip of
a visitor.

CRediT authorship contribution statement

Joris Slootweg: Writing – review & editing, Writing – original
draft, Software, Methodology, Conceptualization. Rob van der Mei:
Writing – review & editing, Supervision, Conceptualization. Caroline J.
Jagtenberg: Writing – review & editing, Supervision. Frank Ottenhof:
Writing – review & editing, Funding acquisition, Conceptualization.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank Jesse Nagel for his useful comments to earlier
drafts. We would also like to thank the anonymous reviewer for his
comments that helped improve the paper significantly. Part of this work
was sponsored by the Dutch Research Council (NWO), Netherlands,
project number 18938.

Appendix. Iterated local search

In our implementation of ILS which is based on Vansteenwegen
et al. (2009b), we use the insertion mechanism described in 4.1 to con-
struct and modify trips. Without an initial trips, the insertion procedure
generates an initial trip. This initial trip is the start of the ILS algorithm.
When it is not possible to add any activity to the trip, a local optimum
is reached. When this happens the algorithm performs a shake step.



Computers and Operations Research 167 (2024) 106633J. Slootweg et al.
During the shake step activity on position 𝑆 till 𝑆 + 𝑅 are removed
from the trip. All activities scheduled after position 𝑆 + 𝑅 are moved
as far as possible to the start of the trip. Example: if we have a tour
with 4 activities with these starting times and we remove activity 1
and 2 𝐴1

𝑗 (9 ∶ 00) ←←→ 𝐴2
𝑗 (11 ∶ 30) ←←→ 𝐴3

𝑗 (13 ∶ 00) ←←→ 𝐴4
𝑗 (15 ∶ 00) we will

get 𝐴1
𝑗 (9 ∶ 00) ←←→ 𝐴4

𝑗 (15 ∶ 00) on which we try to move 𝐴4
𝑗 as much as

possible to the start while remaining feasible with respect to travel time
and capacities. This could for example result in 𝐴1

𝑗 (9 ∶ 00) ←←→ 𝐴4
𝑗 (10 ∶ 30),

which can be used to expand upon again and explore a different part of
the solution space. On such a trip we use our insertion heuristic again
till a new local optimum is reached. The outline of the algorithm is
provided in Algorithm A.1.

Algorithm A.1 Iterated Local Search
𝑆 = 𝑅 = 1
bestRoute=route⟵input
bestScore=score⟵input
for ITERATIONS do
while not local optimum do

route,score=insert
end while
if score>bestScore then

bestScore=score
bestRoute=route
𝑆 = 𝑅 = 1

end if
while 𝑆 ≥ route.size do

𝑆− = route.size
end while
if 𝑆 + 𝑅 > route.size then

𝑅 = 1
end if
route,score=shake(𝑆,𝑅)
𝑆+ = 𝑅
𝑅 + +

end for

References

Chen, C., Cheng, S.-F., Lau, H.C., 2014. Multi-agent orienteering problem with time-
dependent capacity constraints. Web Intell. Agent Syst. Int. J. 12 (4), 347–358.
http://dx.doi.org/10.3233/WIA-140304.

Dichter, A., Manzo, G.G., 2017. Coping with Success: Managing Overcrowding in
Tourism Destinations. World Travel & Tourism Council, London.

Gavalas, D., Kasapakis, V., Konstantopoulos, C., Pantziou, G., Vathis, N., Zaro-
liagis, C., 2015. The eCOMPASS multimodal tourist tour planner. Expert Syst. Appl.
42 (21), 7303–7316. http://dx.doi.org/10.1016/j.eswa.2015.05.046, URL https://
linkinghub.elsevier.com/retrieve/pii/S0957417415003826.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., 2014. A survey on
algorithmic approaches for solving tourist trip design problems. J. Heuristics 20 (3),
291–328. http://dx.doi.org/10.1007/s10732-014-9242-5, URL http://link.springer.
com/10.1007/s10732-014-9242-5.

Goodwin, H., 2017. The challenge of overtourism. Res. Tour. Partnersh. 4, 1–19.
12
Gunawan, A., Lau, H.C., Vansteenwegen, P., 2016. Orienteering problem: A survey
of recent variants, solution approaches and applications. European J. Oper.
Res. 255 (2), 315–332. http://dx.doi.org/10.1016/j.ejor.2016.04.059, URL https:
//linkinghub.elsevier.com/retrieve/pii/S037722171630296X.

Gurobi Optimization, L., 2020. Gurobi optimizer reference manual. URL http://www.
gurobi.com.

Kenteris, M., Gavalas, D., Economou, D., 2011. Electronic mobile guides: A survey.
Pers. Ubiquitous Comput. 15 (1), 97–111. http://dx.doi.org/10.1007/s00779-010-
0295-7.

Labadie, N., Melechovskỳ, J., Wolfler Calvo, R., 2011. Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. J.
Heuristics 17, 729–753. http://dx.doi.org/10.1007/s10732-010-9153-z.

Luo, X.-G., Liu, X.-R., Ji, P.-L., Shang, X.-Z., Zhang, Z.-L., 2022. Trip planning for
visitors in a service system with capacity constraints. Comput. Oper. Res. 148,
105974. http://dx.doi.org/10.1016/j.cor.2022.105974.

Mukhina, K.D., Visheratin, A.A., Nasonov, D., 2019. Orienteering problem with
functional profits for multi-source dynamic path construction. PLoS One 14 (4),
e0213777. http://dx.doi.org/10.1371/journal.pone.0213777, URL https://dx.plos.
org/10.1371/journal.pone.0213777.

Righini, G., Salani, M., 2009. Decremental state space relaxation strategies and
initialization heuristics for solving the orienteering problem with time windows
with dynamic programming. Comput. Oper. Res. 36 (4), 1191–1203. http://dx.
doi.org/10.1016/j.cor.2008.01.003, URL https://linkinghub.elsevier.com/retrieve/
pii/S030505480800004X.

Robino, D.M., 2019. Global destination cities index 2019. MasterCard. Available on-
line: https://www.mastercard.com/news/media/wexffu4b/gdci-global-report-final-
1.pdf. (Accessed on 16 December 2022).

Rubin, J., 2019. TEA/AECOM 2019 Theme Index and Museum Index: The Global
Attractions Attendance Report. Themed Entertainment Association (TEA).

Ruiz-Meza, J., Brito, J., Montoya-Torres, J.R., 2021. A GRASP to solve the multi-
constraints multi-modal team orienteering problem with time windows for groups
with heterogeneous preferences. Comput. Ind. Eng. 162, 107776. http://dx.doi.org/
10.1016/j.cie.2021.107776.

Ruiz-Meza, J., Montoya-Torres, J.R., 2021. Tourist trip design with heterogeneous
preferences, transport mode selection and environmental considerations. Ann. Oper.
Res. 305 (1–2), 227–249. http://dx.doi.org/10.1007/s10479-021-04209-7.

Ruiz-Meza, J., Montoya-Torres, J.R., 2022. A systematic literature review for the tourist
trip design problem: Extensions, solution techniques and future research lines. Oper.
Res. Perspect. 100228. http://dx.doi.org/10.1016/j.orp.2022.100228.

Testa, L., Dozier, G., 1999. Evolving efficient theme park tours. J. Comput. Inf. Technol.
CIT 7, https://hrcak.srce.hr/150201.

Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D., 2009a. A guided
local search metaheuristic for the team orienteering problem. European J. Oper.
Res. 196 (1), 118–127. http://dx.doi.org/10.1016/j.ejor.2008.02.037.

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D., 2009b.
Iterated local search for the team orienteering problem with time windows.
Comput. Oper. Res. 36 (12), 3281–3290. http://dx.doi.org/10.1016/j.cor.2009.03.
008, URL https://linkinghub.elsevier.com/retrieve/pii/S030505480900080X.

Varakantham, P., Mostafa, H., Fu, N., Lau, H.C., 2015. DIRECT: A scalable approach
for route guidance in selfish orienteering problems. In: Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems. AAMAS
’15, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, pp. 483–491, http://dl.acm.org/citation.cfm?id=2772942.

Verbeeck, C., Sörensen, K., Aghezzaf, E.-H., Vansteenwegen, P., 2014. A fast so-
lution method for the time-dependent orienteering problem. European J. Oper.
Res. 236 (2), 419–432. http://dx.doi.org/10.1016/j.ejor.2013.11.038, URL https:
//linkinghub.elsevier.com/retrieve/pii/S0377221713009557.

Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.-H., 2017. The time-dependent orien-
teering problem with time windows: A fast ant colony system. Ann. Oper. Res.
254 (1–2), 481–505. http://dx.doi.org/10.1007/s10479-017-2409-3, URL http://
link.springer.com/10.1007/s10479-017-2409-3.

Wang, W., Lau, H.C., Cheng, S.-F., 2017. Exact and heuristic approaches for the multi-
agent orienteering problem with capacity constraints. In: 2017 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, Honolulu, HI, pp. 1–7. http://
dx.doi.org/10.1109/SSCI.2017.8285329, URL http://ieeexplore.ieee.org/document/
8285329/.

http://dx.doi.org/10.3233/WIA-140304
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb2
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb2
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb2
http://dx.doi.org/10.1016/j.eswa.2015.05.046
https://linkinghub.elsevier.com/retrieve/pii/S0957417415003826
https://linkinghub.elsevier.com/retrieve/pii/S0957417415003826
https://linkinghub.elsevier.com/retrieve/pii/S0957417415003826
http://dx.doi.org/10.1007/s10732-014-9242-5
http://link.springer.com/10.1007/s10732-014-9242-5
http://link.springer.com/10.1007/s10732-014-9242-5
http://link.springer.com/10.1007/s10732-014-9242-5
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb5
http://dx.doi.org/10.1016/j.ejor.2016.04.059
https://linkinghub.elsevier.com/retrieve/pii/S037722171630296X
https://linkinghub.elsevier.com/retrieve/pii/S037722171630296X
https://linkinghub.elsevier.com/retrieve/pii/S037722171630296X
http://www.gurobi.com
http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.1007/s00779-010-0295-7
http://dx.doi.org/10.1007/s00779-010-0295-7
http://dx.doi.org/10.1007/s00779-010-0295-7
http://dx.doi.org/10.1007/s10732-010-9153-z
http://dx.doi.org/10.1016/j.cor.2022.105974
http://dx.doi.org/10.1371/journal.pone.0213777
https://dx.plos.org/10.1371/journal.pone.0213777
https://dx.plos.org/10.1371/journal.pone.0213777
https://dx.plos.org/10.1371/journal.pone.0213777
http://dx.doi.org/10.1016/j.cor.2008.01.003
http://dx.doi.org/10.1016/j.cor.2008.01.003
http://dx.doi.org/10.1016/j.cor.2008.01.003
https://linkinghub.elsevier.com/retrieve/pii/S030505480800004X
https://linkinghub.elsevier.com/retrieve/pii/S030505480800004X
https://linkinghub.elsevier.com/retrieve/pii/S030505480800004X
https://www.mastercard.com/news/media/wexffu4b/gdci-global-report-final-1.pdf
https://www.mastercard.com/news/media/wexffu4b/gdci-global-report-final-1.pdf
https://www.mastercard.com/news/media/wexffu4b/gdci-global-report-final-1.pdf
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb14
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb14
http://refhub.elsevier.com/S0305-0548(24)00105-9/sb14
http://dx.doi.org/10.1016/j.cie.2021.107776
http://dx.doi.org/10.1016/j.cie.2021.107776
http://dx.doi.org/10.1016/j.cie.2021.107776
http://dx.doi.org/10.1007/s10479-021-04209-7
http://dx.doi.org/10.1016/j.orp.2022.100228
https://hrcak.srce.hr/150201
http://dx.doi.org/10.1016/j.ejor.2008.02.037
http://dx.doi.org/10.1016/j.cor.2009.03.008
http://dx.doi.org/10.1016/j.cor.2009.03.008
http://dx.doi.org/10.1016/j.cor.2009.03.008
https://linkinghub.elsevier.com/retrieve/pii/S030505480900080X
http://dl.acm.org/citation.cfm?id=2772942
http://dx.doi.org/10.1016/j.ejor.2013.11.038
https://linkinghub.elsevier.com/retrieve/pii/S0377221713009557
https://linkinghub.elsevier.com/retrieve/pii/S0377221713009557
https://linkinghub.elsevier.com/retrieve/pii/S0377221713009557
http://dx.doi.org/10.1007/s10479-017-2409-3
http://link.springer.com/10.1007/s10479-017-2409-3
http://link.springer.com/10.1007/s10479-017-2409-3
http://link.springer.com/10.1007/s10479-017-2409-3
http://dx.doi.org/10.1109/SSCI.2017.8285329
http://dx.doi.org/10.1109/SSCI.2017.8285329
http://dx.doi.org/10.1109/SSCI.2017.8285329
http://ieeexplore.ieee.org/document/8285329/
http://ieeexplore.ieee.org/document/8285329/
http://ieeexplore.ieee.org/document/8285329/

	Centralized multi-visitor trip planning with activity reservations in crowded destinations
	Introduction
	Literature Review
	Problem Definition and Model Formulation
	Solution Approaches
	Efficient Single Agent Route Expanding Heuristics
	Multi-Agent Algorithm Approach
	Shake Mechanisms

	Computational Results
	Trip-construction
	Comparison to Optimal Solutions
	Real-life use case: The City of Amsterdam
	Algorithm Performance on Varying Instance Sizes
	Hard Instances

	Conclusion and future research
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	Appendix. Iterated Local Search
	References


