
Journal of Computational Physics 508 (2024) 113003

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Energy-conserving neural network for turbulence closure

modeling

T. van Gastelen ∗, W. Edeling, B. Sanderse
Centrum Wiskunde & Informatica, Science Park 123, Amsterdam, the Netherlands

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

github .com /tobyvg /ECNCM _1D

Keywords:

Turbulence modeling

Neural networks

Energy conservation

Structure preservation

Burgers’ equation

Korteweg-de Vries equation

In turbulence modeling, we are concerned with finding closure models that represent the effect of
the subgrid scales on the resolved scales. Recent approaches gravitate towards machine learning
techniques to construct such models. However, the stability of machine-learned closure models
and their abidance by physical structure (e.g. symmetries, conservation laws) are still open
problems. To tackle both issues, we take the ‘discretize first, filter next’ approach. In this approach
we apply a spatial averaging filter to existing fine-grid discretizations. The main novelty is that
we introduce an additional set of equations which dynamically model the energy of the subgrid
scales. Having an estimate of the energy of the subgrid scales, we can use the concept of energy
conservation to derive stability. The subgrid energy containing variables is determined via a
data-driven technique. The closure model is used to model the interaction between the filtered
quantities and the subgrid energy. Therefore the total energy should be conserved. Abiding by
this conservation law yields guaranteed stability of the system. In this work, we propose a novel
skew-symmetric convolutional neural network architecture that satisfies this law. The result is
that stability is guaranteed, independent of the weights and biases of the network. Importantly,
as our framework allows for energy exchange between resolved and subgrid scales it can model
backscatter. To model dissipative systems (e.g. viscous flows), the framework is extended with a
diffusive component. The introduced neural network architecture is constructed such that it also
satisfies momentum conservation. We apply the new methodology to both the viscous Burgers’
equation and the Korteweg-De Vries equation in 1D. The novel architecture displays superior
stability properties when compared to a vanilla convolutional neural network.

1. Introduction

Direct numerical simulations (DNSs) of turbulent flows are often infeasible due to the high computational requirements. Espe-

cially for applications in design and uncertainty quantification this rapidly becomes computationally infeasible, as typically many
simulations are required [1,2]. To tackle this issue several different approaches have been proposed, such as reduced order models
[3], Reynolds-averaged Navier-Stokes (RANS) [4], and Large Eddy Simulation (LES) [5]. These approaches differ in how much of the
physics is modeled. Here we will focus on the LES approach.

In LES, the large-scale physics is modeled directly by a coarse-grid discretization. The coarse grid is accounted for by applying
a filter to the original equations. However, as the filter does not commute with the nonlinear terms in the equations, a commutator

* Corresponding author.
Available online 10 April 2024
0021-9991/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: tobyvangastelen@gmail.com (T. van Gastelen).

https://doi.org/10.1016/j.jcp.2024.113003

Received 11 May 2023; Received in revised form 15 March 2024; Accepted 6 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
https://github.com/tobyvg/ECNCM_1D
https://github.com/tobyvg/ECNCM_1D
mailto:tobyvangastelen@gmail.com
https://doi.org/10.1016/j.jcp.2024.113003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113003&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113003
http://creativecommons.org/licenses/by/4.0/

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

error arises. This prevents one from obtaining an accurate solution without knowledge of the subgrid-scale (SGS) content. This
commutator error is referred to as the closure term. Modeling this term is the main concern of the LES community. A major difficulty
in this process is dealing with energy moving from the small scales to the large scales (backscatter) [6,7]. This is because the SGS
energy is unknown during the time of the simulation. This makes accounting for backscatter without leading to numerical instabilities
difficult [8]. Classical physics-based closure models are therefore often represented by a dissipative model, e.g. of eddy-viscosity type
[9]. This ensures a net decrease in energy. Another option is that the closure model is clipped such that backscatter is removed [10].
Even though the assumption of a global net decrease in energy is valid [9], explicit modeling of backscatter is still important. This
is because locally the effect of backscatter can be of great significance [11,12]. Closure models that explicitly model the global SGS
energy at a given point in time, to allow for backscatter without sacrificing stability, also exist [13]. Recently, machine learning
approaches, or more specifically neural networks (NNs), have come forward as viable closure models. They have been shown to
outperform the classical approaches for different use cases [14–18]. However, stability remains an important issue, along with
abidance by physical structure such as mass, momentum, and energy conservation [16,19–21].

In [19] homogeneous isotropic turbulence for the compressible Navier-Stokes equations was treated. A convolutional neural
network (CNN) was trained to reproduce the closure term from high-resolution flow data. Although a priori cross-correlation analysis
on the training data showed promising results, stable models could only be achieved by projecting onto an eddy-viscosity basis. In
[20] a gated recurrent NN was applied to the same test case. This network displayed even higher cross-correlation with the closure
term, but still yielded unstable models. Even after training on data with added artificial noise the model remained unstable [21]. In
[16] incompressible turbulent channel flow was treated. Here NNs with varying levels of locality were used to construct a closure
model. They showed that increasing the view of the NN improves a priori performance. However, a posteriori analysis showed that this
increased input space also led to instabilities. Even after introducing backscatter clipping these larger models were still outperformed
by the highly localized NN models. Two promising approaches to improving the stability of NN closure models are ‘trajectory fitting’
[14,15,22–24] and reinforcement learning [25,26]. Both of these approaches have in common that instead of fitting the NN to the
exact closure term (which is what we will refer to as ‘derivative fitting’), one optimizes directly with respect to how well the solution
is reproduced. This has been shown to yield more accurate and stable closure models [14,15,24]. The difference between these two
methods is that trajectory fitting uses exact gradients, such that gradient-based optimizers can be applied to optimize the NN weights
[27]. Reinforcement learning does not require these gradients. This makes it suitable for non-differentiable processes such as chess
and self-driving cars [28].

These approaches have all been applied to the Navier-Stokes equations. However, in this paper we consider a 1D simplification,
namely Burgers’ equation. Several studies have been carried out which apply machine learning to this equation. In [29] physics-

informed neural networks (PINNs) were successfully applied to Burgers’ equation. In PINNs the PDE is encoded into the loss function
of the neural network. The advantage of PINNs is that they allow us to approximate the solution without explicitly discretizing
space and time. In the context of closure modeling, several studies have been carried out. For example, in [30] and [31] a neural
network was fitted to predict the closure term for Burgers’ equation with forcing. In [31] the trained neural network was successfully
applied to unseen viscosity values. This was achieved by limited retraining on new data. This technique is known as transfer learning.
Furthermore, several studies have been carried out which show the benefits of trajectory fitting [24,32,33]. In [32] trajectory fitting
is combined with a Fourier neural operator to predict a spatially dependent Smagorinsky coefficient. This combination outperformed
the other considered approaches. It also guarantees stability by being strictly dissipative. Furthermore, Fourier neural operators have
the advantage that they are grid independent [34].

However, none of the discussed approaches leads to a provably stable NN closure model, while still allowing for backscatter. In
addition, they do not guarantee abidance by the underlying energy conservation law. The latter is something that to our knowledge
does not yet exist in the case of LES closure models. To resolve these shortcomings, we present a new NN closure model that satisfies
both momentum and kinetic energy conservation and is therefore stable by design. As stated earlier, the difficulty of this task mainly lies
in the fact that: (i) The kinetic energy conservation law includes terms which depend on the SGS content which is too expensive
to simulate directly. (ii) Consequently, the kinetic energy of the large scales is not a conserved quantity (in the limit of vanishing
viscosity). To tackle these issues we take the ‘discretize first, filter next’ approach [23,24]. This means that we start from a high-

resolution discretization with 𝑁 degrees of freedom, to which we apply a discrete filter. This filter projects the solution onto a coarse
computational grid of dimension 𝐼 , with 𝐼 ≪𝑁 . Given the discrete filter, the exact closure term can be obtained by computing the
commutator error. The main advantage of this approach is that the closure term now also accounts for the discretization error. Based
on the filter’s properties we then derive an energy conservation law that can be split into two components: one that depends solely on
the resolved scales (resolved energy) and another that solely depends on the SGS content (SGS energy) [13]. Like in existing works
the closure model is represented by a convolutional neural network (CNN) [35]. The main novelty comes from the addition of a set
of SGS variables. These SGS variables represent the SGS energy, projected onto the coarse grid. The key insight is that the resulting
system of equations should still conserve energy in the inviscid limit. We then choose our CNN architecture such that it is consistent
with this limit. In this way we still allow for backscatter without sacrificing stability.

The paper is structured in the following way: In section 2 we discuss Burgers’ and Korteweg-de Vries equation and their energy
and momentum conservation properties. We introduce the discrete filter, the resulting closure problem, and derive a new energy
conservation law. This law describes the exchange between the resolved and the SGS energy. In section 3 we introduce our novel
machine learning framework for modeling the closure term. This approach satisfies the derived energy conservation law using the
set of SGS variables to represent the SGS energy. In addition, we show how to satisfy momentum conservation. In section 4 we study
2

the convergence and stability of our closure modeling framework and compare this to a vanilla CNN. We also analyze its structure-

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

preserving properties in terms of momentum and energy conservation and its ability to extrapolate in space and time. In section 5 we
present a short discussion on the applicability of our framework to the Navier-Stokes equations. In section 6 we conclude our work.

2. Governing equations, discrete filtering, and closure problem

Before constructing a machine learning closure, we formulate a description of the closure problem on the discrete level. For this
purpose we introduce the filter and reconstruction operator which we apply to the discrete solution. In this way we also account for
the discretization error. In addition, we discuss the effects of filtering on the physical structure of the system.

2.1. Spatial discretization

We consider an initial value problem of the following form:

𝜕𝑢

𝜕𝑡
= 𝑓 (𝑢), (1)

𝑢(𝐱,0) = 𝑢0(𝐱), (2)

which describes the evolution of some quantity 𝑢(𝐱, 𝑡) in space 𝐱 ∈ Ω and time 𝑡 on the spatial domain Ω ⊆ ℝ𝑑 , given initial state
𝑢0. The dynamics of the system is governed by the right-hand side (RHS) 𝑓 (𝑢), which typically involves partial derivatives of 𝑢 with
respect to 𝐱. After spatial discretization (method of lines), we obtain the vector 𝐮(𝑡) ∈ℝ𝑁 . The elements u𝑖 of this vector approximate
the value of 𝑢 at each of the 𝑁 grid points 𝐱𝑖 ∈Ω for 𝑖 = 1, … , 𝑁 , such that u𝑖 ≈ 𝑢(𝐱𝑖). The discrete analogue of the IVP is then

d𝐮
d𝑡

= 𝑓ℎ(𝐮), (3)

𝐮(0) = 𝐮0, (4)

where 𝑓ℎ represents a spatial discretization of 𝑓 . It is assumed that all the physics described by equation (1) is captured in the
discrete solution 𝐮. This means that whenever the physics involves a wide range of spatial scales, a very large number of degrees of
freedom 𝑁 is needed to adequately resolve all the scales. This results in a large amount of computational resources required to solve
these equations. This is what we aim to alleviate.

2.2. Burgers’ and Korteweg-de Vries equation, and physical structure

We are interested in the modeling and simulation of turbulent flows. For this purpose, we first consider Burgers’ equation, a 1D
simplification of the Navier-Stokes equations. Burgers’ equation describes the evolution of the velocity 𝑢(𝑥, 𝑡) according to partial
differential equation (PDE)

𝜕𝑢

𝜕𝑡
= −1

2
𝜕𝑢2

𝜕𝑥
+ 𝜕

𝜕𝑥

(
𝜈
𝜕𝑢

𝜕𝑥

)
. (5)

The first term on the RHS represents nonlinear convection and the second term diffusion, weighted by the positive viscosity field
𝜈(𝑥) ≥ 0. This equation expresses similar behavior to 3D turbulence in the fact that smaller scales are created by the nonlinear
convective term, which then dissipate through diffusion [36]. We will be interested in two properties of the Burgers’ equation, which
we collectively call ‘structure’.

Firstly, momentum 𝑃 is conserved on periodic domains:

d𝑃

d𝑡
= d

d𝑡 ∫
Ω

𝑢dΩ

⏟⏟⏟
=∶𝑃

= ∫
Ω

−1
2
𝜕𝑢2

𝜕𝑥
+ 𝜕

𝜕𝑥

(
𝜈
𝜕𝑢

𝜕𝑥

)
dΩ= 0. (6)

Secondly, on periodic domains (kinetic) energy 𝐸 is conserved in the absence of viscosity:

d𝐸

d𝑡
= d

d𝑡

1
2 ∫

Ω

𝑢2dΩ

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=∶𝐸

= ∫
Ω

− 𝑢

2
𝜕𝑢2

𝜕𝑥
+ 𝑢

𝜕

𝜕𝑥

(
𝜈
𝜕𝑢

𝜕𝑥

)
dΩ=−∫

Ω

𝜈
(
𝜕𝑢

𝜕𝑥

)2
dΩ ≤ 0, (7)

where we used integration by parts. As we solely deal with viscous flows, i.e. 𝜈(𝑥) > 0, we disregard energy loss due to the presence
of shocks [37]. Note that these conservation laws only hold in the absence of forcing.

These properties can be preserved in a discrete setting by employing a structure-preserving scheme [37]. On a uniform grid the
convective term is discretized with the following skew-symmetric scheme:

(𝐂(𝐮)𝐮)𝑖 = − 1
3ℎ

(u2
𝑖+1 − u2

𝑖−1) −
1
3ℎ

u𝑖(u𝑖+1 − u𝑖−1), (8)

where ℎ is the grid spacing. The skew-symmetry entails that 𝐮𝑇𝐂(𝐮)𝐮 = 0. This is used later to derive energy conservation. Further-
3

more, the diffusion operator is discretized as

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 1. Subdivision of the spatial grid. The dots represent cell centers 𝐱𝑖𝑗 and 𝐗𝑖 for 𝑁 = 9 and 𝐼 = 𝐽 = 3.

(−𝐐𝑇 diag(𝝂)𝐐𝐮)𝑖 =
1
ℎ2

(𝜈𝑖(u𝑖+1 − u𝑖) + 𝜈𝑖−1(u𝑖−1 − u𝑖)), (9)

where 𝐐 is a simple forward difference approximation of the first derivative and 𝜈𝑖 = 𝜈(𝑥𝑖) [3,38]. In this paper we deal with constant
viscosity 𝜈(𝑥) = 𝜈 such that we obtain the following system of ordinary differential equations (ODEs):

d𝐮
d𝑡

=𝐂(𝐮)𝐮+ 𝜈𝐃𝐮. (10)

Here 𝐃 = −𝐐𝑇𝐐 corresponds to a simple central difference approximation of the second derivative. For the time discretization we
employ an explicit RK4 scheme [39].

This discretization conserves the discrete momentum 𝑃ℎ = ℎ𝟏𝑇 𝐮 in the periodic case:

d𝑃ℎ

d𝑡
= ℎ𝟏𝑇 d𝐮

d𝑡
= 0, (11)

where 𝟏 is a column vector with all entries equal to one. Note that this equation discretely represents the integral in (6). Furthermore,
due to the skew-symmetry of the convection operator the evolution of the discrete kinetic energy 𝐸ℎ = ℎ

2 𝐮
𝑇 𝐮 is given by:

Burgers’ equation:
d𝐸ℎ

d𝑡
= ℎ𝐮𝑇 d𝐮

d𝑡
= ℎ𝜈𝐮𝑇𝐃𝐮 = −ℎ𝜈||𝐐𝐮||22 ≤ 0. (12)

This is the discrete equivalent of (7). In both the continuous and discrete formulation we used the product rule to obtain the
derivative. The norm ‖.‖2 represents the conventional 2-norm. From (12) we conclude that this discretization ensures net kinetic
energy dissipation, and conservation in the inviscid limit. From this point forward we will refer to the kinetic energy simply as
energy.

In addition to Burgers’ equation we will consider the Korteweg-de Vries (KdV) equation:

𝜕𝑢

𝜕𝑡
= − 𝜀

2
𝜕𝑢2

𝜕𝑥
− 𝜇

𝜕3𝑢

𝜕𝑥3
, (13)

where 𝜀 and 𝜇 are scalar parameters. The KdV equation conserves momentum and energy irrespective of the values of 𝜀 and 𝜇. We
discretize the nonlinear term in the same way as for Burgers’ equation, using the skew-symmetric scheme. The third-order spatial
derivative is approximated by a skew-symmetric central difference stencil: (−u𝑖−2+2u𝑖−1−2u𝑖+1+u𝑖+2)∕(2ℎ3), see [40]. The resulting
discretization is not only momentum conserving, but also energy conserving:

KdV equation:
d𝐸ℎ

d𝑡
= 0. (14)

2.3. Discrete filtering

In order to alleviate the high computational expenses for large 𝑁 we apply a spatial averaging filter to the fine-grid solution
𝐮. This results in the coarse-grid approximation �̄� ∈ ℝ𝐼 . The coarse grid follows from dividing Ω into 𝐼 non-overlapping cells Ω𝑖

with cell centers 𝐗𝑖. The coarse grid is refined into the fine grid by splitting each Ω𝑖 into 𝐽 subcells 𝜔𝑖𝑗 with cell centers 𝐱𝑖𝑗 .
The subdivision is intuitively pictured in Fig. 1, for a uniform 1D grid. Furthermore, we define the mass matrices 𝝎 ∈ ℝ𝑁×𝑁 and
𝛀 ∈ℝ𝐼×𝐼 which contain the volumes of the fine and coarse cells on the main diagonal, respectively.

To reduce the degrees of freedom of the system we apply a spatial averaging filter to 𝐮. This filter simply computes �̄� as a
weighted average of 𝐮, within each coarse cell. We represent this by the following matrix vector product:

�̄� =𝐖𝐮, (15)

where 𝐖 ∈ℝ𝐼×𝑁 is the filter. The filter is defined as

𝐖 =𝛀−1𝐎𝝎 (16)

with overlap matrix 𝐎 ∈ℝ𝐼×𝑁 :

𝐎 ∶=
⎡⎢1 … 1

⋱ ⋱ ⋱
⎤⎥ . (17)
4

⎢⎣ 1 … 1⎥⎦

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 2. (Left) Fine-grid 𝐮, reconstructed 𝐑�̄�, and SGS content 𝐮′ for 𝑢 = sin(𝑥). Here 𝑁 = 1000, 𝐼 = 20, and 𝐽 = 50. The SGS content in the fourth coarse cell 𝝁4 is
also indicated. (Right) Energy during a simulation of KdV equation with periodic BCs before and after filtering. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

This matrix contains ones at index (𝑖, 𝑗) if 𝜔𝑖𝑗 lies in Ω𝑖. Mathematically, �̄� can be regarded as a representation of 𝐮 in a reduced
basis. To project back onto the original basis we use a reconstruction operator 𝐑:

𝐑 ∶=𝐎𝑇 (18)

which is a right inverse of 𝐖, i.e.

𝐖𝐑 = 𝐈. (19)

The matrix 𝐑 approximates the reconstruction by a piece-wise constant function [41]. This is intuitively pictured in Fig. 2. Filtering
a reconstructed solution 𝐑�̄� leaves �̄� unchanged, i.e.

�̄� = (𝐖𝐑)𝑝
⏟⏟⏟

=𝐈

𝐖𝐮 (20)

for 𝑝 ∈ ℕ0. We will refer to this property as the ‘projection’ property, as it is similar to how repeated application of a projection
operator leaves a vector unchanged.

By subtracting 𝐑�̄� from 𝐮 we obtain the subgrid-scale (SGS) content 𝐮′ ∈ℝ𝑁 :

𝐮′ ∶= 𝐮−𝐑�̄�. (21)

In theory, one could define a more accurate 𝐑, e.g. through polynomial reconstruction or data-driven approaches [23], and obtain a
smaller 𝐮′. However, this particular choice of 𝐑 is made such that the energy is invariant under reconstruction, as will be shown in
equation (27). This is an important property for our methodology to work. Furthermore, we will refer to the SGS content in a single
coarse cell Ω𝑖 as 𝝁𝑖 ∈ℝ𝐽 , see Fig. 2. Applying the filter to 𝐮′ yields zero:

𝐖𝐮′ =𝐖𝐮− 𝐖𝐑
⏟⏟⏟

=𝐈

�̄� = �̄�− �̄� = 𝟎Ω, (22)

where 𝟎Ω is a vector with all entries equal to zero, defined on the coarse grid. This can be seen as the discrete equivalent of a property
of a Reynolds operator [5]. To illustrate, we display each of the introduced quantities for a 1D sinusoidal wave in Fig. 2.

2.4. Discrete closure problem

Next, we consider the time evolution of �̄�. Since we employ a spatial filter which does not depend on time, filtering and time-

differentiation commute: 𝐖 d𝐮
d𝑡

= d(𝐖𝐮)
d𝑡

. The closure problem arises because this is not true for the spatial discretization, i.e.

𝐖𝑓ℎ(𝐮) ≠ 𝑓𝐻 (𝐖𝐮) (23)

where 𝑓𝐻 represents the same discretization scheme as 𝑓ℎ, but on the coarse grid. The closure problem is that the equations for �̄�
are ‘unclosed’. This means that knowing the fine-grid solution 𝐮 is required to evolve �̄� in time. In this way we do not achieve any
computational speedup.

To resolve this we write the filtered system in closure model form:

d�̄�
d𝑡

= 𝑓𝐻 (�̄�) + (𝐖𝑓ℎ(𝐮) − 𝑓𝐻 (�̄�))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

, (24)
5

=∶𝐜(𝐮)

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

where 𝐜(𝐮) ∈ℝ𝐼 is the closure term. Note that this equation is still exact. 𝐜(𝐮) is essentially the discrete equivalent of the commutator
error in LES [5]. One advantage of having first discretized the problem is that 𝐜(𝐮) also includes the discretization error, with respect
to a fine-grid simulation. The aim in closure modeling is generally to approximate 𝐜(𝐮) by a closure model �̃�(�̄�). In section 3 we
choose to represent �̃� by a neural network.

2.5. Inner products and energy decomposition

To describe the total energy that is present in the system, we define the following inner products and norms:

(𝐚,𝐛)𝜉 ∶= 𝐚𝑇 𝝃𝐛 (25)||𝐚||2
𝜉
∶= (𝐚,𝐚)𝜉 (26)

for 𝝃 ∈ {𝝎, 𝛀}, and vectors 𝐚 and 𝐛. With this notation we can represent the inner product on both the fine and coarse grid. For 𝝃 = 𝐈
we obtain the conventional inner product and 2-norm, denoted as (𝐚, 𝐛) = 𝐚𝑇 𝐛 and ||𝐚||22. Besides the projection property (20) an
additional characteristic of the filter/reconstruction pair is that the inner product is conserved under reconstruction (see Appendix A):

(𝐑�̄�,𝐑�̄�)𝜔 = (�̄�, �̄�)Ω. (27)

Using this, the total energy 𝐸ℎ in the system can be decomposed as

𝐸ℎ ∶=
1
2
||𝐮||2𝜔 = 1

2
||𝐑�̄�+ 𝐮′||2𝜔

= 1
2
||𝐑�̄�||2𝜔 + (𝐑�̄�,𝐮′)𝜔 + 1

2
||𝐮′||2𝜔 = 1

2
||�̄�||2Ω

⏟⏟⏟
=∶�̄�ℎ

+ 1
2
||𝐮′||2𝜔

⏟⏞⏟⏞⏟
=∶𝐸′

ℎ

(28)

where we replaced 𝐮 by the decomposition in (21). Furthermore, we used the fact that 𝐑�̄� is orthogonal to 𝐮′ to simplify the
expression, see Appendix A. The final expression shows that our choice of 𝐖 and 𝐑 is such that the total energy of the system can
be split into two parts. These constitute of the resolved energy �̄�ℎ, which exclusively depends on �̄�, and the SGS energy 𝐸′

ℎ
, which

exclusively depends on 𝐮′. The energy conservation law can also be decomposed into a resolved and SGS part:

d𝐸ℎ

d𝑡
=

d�̄�ℎ

d𝑡
+

d𝐸′
ℎ

d𝑡
=
(
�̄�, d�̄�

d𝑡

)
Ω
+
(
𝐮′, d𝐮′

d𝑡

)
𝜔

= 0, (29)

where we used the product rule to arrive at this relation. For Burgers’ equation with 𝜈 > 0, the last equality sign changes to ≤. This
means that even for dissipative systems the resolved energy can still increase (so-called ‘backscatter’), as long as the total energy is
decreasing. For the KdV equation (13), which is strictly energy conserving, this decomposition can be seen in Fig. 2. Here one can
clearly see the continuous exchange of energy between �̄�ℎ and 𝐸′

ℎ
, while the sum of the two remains constant.

2.6. Momentum conservation

Next to the energy, we investigate the effect of filtering on the momentum. The total discrete momentum is given by

𝑃ℎ = (𝟏𝜔,𝐮)𝜔, (30)

where 𝟏𝜔 is a vector with all entries equal to one, defined on the fine grid. From this definition we can show, see Appendix A, that
the discrete momentum is invariant upon filtering, i.e.

(𝟏𝜔,𝐮)𝜔 = (𝟏Ω, �̄�)Ω. (31)

This means the closure term does not add momentum into the system, i.e.

(𝟏Ω, 𝐜(𝐮))Ω = 0. (32)

3. Structure-preserving closure modeling framework

In this section, the derived discrete energy and momentum balances will be used to construct a novel structure-preserving closure
model. We will also discuss how to fit the parameters of the model.

3.1. The framework

Many existing closure approaches aim at approximating 𝐜(𝐮) by a closure model �̃�(�̄�; 𝚯). Here 𝚯 are parameters to be determined
such that the approximation is accurate. In this work, we propose a novel formulation, in which we extend the system of equations
for �̄� with a set of 𝐼 auxiliary SGS variables 𝐬 ∈ℝ𝐼 . These SGS variables locally approximate the SGS energy, but projected onto the
6

coarse grid. This will be detailed later. The extended system of equations has the form

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

d

d𝑡

[
�̄�
𝐬

]
≈ Θ(�̄�, 𝐬) ∶=

[
𝑓𝐻 (�̄�)
𝟎Ω

]
+𝛀−1

2 (−𝑇)
[
�̄�
𝐬

]
−𝛀−1

2 𝑇
[
�̄�
𝐬

]
, (33)

where =(�̄�, 𝐬, 𝚯) ∈ℝ2𝐼×2𝐼 and =(�̄�, 𝐬, 𝚯) ∈ℝ2𝐼×2𝐼 depend on the solution in a parameterized fashion. Next to the introduc-

tion of 𝐬, the second main novelty in this work is to formulate the closure model in terms of a skew-symmetric and a dissipative
term. The skew-symmetric term is introduced to allow for exchange of energy between �̄� and 𝐬. The dissipative term is introduced
to provide additional dissipation, as this is required (see Appendix B). The operators and will be modeled in terms of neural
networks (NNs) with trainable parameters (contained in 𝚯). So even though the notation in (33) suggests linearity of the closure
model, the dependence of and on �̄� and 𝐬 makes the model nonlinear. The construction of the introduced operators will be
detailed in sections 3.3. As our energy definition includes 𝛀 we include the inverse of the concatenated mass matrix 𝛀−1

2 in our
system of equations (33). This ensures energy conservation/dissipation regardless of the grid topology. This mass matrix is defined
as

𝛀2 =
[
𝛀

𝛀

]
. (34)

Given the extended system of equations, the total energy (28) is approximated as

𝐸ℎ ≈𝐸𝑠 ∶=
1
2
||𝐚||2Ω2

= 1
2
||�̄�||2Ω + 1

2
||𝐬||2Ω, (35)

where the second term approximates the SGS energy. Furthermore, we concatenate �̄� and 𝐬 into a single state vector 𝐚 ∈ℝ2𝐼 :

𝐚 ∶=
[
�̄�
𝐬

]
. (36)

The evolution equation for the approximated total energy is given by

d𝐸𝑠

d𝑡
=
(
𝐚, d𝐚

d𝑡

)
Ω2

= (�̄�, 𝑓𝐻 (�̄�))Ω − ||𝐚||22, (37)

as the skew-symmetric term involving − 𝑇 cancels. This is a property of skew-symmetric matrices [38]. Consequently, this
formulation guarantees stability provided that 𝑓𝐻 is structure-preserving.

Our key insight is that by explicitly including an approximation of the SGS energy we are able to satisfy the energy conservation balance,
equation (29). The energy balance serves not only as an important constraint for the closure model (represented by a NN), but
also guarantees stability of our closure model. This is because the energy is a norm of the solution which is bounded in time. This
framework thus allows for the modeling of backscatter without sacrificing stability.

3.2. SGS variables

Next, let us consider appropriate expressions for 𝐬. The exact SGS energy on the coarse grid is given by:

𝐖(𝐮′)2, (38)

where (.)2 is to be interpreted element-wise. This would yield 𝐬 = ±
√
𝐖(𝐮′)2, where

√
(.) is also to be interpreted element-wise. The

square root is taken to comply with the energy definition in (35). However, this definition for 𝐬 resulted in poor performance during
testing. We argue this was caused by the strict positivity (or negativity). Inevitable small errors in the model predictions caused some
of the elements of 𝐬 to switch sign. As the model was trained on positive 𝐬, the simulation quickly diverged from the true trajectory.
Attempts at resolving this issue were not successful.

Instead we propose the use of a local linear compression. This formulation naturally allows for both positive and negative values
of s𝑖. This compression is written as (assuming a uniform grid):

s𝑖 = 𝐭𝑇𝝁𝑖, 𝑖 = 1,… , 𝐼, (39)

where we recall that 𝝁𝑖 ∈ ℝ𝐽 represents the SGS content in a single coarse cell Ω𝑖. Furthermore, 𝐭 ∈ ℝ𝐽 are the compression
parameters. We aim to choose 𝐭 such that we obtain 𝐬2 ≈ 𝐖(𝐮′)2. The optimal values of 𝐭 are obtained using a singular value
decomposition of the SGS content. This is outlined in Appendix C. From (39) we construct an operator 𝐓𝑠 ∈ℝ𝐼×𝑁 which transform
the SGS content into 𝐬:

𝐬 = 𝐓𝑠𝐮′. (40)

Combining the compression with the filter, see (15), we define the operator 𝐓 ∈ℝ2𝐼×𝑁 which transforms 𝐮 into the state vector 𝐚:

𝐚 =
[

𝐖
𝐓𝑠(𝐈−𝐑𝐖)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐓

𝐮. (41)
7

Due to the linearity of the transformation we simply obtain

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 3. (Left) Learned SGS compression applied to Burgers’ equation for 𝑁 = 1000, with 𝐼 = 20 and 𝐽 = 50. By filtering and applying the SGS compression the degrees
of freedom of this system are effectively reduced from 𝑁 = 1000 to 2𝐼 = 40. (Right) True SGS energy and compressed SGS energy during this simulation of Burgers’
equation.

d𝐚
d𝑡

= 𝐓d𝐮
d𝑡

, (42)

where 𝐓 is the Jacobian of the transformation. In the linear case this Jacobian does not depend on 𝐮 which significantly simplifies
computing reference data for d𝐚

d𝑡
. In addition, it follows that if the true RHS includes a forcing term 𝐅 ∈ ℝ𝑁 we simply account for

this by adding 𝐓𝐅 to the RHS of (33).

To illustrate how the compression works in practice we consider a snapshot from a simulation of Burgers’ equation (𝜈 = 0.01) with
periodic BCs, see Fig. 3. We observe that 𝐬 serves as an energy storage for the SGS content, which is mainly present near shocks. If we
look at the SGS energy trajectory we find that its behavior is captured both qualitatively and quantitatively by the SGS compression.
Although we still miss some of the energy, the oscillations due to the traveling shock are nicely captured. From this we argue that a
linear compression suffices. For more complex systems autoencoders might offer an alternative [42].

3.3. Construction of the operators

Similarly to the structure-preserving discretization for Burgers’ equation, presented in section 2.2, we want our closure model to
locally advect momentum and energy through the domain. In this way we do not violate the conservation laws. It is therefore that
we inspire our machine learning closure model on this structure-preserving discretization. In this section we outline how to construct
 and from the output of a convolutional neural network (CNN) [35].

3.3.1. Diffusive operator

Let us start by considering the diffusion operator in (9), namely −𝐐𝑇 diag(𝝂)𝐐. This operator locally diffuses energy and momen-

tum through space at a rate which is determined by a positive viscosity field. In the periodic case the momentum is conserved, as
𝟏𝑇𝐐𝑇 = 𝟎, and the energy is dissipated, as −𝐮𝑇𝐐diag(𝝂)𝐐𝐮 = −||√diag(𝝂)𝐐𝐮||22 ≤ 0.

Drawing inspiration from this operator we introduce the following form for the diffusive term in our closure model:

(𝐚;𝚯) = 𝐪(𝐚;𝚯)1(𝚯) (43)

such that 𝑇 = 𝑇
1 𝐪

21 resembles the discussed diffusion operator. Here 𝐪(𝐚; 𝚯) = diag(𝐪1, 𝐪2) ∈ ℝ2𝐼×2𝐼 is constructed from two
output channels 𝐪1 and 𝐪2 of a CNN which takes �̄�, 𝐬, and 𝑓𝐻 (�̄�) as inputs. 𝑓𝐻 (�̄�) was added as input channel because it significantly
improved the performance of the neural network. This is supported by [24]. Looking at the introduced form, 𝐪2 can be thought of as
a set of learned non-uniform and nonlinear viscosity fields. The square ensures positivity of these fields. Furthermore, the introduced
matrix 1(𝚯) ∈ℝ2𝐼×2𝐼 is a linear operator which encodes a set of parameterized convolutions. It will be used to satisfy momentum
conservation, similarly to 𝐐. This will be discussed later in section 3.3.3.

3.3.2. Advective operator

For our skew-symmetric operator −𝑇 we take a similar approach and introduce the following form:

(𝐚;𝚯) =𝑇
2 (𝚯)𝐤(𝐚;𝚯)3(𝚯) (44)

such that − 𝑇 = 𝑇
2 𝐤3 − 𝑇

3 𝐤2. Similarly to the diffusive operator we use 2(𝚯), 3(𝚯) ∈ ℝ2𝐼×2𝐼 to satisfy momentum
conservation. As is the case for 𝐪, the fields 𝐤(𝐚; 𝚯) = diag(𝐤1, 𝐤2) are constructed from an additional set of two outputs channels of
the CNN, i.e.[

𝐪1 𝐪2 𝐤1 𝐤2
]
= CNN(�̄�, 𝐬, 𝑓 (�̄�);𝚯). (45)

This means the CNN has in total four output channels to construct both 𝐪 and 𝐤. Furthermore, 𝐤 can be thought of as a set of learned
8

velocity fields which advect momentum and energy through the domain, in addition to exchanging energy between �̄� and 𝐬.

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

3.3.3. Momentum conservation

The entire framework (33) is summarized as

Θ(𝐚) =
[
𝑓𝐻 (�̄�)
𝟎Ω

]
+𝛀−1

2 (𝑇
2 𝐤3 −𝑇

3 𝐤2)𝐚−𝛀−1
2 𝑇

1 𝐪
21𝐚. (46)

From this we find that momentum conservation, see (32), places an additional constraint on the operators:([
𝟏Ω
𝟎Ω

]
,Θ(𝐚)

)
Ω2

=
[
𝟏Ω
𝟎Ω

]𝑇
(𝑇

2 𝐤3 −𝑇
3 𝐤2)𝐚−

[
𝟏Ω
𝟎Ω

]𝑇
𝑇
1 𝐪

21𝐚 = 0, (47)

assuming that 𝑓𝐻 is momentum conserving. This constraint is to be satisfied for periodic BCs, and we choose to compose 𝑖 of
convolutions (or stencils) expressed as linear operators:

𝑖 =
[
𝐁11

𝑖
𝐁12

𝑖

𝐁21
𝑖

𝐁22
𝑖

]
. (48)

The operator 𝑖 can therefore be thought of as the connection between two layers in a CNN, with each layer containing two channels
[35]. In 1D each of the submatrices is characterized by 2𝐵 + 1 parameters, where 𝐵 > 0 is the width of the convolution. In this way,
each convolution takes into account 𝐵 neighboring grid cells from each side. Momentum conservation is ensured by constraining
these submatrices in a clever way. From the constraint (47) and the definition of 𝑖, in (48), we find that momentum conservation is
satisfied if the sum of the convolution weights for 𝐁𝑗1

𝑖
is zero ∀𝑖, 𝑗, as is the case for 𝐐. To see how this works we consider a general

convolution operator 𝐁, characterized by parameters 𝑏−𝐵, … , 𝑏𝐵 ∈ℝ. Applying this operator to a discrete field 𝐟 , while constraining
the sum of the weights to zero, is achieved as follows:

(𝐁𝐟)𝑖 =
𝐵∑

𝑗=−𝐵

�̄�𝑗 f𝑖+𝑗 , (49)

�̄�𝑗 = 𝑏𝑗 −
𝐵∑

𝑘=−𝐵

𝑏𝑘

2𝐵 + 1
, (50)

such that
∑𝐵

𝑗=−𝐵 �̄�𝑗 = 0 indeed holds. Applying this procedure to 𝐁𝑗1
𝑖

, ∀𝑖, 𝑗, ensures (47) is satisfied up to machine precision, inde-

pendent of the parameter values. The remaining convolutions are left unconstrained, i.e. we simply take �̄�𝑗 = 𝑏𝑗 .

3.3.4. Properties & further discussion

The key insight is that we are free to choose any set of parameters 𝚯 without violating the prescribed structure of the system.
Furthermore, as and are based solely on convolutions in the CNN and the matrices, they effectively correspond to nonlinear
local stencils. The entire framework is therefore translation equivariant. For periodic boundary conditions (BCs) we apply circular
padding to both the CNN inputs and the state vector [35]. For non-periodic BCs we refer to Appendix D. The parameters 𝚯 include
the weights of the CNN, as well as the parameters characterizing the matrices. As both the CNN and the convolution operations in
 are sparse, our model remains computationally efficient.

In Fig. 4 the framework is applied to Burgers’ equation, where we compare it to the direct numerical simulation (DNS). It is once
again interesting to see that 𝐬 is largest at the shocks, indicating the presence of significant SGS content. Comparing the magnitude
of the different terms in (33), see Fig. 5, we observe that the skew-symmetric term, that is responsible for redistributing the energy,
is most important. In fact it is more important than the coarse-grid discretization. In other words, our closure model has learned
dynamics that are highly significant to correctly predict the evolution of the filtered system. This means that even though the closure
term is large, we can still accurately model it.

3.4. Finding the optimal parameter values

The optimal parameter values of the network can be obtained numerically by minimizing

(𝐗u;𝚯) ∶= 1
𝑝

∑
𝐮∈𝐗u

||Θ(𝐓𝐮) −𝐓𝑓ℎ(𝐮)||22 (51)

with respect to 𝚯 for the training set 𝐗u containing 𝑝 DNS snapshots. We will refer to this approach as ‘derivative fitting’, as we
minimize the residual between the predicted and the true RHS.

An alternative is to optimize 𝚯 such that the solution itself is accurately reproduced. To achieve this we minimize

𝑛(𝐗u;𝚯) ∶= 1
𝑝𝑛

∑
𝐮∈𝐗u

𝑛∑
𝑖=1

||̄ 𝑖
𝚯(𝐓𝐮) −𝐓 𝑖(Δ𝑡∕Δ𝑡)(𝐮)||22. (52)

Here ̄ 𝑖
𝚯(𝐓𝐮) represents the output of the solver after successive application of an explicit time integration scheme for 𝑖 time steps,
9

with step size Δ𝑡, starting from initial condition 𝐓𝐮, using the introduced closure model in (33). The DNS counterpart is indicated by

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 4. A simulation of Burgers’ equation with periodic BCs using our trained structure-preserving closure model for 𝐼 = 20 and 𝐽 = 50 (left), along with the DNS
solution for 𝑁 = 1000 (right).

Fig. 5. Magnitude of each of the different terms present in (33) corresponding to the simulation in Fig. 4 with 𝐼 = 20, 𝐽 = 50, and 𝑁 = 1000.

 𝑖(Δ𝑡∕Δ𝑡)(𝐮), with step size Δ𝑡, starting from initial condition 𝐮. Note the appearance of the ratio Δ𝑡∕Δ𝑡. This is because the coarse
grid allows for larger time steps [43]. We will refer to this method as ‘trajectory fitting’. This approach has been shown to yield more
accurate and stable closure models [14,15,22–24]. In this paper we propose a hybrid of the two approaches, as trajectory fitting is
more computationally more expensive. This hybrid approach will be detailed later.

4. Results

4.1. Test cases

To test our closure modeling framework we consider the previously introduced Burgers’ equation with 𝜈 = 0.01 on the spatial
domain Ω = [0, 2𝜋] for two test cases: (i) periodic BCs without forcing and (ii) inflow/outflow (I/O) BCs with time-independent
forcing. The implementation of BCs is discussed in Appendix D. We also consider a third test case: (iii) the KdV equation with
𝜀 = 6 and 𝜇 = 1 on the spatial domain Ω = [0, 32] for periodic BCs. Parameter values for Burgers’ and KdV are taken from [30].
Reference DNSs are carried out on a uniform grid of 𝑁 = 1000 for Burgers’ and 𝑁 = 600 for KdV up to time 𝑇 = 10. The data that is
generated from these reference simulations is split into a training (70%) and a validation set (30%). The simulation conditions (initial
conditions, BCs, and forcing) for training are generated randomly, as described in Appendix E. The closure models will be tested on
unseen simulation conditions, sampled from the same distributions as the training data. In addition to this, the construction of the
10

training and validation set, the training procedure, and the hyperparameter tuning procedure are also described in Appendix E.

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

4.1.1. Considered closure models

For the analysis, we will compare our structure-preserving framework (SP) to a vanilla CNN. The vanilla CNN output is multiplied
by a forward difference operator and the result is used as a closure model, i.e.

�̃�(𝐮;𝚯) = �̄�CNN(�̄�, 𝑓ℎ(�̄�);𝚯), (53)

where �̄� is a forward difference discretization of the first derivative on the coarse grid. This is done to satisfy momentum conservation
[24,32]. In addition, we consider a constant Smagorinsky model (SM) for use case (i) and (ii). This model contains a single scalar
parameter 𝐶𝑠. This parameter is optimized in the same way as the NN parameters. We chose this model as it was the best performing
non-machine learning closure in [32], outperforming the dynamic Smagorinsky model. After discretization, it takes the following
form:

�̃�(𝐮;𝐶𝑠) = −�̄�𝑇 diag(𝝂𝑡(𝐶𝑠))�̄��̄�, (54)

𝝂𝑡(𝐶𝑠) = (ℎ𝐶𝑠)2|�̄��̄�|, (55)

such that 𝝂𝑡 represents a parameterized and solution dependent viscosity. Here we have taken the filter width equal to the grid-

spacing ℎ. Moreover, we also consider SP0 which initializes the simulation with 𝐬(𝑡 = 0) = 𝟎Ω instead of the true 𝐬. This emulates
the situation in which the true initial condition is unknown. Finally, we consider the no closure (NC) case, which corresponds to a
coarse-grid solution of the PDEs. To march the solution forward in time we employ an explicit RK4 scheme [39] with time step size
Δ𝑡 = 0.01 (4× larger than the DNS) for Burgers’ and Δ𝑡 = 5 × 10−3 (50× larger than the DNS) for KdV.

To make a fair comparison we compare closure models with the same number of degrees of freedom (DOF). For SP we have
DOF = 2𝐼 , as we obtain an additional set of 𝐼 degrees of freedom corresponding to the addition of the SGS variables. For the
remaining closure models we simply have DOF = 𝐼 .

4.2. Training the closure models

As use cases (i) and (ii) both correspond to Burgers’ equation we train the corresponding closure models on a dataset containing
both simulation conditions. In this way we end up with a single closure model that works for both (i) and (ii). The SP closure models
contain in total 2780 parameters (consisting of two hidden layers with each 20 channels and a kernel size of 5 for the underlying
CNN) for Burgers’ equation and 5352 (consisting of two hidden layers with each 30 channels and a kernel size of 5) for KdV. The
purely CNN-based closure models consist of 3261 parameters (two hidden layers with each 20 channels and a kernel size of 7). These
settings are based on the hyperparameter tuning procedure in Appendix E. For KdV we omit the dissipative component in (33), as it is
a conservative system. In between hidden layers we employ the ReLU activation function. We employ a linear activation function at
the final layer. For Burgers’ we choose 𝐵 = 1 for the construction of the matrices, matching the width of the coarse discretization.
For KdV we do the same and therefore take 𝐵 = 2.

As stated earlier, the model parameters are optimized by first derivative fitting and then trajectory fitting. During testing we
observed that solely derivative fitting resulted in instabilities and poor performance for the vanilla CNN, especially in the KdV case.
In contrast, our SP method is guaranteed to be stable, and simply derivative fitting already resulted in reasonable performance. To
maximize the potential of each closure model we decided to include trajectory fitting in the training procedure. The full procedure
is outlined in Appendix E. We implemented our closure models in the Julia programming language [44] using the Flux.jl package
[45,46]. The code can be found at https://github .com /tobyvg /ECNCM _1D.

4.3. Closure model performance

We examine the performance of the trained closure models based on how well the filtered DNS solution is reproduced. For our
comparison we will make extensive use of the normalized root-mean-squared error (NRMSE) metric. This metric is defined as

NRMSE �̄�(𝑡) =
√

1|Ω| ||�̄�(𝑡) − �̄�DNS(𝑡)||2Ω. (56)

It is used to compare the approximated solution �̄� at time 𝑡, living on the coarse grid, to the filtered DNS result �̄�DNS. We will refer
to this metric as the solution error. In addition, we define the integrated-NRMSE (I-NRMSE) as

I-NRMSE �̄� = 1
𝑇

∑
𝑖

Δ𝑡 NMRSE �̄�(𝑖Δ𝑡), 0 ≤ 𝑖Δ𝑡 ≤ 𝑇 , (57)

such that the sum represents integrating the solution error in time. We will refer to this metric as the integrated solution error.

4.3.1. Convergence

As we refine the resolution of the coarse grid, and with this increase the number of DOF, we expect convergence of both the
compression error 𝑠, see Appendix C, and the solution error. We consider DOF ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}. For each DOF

value we train a different set of closure models. If 𝑁 is not divisible by 𝐼 we first project the DNS result onto a grid with a resolution
that is divisible by 𝐼 before applying the filter. In total 36 closure models are trained: two (SP and CNN) for each combination of the
11

9 considered coarse-grid resolutions and equation (Burgers’ and KdV).

https://github.com/tobyvg/ECNCM_1D

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 6. Convergence of the SGS compression error 𝑠 when refining the coarse grid, evaluated on the validation set for Burgers’ equation (𝑁 = 1000) and KdV
equation (𝑁 = 600). Both the effective DOF and the corresponding compression factor 𝐽 are depicted on the 𝑥-axis.

Fig. 7. (Top) Integrated solution error evaluated at 𝑇 = 10 averaged over 20 simulations for the different use cases (i)-(iii) and an increasing number of DOF. Only sta-

ble simulations are considered for the depicted averages. Absence of a scatter point indicates none of the simulations were stable. (Bottom) Similar to the top plots, but
depicting the average simulation time as a fraction of the DNS time. NC = no closure, CNN = convolutional neural network closure, SP = structure-preserving closure,
SP0 = structure-preserving closure with 𝐬(𝑡 = 0) = 𝟎Ω , and SM = constant Smagorinsky model.

The SGS compression error evaluated over the validation set is shown in Fig. 6. We observe monotonic convergence of the
compression error as we refine the grid. We expect the compression error to further converge to zero, as we keep on refining. The
faster convergence for the KdV equation is likely caused by the lower fine-grid resolution, as compared to Burgers’ equation.

Next, we consider the integrated solution error, see Fig. 7. The presented plots represent an average taken over 20 simulations with
unseen simulation conditions. We consider different numbers of DOF which enables us to evaluate the convergence. For test cases
(i) and (ii) we observe almost monotonic convergence of the solution error for NC, SM, and SP/SP0. Furthermore, SP improves upon
NC with roughly one order of magnitude, surpassing SM. SP0 only performs slightly worse than SP, but still converges relatively
smoothly. On the other hand, the solution error for the CNN behaves quite erratically: sometimes more accurate than SP, and
sometimes less accurate than NC (case (i), DOF = 90).

For test case (iii) (KdV) we find that for most numbers of DOF the CNN outperforms SP, while not resulting in stable closure
models for DOF ∈ {90, 100}. Furthermore, for the lower numbers of DOF we observe slightly better performance for SP. From this
we conclude that the compression error (see Fig. 6) is likely not the limiting factor of the closure model performance. Looking at the
12

difference between SP and SP0 it seems that initializing with the true 𝐬 seems to lead to a larger difference, as compared to Burgers’

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 8. Integrated solution error evaluated at 𝑇 = 10 averaged over 20 simulations and % of unstable simulations for each closure model in the trained ensemble of
10 closure models (DOF = 60). Use cases (i)-(iii) are considered. For (ii) two CNN closure models produced 100% unstable simulations and are therefore omitted from
the graph. CNN = convolutional neural network closure and SP = structure-preserving closure.

equation. As SGS energy does not dissipate in the KdV equation, but flows back into the resolved scales, the dependence on the true
𝐬 is likely higher than for Burgers’.

Overall, the conclusion is that our proposed SP closure model leads to more robust simulations than the CNN, while still improving
upon NC with roughly an order of magnitude.

4.3.2. Computation time

Looking at the relative computation times in Fig. 7 we find that both SP and the CNN are at least 2× faster than the DNS,
for Burgers’ equation. Furthermore, the computation time for the CNN is slightly shorter, but seems to increase at a larger rate
when increasing the DOF. On our laptop CPU the computation time of a single DNS took no longer than 5 seconds. For such small
simulations we expect the computation time to be largely determined by computational overhead. We therefore expect the relative
speedup to increase for larger systems. In fact, the training time amounts to roughly 20 minutes for each neural network. This
is rather long compared to a DNS, however for more complex/larger systems we expect the significance of the training time to
decrease, relative to the DNS time. Especially for 2D/3D problems where the curse of dimensionality sets in, significant speedups can
be expected [15,18]. Also, once a model is trained it can be applied to unseen simulation conditions, without retraining.

For the KdV equation, the relative speedup is roughly 20×. This is likely caused by the small time step size required for the DNS
(Δ𝑡 = 10−4). Larger time step sizes for the DNS consistently resulted in unstable simulations within a few time steps. In addition, we
find that computing the true 𝐬 for the initial condition does not really affect the computation time.

4.4. Consistency of the training procedure

It is important to note that the closure models trained in the previous section possess a degree of randomness. This is caused by
the (random) initialization of the network weights and the random selection of the mini-batches. This likely caused the irregular
convergence behavior shown in the previous section. In order to evaluate this effect, we train 10 separate replica models for DOF= 60,
which only differ in the random seed. The trained models are evaluated in terms of stability (number of unstable simulations) and
integrated solution error. A simulation is considered unstable when it produces NaN values for �̄�. In total 20 simulations per closure
model are carried out using the same simulation conditions as in the convergence study. The results are depicted in Fig. 8. With
regard to stability we observe that all trained SP closure models produced exclusively stable simulations. This is in accordance with
the earlier derived stability condition (37). For the non-periodic test case (ii) we also observe a clear stability advantage, as compared
to the CNN.

Regarding this integrated solution error, we observe that the SP closure models all perform very consistently (errors are almost
overlapping). The CNNs sometimes outperform SP, but also show very large outliers. This confirms our conclusion of the previous
section that our SP closure models are much more robust than the CNNs, which can be ‘hit or miss’ depending on the randomness in
the training procedure. However, we still find that SP is often outperformed by the CNN for test case (iii).

4.5. Structure preservation

As we formulated a structure-preserving closure model it is important to evaluate if the structure is indeed preserved. For this
we consider a single simulation of the KdV equation with periodic BCs, for DOF = 40. This is an interesting test case, as the energy
should be exactly conserved. In Fig. 9 we look at both the change in momentum and energy during the simulation. For momentum
conservation we also include the CNN, as this satisfies momentum equation through multiplication by a discrete derivative operator,
see (53). Regarding momentum conservation we find that both SP and the CNN indeed conserve momentum up to machine precision
(single-precision). For energy conservation we observe the same for SP. From this we conclude that SP indeed preserves the relevant
structure.
13

Furthermore, we also consider a single simulation of Burgers’ equation with periodic BCs, see Fig. 10. Here we find that the total

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 9. Change in momentum Δ𝑃ℎ(𝑡) = 𝑃ℎ(𝑡) − 𝑃ℎ(0) (left) and total energy Δ𝐸ℎ∕𝑠(𝑡) = 𝐸ℎ∕𝑠(𝑡) − 𝐸ℎ∕𝑠(0) (right) for a simulation of the KdV equation
with periodic BCs starting from an unseen initial condition. The presented results correspond to DOF = 40. DNS = direct numerical simulation, CNN =
convolutional neural network closure and SP = structure-preserving closure.

Fig. 10. Resolved and total energy for a simulation of Burgers’ equation with periodic BCs starting from an unseen initial condition. The presented results correspond
to DOF = 40. DNS = direct numerical simulation and SP = structure-preserving closure.

energy is always decreasing for SP. However, we find the resolved energy to oscillate due to backscatter, which matches the filtered
DNS result. From this we conclude that, although the energies do not match the DNS result exactly, SP indeed allows for backscatter
to be modeled correctly.

4.6. Burgers’ equation & energy spectra

To find out what happens when a CNN becomes unstable we consider Burgers’ equation with periodic BCs, for DOF = 90. For
this CNN we observed a rather large error spike in the convergence study (Fig. 7). To analyze this error spike we consider a single
simulation starting from an unseen initial condition. The results are depicted in Fig. 11. Here we observe a large buildup of numerical
noise for the CNN, as the simulation progresses. In addition, we observe that SP nicely suppresses the wiggles produced by NC around
the shock [37]. SM also manages to do this, although to a lesser extent.

Next, we look at the energy trajectories and energy spectra corresponding to this simulation, see Fig. 12. The energy spectra
are given as a function of the wavenumber 𝑘. These spectra are computed by carrying out a discrete Fourier transform of �̄� and
computing the energy for every 𝑘 [47]. Furthermore, the energy spectra are only depicted up to the wavenumber resolved by the
closure models. We find that for the CNN the energy starts to diverge at around 𝑡 = 2. This worsens as the simulation progresses and
a large increase in energy is observed. Looking at the energy spectrum this corresponds to a buildup of energy in the small scales
(large 𝑘) and the numerical noise observed in the solution. This can cause the simulation to blow up. Furthermore, we find that SM
is too dissipative. This results mostly in a lack of energy in the small scales. In addition, NC is not dissipative enough, resulting in
a slight buildup of energy in the small scales. Finally, SP seems to capture the energy balance nicely, looking at both the trajectory
and the spectrum. SP, and to a lesser extent NC, show the expected 𝑘−2 slope in the energy spectrum [48].

4.7. Extrapolation in parameter space

Next, we are interested in how well such closure models are capable of extrapolating in parameter space. In particular, we consider
14

different viscosity values 𝜈 for the Burgers’ equation. For this purpose we provide 𝜈 as an additional input to the neural network.

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 11. Solutions of Burgers’ equation with periodic BCs at different points in time, starting from an unseen initial condition. The solutions are produced by
the different closure models corresponding to DOF = 90. DNS = direct numerical simulation, NC = no closure, CNN = convolutional neural network closure, SP =
structure-preserving closure, and SM = constant Smagorinsky model.

Fig. 12. (Top) Resolved energies corresponding to the simulation in Fig. 11 using the different closures for DOF = 90. For SP we depicted the total energy. The
SP energy trajectory mostly overlaps with the DNS. (Bottom) The average energy spectra of this simulation, evaluated on the interval 3 ≤ 𝑡 ≤ 7. The left plot
corresponds to 𝐼 = DOF and the right plot to 𝐼 = DOF∕2. Furthermore, we also show the spectra of the unfiltered DNS. These slightly differ from the filtered DNS in
the small wavenumbers, as our filter is not a spectral filter [47]. DNS = direct numerical simulation, NC = no closure, CNN = convolutional neural network closure,
SP = structure-preserving closure, and SM = constant Smagorinsky model.

For the training data we consider 𝜈 ∈ [10−2, 10−1.75, 10−1.5, 10−1.25, 10−1]. To generate the training data we randomly generate three
different initial conditions and carry out a DNS for each considered 𝜈. To accommodate smaller values of 𝜈 used in the extrapolation
experiment (up to 𝜈 = 10−3) we refine the grid to 𝑁 = 5000. Furthermore, we use Δ𝑡 = 10−5 for the time integration and simulate
up to 𝑇 = 5. The smaller time step size is used to accommodate for the finer grid. Every 1000th time step we save the solution
and use this as training data for the closure models. For both SP and the CNN we train three closure models which only differ in
the random seed used for the training procedure and initial parameter values. The networks underlying the methodologies are kept
small, namely only a single hidden layer with 20 channels. This is done, as smaller networks show higher potential for generalization
[49]. The remaining hyperparameters and the training procedure are kept the same, see Appendix E. For our closure models we
reduce the DOF of the system from 5000 to 50 (a 100 fold reduction). We also use a larger time step size of Δ𝑡 = 0.01 (a 1000 fold
increase). We evaluate the performance of each of the closure models for three simulations starting from different initial conditions.
For each initial condition we consider 9 different values of 𝜈 in the range [10−3, 10−1]. The integrated solution error, see (57), is
once again used as the performance metric. The results are depicted in Fig. 13. For each model we find that the error increases
15

for smaller values of 𝜈. This is to be expected as smaller values of 𝜈 lead to stronger spatial gradients (shocks) which are harder

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 13. Integrated solution error evaluated at 𝑇 = 5 averaged over the three trained closure models and three simulations for each viscosity value. The
black vertical separates the training range (right) from the extrapolation range (left). NC = no closure, CNN = convolutional neural network closure, SP =
structure-preserving closure, and SM = constant Smagorinsky model.

Fig. 14. Solutions of the KdV equation with periodic BCs at different point in time, starting from an unseen initial condition. The solutions are produced by the
different closure models corresponding to DOF = 40. In this case, the spatial and temporal domain are increased 3× and 5× with respect to the training data.
DNS = direct numerical simulation, NC = no closure, CNN = convolutional neural network closure, and SP = structure-preserving closure.

to deal with in a numerical setting [37,38]. When comparing the performance of the different closures we find that our proposed
SP scheme consistently outperforms the other closure models. This is the case for both inter- and extrapolation. Regarding the CNN
we observe a drop in performance as the viscosity decreases, even within the training range. It seems that the CNN is not able to
adapt to the range of values of 𝜈, as previously the CNN was able to perform quite well for DOF = 50 and a single viscosity value,
see Fig. 7. Furthermore, we find that SM outperforms NC across the considered range. This means that the obtained Smagorinsky
constant generalizes well. This is to be expected as it is a simple model containing only a single parameter [9,49].

4.8. Extrapolation in space and time

As a final test case we evaluate how well the closure models are capable of extrapolating in space and time. We consider the
KdV equation on an extended spatial domain Ω = [0, 96] and run the simulation until 𝑇 = 50. This corresponds to a 3× and 5×
increase, respectively, with respect to the training data. We choose the KdV equation for this experiment as it is non-dissipative. It
therefore leads to more interesting long-term behavior. As closure models, we use the ones trained during the convergence study that
correspond to the grid-spacing of the grids employed in this test case.

Let us start by looking at snapshots from different points in the simulation, see Fig. 14. At the edge of the training region 𝑡 = 10
we find that the solutions are still roughly aligned, except for NC which already contains a lot of numerical noise. At 𝑡 = 25 we find
that both SP and the CNN start to diverge from the DNS. In addition, we observe a buildup of numerical noise for the CNN. This
worsens at 𝑡 = 50, while SP seems to remain free of numerical noise.

To make a more thorough analysis we consider the trajectories of the resolved energy. This is presented in Fig. 15. We find that
for SP the resolved energy (in blue) stays in close proximity to the filtered DNS (in magenta). This is in contrast to the CNN (in red)
which starts to diverge from the DNS (in black) around 𝑡 = 5. The resolved energy for the CNN also exceeds the maximum allowed
total energy 𝐸ℎ (in orange) at different points in the simulation, which is nonphysical. We conclude that adding the SGS variables
and conserving the total energy helps with capturing the delicate energy balance between resolved and SGS energy that characterizes
the DNS. It is also interesting to note that NC (in green) conserves the resolved energy, as the coarse discretization conserves the
16

discrete energy.

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. 15. Trajectory of the resolved energy �̄�ℎ for the simulation presented in Fig. 14 for each of the different models corresponding to DOF = 40. The DNS resolved
energy is depicted for both 𝐼 = DOF (to compare with the CNN) and 𝐼 = DOF∕2 (to compare with SP). DNS = direct numerical simulation, NC = no closure, CNN =
convolutional neural network closure, and SP = structure-preserving closure.

Fig. 16. Solution error trajectory (top) and KDEs estimating the distribution of �̄�ℎ (bottom) for the trained closure models corresponding to different numbers of
DOF. These quantities are computed for a simulation of the KdV equation with the same initial condition on the extended spatial and temporal domain. In the top
row the vertical black line indicates the maximum time present in the training data, while in the bottom row it indicates the total energy of the DNS (which should
not be exceeded). The DNS resolved energy is again depicted for both 𝐼 = DOF (to compare with the CNN) and 𝐼 = DOF∕2 (to compare with SP). NC = no closure,
CNN = convolutional neural network closure, and SP = structure-preserving closure.

To make a more quantitative analysis of this phenomenon we investigate the trajectory of the solution error and the Gaussian
kernel density estimate (KDE) [50] of the resolved energy distributions. The latter analysis is carried out to analyze whether the
closure models capture the correct energy balance between the resolved and SGS energy. The results for DOF ∈ {40, 60, 80} are
depicted in Fig. 16. Looking at the solution error trajectories we find that at the earlier stages of the simulation the CNN outperforms
SP. However, SP slowly catches up with the CNN past the training region. With regards to the resolved energy distribution we find
that for each of the considered numbers of DOF SP is capable reproducing the DNS distribution. On the other had, the CNN closure
models struggle to capture this distribution. For DOF = 40 a significant part of the distribution even exceeds the total energy present
in the DNS, i.e. there occurs a nonphysical influx of energy.

From this we conclude that both SP and the CNN closure models are capable of extrapolating beyond the training data. However,
only SP is capable of correctly capturing the energy balance between the resolved and unresolved scales. This allows it to more
17

accurately capture the statistics of the DNS result.

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

5. Discussion on the applicability to 2D/3D Navier-Stokes

A number of challenges arises when considering to apply the proposed methodology to the 2D/3D Navier-Stokes equations.
Firstly, the discrete nature of the presented closure modeling framework, making it dependent on the compression factor 𝐽 between
the coarse and the fine-grid resolution. This is a result of taking the ‘discretize first’ approach. While this allows the method to be
highly specialized to the discretization, it can limit the applicability of the closure model to grid pairs with the associated 𝐽 . One
possibility is to train a single closure model with training data from multiple compression factors. Another possibility is to consider
a continuous formulation of the closure problem, along with a continuous expression for the SGS variables. The finite element
framework might be a useful starting point, as it approximates the solution using a continuous, but still highly local, basis [51]. In
addition, it easily allows for non-Cartesian grids. The convolutional layers in the closure model could then be replaced by graph
convolutions [52], which work for unstructured grids. Another useful alternative is to consider the Fourier neural operator, which
promises to be discretization invariant [34]. Furthermore, one could do a sparse regression on the closure model to identify physical
terms [53], and train the model for different 𝐽 to understand the effect of discretization error. This would effectively separate the
two sources of error. Note that our framework can also be applied to nonuniform Cartesian grids, as long as the compression factor
𝐽 is constant, and an energy-conserving discretization is available. The size of the computational domain can even be increased by
an arbitrary factor as compared to the training domain, without retraining the closure model. The latter was shown in section 4.8.
For even more irregular grids graph neural networks could be used to increase the flexibility of the framework [52].

A second challenge is the linear compression for 𝐬, which might be a limiting factor for 2D/3D flows. As an alternative, non-linear
compression methods like autoencoders could be employed [42]. Furthermore, the natural extension of the compressed SGS energy 𝐬
to 2D and 3D is probably the sub-grid scale stress tensor. This means that our framework needs to be extended with multiple sub-grid
scale equations, e.g. 𝐬1, 𝐬2, … Finally, we could draw inspiration from the scale-adaptive simulation method which also uses the SGS
energy in its equations [54].

6. Conclusion

In this paper we proposed a novel way of constructing machine learning-based closure models in a structure-preserving fashion.
We started by applying a spatial averaging filter to a fine-grid solution and writing the resulting system in closure model form.
We showed that by applying this filter we effectively remove part of the energy. Next, we introduced a linear compression of the
subgrid-scales (SGSs) into a set of SGS variables, defined on the coarse grid. These serve as a means of reintroducing the removed
energy back into the system. This allows us to use the concept of kinetic energy conservation in closure modeling. In turn we
introduced an extended system of equations which models the evolution of the filtered solution as well as the evolution of the
SGS variables. For this extended system we proposed a structure-preserving closure modeling framework which allows for energy
exchange between the filtered solution and the SGS variables, in addition to dissipation. This framework serves to constrain the
underlying convolutional neural network (CNN) such that no additional energy enters the system. In this way we achieve stability
by abiding by the underlying energy conservation law. The advantage is that the framework still allows for backscatter through the
energy present in the SGS variables. In addition, momentum conservation is also satisfied. Finally, the framework was applied to
both Burgers’ and Korteweg-de Vries (KdV) equation.

A convergence study showed that the learned SGS variables are able to accurately match the original SGS energy content, with
accuracy consistently improving when refining the coarse-grid resolution.

Given the SGS compression, our proposed structure-preserving framework (SP) was compared to a vanilla CNN. Overall, our SP
method performed roughly on par with the CNN in terms of accuracy, albeit the CNN outperformed SP slightly for the KdV equation.
However, the results for the CNN were typically inconsistent, not showing clear convergence of the error upon increasing the grid
resolution. In addition, the CNN suffered from stability issues. On the other hand, our SP method produced stable results in all cases,
while also consistently improving upon the ‘no closure model’ result. To be more specific, it did so by roughly an order of magnitude
in terms of reproducing the reference solution.

This conclusion was further strengthened by training an ensemble of closure models. This was done to investigate the consistency
of the closure model performance with respect to the randomness inherent to the training procedure. We observed that the trained
vanilla CNNs differed significantly in performance and stability, whereas the different SP models performed very similarly to each
other. The SP closures also displayed no stability issues. Our SP framework has therefore shown to be more robust and successfully
resolves the stability issues which plague conventional CNNs.

Our numerical experiments confirmed the structure-preserving properties of our method: exact momentum conservation, energy
conservation up to a time discretization error, and a strictly decreasing energy in the presence of dissipation. We also showed that
our method succeeds in accurately modeling backscatter in both Burgers’ and the KdV equation.

Regarding extrapolation in parameter space, our method outperformed both the CNN and the Smagorinsky model on viscosity
values in- and outside the training range. From this we conclude our methodology leads to more accurate results than the conven-

tional methods for this type of application. Furthermore, when extrapolating in space and time, the advantage of including the SGS
variables and embedding structure-preserving properties became even more apparent: Our method is much better at capturing the
delicate energy balance between the resolved and SGS energy. This in turn yielded better long-term error behavior.

Based on these results we conclude that including the SGS variables, as well as adherence to the physical structure, has the
important advantages of stability and long-term accuracy. In addition, it also leads to more consistent performance. This work
18

therefore serves as an important starting point for building physical constraints into machine learning-based turbulence closure

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

models. More generally, our framework is potentially applicable to a wide range of systems that possess multiscale behavior, while
also possessing a secondary conservation law, for example incompressible pipe flow [55]. Currently our efforts are mainly directed
towards the incompressible Navier-Stokes equations. For instance, Kolmogorov flow would be a good starting point [56].

CRediT authorship contribution statement

T. van Gastelen: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Inves-

tigation, Formal analysis, Conceptualization. W. Edeling: Writing – review & editing, Supervision, Formal analysis. B. Sanderse:

Writing – review & editing, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code used to generate the training data and the implementation of the neural networks can be found at https://github .com /
tobyvg /ECNCM _1D.

Acknowledgements

This publication is part of the project “Unraveling Neural Networks with Structure-Preserving Computing” (with project number
OCENW.GROOT.2019.044 of the research programme NWO XL which is financed by the Dutch Research Council (NWO)). Part of
this publication is funded by Eindhoven University of Technology. Finally, we thank the reviewers for their feedback, enhancing the
quality of the article.

Appendix A. Filter properties

Here we derive important properties of the spatial averaging filter. We first show that equation (27) holds:

(𝐑�̄�,𝐑�̄�)𝜔 = �̄�𝑇𝐑𝑇𝝎𝐑�̄� = �̄�𝑇𝛀𝐖𝝎−1𝝎𝐑�̄� = �̄�𝑇𝛀 𝐖𝐑
⏟⏟⏟

=𝐈

�̄� = (�̄�, �̄�)Ω, (A.1)

where we used that fact that

𝛀𝐖𝝎−1 =𝐑𝑇 . (A.2)

Next, we prove that 𝐑�̄� is orthogonal to 𝐮′:

(𝐑�̄�,𝐮′)𝜔 = (𝐑�̄�,𝐮−𝐑�̄�)𝜔 = (𝐑�̄�, (𝐈−𝐑𝐖)𝐮)𝜔 = �̄�𝑇𝐑𝑇𝝎(𝐈−𝐑𝐖)𝐮

= �̄�𝑇𝛀𝐖(𝐈−𝐑𝐖)𝐮 = (�̄�, (𝐖− 𝐖𝐑
⏟⏟⏟

=𝐈

𝐖)𝐮)Ω = (�̄�, (𝐖−𝐖)𝐮)Ω = 0. (A.3)

Finally, we show that equation (31) holds:

(𝟏𝜔,𝐮)𝜔 = 𝟏𝑇𝜔𝝎𝐮 = 𝟏𝑇Ω𝐑
𝑇𝝎𝐮 = 𝟏𝑇Ω𝛀𝐖𝝎−1𝝎𝐮 = 𝟏𝑇Ω𝛀𝐖𝐮 = (𝟏Ω,𝐖𝐮)Ω = (𝟏Ω, �̄�)Ω, (A.4)

where we used the fact that 𝟏𝜔 =𝐑𝟏Ω.

Appendix B. Comparing coarse and fine-grid dissipation

Here we compare the rate of dissipation induced by the 1D diffusion operator discretized on the coarse grid, �̄� ∈ ℝ𝐼×𝐼 (for
grid-spacing 𝐻), with the dissipation induced by the same operator but discretized on the fine grid, 𝐃 ∈ ℝ𝑁×𝑁 (for grid-spacing
ℎ = 𝐻

𝐽
). The difference in dissipated energy between these two quantities Δ𝐷 is given by:

Δ𝐷 = (𝐮,𝐃𝐮)𝜔 − (�̄�, �̄��̄�)Ω = 𝐮𝑇𝝎𝐃𝐮− (𝐖𝐮)𝑇𝛀�̄�𝐖𝐮 = 𝐮𝑇 𝐻

𝐽
𝐃𝐮− 𝐮𝑇𝐻𝐖𝑇 �̄�𝐖𝐮

= 𝐽

𝐻
𝐮𝑇 (𝐻

2

𝐽 2 𝐃− 𝐻2

𝐽
𝐖𝑇 �̄�𝐖)𝐮 = 𝐽

𝐻
𝐮𝑇 (ℎ2𝐃− 1

𝐽
𝐖𝑇 (𝐻2�̄�)𝐖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐮, (B.1)
19

=∶𝐃Δ

https://github.com/tobyvg/ECNCM_1D
https://github.com/tobyvg/ECNCM_1D

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. B.17. Largest non-zero eigenvalue 𝜆Δ2 of 𝐃Δ for different values of 𝐼 and 𝐽 .

for periodic BCs. Here we have written 𝐃Δ such that it is independent of the grid-spacing, but only depends on the ra-

tio 𝐽 = 𝐻

ℎ
. Note that 𝐃Δ is a symmetric matrix and as such its eigenvalues 𝜆Δ

𝑁
≤ … ≤ 𝜆Δ1 are real and its eigenvectors can

be chosen to form an orthogonal basis. Furthermore, 𝜆Δ1 = 0 for periodic boundary conditions. We can bound Δ𝐷 by noting
that

Δ𝐷 ≤max
𝑖

𝐽

𝐻
𝜆Δ𝑖 ||𝐮||22. (B.2)

If the eigenvalues are all strictly nonpositive, it follows that the difference in dissipation Δ𝐷 is always less than or equal to zero.
In other words, 𝐃 extracts more (or equal) energy from the reference system as �̄� does from the filtered system. To prove that
the eigenvalues of 𝐃Δ are indeed nonpositive turns out to be a difficult problem which we circumvent with a numerical ‘proof’. In
Fig. B.17 we display the largest non-zero eigenvalue 𝜆Δ2 for different values of 𝐼 and 𝐽 , indicating that 𝜆Δ

𝑖
≤ 0 for realistic values of

𝐼 and 𝐽 .

Appendix C. SGS compression

In this section we outline how we obtain the SGS compression parameter values 𝐭 ∈ℝ𝐽 such that 𝐬 ≈𝐖(𝐮′)2. This can be achieved
by using a singular value decomposition (SVD). The SVD minimizes the following loss function for ̂𝐭 ∈ℝ𝐽 (here we assume a uniform
grid):

𝑠(𝐗𝜇 ;𝚯) = 1
𝑝𝐼

∑
𝝁∈𝐗𝜇

|𝐽−1𝝁𝑇𝝁− 𝝁𝑇 𝐭𝐭𝑇𝝁| = 1
𝑝𝐼𝐽

∑
𝝁∈𝐗𝜇

|𝝁𝑇𝝁− 𝝁𝑇 �̂� �̂�𝑇𝝁|
= 1

𝑝𝐼𝐽

∑
𝝁∈𝐗𝜇

|𝝁𝑇𝝁+ 𝝁𝑇 �̂� �̂�𝑇 �̂� �̂�𝑇𝝁− 2𝝁𝑇 �̂� �̂�𝑇𝝁| = 1
𝑝𝐼𝐽

∑
𝝁∈𝐗𝜇

(�̂� �̂�𝑇𝝁− 𝝁)𝑇 (�̂� �̂�𝑇𝝁− 𝝁)

subject to �̂�𝑇 �̂� = 1,

(C.1)

where 𝝁 refers to a column vector of snapshot matrix 𝐗𝜇 ∈ ℝ𝐽×𝐼𝑝 and 𝐭 = 𝐽−1∕2 �̂�. The last expression for 𝑠 is a pro-

jection error. Such an error is typically minimized in a reduced order modeling setting to obtain a proper basis, see [3].
For this one typically uses an SVD. Conveniently, minimizing this error is equivalent to minimizing our required energy
error (first expression). In this expression the prefactor 𝐽−1 accounts for 𝐖 in the SGS energy (38). The snapshot ma-

trix 𝐗𝜇 is constructed from the training data set 𝐗u ∈ ℝ𝑁×𝑝 which contains 𝑝 DNS snapshots as the columns. From this
matrix we compute the SGS content: 𝐗u′ = (𝐈 − 𝐑𝐖)𝐗u. Finally, this matrix is reshaped into 𝐗𝜇 such that each column
corresponds to the SGS content in a coarse cell, i.e. 𝐮′ → [𝝁𝑖, … , 𝝁𝐼] for each column in 𝐗u′ . The SVD of 𝐗𝜇 is given
by

𝐗𝜇 =𝐔𝜇𝚺𝜇𝐕𝑇
𝜇 , (C.2)

where 𝐔𝜇 ∈ ℝ𝐽×𝐽 and 𝐕𝜇 ∈ ℝ𝐼𝑝×𝐼𝑝 are unitary matrices containing the left and right-singular vectors, respectively, and 𝚺𝜇 ∈
ℝ𝐽×𝐼𝑝 contains the singular values on the diagonal. The values for 𝐭 that minimize (C.1) correspond to the first column of
20

𝐔𝜇 .

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. D.18. 1D grid enhanced with ghost cells beyond the domain boundaries, indicated by the hollow circles.

Appendix D. Non-periodic boundary conditions

To extend our method to different types of BCs we resort to what the machine learning community refers to as padding [35] and
the scientific computing community refers to as the ghost-cell method [57]. We will treat both inflow and outflow BCs, on uniform
1D grids, as this is relevant for Burgers’ equation.

D.1. Implementation for the fine grid

The ghost-cell method enhances the discretization with ghost cells beyond the domain boundary 𝜕Ω (with domain Ω = [𝑎, 𝑏]), as
displayed in Fig. D.18. Here we present the implementation for the fine grid.

The inflow (Dirichlet) BC is given by 𝑢(𝑥 = 𝑎, 𝑡) = 𝛼(𝑡). Based on this, we compute ghost value u0 as

𝑢(𝑥 = 𝑎, 𝑡) = 𝛼(𝑡) =
u1 + u0

2
→ u0 = 2𝛼(𝑡) − u1. (D.1)

This corresponds to the first ghost cell outside the left boundary, see Fig. D.18. For the outflow BC we use a symmetric BC at the right
boundary, given by 𝜕𝑢

𝜕𝑥
|𝑥=𝑏,𝑡 = 0. This is implemented by taking u𝑁+1 = u𝑁 , where u𝑁+1 corresponds to the first ghost cell outside

the right boundary, see Fig. D.18.

D.2. Implementation for the filtered system

Our structure-preserving closure modeling framework is effectively a nonlinear stencil, due to the presence of a convo-

lutional neural network. It therefore takes information from 𝑘 neighboring grid cells on each side. This means we require
𝑘 ghost cells on either side of the domain boundary 𝜕Ω. To find appropriate choices for the ghost values ū𝑖 and s𝑖 (𝑖 =
−𝑘 + 1, … , 0, 𝐼 + 1, … , 𝐼 + 𝑘) we consider the fine-grid solution 𝐮 and appropriately extend this past the domain boundary, see
Fig. D.19.

D.2.1. Inflow BC

For the left inflow BC we extend (D.1) to

u−𝑖+1 = 2𝛼(𝑡) − u𝑖, 𝑖 = 1,2,… (D.2)

We can rewrite this as a function of ū𝑖 and SGS content 𝝁𝑖:

(ū−𝑖+1 + 𝜇−𝑖+1,𝐽−𝑗) = 2𝛼(𝑡) − (ū𝑖 + 𝜇𝑖,1+𝑗), 1 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝐽 − 1. (D.3)

This can be split into a filtered part:

ū−𝑖+1 = 2𝛼(𝑡) − ū𝑖, 1 ≤ 𝑖 ≤ 𝑘, (D.4)

which yields the ghost values for �̄� past the left boundary, and a SGS part:

𝜇−𝑖+1,𝐽−𝑗 = −𝜇𝑖,1+𝑗 , 1 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝐽 − 1. (D.5)

The latter can be simplified as

𝝁−𝑖+1 = −𝐏𝝁𝑖, 1 ≤ 𝑖 ≤ 𝑘, (D.6)

where 𝐏 ∈ℝ𝐽×𝐽 is the permutation matrix that represents the reflection across the boundary.

D.2.2. Outflow BC

For the symmetric outflow BC we extend the fine-grid solution past the domain as

u𝑁+𝑖 = u𝑁−𝑖+1, 𝑖 = 1,2,… (D.7)

In terms of ū𝑖 and 𝝁𝑖 this becomes

ū𝐼+𝑖 + 𝜇𝐼+𝑖,1+𝑗 = ū𝐼−𝑖+1 + 𝜇𝐼−𝑖+1,𝐽−𝑗 , 1 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝐽 − 1, (D.8)

which can again be split into an equation for the ghost values for �̄�:
21

ū𝐼+𝑖 = ū𝐼−𝑖+1, 1 ≤ 𝑖 ≤ 𝑘, (D.9)

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. D.19. An example solution 𝐮 with 𝑁 = 1000 filtered onto a coarse grid with 𝐼 = 5 extended past 𝜕Ω, according to (D.2) (𝛼 = 7
10

) for the left boundary and (D.7)

for the right boundary. 𝜕Ω is indicated by the dashed vertical lines. �̄� is extended past 𝜕Ω according to (D.4) and (D.9) and 𝐮′ is extended according to (D.6) and
(D.10).

and a SGS part

𝝁𝐼+𝑖 = 𝐏𝝁𝐼−𝑖+1, 1 ≤ 𝑖 ≤ 𝑘. (D.10)

D.3. BCs for the SGS variables

After extending the solution using the ghost-cell method we aim to find the value for 𝐬 beyond the boundary. In order to find
these ghost values we make use of the fact that we can interpret the operation 𝐭𝑇 𝐭 as the back and forth projection from a reduced
basis to the physical SGS basis and back. This means that

𝝁𝑖 ≈
√

𝐽 𝐭s𝑖
and

s𝑖 = 𝐽 𝐭𝑇 𝐭s𝑖.

The idea is to project s𝑖 back onto physical SGS space, apply the 𝐏 operator, and then project back to find the appropriate ghost
values. Using this idea we obtain the following relations for the left and right boundary, respectively:

𝝁−𝑖+1 = −𝐏𝝁𝑖 → s−𝑖+1 = −𝐽 𝐭𝑇𝐏𝐭s𝑖, 1 ≤ 𝑖 ≤ 𝑘, (D.11)

𝝁𝐼+𝑖 = 𝐏𝝁𝐼−𝑖+1 → s𝐼+𝑖 = 𝐽 𝐭𝑇𝐏𝐭s𝐼−𝑖+1, 1 ≤ 𝑖 ≤ 𝑘. (D.12)

Note that 𝐭𝑇𝐏𝐭 is a scalar which only needs to be computed once.

A simulation for this inflow/outflow (I/O) BC implementation is shown in Fig. D.20. Here we simulate Burgers’ equation with
I/O BCs, and some additional forcing, see Appendix E. We depict the solution produced by our structure-preserving closure modeling
framework and compare it to the DNS.

Appendix E. Training procedure

In order to train our machine learning-based closure models we first require DNSs to generate reference data. This ref-

erence data serves as a target for our machine learning models to reproduce. In this section we describe how we ran-

domly generate simulation conditions (initial conditions, BCs, and forcing) for closure model training and testing. In addition,
we describe the training procedure and the chosen hyperparameter values, obtained from the hyperparameter tuning proce-

dure.

E.1. Generating training data

To generate initial conditions, forcing, and unsteady Dirichlet BCs we make use of the following parameterized Fourier decom-

position (with parameters 𝛼1, 𝛼2, 𝛼3 ∈ℝ):

𝛼2
𝑀∑ (

2𝜋
) (

2𝜋
)

22

𝜉(𝑦;𝛼1, 𝛼2, 𝛼3) = 𝛼1 + √
𝑀 𝑖=2

𝐶𝑖1 sin 𝑖
𝛼3

𝑦 +𝐶𝑖2 cos 𝑖
𝛼3

𝑦 , (E.1)

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. D.20. A simulation of Burgers’ equation with I/O BCs and forcing using our trained structure-preserving closure model for DOF = 40 (left), along with the DNS
solution for 𝑁 = 1000 (right).

where 𝑀 is uniformly sampled from {2, 3, … , 8} and 𝐶𝑖𝑗 ∼ 𝑝 from

𝑝(𝑦) =

{
1, for

1
2 ≤ |𝑦| ≤ 1,

0, elsewhere.
(E.2)

In the case of Burgers’ equation we carry out 100 reference simulations on a uniform grid with 𝑁 = 1000 on the do-

main Ω = [0, 2𝜋] for 𝜈 = 0.01. To march the solution forward in time we employ an RK4 scheme with a time step size of
Δ𝑡 = 2.5 × 10−3 and simulate up to 𝑇 = 10 [39]. 50 simulations are carried out using periodic BCs and 50 with I/O BCs.
For the periodic case the initial condition is given by 𝑢(𝑥, 𝑡 = 0) = 𝜉(𝑥; 2, 1, |Ω|). For the I/O case the inflow condition is
given by 𝑢(0, 𝑡) = 𝜉(𝑡, 2, 1, 2𝜋) and the outflow condition by a symmetric BC on the right side of the domain. The implemen-

tation of the BCs is described in Appendix D. The initial condition is given by a constant valued function, equal to the in-

flow condition at 𝑡 = 0. In addition, we also add a steady forcing term 𝐹 (𝑥) = 𝜉(𝑥; 0, 12 , |Ω|) to the RHS of (5) for the I/O
case.

With regards to the KdV equation we employ a uniform grid with 𝑁 = 600 on the domain Ω = [0, 32] for 𝜀 = 6 and 𝜇 = 1.
The solution is marched forward in time using an RK4 scheme with a time step size of Δ𝑡 = 10−4, up to 𝑇 = 10. In this case
we only consider periodic BCs, with the initial condition given by 𝑢(𝑥, 0) = 𝜉(𝑥; 0, 35 , |Ω|), and perform 100 reference simula-

tions.

For both Burgers’ and KdV reference data is saved at each time interval of 5 × 10−3. We randomly sample 10% of the data from
these datasets to generate the two datasets used for training (one for each equation). Both of these are split into a training (70%)
and validation set (30%). For testing purposes the unseen simulation conditions are generated in a similar manner, but with different
randomly sampled 𝑀 and 𝐶𝑖𝑗 .

E.2. Hyperparameters and tuning

The chosen hyperparameters for our SP closure and the vanilla CNN are displayed in Table E.1. The weights and biases are
initiated using the Glorot normal initialization algorithm [58]. They are optimized using the Adam optimization algorithm with
parameters 𝛼 (learning-rate), 𝛽1 (decay rate for the first momentum estimates), 𝛽2 (decay rate for the second momentum estimates),
𝜖 (small constant to combat numerical instability) [27]. Hyperparameters are selected based on how well the trained closure models
reproduce the RHS for the solution snapshots present in the validation set, corresponding to DOF = 60. For this purpose, models are
trained without trajectory fitting. For the hyperparameter optimization we opt to vary the number of hidden layers, for which we
consider {0, 1, 2}, and the number of channels per hidden layer, for which we consider {10, 20, 30}. The performance of each of the
trained closure models is shown in Fig. E.21. The best performing combination of hyperparameters (displayed in Table E.1), for each
23

equation, is selected to train the final closure models. This time trajectory fitting is included.

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

Fig. E.21. NRMSE for reproducing the RHS for each of the considered hyperparameter configurations for Burgers’ (left) and KdV (right) averaged over the validation
set for DOF = 60.

Table E.1

Hyperparameters for the trained closure models.

hyperparameter CNN SP

𝛼 10−3 10−3
𝛽1 0.9 0.9

𝛽2 0.999 0.999

𝜖 10−8 10−8
mini-batch size 20 20

iterations derivative fitting 100 100

iterations trajectory fitting 20 20

trajectory fitting Δ𝑡 (Burgers’) 0.01 0.01

trajectory fitting Δ𝑡 (KdV) 5 × 10−3 5 × 10−3
trajectory fitting # time steps (Burgers’) 5 5

trajectory fitting # time steps (KdV) 20 20

nonlinear activation function (underlying) CNN ReLU ReLU

final activation function (underlying) CNN linear linear

kernel size 7 5

stride 1 1

hidden layers 2 2

channels per hidden layer Burgers’ 20 20

channels per hidden layer KdV 20 30

total # parameters Burgers’ 3261 2780

total # parameters KdV 3261 5352

𝐵 (Burgers’) - 1

𝐵 (KdV) - 2

References

[1] R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, vol. 12, SIAM, 2013.

[2] D. Sasaki, S. Obayashi, K. Nakahashi, Navier-Stokes optimization of supersonic wings with four objectives using evolutionary algorithm, J. Aircr. 39 (4) (2002)
621–629.

[3] B. Sanderse, Non-linearly stable reduced-order models for incompressible flow with energy-conserving finite volume methods, J. Comput. Phys. 421 (2020)
109736, https://doi .org /10 .1016 /j .jcp .2020 .109736.

[4] G. Alfonsi, Reynolds-averaged Navier-Stokes equations for turbulence modeling, Appl. Mech. Rev. 62 (2009), https://doi .org /10 .1115 /1 .3124648.

[5] P. Sagaut, C. Meneveau, Large Eddy Simulation for Incompressible Flows: An Introduction, Scientific Computation, Springer, 2006, https://books .google .nl /
books ?id =ODYiH6RNyoQC.

[6] J.J. O’Neill, X.-M. Cai, R. Kinnersley, A generalised stochastic backscatter model: large-eddy simulation of the neutral surface layer, Q. J. R. Meteorol. Soc.
141 (692) (2015) 2617–2629, https://doi .org /10 .1002 /qj .2548.

[7] D. Carati, S. Ghosal, P. Moin, On the representation of backscatter in dynamic localization models, Phys. Fluids 7 (3) (1995) 606–616, https://doi .org /10 .1063 /
1 .868585.

[8] D.K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, Fluid Dyn. 4 (3) (1992) 633–635, https://doi .org /10 .1063 /1 .
858280.

[9] J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev. 91 (3) (1963) 99–164.

[10] A. Prakash, K.E. Jansen, J.A. Evans, Optimal clipping of structural subgrid stress closures for large eddy simulation, https://doi .org /10 .48550 /ARXIV .2201 .
09122, 2022.

[11] U. Piomelli, W.H. Cabot, P. Moin, S. Lee, Subgrid-scale backscatter in turbulent and transitional flows, Phys. Fluids A 3 (7) (1991) 1766–1771, https://

doi .org /10 .1063 /1 .857956.

[12] U. Piomelli, T.A. Zang, C.G. Speziale, M.Y. Hussaini, On the large-eddy simulation of transitional wall-bounded flows, Phys. Fluids A 2 (2) (1990) 257–265,
24

https://doi .org /10 .1063 /1 .857774.

http://refhub.elsevier.com/S0021-9991(24)00252-3/bib9339E0B01217F4CFFCDC2930E98B302Bs1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibFAD184D3D6A8C49E4FEECD4E86159432s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibFAD184D3D6A8C49E4FEECD4E86159432s1
https://doi.org/10.1016/j.jcp.2020.109736
https://doi.org/10.1115/1.3124648
https://books.google.nl/books?id=ODYiH6RNyoQC
https://books.google.nl/books?id=ODYiH6RNyoQC
https://doi.org/10.1002/qj.2548
https://doi.org/10.1063/1.868585
https://doi.org/10.1063/1.868585
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.858280
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibFD84024AB6EB6A47FF992505374DC6DCs1
https://doi.org/10.48550/ARXIV.2201.09122
https://doi.org/10.48550/ARXIV.2201.09122
https://doi.org/10.1063/1.857956
https://doi.org/10.1063/1.857956
https://doi.org/10.1063/1.857774

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

[13] S. Ghosal, T.S. Lund, P. Moin, K. Akselvoll, A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech. 286 (1995) 229–255,
https://doi .org /10 .1017 /S0022112095000711.

[14] H. Frezat, J.L. Sommer, R. Fablet, G. Balarac, R. Lguensat, A posteriori learning of quasi-geostrophic turbulence parametrization: an experiment on integration
steps, https://doi .org /10 .48550 /ARXIV .2111 .06841, 2021.

[15] B. List, L.-W. Chen, N. Thuerey, Learned turbulence modelling with differentiable fluid solvers, https://doi .org /10 .48550 /ARXIV .2202 .06988, 2022.

[16] J. Park, H. Choi, Toward neural-network-based large eddy simulation: application to turbulent channel flow, J. Fluid Mech. 914 (2021) A16, https://doi .org /
10 .1017 /jfm .2020 .931.

[17] Y. Guan, A. Chattopadhyay, A. Subel, P. Hassanzadeh, Stable a posteriori LES of 2D turbulence using convolutional neural networks: backscattering analysis and
generalization to higher Re via transfer learning, J. Comput. Phys. 458 (2022) 111090, https://doi .org /10 .1016 /j .jcp .2022 .111090.

[18] D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning-accelerated computational fluid dynamics, Proc. Natl. Acad. Sci. 118 (21)
(2021) e2101784118, https://doi .org /10 .1073 /pnas .2101784118.

[19] A. Beck, D. Flad, C.-D. Munz, Deep neural networks for data-driven LES closure models, J. Comput. Phys. 398 (2019) 108910, https://doi .org /10 .1016 /j .jcp .
2019 .108910.

[20] M. Kurz, A. Beck, A machine learning framework for LES closure terms, Electron. Trans. Numer. Anal. 56 (2022) 117–137, https://doi .org /10 .1553 /etna _
vol56s117.

[21] M. Kurz, A. Beck, Investigating model-data inconsistency in data-informed turbulence closure terms, in: 14th WCCM-ECCOMAS Congress 2020, 2021.

[22] J.F. MacArt, J. Sirignano, J.B. Freund, Embedded training of neural-network subgrid-scale turbulence models, Phys. Rev. Fluids 6 (2021) 050502, https://

doi .org /10 .1103 /PhysRevFluids .6 .050502.

[23] S.D. Agdestein, B. Sanderse, Learning filtered discretization operators: non-intrusive versus intrusive approaches, https://doi .org /10 .48550 /ARXIV .2208 .09363,
2022, https://arxiv .org /abs /2208 .09363.

[24] H. Melchers, D. Crommelin, B. Koren, V. Menkovski, B. Sanderse, Comparison of neural closure models for discretised PDEs, ArXiv preprint, arXiv :2210 .14675,
2022.

[25] M. Kurz, P. Offenhäuser, A. Beck, Deep reinforcement learning for turbulence modeling in large eddy simulations, https://doi .org /10 .48550 /ARXIV .2206 .11038,
2022.

[26] H.J. Bae, P. Koumoutsakos, Scientific multi-agent reinforcement learning for wall-models of turbulent flows, Nat. Commun. 13 (1) (2022) 1443, https://

doi .org /10 .1038 /s41467 -022 -28957 -7.

[27] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, https://doi .org /10 .48550 /ARXIV .1412 .6980, 2014.

[28] Y. Li, Deep reinforcement learning: an overview, CoRR, arXiv :1701 .07274 [abs], 2017.

[29] V. Shankar, V. Puri, R. Balakrishnan, R. Maulik, V. Viswanathan, Differentiable physics-enabled closure modeling for Burgers’ turbulence, Mach. Learn.: Sci.
Technol. 4 (1) (2023) 015017, https://doi .org /10 .1088 /2632 -2153 /acb19c.

[30] Y. Bar-Sinai, S. Hoyer, J. Hickey, M.P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. 116 (31) (2019)
15344–15349, https://doi .org /10 .1073 /pnas .1814058116.

[31] A. Subel, A. Chattopadhyay, Y. Guan, P. Hassanzadeh, Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization
to higher Reynolds numbers via transfer learning, Phys. Fluids 33 (3) (2021) 031702, https://doi .org /10 .1063 /5 .0040286.

[32] V. Shankar, V. Puri, R. Balakrishnan, R. Maulik, V. Viswanathan, Differentiable physics-enabled closure modeling for Burgers’ turbulence, Mach. Learn.: Sci.
Technol. 4 (1) (2023) 015017, https://doi .org /10 .1088 /2632 -2153 /acb19c.

[33] S. Kang, E.M. Constantinescu, Learning subgrid-scale models with neural ordinary differential equations, arXiv :2212 .09967, 2023.

[34] Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.M. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential
equations, CoRR, arXiv :2010 .08895 [abs], 2020.

[35] K. O’Shea, R. Nash, An introduction to convolutional neural networks, https://doi .org /10 .48550 /ARXIV .1511 .08458, 2015.

[36] M.D. Love, Subgrid modelling studies with Burgers’ equation, J. Fluid Mech. 100 (1) (1980) 87–110, https://doi .org /10 .1017 /S0022112080001024.

[37] A. Jameson, The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy, J. Sci. Comput. 34 (2008) 152–187,
https://doi .org /10 .1007 /s10915 -007 -9171 -7.

[38] B. Sanderse, Energy-conserving discretization methods for the incompressible Navier-Stokes equations: application to the simulation of wind-turbine wakes, Phd
thesis 2 (research not tu/e / graduation tu/e), Centrum voor Wiskunde en Informatica, 2013, doi :10 .6100 /IR750543.

[39] J. Butcher, Runge-Kutta methods, Scholarpedia 2 (9) (2007) 3147, https://doi .org /10 .4249 /scholarpedia .3147, revision #91735.

[40] J.-L. Yan, L.-H. Zheng, A class of momentum-preserving finite difference schemes for the Korteweg-de Vries equation, Comput. Math. Math. Phys. 59 (10) (2019)
1582–1596, https://doi .org /10 .1134 /S0965542519100154.

[41] F. Trias, O. Lehmkuhl, A. Oliva, C. Pérez-Segarra, R. Verstappen, Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured
grids, J. Comput. Phys. 258 (2014) 246–267, https://doi .org /10 .1016 /j .jcp .2013 .10 .031.

[42] D. Bank, N. Koenigstein, R. Giryes, Autoencoders, in: Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook, 2023,
pp. 353–374.

[43] C.A. De Moura, C.S. Kubrusly, The Courant–Friedrichs–Lewy (CFL) condition, AMC 10 (12) (2013).

[44] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: a fresh approach to numerical computing, SIAM Rev. 59 (1) (2017) 65–98, https://doi .org /10 .1137 /
141000671.

[45] M. Innes, E. Saba, K. Fischer, D. Gandhi, M.C. Rudilosso, N.M. Joy, T. Karmali, A. Pal, V. Shah, Fashionable modelling with flux, CoRR, arXiv :1811 .01457 [abs],
2018.

[46] M. Innes, Flux: elegant machine learning with Julia, J. Open Sour. Softw. (2018), https://doi .org /10 .21105 /joss .00602.

[47] W. Edeling, D. Crommelin, Reducing data-driven dynamical subgrid scale models by physical constraints, Comput. Fluids 201 (2020) 104470, https://doi .org /
10 .1016 /j .compfluid .2020 .104470.

[48] S. Moradi, B. Teaca, J. Anderson, Role of phase synchronisation in turbulence, AIP Adv. 7 (11) (2017) 115213, https://doi .org /10 .1063 /1 .5003871.

[49] V. Shankar, V. Puri, R. Balakrishnan, R. Maulik, V. Viswanathan, Differentiable physics-enabled closure modeling for Burgers’ turbulence, arXiv :2209 .11614,
2022.

[50] Stanislaw Weglarczyk, Kernel density estimation and its application, ITM Web Conf. 23 (2018) 00037, https://doi .org /10 .1051 /itmconf /20182300037.

[51] V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 5, Springer Science & Business Media, 2012.

[52] F.D.A. Belbute-Peres, T. Economon, Z. Kolter, Combining differentiable PDE solvers and graph neural networks for fluid flow prediction, in: International
Conference on Machine Learning, PMLR, 2020, pp. 2402–2411.

[53] S.L. Brunton, J.L. Proctor, J.N. Kutz, Sparse identification of nonlinear dynamics with control (SINDYc), IFAC-PapersOnLine 49 (18) (2016) 710–715, https://

doi .org /10 .1016 /j .ifacol .2016 .10 .249, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016.

[54] F. Menter, Y. Egorov, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description, Flow Turbul. Combust.
85 (1) (2010) 113–138.

[55] J. Buist, B. Sanderse, S. Dubinkina, R. Henkes, C. Oosterlee, Energy-conserving formulation of the two-fluid model for incompressible two-phase flow in channels
and pipes, arXiv preprint, arXiv :2104 .07728, 2021.

[56] G.J. Chandler, R.R. Kerswell, Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow, J. Fluid Mech. 722 (2013) 554–595,
25

https://doi .org /10 .1017 /jfm .2013 .122.

https://doi.org/10.1017/S0022112095000711
https://doi.org/10.48550/ARXIV.2111.06841
https://doi.org/10.48550/ARXIV.2202.06988
https://doi.org/10.1017/jfm.2020.931
https://doi.org/10.1017/jfm.2020.931
https://doi.org/10.1016/j.jcp.2022.111090
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/10.1553/etna_vol56s117
https://doi.org/10.1553/etna_vol56s117
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib39BAD3E16EFFE1FE7E8F7C070AD0FB3Cs1
https://doi.org/10.1103/PhysRevFluids.6.050502
https://doi.org/10.1103/PhysRevFluids.6.050502
https://doi.org/10.48550/ARXIV.2208.09363
https://arxiv.org/abs/2208.09363
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibFBEF776B2F497B4785A72AFCB060FDF4s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibFBEF776B2F497B4785A72AFCB060FDF4s1
https://doi.org/10.48550/ARXIV.2206.11038
https://doi.org/10.1038/s41467-022-28957-7
https://doi.org/10.1038/s41467-022-28957-7
https://doi.org/10.48550/ARXIV.1412.6980
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib54B8AA400E1D8B5A0EC9710812B515B1s1
https://doi.org/10.1088/2632-2153/acb19c
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1063/5.0040286
https://doi.org/10.1088/2632-2153/acb19c
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibF866A71E13073E0B1F3B0C9CD6ABC642s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib81667123838B8D5806867F04CF456737s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib81667123838B8D5806867F04CF456737s1
https://doi.org/10.48550/ARXIV.1511.08458
https://doi.org/10.1017/S0022112080001024
https://doi.org/10.1007/s10915-007-9171-7
https://doi.org/10.6100/IR750543
https://doi.org/10.4249/scholarpedia.3147
https://doi.org/10.1134/S0965542519100154
https://doi.org/10.1016/j.jcp.2013.10.031
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib8B69C5F345DBAB543B59B67098CEFC03s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib8B69C5F345DBAB543B59B67098CEFC03s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib2D49C77562262CC7395FEAB3E4B96249s1
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibD84A42655D01DF2CD2153D827BA702F0s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibD84A42655D01DF2CD2153D827BA702F0s1
https://doi.org/10.21105/joss.00602
https://doi.org/10.1016/j.compfluid.2020.104470
https://doi.org/10.1016/j.compfluid.2020.104470
https://doi.org/10.1063/1.5003871
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib7ABFFAA1BFCAC73F39F5BBD131A1C097s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib7ABFFAA1BFCAC73F39F5BBD131A1C097s1
https://doi.org/10.1051/itmconf/20182300037
http://refhub.elsevier.com/S0021-9991(24)00252-3/bibAB1646B297650236D07FA12DCB231DF9s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib1973DE99523F973EE5CA57546E1BD755s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib1973DE99523F973EE5CA57546E1BD755s1
https://doi.org/10.1016/j.ifacol.2016.10.249
https://doi.org/10.1016/j.ifacol.2016.10.249
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib81AA9E48B209A91CCDA7C523702BF58Fs1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib81AA9E48B209A91CCDA7C523702BF58Fs1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib709284C5F4DBE4DB927D71E913750774s1
http://refhub.elsevier.com/S0021-9991(24)00252-3/bib709284C5F4DBE4DB927D71E913750774s1
https://doi.org/10.1017/jfm.2013.122

Journal of Computational Physics 508 (2024) 113003T. van Gastelen, W. Edeling and B. Sanderse

[57] A. Dadone, B. Grossman, Ghost-cell method for analysis of inviscid three-dimensional flows on Cartesian-grids, Comput. Fluids 36 (10) (2007) 1513–1528,
https://doi .org /10 .1016 /j .compfluid .2007 .03 .013, special issue dedicated to Professor Michele Napolitano on the occasion of his 60th birthday.

[58] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Y.W. Teh, M. Titterington (Eds.), Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, in: Proceedings of Machine Learning Research,
26

PMLR, vol. 9, 2010, pp. 249–256, https://proceedings .mlr .press /v9 /glorot10a .html.

https://doi.org/10.1016/j.compfluid.2007.03.013
https://proceedings.mlr.press/v9/glorot10a.html

	Energy-conserving neural network for turbulence closure modeling
	1 Introduction
	2 Governing equations, discrete filtering, and closure problem
	2.1 Spatial discretization
	2.2 Burgers’ and Korteweg-de Vries equation, and physical structure
	2.3 Discrete filtering
	2.4 Discrete closure problem
	2.5 Inner products and energy decomposition
	2.6 Momentum conservation

	3 Structure-preserving closure modeling framework
	3.1 The framework
	3.2 SGS variables
	3.3 Construction of the operators
	3.3.1 Diffusive operator
	3.3.2 Advective operator
	3.3.3 Momentum conservation
	3.3.4 Properties & further discussion

	3.4 Finding the optimal parameter values

	4 Results
	4.1 Test cases
	4.1.1 Considered closure models

	4.2 Training the closure models
	4.3 Closure model performance
	4.3.1 Convergence
	4.3.2 Computation time

	4.4 Consistency of the training procedure
	4.5 Structure preservation
	4.6 Burgers’ equation & energy spectra
	4.7 Extrapolation in parameter space
	4.8 Extrapolation in space and time

	5 Discussion on the applicability to 2D/3D Navier-Stokes
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Filter properties
	Appendix B Comparing coarse and fine-grid dissipation
	Appendix C SGS compression
	Appendix D Non-periodic boundary conditions
	D.1 Implementation for the fine grid
	D.2 Implementation for the filtered system
	D.2.1 Inflow BC
	D.2.2 Outflow BC

	D.3 BCs for the SGS variables

	Appendix E Training procedure
	E.1 Generating training data
	E.2 Hyperparameters and tuning

	References

