% hep

HEP 4.2.0 (#29, 27 Jan 1994,
>>> import python

bailing out at line 1

%

Jeff Templon*

14:27:38)

PyHEP Workshop, in conjunction with CHEP 2018
Additional note

[GCC 2.5.7] on sund-solaris

Abstract

Keywords
High-Energy Physics — Python — Computing

' Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
*Corresponding author: templon@nikhef.nl

Python took a while to become an accepted language in High-Energy Physics. This short paper traces some
of the history of this path to acceptance, and suggests some reasons for this apparently-slow uptake.

Contents

Introduction

Before Python

My first four months with Python
Resistance to Python

A WO N =

Python into the mainstream

W W N = = -

5 Reflections
5.1 What Gap Was Python Filling?
5.2 Why Did Python Fill This Gap? 3

6 Conclusions
References 4

Introduction

This paper contains some personal notes about the “early
days” of Python in High-Energy and Nuclear Physics, along
with some thoughts about why Python gained acceptance
and why the path to acceptance went like it went.

1. Before Python

I did my Ph.D. at Indiana (IUCF) in Experimental Nuclear
Physics. The main computing environment was VAX/VMS,
and on that platform, FORTRAN absolutely rocked. “Script-
ing” things except for canned command sequences was not
common, although the DEC command language DCL could
be used to do that. Halfway through my time there, the
lab purchased a license for SPEAKEASY! (which still ex-
ists!). The program was an interpreter containing a large
library of math, statistics, and graphics functions, and you
could define your own functions as well. I used this often
as a sort of desk calculator, usually reserving FORTRAN
codes for things that needed to do more complex 1/O, or for
calculations that took too long in SPEAKEASY.

"http://www.speakeasy.com/default.htm

At some point I discovered GNU awk, which had been
ported to VAX/VMS system. After that, most of my anal-
yses were scripted. The Fortran programs were written to
Do One Thing Well; the orchestration, data gathering and
tabulation of all the hundreds of Fortran runs were done by
awk scripts.

Like most graduate students, I found ways to avoid
writing my dissertation. One of them was playing with
exotic little languages, and one of them was called ABC?, a
teaching/prototyping langauge from the CWI in Amsterdam.
It was a fun little language, very easy to learn.

Upon graduation I moved to NIKHEF-K in Amster-
dam for my first postdoctoral position. There were no
VAXen, so no DEC FORTRAN, no VMS, no SPEAKEASY.
Instead there were Sun machines, Solaris-flavored Unix,
FORTRAN-77, and bc and dc as desk calculators. I got
used to Unix and standard FORTRAN-77 fairly quickly, but
I missed the interactive calculator and statistics library of
SPEAKEASY. bc and dc didn’t work at all for me, leading
to my (mis)use of awk for a lot of things. I write “misuse”
since the awk paradigm is “transform input to output”, but
I was using it for other things too; many of my awk scripts
had all the action in the END clause.

2. My first four months with Python

On 27 January 1994, the announcement of Python 1.0.0
came out on comp . lang.misc. I decided to download it
and check it out because a) it was available on Solaris, b) it
was an interpreted language claiming to come with a large
library of standard modules (so a potential SPEAKEASY
replacement), and c) it came from the same place as that
little ABC language and I had liked that one, maybe this
one was okay too.

I have a reputation of being the first guy in our field to
use Python. I’'m not — Jon Eisenberg at the University of

https://en.wikipedia.org/wiki/ABC_
(programming_language)

http://www.speakeasy.com/default.htm
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/ABC_(programming_language)

Jeff Templon

Washington reported in October 1993 that he was “develop-
ing a data analysis application using python as the interface
and user programming language.” I could not discover
whether he completed it. David Williams (an ex-colleague
from IUCF) also made a few posts on the Python mailing
list a couple of days before I did.

My first substantive post to the Python mailing list was
a request for comments on a little program I’d written while
playing around with the language — Friday afternoon of
March 4, 1994. The exchange was a lot of fun, with both
Guido van Rossum and Tim Peters® making most of the
comments. At the end of my last message in that thread, I
made a joke that became reality:

I don’t think I'll become a class writer just yet.
Maybe next year. Although I have this nagging
temptation to write a good data analysis pro-
gram using Python ... all we have here is PAW
which is a major pain®.

That was 9 March 1994. Twelve days later:

I did write that data-analysis project’ ... what
I wrote was a preprocessor; it takes as input
some files which specify how you would like
the data to be analyzed, and translates this infor-
mation into FORTRAN ...a FORTRAN main
program ...includes the Python[-generated]
FORTRAN output and does just a little book-
keeping. ...

The code was named DATAN; not that that’s important, but
useful since I will refer to it later.
After this, things went very fast:

12 april first kinematics program
21 april four-vector class library

22 april run planning program (count rates, kinematics,
beam time estimates for needed statistical accuracy)
for NIKHEF-K Experiment 93-02°

25 may DATAN was used as the online analysis and moni-
toring package for an experiment at NIKHEF-K

3. Resistance to Python

After this point, I was using Python for almost everything.
I went a bit too far; I was using it in areas where bash
would have been more appropriate. Time-critical stuff was
still (mostly) written in Fortran and the things that beg to
be written in awk (yes, they do exist) were still written in
awk, the rest was Python.

30f “import this” fame (try importing that module from the python
command prompt!

4Disclaimer: I was used to the histogram/condition table package in the
TUCEF version of the Los Alamos “Q” system. The Q and PAW paradigms
were worlds apart. Hence my frustration with PAW.

SImplementing the paradigm and exact syntax of Q.

OT still have this program, and tested it while researching this paper
in early 2018. It still runs under Python 2.7.15 with a single change; the
class.init () syntax is different.

Python: import hep

It took a long time before I met anybody else using
Python. For a couple of years, people literally said I was
crazy: “How could you use this language for serious work??
YOU DOWNLOADED IT OFF THE INTERNET!!” Recall
that in 1994, you could still have made the argument that
WWW stood for Wild West Web. When I left Nikhef in
1995, one of my then ex-colleagues rewrote DATAN. The
syntax didn’t change at all, but it was rewritten in a “proper
language” (C).

About this time, the idea of an “extension language”
became popular. In this model, large programs would not
have a bespoke CLI and syntax; the CLI would be a library
linked in with the program. There were quite a few candi-
dates proposed for this library, Tcl being the front runner
in the beginning. The “Tcl war” happened in late 1994 -
Richard Stallman had written a Usenet post entitled “Why
you should not use Tcl” (as an extension language).

In late 1995 the ROOT project had its first public re-
lease. ROOT had embraced the extension-language concept
from the beginning, albeit with an interesting choice: the
extension language was the same as the compliled language,
C++. The difference was that the extension language was
being interpreted. When the collaboration I was working
on at the time started to consider ROOT, I had several long
conversations with Fons Rademakers and Rene Brun’ in
this period, about using Python for the CLI instead of CINT.
The ROOT team rejected Python firstly on the principle
that the extension and main languages should be the same;
asking a physicist to learn two languages was considered
asking too much. The second reason for rejection was that
Python was an “exotic language”.

The D@ experiment at Fermilab was, as far as I can
tell, the first to use Python as an extension language, as
evidenced by the following excerpt from a paper[1] from
CHEP 1997.

D@ has made the decision to move all large
software projects to C++. Their framework
approach has a set of modules that execute se-
quentially, each having a specific task. The
glue that holds the individual software pack-
ages together will be an interpreted script sys-
tem. The main task of this framework is to
“guide” data between the various modules/packages
... prototype framework based on the Python
scripting language has been developed and is
ready for use.

Working in Nuclear Physics, I didn’t know about this work
until T visited Fermilab a year later® That visit influenced
my own thinking, reflected in this excerpt from a techni-
cal note[2] presented at a Hall A (Jefferson Laboratory)
collaboration workshop in early 1999.

"Rene and I had one of these conversations at a barbecue joint in south-
eastern Virginia, close to Jefferson Lab. They had paper tablecloths; we
filled our tablecloth with sketches about how physics computing and anal-
ysis should work. I had an extremely enjoyable, entertaining, educational
and inspiring afternoon, one of the most memorable of my career. But I
did not manage to convince Rene.

8May 26, 1998, to give a talk about programming languages and tools
for physics.

Jeff Templon

Most of the code would be written in C or
C++, but the integration would be done through
Python. This enables the uninitiated to make
simple modifications to the analysis which were
perhaps not thought of by the authors; all the
neophyte needs to know is how the interfaces
work. On the other hand, it will force the code
authors to make the analysis subsystems inde-
pendent of each other (one of the big problems
with the current code), and will encourage rig-
orous testing of subunits.

4. Python into the mainstream

I was unable to discover, via CHEP proceedings, how things
had progressed in the period immediately following, as the
CHEP 1998 site is no longer online, and I could find no
proceedings. A search for papers and slides corresponding
to talks submitted to that CHEP turned up a few mentioning
Python, all from Fermilab.

At the next CHEP (2000), there were two firsts:

1. the first talk mentioning Python in the title, “Dy-
namic Graphical User Interfaces using XML and
JPython’[3] (author based at Fermilab), and

2. the first non-FNAL CHEP reference to Python I could
find: “AIDA (LHC++), User Interface in Python[4],
from CERN.

Python seems to have really taken off by the CHEP in
2001, as evidenced by the following excerpt from Philippe
Canal’s summary talk of the Data Analysis and Visualiza-
tion track at CHEP 2001 (September) (see fig. 1.)

Scripting Language

% Trend towards Python
— Used by: ATLAS (Athena), CMS, D0, LHCb (Gaudi), SND,...
— Used by: Lizard/ Anaphe, HippoDraw, JAS (Jython)... ‘1[\
— Architecturally, scripting is “just another service” " /

— CINT interpreter plays a central role 9
— Developers and users seem happy /i

+ ROOT is the exception to the “Python rule” /JIJ / i
]

— Rapid prototyping: gluing together code

f
+ Python is popular with developers... / ¢
|
|
— (Almost) auto- generation of wrappers (SWIG) !

% ...but acceptance by users not yet proven . I\
— Another language to learn, syntax, ...

Figure 1. Slide excerpted from a talk at CHEP 2001[5].

By the next CHEP (March 2003), there was an Athena
python talk, and LHCb’s entire framework was heavily
Python based, with DIRAC, GANGA, Gaudi, and Bender.
Python was a mainstream HEP language.

5. Reflections

One question that was raised during discussions about hold-
ing the 1st PYHEP workshop is: “why did it take so long”
for Python to be adopted in HEP? In my opinion, the answer
has several components.

Python: import hep

5.1 What Gap Was Python Filling?
Looking back on how I was using first awk and later Python,
the earlier use case was a kind of orchestration, the later
one was being able to rapidly code up the gist of something
I was trying to achieve, leaving a lot of the guts to Python
libraries and/or external utility programs.

Regarding the first, when I worked at TUNL on the
VAX 11/780 there, it was pretty normal for any significant
program to run for hours or even overnight. The VAX
8650 at IUCF was ten times faster. I could create a bundle
of work large enough to run overnight by, for example,
using awk to orchestrate hundreds of fitting runs (still good
old FORTRAN programs), parse the output to synthesize a
second dataset on which to run a sensitivity analysis. Python
was great at doing stuff like this.

Regarding the second: when program runs take hours
or days, time-to-solution can be significantly improved by
a significant initial investment in coding, reducing the run
times by choice of programming language and good al-
gorithms and data structures. When these run times are
reduced to minutes, development time dominates the time
to solution.

RISC and x86 systems became common (and cheap) in
the early nineties; in just five years the Dhrystone rating
for the x86 series increased by a factor of 20°. For me
personally, this was a factor of 200 performance increase in
ten years.

Physicists were looking for a rapid-development lan-
guage system.

5.2 Why Did Python Fill This Gap?

All The Right Stuff Python had a lot going for it. The
language is simple, readable, and even in the 90s had a
large library of useful stuff. There was built-in support both
for extending Python via external libraries, and for using
Python as an extension language / CLI within a program.

A clear standard Python had, at the beginning, a single
implementation. Contributions were encouraged and ac-
cepted, however there was a Benevolent Dictator who had
the final say in most matters.

The Oberon-2 language provides a useful contrast. I
was part of a (very) small group trying to get the Nuclear
Physics folk to move to Oberon-2 instead of C++. Our
failure was not due the language; much of Oberon-2 wound
up being reborn in Golang. The problem was the lack of
a reference implementation. The language was defined
without mention of a standard library; two universities pro-
vided (incompatible) runtimes, neither of which achieved
“clear winner” status. Oberon-2 remained a niche, academic
language.

The platform revolution In the early 1990s, “supported
platforms” were the norm. IUCF computing was over-
whelmingly VAX/VMS with a handful of Ultrix systems;
when I came to Nikhef in 1992, everything was SunOS.
While researching this paper, I found a CERN Computer
Newsletter from September 1994, which mentioned CERN

91989: 8.7 Dhrystone MIPS for an i486DX chip; in 1994, 188 MIPS
for the new Pentium chip.

Jeff Templon

1994.2 JT started using Python ———> 1194

1994.75 Tcl War ——>

1997.3 DY using Python (CHEP) ———>

1999 “Python as an Integration Language” paper[2] —> 1999

2000 First CERN CHEP talk on Python ———>

2001.7 Python everywhere at CHEP ———>

2003.5 Bender python-based analysis LHCb ———>

P004

Python: import hep

<—— 1994.2 Linux 1.0 released

<«<—— 1995.2 Linux (unsupported) at MIT Lab for Nuclear Science

<—— 1995.8 “Linux in HEP” mail thread
<—— 1996.1 Linux for Scientific Workstations paper[6]

<«— 1997.3 Linux discussions at CHEP and HEPIX

<— 1998 Linux officially supported at FNAL

<—— 1999.9 LXPLUS and LXBATCH at CERN

<—— 2001.5 EU DataGrid infrastructure Linux-only

Figure 2. Python and Linux Timeline. The “Linux in HEP” mail thread included people working at Queen Mary
University (London), Neils Bohr Institute (Copenhagen), FNAL, DESY, CERN, George Mason University, and MIT.

running central VM/CMS and VAX/VMS systems, and Sun,
DEC, HP, Apollo, and SGI unix workstations. Such systems
were shipped with an operating system and were generally
supported, maintained, and operated by the computer sys-
tems group.

Python was not a “standard” part of any of these systems.
“Normal” physicists were used to using the “standard” soft-
ware that either came with these systems, or was installed
on them by the computer group.

This started to change when the Linux movement for
HENP started up in the mid nineties. With Linux, the whole
dang thing was “downloaded off the internet”. Most Linux
distributions had Python installed as a standard package. As
Linux became more mainstream, Python became more of a
standard package.

It takes a bit of time To the best of my knowledge, Fermi-
lab was the first big lab using Linux. Fermilab people were
involved in the early discussions on the linux-hep mailing
list, in late 1995. A bit more than a year later, was that
first FNAL contribution at CHEP reporting use of Python.
CERN was later to the game; in late 1997 Linux was men-
tioned as an unsupported platform on the ASIS repository;
in late 1999 LXPLUS and LXBATCH (the Linux service at
CERN) was announced, and at CHEP 2000 there was the
first talk from CERN mentioning Python, 18 months later
“the trend is towards Python”.

So part of the time-to-uptake was, it seems, moving to a
platform where Python was a standard part of the ecosystem;
the other part being, once that transition was made, the time
it takes for significant software to become visible to the
community, for example via presentations at CHEP. It may

even be the 18 month cycle of CHEP we’re seeing; possibly
the timescale of uptake is more like the months described in
my personal experience, but then one has to wait on average
9 months before another CHEP rolls around.

Figure 2 shows a timeline of the ten-years following my
first experience with Python, showing some of the Python
milestones on the left-hand side, and Linux milestones on
the right.

6. Conclusions

Most of this paper is dedicated to telling the story of Python
adoption from my personal perspective. In that respect there
aren’t really any conclusions. I will say, it was personally a
lot of fun and gave me satisfaction to see how abundantly
my foray into Python paid off in terms of my research
productivity.

For the reflections part, Python seems to have “hap-
pened” for our field because it was a well-suited solution
to our desire, as a field, to reduce development time, this
desire being driven by the rapidly diminishing execution
times associated with the tremendous gains in performance
(and performance/price ratio) over the nineties.

The interested reader could do a web search for Jim
Pivarski’s thoughts on programming languages, he is exam-
ining similar issues within a much broader context.

References

'S, Lammel. Computing models of major HEP ex-
periments: DO and CDF. In Proceedings, 9th Inter-
national Conference on Computing in High-Energy

Jeff Templon

[2]

[3]

[4]

[51

[6]

Physics (CHEP 1997): Berlin, Germany, April 7-11,
1997, 1997.

J. A. Templon. Python as an Integration Language. Tech-
nical Report SPAG-1998-02, The University of Georgia,
Department of Physics and Astronomy, January 1998.

G. Guglielmo. Dynamic Graphical User Interfaces us-
ing XML and JPython. In Computing in High-Energy
Physics (CHEP 2000): Padova, Italy, Febrary 7-11,
2000, 2000.

A. Pfeiffer. Libraries for HEP Computing (LHC++).
In Computing in High-Energy Physics (CHEP 2000):
Padova, Italy, Febrary 7-11, 2000, 2000.

Philippe Canal and Lucas Taylor. CHEP 2001: Data
Analysis & Visualization. Computing in High-Energy
Physics (CHEP 2001): Beijing, PR. China, September
3-7,2001, 2001.

J. A. Templon and P. F. Dubois. Evaluation of PC/Linux
Systems for Use as Scientific Workstations. Computers
in Physics, 10(1):49-55, 1996.

Python: import hep

	Introduction
	Before Python
	My first four months with Python
	Resistance to Python
	Python into the mainstream
	Reflections
	What Gap Was Python Filling?
	Why Did Python Fill This Gap?

	Conclusions
	References

