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The utilization of machine learning in analyzing ship radiated noise (SR-N) is undergoing rapid evolution. Be-
cause the omnipresent background noise strongly depends on the highly variable environment, the application
of such techniques poses challenges. Furthermore, publicly available labeled datasets are scarce. Motivated
by this, there has been a surge in the number of publications regarding the implementation of machine
learning in the monitoring of SR-N within the past few years. This comprehensive survey delineates the state-
of-the-art machine learning techniques applied to SR-N, with a specific focus on passive measurements. Recent
developments are categorized into several sub-areas, namely; publicly available datasets, data augmentation,
signal denoising, feature extraction, detection, localization, and recognition of SR-N. Additionally, future

research directions are explored.

1. Introduction

The health of our ocean environment is endangered by human-
induced sound pollution. The main pollution source originates from
noise generated by ships, called Ship Radiated Noise (SR-N). This raises
the need to measure and analyze the SR-N levels. This quantifies
the amount of pollution and identifies or locates the ships producing
noise. The measurement of underwater noise is utilized using so-called
sonar systems. These systems can be categorized into three groups: (1)
active sonar, (2) side scan sonar, and (3) passive sonar. The active
sonar system emits an acoustic pulse and listens to the returning echo.
Similarly, the side scan sonar can generate an acoustic image based on
the measured echo. This survey will focus on passive sonar systems.
These systems do not emit any sound but quietly listen to the noise
in the ocean. It passively detects sound waves coming towards the
hydrophone(s). This makes the passive system the ultimate system to
monitor SR-N. From passive measurements, the SR-N can be analyzed in
more detail. This analysis is challenged by multiple factors as expressed
in the passive sonar equation:

SN R(dB) = —(N L(dB) — AG(dB)) — T L(dB) + SL(dB). @

In this equation, all terms have the specific underwater sound unit
dB relative to 1 pPa. SNR is the signal-to-noise ratio, which is equivalent
to the measured sound by the hydrophone(s). The Noise Level (NL) rep-
resents the background noise produced by the ocean environment. The
Array Gain (AG) reduces the NL. This value is set to 0 dB for a single
hydrophone. Besides the ocean’s background noise, the measurement is
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also distorted by Transmission Loss (TL). This is the energy loss of the
acoustic source during travel from source to receiver. The total amount
of energy loss depends on multiple environmental factors such as water
temperature, depth, multi-path distortions, and sea bed type. The TL
and NL are highly variable and may change over time since they depend
on the dynamic and complex ocean environment. The final element
in the sonar equation is the Source Level (SL), which is the acoustic
energy level of the SR-N. The acoustic energy level is composed of three
elements (Smith and Rigby, 2022; Slamnoiu et al., 2016; Veirs et al.,
2016; Urick and United States. Naval Sea Systems Command. Undersea
Warfare Technology Office, 1984; Liu et al., 2023c):

» machinery noise(20-1000 Hz);
« flow noise (5-10 Hz);
« propeller noise and cavitation (50-150 Hz).

From these elements, cavitation is the primary noise source, accounting
for 80%—-85% of the total generated noise. The strength of the total SR-
N varies between around 140 dB @1 m for small fishing vessels and
around 195 dB @1 m for maritime oil tankers (Slamnoiu et al., 2016).

The combination of these noise-elements generates a unique sound
profile of the ship. Altogether, it can be concluded that the generated
sound profile depends on the maintenance state of the ship and the
ocean environment. This introduces variations and challenges the SR-
N analysis. Traditionally, the SR-N analysis is performed manually by
experienced sonar operators. However, this is a slow and costly process
and is prone to human errors. Automation by Machine Learning (ML)
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Fig. 1. Number of publications about the application of machine learning on SR-N. Papers derived from Google Scholar, last accessed on 30 December 2023.

could overcome these limitations. Recently, the potential of ML in
underwater applications has been shown by outperforming traditional
methods (Yuan et al., 2019; Wang and Peng, 2018; Chen et al., 2022c).
For ML applications in automatic SR-N analysis, there has been a rise
in the number of publications within the past few years (see Fig. 1).
This graph has been created by selecting papers derived from Google
Scholar. Here, the search criteria were ’Underwater Acoustic Target
Recognition’, ’Ship Radiated Noise’, and 'Underwater Acoustic Signal
Recognition’. From these search criteria, papers were selected if they
applied an ML algorithm specified on SR-N.

In addition to other research initiatives (Neupane and Seok, 2020;
Smith and Rigby, 2022; Huang et al., 2022; Niu et al., 2023; Luo et al.,
2023), this survey offers a complete overview of the progressive state-
of-the-art ML developments in automatic SR-N analysis. It summarizes
the progress and critically examines the limitations and capabilities of
recent ML advancements. This survey is categorized into three main
segments: (1) an examination of the SR-N data in Section 2, (2) an in-
depth exploration of data preprocessing methods, and (3) an assessment
of the ultimate applications of automatic SR-N analysis (see Fig. 2).
Within the preprocessing segment, various feature extraction methods
are discussed in Section 3, followed by augmentation techniques in Sec-
tion 4 and denoising methods in Section 5. Here, the denoising methods
are discussed after the feature extraction methods, since some of the
proposed techniques have been proposed both in feature extraction and
denoising of SR-N recordings. The automatic analysis segment reviews
the automatic detection in Section 6, automatic localization of the noise
source in Section 7, and recognition of ships separately in Section 8.
The survey culminates with a prospective outlook on potential future
research directions in Section 9.

2. Datasets

Before any ML application can be developed, numerous SR-N mea-
surements need to be gathered to create a dataset. For this purpose,
hydrophones are deployed to record all types of underwater sounds.
These hydrophones can be deployed in various settings. One of these
settings is attached to a moving object, like a ship or an Autonomous
Underwater Vehicle (AUV). This setting introduces self-noise by the
moving object, complicating the implementation of the subsequent ML
application. Consequently, a more commonly employed setting for data
gathering is the utilization of stationary hydrophones. In this setup,

Table 1
Specifications of publicly available labeled datasets called ShipsEar and Deepship.

Name Sample rate # Classes Total duration Citation
ShipsEar 22,050 Hz 12 3h8m Santos-Dominguez et al. (2016)
Deepship 32,000 Hz 4 47 h 4 m Irfan et al. (2021)

individual hydrophones can be deployed, or an array can be formed by
stacking hydrophones either vertically or horizontally. The utilization
of arrays has shown to be less sensitive to noise compared to single
hydrophones (Zhang et al., 2022b). Following the recording process,
the collected data is combined to create a dataset of underwater sounds,
encompassing SR-N. A substantial amount of underwater acoustic data
is publicly available and can be employed to train various ML models
for automatic SR-N analysis. Unfortunately, only a small fraction of
this data is labeled. These labels can either be the identification or
the relative location of the sound source. A description of the labeled
dataset is given within this section, followed by a brief mention of
available unlabeled datasets. The overview of the labeled datasets is
given in Table 1.

2.1. Labeled datasets

For publicly available datasets, the labels are limited to the corre-
sponding ship type that is recorded. This section describes two publicly
available labeled datasets, called ShipsEar and Deepship.

2.1.1. ShipsEar

One of the publicly available labeled datasets is called ShipsEar. It
contains recordings of background noise and multiple ship types (Santos-
Dominguez et al., 2016). The dataset consists of 90 recordings, varying
in duration between 15 s and 10 min. All recordings were made
between the Autumn of 2012 and the Summer of 2013 on the Atlantic
Coast near Port Ria de Vigo. This region has a maximum water depth of
only 45 m. Nevertheless, there is abundant fishery activity within this
shallow-water region, making it an attractive place for SR-N monitoring
using hydrophones. Each hydrophone covers a wide frequency range of
1 Hz-28 kHz. Multiple hydrophones were stacked to create a vertical
array. This scheme allows the recording of noise at different depths.
When multiple recordings of a single vessel were available, the highest-
quality recording was selected for the database. The ultimate labels
were assigned using five categories:



H.I. Hummel et al.

Ocean Engineering 298 (2024) 117252

(1)

Input

Datasets

Labeled Datasets

Unlabeled Datasets

Datasets

Feature Extraction

Audio Representation

Data Simulations

Preprocessing

Decomposition & Entropy

ML-based methods

Detection
Traditional ML models

Deep Learning

Localisation
Traditional ML models

Deep Learning

DOA estimation

Recognition [
Traditional ML models

Deep Leamning Detection

Signature Recognition

Feature
Extraction

Augmentation

Denoising

Analysis

Localisation

Augmentation
Traditional Methods
SpecAugment

Generative Adversarial Network

Denoising
Decompositions
Filterbank

Deep Leaming-based Methods

Recognition

Fig. 2. Flowchart of ML applications in SR-N.

* Fishery;

« Motor boats/sailboats;
* Ferries;

« Liners;

+ Background noise.

The target vessels were visually identified and verified during labeling.
These labels and recordings were then used to create a basic classifier.
The corresponding Cepstral Coefficients were extracted, and a (see
Section 3.1.3) a Gaussian Mixture Model was optimized.

2.1.2. Deepship

Another publicly available labeled dataset is called Deepship. It
is published as a benchmark dataset (Irfan et al., 2021). Compared
to ShipsEar, Deepship contains more data. It has around 47 h of
recordings of 265 different types of vessels and contains multiple types
of underwater sounds. The recordings were made between 2 May 2016
and 4 October 2018, making it a diverse dataset. Due to this diversity,
the strongly varying circumstances of the ocean environment are partly
covered within the recordings. The recordings were made using a
hydrophone with a 1 Hz-12 kHz frequency range. It was placed in the
Strait of Georgia, which is a crowded strait with soil of sand and silt.
The recordings were labeled using Automatic Identification System (AIS)
data and were assigned to either of these four categories:

« Tanker;

* Tug;

+ Passengers ship;
+ Cargo ship.

An inclusion zone of two km was set to assign the corresponding label
(see Fig. 3). When ships were out of this range, the recording was
stopped. This dataset was utilized to create a baseline classifier. For
this classifier, a separable Convolutional Autoencoder, with blocks based
on Xception, was suggested.

2.2. Unlabeled datasets

Besides the limited quantity of publicly available labeled datasets,
there is a massive amount of unlabeled data accessible. These datasets
are generated for multiple purposes, such as marine mammal moni-
toring. Due to this multi-purpose, diversity is maintained within the
recordings. This property makes these datasets a powerful data source
to train ML models for automatic SR-N analysis. This section briefly
mentions two commonly utilized unlabeled data sources.

2.2.1. Ocean Network Canada

Ocean Network Canada (ONC) is a massive publicly available un-
labeled dataset and, therefore, a commonly utilized data source for
ML applications. The dataset contains acoustic, physical, and biological
recordings of the Atlantic, Pacific, and Arctic Ocean (Canada, 2007).
From this data source, multiple labeled datasets, such as Deepship, have
been created. Another subset has been utilized to create another labeled
dataset in Domingos et al. (2022). Within the study, the labels have
been assigned in the same way as Deepship.

2.2.2. National Oceanic And Atmospheric Administration

The National Oceanic and Atmospheric Administration (NOAA) is an
underwater acoustic data source. This platform was originally intended
to characterize sounds from fish and marine mammals and to monitor
ambient noise and human-made sounds (Oceanic and Administration,
2017). They collaborate with the U.S. Navy and support research that
examines the impact of human-generated sounds on marine mammals.
The hydrophones are placed in Alaska, the Pacific, California Current,
Northeast of the USA, the Gulf of Mexico, and the Pacific islands. These
hydrophones are placed in shallow water and deep ocean, totaling a
diverse publicly available data source.
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Fig. 3. An example visualization of the inclusion zone of the ONC dataset. The image on the left is a front view of the setting, and the image on the right is a helicopter view

of the setting (Honghui et al., 2022).

2.3. Data simulation

To cope with the limited amount of labeled datasets, various studies
proposed to generate simulated underwater sound data. Numerous un-
derwater sound applications have been developed for this purpose. For
instance, KRAKEN (Porter, 1992) has been utilized to simulate various
types of ocean environments for automatic SR-N analysis (Cao and Ren,
2022; Li et al., 2018a; Zhang et al., 2022b). Additional simulators, such
as ORCA.13 (Van Komen et al., 2019) and Bellhop (Li et al., 2022a),
have also been suggested.

3. Feature extraction

From the SR-N recordings, information can be withdrawn by feature
extraction methods. Unfortunately, the recorded SR-N is affected by
environmental circumstances and the maintenance state of the ship
itself. This results in a noisy audio signal with great variation within
the same class of ship type. Therefore, the performance of the model
relies on high-quality feature extraction. The discriminative capability
of these types of features has not been explored thoroughly, making
the feature extraction process extra important. As a result, many stud-
ies have focused on developing informative SR-N feature extraction
techniques. An overview of the development of feature extraction from
SR-N is given in Table 2.

3.1. Audio representations

Audio can be represented in either the time domain, the frequency do-
main, or the time—frequency domain. From these audio representations,
different types of features can be extracted to represent SR-N. Below,
multiple variants of audio representations as feature extraction methods
are discussed.

3.1.1. Spectrograms

The time—frequency domain of the audio can be represented by so-
called spectrograms. These are visual audio representations showing
the signal strength over time at various frequencies by applying the
Short-Time Fourier Transformation (STFT) on the raw audio. This SR-N
audio representation is commonly utilized as an image input for a CNN
to automatically recognize SR-N (Pan et al., 2021). A special type of
spectrogram is the Mel-Spectrogram. This spectrogram is generated by
taking the STFT of the original audio and converting the frequencies to
the Mel scale. This scale is based on the human perception of sound,
simulating human hearing. This type of spectrogram is commonly
utilized for automatic SR-N recognition (Liu et al., 2021f; Vaz et al,,
2022; Khalilabadi, 2023). Another study suggested creating a three-
dimensional feature input by combining the original spectrogram with
its delta and delta-delta spectrogram (Liu et al., 2021f). In addition to
the STFT, other processing methods have been suggested to generate
a spectrogram. For instance, the Constant Q Transform (CQT) (Kuzin
et al., 2022; Chen et al., 2022b), which increases the time resolution
at higher frequencies (Brown, 1991), and the wavelet transform (Chen
et al., 2019a).

3.1.2. Low-frequency analysis and recording & detection of envelope mod-
ulation on noise

Within the specialization of traditional manual SR-N analysis, the
audio is represented using the Low-Frequency Analysis and Recording
(LOFAR) and Detection of Envelope Modulation on Noise (DEMON) pro-
cessing algorithms. From the DEMON representation of the underwater
audio, the propeller characteristics of the ship can be extracted. An
optimized processing algorithm for DEMON spectrum generation was
proposed to differentiate divers from SR-N (Slamnoiu et al., 2016).
Another study proposed a DEMON-based feature extraction method to
represent the SR-N audio for a CNN for final SR-N recognition (Bach
et al., 2021). The LOFAR spectrum is a broadband representation to
estimate the vibration noise of the ship’s machinery (De Moura et al.,
2011). It has been presented in seven different frequency ranges for
target detection and recognition (Aksiiren and Hocaoglu, 2022). The
recognition performance of multiple ship types has been evaluated,
showing a discriminative performance. The discriminative ability of
the DEMON algorithm and the LOFAR algorithm has been compared
using three types of CNN networks (Wu et al., 2020). It was concluded
that the LOFAR spectrogram has the best ability to discriminate, and a
modified LeNet has the best recognition performance.

3.1.3. Cepstral coefficients

Another type of time—frequency representation of audio is cepstral
coefficients. They are an extensively utilized representation of SR-N
audio for ML applications. A prevalent type of coefficient in SR-N rep-
resentation is called MFCC (Mel Frequency Cepstral Coefficients) (Zeng
et al.,, 2013; Yao et al., 2023; Tong et al., 2020). These coefficients
originate from speech recognition applications, showing promising re-
sults. The generation of MFCC starts by applying the Discrete Fourier
Transform (DFT) on the raw audio. Next, the log transformation and
Mel scale are applied. Finally, the signal is transformed by the Discrete
Cosine Transform to generate the ultimate coefficients. Besides the
conventional MFCCs, another type of coefficient based on an auditory
filter and cubic-log compression has been suggested (Wu et al., 2014).
Compared to the Mel-scale, these coefficients should give a better
acoustic representation. A variant of the commonly suggested MFCC
is called the Power-Normalized Cepstral Coeffiecients (PNCC). It has been
stated that these coefficients are more robust to noise and, therefore,
more suitable for automatic SR-N recognition than MFCCs (Wang et al.,
2019a).

3.1.4. Filter banks

A widespread method to extract features from signals is the appli-
cation of filter banks. These are a set of band-pass filters that separate
the signal into multiple components. Several variants of filter banks are
developed, like the gammatone filter bank. The design of these filters is
based on a cochlear model (Slaney et al., 1993) and universally applied
to extract informative features from SR-N. A combination of the gam-
matone filter bank and the Hilbert-Huang transform (see Section 3.2.2)
is proposed to extract features from SR-N (Zeng and Wang, 2014). Other
modifications of the gammatone filter bank have been suggested to
optimize the features for SR-N information retrieval (Ma et al., 2021;
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Table 2
Overview of the developments to extract informative features from SR-N.
Feature extraction Technique Description Citation
Spectrograms Short Time Fourier Transformation and Pan et al. (2021), Liu et al. (2021f)?

Mel-Spectrograms

Audio Representations LOFAR & DEMON

LOFAR and DEMON processing

Bach et al. (2021), Aksiiren and Hocaoglu (2022)?

Cepstral Coefficients

MFCC and PNCC

Wu et al. (2014), Wang et al. (2019a)?

Filter banks
banks

Gammatone Filter banks and Mel filter

Lian and Wu (2022), Wu et al. (2023)?

Combinations

Combinations of audio representations

Kuzin et al. (2022), Chen et al. (2022b)?

by feature fusion

Entropy as Complexity Measure the

Decompositions & Entropy

Diverse Entropy measures to estimate

Li et al. (2022c), Wang et al. (2022a)?

complexity of SR-N

Wavelet decomposition
SN-R
& Mode decompositions

Decomposition algorithms to decompose

Li et al. (2022g), Chen et al. (2023)?

in time-domain

Hilbert-Huang Transform
the

Decomposed SR-N into IMFs and obtain

Ju et al. (2020), Yan et al. (2017)

Hilbert spectrum

increase inter-class feature distance and

Distance based NP
minimize
ML based Feature Extraction

Li et al. (2020a)

the intra-class distance of SR-N

extract discriminative features from

Sparse Bayesian Learning

time—frequency

Zeng et al. (2020b)

representations of SR-N

Deep Learning

features

MLP for signal processing to
automatically extract

Li et al. (2023c)

a . for more citations, see text.

Lian and Wu, 2022). Besides gammatone filters, other variants of filter
banks have also been proposed, like the Mel-filter bank. This filter bank
consists of triangular filters based on the Mel scale, representing the
same features as the Mel spectrogram. The Mel scale is developed to
represent the human perception of sound. Inspired by Mel-filter banks,
variants of this method have been suggested for eventual underwater
target recognition (Wu et al., 2023).

3.1.5. Combinations

Beyond the previously discussed methods, numerous combinations
of feature extraction methods have been proposed to recognize SR-N
automatically. For example, a multi-scale spectral feature set has been
presented (Jiang et al., 2020), where multiple features were derived
from the time domain at different detail levels. Another set of features
was created by combining Gammatone Frequency Cepstral Coefficients
(GFCCQC), log-Mel spectrogram, Chroma features, spectral bandwidth,
spectral centroid, and the Constant Q Transform (CQT) (Kuzin et al.,
2022; Chen et al., 2022b). The CQT is closely related to the Fast Fourier
Transformation, but it increases the time resolution at higher frequen-
cies (Brown, 1991). This combination should discriminate between
several types of SR-N, even in the presence of noise.

3.2. Decompositions and entropy

In addition to the different types of audio representations, audio
decomposition can be exploited as a feature extraction method for
SR-N. These methods can decompose the audio into multiple compo-
nents, called Intrinsic Mode Functions (IMFs). These decompositions lack
a physical interpretation, and therefore they are combined with an
entropy measure. Such a measure defines the uncertainty associated
with the underlying random process and compresses the information
load (Uruba, 2019). The discriminating performance of these measures
is evaluated using simple machine learning classifiers, like k-Nearest
Neighbors (kNN).

3.2.1. Entropy

As mentioned above, an entropy measure can be combined with
a decomposition technique to extract informative features from SR-N.
This section describes multiple types of entropy measures proposed to
discriminate SR-N of different types of ships.

Dispersion entropy. The complexity and irregularity of time series is
measured by dispersion entropy. This measure is sensitive to variations
in frequency, amplitude, and even time series’ bandwidth (Li et al.,
2022c). Unfortunately, this measure suffers from a long computation
time (Xie et al., 2023a).

Permutation entropy. The randomness and dynamic changes of a time
series are measured by permutation entropy. Moreover, this measure
has a low computation time since it compares neighboring values (Xie
et al., 2023a). However, permutation entropy is not amplitude aware
and is single scale. These are both considerable disadvantages of this
measure.

Multi-scale analysis. Some of these entropy measures are combined
with a multi-scale analysis. This analysis estimates the complexity of
the data at different scales (Chen et al., 2019b). Multi-scale reverse
dispersion entropy is a variant of dispersion entropy and has been
suggested multiple times as a feature extraction method for SR-N (Li
et al.,, 2021d,c,b). Even with a simple kNN, this method shows sat-
isfactory results. Furthermore, a multi-scale permutation entropy has
been suggested to overcome the limitation of the permutation entropy
measure (Li et al.,, 2021a; Wang et al., 2022a). The classification
performance of this modified permutation entropy was compared with
other adjustments of permutation entropy. This comparison showed
that the multi-scale permutation entropy has the highest recognition
rate.

Hierarchical entropy. The complexity of a time series is measured by
hierarchical entropy (Jiang et al., 2011). It considers both low and
high-frequency information and has therefore been presented as a
feature extractor for SR-N (Li et al., 2019d; Chen et al., 2018). This
extraction measure is compared to multi-scale sample entropy, using
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a probabilistic neural network. This comparison concluded that the
hierarchical entropy outperforms the multi-scale sample entropy (Chen
et al., 2018).

Combinations. To describe the SR-N in more detail and to make the
entropy measures more robust to the background noise, some studies
proposed a combination of multiple entropy measures (Siddagangaiah
et al., 2016; Li et al., 2022b; Xiao, 2022).

3.2.2. Decompositions

The entropy measures were combined with multiple types of de-
composition techniques to describe the SR-N. Various types of decom-
positions have been suggested to extract useful features. This section
describes the wavelet packet decomposition and multiple types of
mode decompositions that were utilized in SR-N feature extraction
techniques.

Wavelet packet. The traditional Fast Fourier Transform (FFT) is not
satisfactory for the analysis of non-stationary, non-Gaussian, and non-
linear signals (Frei and Osorio, 2007). To overcome these limitations,
an alternative decomposition is presented called Wavelet Packet Decom-
position (WPD). This decomposition approximates the Discrete Wavelet
Transform (DWT) using filter banks. The performance of the WPD on
SR-N has been compared with filter banks, wavelet packet component
energy, and MFCC (Ren et al., 2019). The experimental comparisons
imply better recognition accuracy with wavelet decomposition compo-
nent spectrum than the other methods. Another study combined WPD
with energy entropy to classify SR-N using a simple kNN (Li et al.,
2022g). Their proposed method showed superiority. compared with
other methods.

Empirical mode decomposition. The Empirical Mode Decomposition (EMD)
decomposes the original signal into individual IMFs. The EMD is similar
to FFT, but FFT transposes the original signal to the frequency domain
while EMD remains in the time domain after decomposition. Moreover,
FFT assumes that the signals comprise multiple simple sine waves. EMD
overcomes this limitation by generating data-based IMFs. Therefore,
EMD has been effectively employed in underwater acoustic recordings
to extract informative features from SR-N (Niu et al., 2018; Li et al.,
2016)(Li et al., 2016; Wang et al., 2019b). Unfortunately, EMD suffers
from a long computation time, a large recovery error, and mode mixing.
Mode mixing, in this case, means that a single part of information can
be separated over multiple IMFs. To reduce these limitations, an ad-
justed EMD called Selective Noise-assisted EMD has been presented (Niu
et al., 2018).

Ensemble of empirical mode decomposition. As previously stated, EMD is
sensitive to noise and may suffer from mode mixing. This makes the
physical meaning of IMFs hard to interpret. This problem has been
taken into account in the Ensemble of Empirical Mode Decomposition
(EEMD) (Wu and Huang, 2009). It defines IMF components by the
mean of an ensemble of trials, and each trial consists of a signal with
added white noise. In SR-N, EEMD has been implemented multiple
times for feature extraction (Chen et al., 2023). This decomposition has
been combined with multiply entropy measures like slope entropy (Li
et al., 2022h), permutation entropy (Li and Li, 2018), or energy en-
tropy (Li et al., 2019a). However, they do not consider noise reduction,
which makes them less reliable under noisy conditions. Therefore,
an improved complementary ensemble empirical mode decomposition with
adaptive noise has been proposed (Chen et al., 2019b). After decompo-
sition, permutation entropy is calculated from the signal dominant IMFs
and weighted by its normalized mutual information. Their experiments
indicate a higher performance of their proposed method than other
entropy-based feature extraction techniques.
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Variational mode decomposition. The variational mode decomposition
(VMD) overcomes the mode mixing problem of EMD (Dragomiretskiy
and Zosso, 2013). The proposed method looks for an optimal ensemble
of IMFs, with their corresponding center frequency. This method shows
promising results in dealing with noise in signals. This makes VMD
a useful feature method for SR-N. This decomposition has commonly
been combined with a type of permutation entropy (Li et al., 2017;
Xie et al., 2020a,b, 2021; Li et al., 2022d,f; Zare and Nouri, 2023;
Zhang et al., 2020a). Some methods added more information about the
IMFs, like the normalized maximal information coefficient (Xie et al.,
2020b) or a correlation coefficient (Xie et al., 2020a, 2021). Most of
these methods are evaluated using an SVM classifier to recognize mul-
tiple ship types with high accuracy. As previously stated, permutation
entropy is not amplitude-aware. To cope with the loss of information,
VMD was combined with slope entropy (Li et al., 2022i), a complexity
measure that considers the amplitude information. However, VMD
and slope entropy need parameter selection. This selection can be
optimized using an optimizer (Li et al., 2023d; Yi and Tian, 2022).
After optimization, feature selection is applied to extract the most
informative IMF combinations. This approach has been shown to result
in a high recognition rate.

Intrinsic time-scale decomposition. The intrinsic time-scale decomposition
(ITD) is a non-linear method for time-frequency representations of
signals. It was developed to overcome the limitations of FFT and
EMD (Frei and Osorio, 2007). The method decomposes the input signal
into ‘proper rotation’ components while preserving temporal informa-
tion. It can be applied in real-time, which is a major benefit of this
method. This decomposition has been combined with multiply entropy
measures as a feature extraction method for SR-N (Li et al., 2019b,c;
Wang and Chen, 2019).

Hilbert-huang transform. Next to the decomposition techniques, SR-N
has been presented in the time—frequency domain as a feature using
the so-calledHilbert-Huang transform (HHT). This transform is a signal
processing technique that applies to non-stationary and non-linear
signals (Chaitanya et al., 2021). It consists of two steps, starting with
decomposing the signal using EMD. Next, the Hilbert Spectral Analysis
is applied to the IMFs to obtain the final Hilbert spectrum (see Fig. 4).
This type of audio representation has been suggested as an informative
feature for SR-N (Ju et al., 2020; Yan et al., 2017).

3.3. Machine learning-based feature extraction

Besides traditional feature extraction based on conventional audio
processing techniques, ML models can be applied to automatically
extract features from SR-N. These features are utilized to train the
following ML model application. Some traditional methods have been
suggested, like a distance-based method (Li et al., 2020a) and the ap-
plication of Bayesian learning (Zeng et al., 2020b). Alongside these tra-
ditional ML-based feature extraction methods, numerous deep-learning
techniques have been suggested. A Multi-Layer Perceptron (MLP)-based
method utilizes hard-parameter sharing for optimal feature extrac-
tion (Li et al., 2023c). Likewise, a Neural Network scheme has been
suggested to extract correlation-deep features from the raw audio.

3.4. Summary

This section described various feature extraction methods that have
been suggested for SR-N data. However, these approaches are con-
strained by their underlying assumptions. For example, DFT assumes
signal stationarity, and methods like EMD assume that the signal can be
accurately represented by IMFs. Unfortunately, the assumptions made
by these methods may not always align with the characteristics of SR-N
recordings. In alternative research approaches, some studies attempted
to directly translate speech-based feature extraction methods to SR-N.
However, the distinctive characteristics of SR-N, divergent from those
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Table 3
Overview of augmentation techniques to enhance SR-N datasets.
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Augmentation Technique Description Citation

Increase sample diversity by
implementing a
pitch shifting method

Add pitch variation Yuanchao et al. (2023)

Traditional Methods

Increase the number of samples by
creating

new samples with an underwater sound
propagation model

Ray propagation model Liu et al. (2021d)

Add time and frequency masks on Park et al. (2019), Li et al. (2022k)

spectrograms

SpecAugment Spectrogram augmentation

Apply a simple GAN using different

GAN . Liu et al. (2019b), Jin et al. (2020)
audio
representations

Generative Adversarial Network InfoGAN Generate underwater acoustic Yang et al. (2023a)

spectrograms

TangGAN x;)dified GAN architecture specialized Pfau (2020)
underwater acoustics

DCGAN GAN model containing convolutional Xie et al. (2023a), Yao et al. (2023)
layers
Additional label inf tion during th

cDCGAN Hiona’ fabel iformation curing the Luo et al. (2021b), Tian et al. (2021)°

training
process of a DCGAN

a . for more citations, see text.

of speech, make such direct translations suboptimal for representing
this type of audio. Conversely, a subset of studies proposed an ML-based
feature extraction method directly from raw audio. These methods do
not rely on these assumptions, which shows the potential of ML-based
methods. Despite this potential, it is essential to recognize that this area
of research is currently limited and necessitates further development.

4. Augmentation

Due to the complexity of SR-N analysis, ML models with many
parameters have been developed. To reduce the chance of overfitting
these big models during training, they need a big and diverse dataset.
This diversity of the data is limited by the frequency stability of the
harmonic line spectra of SR-N. Furthermore, only a limited amount of
labeled SR-N data is available. To overcome these problems, several
augmentation techniques have been published to enhance the training
set. One such technique adds variation in the pitch of SR-N (Yuanchao
et al., 2023). Also, physics-based underwater sound propagation models
have been applied to generate more data samples (Liu et al., 2021d).
An overview of augmentation techniques to enhance SR-N signals is
provided in Table 3.

4.1. Spectrogram augmentation

A specialized technique to augment spectrograms, called SpecAug-
ment, is presented in Park et al. (2019) (see Fig. 5). The spectrograms
are augmented by applying frequency masks and time masks. This
method has been suggested to enhance SR-N data samples (Li et al,,
2022k; Hong et al., 2021b,a). Due to its simplicity, it is easy to

implement. However, due to the complexity of the ocean environment,
simplistic augmentation methods generate severely deviated synthetic
data samples. This deviation may introduce a bias during the train-
ing process. To overcome this limitation, an updated spectrogram
augmentation method is presented in Xu et al. (2023). This method
uses smoothness-inducing regularization followed by local masking and
replication is suggested to augment SR-N datasets.

4.2. Generative adversarial networks

Another suggested augmentation technique to augment SR-N data
samples is the implementation of Generative Adversarial Networks
(GANs). A GAN can generate underwater samples from gray-scale
spectrum images (Liu et al.,, 2019b). The generation performance
is evaluated using an independent classification network. Likewise,
another GAN model was applied to expand the number of data samples
by generating spectrograms instead of gray-scale images (Jin et al.,
2020; Yang et al., 2023a). Besides spectrograms, MFCCs have also been
suggested as input features for a Deep Convolutional GAN (DCGAN) (Yao
et al., 2023). This same type of GAN has been applied to enhance data
samples using wavelet time—frequency graphs as input features (Gao
et al., 2020). Notably, all previously presented methods still apply
manual feature extraction. This may limit the eventual augmenta-
tion performance. To overcome this, a one-dimensional DCGAN is
applied directly on the audio waveform to enhance the dataset (Xie
et al., 2023a). Unfortunately, simple GANs are not sufficient to capture
complex underwater sounds (Luo et al., 2021b; Jiang et al., 2022).
The acoustic data generated by GANs contain artifacts that result in
machinery-like sounds (Thiem, 2020). To reduce this effect, another
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Fig. 6. Typical contributions to underwater ambient noise in the open ocean (Cauchy et al., 2018).

modified version of a GAN, named TangGAN, is proposed to generate
underwater sounds (Thiem, 2020) and to enhance SR-N data (Pfau,
2020). Another study suggested incorporating label information during
training to optimize the generator (Luo et al., 2021b; Tian et al., 2021).

4.3. Summary

Due to the varying and complex ocean environment, it is challeng-
ing to augment SR-N data. Simplistic techniques like SpecAugment
and GANs are insufficient. Both methods suffer from multiple artifacts,
which introduces a bias during the training of the following ML model.
Luckily, several modifications of the GAN have been suggested to over-
come these artifacts. This will preserve the quality of the augmented
data. Eventually, this will lead to ML models with better performance
in automatic SR-N analysis.

5. Denoising

So far, multiple feature extraction methods, types of input data,
and how to enhance the data have been discussed. However, all of
these methods suffer from the highly variable background noise. This
background noise, referred to as ambient noise, lowers the eventual
SNR (see Eq. (1)). This ambient noise is composed of numerous sources,
like the weather and marine life (see Fig. 6). Eventually, the presence
of ambient noise will weaken the performance of the subsequent ML
application. For this reason, reducing this background noise during
preprocessing of the data is important. Multiple techniques have been

proposed to separate the background noise from SR-N, an overview of
these techniques is given in Table 4.

5.1. Decompositions and filter banks

The application of decompositions has been suggested to distin-
guish the background noise from the original SR-N signal. Various
decompositions techniques have been proposed, like optimization de-
composition (Li et al., 2023a), a modified version of EEMD (Li et al.,
2019f), and VMD (Yang et al., 2020; Li et al., 2022]; Ma et al., 2023;
Fang et al., 2023). After the decomposition of the input signal, the
generated IMFs were divided into three categories: noise IMF, noisy
IMF, and signal IMF (Ma et al., 2023). Noise IMFs were discarded,
and the noisy IMFs were denoised using Wavelet soft threshold. The
denoised IMFs and signal IMFs were combined to reconstruct the
original signal. The reconstructed signal is clearer after denoising in
different simulated marine environments with variable SNR levels.
Besides the discussed decompositions, the Gammatone Filter bank and
dyadic discrete wavelet transform have been suggested to remove the
background noise (Sonz and Zhang, 2021). The performance was tested
with a simple kNN, outperforming the conventional MFCCs.

5.2. Deep learning-based denoising algorithms

Apart from the previously mentioned techniques for denoising,
various Deep Learning techniques have been presented to denoise SR-
N automatically. An overview of these methods is described in this
section.
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Table 4
Overview of denoising techniques applied to underwater acoustic data samples.
Denoising Technique Description Citation
Optimization Decomposition Secondary optimization decomposition model Li et al. (2023a)
Decompositions Ensemble of Empirical Mode Decomposition = Modified EEMD Li et al. (2019f)

Mutual Information VMD

Yang et al. (2020)

Variational Mode Decomposition

Snake Optimization VMD

Li et al. (20221)

VMD with IMF categorization

Ma et al. (2023)

Filter bank Gammatone Filter bank

Gammatone Discrete Wavelet Coefficient

Sonz and Zhang (2021)

Recurrent Neural Network

Bi-directional LSTM, Dual-Path RNN

Zhang et al. (2021b), Song et al. (2022)

Deep Learning Convolution-based Models

WaveN2N, Generalized Channel-Invariant Network

Koh et al. (2020), Zeng et al. (2020a)

Autoencoders

Denoising Autoencoder, Convolutional Autoencoder

Zhou and Yang (2020), Song et al. (2023c)?

NAFSA-Net

Fullband-Subband attention blocks

Zhou et al. (2023)

a . for more citations, see text.

5.2.1. Recurrent neural networks

A Long Short-Term Memory (LSTM) model is a special type of a
Recurrent Neural Network (RNN) that has been suggested to denoise SR-
N recordings. This model type is specially designed to handle sequential
data by taking long-term dependencies into account (Hochreiter and
Schmidhuber, 1997). These characteristics make the LSTM model ap-
plicable for time series data, like SR-N. A deep bidirectional LSTM, with
STFT magnitude features, is utilized to estimate the amplitude mask
of an acoustic target (Zhang et al.,, 2021b). The completed pipeline
is evaluated using the ShipsEar dataset, where the classifier achieved
recognition accuracy of 60.67% on the denoised dataset. This is a
reduction of 34% compared to the recognition accuracy on the original
dataset. Alongside the LSTM, a dual-path RNN has been proposed to
denoise SR-N recordings (Song et al., 2023a). Here, it was shown that
this model could improve the SRN ratio by 12.02 dB and 9.48 dB,
respectively.

5.2.2. Convolution-based model structures

A convolution-based network, called WaveN2N, is presented to
denoise multi-channels array data (Koh et al., 2020). This technique
is based on the computer vision method called Noise2Noise (Lehtinen
et al, 2018), which has been shown to restore corrupted images
from solely corrupted samples. WaveN2N is constructed in a self-
supervised setting. The results were visually evaluated, showing more
structure in the denoised spectrograms, implying noise level reduction.
Apart from optimizing the separation between signal and noise, the
background noise can be modeled on its own (Zeng et al., 2020a).
A Generalized Channel-Invariant Network has been suggested to model
the background noise of different marine environments, outperforming
other Convolutional Neural Network (CNN)-based models.

5.2.3. Autoencoders

Beyond the convolution-based neural networks, a variety of au-
toencoders have been suggested to denoise SR-N recordings. A special
type of autoencoder is the denoising autoencoder. These types of au-
toencoders try to reconstruct the undestroyed data using partially
destroyed data samples as input. Similarly, a practical denoising and
recognition method has been proposed (Zhou and Yang, 2020). First,
the data was split into target and noise data by generating multi-
images between marine noise and target signal using correlation and
a dropout process. The denoising features were acquired by convolu-
tional denoising autoencoder, which has been trained on the segmented
multi-images. The denoising performance was evaluated using fuzzy
C-means method. Here, the proposed denoising method showed the
least overlap between noise and SR-N, compared to HHT, STFT, and
MFCC. Another extension to the regular denoising autoencoder called
a bidirectional autoencoder, has been proposed to denoise underwa-
ter audio (Dong et al.,, 2022). Due to a lack of clean underwater
sound data, pseudo-clean recordings were created by denoising the

SR-N recordings from ShipsEar using decompositions. This proposed
method was evaluated by recognizing the ship type by an Support Vector
Machine (SVM). The denoising of the input data before classification
resulted in a recognition accuracy increase of 9%. Besides the denoising
autoencoders, a convolution-based autoencoder has been suggested for
underwater acoustic noise reduction (Song et al., 2023c). Here, it is
stated that this network can extract the structural and local information
of the spectrum, resulting in an SNR increase of 10.02 dB and 9.5 dB,
respectively.

5.2.4. NAFSA-Net

The final denoising method discussed within this section is called
a noise-aware deep learning model with fullband-subband attention
network (NAFSA-Net) (Zhou et al.,, 2023). The NAFSA-Net pipeline
starts with an encoder, utilized for feature extraction from the raw
audio. Subsequently, a noise subnet and a target subnet are designed
to adopt stacked fullband-subband attention blocks. Employment of
fullband-subband attention blocks has been presented in speech en-
hancement (Chen et al., 2022d). These attention blocks extract global
and local dependencies to describe the noise and target characteristics.
An interaction module is designed to transmit auxiliary information
between the sub-nets.

5.3. Summary

Generally, the suggested denoising methods for SR-N can be cate-
gorized into two groups: those relying on manually extracted features
and those employing deep learning methods. The manually extracted
feature methods are constrained by their assumptions that may not
meet the SR-N signals. Even though decompositions are presented as an
effective denoising method, there is no solid standard to differentiate
between signal-dominated IMFs and noise-dominated IMFs (Dong et al.,
2022). This leads to subjective influences in the denoising process
of SR-N. In addition to these traditional methods, a combination of
an encoder and decoder model and the denoising autoencoder are
introduced. Both methods are completely data-based and highlight the
potential of data-driven methods for denoising SR-N recordings. The
denoising performance of these methods is evaluated by their recogni-
tion accuracy due to a lack of ground truth. For this reason, the true
denoising performance of the data-driven methods is still unexplored.

6. Detection

Upon preprocessing SR-N recordings, the development of ML algo-
rithms becomes instrumental for the automation of SR-N analysis. This
section focuses on the automatic detection of SR-N, specifically detect-
ing a ship once it comes within the range of a deployed hydrophone.
Automatic detection is critical for harbor security or further analysis of
the ship’s signature. Detecting SR-N poses a considerable challenge due
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Table 5
Overview of detection techniques applied to detect SR-N automatically.
Detection Technique Description Citation
L. A comparative study examining the .
T 1 M M Prasad and G ath (2022
raditional Methods SV performance of multiple traditional ML methods rasad and Gurugopinath ( )
CRNN for fish and engine sound detection Kammegne et al. (2023)
Deep Learning CNN Real-time detection and localization Scherrer et al. (2022)

Scaled spectrograms as input features

Park and Kim (2022)

to the low SNR of SR-N and the highly dynamic ocean environment.
For these reasons, traditional detection methods fall short (Chen and
Zhang, 2011). Consequently, several ML models have been developed
to detect SR-N automatically and accurately. An overview of these ML
models is given within Table 5.

The detection performance of diverse traditional supervised ML
techniques has been compared to provide a comprehensive analy-
sis (Prasad and Gurugopinath, 2022). This comparison showed that
the SVM outperforms other supervised methods. Apart from these
traditional methods, a CNN is frequently suggested for the automatic
detection of SR-N. Some of these suggested methods are the auto-
matic detection of fish calls and motor engine sounds by a convo-
lutional recurrent neural network (Kammegne et al.,, 2023) and the
real-time detection and navigation direction using two bottom-moored
hydrophones (Scherrer et al., 2022). This real-time detection was real-
ized by a shallow LeNet-based CNN, yielding a True Positive Rate of 0.92
on a private dataset. In order to conduct a comprehensive assessment
of the CNN architecture’s performance, it is compared with other deep
learning methods (Prasad and Gurugopinath, 2023). The automatic
detection capabilities of a CNN, a gate recurrent unit (GRU), LSTM, a
basic Deep Neural Network, and an RNN are assessed, utilizing diverse
data sources for a comprehensive evaluation. Within this comparative
study, the proposed CNN and LSTM outperform any other deep learning
method.

7. Localization

It is not just the detection of SR-N that proves to be difficult,
equally challenging is the localization of the source of SR-N. During this
localization, the range and depth of the acoustic source are determined
using a single sensor. To do this, several conventional methods are
utilized, which are based on inversion techniques. A common method
is the well-known matched field processing. However, the accuracy of
these inversion techniques is affected by the highly fluctuating envi-
ronment (Lefort et al., 2017). For this reason, several ML techniques
are proposed to locate SR-N automatically. This poses challenges too,
due to the lack of labeled data. The available labeled datasets only take
the ship identity into account and do not consider accurate localization
labeling. Nevertheless, several ML techniques have been developed to
cope with the automatic localization of SR-N. An overview of these ML
techniques is given within Table 6.

7.1. Traditional machine learning models

A limited number of traditional ML models are developed to localize
SR-N automatically. For instance, Lefort et al. (2017) proposed a kernel
regression to perform automatic localization of SR-N and outperform
original inversion techniques. The potential of machine learning has
been further explored in Niu et al. (2017b) and Hu et al. (2021a).
Both studies preprocess the raw measurements of a vertical array
into a normalized sample covariance matrix. This matrix has been
employed as the input for several machine learning methods: feed-
forward neural network, SVM, kernel-Extreme Learning Machine, and
Random Forest. Here, the SVM outperformed other methods resulting
in a Mean Absolute Percentage Error (MAPE) of 2% (Niu et al., 2017b).
However, the performance of these traditional methods decreases once
the SNR decreases.
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7.2. Deep learning techniques

Recently, more deep-learning techniques have been suggested for
SR-N localization than traditional ML techniques. The drawback of
Deep Learning methods over traditional techniques is the need for a
large amount of labeled data. Unfortunately, this is not publicly avail-
able. To cope with this problem, most of the techniques are developed
using simulated data.

7.2.1. Feed-forward neural network

The first Deep Learning method that has been suggested for au-
tomatic SR-N localization is the application of a Feed-Forward Neural
Network (FNN) (Ozard et al., 1991). An associative FNN without hidden
layers was proposed to estimate the source and depth of the target
using the data of a vertical array. The same approach is applied in Niu
et al. (2017a), where the performance of the FNN is compared with an
SVM. Here, it was stated that ML applications have a higher detection
range than conventional matched field processing. Evaluating a FNN
for acoustic target ranging is difficult due to the lack of annotated data.
For this reason, Chi et al. (2019) proposed a fitting-based early stopping
method to evaluate an FNN for underwater target localization on a test
set without known locations. Their proposed method resulted in a Mean
Squared Error (MSE) of 0.24 km.

7.2.2. Convolutional neural network

Nowadays, the application of FNN in SR-N localization is replaced
by CNNs. These models have proven to be powerful models for com-
puter vision tasks. Hence, this model has extensively been utilized in
underwater acoustic scenarios. It has outperformed traditional localiza-
tion methods (Chen and Schmidt, 2021) and can be used to enhance the
reliability of other underwater source localization methods (Xiao et al.,
2021b). Occasionally, CNNs are combined with other Artificial Neural
Networks (ANNs) (Liu et al., 2019a). The performance of a CNN-FNN
architecture, with raw audio as input, is compared with an ANN with
manually extracted features for underwater source localization (Huang
et al., 2018b). The comparison concluded a superior performance of
manually extracted features combined with ANN. Despite their ini-
tial performance, both models significantly degraded once the ocean
environment changed. While it is acknowledged that manual feature
extraction methods share this limitation, several methods have been
published combining CNNs with manual feature extraction techniques
for automatic underwater source localization. Examples include a nor-
malized acoustic matrix (Liu et al., 2020b) and a cepstrogram (Ferguson
et al., 2016, 2019; Ferguson, 2021). It has been stated that combining
CNNs with cepstograms can even deal with multi-path distortion of
the incoming sound signal. A CNN, consisting of Inception blocks, has
been suggested to automatically localize SR-N. This proposed method
resulted in a Mean Absolute Error (MAE) of 0.3 km in range and
12.1 m in depth on a private dataset. Other variations of the CNN
architecture have been published to optimize automatic localization
even further. One such variation is a ray-based blind deconvolution
algorithm (Durofchalk et al., 2021). This approach has been compared
with matched field processing and showed similar range accuracy.
Moreover, an attention-based CNN is proposed for automatic ship
ranging (Xiao et al., 2021a). The attention mechanism visualized the
inherent features of concern of ships and the effect of underwater
acoustic channels. The examination of how a CNN model processes raw
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Localization Technique Description

Citation

Kernel methods machine
Traditional ML models

Kernel regression, kernel Extreme-Learning

Lefort et al. (2017), Hu et al. (2021a)

SVM and
Random Forest

Sample covariance matrix as input features

Niu et al. (2017b)

Without hidden layers or with fitting based

FNN . Ozard et al. (1991), Niu et al. (2017a), Chi et al. (2019)
early stopping
Combined with other ANN and trained

CNN using either manually extracted features Chen and Schmidt (2021), Xiao et al. (2021b),?

b L . or raw waveform data
eep Learning

50-layer ResNet and 18 layer ResNet Niu et al. (2019), Lin et al. (2020)

Other NN ANN, GRU, LSTM, CDC, and MLP Yangzhou et al. (2019), Wang and Peng (2018),*

Semi Supervised Learning

A two-step framework, CAE for feature
extraction and MLP for automatic localization

Zhu et al. (2020, 2021b)?

Multi-task learning

Simultaneously predict sea bed type and
sound source localization

Van Komen et al. (2019, 2020)?

Various Deep

ML for DOA i i
or DOA estimation Learning methods

ANN, RNN, CNN, FNN

Cao et al. (2019a), Whitaker et al. (2021)?

a . for more citations, see text.

underwater sound measurements directly is investigated (Herchig et al.,
2022). The performance of a CNN trained using either magnitude data
(real-valued) or pressure data (complex-valued) has been compared. It
was shown that the complex-valued CNN outperformed the real-valued
CNN. Unfortunately, when the simulated dataset was generated using
more Sound Speed profiles, the performance of the complex-valued
CNN decreased. To create a more generalized model to cope with these
variations, more diverse training data is needed. Instead of using more
training data, a transfer learning approach has been suggested in Ge
et al. (2022). Here, a label distribution-guided transfer learning method
was presented with an improved performance using only a limited
amount of experimental data.

Residual neural network. The original CNN architecture is sensitive
to the vanishing or exploding gradient problem. The Residual Neural
Network (ResNet) is proposed to overcome this. Such a network consists
of stacked residual blocks with skip connections. These connections
connect the activation of a previous layer to a future layer. This makes
this architecture suitable for automatic SR-N localization. A ResNet18
has been suggested to automatically localize SR-N in a shallow-water
ocean environment. The model was trained using simulated data gen-
erated by KRAKEN and tested on experimental data. This resulted in a
MAPE of 1.5% in the range. However, it is uncertain how this model
would perform in more complex ocean environments.

7.2.3. Other neural networks

Several other NN architectures have been proposed for automatic
SR-N localization. The sample covariance matrix is a widely used
feature in source localization (Yangzhou et al., 2019). Therefore, this
feature has been used multiple times as the input for a generalized
regression NN (Wang and Peng, 2018; Jia et al., 2021; Huang et al.,
2018a) and a one-dimensional ANN (Yangzhou et al.,, 2019). The
performance of the one-dimensional ANN has been compared with the
conventional matched field processing. However, the generality of the
proposed method in other ocean environments is questioned. Since
ANNs have shown to be successful in single underwater sound source
localization, the application of deep learning methods for multi-source
sound localization has also been explored. A GRU network has been
proposed in Liu et al. (2021e) for multiple sound source localization
without knowing the number of sources. Similarly, Huang et al. (2019)
suggested an LSTM model for this purpose. The potential of the LSTM
in automatic underwater sound source localization has already been
shown in Qin et al. (2020). An LSTM network, with features based on
the covariance matrix, was applied as a supervised regression prob-
lem. This proposed method decreased the MAPE by 40% in low SNR
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simulated data samples compared to conventional methods. Solving
supervised problems with deep learning techniques often requires a
large amount of labeled data. Due to the lack of publicly available an-
notations, Zhu et al. (2021a, 2022) proposed a two-step self-supervised
learning scheme for automatic underwater source localization using
contrastive predictive coding. The encoder of the extractor is isolated
and coupled to an MLP while the parameters of the encoder remain
frozen. The MLP is optimized using a small labeled dataset. This method
is compared with an autoencoder and a complete supervised learning
scheme using real data. Here, it was stated that the proposed self-
supervised model outperforms the other methods, resulting in an MSE
of 0.11 km (Zhu et al., 2022).

7.2.4. Semi-supervised learning

Similar to self-supervised learning, the proposal of semi-supervised
learning emerges as a solution to address the scarcity of publicly avail-
able labeled data. This learning technique combines supervised and
unsupervised learning, aiming to use labeled and unlabeled datasets.
A two-step framework has been presented for automatic localization
of underwater sound sources (Zhu et al., 2021b). First, a Convolutional
AutoEncoder is trained in an unsupervised manner. Second, the latent
features are utilized as input for an MLP, which is trained to estimate
the source range in a supervised manner using a limited amount of
labeled data. This method resulted in an MSE between 0.4 km and 0.48
km. To reduce the training time of this framework, a feature selection
method has been proposed in Zhu et al. (2020, 2021b) based on Prin-
ciple Component Regression before the two-step mechanism (results
are visualized in Fig. 7). This proposed framework is more robust to
unseen data and outperforms supervised methods when the number of
labeled data samples decreases. An integrated feature selection method
has been proposed in Jin et al. (2022) and Li et al. (2023b). Both
studies applied a self-attention mechanism within the Convolutional
Autoencoder for picking more useful features. This method resulted in
an MAE of 0.06 km.

7.2.5. Multi-task learning

An alternative approach to enhance the performance of machine
learning techniques for the automatic localization of SR-N is through
the implementation of multi-task learning. This learning technique is
based on inductive transfer to improve the generalization of the model.
It provides this by learning multiple tasks in parallel with a shared
representation (Caruana, 1997). This may result in higher prediction
accuracy than models trained individually per task. This technique
has been suggested to predict the range and depth of an underwater
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Fig. 7. Range estimation results from Zhu et al. (2021b) on Swellex-96 experiment.

acoustic source simultaneously (Liu et al., 2020a). Subsequently, this
resulted in an MAE of 1.3 km in range and 9.5 m in depth on a private
dataset. Additionally, various techniques have been presented showing
the potential of simultaneous training of models for underwater sound
source localization and sea bed classification (Van Komen et al., 2019;
van Komen et al., 2019; Van Komen et al., 2020; Neilsen et al., 2021;
Van Komen et al., 2021; Liu et al., 2023b). Underwater sound propaga-
tion paths are highly influenced by the type of sea bedding. Therefore,
combining these tasks in a multi-task learning scheme may improve
the final localization estimation accuracy. An FNN with manual feature
extraction has been suggested to solve this task (Van Komen et al.,
2019). However, the most commonly chosen model architecture is
a CNN (van Komen et al.,, 2019; Van Komen et al., 2020; Neilsen
et al., 2021; Liu et al., 2023b). Liu et al. (2023b) optimized the CNN
architecture for automatic underwater sound source localization. An in-
terpretable complex CNN based on the Barlett processor was suggested.
This model creates a more physically relevant CNN output resulting
in successful source localization. Another CNN architecture has been
suggested in Van Komen et al. (2021) to predict seabed type, ship
speed, and range using spectrograms as input features. Their proposed
method achieved a seabed classification accuracy of 99% and a Root
Mean Squared Error of 0.28 km in the Closest Point of Approach range
prediction.

7.3. Machine learning for direction-of-arrival estimation

Thus far, only ML techniques that predict the range or depth of an
acoustic source have been discussed. Beyond this, estimating the source
azimuth of the target noise is also considered. This is called Direction of
Arrival (DOA) estimation. This parameter is critical for signal processing
of underwater sound, and as such, accurate estimation is necessary.
Unfortunately, conventional DOA estimation methods degrade in per-
formance in the complex time-variant ocean environment (Li et al.,
2022a). The challenging conditions in this environment, characterized
by substantial transmission loss and intense noise interference, result in
significant distortion of the original acoustic signal, posing difficulties
for accurate DOA estimation (Whitaker et al., 2021; Quan et al., 2021).
Machine Learning models have the ability to learn and adapt to this
time-variant ocean environment. For this reason, deep learning tech-
niques have been developed. An ANN has been proposed to estimate
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the DOA using a single vector hydrophone (Cao et al., 2019a). The
performance of this simple ANN was compared with the conventional
complex sound intensity method, showing similar estimation accuracy.
A more extensive comparison has been made in Whitaker et al. (2021).
The DOA estimation performance of the frequency-masking average
method was compared with a deep and shallow RNN architecture.
The results show that the deep RNN outperforms both the shallow
RNN and the conventional method and demonstrates the potential of
deep neural networks. As previously mentioned, deep learning methods
require a large amount of labeled data which is not publicly available.
To cope with this problem, a deep transfer learning CNN framework
is applied in Cao et al. (2021) where the synthetic data was combined
with real data. Their proposed transfer learning technique utilized more
accurate DOA estimations compared to a conventional CNN. Apart from
transfer learning, other adjustments on a CNN have been proposed to
optimize DOA estimation. For instance, Liu et al. (2021a) proposed a
two-channel ResNet using both a real-valued channel and an imaginary
input channel. Their proposed method outperformed the conventional
MUSIC algorithm. It has been shown in various studies that CNNs out-
perform conventional methods and are able to extract useful features
for accurate DOA estimation at different SNR levels (Cao and Ren,
2022; Li et al., 2022a). Likewise, other feature extraction techniques
were combined with CNN models to improve DOA estimation. These ex-
traction techniques are based on conventional methods like the wavelet
transform (Quan et al., 2021) or local beam patterns (Nie et al., 2023b).
Apart from CNN architectures, FNNs have been proposed for multi-
target DOA estimation (Niu et al., 2017b; Ozanich et al., 2020). Both
two-target and K-target, where K is unknown, problems are solved.
Both studies demonstrate the potential of FNN for underwater sound
source localization resulting in a mean error of 0.92°.

7.4. Summary

This section described the development of ML techniques in au-
tomatic range and depth estimation of the source of SR-N. Multiple
Deep Learning methods have been described, where most techniques
outperformed the conventional inversion methods. Particularly, the
Deep Learning methods that can cope with sequential data show a
great localization improvement. Even though these models have shown
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'(I)‘?/I:\e/iZw of recognition ML techniques applied to automatically recognize various SR-N.
Recognition Technique Description Citation
kNN MFCC as input features Tong et al. (2020)
Traditional ML models HMM Cepstral Coefficients as input features Kiiciikbayrak et al. (2009), Mohammed et al. (2018)?
SVM Combined with Cepstral coefficients or DL features Lian et al. (2017), Can (2016)?
SVDD Combined with auditory based features Li et al. (2018b)
MLP & ANN class-modular MLP, 3-layer ANN, 7-layer ANN Li et al. (2018a), Axelsson and Rhen (2020)*
RNNs LSTM and GRU de Souza et al. (2022), Yang et al. (2022)?
Shallow 3-layered networks, VGGNet, and LeNet Khalilabadi (2023), Yin et al. (2020), Wang et al. (2022b)?
ResNet Chen et al. (2019a), Domingos et al. (2022), Ren et al. (2022)?
CNN Multi Scale ResNet Tian et al. (2021, 2023b)

. Depthwise Separable Convolutions
Deep Learning

Zhang and Ding (2020), Hu et al. (2021b)*

Auditory based

Shen et al. (2018, 2020)?

Attention Module

Li et al. (2022e), Liu et al. (2021c)?

Combinations with other networks

Hu et al. (2018), Liu et al. (2023a)?

Contrastive Learning supervised SimCLR

Chen et al. (2020)?

Deep Belief Networks

Chen and Xu (2017), Luo and Feng (2020)?

Semi-Supervised Learning Variational Autoencoders

Satheesh et al. (2021), Bach et al. (2022)

Stacked Autoencoders

Cao et al. (2019b), Haiyan et al. (2021)?

Convolutional Autoencoders

Chen and Shang (2019), Lingzhi et al. (2023)*

Transformers

Swin Transformer and Audio Spectrogram Transformer

Xu et al. (2022), Li et al. (2022k)

Multi-target Recognition Multi-target classification by CNNs

Pfau (2020), Sun and Wang (2022)

Automatic transient detection or tonal detection

Signature Recognition CNN

from LOFAR & MFCC

Tucker and Brown (2005), Park and Jung (2019)*

Autoencoder

Enhance tonal signals instead of suppressing the background Ju et al. (2022)

a . for more citations, see text.

their potential, to train these types of models, you need a large amount
of labeled data. Since this is not publicly available, self-supervised
learning and semi-supervised methods have been suggested. These
types of learning techniques improve the training of the models by
exploiting all the available SR-N data. Alongside the range and depth
estimation, DOA estimation techniques have been discussed. These
techniques have shown that a CNN can learn meaningful representation
from the audio and have a robust performance under multiple SNR
levels. This is exceptional given the severely complex and varying ocean
environment.

8. Recognition

The final component of automated SR-N analysis pertains to the
automatic recognition of SR-N. The unique acoustic signature of a ship’s
noise comprises specific transients and tonals. Transients are short
peaks in amplitudes within the time domain, whereas tonals are charac-
terized by a concentrated energy presence at a single frequency within
a narrow section of the time-frequency spectrum. The combination of
these measures is utilized to manually recognize the ship type based
on its produced noise. As previously stated, manual SR-N recognition
is a slow and costly process. To automate this process, multiple studies
focus on automatically recognizing these signatures or the ship type
directly using ML. An overview of these studies is given in Table 7.

8.1. Traditional machine learning models

Several traditional machine learning models have been suggested
for automatic SR-N recognition. These traditional methods do not
require the same large amount of data as deep learning and, therefore,
have been represented for automatic SR-N recognition. However, the
training process of these methods starts with manual feature extraction.
Several traditional machine learning algorithms have been suggested
for final recognition. Earlier studies suggested a Hidden Markov Model
(HMM) (Yue et al., 2005; Kiiciikkbayrak et al., 2009; Mohammed et al.,
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2018; Vieira et al., 2020) for automatic SR-N recognition. Other stud-
ies suggested implementing a simple kNN combined in conjunction
with manually extracted features (Tong et al., 2020) or utilizing an
SVM (Sherin and Supriya, 2015; Can, 2016; Lian et al., 2017). Notably,
the SVM algorithm has been recurrently recommended and combined
with manually extracted features from either the time-domain (Meng
et al., 2014), frequency-domain (Leal et al., 2015), and time-frequency
domain (Wang and Zeng, 2014). Additionally, the SVM has been com-
bined with various wavelet-based techniques (Wang and Zeng, 2014; Li
et al., 2014; Can et al., 2017). These methods outperformed traditional
SVM and MFCC combinations with a recognition rate above 90% on
private datasets. Related to the SVM, multiple Support Vector Data
Descriptors, have been proposed to perform automatic recognition (Li
et al., 2018b). The output of these classifiers is fused by a majority vote
reaching a True Negative Rate of over 90% on a private dataset. Overall,
traditional methods are still applied for automatic SR-N recognition.
However, the late rise in the number of publications about automatic
recognition of SR-N is dominated by deep learning applications.

8.2. Deep learning methods

In addition to the traditional machine learning methods, a wide
variety of deep learning methods have been applied in automatic SR-N
recognition. An overview of these methods is given in this section.

8.2.1. MultiLayer perceptron and shallow artificial neural networks

The application of NN in SR-N has shown to be less sensitive to
noise compared to a traditional method (Yang and Chen, 2017). One
of the many suggestions is the application of an MLP. This architecture
was modified to create a class-modular MLP for automatic passive SR-
N recognition (Souza Filho and de Seixas, 2016). Within this study, it
was concluded that the design parameters have a significant impact
on recognition accuracy. To optimize these parameters, several opti-
mization algorithms have been proposed, like the Chimp Optimization
Algorithm (Khishe and Mosavi, 2020), and the Whale Optimization
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Fig. 8. DLSTM in DAE setting training and recognition. (Yang et al., 2019).

Algorithm (Qiao et al., 2021). Besides the MLP architecture, various
studies suggested the application of a 3-layer ANN (Liu et al., 2014;
Axelsson and Rhen, 2020; Jiang et al., 2021) or a 7-layer ANN (Li et al.,
2018a). The performance of these neural networks still relies on manual
feature extraction. These extraction techniques are sensitive to noise
and degrade the ultimate recognition performance.

8.2.2. Recurrent neural network

For coping with sequential data, Recurrent Neural Networks (RNNs)
have been suggested. The SR-N recordings are sequential; therefore,
multiple types of RNNs have been employed for automatic SR-N recog-
nition.

Long short-term memory network. The LSTM, a specific type of RNN, is
a powerful model. This model is renowned for its capability to manage
sequential data by considering long-term dependencies. This character-
istic establishes the LSTM as a commonly chosen model for automatic
SR-N recognition (Xu and Guo, 2021; Song et al., 2023b), especially
with manually extracted features. Conversely, an LSTM incorporating
time-domain information as input features was proposed (de Souza
et al.,, 2022). Their results demonstrated a superior recognition rate
compared to an MLP. In an effort to minimize dependence on manually
extracted features, a bidirectional-LSTM for the automatic recognition
of ships without prior feature extraction was introduced (Li et al.,
2020b). Their experiments showcase the robust adaptability of the pro-
posed method with a recognition rate above 80% on a private dataset.
Additionally, a deep-LSTM has been proposed in a Deep Autoencoder
network. This complete network was optimized to reconstruct the
original SR-N in an unsupervised manner (Yang et al., 2019). Next, the
deep LSTMs were isolated and reused for the final SR-N recognition
(see Fig. 8). This framework achieved recognition accuracy of 90% on
annotated data originating from the ONC dataset.

Gated recurrent unit. Another type of RNN utilized for automatic SR-N
recognition is called a GRU. The architecture of a GRU is similar to
an LSTM. However, a GRU has fewer parameters than an LSTM. This
makes this model type less powerful and adaptable. On the other hand,
it is less prone to overfit and less costly when it comes to training such
a model. For these reasons, GRU has been employed for automatic SR-N
recognition (Sun et al., 2020). Other studies suggest the combination
of GRU with other types of NNs (Yang and Zeng, 2021). For instance,
a GRU has been combined with either a 1D-CNN (Ashok and Latha,
2022) or a Convolutional AutoEncoder (Yang et al., 2022) showing an
excellent recognition rate of over 82%.
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8.2.3. Convolutional neural network

In the field of automatic SR-N recognition, CNNs dominate as the
primary model architecture. Overall, the original audio is represented
in the time-frequency domain, using various techniques. The time-
frequency representation is then presented as an image for the CNN
input layer. Numerous variations of the CNN architecture have been
proposed, including deep linear CNNs as well as wide and shallow
networks. Various simple and shallow CNN architectures have been
proposed for automatic SR-N recognition (Yue et al., 2017; Applelid
and Karlsson, 2019; Premus et al., 2020; Wang and Peng, 2020; Chen
et al., 2021; Vaz et al., 2022; Khalilabadi, 2023; Zhang et al., 2021a).
Even a shallow three-layered CNN achieved an accuracy between 88%
and 95% on the ShipsEar dataset (Chen et al., 2021; Khalilabadi,
2023). The performance of another shallow three-layered CNN has
been compared to the more conventional and complex LeNet and
VGG architectures (Wu et al., 2018). Here, the shallow network out-
performed these more complex architectures. Nevertheless, various
complex and well-known CNN architectures have been suggested to
accurately recognize SR-N. For instance, MobileNetV2 (de BA Barros
and Ebecken, 2022), VGGNet (Choi et al., 2019; Yin et al., 2020), and
some variations on the LeNet architecture (Wu et al., 2020; Jin et al.,
2020; Bach et al., 2021; Wang et al., 2022b). Again high recognition
rates are reported, achieving an accuracy between 90% and 98% on
the ShipsEar dataset. Besides these well-known architectures, some
modifications have been reported to further optimize the recognition
rate. For instance, second-order pooling has been combined with a CNN
architecture to capture the temporal correlations of the time—frequency
representation (Cao et al., 2018). To exploit the spectral information
from the input data, Pan et al. (2021) proposed to train a CNN per
frequency band (see Fig. 9). Here, a positional encoding was added
to retain the frequency information and a final global classifier fuses
the output of the CNN models. Their proposed framework reached
a recognition accuracy of 92%. Noteworthy, not all studies have in-
corporated a time—frequency algorithm as a precursor to automatic
recognition. A CNN can be applied directly on the raw audio and
learn distinguishable features (Doan et al., 2020; Mishachandar and
Vairamuthu, 2021). A dense CNN has been proposed in Doan et al.
(2020), within this architecture former feature maps are reused while
maintaining low computational cost. Their proposed method achieved
an astonishing recognition accuracy of over 98%. The following para-
graphs will discuss additional variants of CNNs in automatic SR-N
recognition.
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ResNet. Apart from its recommendation for the automatic localization
of SR-N, the ResNet architecture is also put forth for recognition
applications (Yang et al., 2023b). Particularly, the ResNet18 has been
proposed for automatic SR-N recognition (Hong et al., 2021a; Zhang
et al., 2022b; Domingos et al., 2022; Yao et al., 2023). The performance
of this architecture has been compared to the VGGNet architecture, out-
performing the VGGNet by 14% accuracy on the ONC dataset (Domin-
gos et al., 2022). The comparison pipeline is illustrated in Fig. 10. Apart
from the commonly utilized ResNetl8 architecture, deeper ResNet
models have also been proposed. However, these deeper models require
more data. For this reason, transfer learning has been suggested using
models pre-trained on ImageNet (Song et al., 2020; Liu et al., 2021b).
The impact of the number of hidden layers in ResNet models has been
explored in Chen et al. (2019a), where the performance of ResNet
models ranging from 50 layers to 152 layers was compared. These
models resulted in a recognition accuracy between 93.1% to 95.9%
on a private dataset. Noticeably, these suggested approaches involve
separate feature extraction before model training, potentially impacting
recognition performance. In contrast, an integrated system is proposed
in Ren et al. (2022), where Gabor filters are applied to preprocess
the incoming audio. The hyperparameters of both the Gabor filters
and the ResNet50 model are optimized simultaneously. Their suggested
framework reached a recognition accuracy of 80.7% on ShipsEar and
81.4% accuracy on Deepship.

Multi scale residual network. A deep convolutional stack network has
been suggested in Tian et al. (2021), where the convolutional layers
have been replaced by Multi Scale Residual Units (MSRU) (see Fig. 11).
These units are designed based on the ResNet architecture. They are
composed of multiscale convolutional kernels and a soft thresholding
layer. This soft thresholding is inspired by the Deep residual shrinkage
networks (Zhao et al.,, 2019). These MSRUs are stacked to form a
Multi Scale Residual Deep Network (MSRDN). Within their recommended
framework, features are automatically derived directly from the raw au-
dio. Additionally, a large kernel function is suggested to capture many
features. Nonetheless, it is worth noting that larger kernel sizes come
with an increase in computation time. The follow-up study combined
the raw audio with a time-frequency representation of the audio as
input features for the MSRDN and moved the soft thresholding layer
to the beginning of the MSRU (Tian et al., 2023b). Additionally, the
MSRDN was modified by adding a ConvNext model to process the
time—frequency representation, while the slightly modified MSRDN still
processes the raw audio input. The models are trained using deep
mutual learning, increasing the recognition rate of the model by 3%
accuracy and decreasing the training time by 11.5%.
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Depthwise separable convolutions. The previously mentioned types of
CNNs only take the spatial dimension of the input into account. How-
ever, a depthwise separable CNN also takes the depth dimension,
corresponding to the number of channels, into account. For this rea-
son, a depthwise separable convolutional layer decomposes the orig-
inal signal into multiple frequency components. A prominent CNN
architecture leveraging depthwise separable convolutions is called Mo-
bileNet (Howard et al., 2017). Therefore, multiple studies applied a
MobileNet architecture for automatic SR-N recognition (Zhang and
Ding, 2020; de BA Barros and Ebecken, 2022). Additionally, a deep neu-
ral network incorporating depthwise separable convolutions and time-
dilated convolutions has been introduced (Hu et al., 2020). This system
is based on the human auditory system and decomposes the original
audio into different frequency components using depthwise separable
convolutions. Their proposed method is further optimized within Hu
et al. (2021b), resulting in a recognition accuracy of 90.9% on a private
dataset. Similarly, a deep learning method with hybrid routing is pre-
sented (Cheng and Zhang, 2021). This enables the network to exchange
learned features and, therefore, improves the automatic recognition of
SR-N. This method resulted in a recognition accuracy of 95% on a
private dataset.

Auditory based. Various CNN architectures proposed in the literature
are based on human sound perception, these are denoted as auditory-
based CNNs. One such study applied deep convolutional filters to
decompose the SR-N signal into multiple time-domain signals with
different timescales (Li et al., 2019e). Here it was shown that the
recognition accuracy increases when the number of filter groups is
increased to some extent. Another study tried to mimic the human
perception of sound (Shen et al., 2018, 2019). Human sound perception
involves two main regions: the transmission of sound to the inner ear,
where it is decomposed into frequency components at the cochlea,
and the creation of auditory perception through neural signals in
the auditory cortex. This system is mimicked by the auditory-based
CNN models to automatically recognize SR-N. To mimic this com-
plex system, a multi-component CNN network was proposed. First, a
1D CNN layer with Gammatone filter kernels decomposes the signal
similar to the cochlea. The second part consists of a permute layer,
an energy-pooling layer, a 2D frequency convolutional layer, and a
fully connected layer to reconstruct the auditory cortex. A follow-up
study applied dilated convolution in Gammatone initialed multi-scale
convolution kernels (Shen et al., 2019). The final follow-up study sug-
gested an integrated feature extractor optimized simultaneously with
the corresponding classifier (Shen et al., 2020) with a recognition rate
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of 87.2% on data derived from ONC. Finally, another CNN architecture
has been proposed to model the human timbre perception of SR-N (Li
and Yang, 2021). The recognition accuracy has been compared to
multiple control deep learning models, where their model showed an
increase up to 13.5% compared to the other methods on a private
dataset.

Attention module. Multiple CNN architectures applied for automatic
SR-N recognition contain attention modules. These attention modules
make the CNN focus on the SR-N signal instead of the non-informative
background. One such architecture has been proposed in Li et al.
(2022e). Here, an attempt was made to improve the generality of a
Neural Network by learning a Finite Impulse Response filter incorporated
in a 1D CNN layer. Next, an attention module that incorporated the
STFT was proposed to extract features from the time-frequency do-
main. Their method achieved 84% accuracy on the ShipsEar dataset.
Similarly, an Adaptive Generalized Network has been proposed to
adaptively learn the wavelet parameters to extract the underwater
characteristics at different frequencies (Xie et al., 2022a). In addition
to this method, Channel Attention Modules have been suggested for
automatic feature extraction as well. Here, these attention modules are
integrated into a ResNet architecture(see Fig. 12) (Xue et al., 2022; Li
et al.,, 2022j). The final classifier has a recognition accuracy of 99%
on ShipsEar. Alternatively, a Dual Attention Network and a Multires-
olution CNN have been suggested for automatic SR-N recognition (Liu
et al., 2021c). The Multiresolution CNN has been employed to extract
the aggregated characteristics of the manually extracted features. Next,
the Dual Attention Network incorporates a Position Attention Module
and a Channel Attention Module. Their proposed method achieved an
accuracy score of 95.6% on the ShipsEar dataset.

Combinations with other networks. To further optimize the performance
of a CNN in automatic SR-N recognition, various studies have ex-
plored different combinations of neural network architectures. These
combinations include the combination of convolutional layers with an
Extreme Learning Machine (Hu et al., 2018), a fusion of ResNet and
DenseNet (Jin and Zeng, 2023), and a combination of convolutional
layers with LSTM blocks (Liu et al., 2021f; Wang et al., 2021; Zhang
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et al., 2022a). Especially, the combination of 1D convolutional layers
with LSTM blocks is frequently reported. Noticeable, is that these
suggested models are shallow networks using only two convolutional
layers followed by a single LSTM layer (Han et al., 2022) or four
convolutional layers and four LSTM layers (Liu et al., 2023a) achieving
an accuracy of 98.9% on ShipsEar dataset. Likewise, a CNN has been
proposed to reconstruct the STFT by convolutional layers and kernel
functions (Kamal et al., 2021). This network is then followed by a Bidi-
rectional LSTM for final recognition, resulting in a recognition accuracy
of 93% on a private dataset. An opposite approach is presented in Qi
et al. (2021), where an LSTM is applied for automatic feature extraction
and a CNN for the final recognition. Here, the two separate LSTM blocks
have been suggested to extract information from both the frequency
component and the phase component of the SR-N signal. The outputs
of these blocks are fused and a single 1D convolutional layer with
sigmoid activation has been suggested for the final classification. The
classification accuracy of this method is 89.8% on a private dataset. The
networks are fused by a fully connected layer. Apart from the combina-
tion of CNN and LSTM, a two-stream network that integrates MFCCNet
with SpecNet has been proposed for automatic SR-N recognition (Xing
et al., 2020). In this setup, the MFCCNet is based on GRU and SpecNet
is based on VGGNet. The outputs of these networks are fused by a fully
connected layer. This proposed method achieved 98.8% accuracy on a
private dataset. Within this study, it is stated that VGGNet outperforms
ResNet50, which is a contradictory result to Domingos et al. (2022).

8.2.4. Contrastive learning

Alternatively, a contrastive learning approach has been suggested
to cope with the limited amount of labeled data (Xie et al., 2022b; Nie
et al., 2023a; Sun and Luo, 2023; Zhu et al., 2023; Xie et al., 2023b).
This is an unsupervised representation learning approach, where the
goal is to learn a discriminative representation of the data, with suf-
ficient results. In this approach, the CNN models are optimized to
maximize the similarity among recordings from the same vessel while
minimizing the similarity between recordings of different vessels (Nie
et al., 2023a). Similarly, a framework based on SimCLR (Chen et al.,
2020) has been suggested (Sun and Luo, 2023; Tian et al., 2023a). The
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supervised SimCLR-based method resulted in 98% accuracy on both
ShipsEar and Deepship (Sun and Luo, 2023).

8.2.5. Semi-supervised learning algorithms

Up until now, the proposed neural networks for automatic SR-N
recognition were optimized in a supervised manner for classification
purposes. These deep-learning applications require big data with labels.
This proves to be a considerable disadvantage, considering the shortage
of labeled data for automatic SR-N recognition (Yang et al., 2019;
Haiyan et al., 2021). To cope with this problem, numerous learning
algorithms have been proposed to optimize the final automatic SR-
N recognition using the combination of labeled and unlabeled data.
This learning framework is referred to as semi-supervised learning. This
framework requires a small portion of labeled data and a large quantity
of unlabeled data. In the context of automatic SR-N recognition, the
publicly available labeled data is limited. However, a great amount
of unlabeled data is available to the public. This means that semi-
supervised learning is a promising metric for the training of SR-N
ML applications. This section discusses several semi-supervised learn-
ing algorithms, like Deep Belief Networks and various variations of
Autoencoders.

Deep belief networks. A specific type of unsupervised neural network
employed in SR-N analysis is the Boltzmann Machine. This model op-
erates, unlike previously mentioned methods, without the need for
labeled data. This type of model finds application in automatically ex-
tracting features from SR-N (Xie et al., 2018) or the automatic encoding
of the power spectrum of SR-N (Luo and Feng, 2020; Luo et al., 2021a).
Here, the Boltzmann Machines are optimized to reconstruct the power
spectrum of the original SR-N in an unsupervised manner. Next, the
model is fine-tuned in a supervised manner using an MLP to perform
the final recognition. A disadvantage of the Boltzmann is that the
connections grow exponentially since all the nodes are fully connected.
This issue is mitigated by the Restricted Boltzmann Machines. When these
machines are stacked to create a neural network, this is called a Deep
Belief Networks (DBNs). This network has been proposed for automatic
SR-N recognition (Chen and Xu, 2017). Again, the DBN is trained in an
unsupervised manner and fine-tuned in a supervised way. This method
achieved a recognition accuracy of 98.2% on a simulated dataset.

Variational autoencoders. Even though Autoencoders show promising
results in SR-N recognition, these models have some limitations. Au-
toencoders are optimized to encode and decode the input data, without
considering the latent space. These characteristics make Autoencoders
prone to overfitting. To overcome this problem, the variational auoten-
coder is introduced for automatic SR-N recognition (Satheesh et al.,
2021; Bach et al., 2022). This algorithm improved the recognition rate
with 10% compared to VGG-19, even at low SNR levels (Bach et al.,
2022).

Stacked autoencoders. Recognizing SR-N automatically from underwa-
ter sound recordings is a complex task. Therefore, a single autoencoder
may not be sufficient to create a representative latent space. For this
reason, several stacked autoencoders have been suggested to recognize
SR-N automatically (Cao et al., 2016; dos Santos Mello et al., 2018; Cao
et al., 2019b; Chen et al., 2019c). Here, it is shown that these types of
models outperform a traditional SVM or shallow Neural Network when
the amount of labeled data samples is limited (Haiyan et al., 2021).
Some variations on the traditional Stacked autoencoder are reported.
For instance, a stacked denoising autoencoder has been suggested for
automatic SR-N recognition (Chen et al., 2019c¢). Additionally, multiple
sparse autoencoders have been stacked to create a Stacked Sparse
AutoEncoder (Cao et al., 2019b). This method achieved a classification
accuracy of 94% on a private dataset using three model layers.
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Convolutional autoencoders. The convolutional autoencoder benefits
from both the unsupervised pre-training as the traditional autoen-
coder and the automatic feature extraction advantage of a traditional
CNN (Chen and Shang, 2019). This type of autoencoder can be opti-
mized in a semi-supervised way to automatically recognize SR-N (Ke
et al., 2018; Chen and Shang, 2019; Kamalipour et al., 2023). Here,
the autoencoder architecture consists of convolution/pooling layers
and deconvolution/unpooling layers (Chen and Shang, 2019). The
training process of this type of model was optimized layer by layer
resulting in a recognition accuracy of 93.3% on ShipsEar (Ke et al.,
2018). In addition to the convolutional Autoencoder, a Deep Recurrent
Autoencoder is proposed (Kamalipour et al.,, 2023). The output of
both types of autoencoders is fused and is followed by a classifier.
This study stated that the reconstruction rate of the lower frequency
bands is better than the higher frequency bands. Besides this traditional
Convolutional Autoencoder, a ResNet-based encoder with attention
modules has been proposed, called CALNet (Lingzhi et al., 2023). This
framework is connected to a decoder for unsupervised reconstruction of
the noisy data samples. Finally, the encoder is isolated and connected
to a classifier, to be finetuned to automatically recognize the clean data
samples (see Fig. 13). This method outperforms U-net, DenseNet, and
a single SE_ResNet by 16% in accuracy.

8.2.6. Transformers

In addition to the previously discussed methods, the application of
transformer models in SR-N recognition is rising. Unlike CNNs, which
fail to capture global information implicated in the spectrogram due
to the use of a small kernel (Feng and Zhu, 2022), transformer models
are based on multi-head attention modules. A masked modeling-based
self-supervised learning method using a Swin Transformer has been
suggested to automatically recognize SR-N (Xu et al., 2022). This
method resulted in 78.03% accuracy on Deepship, outperforming a
separable convolutional autoencoder. Another specialized audio trans-
former, called Audio Spectrogram Transformer (Gong et al., 2021), has
also been suggested for automatic SR-N recognition (Li et al., 2022k).
This transformer is reconstructed from the Vision Transformer (Doso-
vitskiy et al., 2020). The input of this transformer is the spectrogram
of the original audio. This is then split into patches and treated as
a sequence of patches. After linear projection, positional and class
encoding are added to complete the input for the transformer encoder.
The final classification is performed by a linear layer. The complete
architecture of the Audio Spectrogram Transformer is visualized in
Fig. 14. Unfortunately, transformers require a great amount of training
data. To cope with the limited amount of available labeled SR-N data,
it has been proposed to pre-train the Audio Spectrogram Transformer
on Audioset and fine-tune the limited labeled SR-N data. This method
was between 82.8% and 91.8% accurate on ShipsEar (Feng and Zhu,
2022).

8.2.7. Multi-target recognition

The majority of the automatic recognition of SR-N studies focus
solely on single-target recognition. Here, only a single ship generates
the noise and is recognized. In multi-target recognition, the recordings
contain noise generated by multiple ships, and the goal is to identify
all of these ships. Only a few studies have tried to solve automatic
multi-target SR-N recognition (Yu et al., 2014). One particular study
presented a CNN to perform multi-label classification (Pfau, 2020). The
performance of their proposed CNN outperformed VGGNet, Inception,
and MobileNet V2 pre-trained on ImageNet. Additionally, a ResNet
architecture has been suggested to create a multi-target recognition
method for an unknown number of targets (Sun and Wang, 2022).
Multiple spectral features are combined to recognize an unknown num-
ber of targets using real-valued and complex-valued ResNet. This study
showed that the magnitude STFT spectrum, complex-valued spectrum,
and log-Mel spectrum can effectively recognize synthetic multi-target
ship signals.
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8.3. Signature recognition

So far, the previously discussed methods focused solely on the recog-
nition of the ship type considering the noise. This recognition is based
on the sound signature of the ship. Instead of focusing on the whole
signal of SR-N, various studies concentrate on the automatic detection
of these individual sound signatures (Lim et al., 2007, 2008). The sound
signatures of ships consist of tonals and transients. In the pursuit of
automating transient detection, a model inspired by human perception
of sound has been suggested (Tucker and Brown, 2005). On a different
front, a CNN was introduced for the automatic detection of tonals in
LOFAR spectrograms, demonstrating encouraging outcomes (Park and
Jung, 2019). Besides the traditional DEMON and LOFAR representa-
tions, audio coefficients have been extracted to automatically recognize
underwater transient signals using kNN (Guo and Gas, 2009) or an
ANN (Can et al., 2016). Predominantly, deep learning techniques have
been suggested to perform the final recognition. Alongside the manual
feature extraction, the utilization of deep learning techniques is on
the rise. An auto-associative NN is suggested to automatically extract
the line spectrum directly from the raw audio (Huang et al., 2021).
It was even stated that their proposed method can suppress back-
ground noise of simulated data. Instead of suppressing the background
noise using an autoencoder neural network is suggested to enhance
the tonal signals (Ju et al., 2022). This method has been compared
with adaptive line enhancers, showing the superiority of their method.
Finally, a different approach has been suggested in Honghui et al.
(2022), to classify multiple attributes of the ship. To accomplish this, a
group of neurons with learnable weights has been proposed to extract
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correlation-deep features. These features are utilized to create a multi-
attribute correlation perception. Their proposed method achieves a
stable correct recognition rate.

8.4. Summary

This section described various ML methods for automatic SR-N
recognition. The majority of these methods still rely on conventional
time—frequency representation algorithms. Even though suggestions
were made to extract features in an unsupervised matter, these methods
were still limited by the audio representation. To minimize the reliance
on conventional audio processing methods, some suggestions were
made to cope with the raw audio directly. This is still underexplored,
but some studies concluded that a CNN can extract informative features
directly from raw audio.

9. Outlook

In SR-N analysis applications, the success of ML models is evident.
These methods offer a distinct advantage by not requiring prior infor-
mation about the ocean environment like traditional processing meth-
ods. As a result of this independence, ML models manage to achieve
comparable, and in some cases, superior results when compared to
conventional methods. However, these models still cope with some
limitations and challenges. This section gives a prospective outlook,
delineating potential future research directions in the ML application
for SR-N analysis.

9.1. Data input

Unfortunately, only a limited amount of labeled SR-N data is pub-
licly available, and the existing databases vary in their annotation
protocol. Additionally, the splitting of the datasets into training data
and test data differs between studies. Some studies introduced a bias
by windowing the data and randomly sampling the windowed data.
Due to this bias, the resulting recognition accuracy levels are high.
These variances create a challenge when attempting to create a fair
comparison between ML applications in SR-N. A standardized approach
in SR-N labeling would be beneficial to expand existing datasets and
create more diverse datasets. This standardization could lead to the
development of more trustworthy ML models applicable to SR-N and
easier evaluation of these models.

9.2. Preprocessing

Numerous studies have focused on effective feature extraction from
SR-N data. The manual feature extraction methods, aim to represent
the complex non-stationary SR-N in a fixed format. Techniques such as
mode decompositions and Gabor wavelets assume that SR-N is a compo-
sition of either IMFs or mother wavelets. However, it is crucial to note
that these assumptions may not always be correct. Consequently, these
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manual features exhibit sensitivity to noise. This sensitivity results in
an ML model that degrades in performance once the ocean environment
changes (Huang et al., 2018b). How to represent SR-N for ML models,
insensitive to the variable ocean environment, remains an open ques-
tion. However, the great amount of publicly available unlabeled data
gives a potential for developing such a representation. Until now, to
the best of our knowledge, no study of ML in SR-N analysis has ever
conducted such an amount of data. The scarcity of publicly available
labeled SR-N remains a challenge. Various preprocessing methods are
discussed above to expand the limited amount of labeled SR-N data
by generating synthetic samples. All of these methods are limited in
synthesizing the complex imagery of underwater sound. Both semi-
supervised learning and self-supervised learning have been suggested
to overcome this limitation and have shown to increase the ML models
performance in either denoising, localization, and recognition (Yang
et al., 2019; Koh et al., 2020; Zhu et al., 2020, 2021a,b; Haiyan et al.,
2021; Jin et al., 2022; Li et al., 2023b). These learning methods could
be combined with the large unlabeled datasets, to leverage all available
data and enhance the overall performance of automatic SR-N analysis
application.

9.3. Analysis

Within this survey, the automatic SR-N analysis applications have
been categorized into the detection, localization, and recognition of
SR-N. The automatic analysis of SR-N is still dominated by CNNs,
particularly those trained on time-frequency representations of audio.
However, it is noteworthy that CNNs assume translational invariance,
which does not apply to the frequency axis. Therefore, CNNs may not be
the optimal solution to deal with time-frequency data. A convolution-
free method based on the transformer has been suggested to overcome
this limitation (Feng and Zhu, 2022). Several recent studies have also
proposed the adoption of transformers in the automatic analysis of
SR-N. Closely related fields, like audio event classification and speech
recognition, have shown the potential of transformers applications to
audio (Dong et al., 2018; Zhang et al., 2020b; Koutini et al., 2021;
Chen et al., 2022a). These fields are out of the scope of this survey.
Until now, the transformers applied to SR-N still represent the audio in
the time—frequency domain. Future research needs to be conducted to
explore the potential of transformers in automatic SR-N analysis.

9.4. Integrated system

Overall, the presented methods for ML applications in SR-N are
partitioned in the preprocessing of the data and applied ML afterward
for the final analysis. These processes are optimized separately. Incor-
porating an integrated system that optimizes both preprocessing and
subsequent automatic analysis offers the potential for elevating the
performance of the ML application. One such system is presented in Ren
et al. (2022), where they optimized the Gabor filters simultaneously
with the ResNet for automatic SR-N analysis. This study shows the
strength of an integrated system for automatic SR-N analysis using ML.
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