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A B S T R A C T   

A large percentage of apples are affected by internal disorders after long-term storage, which makes them un
acceptable in the supply chain. CT imaging is a promising technique for in-line detection of these disorders. 
Therefore, it is crucial to understand how different disorders affect the image features that can be observed in CT 
scans. This paper presents a workflow for creating datasets of image pairs of photographs of apple slices and their 
corresponding CT slices. By having CT and photographic images of the same part of the apple, the comple
mentary information in both images can be used to study the processes underlying internal disorders and how 
internal disorders can be measured in CT images. The workflow includes data acquisition, image segmentation, 
image registration, and validation methods. The image registration method aligns all available slices of an apple 
within a single optimization problem, assuming that the slices are parallel. This method outperformed optimizing 
the alignment separately for each slice. The workflow was applied to create a dataset of 1347 slice photographs 
and their corresponding CT slices. The dataset was acquired from 107 ‘Kanzi’ apples that had been stored in 
controlled atmosphere (CA) storage for 8 months. In this dataset, the distance between annotations in the slice 
photograph and the matching CT slice was, on average, 1.47 ± 0.40 mm. Our workflow allows collecting large 
datasets of accurately aligned photo-CT image pairs, which can help distinguish internal disorders with a similar 
appearance on CT. With slight modifications, a similar workflow can be applied to other fruits or MRI instead of 
CT scans.   

1. Introduction 

Apples (Malus × domestica Borkh.) are often stored long-term to 
supply markets with a high-quality product throughout the year (Wood 
et al., 2022b). Long-term storage of apples is possible by utilizing cold 
storage under a controlled atmosphere (CA) where oxygen is lowered 
and carbon dioxide is increased (Neuwald et al., 2021). However, these 
conditions involve a loss of fruit quality, allowing physiological disor
ders and decay to develop. Postharvest losses caused by physiological 
disorders and decay can range between 18–27% under commercial CA 
conditions (Argenta et al., 2021). Therefore, detecting and removing 
affected fruit from the supply chain is crucial for reducing food wastage. 

However, disorders such as internal browning(IB) do not display any 
external disorders making in-line detection challenging. Furthermore, 
different patterns of IB occur in different regions of fruit tissue (Sidhu 
et al., 2023). IB can cause 34% of postharvest losses in sensitive cultivars 
even when stored under optimal CA conditions (Wood et al., 2022a). 
Accurately detecting internal disorders and defects is critical for main
taining consumer confidence. 

X-ray-based imaging techniques are promising for the in-line detec
tion of internal disorders. There are two main X-ray-based imaging 
modalities: radiography, which uses a single 2D X-ray image (radio
graph), and computed tomography (CT), which combines the data of 
many radiographs of the same object to create a 3D representation of the 
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object. CT scanning offers 3D information and higher contrast, but ra
diographs can be acquired much faster. While both modalities are 
promising, radiography currently has more potential for practical ap
plications in in-line quality control of produce, because it has a lower 
acquisition time (Kotwaliwale et al., 2014). Nevertheless, the acquisi
tion time of CT scanning can be lowered by optimizing the scanning 
setup for in-line use (De Schryver et al., 2016; Morton et al., 2009; Schut 
et al., 2022). Moreover, radiographs can be accurately simulated from 
CT scans (Van Aarle et al., 2016), and if labels or segmentation masks are 
available on the CT scan, these can also be transferred to the simulated 
radiograph. Zeegers et al. (2022) developed a workflow for foreign ob
ject detection on radiographs where a few CT scans with segmentation 
masks of the foreign objects were used to simulate many radiographs 
with segmentation masks to train a neural network. This method was 
extended and applied to predict the ripeness of avocados by Andriiashen 
et al. (2023). 

CT scanning of apples has been used for studying the processes un
derlying bruising (Diels et al., 2017), internal browning (Herremans 
et al., 2013; Chigwaya et al., 2021), watercore (Herremans et al., 2014) 
and bitterpit (Si and Sankaran, 2016; Jarolmasjed et al., 2016). How
ever, several conditions can look similar in CT scans, so destructive 
methods may still be needed to classify specific disorders. Watercore in 
apples appears as high-intensity regions in CT images due to the flooding 
of pores in the water-soaked regions of affected fruit (Herremans et al., 
2014). High-intensity regions are also reported to be associated with IB 
(Chigwaya et al., 2021). In some markets, apples with watercore are sold 
at a premium due to the sweet juicy taste (Herremans et al., 2014; Mink, 
1973), whereas IB is associated with off-flavor and is an unwanted trait 
(Hatoum et al., 2014). Furthermore, watercore can dissipate during 
storage in mildly affected fruit (Upchurch and Throop, 1994), while IB 
will not. Similarly, bruises and bitter pit can appear as small 
low-intensity regions close to the fruit peel in CT scans (Diels et al., 
2017; Jarolmasjed et al., 2016). Bitter pit progressively worsens with CA 
storage (Jarolmasjed et al., 2016), while fruit with mechanical damage 
or bruising can still remain healthy during long-term storage. Therefore, 
fruits must still be cut and visually examined for further development of 
detection algorithms for specific disorders. 

When fruit are CT or MRI scanned for research, they are often also 
cut and photographed. It is helpful to present the photographic images 
alongside CT or MRI images, which requires aligning the photographs to 
the CT or MRI scan. Photographs have been aligned manually to CT or 
MRI scans for investigating disorders in apples (Chigwaya et al., 2021; 
Herremans et al., 2014; van Dael et al., 2019) and pears (Azadbakht 
et al., 2019; van Dael et al., 2017; Van De Looverbosch et al., 2021, 
2020). However, there are significant downsides to manually aligning 
the photographs. Firstly, manually aligning photographs is tedious and 
time-consuming, which limits the dataset size. It is often unknown 
whether an apple has an internal defect before CT scanning, and there is 
natural variation in how internal defects affect the CT measurements. 
Therefore, acquiring large datasets is valuable because it increases the 
chance of capturing the variation. Moreover, having large and varied 
datasets helps with training machine learning methods. Secondly, 
manual alignment is challenging in slices without features that are 
clearly visible on both the CT slice and the photograph, such as the 
image pair displayed in Fig. 1. The apple core can sometimes be used as a 
shared visual feature because it is visible in CT and photographs but not 
in all slices. Thirdly, the alignment error is unknown. For small features 
(e.g. sepal or petal bundles), the alignment error may be larger than the 
feature size. In such cases, finding the corresponding position on the CT 
slice is challenging, and there is a risk of finding a false correspondence. 
Knowing the alignment error gives an indication of which size of fea
tures can reliably be matched. 

In this paper, we present a workflow for creating datasets of slice 
photographs and their corresponding CT slices, which solves the three 
issues mentioned above. Image registration (automatic alignment) was 
used instead of manual alignment, making it possible to create large 

datasets with little extra effort. The alignment quality is not affected if a 
slice has little shared visual information inside of the apple (Fig. 1), 
because the image registration only uses the outer shape of the apple. 
Moreover, the alignment error can be calculated by using the position of 
the apple core, because the apple core was not used for the image 
registration. This paper is the first work where image registration is 
applied to 3D scans and photographs of sliced fruit. We expect that with 
slight modifications, a similar workflow could be applied to other fruits 
or MRI scans instead of CT scans. 

There are two additional scientific contributions in this paper. 
Firstly, the problem formulation of the image registration method is 
new. It uses a task-specific transformation model to describe the align
ment of multiple parallel 2D slices to a 3D volume, which is optimized 
jointly by using automatic differentiation. In this approach, information 
is shared between multiple slices, which improves the overall registra
tion accuracy. Secondly, the presented workflow has been applied to 
create a dataset of 1347 slice photographs acquired from 107 ‘Kanzi’ 
apples with registered CT slices, which was made public for further 
research. 

2. Materials and methods 

2.1. Apple samples 

In 2022, 120 ‘Kanzi’ apples that had been stored under CA conditions 
(4 ∘C, 1 kPa O2, 1.5 kPa CO2) for 8–9 months were obtained from 
FruitMasters, The Netherlands. The fruit was grown in orchards sur
rounding Geldermalsen, the Netherlands, and harvested at physiological 
maturity in 2021. 

2.2. Workflow overview 

Image registration methods use shared information between images 
to find a transformation function T that describes the relative alignment 
between the images. In this paper, the image registration problem is 
finding a transformation function from the slice photographs to the CT 
scan in order to sample the corresponding CT slice for each photograph. 
CT scans and photographs have relatively little shared information 
(Fig. 1), but the outer shape of the apple is visible on both CT and 
photographic images. Therefore, the image registration method was 
designed to use the outer shape to find the transformation function. 
However, by only using the outer shape, relatively little information is 
available on each slice photograph. To overcome this, the image regis
tration method optimizes the alignment of all slices jointly. Apples can 
be sliced into parallel slices, causing all slices to be rotated equally. 
Therefore, only one set of rotation parameters is sufficient to describe 
the rotation of all slices relative to the CT scan. The image registration 
method optimizes these parameters so that the outer shape matches well 
with the CT scan on all slices. This means that the combined information 

Fig. 1. Registered image pair of a slice photograph and a CT slice generated 
using our method. 
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from all slices is used to find the rotation parameters and other pa
rameters that are shared between all slices. 

The complete workflow to obtain registered image pairs of apples 
consists of four steps: Data acquisition, image segmentation, image 
registration, and validation (Fig. 2). In the data acquisition step, the fruit 
is first CT scanned and then sliced into parallel slices and photographed. 
In the image segmentation step, the outer shape of the apple is deter
mined in both the CT scan and the slice photographs. In the image 
registration step, the transformation function from the slice photographs 
to the CT scan is optimized based on the outer shape of the apple. In the 
validation step, the registration error is measured from annotations of 
the apple’s core. All steps are implemented as code in the Python pro
gramming language. 

2.3. Step 1: Data acquisition 

The goal of this step was to acquire CT scans and slice photographs of 
the apple. We first CT scanned the apples. After that, we used a setup to 
slice and photograph the apple. This setup ensured that the slices were 
parallel and equally spaced and that the apple did not rotate during 
slicing. 

2.3.1. X-ray computed tomography(CT) acquisition and reconstruction 
The apples were scanned at the FleX-ray laboratory (Coban et al., 

2020) using a custom scanner developed by TESCAN-XRE, Gent, 
Belgium. A cone beam geometry with a circular trajectory was used to 
acquire 1440 projection images at an exposure time of 100 ms, a tube 
peak voltage of 90 kV, and a current of 550μA. Volumes were recon
structed with the FDK algorithm (Feldkamp et al., 1984). To limit 
dataset size and scan time, 2 times detector pixel binning was used, 
resulting in a voxel size of 129.3μm. Beam hardening correction was 
used from the FleXbox package (Kostenko et al., 2020). All apples were 
scanned with the stem side on top. Moreover, a line was drawn on all 
apples from the stem to the calyx. The apples were put in the CT scanner 
so that the line was facing the X-ray source. 

2.3.2. Slicing and photograph acquisition 
One day after CT scanning, the apples were sliced using a modified 

meat-slicing machine (CaterChef, EMGA, Mijdrecht, The Netherlands) 
(Fig. 3). The sliding surface of the meat-slicing machine was replaced by 
a transparent acrylic sheet. A camera was placed behind the sliding 
surface, facing the apple. While in the machine, each apple was kept in 
place by a suction cup so it could not rotate during the slicing. All apples 
were sliced from the stem end to the calyx end with a slice thickness of 
approximately 4 mm. Every time before slicing, a picture was taken of 
the remaining part of the apple through the transparent sliding surface. 

The jpeg files from the camera were used without color corrections. To 
ensure that the slice photographs were already roughly aligned with the 
CT scans, the apples were oriented in the slicing machine so that the line 
drawn earlier was on top. After each apple was sliced, the slices were 
visually inspected for brown tissue. At a later time, the type of browning 
was also noted for each fruit based on the photographs. 

Sometimes, parts of the apple would break off while slicing the last 
few slices. The corresponding photographs were excluded. For three 
apples, the cutting damage already started halfway through the apple, 
and these apples were therefore excluded completely. Two apples were 
excluded because they had severe decay. The first eight apples were 
excluded because the background was too bright due to direct sunlight. 
In the remainder of the photographs the direct sunlight was blocked 
using a piece of carton. All included apples were photographed on the 
same day in the same location, resulting in similar lighting conditions. 
After the exclusions, 107 apples remained. 

2.4. Step 2: Image segmentation 

The goal of this step was to acquire a segmentation mask for each 
photograph and the CT scan. A segmentation mask is a black-and-white 
image of the same size as the original image, where a value of 1 indicates 
this part of the image shows the inside of the apple, and a value of 
0 indicates this part of the image shows the outside of the apple. The 
segmentation masks were used in the image registration step to repre
sent the outer shape of the apple. 

Fig. 2. Overview of the workflow. For every step, one CT slice and photograph are shown to illustrate the results from that step. Note: In the actual workflow the CT 
scan is 3D data and there are multiple slice photographs. 

Fig. 3. Setup used for slicing and photographing the apples.  
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2.4.1. CT segmentation 
Thresholding was used to segment the shape of the apple from the CT 

scan. The threshold was determined by applying Otsu’s method (Otsu, 
1979) to all CT scans individually and taking the average of the results. 
This average Otsu threshold was applied to all CT scans. Morphological 
closing, selection of the largest connected component, and hole filling 
were used as post-processing. 

2.4.2. Deep learning based photo segmentation 
Segmenting the apple photographs could not be achieved with a 

single threshold. Only the outer shape of the apple should be segmented, 
which in the pictures is the part where the apple was sliced. However, 
the colors of the inside of the apple were very similar to the background 
or the outside of the apple in some photographs (Fig. 4). Deep learning 
has shown excellent results on various segmentation tasks (Wang et al., 
2022), so it was used for segmentation. 

The network architecture was a Mixed-scale dense convolutional 
neural network (MSD-net) (Pelt and Sethian, 2018) implemented in 
PyTorch using the msd_pytorch library(Hendriksen, 2019) using 200 
layers. The normalized RGB values were used as the three input channels 
of the network. The network had one output channel to which a sigmoid 
activation function was applied. The binary cross entropy was used as a 
loss function, and the ADAM optimizer (Kingma and Ba, 2014) was used 
to minimize the loss function. For training the neural network, 175 
photos were manually segmented. Data augmentation was applied to the 
training data using the ColorJitter, ShiftScaleRotate and 
GaussNoise functions of the Albumentations package (Buslaev et al., 
2020). Cross-validation was used to train five neural network instances 
using 80% of the data as the training set and 20% of the data as the 
validation set. The validation set was used for early stopping to reduce 
overfitting without compromising model accuracy. The outputs of the 
five neural network instances were converted into a segmentation mask 
by taking the average and applying a threshold of 0.5. Selection of the 
largest connected component and hole filling were used as 
post-processing. 

2.5. Step 3: Image registration 

The goal of this step was to find a transformation function T that 
describes the relative alignment of the slice photographs to the CT scan. 
A task-specific transformation model was developed with shared pa
rameters between all slices because the slices are parallel and equally 
spaced. The parameters of the transformation model were optimized 
based on the outer shape of the apple. This optimization was done in two 
steps: an initialization step and a full optimization step. Using the 
optimized transformation function, CT slices were sampled from the CT 
volume corresponding to the photographs. 

2.5.1. Transformation model 
Transformation functions can include different transformations such 

as rotating, shifting, scaling, and shearing. The transformation model 
defines which transformations are included and how they are parame
terized. A transformation model was developed specifically for this 
image registration task. It describes how the parallel 2D slice photo
graphs are aligned relative to each other and to the 3D CT scan. Most 
transformation parameters are shared between all photographs. These 
are: a scalar “scaling” to match the photograph pixel size to the CT voxel 
size; a scalar “spacing” specifying the z-axis distance between adjacent 
photographs; a scalar “offsetz” specifying the z-axis offset of the whole 
apple; and three scalars “rotationx”, “rotationy”, “rotationz” describing 
the rotation as Euler angles. The non-shared parameters are two scalars 
“offsetx,i” and “offsety,i” for each photograph specifying the offset along 
the x and y-axes. The transformation model is illustrated in Fig. 5. The 
order of applying the transformations is as follows for a given coordinate 
vector c in the i-th slice photograph: 

T(c, θ, i) = Rθ

⎛

⎝

⎡

⎣
offset x,i
offset y,i

offsetz + spacing⋅i

⎤

⎦+ scaling⋅c

⎞

⎠. (1) 

All transformation parameters are contained in vector θ = { rota
tionx, rotationy, rotationz, scaling, spacing, offsetx,1, offsety,1, offsetx,2, 
offsety,2, …}. Rθ is the rotation matrix based on the rotationx, rotationy 
and rotationz parameters in θ. 

2.5.2. Initialization of the transformation parameters 
Before performing the full optimization of the transformation pa

rameters, the parameters are initialized. Initializing the parameters 
avoids converging to the wrong local optimum and saves some 
computation time. 

The rotation parameters were initialized to zero. Because of the way 
the position of the stem and the drawn line were used during acquisition 
(Sections 2.3.1 & 2.3.2) the rotation was already roughly aligned. 

The “scaling”, “offsetz”, and “spacing” parameters were initialized by 
matching the area of the segmentations in horizontal slices between the 
CT and the photographs. We call this the area profile. The area profile of 
the photographs was defined as the set of points pi with one point for 
each slice photograph, where i stands for the index of the photograph 
and Aphoto(i) for the segmentation area of the photograph at index i: 

pi =

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A photo(i)
√

⋅scaling
offsetz + spacing⋅i

]

. (2) 

Fig. 4. (Left) Slice photograph showing both the inside and the outside of the 
apple. (Right) Segmentation mask from the training set indicating the inside of 
the apple. 

Fig. 5. Illustration of the parameters of the parallel slice transformation model. 
Only “offsetx,i” and “offsety,i” are unique for each slice. The other parameters 
are shared between all slices of the same apple. 
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The area profile of the CT scan was defined as a set of points sj with 
one point for each horizontal slice of the CT scan, where j stands for the 
index of the horizontal CT slice and ACT(j) for the segmentation area of 
slice j. 

sj =

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ACT (j)

√

j

]

. (3)  

The mean over the squared distances from every point in the photo area 
profile to the closest point in the CT area profile was used as a cost 
function. This cost function was optimized using gradient descent with 
momentum (Rumelhart et al., 1985; Goh, 2017), and the gradient was 
automatically derived using PyTorch (Paszke et al., 2017). This 
approach is similar to the SGD-ICP method (Maken et al., 2019). The 
learning rates were manually tuned for each parameter to be as large as 
possible without causing exploding gradients. A momentum of 0.6 was 
used on all parameters. A fixed number of 10000 iterations was used. 

The “offsetx,i” and “offsety,i” parameters were initialized so that the 
center of mass of each slice photograph segmentation was in the same 
position as the center of mass of the CT segmentation slice that was 
sampled based on the current “scaling”, “offsetz” and “spacing” 
estimates. 

2.5.3. Joint optimization of the transformation parameters 
After initializing the transformation parameters, a more precise 

optimization was performed to get to the final image registration result. 
This step uses the mean square error(MSE) between the segmentations of 
the CT scans and slice photographs as a cost function. To evaluate the 
cost function, the positions of all pixels in the photograph segmentation 
masks were transformed into CT space using the current transformation 
parameters, and lookups were done in the CT segmentation mask using 
trilinear interpolation. 

The cost function was optimized using gradient descent with mo
mentum (Rumelhart et al., 1985; Goh, 2017). The gradient was auto
matically derived using PyTorch (Paszke et al., 2017), and all 
calculations were performed on the GPU. The learning rates were 
manually tuned for each parameter to be as large as possible without 
causing exploding gradients, and a momentum of 0.75 was used on all 
parameters. The stopping criterion was that over the last 1000 itera
tions, the minimum and maximum values of the cost function were less 
than 0.00001 apart. After the optimization finished, for each photo
graph a corresponding CT slice was sampled from the CT volume using 
trilinear interpolation. 

2.6. Step 4: Validation 

The goal of this step was to measure the registration error. The 
segmentation error was also measured because the registration was 
optimized based on segmentation masks. 

2.6.1. In plane core endpoint distance (IPCED) 
The core of the apple is visible on both the CT scans and the slice 

photographs and was not used for optimizing the registration parame
ters. Therefore, the core could be used to measure the registration error. 
The outer corner points of the apple core were selected manually on the 
photographs. Later, the closest corresponding points on the registered 
CT slice were manually selected (Fig. 6). The in-plane core endpoint 
distance (IPCED) was defined as the average distance between the an
notations in the slice photograph and the registered CT slice. 

To minimize the effect of the out-of-plane registration error, the 
points were only selected on one slice photograph close to the center of 
the apple core because, at its center, the edges of the core are roughly 
perpendicular to the slicing plane. Moreover, very thin core structures or 
those with an unclear endpoint were not annotated. To avoid bias, the 
photographs were selected and the annotations on the photographs were 
done without looking at the CT scans. The CT point annotations were 

placed with the annotated photograph and the registered CT scan side- 
by-side in a view similar to Fig. 6. 

2.6.2. Segmentation error 
The segmentation error was evaluated to understand how much of 

the registration error was caused by the quality of the segmentation of 
the photographs. For this goal, a test set was created of 20 manually 
segmented slice photographs of 20 different apples that had not been 
used for training the segmentation neural network. The five neural 
network instances that were trained using different cross-validation 
splits were applied to these photographs. The postprocessing was 
applied to the mean of the five networks like in Section 2.4.2 and to each 
network output separately. True positives (TP) represent pixels correctly 
segmented as being inside the apple; true negatives (TN) represent pixels 
correctly segmented as being outside the apple; false positives (FP) 
represent pixels incorrectly segmented as inside the apple; and false 
negatives (FN) represent pixels incorrectly segmented as being outside 
the apple. The following error metrics were calculated: accuracy 
(TP + TN)∕(TP + TN + FP + FN), precision TP∕(TP + TN), recall 
TP∕(TP + FN), and distance from the edge pixels in the neural network 
segmentation to the closest edge pixels in the manual segmentation. 

2.7. Validation of registration method 

The registration method (Section 2.5) has not been used before; thus, 
two additional experiments were performed to measure the added value 
of this new method. 

2.7.1. Number of slices experiment 
The slicing method (Section 2.3.2) was supposed to result in parallel 

slices, but slight deviations may occur that could accumulate when 
many slices are used. However, using many slices may also improve 
results by including more information in the optimization. The goal of 
this experiment was to explore how the number of slices used in the joint 
registration method related to the registration error. To vary the number 
of slices, not all available slices were used. 

For every apple, slices at the top and the bottom of the apple were 
excluded to make subsets with a specific number of slices. To be able to 
measure the IPCED, the annotated center slice was always included. 
Additionally, the three slices above and two slices below the annotated 
slice were included one by one, creating a new subset with every 
included slice, resulting in six subsets for each apple. For 30 Apples, 
these slices were not all available, so those fruit were excluded from this 
experiment. On the subsets with fewer slices on some apples, the 
registration error was too large to do the annotations necessary for 
calculating the IPCED. To allow comparison between subset sizes these 
fruit were excluded from calculating the average IPCED on all subset 
sizes. 

Fig. 6. Example of the annotations of the core endpoints used to measure the 
registration error between a slice photograph (left) and the registered CT slice 
(right). When the endpoint of a part of the core was unclear (circular region) or 
when the core structure was very thin (diamond region) the endpoints were 
not annotated. 
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2.7.2. Separate slice registration intersection experiment 
Because the previous experiment (Section 2.7.1) used the IPCED, it 

only calculated the error at one central slice. This experiment was per
formed to get insight into the registration robustness over the whole 
apple. Each apple’s photographs were acquired from slices from top to 
bottom. Therefore, it is physically impossible that slices intersected each 
other, or that the position of later photographs was before the position of 
earlier photographs. Our joint registration method enforces that the 
slices are parallel and in the correct order, but in this experiment, each 
slice was registered separately to test what would occur if these prop
erties were not enforced. 

The same method was used as for joint registration, with a minor 
modification. In the transformation model, the offsetz and spacing pa
rameters would offer the same degree of freedom when just one slice is 
used, so the spacing parameter was kept constant. The initialization 
method from Section 2.5.2, and the full joint optimization method from 
Section 2.5.3 were used to initialize the transformation model 
parameters. 

An intersection test was developed to test if the slices were parallel 
and in the correct order. First, the coordinates of every pixel inside each 
photo slice segmentation mask were transformed into CT space. A pixel 
belonging to slice i should not be inside either of the two convex hulls 
formed by slices with indices larger and smaller than i. If any pixel in a 
slice was inside either of these convex hulls, that entire slice was marked 
as intersecting. A distinction was made between apples where three or 
fewer adjacent slices were intersecting and where more slices were 
intersecting. Fig. 7 illustrates the intersection test. 

3. Results 

3.1. Registration and segmentation errors 

The full workflow was applied to obtain the slice photographs and 
registered CT slices in the ‘Kanzi’ data set. The average IPCED for all 107 
apples was 1.47 ± 0.40 mm. 

The calculated segmentation metrics are displayed in Table 1. The 
combined row represents the segmentations that were used for registra
tion. The average segmentation edge distance was 0.195 ± 0.104 mm. 

3.2. Validation of registration method 

The results of the number of slices experiment are displayed in  
Table 2. The results show that the average IPCED decreased with every 
increase in the subset size. Moreover, only when a subset size of three or 
lower was used there were cases where the registration error was too 
large to do the annotations necessary for calculating the IPCED. 

The results of the intersection experiment are displayed in Table 3. 
The results show that intersections occur when registering the slices 
separately. Using the full joint registration method as an initialization 
instead of the normal profile initialization method decreased the num
ber of intersections, but intersections remained in 32 of the apples. 

3.3. Disorder evaluation 

Of the 107 ‘Kanzi’ apples in the dataset, 45 were healthy after stor
age, and 62 contained brown regions of flesh with varying levels of 
severity. Senescent breakdown, radial flesh, diffuse flesh, and core 
browning were all identified. An example of each browning type is 
presented in Fig. 8. We found that dark regions in CT scans corresponded 
to regions of brown flesh in ‘Kanzi’ fruit. High-intensity regions occurred 
on the border of dark regions in CT scans for fruit with core browning 
(Fig. 8C). Fruit with decay displayed areas of high and low-intensity 
regions in CT scans (Fig. 8F). The wet, decayed flesh had a high voxel 
intensity, and the remaining flesh resembled senescence browning 
(Fig. 8D). 

During the browning classification, several fruit marked as healthy 

Fig. 7. Illustration of the intersection test. The red lines indicate intersecting slices.  

Table 1 
Segmentation quality metrics of the neural network instances trained on 
different training and validation data splits.   

Accuracy 
(%) 

Precision 
(%) 

Recall (%) Edge distance 
(mm) 

instance 0 99.37 ± 0.30 99.05 ± 1.07 99.41 
± 0.63 

0.234 ± 0.139 

instance 1 99.26 ± 0.50 99.77 ± 0.27 98.45 
± 1.57 

0.259 ± 0.180 

instance 2 99.37 ± 0.26 99.10 ± 0.88 99.39 
± 0.65 

0.241 ± 0.133 

instance 3 99.33 ± 0.44 99.61 ± 0.36 98.78 
± 1.41 

0.247 ± 0.206 

instance 4 99.39 ± 0.33 99.52 ± 0.47 99.04 
± 1.05 

0.222 ± 0.134 

combined 99.43 ± 0.30 99.54 ± 0.42 99.12 
± 0.94 

0.195 ± 0.104  

Table 2 
Registration results when using different numbers of slices in the joint 
registration.  

No. of slices in 
subset 

No. of fruit where IPCED could not be 
calculated 

IPCED 
(mm) 

1 3 1.97 ± 0.89 
2 7 1.83 ± 0.80 
3 3 1.83 ± 0.82 
4 0 1.75 ± 0.81 
5 0 1.74 ± 0.83 
6 0 1.71 ± 0.86 
All 0 1.52 ± 0.39  

Table 3 
Results of the separate slice registration intersection experiment.  

Initialization 0 Intersections ≤ 3 Adjacent 
intersections 

More 
intersections 

Profile (Sec. 
2.5.2) 

42 (39.2%) 42 (39.2%) 23 (21.5%) 

Joint (Sec. 2.5.3) 75 (70.0%) 24 (22.4%) 8 (7.5%)  

D.E. Schut et al.                                                                                                                                                                                                                                 



Postharvest Biology and Technology 211 (2024) 112814

7

during slicing displayed slightly darker areas in the photo images. 
However, it was difficult to determine with the human eye whether 
these areas were brown tissue or shadows. In six apples a slightly darker 
area in the photo images coincided with a dark region in the CT scan 
(Fig. 9). Based on the CT scan and photo together, we expect that these 
apples had mild browning. 

3.4. Data and code 

The CT scans, slice photographs, and browning status are publicly 
available on Zenodo (Schut et al., 2023a). All data used in the results 
section, including registration and segmentation results, are publicly 

available as a separate dataset (Schut et al., 2023b). This dataset also 
includes side-by-side views of all photographs and their corresponding 
CT slices similar to Fig. 8, saved as .png files so they can be viewed in any 
image viewer. The Python code is available on Github (Schut, 2023). 

4. Discussion 

4.1. Physiological disorders 

Most physiological disorders have affected regions much larger than 
the average IPCED of 1.47 mm. Therefore, the provided photo-CT image 
pairs should be suitable for disorder evaluation. The photographs can be 
used as ground truth to understand the appearance of disorders in CT. 
Registered image pairs can also provide complementary information, 
which could be explored in future work. Combining information from 
registered CT, MRI, or PET scans has been used in medical imaging to 
diagnose diseases such as cancer (Blodgett et al., 2007; Du et al., 2016). 

Our finding that dark regions in CT scans corresponded to regions of 
brown flesh is consistent with previous reports (Herremans et al., 2013; 
van Dael et al., 2019). Additionally, high-intensity regions surrounding 
the dark regions in fruit with core browning, were also found by Lam
mertyn et al. (2003) study on pears. The dark regions in affected fruit are 
due to the structural collapse of cells and the moment of water away 
from affected flesh, reducing voxel intensity (Herremans et al., 2013; 
Van De Looverbosch et al., 2020). Herremans et al. (2013) suggest that 
the available water will diffuse towards the fruit peel, where it is lost to 
the environment. Water-rich tissue has a high voxel intensity (Diels 
et al., 2017); thus, the high-intensity regions surrounding the dark re
gions in fruit with core browning are likely caused by the movement of 
water away from the affected flesh and towards the fruit’s surface. On 
six apples, browning was detected on the CT scan but not during visual 
inspection, which suggests that CT can potentially be used for earlier or 
more reliable detection of browning than visual inspection. Early 
non-destructive detection of browning would be commercially valuable. 
Wood et al. (2024) demonstrated that the level of browning in an apple 
can be determined from the percentage of dark spots in a single CT slice. 

The high-intensity regions of decayed flesh in our CT scans are 
similar to those obtained from fruit with watercore (Herremans et al., 
2013). Watercore is a physiological disorder associated with the flood
ing of air-filled pores with aqueous fluid, increasing voxel intensity in CT 
scans (Herremans et al., 2013). Herremans et al. (2013) study 

Fig. 8. Examples images of a healthy apple and apples with different types of 
disorders. A: healthy, B: radial browning, C: core browning, D: senesence 
browning, E: diffuse flesh browning, F: decay. The combined view shows both 
images in the same plot and can be used to see the distance between edges. The 
combined view is green when the photo is brighter, purple when the CT slice is 
brighter, and a shade of gray when both images have similar intensities. 

Fig. 9. Examples of ‘Kanzi’ apples that were classified as healthy after cutting, 
but contained regions of flesh that appeared brown in CT images. The arrows 
indicate regions of suspected brown tissue, which were confirmed using the 
registered CT slice. The combined view shows both images in the same plot and 
can be used to see the distance between edges. The combined view is green 
when the photo is brighter, purple when the CT slice is brighter, and a shade of 
gray when both images have similar intensities. 
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successfully identified the water-soaked regions typical for fruit affected 
with watercore using CT with up to 89% accuracy. As watercore and 
decay appear similar under CT, fruit with decayed flesh may be suc
cessfully identified using CT and image thresholding. However, dis
tinguishing between regions of flesh suffering from decay and watercore 
might be challenging due to their similar appearance. Although, the 
separation of decay and watercore may only be an issue in growing re
gions where apples with watercore are a desired quality trait and are 
sold at a premium. 

4.2. Data acquisition and image segmentation 

After using the workflow on the ‘Kanzi’ dataset, several areas of 
improvement have been identified for acquiring sets of slice photo
graphs to make image registration to CT or MRI scans simpler and more 
accurate. 

Firstly, camera calibration would improve the usability of the pho
tographs. An approach that involves photographing a flat checkerboard 
test image in multiple orientations (Zhang, 2000) is available in OpenCV 
and Matlab. After calibration, lens distortions are compensated for. By 
also photographing the checkerboard test image when placed against 
the clear sliding surface of the slicing setup, the external calibration 
parameters from that image could be used to compensate for the 
perspective projection in the photographs. Moreover, the physical size of 
the apple slices could be derived directly from the images instead of 
being fitted in the registration step, making the registration simpler and 
more accurate. 

Secondly, the photo segmentation could be simplified if the contrast 
could be improved between the inside of the apple and both the peel and 
the background. If the contrast can be increased sufficiently, classical 
methods for segmentation might be used instead of a neural network. 
This would free up the time required for manually labeling images and 
save the costs for hardware and electricity of neural network training. 
Moreover, more accurate segmentation masks may be achieved. It may 
even be possible to remove the segmentation step completely by using a 
multi-modality cost function such as mutual information during the 
image registration (Maes et al., 1997). 

The contrast with the background can easily be improved by placing 
an evenly colored surface of a contrasting color (e.g. blue or black) 
behind the machine. The contrast between the peel and the inside of the 
apple could be improved by painting the apple in a contrasting color 
before cutting. Another option would be to cut the apple through the 
middle at the widest point and then put the apple in the machine in two 
parts with the cutting plane facing the camera. This way the apple would 
get narrower further away from the camera so that the peel would not be 
visible in the photographs. The middle slice would be photographed 
twice, and by registration between these two images, the rotation dif
ference between the sets of photographs of the two halves of the apple 
could be compensated. The contrast of the whole image could be 
improved by fine-tuning the lighting so that it is uniform and uses the 
whole dynamic range of the sensor. Improving the lighting would also 
benefit visual inspection of the photographs. 

4.3. Image registration 

The idea of segmentation-based registration has been applied before 
by Museyko et al. (2010), which showed that the results for image 
registration between two CT scans of the human femur or lumbar spine 
were improved by segmenting the bone structures before doing image 
registration. Segmentations were also used to overcome the differences 
in appearance while registering a 3D ultrasound scan and a CT scan of 
the liver (Schut, 2018). Pears have a more irregular shape than apples, 
so performing segmentation-based registration on pears may be more 
accurate or require less data. 

Task-specific transformation models have been used in medical 
image registration of the heart (Heyde et al., 2013) and liver (Wein et al., 

2008) to allow for specific motions with less risk of overfitting than 
using a more general transformation model. The most common 
approach for image registration is to use a toolkit such as Elastix (Klein 
et al., 2009) or ITK (Avants et al., 2014), where users can combine 
high-quality implementations of commonly used transformation 
models, cost functions, and optimizers. Many optimizers use the 
gradient, so gradient computation code has to be provided for each cost 
function and transformation model. While toolkits make it easy to pro
totype combinations of existing methods, the interactions with existing 
C++ code and the necessity of manually writing gradient code introduce 
a high barrier to adding custom transformation models or cost functions. 
The use of PyTorch for automatic differentiation (Paszke et al., 2017) in 
this work lowered this barrier considerably. AirLab (Sandkühler et al., 
2018) is a recently developed image registration toolkit that uses 
PyTorch automatic differentiation internally. In future work on custom 
transformation models, the existing AirLab implementations of opti
mizers and cost functions could be used. 

Combining information from multiple slices has been done in med
ical histology image registration (Pichat et al., 2018; Ferrante and Par
agios, 2017). In medical histology, a tissue sample is sliced into thin 
sections, which are put on glass slides, stained, and photographed under 
a microscope. Like apples in this paper, histological samples are some
times scanned in a CT or MRI scanner before being sliced. Registration 
between histological slides and CT or MRI scans is therefore similar to 
the apple registration problem described in this paper. However, there 
are also differences. Large full-object deformations may be present in 
registration between histology and CT or MRI, so a deformable trans
formation model is used. To fit the many parameters of a deformable 
model, combining information from multiple histological photographs 
can be beneficial (Ceritoglu et al., 2010). The processes of slicing, 
mounting the slice on a glass slide, and staining can introduce artifacts 
and deformations in the slicing plane (Pichat et al., 2018). This makes it 
challenging to find the accurate relative positions of adjacent slices, 
which is called 3D reconstruction. Joint optimization of the 3D recon
struction and image registration problems can compensate for these 
effects. Joint optimization has been done by alternating between regis
tering the slices individually to the CT or MRI scan to improve the 3D 
reconstruction and registering the whole reconstructed volume to the CT 
or MRI scan to improve the whole object registration (Adler et al., 2014; 
Goubran et al., 2013; Malandain et al., 2004; Yang et al., 2012) and 
Section 5.1.4 in Pichat et al. (2018). The method in this paper differs 
from those earlier methods in that the 3D reconstruction and registra
tion problems are optimized within the same optimization problem. 

4.4. Validation 

The IPCED metric defined in Section 2.6.1 is easy to calculate for any 
apple or pear with only a few manual annotations. However, it is limited 
in that it only considers the in-plane error and can only be calculated at 
the core of the apple. For medical histology applications, needle tracks 
have been used as a marker for evaluation (Pichat et al., 2018). Inserting 
and removing multiple needles before data acquisition introduces 
straight holes in the apple. These are likely easy to segment in the CT 
scan and easy to detect in the photographs. The registration error can be 
calculated as the distance from the holes in the photograph to the 
nearest hole in the CT scan. Moreover, these features could be used 
directly for image registration. However, this metric would require 
damaging the apples and would introduce an extra sample preparation 
step and an extra detection step to the workflow. 

5. Conclusions 

In this paper, we presented a workflow for creating datasets of 
registered image pairs of slice photographs and CT slices. Part of the 
workflow is a joint 2D-3D image registration method (Section 2.5), 
which uses a task-specific transformation model to register all slices of 
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one apple within a single optimization problem. It was shown that this 
joint approach is both more precise and more robust to large registration 
errors compared to image registration of separate slices (Section 3.2). 
Using this workflow, a dataset was created of 1347 slice photographs 
acquired from 107 ‘Kanzi’ apples, which has been published alongside 
this paper. The image registration error of this dataset according to the 
in-plane core endpoint distance (IPCED) metric was 1.47 ± 0.40 mm 
(Section 3.1). The appearance of disorders in this dataset mostly 
matched the descriptions from earlier works on CT scanning of disor
dered apples (Section 4.1). However, six apples that looked healthy 
directly after slicing showed dark regions on the CT scans associated 
with browning (Section 3.3), indicating that CT may have the potential 
for detecting the early stages of browning. 
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