
5

Reproducing Popularity Bias in Recommendation:

The Effect of Evaluation Strategies

SAVVINA DANIIL, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

MIRJAM CUPER, National Library of the Netherlands, The Hague, The Netherlands

CYNTHIA C. S. LIEM, Delft University of Technology, Delft, The Netherlands

JACCO VAN OSSENBRUGGEN, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

LAURA HOLLINK, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

The extent to which popularity bias is propagated by media recommender systems is a current topic within
the community, as is the uneven propagation among users with varying interests for niche items. Recent work
focused on exactly this topic, with movies being the domain of interest. Later on, two different research teams
reproduced the methodology in the domains of music and books, respectively. The results across the different
domains diverge. In this paper, we reproduce the three studies and identify four aspects that are relevant in
investigating the differences in results: data, algorithms, division of users in groups and evaluation strategy.
We run a set of experiments in which we measure general popularity bias propagation and unfair treatment
of certain users with various combinations of these aspects. We conclude that all aspects account to some
degree for the divergence in results, and should be carefully considered in future studies. Further, we find
that the divergence in findings can be in large part attributed to the choice of evaluation strategy.

CCS Concepts: • Information systems→ Recommender systems; • General and reference→ Evalua-

tion; • Applied computing→ Media arts;

Additional Key Words and Phrases: Recommender systems, popularity bias, evaluation, reproduction

ACM Reference format:

Savvina Daniil, Mirjam Cuper, Cynthia C. S. Liem, Jacco van Ossenbruggen, and Laura Hollink. 2024. Repro-
ducing Popularity Bias in Recommendation: The Effect of Evaluation Strategies. ACM Trans. Recomm. Syst. 2,
1, Article 5 (March 2024), 39 pages.
https://doi.org/10.1145/3637066

1 INTRODUCTION

In this article we reproduce three papers that study popularity bias in media recommender systems.
Websites that host media content are known to employ recommender systems to filter through the
content and provide the user with personalized suggestions. In the case of collaborative filtering,
neither explicit demographics of the user nor information about the content are needed to encode

Authors’ addresses: S. Daniil and L. Hollink, Centrum Wiskunde & Informatica, Science Park 123, Amsterdam, North Hol-
land, 1098 XG, The Netherlands; e-mails: s.daniil@cwi.nl, l.hollink@cwi.nl; M. Cuper, National Library of the Netherlands,
Prins Willem-Alexanderhof 5, The Hague, South Holland, 2595 BE, The Netherlands; e-mail: mirjam.cuper@kb.nl; C. C.
S. Liem, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, South Holland, 2628 XE, The Netherlands;
e-mail: c.c.s.liem@tudelft.nl; J. van Ossenbruggen, Vrije Universiteit Amsterdam, De Boelelaan 1111, Amsterdam, North
Holland, 1081 HV, The Netherlands; e-mail: jacco.van.ossenbruggen@vu.nl.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
2770-6699/2024/03-ART5 $15.00
https://doi.org/10.1145/3637066

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

https://orcid.org/0000-0001-8888-2869
https://orcid.org/0000-0003-0187-9873
https://orcid.org/0000-0002-5385-7695
https://orcid.org/0000-0002-7748-4715
https://orcid.org/0000-0002-6865-0021
https://doi.org/10.1145/3637066
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637066
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637066&domain=pdf&date_stamp=2024-03-07

5:2 S. Daniil et al.

their taste, but only consumption and browsing history. Despite the lack of explicit input of user
or item characteristics in the system, collaborative filtering approaches are still known to suffer
from bias [34]. Popularity bias has been identified as a relevant issue with negative implications
from a multi-stakeholder perspective [2]. In short, popularity bias is the algorithmic phenomenon
where items already popular in the users’ profiles tend to become even more popular due to being
disproportionally recommended.

In the context of media recommenders, different research teams have studied the impact of
popularity bias on the users. Specifically, they focused on the extent to which it impacts them
disproportionally based on their interest for popular items, which they refer to as unfairness. In
2019, Abdollahpouri et al. [3] published a paper called "The Unfairness of Popularity Bias in Rec-
ommendation" where the propagation of popularity bias by different algorithms and for different
user groups was reported in the setting of movie recommendation. Two subsequent papers repro-
duced the work to evaluate the same phenomenon in music recommendation (Kowald et al. [26])
and book recommendation (Naghiaei et al. [27]). The papers used a similar process and metrics to
evaluate the unfairness of popularity propagation, but different datasets, data preprocessing, and
some different algorithms. While all studies reported on the same types of results, diverging results
were presented. Both Kowald et al. [26] and Naghiaei et al. [27] proposed that the differences in
data characteristics might be the cause.

The studies take significant steps in the direction of understanding the unfairness of popularity
bias, and a new metric for popularity bias is proposed by Abdollahpouri et al. [3]. The effect of pop-
ularity bias on several baseline and state-of-the-art collaborative filtering algorithms is analyzed.
The view of unfairness is user-centric, unlike previous work on the matter, which contributes to
the significance of these studies in the field of recommender systems. It is, therefore, pertinent to
comprehend the source of divergence in their reported results when it comes to whether certain al-
gorithms propagate popularity bias, as well as the extent to which certain user groups are unfairly
treated.

The following results were presented by all three studies:

— Overall Popularity Bias Propagation: The studies observed whether frequency of an item
in the users’ profile and in an algorithm’s recommended list correlated (the higher the cor-
relation the larger the bias), and whether only a few items were getting recommended to all
users. Their results diverged in the following ways:
— Abdollahpouri et al. [3] and Naghiaei et al. [27] found that only for certain algorithms

there is positive correlation, with the correlation found by the latter being stronger than
by the former.

— Kowald et al. [26] found that this correlation exists for all tested algorithms rather than
for only some of them.

— Popularity Bias Propagation per User Group: The studies evaluated unfairness of pop-
ularity bias propagation by using the %Δ Group Average Popularity (%ΔGAP) metric, which
is defined as the difference in average popularity of items in a user’s profile and in an algo-
rithm’s recommended list, averaged for a group of users. Specifically, they calculated %ΔGAP
for different user groups defined by their propensity for popular items, and then compared
the results between groups and algorithms. The higher the %ΔGAP for a group, the more
unfairly this group is treated.
— Abdollahpouri et al. [3] and Naghiaei et al. [27] found that popularity bias is larger for users

who prefer niche (i.e., not popular) items than for other user groups. Certain algorithms
examined by Naghiaei et al. [27] did not propagate popularity bias for any of the user
groups, which was not the case for Abdollahpouri et al. [3].

— Kowald et al. [26] observed no such clear difference between the groups for any algorithm.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:3

In this article, we perform an extensive reproduction study of the three above mentioned pa-
pers (Abdollahpouri et al. [3], Kowald et al. [26], Naghiaei et al. [27]). We are motivated by the
divergence in results and wish to investigate and comprehensively report on the source. We do
not only attempt to replicate and verify the individual claims, but also locate properties of the
recommendation and evaluation process that have an impact on popularity bias. Therefore, our
reproduction study allows us to draw conclusions further than the transferability of a claim to a
different domain, which was the goal of the two reproduction studies (Kowald et al. [26], Naghiaei
et al. [27]). By zooming in on these studies and understanding how their differences in implementa-
tion resulted in divergent results, we can offer insights and suggestions on the topic of popularity
bias evaluation, and reproducibility in recommender systems in general.

First, we study the choices made by Kowald et al. [26] and Naghiaei et al. [27] when reproducing
Abdollahpouri et al. [3]. We recognize the challenges that stem from either lack of clarity around
or differentiation in the strategies the three studies used to evaluate popularity bias. We identify
four aspects that are relevant in investigating the differences in results between the three studies:

(1) data; the studies use three datasets, with different characteristics such as size, sparsity and
distribution of item popularity.

(2) algorithms; the studies evaluate mostly different algorithms, with some exceptions.
(3) division of users in groups; the studies define propensity for popular items differently and

divide them accordingly.
(4) evaluation strategy; the studies make different choices in the testing process.

Second, we run a set of experiments in which we measure popularity bias with various combina-
tions of these aspects. For example, we run the evaluation strategy of one paper on the dataset of
the other paper. We find that evaluation strategy has a significant impact on the reported results.
Specifically, certain algorithms trained on the same data and with the same view of popularity
either show or not show propagation of popularity bias depending on the evaluation strategy. We
believe that our observations can prove useful for future efforts to reproduce evaluations of rec-
ommender systems, as they give insight on how strategic choices affect the outcome even when
the same evaluation metric is used.

2 RELATED WORK

2.1 Reproducibility in Recommender Systems

The ability to reproduce and examine published studies is valuable, as reproducibility of experi-
mental results is a cornerstone of science [17]. However, the field of AI as a whole is known to
face reproducibility issues [22]. Machine learning is highly dependent on the characteristics of
the chosen training data, as well as parameter tuning to fix the inherent randomness of the al-
gorithms [36]. Therefore, lack of published code and data render the replication of existing work
by other researchers challenging [18]. Many reported results are irreproducible, though Gunder-
sen and Kjensmo [17] found a significant increase in documentation over time. In the context of
recommender systems, lack of reproducibility is recognized as one of the key components that
have led the field into "a state of stagnation" [11]. While reviewing recommender systems papers
published in big conferences such as KDD, IJCAI and SIGIR, Ferrari Dacrema et al. [14] found less
than 50% of them to be reproducible. Cremonesi and Jannach [11] consider lack of incentive to
be the main reason behind limited reproducibility, as the academic system’s operation often mo-
tivates researchers to publish more instead of putting in the work to provide sufficient code, data
and documentation.

Recently, AI conferences have started providing checklists to ensure that the submitted papers
are sufficiently reproducible [28]. Additionally, many conferences such as RecSys, ECIR and SIGIR

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:4 S. Daniil et al.

have initiated reproducibility tracks where researchers can submit studies that reproduce, analyze
or reflect on prior work. Gundersen et al. [16] provide a set of specific recommendations on how to
ensure reproducibility in AI research. They motivate researchers by highlighting the importance
of reproducibility for the improvement of science overall as well as the benefits for the researcher
themselves. Beel et al. [5] outline actions that can make recommender systems research more re-
producible, such as adopting practices from medical sciences, social sciences, and natural sciences,
and conducting more comprehensive experiments, for example by varying model parameters and
observing the effect. In this work, we attempt to further motivate reproducibility in recommender
systems research by experimenting with various aspects of the recommendation process and show-
casing the effect on the phenomenon of popularity bias.

2.2 Evaluation Strategy

In recommender systems research, reproducing the evaluation process followed in previous studies
is not always trivial. To assist researchers in this endeavour, Said and Bellogín [29] describe the di-
mensions of evaluating recommender systems as dataset, data splitting, evaluation strategies, and
metrics. Specifically, they identify and benchmark four stages of designing an evaluation protocol:
data splitting, item recommendation, candidate item generation, and performance measurement.
Application of metrics takes place in the final stage of evaluation, namely when measuring the
performance of the scores produced during the recommendation process. Before measuring per-
formance, it is necessary to define a crucial aspect of the evaluation strategy; generating candidate
items for recommendation for each user, so that scores can be produced for them. The process of
evaluating recommender systems includes reporting on results of commonly used metrics, which
allows comparison between different algorithms to estimate their success in the context of the task
at hand. To calculate the metrics in a way that meaningfully represent the success of the system,
it is necessary that the evaluation strategy is suitable for the system, as well as for the metrics to
be measured.

In terms of metrics, Gunawardana et al. [15] list a set of properties frequently taken into account
when evaluating recommenders, such as accuracy, coverage, novelty, diversity, and so on. They
point out that different applications have different needs, and thus the metrics to be evaluated
should be chosen to appropriately reflect on the desired property. Said and Bellogín [29] argue that
comparison of recommendation quality between different studies requires careful consideration of
all stages of an evaluation protocol. They experimentally show that even when recommendation
algorithms are similarly implemented, the results are not comparable when different evaluation
strategies are used. In our study, we follow a similar approach of employing different evaluation
strategies on the same task and comparing the results. We are prompted by variations in evalua-
tion strategy choices made by published reproducibility studies, which highlights the importance
of taking into account and addressing all evaluation steps in recommender systems research.

2.3 Popularity Bias

Studying and evaluating a specific phenomenon requires understanding its roots and effects. In
the context of item popularity, it is known that consumption of media often follows a long tail
distribution, where a few items are very popular and the rest are located in the heavy tail [4]. Rec-
ommender systems attempt to facilitate users in their effort to discover items appropriate for them,
regardless of the items’ position in the long tail. However, it has long been noted that collaborative
filtering techniques can be prone to popularity bias, the phenomenon where popular items tend
to be recommended over long-tail ones [8]. When an algorithm showcases such tendency, it may
produce ranked lists with items not equally covered along the popularity tail [35]. Bellogín et al.
[6] argue that common ranking metrics calculate overall assumed satisfaction of a population, and

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:5

therefore produce high values when the recommended list consists of mostly popular items, even
when it is not personalized. Item popularity is not a de facto bad criterion for recommendation
and can be leveraged to track item quality [9, 37]. However, very popular items are often more
likely to be already known, which renders the recommendation of mostly popular items to a user
potentially not useful for the user and the system in general [1].

In addition to the three studies examined in this article, other studies evaluate popularity bias
in various contexts and propose methods to mitigate it [7, 20, 24, 38]. These studies vary in terms
of methods to measure popularity bias and findings. Elahi et al. [13] find that propagation of pop-
ularity bias is dependent on the scenario and domain; in certain cases, popularity bias is reduced
through the recommendation process. In a follow-up paper to Kowald et al. [26], Kowald and
Lacic [25] study popularity bias by four collaborative filtering algorithms on all three datasets used
by the three studies we are reproducing, namely MovieLens1M, LastFM and Book-Crossing. It is
interesting to note that their results are similar across the three datasets, while they diverge from
the results reported by Abdollahpouri et al. [3] and Naghiaei et al. [27]. This observation implies
that the discrepancy in results showcased by the three studies cannot be explained solely by the
differences between the datasets. In this work, we wish to investigate which aspects of the pro-
cess account for the discrepancy. Our results and conclusions can contribute to consistency and
reproducibility when evaluating popularity bias and other recommender systems phenomena by
the research community.

3 OVERVIEW OF THE STUDIES TO BE REPRODUCED

In order to comprehend the differences in results between the three studies, we studied and col-
lected the details of each approach to accurately reproduce their process. Note that while Kowald
et al. [26] and Naghiaei et al. [27] made their code publicly available, we could not find a public
repository for the code developed by Abdollahpouri et al. [3]. Therefore, we describe the charac-
teristics of their study based on the text of the published paper, and private correspondence with
the authors. Throughout the paper, we explicitly state whether our understanding is based on this
correspondence.

3.1 Core Process

The studies followed similar processes to compare the popularity distribution in the data and in
recommendations:

(1) Analyze distribution of popularity among items in given dataset.
(2) Label items as “popular” if they belong in the 20% most frequently rated items in the dataset.
(3) Analyze distribution of user propensity for popular items and divide users into three groups

(Niche, Diverse and Blockbuster focused) accordingly.
(4) Set aside 80% of the ratings for training and 20% for testing.
(5) Train the algorithms on the training data.
(6) Recommend 10 items to each candidate user for each algorithm.
(7) Report on overall popularity bias propagation: compare the number of times each item is

recommended with the number of times it is rated. Repeat for each algorithm.
(8) Report on popularity bias propagation per user group: compare average popularity of the

items in profile with the items in recommendation for every user and average for each user
group. Repeat for each algorithm.

3.2 Data

The studies used publicly available datasets which are commonly used in recommender systems
literature. Abdollahpouri et al. [3] used MovieLens1M [19], Kowald et al. [26] used LastFM-1b

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:6 S. Daniil et al.

Table 1. The Characteristics of the Datasets used by the Three Studies

Dataset #users #items #ratings Sparsity

MovieLens1M 6,040 3,900 1,000,209 95.75%
LastFM-1b (subset) 3,000 352,805 1,755,361 99.83%
Book-Crossing (subset) 6,358 6,921 88,552 99.80%

Fig. 1. The long-tail distribution of item popularity in all datasets.

[32], and Naghiaei et al. [27] used Book-Crossing [39]. Kowald et al. [26] and Naghiaei et al. [27]
processed their respective datasets in order to approach the size of MovieLens1M. Specifically:

— Kowald et al. [26] extracted 3,000 users from the original dataset, which contains 120,000
users. They also grouped the listening events into user-artist pairings. Subsequently, they
scaled the number of times a user listened to an artist into a preference score from 0 to 1,000.
Therefore, the algorithms in Kowald et al. [26] do not try to predict explicit rating, but rather
the preference of a user towards an artist, which is represented by the number of times the
user listened to this artist.

— Naghiaei et al. [27] only kept the explicit ratings from the original dataset. Afterwards, they
removed users with more than 200 ratings. Finally, they removed users and items with very
few ratings, until all users in the dataset had rated at least 5 items and all items in the dataset
had been rated by at least 5 users.

Abdollahpouri et al. [3] do not explicitly mention whether they used the dataset intact or pro-
cessed it before the analysis and recommendation process, and it was not clarified from our corre-
spondence with the authors. Table 1 shows the characteristics of each dataset, namely number of
users, items, ratings, and sparsity. Sparsity in the context of rating data refers to the percentage of
possible user-item ratings that are missing from the data.

The resulting datasets differ in terms of size and sparsity. At the same time, item consumption
is differently distributed among them. Figure 1 shows the number of users that rated each item in
every dataset. While every figure shows that the rating data is skewed towards more popular items,
the long-tail distribution is clearer in the subset of LastFM-1b than in the subset of Book-Crossing,
and especially than in MovieLens1M.

3.3 Algorithms

Each study examined whether several different algorithms propagated popularity bias into their
recommendations, as seen in Table 2. They all tested two baseline algorithms, MostPopular and
Random. Other than these, the studies tested mostly different algorithms. Abdollahpouri et al.
[3] tested four well known collaborative filtering algorithms. Kowald et al. [26] also tested four

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:7

Table 2. The Algorithms Tested by the Three Studies

Abdollahpouri et al. [3] Kowald et al. [26] Naghiaei et al. [27]
UserKNN ✓ ✓ ✓

ItemKNN ✓

UserKNN with means ✓

UserItemAvg ✓

SVD++ ✓

NMF ✓ ✓

BMF ✓ ✓

PMF ✓

WMF ✓

HPF ✓

NeuMF ✓

BPR ✓

VAECF ✓

MostPopular ✓ ✓ ✓

Random ✓ ✓ ✓

collaborative filtering algorithms, but partly deviated from the choices of Abdollahpouri et al. [3].
Specifically, they excluded SVD++ and ItemKNN to reduce computational cost, potentially due to
the large number of items in the LastFM dataset. Finally, Naghiaei et al. [27] tested a total of nine
collaborative filtering algorithms in order to cover a wider range of state-of-the-art approaches.
Overall, the list of algorithms consists of Nearest Neighbour-based, Matrix Factorization-based,
and Neural Network-based approaches. The only common collaborative filtering algorithm across
all studies is UserKNN [31]. The divergence in the choice of algorithms between the original study
and the reproduction studies raises the question of whether a different overall conclusion would
be drawn if all studies tested the same set of algorithms.

3.4 Division of Users in Groups

The notion of item popularity is central in the three studies, and it is defined as frequency of either
rating by the users (popularity in profile) or of recommendation by the algorithms (popularity in

recommendation). Abdollahpouri et al. [3] deem an item popular in profile if it is one of the 20%
most frequently rated items in the entire dataset. This choice is important since Abdollahpouri
et al. [3] use this label to divide the users based on their propensity for popular items. Therefore,
the fact that item popularity is differently distributed across the three datasets as shown in Figure 1
affects which users are considered Niche, Diverse or Blockbuster focused.

Specifically, the user division in Abdollahpouri et al. [3] happens as follows:

(1) The popularity of every item is calculated as the percentage of users who have rated it.
(2) The items are sorted based on their popularity.
(3) The 20% items with the highest popularity are labelled as popular.
(4) The average propensity towards popular items of every user is calculated as the average pop-

ularity of the items that this user has rated.
(5) The popularity fraction of every user is calculated as the percentage of the items in this user’s

profile that have the label popular.
(6) The users are sorted based on their popularity fraction.
(7) The top 20% users are labeled "Blockbuster focused".

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:8 S. Daniil et al.

Table 3. Overview of the User and Item Candidates on which Each Study based the Evaluation of

Popularity Bias Propagation

Reference papers User candidates Item candidates

Abdollahpouri et al. [3] Users in the test set Items that the user has not rated in the training set
Kowald et al. [26] Users in the test set Items that the user has rated in the test set
Naghiaei et al. [27] Users in the training set All items

Note that, unlike Kowald et al. [26] and Naghiaei et al. [27], our description of the strategy used by Abdollahpouri et al.
[3] stems from our correspondence rather than studying their code.

(8) The bottom 20% users are labeled "Niche".
(9) The remaining users are labeled "Diverse".

While Naghiaei et al. [27] follow the same process, Kowald et al. [26] differ; they do not use
the popularity fraction to divide the users into groups. Instead, they use the mainstreaminess score,
which is available for the users in the LastFM dataset. Mainstreaminess is defined as the overlap
between a userâĂŹs listening history and the aggregated listening history of all users in the orig-
inal dataset. The 3,000 users are strategically extracted by Kowald et al. [26]; 1,000 users with low
mainstreaminess, 1,000 with medium, and 1,000 with high. In other words, the mainstreaminess
score is used as a proxy for user propensity for popular items and the user groups are divided
based on that instead of user preference for items labeled "popular" in the final dataset. Note that
the mainstreaminess score cannot be computed on MovieLens1M or Book-Crossing, as it requires
multiple interactions between users and items (i.e., play counts) [25].

3.5 Evaluation Strategy

A key difference between the studies’ approaches is the strategy they adopt to evaluate the prop-
agation of popularity bias. In all studies, the dataset of ratings is divided into a training and a test
set with a 80-20% split. However, they differ in terms of which users they recommend items to,
and when it comes to candidate item generation, a step of the evaluation process that was bench-
marked by Said and Bellogín [29]. Said and Bellogín [29] discuss that this aspect of the evaluation
protocol is crucial for the result, since by changing the item candidates for recommendation, a
different ranking is evaluated. This is likely to have an effect on the measured popularity bias
propagation. Table 3 shows an overview of the above mentioned characteristics of each study’s
evaluation strategy.

Let U r denote the set of users that an algorithm recommends items to, and Lu the list of items
that it ranks and chooses from to recommend to a user u in U r .

Kowald et al. [26] recommend items to every user in the test set. To generate candidate items,
they adopt the UserTest strategy [29]; the system only considers items that the user has rated in
the test set. In other words, in their system U r contains all users in the test set, and Lu for every
user u in U r contains every item i for which the rating (u, i) exists in the test set.

Naghiaei et al. [27] recommend items to all users in the training set. They adopt a version of
the TrainItems strategy [29]; the system considers every possible item as candidates for a given
user. In this case,U r consists of all users in the training set, and Lu for every user u inU r contains
every item i . Note that Said and Bellogín [29] describe TrainItems as disregarding the items that
the user has actually rated, but Naghiaei et al. [27] consider all items instead.

In our correspondence with Abdollahpouri et al. [3], they stated that they recommend items to
all users in the test set. They also adopt the TrainItems strategy, but differently to Naghiaei et al.
[27]. Specifically, for every user u in U r which are all the users in the test set, Lu contains every
item i that u has not rated in the training set. According to Said and Bellogín [29], this approach
is suitable when simulating a real system where no test set is available.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:9

3.6 Other Variations

While in our experiments we consider the aforementioned four aspects that vary across the three
studies, there are other variations that we do not consider:

— Kowald et al. [26] and Naghiaei et al. [27] both used Python to run their experiments, but
used different Python-based libraries to perform the training and recommendation process.
Kowald et al. [26] used Surprise,1 a toolkit for building and analyzing recommender systems
that deal with explicit rating data [21]. Naghiaei et al. [27] used Cornac,2 a framework for
multimodal recommender systems [30]. Abdollahpouri et al. [3] stated through our private
correspondence that they used Librec-auto,3 a Python tool for running recommender sys-
tems experiments [33].

— In their paper, Abdollahpouri et al. [3] state that they tuned all collaborative filtering algo-
rithms to reach a precision of 0.1, so that the results are comparable. On the other hand,
neither Kowald et al. [26] nor Naghiaei et al. [27] tuned the algorithms. Instead, they used
the default hyperparameters in the Python libraries.

4 EXPERIMENTAL SETUP

In order to investigate the cause of difference in results, we define a set of experiments that allows
us to track which of the aspects that varies across the three studies affects whether popularity bias
is propagated and whether the propagation unfairly impacts certain user groups. Each experiment
consist of the following phases.

Training.

— Divide the dataset with ratings into training and test set using a 80-20% split.
— Train the algorithms on the training set.

Prediction.

— For every user u inUr , predict ratings for item i in Lu based on each trained algorithm. (see
notation in Section 3.5)

— Rank the items based on the predicted rating.
— Recommend to the user the top 10 items.

Evaluation.

— Overall popularity bias propagation: Note that the three studies indirectly use the con-
cepts of correlation and item coverage to report on overall popularity bias, by plotting fre-
quency of an item in profile versus in recommendation for every algorithm and visually
observing whether there is correlation and whether certain items are almost never recom-
mended. In this study, we quantify these concepts as follows:
— For the set of items I calculate

Correlation = r (PI , FI) (1)

where r is the Pearson correlation coefficient, PI is the list of popularities of each item in
the users’ profiles, and FI is the list of frequencies of each item in the users’ recommended
lists (see [10]).

1https://surpriselib.com/
2https://cornac.preferred.ai/
3https://librec-auto.readthedocs.io/

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

https://surpriselib.com/
https://cornac.preferred.ai/
https://librec-auto.readthedocs.io/

5:10 S. Daniil et al.

Table 4. The Characteristics of the Datasets used in Our Experiments

Dataset #users #items #ratings Sparsity

MovieLens1M 6,040 3,900 1,000,209 95.75%
LastFM-1b (subset of subset) 3,000 12,690 1,008,479 97.35%
Book-Crossing (subset) 6,358 6,921 88,552 99.80%

— For the set of items I calculate

Coveraдe =
|R ∩ I |
|I | (2)

where R is the list of items recommended at least once.
— Popularity bias propagation per user group

— For every user group д calculate

%ΔGAP (д) =
GAP (д)r −GAP (д)p

GAP (д)p
∗ 100% (3)

where GAP (д)p is the average popularity of the items in the users’ profiles and GAP (д)r
is the average popularity of the items in the users’ recommended lists (see notation in
Abdollahpouri et al. [3]).

— For every user group д calculate NDCG@10 [23]. Items for which no rating is available in
the test set are assumed to have a utility of 0, as implemented by Ekstrand et al. [12].

We design the experiments by considering different choices for every aspect in which the stud-
ies deviated, and combining them in all possible ways. To train the models, we use the Cornac
library, since it contains almost all algorithms needed. Similarly to Kowald et al. [26] and Naghiaei
et al. [27], for every dataset we fix the random seed when splitting in training and test set for
reproducibility. The code we developed for our experiments4 has been made open source. In the
subsequent subsections we summarize the choices for each of the four aspects.

4.1 Data

We train the algorithms using MovieLens1M, LastFM, and Book-Crossing. We use the entire Movie-

Lens1M dataset, and the Book-Crossing subset that is used by Naghiaei et al. [27]. For computational
reasons, we do not experiment with the entire LastFM subset that Kowald et al. [26] use. The large
number of items makes some algorithms crash when combined with certain evaluation strategies,
and we wish to evaluate as many combinations as possible. Instead, we sample by removing items
with fewer than 20 ratings. This sampling does not decrease the number of users, but greatly de-
creases the number of items from 352,805 to 12,690. The characteristics of the resulting dataset can
be seen in Table 4. To assess whether the sampling has a large impact on the conclusions, we com-
pare our results with the results reported by Kowald et al. [26] and find that they are consistent.5

4.2 Algorithms

We train all collaborative filtering algorithms in Table 2, with the exception of UserItemAvg and
SVD++, which are not available in Cornac. In total, we train 11 collaborative filtering algorithms.
Note that we use the same default hyperparameters as Kowald et al. [26] and Naghiaei et al. [27].

4https://github.com/SavvinaDaniil/UnfairnessOfPopularityBias
5See Appendix, Section A.1.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

https://github.com/SavvinaDaniil/UnfairnessOfPopularityBias

Reproducing Popularity Bias in Recommendation 5:11

4.3 Division of Users in Groups

We divide the users in groups in the following ways:

(1) PopularPercentage: Divide the users based on the percentage of items in their profile that
have the label “popular” with a 20%-60%-20% scheme, in the same way as Abdollahpouri
et al. [3] and Naghiaei et al. [27]. An item gets the label “popular” if it is one of the 20% most
frequently rated items in the dataset.

(2) AveragePopularity: Divide the users based on the average popularity of items in their pro-
file with a 20%-60%-20% scheme. This approach is not followed by any of the studies. Given
that it may result into differently divided groups, and as it also does not depend on items
being labeled "popular", it is interesting to investigate how it impacts the results in terms of
whether certain user groups are unfairly treated by a recommender.

(3) Mainstreaminess: Divide the users based on the mainstreaminess score in the same way
as Kowald et al. [26]. This division is only tried on LastFM, given that the mainstreaminess
score can only be calculated on this dataset.

Note that while each study used domain-specific terms to refer to each user group, for simplicity we
will use the terms Niche, Diverse and Blockbuster-focused regardless the user division and dataset.

4.4 Evaluation Strategy

We apply all different evaluation strategies adopted by the studies. Specifically, the strategies vary
with regards to which user and item are candidates for generating recommendations.

(1) Modified TrainItems (Naghiaei et al. [27]):
(a) Recommend items to every user in the training set.
(b) Choose out of all the items.

(2) UserTest (Kowald et al. [26]):
(a) Recommend items to every user in the test set.
(b) Choose out of all the items the user has rated in the test set.

(3) TrainItems (Abdollahpouri et al. [3]):
(a) Recommend items to every user in the test set.
(b) Choose out of all the items the user has not rated in the training set.

5 RESULTS

In this section, we present the results across all popularity bias metrics for every experiment. First,
we discuss overall popularity bias propagation, and then we focus on propagation per user group.

5.1 Overall Popularity Bias Propagation

To evaluate overall popularity bias propagation for every combination of aspects, we report on
correlation and coverage as described in Section 4. Tables 5–7 show the above mentioned values
for each algorithm and each evaluation strategy, for MovieLens1M, LastFM and Book-Crossing, re-
spectively. In addition to the correlation and coverage tables, we choose one algorithm, namely
NMF, and plot frequency in profile versus in recommendation for every dataset and evaluation
strategy. Figure 2 includes the resulting scatter plots. Given the large number of experiments, we
include the scatter plots for the other algorithms in the Appendix, Figures 4 to 13. We analyze how
the different aspects affect the results. The type of user division in groups is not relevant here as
it does not relate to whether an algorithm overall propagates popularity bias.

5.1.1 Data. The resulting correlation and coverage vary across the three datasets. There is
not a clear pattern of a dataset being more or less prone to popularity bias across all algorithms.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:12 S. Daniil et al.

Table 5. Correlation and Item Coverage for the MovieLens1M Dataset

Modified TrainItems UserTest TrainItems

Correlation Coverage Correlation Coverage Correlation Coverage
UserKNN –0.0373 0.0124 0.7913 0.6654 –0.0375 0.0108
ItemKNN –0.0261 0.5229 0.9028 0.6832 –0.0439 0.4509

UserKNN with means –0.0821 0.0688 0.8012 0.6805 –0.0838 0.0618
BPR 0.4121 0.0216 0.8448 0.5901 0.4818 0.0586

MF 0.1685 0.5982 0.8841 0.7337 0.1080 0.5990
PMF 0.3429 0.2415 0.8399 0.6786 0.2761 0.2515
NMF –0.0456 0.1012 0.7977 0.6646 –0.0474 0.1012

WMF 0.3313 0.0157 0.8114 0.5923 0.3656 0.0229
HPF 0.6524 0.1058 0.8928 0.6141 0.7535 0.1743

NeuMF 0.4864 0.0583 0.8652 0.5947 0.5657 0.1033

VAECF 0.6312 0.1913 0.8906 0.6190 0.7240 0.2715

Mean 0.2576 0.1762 0.8474 0.6469 0.2784 0.1914

Table 6. Correlation and Item Coverage for the LastFM Dataset

Modified TrainItems UserTest TrainItems

Correlation Coverage Correlation Coverage Correlation Coverage
UserKNN 0.0537 0.0796 0.6586 0.3773 –0.0170 0.0403
ItemKNN 0.5614 0.6686 0.8881 0.7338 –0.0178 0.7097

UserKNN with means 0.1821 0.1422 0.6732 0.5031 –0.0259 0.0694
BPR 0.3823 0.0094 0.8192 0.2065 0.4556 0.0177

MF –0.0001 0.0008 0.9039 0.7095 –0.0034 0.0351
PMF –0.0081 0.0009 0.6223 0.2983 –0.0083 0.0009
NMF –0.0412 0.0133 0.7565 0.5489 –0.0413 0.0144

WMF 0.2999 0.1981 0.8191 0.4063 0.2621 0.2062
HPF 0.5819 0.0383 0.8390 0.3407 0.6836 0.0878

NeuMF 0.4844 0.0213 0.8385 0.2332 0.5586 0.0356

VAECF 0.6402 0.0866 0.8574 0.3006 0.7376 0.1256

Mean 0.2851 0.1145 0.7887 0.4235 0.2349 0.1221

However, we notice in Table 7 that the correlation averaged over all algorithms is higher than in
Tables 5 and 6 for a given evaluation strategy. In other words, when trained on the Book-Crossing

dataset, the algorithms on average result in recommended lists where item frequency is more
highly correlated with item popularity than when trained on the other two datasets. By this met-
ric, the subset of Book-Crossing used by Naghiaei et al. [27] is on average more prone to popularity
bias than MovieLens1M and LastFM.

Table 7 shows that the mean item coverage is also higher for Book-Crossing than for the other
two datasets in Tables 5 and 6 for a given evaluation strategy. For example, given Modified

TrainItems, the mean item coverage for Book-Crossing is 0.2892, for MovieLens1M 0.1762, and
for LastFM 0.1145. Looking at Figure 1 and Table 4, we see that Book-Crossing is very sparse and
popularity is scattered. Even very popular books have been rated by less than 350 users, in con-
trast with MovieLens1M where some movies have been rated by more than half of the users. It is
therefore expected that item coverage is higher, as popularity is less concentrated. Note also that
when UserTest is applied, the item coverage is higher for Book-Crossing than for MovieLens1M, and
especially for LastFM, not just on average but for every individual algorithm. These observations

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:13

Table 7. Correlation and Item Coverage for the Book-Crossing Dataset

Modified TrainItems UserTest TrainItems

Correlation Coverage Correlation Coverage Correlation Coverage
UserKNN 0.0407 0.2672 0.9121 0.8130 0.0385 0.2588
ItemKNN 0.7249 0.9835 0.9115 0.8138 0.7275 0.9766

UserKNN with means 0.0454 0.3658 0.9105 0.8148 0.0421 0.3569
BPR 0.4554 0.0014 0.9208 0.7992 0.4626 0.0023

MF 0.0507 0.2177 0.9105 0.8152 0.0498 0.1608
PMF 0.1454 0.0673 0.9142 0.8103 0.1406 0.0657
NMF –0.0364 0.2237 0.9124 0.8138 –0.0365 0.2137

WMF 0.8312 0.8951 0.9195 0.8047 0.8304 0.7180
HPF 0.8362 0.0714 0.9174 0.8067 0.8410 0.0923

NeuMF 0.4202 0.0014 0.9209 0.8000 0.4244 0.0023

VAECF 0.7338 0.0864 0.9177 0.8065 0.7418 0.0971

Mean 0.3861 0.2892 0.9152 0.8089 0.3875 0.2677

lead us to wonder whether high correlation is sufficient to conclude popularity bias propagation,
when it is not combined with low item coverage.

5.1.2 Algorithms. The algorithms propagate popularity bias in different degrees. Tables 5 to 7
show that BPR, HPF, NeuMF and VAECF consistently result in relatively high positive correlation,
as well as low item coverage for TrainItems and Modified TrainItems. In this sense, BPR, HPF, NeuMF

and VAECF are consistently prone to popularity bias. Note that these algorithms were only tested
by Naghiaei et al. [27], which means that the choice of algorithms may have a large impact on
whether popularity bias will be observed by a study. On the other hand, Figure 2 shows that NMF

shows no correlation for any dataset for TrainItems and Modified TrainItems, as is the case for
UserKNN.

5.1.3 Evaluation Strategy. Evaluation strategy has a large impact on the reported result. Across
all datasets and algorithms, there is a strong positive correlation between popularity in profile and
in recommendation when UserTest is employed. This observation is in line with the conclusions
of Kowald et al. [26] who used UserTest in their study, as well as their follow-up paper [25]. This
is due to UserTest only recommending to a user items that they have already consumed in the test
set. For example, if a test user has rated 8 items in the test set, only these items are candidates for
recommendation and they will all be recommended to that user given a 10-item recommendation.
In this case, it is reasonable that popularity in profile and in recommendation correlate; popular
items are more likely to be in the users’ test sets and therefore be candidates for recommendation.

It is also the case that for every dataset item, coverage is on average higher when UserTest is em-
ployed. For example, Table 5 shows that for MovieLens1M average coverage is 0.6469 when UserTest

is employed, while only 0.1762 and 0.1914 when Modified TrainItems and TrainItems are employed,
respectively. Given that candidates for recommendation are only the items from a user’s test set,
it follows that more items will be covered by the recommendation process as users have different
tastes. This is especially the case for Book-Crossing given its sparsity. The consistency in results
when UserTest is deployed prompts to consider that the popularity bias reported might mostly be
a result of the evaluation process instead of the algorithm’s functionality or data characteristics.

For TrainItems and Modified TrainItems, the results fluctuate per algorithm. Figure 2 shows that
for all datasets, NMF propagates popularity bias when evaluated with UserTest, but does not with
the other two strategies. TrainItems and Modified TrainItems show similar results overall. However,
in some cases the fact that TrainItems excludes items that the user has rated in the training set does

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:14 S. Daniil et al.

Fig. 2. Item popularity in profile versus frequency of recommendation by the algorithm NMF, for every

dataset and evaluation strategy.

impact the conclusion on whether popularity bias is propagated. For example, ItemKNN trained on
LastFM shows no correlation when TrainItems is employed, but positive correlation with Modified

TrainItems.

5.2 Popularity Bias Propagation per User Group

To assess popularity bias propagation per user group, we report on the %ΔGAP metric and on
NDCG@10, as described in Section 4. Given the large number of experiments, we choose to present
the results on LastFM since all three ways of dividing in user groups were possible on this dataset.
Tables 8–10 show the %ΔGAP value for each user group, algorithm and user division, using Modi-

fied TrainItems, UserTest and TrainItems, respectively. Tables 11–13 show NDCG@10 for each user
group, algorithm and user division, using Modified TrainItems, UserTest and TrainItems, respec-
tively. The results on the other datasets are included in the Appendix, Tables 15 to 26.

5.2.1 Algorithms. It is apparent in Tables 8 to 10 that certain algorithms consistently pro-
duce recommended lists with higher average popularity, while others do not. BPR, HPF, NeuMF

and VAECF showcase high %ΔGAP values for all groups, regardless the evaluation strategy. For

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:15

Table 8. %ΔGAP for Every User Group, Algorithm and Way of Dividing Users, when Modified TrainItems

is Used

Modified TrainItems

PopularPercentage AveragePopularity Mainstreaminess

N D BF N D BF N D BF
UserKNN −32.6∗ −32.6∗ −47.8 −27.6∗ −30.9∗ −52.7 −53.2 −28.2∗∗ −30.4∗

ItemKNN −20.8 −13.4∗ −28.6 −17.0∗ −11.6∗ −33.3 −17.4 −13.6 −24.2
UserKNN with means 6.3∗∗ −6.4∗ −25.7 10.9∗∗ −4.7∗ −30.0 −34.7 −4.6∗ 6.0∗∗

BPR 596.6∗∗ 352.6 240.0 611.0∗∗ 358.2 230.8 379.8∗ 355.4∗ 319.4
MF −49.0 –68.9 –78.3 –47.1 –68.6 –79.1 –67.6 –68.1 –71.4

PMF −69.7 −81.5 −87.1 −68.6 −81.3 −87.6 −80.8 −81.1 −83.1
NMF −78.6∗ −87.1∗ −90.9 −77.8∗ −87.0 −91.1 −86.1∗∗ −86.8∗ −88.4

WMF –2.8 14.2∗∗ 1.2 0.6 17.8∗∗ −7.0 −30.4 20.0∗ 32.5∗∗

HPF 150.4∗ 143.8∗ 125.2 166.0∗∗ 148.6∗ 110.1 93.2 153.2∗ 167.6∗∗

NeuMF 399.1∗∗ 242.3∗ 157.3 399.6∗∗ 243.9∗ 159.2 262.2∗ 239.0∗ 213.4
VAECF 126.6 181.0∗∗ 156.3∗ 125.1 182.7∗∗ 153.7∗ 156.6 175.8∗∗ 169.4∗

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding result is significantly
higher than for the two other groups, while ∗indicates that it is significantly higher than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

Table 9. %ΔGAP for Every User Group, Algorithm and Way of Dividing Users, when UserTest is Used

UserTest

PopularPercentage AveragePopularity Mainstreaminess

N D BF N D BF N D BF
UserKNN 21.9 35.2∗ 31.2∗ 23.7 36.7∗∗ 27.6 19.6 37.9∗ 39.0∗

ItemKNN −2.1 2.8 17.6∗∗ −3.4 2.9 17.4∗∗ 9.8∗ 2.2 7.2
UserKNN with means 16.5 31.7∗ 29.1∗ 18.2 33.1∗∗ 25.6 9.1 33.3∗ 43.1∗∗

BPR 171.6∗ 168.7∗ 108.1 181.9∗ 172.6∗ 98.4 136.3 178.2∗∗ 142.0
MF –0.4 –0.1 0.7 1.0 0.6 –1.2 0.2 –0.5 0.6

PMF 57.2 74.0∗∗ 62.3 59.7 77.4∗∗ 54.7 52.6 77.5∗ 75.0∗

NMF 16.9 21.6 30.1∗∗ 15.7 23.1 27.2∗ 16.8 22.2 30.4∗∗

WMF 20.6 40.2∗∗ 31.3 23.1 41.9∗∗ 27.0 13.7 42.7∗ 47.8∗

HPF 61.3 89.9∗∗ 72.1 71.4 92.7∗∗ 62.7 52.8 96.3∗ 93.3∗

NeuMF 123.8∗ 137.1∗ 90.6 131.3∗ 139.2∗ 84.9 112.4 140.5∗∗ 114.8
VAECF 63.7 114.8∗∗ 87.1∗ 69.7 117.0∗∗ 80.5∗ 84.4 116.9∗∗ 100.7∗

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding result is significantly
higher than for the two other groups, while ∗indicates that it is significantly higher than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

example, Table 8 shows that when Modified TrainItems is deployed and users are divided in groups
based on PopularPercentage or AveragePopularity, NeuMF recommends to Niche users items almost
4 times more popular than they have rated in their profiles (i.e., the %ΔGAP is 399.1 and 399.6, re-
spectively). Note that the same algorithms consisently result in high correlation and low coverage,
as discussed in Section 5.1.2.

Tables 11 and 13 show that given Modified TrainItems and TrainItems, BPR, HPF, NeuMF and
VAECF also result in high NDCG@10 regardless the user division. However, the NDCG@10 val-
ues are significantly lower for the Niche group. We can conclude that these algorithms tend to
recommend mostly popular items to all users when trained on LastFM, at least when their default
hyperparameters are used. On the contrary, MF mostly results in negative %ΔGAP values across
Tables 8 to 10, meaning that the average popularity in the recommended lists is reduced compared

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:16 S. Daniil et al.

Table 10. %ΔGAP for Every User Group, Algorithm and Way of Dividing Users, when TrainItems is Used

TrainItems

PopularPercentage AveragePopularity Mainstreaminess

N D BF N D BF N D BF
UserKNN −57.9∗∗ −82.0∗ −87.3 −56.1∗∗ −81.8∗∗ −87.9∗∗ −80.2 −81.6 −80.1
ItemKNN −57.6∗∗ −70.0∗ −77.8 −56.8∗∗ −70.6∗ −76.5 −49.4∗∗ −75.6∗ −85.2

UserKNN with means −51.8∗∗ −81.1∗ −87.3 −49.4∗∗ −81.1∗ −87.7 −77.5∗ −81.2 −79.3
BPR 580.6∗∗ 323.6 214.0 596.4∗∗ 328.1 206.5 362.1∗∗ 325.0∗ 288.2
MF –53.6∗∗ –70.4∗ –79.8 –51.7∗∗ –70.1∗ –80.7 –70.5∗ –69.5∗ −72.9

PMF −70.1∗ −81.8∗ −87.2 −69.0 −81.6 −87.6 −81.0 −81.3 −83.2
NMF −78.6 −87.1 −90.9 −77.8∗ −87.0 −91.1 −86.1 −86.8 −88.4

WMF −8.2 −5.0∗ −19.5 −5.6∗ −2.9∗ −24.3 −35.7 −0.8 5.8∗∗

HPF 120.4∗∗ 100.1∗ 86.8∗ 132.1∗∗ 103.4∗ 76.4 65.5 106.1∗ 121.7∗∗

NeuMF 382.6∗∗ 215.3∗ 138.1 384.5∗∗ 216.5∗ 140.3 244.7∗∗ 211.8∗ 187.9
VAECF 118.6 158.0∗∗ 133.4∗ 117.8 159.3∗∗ 131.3∗ 145.6 153.0 140.7

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding result is significantly
higher than for the two other groups, while ∗indicates that it is significantly higher than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

Table 11. NDCG@10 for Every User Group, Algorithm and Way of Dividing Users, when Modified

TrainItems is Used

Modified TrainItems

PopularPercentage AveragePopularity Mainstreaminess

N D BF N D BF N D BF
UserKNN 0.007 0.009 0.002∗ 0.010 0.007 0.004 0.010 0.005 0.007
ItemKNN 0.007 0.009 0.008 0.008 0.007 0.011 0.013 0.007 0.005

UserKNN with means 0.009 0.007 0.001∗ 0.011 0.006 0.002 0.012 0.004∗ 0.002∗

BPR 0.188∗∗ 0.325 0.352 0.188∗∗ 0.326 0.350 0.251∗∗ 0.335 0.323
PMF 0.013 0.012 0.003∗∗ 0.013 0.012 0.004∗∗ 0.015 0.012 0.006∗

NMF 0.006 0.008 0.006 0.007 0.008 0.005 0.007 0.010 0.004
WMF 0.200 0.222 0.213 0.206 0.227 0.192 0.155 0.242 0.251

HPF 0.278∗∗ 0.340 0.359 0.292∗∗ 0.335 0.357 0.260∗∗ 0.355 0.378
NeuMF 0.209∗∗ 0.339* 0.393 0.219∗∗ 0.337∗ 0.390 0.271∗∗ 0.350 0.351
VAECF 0.297∗∗ 0.376 0.396 0.294∗∗ 0.374 0.405 0.326∗∗ 0.379 0.388

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding result is significantly
lower than for the two other groups, while ∗indicates that it is significantly lower than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

to the users’ profiles. Finally, some algorithms like WMF are inconsistent when it comes to the
average popularity of the items they recommend to each group.

Additionally, Tables 8 to 10 show that BPR and NeuMF ’s recommendations generally result to
higher %ΔGAP for the Niche and Diverse groups compared to the Blockbuster-focused group. How-
ever, other algorithms do not showcase such consistency, as %ΔGAP fluctuates across evaluation
strategies and user divisions. Consequently, it is challenging to deduce that a set of algorithms
tend to treat Niche users unfairly while others do not. It might be that such conclusions can be
drawn given a specific context, and not about an algorithm’s inherent functionality.

5.2.2 User Division in Groups. The way the users are divided in groups in some cases deter-
mines whether the Niche user group is unfairly treated, as well as to what extent. For example, we
see in Tables 8 and 10 that for Modified TrainItems and TrainItems, HPF results in higher %ΔGAP
for Niche users with PopularPercentage and AveragePopularity, whereas with Mainstreaminess the

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:17

Table 12. NDCG@10 for Every User Group, Algorithm and Way of Dividing Users, when UserTest is used

UserTest

PopularPercentage AveragePopularity Mainstreaminess

N D BF N D BF N D BF
UserKNN 0.669 0.648 0.640∗ 0.668 0.646 0.645 0.643∗ 0.636∗ 0.672
ItemKNN 0.621∗ 0.620∗ 0.659 0.621∗ 0.620∗ 0.661 0.619∗ 0.622∗ 0.643

UserKNN with means 0.671 0.656 0.657 0.671 0.656 0.658 0.648∗ 0.647∗ 0.684
BPR 0.655 0.668 0.677 0.651∗ 0.667 0.683 0.625∗∗ 0.670∗ 0.706
PMF 0.665 0.646 0.662 0.661 0.644∗ 0.672 0.635∗ 0.642∗ 0.682
NMF 0.642 0.632 0.646 0.635 0.634 0.649 0.640 0.626 0.645

WMF 0.678 0.664 0.657 0.673 0.664 0.661 0.655∗ 0.654∗ 0.687
HPF 0.710 0.708 0.720 0.706 0.711 0.716 0.673∗∗ 0.707∗ 0.752

NeuMF 0.657∗ 0.675 0.690 0.656∗ 0.675 0.690 0.633∗∗ 0.680∗ 0.710
VAECF 0.695 0.693 0.707 0.693 0.694 0.705 0.663∗∗ 0.694∗ 0.730

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding result is significantly
lower than for the two other groups, while ∗indicates that it is significantly lower than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

Table 13. NDCG@10 for Every User Group, Algorithm and Way of Dividing Users, when

TrainItems is Used

TrainItems

PopularPercentage AveragePopularity Mainstreaminess

N D BF N D BF N D BF
UserKNN 0.010 0.015 0.002∗ 0.014 0.012 0.006 0.015 0.010 0.010
ItemKNN 0.013 0.019 0.028 0.013∗ 0.018 0.032 0.025 0.018 0.016

UserKNN with means 0.015 0.014 0.004∗∗ 0.020 0.012 0.004∗∗ 0.019 0.011 0.006∗

BPR 0.236∗∗ 0.456 0.479 0.242∗∗ 0.454 0.479 0.324∗∗ 0.460 0.466
PMF 0.013 0.013 0.003∗∗ 0.013 0.012 0.004∗ 0.015 0.012 0.006∗

NMF 0.006 0.008 0.006 0.007 0.008 0.005 0.007 0.010 0.004
WMF 0.307 0.301 0.282 0.309 0.314 0.242∗∗ 0.225∗∗ 0.333 0.338

HPF 0.389∗∗ 0.507 0.544 0.409∗ 0.505∗ 0.530 0.369∗∗ 0.532∗ 0.572
NeuMF 0.279** 0.489∗ 0.550 0.300∗∗ 0.488∗ 0.533 0.366∗∗ 0.505 0.508
VAECF 0.448∗∗ 0.556∗ 0.594 0.458∗ 0.555∗ 0.587 0.469∗∗ 0.565 0.591

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗ indicates that the corresponding result is significantly
lower than for the two other groups, while ∗ indicates that it is significantly lower than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

Blockbuster-focused group receive the highest increase in average popularity. Additionally, Popu-

larPercentage and AveragePopularity also sometimes result in different conclusions on which group
is unfairly treated. Table 8 shows that given Modified TrainItems, WMF recommends more or less
popular items to the Niche group depending on which user division is assumed (%ΔGAP of −2.8
for PopularPercentage and 0.6 for AveragePopularity).

PopularPercentage and AveragePopularity mostly result in similar trends in terms of which group
receives unfair treatment. On the other hand, Mainstreaminess often leads to different conclusions
than PopularPercentage and AveragePopularity. This is somewhat expected since Mainstreaminess is
not dependent on the propensity for popularity within the given data, but the mainstreaminess score

that characterizes the underlying population where this subset of LastFM stems from. Therefore,
in order to conclude unfair treatment of a group, it is necessary to define the characteristics of

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:18 S. Daniil et al.

the group in question and whether we refer to specific behavior within the training dataset or we
incorporate external information as well.

5.2.3 Evaluation Strategy. As is the case for overall popularity bias propagation, the choice of
evaluation strategy largely influences %ΔGAP . When UserTest is employed, almost all algorithms
provide recommendations with increased average popularity compared to user profile for all user
groups regardless the type of division (see Table 9). Even in cases where %ΔGAP is negative, the
decrease is small. Overall, when UserTest is deployed, the %ΔGAP values do not vary between
algorithms as much as given the other two evaluation strategies.

On the other hand, when Modified TrainItems and TrainItems are used, the results fluctuate
between algorithms. Furthermore, the recommended lists of the algorithms which consistently
perpetuate popularity bias for all groups (BPR, HPF, NeuMF and VAECF) showcase higher %ΔGAP
with Modified TrainItems compared to TrainItems across all types of user divisions (see Tables 8
and 10). This likely signifies that excluding items that a user has rated from the candidate list
reduces popularity bias. Given that by definition many users have rated the popular items, then
the popular items are excluded from many users’ candidate items list when TrainItems is deployed.

The choice of evaluation strategy also has a large effect on NDCG@10. Table 25 shows that
UserTest results in higher NDCG@10 than the other two strategies. Since the pool of candidate
items is limited to a user’s test items when UserTest is deployed, it follows that the recommended
list will likely be similar to the ‘ideal’ list. Additionally, the produced NDCG@10 values are gen-
erally higher for TrainItems than for Modified TrainItems across algorithms and user division in
groups. This is due to the exclusion of training items from a user’s candidate list when TrainItems

is deployed. In our calculation of NDCG@10, we only considered items to have a nonzero utility
for the user if they were consumed unbeknownst to the system, i.e., the test items (see [12]).

6 DISCUSSION AND FUTURE WORK

The results show that data, algorithms, user division in groups, and evaluation strategy influence
the conclusion on whether popularity bias is propagated and whether the users that have lesser
propensity for popular items are disproportionately affected. The datasets have impactful differ-
ences, especially when it comes to distribution of item popularity; Book-Crossing is a very sparse
dataset, which results in higher item coverage on average compared to the other two datasets,
even when correlation between popularity in profile and in recommendation is also high. At the
same time, the choice of which algorithms to include in the study influences the results; some ma-
trix factorization algorithms (HPF, NeuMF, VAECF) consistently propagate popularity bias, and in
most cases recommend disproportionately many popular items to the Niche users. User division
in groups often defines whether unfairness can be concluded, especially when a proxy measure
of propensity towards popular items is used that does not stem from the specific training dataset.
Finally, evaluation strategy, and specifically the generation of user and item candidates is overall
crucial given the effect it has on whether both overall popularity bias propagation and user group
unfairness can be observed.

The results indicate that perceived propagation of popularity bias is sensitive to various aspects
of the evaluation process that are often unaddressed. The fact that tweaking these aspects de-
termines whether propagation of popularity bias can be concluded or not renders the individual
conclusions of the studies unique to their context and set up, and less generalizable. We conclude
that it is challenging to report on popularity bias as a phenomenon that persists as a result of an
algorithm’s functionality. While some algorithms we studied do consistently propagate popularity
bias given our metrics, for most algorithms the results largely fluctuate depending on the other
aspects. Similarly, even though the choice of dataset does have an impact, we showed that the

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:19

divergence in results across the reproduced studies could not be solely attributed to the datasets’
characteristics.

Consequently, we recommend careful consideration of each of these aspects when popularity
bias is evaluated. Future studies on the topic should reflect on:

— Data: Which domain does the data come from? What is the size of the dataset? How sparse
is it? What is the long-tail item distribution?

— Algorithms: What type of optimization is performed? How sensitive is it to item popular-
ity?

— User division in groups: How is user propensity for popular items defined in this domain?
What characteristics would deem a user Niche? Is behavior in the dataset the relevant factor,
or is external information needed?

— Evaluation strategy: Which exact aspect of popularity bias is the study evaluating? How
can it be translated into choices for every step of the evaluation process?

Evaluation in the case of recommender systems is generally challenging. Offline evaluation, in
particular, is restricted by the lack of data or lack of absolute ground truth. The fact that a user has
rated an item highly does not necessarily mean that they prefer it to an unrated one; it can simply
mean lack of awareness. In other words, high accuracy in offline evaluation does not equate to a
successful system. As a result, the choice of evaluation strategy is often application-specific, which
extends further than the choice of metrics. For example, the same algorithm might be differently
evaluated when used in an application which recommends 5 items to a user instead of 10. Some
metrics can only be evaluated with certain strategies because of the data they require. For example,
Mean Absolute Error can only be calculated for user-item pairings that do exist in the dataset and
thus UserTest would be appropriate in this case. However, other metrics leave room for different
choices and there might not be one right way to evaluate them.

To appropriately evaluate a metric, it is important to consider what is the exact phenomenon it
is intended to measure. While popularity bias is not a recent topic within recommender systems
research, there is a certain lack of specificity around the exact meaning of it. Correlation, cover-
age, and difference in average popularity can all be useful in measuring some sides of popularity
bias, among others. Having said that, their interpretation requires careful design of an evaluation
process that answers the question we are wondering about. In the case of the three studies each
evaluation strategy answers a different question:

— Modified TrainItems does not disregard the items a user has already consumed from the
recommendation process. Such strategy is unsuitable when assessing general performance,
as it leads to information leakage. It could be used to assess popularity bias in a system
that does recommend to users items that they have already consumed and positively rated.
However, the information leakage needs to be considered and accounted for.

— UserTest only recommends to a user items that they have already consumed unknowingly
to the system (i.e., from the test set), which renders it inappropriate for evaluating overall
popularity bias. However, it might still be interesting to observe whether the items a user
has rated and are unseen to the system are differently ranked by the system than by the user,
because of popularity bias.

— TrainItems measures whether a learned model propagates popularity bias into unseen user-
item combinations. It is our belief that this strategy is the most appropriate to measure pop-
ularity bias, as it more closely resembles a real world scenario of learning the preferences of
the users and recommending items to them that they have not yet rated.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:20 S. Daniil et al.

Studies on the topic of popularity bias should account for these differences in evaluation strategy
by specifying the research question, as well as the evaluation strategy that accompanies it. To
ensure reproducibility of such studies, a way ahead could be to adapt the dimensions of evaluation
benchmarked by Said and Bellogín [29] into a checklist for submissions in conferences and journals.
Such an initiative can motivate researchers to critically think about the evaluation strategy they
employ in their experimentation, and allow for easier comparison between the reported results of
different studies.

Our study has limitations that future work should address. It is our intention to approach the
phenomenon of popularity bias fundamentally by locating specific data and recommendation char-
acteristics that instigate its propagation. While the aspects we identified through reproducing these
studies are very important, there are additional ones we plan to consider. First, our reported results
on UserKNN differ significantly from Abdollahpouri et al. [3] and Naghiaei et al. [27], even when
the same evaluation strategy and data are used. The reason is presumably tuning and implemen-
tation; Abdollahpouri et al. [3] state that they tuned all the algorithms to reach similar precision
in order to appropriately compare them. On the other hand, Naghiaei et al. [27] manually trained
UserKNN instead of using Cornac like they did for the other algorithms. This prompts us to con-
sider tuning an important aspect of the process as well, and future work should focus on the effect
it has on the propagation of popularity bias. In practice, algorithms are designed to satisfy some
accuracy metric instead of being trained with their default hyperparameters, and thus it is realis-
tic to assume that tuning takes place. Second, by measuring propagation of popularity bias with
cross-validation instead of one-shot prediction, we could account for random small differences be-
tween algorithms, and generalize their comparison. Finally, all three studies used different Python
libraries to perform the recommendation process. For future work, we plan to explore the effect
of potentially different implementations of the same algorithm across these libraries.

7 CONCLUSION

In this paper, we reproduced the analysis on the propagation of popularity bias by commonly
used collaborative filtering algorithms performed by three studies using different datasets from
the media domain. The studies evaluated overall popularity bias propagation, as well as whether
users with niche tastes were unfairly treated by the system. The results reported differed for both
evaluation tasks. We identified four aspects which varied across the three studies and could po-
tentially account for the divergence in results: data, algorithms, division of users in groups, and
evaluation strategy. We designed and carried out experiments to investigate to what extent each
aspect impacted the results by combining all possible choices for each aspect. We found that all
aspects affected the result to some degree. Evaluation strategy specifically largely accounted for
the divergence, as the one employed by the study in the music domain resulted in reporting prop-
agation of popularity bias for all datasets and all algorithms. We conclude that clarity around the
evaluation strategy employed during the recommendation process is necessary to reproduce and
compare analysis for different algorithms and datasets, especially for phenomena like popularity
bias whose evaluation is not standardized in literature yet.

A APPENDIX

This section serves as supplementary material.

A.1 LastFM: Comparison between Complete and Filtered Dataset

As described in Section 4.1, for computational reasons we filtered the LastFM dataset. We assessed
whether the sampling has a large impact on the conclusions by comparing our results with the
results reported by Kowald et al. [26]. In order to ensure sufficient compareability between the

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:21

results, we applied the code provided by Kowald et al. [26] on our sampled dataset. We plot the re-
lation between popularity in profile and recommendation frequency for every item in the sampled
dataset, given the algorithms UserKNN, UserKNN with means, and NMF, which are the algorithms
reported by Kowald et al. [26]. Figure 3 shows that there is a consistent correlation between popu-
larity in profile and frequency of recommendation. This conclusion aligns with the results reported
by Kowald et al. [26] and supports our argument that the consistent correlation stems from the
evaluation strategy deployed, regardless the filtering of the dataset.

Fig. 3. Relation between recommendation frequency and popularity in profile for the sampled LastFM

dataset.

Additionally, we calculated the MAE metric for each user group of the sampled dataset, as seen
in Table 14. While the exact numbers differ from the ones reported by Kowald et al. [26], the
trends are consistent, with the Niche user group receiving the worst rating predictions for the
given algorithms, evaluation strategy and division of users in groups.

Table 14. MAE Results for UserKNN, UserKNN with Means and NMF, Applied on

the Sampled LastFM Dataset

User group UserKNN UserKNN with means NMF

Niche 62.088∗∗ 55.422∗∗ 45.473∗∗

Diverse 54.599 45.171 37.537
Blockbuster-focused 57.353 52.147 45.584
All 57.397 50.088 42.239

The worst results are always given for the Niche user group (statistically significant
according to a t-test with p < .005 as indicated by ∗∗). Across the algorithms, the best
results are provided by NMF.

A.2 Extensive Results

A.2.1 Overall Popularity Bias Propagation. We plot item popularity in profile versus frequency
of appearance in the recommended lists of each algorithm, for every dataset and evaluation strat-
egy, in Figures 4 to 13.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:22 S. Daniil et al.

Fig. 4. Item popularity in profile versus frequency of recommendation by the algorithm UserKNN, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:23

Fig. 5. Item popularity in profile versus frequency of recommendation by the algorithm ItemKNN, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:24 S. Daniil et al.

Fig. 6. Item popularity in profile versus frequency of recommendation by the algorithm UserKNN with

means, for every dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:25

Fig. 7. Item popularity in profile versus frequency of recommendation by the algorithm MF, for every dataset

and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:26 S. Daniil et al.

Fig. 8. Item popularity in profile versus frequency of recommendation by the algorithm PMF, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:27

Fig. 9. Item popularity in profile versus frequency of recommendation by the algorithm WMF, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:28 S. Daniil et al.

Fig. 10. Item popularity in profile versus frequency of recommendation by the algorithm HPF, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:29

Fig. 11. Item popularity in profile versus frequency of recommendation by the algorithm NeuMF, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:30 S. Daniil et al.

Fig. 12. Item popularity in profile versus frequency of recommendation by the algorithm BPR, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:31

Fig. 13. Item popularity in profile versus frequency of recommendation by the algorithm VAECF, for every

dataset and evaluation strategy.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:32 S. Daniil et al.

A.2.2 Popularity Bias Propagation per User Group. We include the %ΔGAP values and
NDCG@10 for the datasets MovieLens1M and Book-Crossing, for every algorithm, evaluation
strategy and user division, in Tables 15 to 26.

Table 15. Percentage of Increase in Average Popularity of Items in Recommendation

Versus in the MovieLens1M Dataset (%ΔGAP) for Every User Group, Algorithm and Way

of Dividing Users, when Modified TrainItems is Used

Modified TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN −99.4∗ −99.5∗ −99.7 −99.3 −99.5 −99.7
ItemKNN −47.5∗∗ −77.6∗ −96.4 −35.6∗∗ −78.9 −98.3

UserKNN with means −98.4∗ −99.1∗ −99.5 −98.2 −99.1 −99.6
BPR 292.6 187.8 120.5 300.2 191.7 112.2
MF −34.2∗∗ −57.6∗ −68.8 −28.2∗∗ −57.6∗ −71.0

PMF 71.7∗∗ 38.8∗ 20.0 73.7∗∗ 36.6∗ 7.9
NMF −91.6 −94.3 −95.4 −91.4 −94.2 −95.6

WMF 249.8∗∗ 156.5∗ 95.3 258.4∗∗ 159.8∗ 87.4
HPF 126.3∗∗ 109.8∗ 83.0 130.6∗∗ 110.6∗ 80.4

NeuMF 214.8 156.6 108.2 221.0 159.5 101.6
VAECF 91.3 115.0∗∗ 91.3 93.2∗ 116.3∗∗ 88.2

∗∗indicates that the corresponding result is significantly higher than for the two other groups,
while ∗indicates that it is significantly higher than for one of the other groups. Statistical
significance was concluded based on a t-test with p < 0.005.

Table 16. Percentage of Increase in Average Popularity of Items in

Recommendation Versus in the MovieLens1M Dataset (%ΔGAP) for Every User

Group, Algorithm and Way of Dividing Users, when UserTest is Used

UserTest

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 44.0 24.2 8.8 48.4 24.9 6.0
ItemKNN 55.5 21.7 6.2 61.9 21.6 4.4

UserKNN with means 37.4 21.8 8.7 41.0 22.5 6.2
BPR 98.5 55.5 20.1 110.4 56.6 13.8
MF 24.7 15.5 6.0 28.5 15.6 4.4

PMF 44.2 25.3 10.0 50.6 25.7 6.8
NMF 50.1 28.0 11.1 55.9 28.7 7.7

WMF 88.3 47.8 17.2 98.6 48.7 11.9
HPF 59.9 38.8 15.1 68.0 39.6 10.4

NeuMF 71.2 47.0 18.2 81.2 47.9 12.6
VAECF 47.3 40.8 16.7 54.5 42.0 11.7

**indicates that the corresponding result is significantly higher than for the two other
groups, while *indicates that it is significantly higher than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:33

Table 17. Percentage of Increase in Average Popularity of Items in Recommendation

Versus in the MovieLens1M Dataset (%ΔGAP) for Every User Group, Algorithm and

Way of Dividing Users, when TrainItems is Used

TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN −99.5 −99.7 −99.8 −99.5 −99.7 −99.8
ItemKNN −60.6∗∗ −82.9∗ −97.1 −52.4∗∗ −83.7∗ −98.6

UserKNN with means −99.6 −99.7 −99.8 −99.6 −99.7 −99.8
BPR 269.9 170.2 108.9 274.4 174.2 101.5
MF −45.1∗∗ −62.9∗ −70.7 −42.3∗∗ −62.5∗ −72.5

PMF 45.5∗∗ 16.6∗ 3.0 45.5∗∗ 15.5∗ −6.6
NMF −93.0 −95.3 −96.2 −93.0 −95.1 −96.3

WMF 215.6∗ 129.5∗ 79.3 220.3∗∗ 133.2∗ 72.0
HPF 104.3∗∗ 82.9∗ 60.0 108.8∗∗ 83.4∗ 57.8

NeuMF 187.8 133.4 93.5 191.2 136.0 88.4
VAECF 82.2∗ 92.8∗∗ 72.5 83.6*s 93.7∗ 70.5

∗∗indicates that the corresponding result is significantly higher than for the two other groups,
while ∗indicates that it is significantly higher than for one of the other groups. Statistical
significance was concluded based on a t-test with p < 0.005.

Table 18. Percentage of Increase in Average Popularity of Items in Recommendation

Versus in the Book-Crossing Dataset (%ΔGAP) for Every User Group, Algorithm and

Way of Dividing Users, when Modified TrainItems is Used

Modified TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 25.2∗∗ −54.5∗ −73.3 70.9∗ −51.2 −80.3
ItemKNN 56.2∗∗ −34.4∗ −61.3 109.4∗∗ −28.1 −72.4

UserKNN with means 22.1∗∗ −54.9∗ −73.5 67.2 −51.4 −80.8
BPR 1119.0∗ 523.9∗ 295.2 1434.7 572.3 228.4
MF 23.0∗∗ −23.9∗ −57.8 44.7∗∗ −18.3∗ −62.4

PMF 186.2∗∗ 45.0∗ −5.2 253.0∗∗ 53.1∗ −15.1
NMF −47.1 −72.8 −82.7 −33.0 −70.8 −85.6

WMF 39.0 109.9∗∗ 81.4∗ 49.1 118.9∗∗ 67.0∗

HPF 283.6∗∗ 155.3∗ 91.3 369.7∗∗ 168.4 71.7
NeuMF 1030.7 478.7 266.6 1323.5 523.6 204.6
VAECF 420.8∗∗ 281.1∗ 193.2 553.3∗∗ 300.9 158.4

∗∗indicates that the corresponding result is significantly higher than for the two other groups,
while ∗indicates that it is significantly higher than for one of the other groups. Statistical
significance was concluded based on a t-test with p < 0.005.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:34 S. Daniil et al.

Table 19. Percentage of Increase in Average Popularity of Items in

Recommendation Versus in the Book-Crossing Dataset (%ΔGAP) for Every User

Group, Algorithm and Way of Dividing Users, when UserTest is Used

UserTest

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN −5.5 1.3 4.1 2.5 −0.6 3.7
ItemKNN −5.5 0.9 3.9 2.4 −1.0 3.6

UserKNN with means −5.6 1.0 4.1 2.3 −0.9 3.6
BPR −5.2 2.4 4.3 2.8 0.6 3.8
MF −5.6 0.8 4.0 2.4 −1.0 3.6

PMF −5.3 1.2 4.2 2.6 −0.6 3.7
NMF −5.5 1.1 4.0 2.4 −0.7 3.5

WMF −5.4 2.1 4.3 2.6 0.4 3.8
HPF −5.3 1.8 4.2 2.6 0.0 3.7

NeuMF −5.2 2.3 4.3 2.8 0.6 3.8
VAECF −5.6 1.9 4.3 2.4 0.1 3.8

**indicates that the corresponding result is significantly higher than for the two other
groups, while *indicates that it is significantly higher than for one of the other groups.
Statistical significance was concluded based on a t-test with p < 0.005.

Table 20. Percentage of Increase in Average Popularity of Items in Recommendation

Versus in the Book-Crossing Dataset (%ΔGAP) for Every User Group, Algorithm and

Way of Dividing Users, when TrainItems is Used

TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 24.9∗∗ −55.1∗ −73.2 69.8∗∗ −51.7 −80.2
ItemKNN 55.7∗∗ −34.9∗ −61.5 110.1∗∗ −28.9∗ −72.3

UserKNN with means 21.7∗∗ −55.7∗ −73.3 65.6∗ −52.0 −80.7
BPR 1116.6 517.8 291.0 1434.6 568.3 220.3
MF 26.1∗∗ −24.2∗ −60.9 49.6∗∗ −17.9∗ −66.0

PMF 185.9∗∗ 41.8∗ −8.4 256.0∗∗ 50.8∗ −20.0
NMF −47.2 −72.9 −82.9 −32.9 −71.0 −85.6

WMF 94.7 138.8∗∗ 92.2 107.0∗ 155.7∗∗ 68.7
HPF 271.4∗∗ 142.6∗ 82.3 364.7∗∗ 159.2 54.5

NeuMF 1027.0 470.5 260.6 1323.3 518.0 193.9
VAECF 419.1∗∗ 274.1∗ 191.1 554.3∗∗ 297.0 149.3

∗∗indicates that the corresponding result is significantly higher than for the two other groups,
while ∗indicates that it is significantly higher than for one of the other groups. Statistical
significance was concluded based on a t-test with p < 0.005.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:35

Table 21. NDCG@10 in the MovieLens1M Dataset for Every User Group, Algorithm

and Way of Dividing Users, when Modified TrainItems is Used

Modified TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 0.004 0.000 0.000 0.004 0.000 0.000
ItemKNN 0.046 0.037 0.005∗∗ 0.059 0.033∗ 0.003∗∗

UserKNN with means 0.002 0.000 0.000 0.002 0.000 0.000
BPR 0.316 0.336 0.320 0.311 0.337 0.322
MF 0.125 0.082∗ 0.040∗∗ 0.135 0.081∗ 0.032∗∗

PMF 0.197 0.194 0.204 0.206 0.194 0.196
NMF 0.011 0.005∗ 0.004∗ 0.012 0.005∗ 0.004∗

WMF 0.263 0.286 0.278 0.266 0.282 0.289
HPF 0.368 0.373 0.362 0.377 0.371 0.357

NeuMF 0.332 0.355 0.340 0.330 0.356 0.339
VAECF 0.357 0.376 0.381 0.356 0.380 0.370

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding
result is significantly lower than for the two other groups, while ∗indicates that it is
significantly lower than for one of the other groups. Statistical significance was concluded
based on a t-test with p < 0.005.

Table 22. NDCG@10 in the MovieLens1M Dataset for Every User Group, Algorithm

and Way of Dividing Users, when UserTest is Used

UserTest

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 0.951∗∗ 0.957∗ 0.961 0.951∗∗ 0.957∗ 0.961
ItemKNN 0.949∗∗ 0.952 0.951∗ 0.951 0.952 0.951

UserKNN with means 0.953∗∗ 0.960∗ 0.964 0.953∗∗ 0.959∗ 0.964
BPR 0.943∗∗ 0.950∗ 0.958 0.944∗∗ 0.950∗ 0.958
MF 0.952∗∗ 0.957 0.960 0.953∗ 0.956∗ 0.961

PMF 0.965∗∗ 0.968 0.971 0.964∗∗ 0.968 0.971
NMF 0.952∗∗ 0.958∗ 0.963 0.953∗∗ 0.958∗ 0.964

WMF 0.954∗∗ 0.960∗ 0.965 0.956∗ 0.960∗ 0.965
HPF 0.949∗∗ 0.953∗ 0.959 0.949∗ 0.953∗ 0.960

NeuMF 0.944∗∗ 0.951∗ 0.957 0.944∗∗ 0.950∗ 0.957
VAECF 0.940∗∗ 0.951∗ 0.957 0.941∗∗ 0.950∗ 0.958

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding
result is significantly lower than for the two other groups, while ∗indicates that it is
significantly lower than for one of the other groups. Statistical significance was concluded based
on a t-test with p < 0.005.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:36 S. Daniil et al.

Table 23. NDCG@10 in the MovieLens1M Dataset for Every User Group, Algorithm

and Way of Dividing Users, when TrainItems is Used

TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 0.004 0.000 0.000 0.004 0.000 0.000
ItemKNN 0.135 0.075∗ 0.010∗∗ 0.162 0.068∗ 0.004∗∗

UserKNN with means 0.002 0.000 0.000 0.002 0.000 0.000
BPR 0.477 0.489 0.444∗ 0.492 0.484 0.442∗∗

MF 0.148 0.091∗ 0.042∗∗ 0.163 0.089∗ 0.033∗∗

PMF 0.273 0.259 0.251 0.293 0.256∗ 0.239∗

NMF 0.013 0.006∗ 0.004∗ 0.014 0.005∗ 0.004∗

WMF 0.375 0.396 0.375 0.392 0.387 0.385
HPF 0.600 0.607 0.566∗ 0.630 0.603 0.549∗∗

NeuMF 0.501 0.531 0.492∗ 0.516 0.529 0.484∗

VAECF 0.584 0.595 0.579 0.605 0.596 0.553∗∗

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding
result is significantly lower than for the two other groups, while ∗indicates that it is
significantly higher than for one of the other groups. Statistical significance was concluded
based on a t-test with p < 0.005.

Table 24. NDCG@10 in the Book-Crossing Dataset for Every User Group, Algorithm

and Way of Dividing Users, when Modified TrainItems is Used

Modified TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 0.002 0.002 0.002 0.002 0.002 0.001
ItemKNN 0.015 0.009 0.005∗ 0.010 0.011 0.004∗

UserKNN with means 0.002 0.001 0.002 0.003 0.001 0.001
BPR 0.007∗∗ 0.040∗ 0.068 0.000∗∗ 0.024∗ 0.122
MF 0.003 0.006 0.003 0.001∗ 0.006 0.004

PMF 0.004∗∗ 0.012 0.014 0.003∗∗ 0.011 0.019
NMF 0.002 0.002 0.000 0.001 0.002 0.000

WMF 0.026∗∗ 0.040∗ 0.059 0.029∗ 0.037∗ 0.063
HPF 0.005∗∗ 0.032∗ 0.054 0.007∗∗ 0.027∗ 0.068

NeuMF 0.005∗∗ 0.038∗ 0.064 0.000∗∗ 0.023∗ 0.113
VAECF 0.013∗∗ 0.052∗ 0.093 0.013∗∗ 0.042∗ 0.122

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding
result is significantly lower than for the two other groups, while ∗indicates that it is significantly
lower than for one of the other groups. Statistical significance was concluded based on a t-test
with p < 0.005.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

Reproducing Popularity Bias in Recommendation 5:37

Table 25. NDCG@10 in the Book-Crossing Dataset for Every User Group,

Algorithm and Way of Dividing Users, when UserTest is Used

UserTest

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 0.971 0.968 0.972 0.972 0.968∗ 0.971
ItemKNN 0.974 0.965∗ 0.968 0.974 0.965∗ 0.967∗

UserKNN with means 0.970 0.963∗∗ 0.969 0.970 0.964∗ 0.966
BPR 0.969 0.965 0.969 0.970 0.965∗ 0.970
MF 0.973 0.970 0.975 0.973 0.970 0.973

PMF 0.974 0.970 0.973 0.973 0.970 0.973
NMF 0.972 0.968 0.971 0.973 0.968 0.970

WMF 0.971 0.966∗∗ 0.973 0.972 0.966∗∗ 0.973
HPF 0.969 0.965 0.968 0.970 0.965∗ 0.969

NeuMF 0.970 0.964∗ 0.969 0.970 0.964∗∗ 0.970
VAECF 0.969 0.965 0.970 0.968 0.966 0.969

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗indicates that the corresponding
result is significantly lower than for the two other groups, while ∗∗indicates that it is
significantly lower than for one of the other groups. Statistical significance was concluded
based on a t-test with p < 0.005.

Table 26. NDCG@10 in the Book-Crossing Dataset for Every User Group, Algorithm

and Way of Dividing Users, when TrainItems is Used

TrainItems

PopularPercentage AveragePopularity

N D BF N D BF
UserKNN 0.002 0.002 0.002 0.002 0.002 0.001
ItemKNN 0.016 0.009 0.006∗∗ 0.012 0.010 0.006

UserKNN with means 0.002 0.001 0.002 0.003 0.001 0.001
BPR 0.007∗∗ 0.042∗ 0.070 0.000∗∗ 0.026∗ 0.127
MF 0.003 0.006 0.004 0.001∗ 0.007 0.005

PMF 0.005∗∗ 0.013 0.017 0.003∗∗ 0.012 0.022
NMF 0.002 0.002 0.000 0.001 0.002 0.000

WMF 0.062∗ 0.067∗ 0.098 0.068∗ 0.064∗ 0.101
HPF 0.006∗∗ 0.038∗ 0.067 0.009∗∗ 0.032∗ 0.082

NeuMF 0.005∗∗ 0.039∗ 0.066 0.000∗∗ 0.024∗ 0.116
VAECF 0.018∗∗ 0.061∗ 0.108 0.018∗∗ 0.051∗ 0.138

N, D and BF signify Niche, Diverse and Blockbuster-focused. ∗∗indicates that the corresponding
result is significantly lower than for the two other groups, while ∗indicates that it is significantly
higher than for one of the other groups. Statistical significance was concluded based on a t-test
with p < 0.005.

REFERENCES

[1] Himan Abdollahpouri. 2019. Popularity bias in ranking and recommendation. In Proceedings of the 2019 AAAI/ACM

Conference on AI, Ethics, and Society. Association for Computing Machinery, New York, NY, USA, 529–530.
[2] Himan Abdollahpouri. 2020. Popularity Bias in Recommendation: A Multi-stakeholder Perspective. Ph.D. Dissertation.

University of Colorado at Boulder.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

5:38 S. Daniil et al.

[3] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2019. The unfairness of popularity
bias in recommendation. In RecSys Workshop on Recommendation in Multistakeholder Environments (RMSE ’19). https://
ceur-ws.org/Vol-2440/paper4.pdf RecSys Workshop on Recommendation in Multistakeholder Environments (RMSE);
Conference date: 20-09-2019.

[4] Chris Anderson. 2006. The Long Tail: Why the Future of Business is Selling Less of More. Hachette UK.
[5] Joeran Beel, Corinna Breitinger, Stefan Langer, Andreas Lommatzsch, and Bela Gipp. 2016. Towards reproducibility

in recommender-systems research. User Modeling and User-adapted Interaction 26 (2016), 69–101.
[6] Alejandro Bellogín, Pablo Castells, and Iván Cantador. 2017. Statistical biases in information retrieval metrics for

recommender systems. Information Retrieval Journal 20, 6 (2017), 606–634.
[7] Rodrigo Borges and Kostas Stefanidis. 2021. On mitigating popularity bias in recommendations via variational au-

toencoders. In Proceedings of the 36th Annual ACM Symposium on Applied Computing. 1383–1389.
[8] Òscar Celma and Pedro Cano. 2008. From hits to niches? Or how popular artists can bias music recommendation and

discovery. In Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Compe-

tition (NETFLIX ’08). Association for Computing Machinery, New York, NY, USA, Article 5, 8 pages. https://doi.org/
10.1145/1722149.1722154

[9] Giovanni Luca Ciampaglia, Azadeh Nematzadeh, Filippo Menczer, and Alessandro Flammini. 2018. How algorithmic
popularity bias hinders or promotes quality. Scientific Reports 8, 1 (2018), 15951.

[10] Israel Cohen, Yiteng Huang, Jingdong Chen, and Jacob Benesty . 2009. Pearson correlation coefficient. Noise Reduction

in Speech Processing (2009), 1–4.
[11] Paolo Cremonesi and Dietmar Jannach. 2021. Progress in recommender systems research: Crisis? What crisis? AI

Magazine 42, 3 (2021), 43–54.
[12] Michael D. Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D. Ekstrand, Oghenemaro Anuyah, David McNeill,

and Maria Soledad Pera. 2018. All the cool kids, how do they fit in?: Popularity and demographic biases in recom-
mender evaluation and effectiveness. In Conference on Fairness, Accountability and Transparency. PMLR, 172–186.

[13] Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Sorush Saghari, Shiva Parsa Rad, and Marko Tkalčič.
2021. Investigating the impact of recommender systems on user-based and item-based popularity bias. Information

Processing & Management 58, 5 (2021), 102655.
[14] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress? A

worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on Rec-

ommender Systems. 101–109.
[15] Asela Gunawardana, Guy Shani, and Sivan Yogev. 2022. Evaluating recommender systems. In Recommender Systems

Handbook. Springer, 547–601.
[16] Odd Erik Gundersen, Yolanda Gil, and David W. Aha. 2018. On reproducible AI: Towards reproducible research, open

science, and digital scholarship in AI publications. AI Magazine 39, 3 (2018), 56–68.
[17] Odd Erik Gundersen and Sigbjørn Kjensmo. 2018. State of the art: Reproducibility in artificial intelligence. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, Vol. 32.
[18] Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Massive Analysis Quality

Control (MAQC) Society Board of Directors, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul
Kundaje, Casey S. Greene, Tamara Broderick, Michael M. Hoffman, Jeffrey T. Leek, Keegan Korthauer, Wolfgang
Huber, Alvis Brazma, Joelle Pineau, Robert Tibshirani, Trevor Hastie, John P. A. Ioannidis, John Quackenbush, and
Hugo J. W. L. Aerts. 2020. Transparency and reproducibility in artificial intelligence. Nature 586, 7829 (2020), E14–E16.

[19] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens datasets: History and context. ACM Transactions on

Interactive Intelligent Systems (tiis) 5, 4 (2015), 1–19.
[20] Lei Hou, Xue Pan, and Kecheng Liu. 2018. Balancing the popularity bias of object similarities for personalised recom-

mendation. The European Physical Journal B 91 (2018), 1–7.
[21] Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Journal of Open Source Software 5, 52 (2020),

2174. https://doi.org/10.21105/joss.02174
[22] Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Science 359, 6377 (2018), 725–726. https://

doi.org/10.1126/science.359.6377.725 arXiv:https://www.science.org/doi/pdf/10.1126/science.359.6377.725
[23] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions

on Information Systems (TOIS) 20, 4 (2002), 422–446.
[24] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2014. Correcting popularity bias by enhancing

recommendation neutrality. RecSys Posters 805 (2014).
[25] Dominik Kowald and Emanuel Lacic. 2022. Popularity bias in collaborative filtering-based multimedia recommender

systems. In Advances in Bias and Fairness in Information Retrieval: Third International Workshop, BIAS 2022, Stavanger,

Norway, April 10, 2022, Revised Selected Papers. Springer, 1–11.

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

https://ceur-ws.org/Vol-2440/paper4.pdf
https://doi.org/10.1145/1722149.1722154
https://doi.org/10.21105/joss.02174
https://doi.org/10.1126/science.359.6377.725
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.359.6377.725

Reproducing Popularity Bias in Recommendation 5:39

[26] Dominik Kowald, Markus Schedl, and Elisabeth Lex. 2020. The unfairness of popularity bias in music recommendation:
A reproducibility study. In Advances in Information Retrieval, Joemon M. Jose, Emine Yilmaz, João Magalhães, Pablo
Castells, Nicola Ferro, Mário J. Silva, and Flávio Martins (Eds.). Springer International Publishing, Cham, 35–42.

[27] Mohammadmehdi Naghiaei, Hossein A. Rahmani, and Mahdi Dehghan. 2022. The Unfairness of Popularity Bias in
Book Recommendation. (2022). arXiv:cs.IR/2202.13446

[28] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence dâĂŹAlché
Buc, Emily Fox, and Hugo Larochelle. 2021. Improving reproducibility in machine learning research: A report from
the NeurIPS 2019 reproducibility program. Journal of Machine Learning Research 22 (2021).

[29] Alan Said and Alejandro Bellogín. 2014. Comparative recommender system evaluation: Benchmarking recommenda-
tion frameworks. In Proceedings of the 8th ACM Conference on Recommender systems. 129–136.

[30] Aghiles Salah, Quoc-Tuan Truong, and Hady W. Lauw. 2020. Cornac: A comparative framework for multimodal rec-
ommender systems. Journal of Machine Learning Research 21, 95 (2020), 1–5. http://jmlr.org/papers/v21/19-805.html

[31] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative filtering recommender systems.
In The Adaptive Web. Springer, 291–324.

[32] Markus Schedl. 2016. The LFM-1b dataset for music retrieval and recommendation. In Proceedings of the 2016 ACM on

International Conference on Multimedia Retrieval. 103–110.
[33] Nasim Sonboli, Masoud Mansoury, Ziyue Guo, Shreyas Kadekodi, Weiwen Liu, Zijun Liu, Andrew Schwartz, and

Robin Burke. 2021. Librec-Auto: A tool for recommender systems experimentation. In Proceedings of the 30th ACM

International Conference on Information & Knowledge Management (CIKM ’21). Association for Computing Machinery,
New York, NY, USA, 4584âĂŞ4593. https://doi.org/10.1145/3459637.3482006

[34] Catherine Stinson. 2022. Algorithms are not neutral. AI and Ethics (2022), 1–8.
[35] Emre Yalcin and Alper Bilge. 2021. Investigating and counteracting popularity bias in group recommendations. Infor-

mation Processing & Management 58, 5 (2021), 102608.
[36] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine learning algorithms: Theory and

practice. Neurocomputing 415 (2020), 295–316.
[37] Zihao Zhao, Jiawei Chen, Sheng Zhou, Xiangnan He, Xuezhi Cao, Fuzheng Zhang, and Wei Wu. 2021. Popularity bias

is not always evil: Disentangling benign and harmful bias for recommendation. CoRR arXiv preprint arXiv:2109.07946

abs/2109.07946 (2021). https://arxiv.org/abs/2109.07946
[38] Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee. 2021. Popularity bias in dynamic recommendation. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2439–2449.
[39] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving recommendation lists

through topic diversification. In Proceedings of the 14th International Conference on World Wide Web. 22–32.

Received 30 November 2022; revised 5 November 2023; accepted 2 December 2023

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 5. Publication date: March 2024.

http://arxiv.org/abs/cs.IR/2202.13446
http://jmlr.org/papers/v21/19-805.html
https://doi.org/10.1145/3459637.3482006
https://arxiv.org/abs/2109.07946

