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Abstract
Relational problems (those with many possible valid outputs) are different from decision problems,
but it is easy to forget just how different. This paper initiates the study of FBQP/qpoly, the class of
relational problems solvable in quantum polynomial-time with the help of polynomial-sized quantum
advice, along with its analogues for deterministic and randomized computation (FP, FBPP) and
advice (/poly, /rpoly).

Our first result is that FBQP/qpoly ̸= FBQP/poly, unconditionally, with no oracle – a striking
contrast with what we know about the analogous decision classes. The proof repurposes the
separation between quantum and classical one-way communication complexities due to Bar-Yossef,
Jayram, and Kerenidis. We discuss how this separation raises the prospect of near-term experiments
to demonstrate “quantum information supremacy,” a form of quantum supremacy that would not
depend on unproved complexity assumptions.

Our second result is that FBPP ̸⊂ FP/poly – that is, Adleman’s Theorem fails for relational
problems – unless PSPACE ⊂ NP/poly. Our proof uses IP = PSPACE and time-bounded Kolmogorov
complexity. On the other hand, we show that proving FBPP ̸⊂ FP/poly will be hard, as it implies a
superpolynomial circuit lower bound for PromiseBPEXP.

We prove the following further results:
Unconditionally, FP ̸= FBPP and FP/poly ̸= FBPP/poly (even when these classes are carefully
defined).
FBPP/poly = FBPP/rpoly (and likewise for FBQP). For sampling problems, by contrast,
SampBPP/poly ̸= SampBPP/rpoly (and likewise for SampBQP).
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1 Introduction

Here is a basic and underappreciated fact: there are computational problems – not distributed
or cryptographic tasks, but just pure computational problems – that provably admit only
randomized solutions. One simple example is: “output an n-bit Kolmogorov-random string.”
Another example is: “given as input a halting Turing machine M , output any string other
than what M outputs when run on its own description.”

Both of these are relational problems, defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Given
an input x, the goal in such a problem is to output any y such that (x, y) ∈ R. The class FP
consists of all relations R for which there exists a deterministic polynomial-time algorithm to
find a y such that (x, y) ∈ R whenever one exists. (Ironically, the F stands for “functional,”
even though the whole point with relational problems is that they need not be functions.)

It is trickier to define FBPP and FBQP, the relational analogues of BPP and BQP
respectively. For unlike with decision problems, we can no longer amplify success probabilities
by taking majorities, so different allowed error probabilities could lead to different complexity
classes. For this reason, a wide variety of definitions of FBPP have appeared in the literature
[19, 4, 25, 27, 22]. Having said that, there is one choice that seems more natural than others,
which Aaronson [4] made more than a decade ago and which we follow here.1

Call the relation R ⊆ {0, 1}∗ × {0, 1}∗ polynomially-bounded if there exists a polynomial
p such that |y| ≤ p(|x|) for all (x, y) ∈ R. Then:

▶ Definition 1. FBPP is the class of polynomially-bounded relations R ⊆ {0, 1}∗ × {0, 1}∗

for which there exists a polynomial-time randomized algorithm A such that for all x for which
there exists a y with (x, y) ∈ R and all ε > 0,

Pr[(x,A(x, 01/ε)) ∈ R] ≥ 1 − ε,

where the probability is over A’s outputs. FBQP is exactly the same except that A can now
be a quantum algorithm.

A few comments on this definition: we require A to succeed for any given ε > 0 in order
to avoid problems being in FBPP or FBQP for “accidental” reasons, i.e. that the fraction
of strings y such that (x, y) ̸∈ R happens to fall below some arbitrary threshold. We allow
time polynomial in 1/ε because, as we’ll see, there are natural reductions that need such
time. We demand that R be polynomially-bounded because otherwise, A might achieve
smaller and smaller error probabilities ε by outputting longer and longer strings, rather
than “doing better and better on the same strings,” which is not what we intuitively wanted
when we allowed poly(n, 1/ε) time. Finally, we do not require that membership in the
relation be efficiently verifiable, in contrast to Goldreich’s definition [19, Definition 3.1]. This
is for fairness to quantum algorithms: we want FBQP to contain the relational analogues
of problems like BosonSampling [6] and Random Circuit Sampling [7] that have played a

1 We also found that GPT-4 [30], when prompted to give a definition for FBPP, settled on one similar to
Definition 1. See the full version for the transcript.
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central role in recently claimed demonstrations of quantum computational supremacy [12, 34].
However, it seems unlikely that such problems can admit efficient verification of membership
in the relation.2

Already with FBPP and FBQP, some interesting phenomena rear their heads: for example,
we’ll observe in Section 4 that FP ̸= FBPP, unconditionally. Note that, because of the
requirement to succeed with probability 1 − ε for any ε > 0, this does not immediately follow
from the examples with which we opened the paper, but it does follow from modifications of
those examples, involving time-bounded Kolmogorov complexity or the time-bounded halting
problem.

The message of this paper is that the story of FBPP and FBQP becomes wilder still
– even more divergent from expectations formed from decision problems – once we bring
classical and quantum advice into the picture.

1.1 Advice Classes
Karp and Lipton [23] introduced the nonuniform complexity class P/poly and proved the
famous theorem that NP ⊂ P/poly would imply the collapse of the polynomial hierarchy.
Meanwhile, Adleman [10] proved that BPP ⊂ P/poly. Indeed, it is not hard to see that

BPP/rpoly = BPP/poly = P/rpoly = P/poly,

where /rpoly means “with polynomial-sized randomized advice,” and P/rpoly is the class of
languages that admit nonuniform polynomial-time bounded-error randomized algorithms
in which the only randomness comes from the advice. Note that the /rpoly advice is at
least as powerful as the /poly advice as the /poly advice can be seen as a distribution with
probability concentrated on a single string.

When we come to BQP, it’s natural to ask what happens when the advice can be a
quantum state on polynomially many qubits – perhaps a highly entangled state that’s
intractable to prepare on one’s own. To capture this question, in 2003 Nishimura and
Yamakami [29] defined the class BQP/qpoly, or Bounded-Error Quantum Polynomial-Time
with polynomial-size quantum advice.

▶ Definition 2. BQP/qpoly is the class of all languages L ⊆ {0, 1}∗ for which there exists a
polynomial-time quantum algorithm A, a polynomial p, and an infinite list of advice states
{|ψn⟩}n≥1, where |ψn⟩ is on p(n) qubits, such that for all n and all x ∈ {0, 1}n,

Pr[A(x, |ψn⟩) = L(x)] ≥ 2
3 .

Studying BQP/qpoly is one way to formalize the old question of “how much information
is in an n-qubit state.” On the one hand, if we think of an n-qubit state |ψ⟩ as a unit vector
in C2n , then it seems |ψ⟩ could provide an exponential amount of information – say, about
every possible input x ∈ {0, 1}n. On the other hand, Holevo’s Theorem [21] implies that we
can encode at most n bits into n qubits, in such a way that they can be reliably retrieved
later by measuring them.

2 For example, if the relation R ∈ FBQP defined in [6, Corollary 5.10] had efficient verification of
membership, then the Gaussian Permanent Estimation problem |GPE|2± [6, Problem 1.2] would be
solvable in FPPH, thus refuting either the Permanent-of-Gaussians Conjecture [6, Conjecture 1.5], the
Permanent Anti-Concentration Conjecture [6, Conjecture 1.6], or P#P ̸⊂ PH.
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1:4 A Qubit, a Coin, and an Advice String Walk into a Relational Problem

So then, does BQP/qpoly collapse with BQP/poly – that is, BQP with polynomial-sized
classical advice – or could it be vastly more powerful?

A priori, it’s not even obvious that BQP/qpoly ̸= ALL, where ALL is the class of all
languages. Underscoring this worry, it’s easy to show (for example) that PostBQP/qpoly =
ALL, where PostBQP means quantum polynomial time with postselected measurements. To
see this, given a language L and an input length n, we just need to consider the advice state

|ψn⟩ = 1√
2n

∑
z∈{0,1}n

|z⟩|L(z)⟩,

where L(z) = 1 if z ∈ L and L(z) = 0 otherwise. Then given an input x ∈ {0, 1}n, we first
measure |ψn⟩ in the standard basis, then postselect on getting the outcome |x⟩|L(x)⟩.

Despite the sometimes unsettling power of randomized and quantum advice, in 2004,
Aaronson [1] proved that BQP/qpoly ⊆ PostBQP/poly. Since Aaronson [2] also showed that
PostBQP = PP, and since adding deterministic advice “commutes” with standard complexity
class inclusions, this can be stated equivalently as BQP/qpoly ⊆ PP/poly.

This upper bound on the power of BQP/qpoly has a few implications. First, it immediately
implies that BQP/qpoly ̸= ALL, since PP/poly ̸= ALL is easy to show by a counting argument.
Second, it means that there is no hope, in the present state of complexity theory, of proving
that BQP/poly ̸= BQP/qpoly. For any such proof would imply BQP/poly ̸= PP/poly, and
hence (for example) that PSPACE does not have polynomial-size circuits. At best, one could
hope to show that BQPA/poly ̸= BQPA/qpoly for some oracle A. As it happens, even this
is still open, although Aaronson and Kuperberg [9] showed the existence of a unitary oracle
U such that BQPU/poly ̸= BQPU/qpoly, and there’s been recent progress toward replacing
this with an ordinary classical oracle [16, 28].

1.2 Relational Complexity Classes with Advice
In quantum computing, it has repeatedly been found that it’s easier to see the advantages
of quantum algorithms over classical ones once we switch attention from decision prob-
lems to relational and sampling problems. This is what happened, for example, with
BosonSampling [6], Random Circuit Sampling [7], and other sampling-based approaches to
demonstrating quantum supremacy. It is also what happened with the recent breakthrough
of Yamakawa and Zhandry [35], which achieved an exponential quantum speedup relative to a
random oracle – but only by switching from decision problems (where the Aaronson-Ambainis
Conjecture [5] asserts that no such separation is possible) to NP search problems, a particular
kind of relational problem.3

In this paper, then, we do something that could’ve been done at any point in the past 20
years, but apparently wasn’t: namely, we ask about the advantages of quantum over classical
advice on relational problems.

▶ Definition 3. FBQP/qpoly is the class of polynomially-bounded relations R ⊆ {0, 1}∗ ×
{0, 1}∗ for which there exists a polynomial-time quantum algorithm Q, a polynomial p(n,m),
and an infinite list of advice states {|ψn,m⟩}n,m≥1, where |ψn,m⟩ is on p(n,m) qubits, such
that for all x for which there exists a y such that (x, y) ∈ R and all m,

Pr[(x,Q(x, 0m, |ψn,m⟩)) ∈ R] ≥ 1 − 1
m
.

3 If one just wants a superpolynomial quantum speedup relative to a random oracle for some relational
problem – not necessarily an NP search problem – then Aaronson [3] showed that the problem of
outputting large Fourier coefficients of a random Boolean function does the job.
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The one subtlety in this definition is that the advice state |ψn,m⟩ is allowed to depend,
not only on the input length n, but on the desired error probability ε = 1/m. We claim
that this is simply the “right” choice: efficiency in this setting means time polynomial in n

and 1/ε, so the advice ought to be allowed to depend on both parameters as well.
Of course, it doesn’t make much sense to feed quantum advice to a classical complexity

class (e.g., FP/qpoly). On the other hand, it’s sensible to consider FP/rpoly: this corresponds
to classical algorithms that only get to use random bits if they come from the advice.

▶ Definition 4. FP/rpoly is the class of polynomially-bounded relations R ⊆ {0, 1}∗ × {0, 1}∗

for which there exists a polynomial-time deterministic classical algorithm A, a polynomial
p(n,m), and an infinite list of advice distributions {Dn,m}n,m≥1, where Dn,m is supported
on {0, 1}p(n,m), such that for all x for which there exists a y such that (x, y) ∈ R and all m,

Pr
r∼Dn,m

[(x,A(x, 0m, r)) ∈ R] ≥ 1 − 1
m
.

We can similarly define FBPP/rpoly, FBQP/poly, and other possible combinations; we
omit the details.

1.3 Our Results
We show that switching attention to relational problems dramatically changes the picture of
randomized and quantum computation in the presence of advice.

Our first result is that quantum advice unconditionally provides more power than classical
advice to solve relational problems:

▶ Theorem 5. FBQP/qpoly ̸= FBQP/rpoly.

So in particular, FBQP/qpoly ̸= FBQP/poly. Indeed, we shall see that FBQP/qpoly is
not contained in FC/poly for arbitrarily powerful uniform complexity classes C: for example,
the class of all computable problems. This is despite the fact that FBQP/qpoly does not
equal ALL – as can be seen, for example, by considering its restriction to Boolean-valued
problems, where it coincides with PromiseBQP/qpoly ⊆ PromisePP/poly.

As we discuss in Section 3, this complexity class separation suggests the possibility of a
near-term experiment, which would run an FBQP/qpoly protocol in order to check explicitly
whether an entangled state of n qubits (where, say, n ≈ 20) encodes ≫ n bits of classical
information. We hope further work will clarify whether such an experiment is feasible with
current devices.

Theorem 5 is nonconstructive, and does not give an explicit example of a relation in
FBQP/qpoly but not FBQP/rpoly (not counting, e.g., the use of brute force to find the
lexicographically first relation that works). We leave the “explicitization” of this separation
as one of our central challenges.

Our second result shows that Adleman’s Theorem [10], that BPP ⊂ P/poly, almost
certainly does not extend to relational problems: 4

4 After this manuscript first appeared, Ilango, Li, and Williams [22] implicitly established a conceptually
similar result that FBPP ̸⊂ FP/poly under plausible assumptions. They show a conditional lower bound
for the range avoidance problem Avoid, which lies in FBPP (whenever the stretch is at least linear).
Roughly, [22, Theorem 28] shows that if subexponentially-secure indistinguishability obfuscation exits
and coNP is not in NP/poly infinitely often, then Avoid ̸∈ FP/poly. Comparatively, our result seems to
weaken the assumption required to separate FBPP from FP/poly, but only in the sense that non-collapse
of PH is a better-tested assumption than the existence of indistinguishability obfuscation.

ITCS 2024



1:6 A Qubit, a Coin, and an Advice String Walk into a Relational Problem

▶ Theorem 6. If FBPP ⊂ FP/poly, then PSPACE ⊂ NP/poly (and hence PH collapses).

We complement Theorem 6 with a result showing that an unconditional proof of FBPP ̸⊂
FP/poly is unlikely in the current state of complexity theory, as it would imply breakthrough
circuit lower bounds:

▶ Theorem 7. FBPP ⊆ FPPromiseBPEXP. Hence, if PromiseBPEXP ⊂ PromiseP/poly, then
FBPP ⊂ FP/poly.

We also show that, when FP and FBPP are either both given advice or both not given
advice, the separation between them becomes unconditional:

▶ Theorem 8. FP ̸= FBPP.

▶ Theorem 9. FP/poly ̸= FBPP/poly.

This underscores yet another difference between decision and relational problems: if C1
and C2 are two uniform classes of promise problems, then the question of whether C1 ⊂ C2/poly
is equivalent to the question of whether C1/poly ⊆ C2/poly, since an advice string can just
be appended to the input. With relational complexity classes such as FBPP, however, this
equivalence is no longer immediate, since it doesn’t account for how the length of the advice
can depend on the error bound ε.

A last question is whether our separation between classical and quantum advice, in the
relational setting, extends to a separation between deterministic and randomized advice. We
show that the answer is no:

▶ Theorem 10. FBPP/rpoly = FBPP/poly = FP/rpoly and FBQP/rpoly = FBQP/poly.

See Figure 1 for the complexity class inclusion diagram that emerges from our results
about relational classes.

We remark that several of our results are sensitive to the choices we made in defining
FBPP and its variants, especially in regards to error reduction. In Section 5, we explore
the consequences of choosing some alternative error bounds in Definition 1. There, we find
that Theorems 6, 8, and 9 no longer hold unconditionally if we demand exponential error
reduction, meaning that the algorithm outputs a sample consistent with the relation with
probability 1 − ε in time polylogarithmic in 1/ε.5 So, our results could be interpreted in
two different ways: either as showing a striking contrast between relational and decisional
classes, or as showing the remarkable power of FBPP when we don’t demand exponential
error reduction. We leave it to the reader to decide, and hope that this work inspires more
discussion about subtleties in the definitions.

1.4 Quantum Communication Complexity
As it turns out, essentially everything we need to prove Theorem 5 was proved 20 years ago,
by Bar-Yossef, Jayram, and Kerenidis [13] – though the fact that this is so is buried in their
paper. These authors considered separations between randomized and quantum one-way
communication complexities. That is, they considered the setting where Alice has an input
x, Bob has an input y, and Alice can send a message mx to Bob, which should then allow
Bob to compute some joint property of x and y.

5 By contrast, Theorem 5 is unaffected by such a change in definition, because the FBQP/qpoly algorithm
used in our proof will turn out to be errorless.
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FBQP/qpoly

Theorem 5

FBQP/rpoly = FBQP/poly
Theorem 10

FBPP/rpoly = FBPP/poly = FP/rpoly
Theorem 10

Theorem 9

FP/poly

FPPromiseBPEXP

Theorem 7

FBPP

Theorem 8

FP

Theorem 6

Figure 1 Relationships among classes of relational problems considered in this paper. A solid
arrow from C1 to C2 indicates strict containment (C1 ⊊ C2). A dashed arrow indicates a containment
C1 ⊆ C2 that we conjecture to be strict, but a proof of strictness would require a breakthrough
in complexity theory. A crossed dashed arrow indicates non-containment (C1 ̸⊂ C2) under the
assumption that PH does not collapse.

Let T be a task, which might be the evaluation of a Boolean function f(x, y), but might
also be a sampling or relational problem. We define D1(T ), R1(T ), and Q1(T ) to be
the minimum number of bits sent from Alice to Bob in any deterministic, bounded-error
randomized, or bounded-error quantum one-way communication protocol respectively that
lets Bob perform the task for all valid input pairs (x, y) (with the number of bits maximized
over all such input pairs). We assume no shared randomness or entanglement.

Clearly D1(T ) ≥ R1(T ) ≥ Q1(T ) for all tasks T . A natural question is how large
the separations between the measures can be. It’s well-known that D1 and R1 can be
exponentially separated: for example, for the N -bit EQUALITY function EQ, we have
D1(EQ) = N while R1(EQ) = O(logN). But what about R1 versus Q1?

To study this, Bar-Yossef, Jayram, and Kerenidis [13] defined a relation problem called
Hidden Matching or HM. Here Alice is given a string x ∈ {0, 1}N (with N even), while
Bob is given a perfect matching y on the set [N ], consisting of N/2 edges. Bob’s goal is to
output (i, j, xi ⊕ xj) for some edge (i, j) ∈ y. The key result is then the following:

▶ Theorem 11 ([13]). Q1(HM) = O(logN), whereas R1(HM) = Ω(
√
N).

Crucially for us, Bar-Yossef, Jayram, and Kerenidis actually proved the following stronger
statement:

▶ Theorem 12 ([13, Proof of Theorem 4.1, page 373]). Let M be any set of perfect matchings
on [N ] that is pairwise edge-disjoint and satisfies |M| = Ω(N). Let µ be the distribution
over inputs to HM in which Alice’s input is uniform in {0, 1}N and Bob’s input is uniform
in M. Then, any deterministic one-way protocol for HM that errs with probability at most
1/8 with respect to µ requires Ω(

√
N) bits of communication.

To prove Theorem 5, in Section 2, we adapt Theorem 11 to the setting of FBQP/qpoly,
treating the advice as one-way communication from an advisor to the FBQP algorithm.

ITCS 2024



1:8 A Qubit, a Coin, and an Advice String Walk into a Relational Problem

To understand the situation more deeply, recall the result of Aaronson [1] from before,
that BQP/qpoly ⊆ PP/poly. A direct analogue of that result for one-way communication
complexity [1] says that D1(f) and Q1(f) are close whenever Bob’s input is small:

▶ Theorem 13 ([1]). For all Boolean functions f : {0, 1}n × {0, 1}m → {0, 1} (partial or
total), D1(f) = O(mQ1(f) logQ1(f)).

This paper is pointing out that Theorem 13, and BQP/qpoly ⊆ PP/poly, both fail
catastrophically for sampling and relational problems. This seems not to have been known
even to experts who we asked. One reason, perhaps, is that the original separation of Bar-
Yossef, Jayram, and Kerenidis [13] was partly overshadowed by the later work of Gavinsky
et al. [18]. The latter modified the Hidden Matching relational problem to obtain a partial
Boolean function, called Boolean Hidden Matching or BHM. They then showed that
Q1(BHM) = O(logN) whereas R1(BHM) = Ω(

√
N).

We are calling attention to a surprising difference between the original Hidden Matching
separation and the later Boolean Hidden Matching one. Namely: we can make Bob’s input
“small” (say, O(logn) bits) in the HM separation, even though we cannot do the same in the
BHM separation. For Boolean f , Theorem 13 shows that an exponential gap between D1(f)
and Q1(f) is possible only when Bob’s input is “large.”

1.5 Other Proofs
Let us make a few remarks about our other results, proved in Sections 2 and 4. To
show that FBPP/rpoly = FBPP/poly, we just take deterministic advice that consists of
O(n/ε2) independent samples from the randomized advice distribution, and then appeal
to a Hoeffding and union bound. To show that FP ̸= FBPP, we consider the problem of
outputting an n-bit string with large time-bounded Kolmogorov complexity.6 To show that
FBPP ⊆ FPPromiseBPEXP, we give a simple polynomial-time algorithm that builds a string in
the relation one bit at a time, using the PromiseBPEXP oracle.

Finally, and most interestingly, to show that a “relational Adleman’s Theorem” (FBPP ⊂
FP/poly) is unlikely to hold, we build on an old idea due to Buhrman and Torenvliet [15]. We
show that, if the problem of generating strings of high conditional time-bounded Kolmogorov
complexity were in FP/poly, then in the IP = PSPACE protocol [32], we could replace the
randomized verifier by a deterministic polynomial-size circuit. Roughly speaking, the verifier
replaces each random challenge with a string of high time-bounded Kolmogorov complexity
conditioned on the prior transcript of the protocol. To argue that this derandomization is
sound, we just have to show that the “bad” choices of randomness (i.e. those that cause the
verifier to accept when it should reject) all have low conditional time-bounded Kolmogorov
complexity. We complete the proof by observing that this derandomization would put
PSPACE into NP/poly.

1.6 Sampling Problems
We conclude with some results about sampling problems, which are closely related to relation
problems. A sampling problem is defined by a collection of probability distributions Dx.
Given an input x, the goal is to output a sample from Dx, either exactly or approximately.

6 An alternative approach (not shown here) is to prove FP ≠ FBPP using a direct diagonalization. The
core idea of this argument is captured in [19, Section 3.1].
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Like for relational problems, we call a sampling problem S = {Dx}x∈{0,1}∗ polynomially-
bounded if there exists a polynomial p such that for every x, Dx is a distribution over strings
of length at most p(|x|). Again following Aaronson [4], we define the basic complexity class
like so:

▶ Definition 14. SampBQP is the class of polynomially-bounded sampling problems S =
{Dx}x∈{0,1}∗ for which there exists a polynomial-time quantum algorithm Q such that for all
x and all ε > 0,

∥DQ(x, 01/ε) − Dx∥ ≤ ε,

where DQ(x, 01/ε) represents Q’s output distribution on input (x, 01/ε) and ∥∥ represents
total variation distance.

Again, we can consider the classical analogue SampBPP (the deterministic version,
SampP, doesn’t make much sense). We can also combine with deterministic, randomized,
and quantum advice like in Definition 3, to get SampBPP/poly, SampBQP/qpoly, and so on.
For example:

▶ Definition 15. SampBPP/rpoly is the class of polynomially-bounded sampling problems
S = {Dx}x∈{0,1}∗ for which there exists a polynomial-time randomized algorithm A, a
polynomial p(n,m), and an infinite list of advice distributions {Dn,m}n,m≥1, where Dn,m is
supported on {0, 1}p(n,m), such that for all x and all m,

∥DA(x, 0m,Dn,m) − Dx∥ ≤ 1
m
,

where DA(x, 0m,Dn,m) represents A’s output distribution on input (x, 0m, y) averaged over
y ∼ Dn,m and ∥∥ represents total variation distance.

Note that our separations will also hold for the exact versions of these sampling classes,
but the ε-approximate versions are more robust and seem of greater interest.

Our basic results, proved in Section 6, are as follows. First, we show that sampling classes
are more powerful with randomized advice than with deterministic advice:

▶ Theorem 16. SampBPP/poly ̸= SampBPP/rpoly and SampBQP/poly ̸= SampBQP/rpoly.

To prove Theorem 16, we simply choose a probability distribution over {0, 1}n randomly
for each n, then appeal to a counting argument.

Second, as a straightforward corollary of Theorem 5, we show that quantum advice
provides more power than classical advice for sampling problems:

▶ Theorem 17. SampBQP/rpoly ̸= SampBQP/qpoly.

Theorem 16 contrasts with the situation for relational problems, where FBPP/poly =
FBPP/rpoly by Theorem 10. This is noteworthy because Aaronson [4] used Kolmogorov
complexity to prove a general connection between sampling problems and relational problems.
This connection had the following implication, among others:

▶ Theorem 18 ([4]). FBPP = FBQP if and only if SampBPP = SampBQP.

Yet as we now see, the “equivalence” does not force the question of the power of randomized
advice to have the same answer for sampling problems that it has for relational problems.

See Figure 2 for a complexity class inclusion diagram that summarizes our results about
sampling classes.
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1:10 A Qubit, a Coin, and an Advice String Walk into a Relational Problem

SampBQP/qpoly

Theorem 17

SampBQP/rpoly

Theorem 16

SampBQP/poly

SampBPP/rpoly

Theorem 16

SampBPP/poly

Figure 2 Relationships among classes of sampling problems considered in this paper. A solid
arrow from C1 to C2 indicates strict containment (C1 ⊊ C2). A dashed arrow indicates a containment
C1 ⊆ C2 that we conjecture to be strict, but a proof of strictness would require a breakthrough in
complexity theory.

2 Deterministic, Randomized, and Quantum Advice

We start this section by observing that for relational problems, randomized advice gives no
more power than deterministic advice.

▶ Theorem 10. FBPP/rpoly = FBPP/poly = FP/rpoly and FBQP/rpoly = FBQP/poly.

Proof. We first prove that FBPP/rpoly = FBPP/poly. The proof of FBQP/rpoly =
FBQP/poly is identical but with quantum algorithms in place of randomized algorithms, so
we omit it. Let R be a relational problem in FBPP/rpoly, decided by an algorithm A. Fix
an input length n and an ε > 0. Let Dn,ε be the distribution over advice strings. Then for
all x ∈ {0, 1}n, we must have

Pr
w∼Dn,ε

[(x,A(x, 01/ε, w)) ∈ R] ≥ 1 − ε.

In our FBPP/poly simulation, we’ll take (say) k = 100n/ε2 independent samples
w1, . . . , wk from Dn,ε/2 as the advice. Given an input x, we’ll then just pick i ∈ {1, . . . , k}
uniformly at random and output A(x, 02/ε, wi). By Hoeffding’s inequality, we have that for
any fixed x ∈ {0, 1}n,

Pr
w1,...,wk

[
Pr

i

[
A(x, 02/ε, wi) ∈ R

]
< 1 − ε

]
≤ exp

(
−kε2/2

)
.

Hence, by a union bound over all x ∈ {0, 1}n, there exists some choice of w1, . . . , wk that
allows the FBPP/poly simulation to succeed with probability at least 1 − ε on every x.

Lastly, we also have FBPP/rpoly = FP/rpoly, since the randomized advice to an FP
machine can include as many uniformly random bits as are needed to simulate any desired
FBPP machine. ◀

We now prove the unconditional separation between FBQP with quantum advice and
FBQP with classical advice.

▶ Theorem 5. FBQP/qpoly ̸= FBQP/rpoly.

Proof. From Theorem 10, it suffices to show that FBQP/qpoly ̸= FBQP/poly. Let F =
{fn}n≥1 be an infinite family of Boolean functions, with fn : {0, 1}n → {0, 1}. Then we
define the following relation problem:
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RF = {(x, (y, b)) : x, y ∈ {0, 1}n, b ∈ {0, 1}, fn(y) ⊕ fn(y ⊕ x) = b}.

In other words, given an input x ∈ {0, 1}n, the problem is to output another string y ∈ {0, 1}n,
along with a bit b, such that fn(y) and fn(y ⊕ x) XOR to b.

We first show that, for all F , this problem is in FBQP/qpoly. The quantum advice state
is simply

|ψn⟩ := 1√
2n

∑
y∈{0,1}n

(−1)fn(y)|y⟩.

Given an input x ∈ {0, 1}n, along with |ψn⟩, the algorithm is now as follows. If x = 0n, then
just output (y, 0) for any y ∈ {0, 1}n. Otherwise, first find a matrix A ∈ F(n−1)×n

2 whose
nullspace is {0, x}. Then map |ψn⟩ to

1√
2n

∑
y∈{0,1}n

(−1)fn(y)|y⟩|Ay⟩

and measure the |Ay⟩ register in the computational basis, to reduce the |y⟩ register to the
form

(−1)fn(y)|y⟩ + (−1)fn(y⊕x)|y ⊕ x⟩√
2

for some y. Then measure the above state in the {|y⟩ ± |y ⊕ x⟩} basis, to learn the relative
phase b := f(y) ⊕ f(y ⊕ x). Finally, output y, b. This algorithm succeeds with certainty for
every x.

By contrast, Theorem 12 implies that, with probability 1 over the choice of F , the problem
is not in FBQP/poly, or indeed in FBQP/rpoly. For each possible input x ̸= 0n gives rise to
a matching Mx := {(y, y ⊕ x) | y ∈ {0, 1}n} on {0, 1}n, and these matchings are pairwise
edge-disjoint. So, if we imagine that Alice holds the truth table of a random Boolean
function fn, consisting of N = 2n bits, while Bob holds a random index x of the matching,
we find that Alice must send Ω(

√
N) = Ω(2n/2) classical bits to Bob to allow him to satisfy

the relation RF with a success probability of at least 7/8.
In the actual problem, of course, the function fn is fixed for each n, rather than chosen

by an Alice, and the FBQP/poly algorithm Q’s behavior depends on the fn’s via the classical
advice, rather than a message from Alice. Given a choice of F , let aF,n,m ∈ {0, 1}poly(n,m)

be the advice string for inputs of length n with error 1/m. Then in order for Q to be correct
on x ∈ {0, 1}n, we require that for all m,

Pr [(x,Q(x, 0m, aF,n,m)) ∈ RF ] ≥ 1 − 1/m.

If we imagine that F = {fn}n≥1 is chosen uniformly at random, then we can bound the
probability that Q satisfies this condition on all inputs of length n, i.e.

Pr
F

[∀x ∈ {0, 1}n : Pr [(x,Q(x, 0m, aF,n,m)) ∈ RF ] ≥ 1 − 1/m]

≤ Pr
F,x∼{0,1}n

[Pr [(x,Q(x, 0m, aF,n,m)) ∈ RF ] ≥ 1 − 1/m]

≤ m

m− 1 Pr
F,x∼{0,1}n

[(x,Q(x, 0m, aF,n,m)) ∈ RF ] ,
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1:12 A Qubit, a Coin, and an Advice String Walk into a Relational Problem

where the last line uses Markov’s inequality. Choose m = 16, so that aF,n,m is a string of
length poly(n) = o

(
2n/2)

. Then combining the above bound with Theorem 12 implies that

Pr
F

[∀x ∈ {0, 1}n : Pr [(x,Q(x, 0m, aF,n,m)) ∈ RF ] ≥ 1 − 1/m] ≤ 16
15 · 7

8 = 14
15

for all sufficiently large n. Moreover, this probability is independent for each n ∈ N, because
each fn is chosen independently, so the overall probability that any choice of advice allows
Q to compute RF is at most

∏∞
n=1 14/15 = 0. This is to say that a uniformly random F

satisfies RF ̸∈ FBQP/poly with probability 1. ◀

Note that, in the proof of RF ̸∈ FBQP/poly, we nowhere needed the fact that the
algorithm was an efficient quantum algorithm (i.e., FBQP), but only that the algorithm
succeeds with bounded error. Hence we can conclude more generally that RF ̸∈ FC/poly for
uniform complexity classes C with arbitrarily large computational power, such as PSPACE,
EXP, BPEXP, R, and so on. We additionally get RF ̸∈ FBQP/rpoly, because FBQP/rpoly =
FBQP/poly.7 On the other hand, we cannot say that RF ̸∈ FC/rpoly for any C, because
of the way the success conditions of certain complexity classes interact with randomized
advice: as an example, PostBPP/rpoly = ALL, and so a reasonably defined relational analogue
FPostBPP/rpoly certainly would contain RF .

It is interesting to ask just how efficient we can make the quantum algorithm of Theorem 5.
We describe how to implement the measurement on |ψn⟩ via a simpler circuit, without the
need to compute the matrix-vector multiplication Ay. We claim the following: first, the
quantum circuit for measuring |ψn⟩ and learning the output string y, b can be taken to be
a stabilizer circuit. Second, this stabilizer circuit has O(n) size and can be constructed in
O(n) time.

To see why, suppose for example that the input x is 001111. Suppose we measure |ψn⟩
according to the circuit in Figure 3, and get the result z = z1z2z3z4z5z6. We claim that this
measurement result corresponds to collapsing the input state to

|y⟩ + (−1)b|x⊕ y⟩√
2

,

where y = z1z2z3z4z50 and b = z6. The easiest way to see why is to consider the resulting
state when we apply the inverse circuit to |z⟩.

For a general x of Hamming weight k ≥ 1, we choose an arbitrary i for which xi = 1,
and let qubit i play the role of measuring b. The circuit will consist of k − 1 CNOT gates
between qubit i and the other qubits j for which xj = 1, followed by a single Hadamard gate
on qubit i to measure b.

One more comment: our proof of Theorem 5 was nonconstructive, in the sense that we
did not exhibit any particular F such that RF ̸∈ FBQP/poly, but merely used counting to
show that a random F works with probability 1. Thus, it is natural to wonder whether
we could find an “explicit” F , say F ∈ FPSPACE, such that RF ̸∈ FBQP/poly under a
plausible hardness assumption. We do not know, but we would like to observe that for the
promise problem versions of these classes – namely PromiseBQP/poly and PromiseBQP/qpoly
– general principles imply (perhaps surprisingly) that, if there is any separation at all, then
the separation can be witnessed “explicitly”:

7 Alternatively, RF ̸∈ FBQP/rpoly can be shown directly by a small modification of the above proof:
simply replace the advice string aF,n,m with a sample from an advice distribution. This works because
Theorem 12 lower-bounds randomized one-way communication complexity, not just deterministic, by
Yao’s principle [36].
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x1 = 0 z1

x2 = 0 z2

x3 = 1 z3

x4 = 1 z4

x5 = 1 z5

x6 = 1 • • • H z6

Figure 3 A circuit for measuring the state |ψn⟩ in Theorem 5. Note that the circuit will depend
on the input x; an example with x = 001111 is shown. First, all qubits i such that xi = 0 are
measured in the computational basis. Next, the qubits i such that xi = 1 are measured to determine
two things: (i) a computational basis state modulo a NOT gate being applied to each qubit; and (ii)
the relative phase between those two basis states, one with the NOT gates applied and the other
without (this is the purpose of the sole Hadamard gate).

▶ Proposition 19. Suppose PromiseBQP/poly ̸= PromiseBQP/qpoly. Then there is a
PromisePP problem in PromiseBQP/qpoly but not in PromiseBQP/poly.

Proof. We prove the contrapositive. Suppose

PromisePP ∩ PromiseBQP/qpoly ⊆ PromiseBQP/poly.

Let Π = (ΠY ,ΠN ) be a promise problem in PromiseBQP/qpoly. Aaronson [1] showed
that PromiseBQP/qpoly ⊆ PromisePP/poly. Let {wn}n≥1 be the advice strings for the
PromisePP/poly machine. Then we define a new promise problem Π′, whose yes-instances
have the form (x,wn) for x ∈ ΠY ∩ {0, 1}n, and whose no-instances have the form (x,wn) for
x ∈ ΠN ∩ {0, 1}n. Clearly Π′ ∈ PromisePP. We also have Π′ ∈ PromiseBQP/qpoly, since we
can just ignore wn. By assumption, then, Π′ ∈ PromiseBQP/poly. But moving wn back to
the advice, this means that Π ∈ PromiseBQP/poly as well. Therefore PromiseBQP/qpoly =
PromiseBQP/poly. ◀

So in particular, under a plausible complexity assumption, namely BQP/poly ̸=
BQP/qpoly, there is an explicit problem in FBQP/qpoly but not in FBQP/poly – for observe
that promise problems are a special case of relational problems.

Of course, for relational problems we would like to do better than this observation, by
constructing an explicit problem in FBQP/qpoly \ FBQP/poly under a “standard” hardness
assumption, one about complexity classes like EXP or PSPACE or P/poly.

3 Toward Quantum Information Supremacy

The extreme simplicity of the circuit in Figure 3 to measure the advice state |ψn⟩ – namely, a
linear number of 1- and 2-qubit Clifford gates – raises the question of whether an experiment
“witnessing” the separation between FBQP/rpoly and FBQP/qpoly might be feasible with
current technology, and on a large enough scale to be interesting.

As it happens, Kumar, Kerenidis, and Diamanti [24] reported an experimental demonstra-
tion of the Bar-Yossef-Jayram-Kerenidis Hidden Matching protocol [13] in 2018. However,
their experiment used an optical coherent state with 2n modes, and tiny average photon
number per mode, in order to simulate n qubits. It therefore didn’t directly test the question
of whether n qubits (encoded, say, using n entangled particles) require exp(n) ≫ n bits to
simulate classically. This is the question that we propose to test now.
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We are finally in the era of small programmable quantum computers: devices that can run
more-or-less arbitrary circuits (subject to locality constraints) on ∼ 100 qubits and ∼ 1000
gates, and then extract a detectable signal on measurement. Within the past few years,
these devices have been used to assert the milestone of “quantum computational supremacy”
– that is, a clear advantage over currently-available classical algorithms and hardware – for
contrived tasks such as Random Circuit Sampling and BosonSampling (see, e.g., [12, 34]).

Notably, these quantum supremacy tasks are validated using, e.g., Google’s Linear Cross-
Entropy Benchmark [12], which lets us see them as literally relational problems. In Random
Circuit Sampling, for example, we are given as input a classical description of an n-qubit
quantum circuit C. We are then asked to output any distinct strings s1, . . . , sk ∈ {0, 1}n

that satisfy an inequality such as

k∑
i=1

|⟨si|C|0n⟩|2 ≥ 1.002k
2n

.

When, say, k ≈ n, the above yields a relational problem in FBQP that is plausibly conjectured
not to be in FBPP (see, e.g., Aaronson and Gunn [8]).

Of course, any conjecture of this sort rests on unproved computational hardness assump-
tions: if nothing else, then P ̸= PSPACE! Alas, “standard” hardness assumptions have not
sufficed here. The fundamental drawback of current quantum supremacy experiments is that,
with each concession that we need to make to experimental reality – for example, depolarizing
noise, photon losses, a limited number of qubits (to keep the classical verification feasible),
limited circuit depth (to control the noise), limited qubit connectivity, etc. – the relevant
hardness assumptions move to shakier and shakier ground. Furthermore, the worry about
classical spoofing is far from hypothetical! Classical algorithms for simulating noisy random
quantum circuits have improved, both in theory and in practice (see, e.g., [17, 31, 11]) – if
not enough to kill the current claims of quantum supremacy outright, then enough to call
them into reasonable doubt.

Thus, wouldn’t it be great if a meaningful quantum supremacy experiment could be
designed based on no unproved hardness assumptions? Such an experiment might, for
example, try to falsify the hypothesis that every “realistic” entangled state of n qubits is
secretly describable using p(n) classical bits, for some small polynomial p, whether due to
noise or experimental limitations or even a breakdown of quantum mechanics itself. Note
that this marks a fundamental difference compared to existing experiments based on (say)
Bell inequality violations – whereas the Bell/CHSH experiments test the nonlocal nature of
quantum correlations, they in no way test the exponential dimensionality of Hilbert space.
As far as we know, the experiments we propose here would be the first directly to test the
latter without relying on any unproved computational assumptions.

In such an experiment, we might first prepare a random n-qubit entangled state |ψ⟩, then
measure |ψ⟩ in a basis B chosen randomly and “on the fly” – just like Alice’s and Bob’s
measurement bases in the Bell/CHSH experiment are ideally chosen when the entangled
photons are already in flight. We would repeat this process many times, with a new random
basis B each time, collect statistics on the measurement outcomes, and then argue that no
p(n)-bit classical digest of |ψ⟩ could possibly have allowed those statistics to be reproduced.

This is exactly what we suggest to do, by leveraging the unconditional separation
between FBQP/rpoly and FBQP/qpoly, which in turn is based on the unconditional separation
between randomized and quantum one-way communication complexities. Note that such
an experiment would almost certainly be impractical with current hardware, if the required
measurements on |ψ⟩ were complicated ones. In practice, then, it is essential that we
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have not merely an exponential separation in one-way communication complexities for a
relational problem, but one wherein Bob’s measurements are “simple” – which is the content
of FBQP/rpoly ̸= FBQP/qpoly.

The detailed consideration of such an experiment is beyond this paper’s scope. Briefly,
though, laying the groundwork for this experiment would involve refining and improving
the FBQP/rpoly ≠ FBQP/qpoly separation in several ways. Firstly, one would want a
separation between randomized and quantum advice length that was as quantitatively tight
as possible, and that also included concrete bounds for particular small numbers of qubits
n, such as 20 or 30. Secondly, one would want to account for the complexity of preparing
the advice state |ψ⟩: for example, what if we chose |ψ⟩ = C|0n⟩, where C is a random
quantum circuit with m gates? Thirdly, one would, if possible, want the measurements of
|ψ⟩ to be even simpler than the one from Figure 3, and lower-depth: for example, could one
even measure each qubit separately? Fourthly, one would want an analysis that accounted
for |ψ⟩ being extremely noisy – as it will be, in any near-term implementation – and that
carefully quantified the experimental resources needed to achieve a clear separation between
randomized and quantum advice length even in the teeth of the noise. See Section 7 for
further discussion of these challenges, especially the quantitative tightness one.

Once all the challenges are taken into account, the separation between randomized and
quantum information achievable with current devices might be rather modest, as it was in
the earlier work by Kumar, Kerenidis, and Diamanti [24]. For example, perhaps it will be
possible to perform an experiment with n ≈ 20 qubits, using 2-qubit gates of 99.8% fidelity
or whatever, to verify that any secretly classical description of the qubits’ state (even a
probabilistic description) would need at least ∼ 100 bits, in order to explain the observed
success at measuring the state to solve a relational problem. In our view, though, this
would already be a historic result, sufficient to disturb the certainty of those who regard
the vastness of Hilbert space as just a theoretical fiction. We hope to address some of the
challenges in future work.

4 The Power of FBPP

In this section we show several senses in which FBPP behaves differently from its decision-
problem counterpart. We start with an unconditional separation between FP and FBPP.
▶ Theorem 8. FP ̸= FBPP.
Proof. Recall the definition of Levin’s time-bounded Kolmogorov complexity: for a string y,

Kt(y) := min
P :P ()=y

(|P | + log2 t(P )) :

that is, we minimize the length of a program P (in some fixed programming language) plus
the logarithm of P ’s runtime, over all programs P that output y given a blank input. Now
consider the relation

R = {(x, y) : |x| = |y|,Kt(y) ≥ |y|
2 }.

We first show that R ∈ FBPP. Given an input of length n, the strategy depends on the
allowed error probability ε. If ε ≥ 1

2n/2 , then we can simply output a uniformly random
y ∈ {0, 1}n; a counting argument will then imply that Kt(y) ≥ n

2 with probability at least
1 − ε. If, on the other hand, ε < 1

2n/2 , then we can use brute force to find and output the
lexicographically first string y ∈ {0, 1}n such that Kt(y) ≥ n

2 . This takes time exponential
in n, so polynomial in 1

ε .
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Next we show that R ̸∈ FP. Let A be a deterministic algorithm with polynomial running
time p(n); then for all n, we clearly have

Kt(A(0n)) ≤ |A| + log2 n+ log2 p(n).

But the above is less than n
2 for all sufficiently large n, which proves that A cannot

compute R. ◀

Next we show that the unconditional separation still holds if FP and FBPP both have
polynomial-sized advice.

▶ Theorem 9. FP/poly ̸= FBPP/poly.

Proof. For each n and x ∈ {0, 1}n, choose a subset Sx ⊂ {0, 1}n uniformly at random and
independently subject to |Sx| = 2n/2. We then define the following relational problem R:

R = {(x, y) : |y| = |x|, y ̸∈ Sx}.

In other words: given as input an n-bit string x, the problem is to output an n-bit string y
that is not in Sx.

We first claim that R ̸∈ FP/poly, with probability 1 over the choice of Sx’s. This is
because, for any fixed FP/poly algorithm C and any n, we have

Pr
{Sx}x∈{0,1}n

[(x,C(x)) ∈ R ∀x ∈ {0, 1}n] ≤
(

1 − 1
2n/2

)2n

= 1
exp(2n/2)

,

which remains small even after we take a union bound over all possible C’s.
By contrast, we claim that R ∈ FBPP/poly. The algorithm is as follows: if ε ≥ 1/2n/2,

then just output a uniformly random y ∈ {0, 1}n. If, on the other hand, ε < 1/2n/2, then
the advice string can have size 2nn = poly(n, 1/ε), and can therefore just provide a giant list
containing some y ̸∈ Sx for each possible x ∈ {0, 1}n. ◀

Finally, we give strong evidence that FBPP ̸⊂ FP/poly.

▶ Theorem 6. If FBPP ⊂ FP/poly, then PSPACE ⊂ NP/poly (and hence PH collapses).

Proof. We use an idea of Buhrman and Torenvliet [15], which is in turn based on the
IP = PSPACE theorem and conditional time-bounded Kolmogorov complexity.8

Given strings x and y, we define

Kt(y|x) := min
P :P (x)=y

(|P | + log2 t(P, x)),

or the time-bounded Kolmogorov complexity of y conditioned on x, to be the minimum, over
all programs P (in some fixed programming language) such that P (x) = y, of the bit-length
of P plus the log of its runtime on input x.

We now define the following relation:

R∗ := {((x, 0n), y) : y ∈ {0, 1}n,Kt(y|x) ≥ n/2}.

8 Buhrman and Torenvliet [15] used these ideas to prove that PSPACE ⊆ NPRCS
s , where RCS

s is an oracle
to decide whether a given string has maximal space-bounded conditional Kolmogorov complexity. We,
by contrast, are interested in the nonuniform complexity of relational problems. Outputting strings of
large time-bounded conditional Kolmogorov complexity is a convenient relational problem for proving
the implication we want.
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In other words, given as input x (which could have some arbitrary length m = poly(n)) and
0n, the problem is to output an n-bit string y that cannot be computed too quickly by any
short, deterministic program given x.

Our first claim is that R∗ ∈ FBPP. The argument is the same as in the proof of Theorem
8; the fact that we condition on x makes no difference. And so – we save this fact for later
– if FBPP ⊂ FP/poly, then R∗ is also decided by some polynomial-size family of circuits
{Cm,n}m,n≥1.

We now recall the relevant facts about the proof of IP = PSPACE (see [32] for details).
Let ϕ be an instance of TQBF , the canonical PSPACE-complete problem. Then to verify
that ϕ ∈ TQBF , the verifier engages the prover in an n-round conversation about a certain
complicated (but polynomial-sized) arithmetic expression of the form

P =
∑

x1∈{0,1}

Rx1

∏
x2∈{0,1}

Rx1Rx2

∑
x3∈{0,1}

Rx1Rx2Rx3 · · ·
∏

xn∈{0,1}

Rx1 · · ·Rxn
φ(x1, . . . , xn)

over the finite field Fq, where we take q to be a prime such that q > 16n2 . The expression
involves three types of quantifiers over variables: sums, products, and so-called degree
reduction operators (these are the Rxi

’s).
The expression P is constructed by carefully arithmetizing ϕ to maintain the following

properties:
1. P = 1 if ϕ ∈ TQBF while P = 0 if ϕ ̸∈ TQBF .
2. For any t, if we substitute field values r1, . . . , rt−1 ∈ Fq at the first t− 1 quantifiers in an

appropriate way, remove the tth quantifier, and keep in place everything to the right of
the tth quantifier, then we are left with a univariate polynomial ht(xi) of degree at most
poly(n) over Fq, where xi is the variable that appears in the tth quantifier. (The whole
purpose of the degree reduction operators is to ensure this.)

The conversation proceeds in T ≤ n2 + 1 rounds, one for each quantifier. At round t,
the prover sends the verifier a univariate polynomial gt : Fq → Fq, and makes the crucial
claim that gt = ht as polynomials over Fq, where ht is the univariate polynomial discussed
previously, which depends on the random finite field values r1, . . . , rt−1 ∈ Fq chosen by the
verifier in the previous rounds. After applying some preliminary checks, the verifier then
tests the prover’s claim by choosing a new rt ∈ Fq uniformly at random and sending it to
the prover, and the conversation continues. Finally, at the very last round, the verifier can
check gT directly against a polynomial obtained by arithmetizing ϕ.

The key fact is that, by the Fundamental Theorem of Algebra, if gt ̸= ht as polynomials,
then gt(r) and ht(r) can coincide on at most max{deg(gt),deg(ht)} = nO(1) values of r.
And these are the only values of r ∈ Fq that can cause the protocol to fail at round t (in the
sense that the verifier will now accept even though ϕ ̸∈ TQBF ).

For technical reasons to be explained later, let s ∈ {0, 1}nO(1) be a polynomial-sized string
that is chosen uniformly at random and then fixed.

We now make the following observation: in place of a uniformly random rt ∈ Fq, the
verifier could send any rt ∈ Fq such that Kt(rt|s, ϕ, r1, . . . , rt−1, gt) ≥ 2n2.

To see why, consider a “bad” rt: that is, one such that gt(rt) = ht(rt), even though
gt ̸= ht as polynomials. As we said, there can be at most nO(1) such bad rt’s. Furthermore,
we claim that the complete list of bad rt’s can be generated in 2TnO(1) time, given ϕ and
s, r1, . . . , rt−1 and gt as input, with overwhelming probability over the choice of s.

To generate the list, we first compute ht explicitly as a polynomial over Fq, by simply
“brute-forcing” every sum and product over a variable xi ∈ {0, 1} and every degree reduction
operator that appears to the right of the tth quantifier. This takes time 2T −tnO(1), since
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we pick up a factor of 2 for every quantifier that needs to be brute-forced. We next factor
the polynomial gt(r) − ht(r) over the finite field Fq – for example, by using the randomized
algorithm due to Berlekamp [14], which runs in poly(n, log q) = poly(n) time, and which
fails with probability at most 1/2p(n), where p is a polynomial that we can make as large as
needed by choosing a large enough randomness string s to feed to Berlekamp’s algorithm.
Finally, from the degree-1 irreducible factors of gt − ht, we extract the solutions r ∈ Fq to
gt(r) = ht(r).

Thus, letting Π be a program that does the above, for any bad rt, we have

Kt(rt|s, ϕ, r1, . . . , rt−1, gt) ≤ |Π| + log2 deg(gt − ht) + log2(2TnO(1)),

which is less than 2T for all large enough n and T ≈ n2. And so, taking the contrapositive,
if rt has conditional time-bounded Kolmogorov complexity at least 2T , then it cannot be
bad.

But if we set x := ⟨s, ϕ, r1, . . . , rt−1, gt⟩, then the problem of finding an rt such that

Kt(rt|s, ϕ, r1, . . . , rt−1, gt) ≥ 2T

can be solved by finding a y ∈ {0, 1}4n2 such that ((x, 04n2), y) is in the relation R∗. And
we said that, by the assumption FBPP ⊂ FP/poly, there is a polynomial-size circuit family
{Cm,n}m,n≥1 that does this.

Hence we can decide TQBF in NP/poly, as follows. Given as input a TQBF instance
ϕ(x1, . . . , xn), the polynomial-sized advice provides a description of an appropriate circuit
Cm,4n2 , along with a hardwired value for the randomness string s. Given ϕ and given
this advice, the NP prover is asked to provide a complete transcript for the IP = PSPACE
protocol, assuming that the verifier generates each of its messages using Cm,4n2 . Finally,
the NP verifier checks each step in this transcript, using Cn to make sure that the prover
computed the IP verifier’s messages correctly.

By the reasoning above, this derandomization of IP = PSPACE is sound: any failure would
imply that Cm,4n2 had generated a message of small time-bounded conditional Kolmogorov
complexity. Or more precisely, this is true with overwhelming probability over the choice of
s, which means that there must exist fixed s’s that work when hardwired into the advice.
Therefore PSPACE ⊂ NP/poly as claimed. ◀

We conclude this section by observing a barrier to any unconditional proof of FBPP ̸⊂
FP/poly, as it would lead to new circuit lower bounds.

▶ Theorem 7. FBPP ⊆ FPPromiseBPEXP. Hence, if PromiseBPEXP ⊂ PromiseP/poly, then
FBPP ⊂ FP/poly.

Proof. We prove the first part of the theorem; the second part is an immediate consequence.
Let R ∈ FBPP. For simplicity, suppose there exists a polynomial p(|x|) such that for every
(x, y) ∈ R, |y| = p(|x|) (which can always be assumed under a suitable efficient encoding).

Let A(x, 01/ε) be the probabilistic algorithm for computing R with probability at least
1 − ε in time poly(|x|, 1/ε). Fix ε(|x|) = 4−p(|x|).

Let Π be the following promise problem of, given an input (x, z), to decide whether:
(YES) With probability at least 2/3 · 3−|z|, the prefix of A(x, 01/ε(|x|)) is z1, or
(NO) With probability at most 1/3 · 3−|z|, the prefix of A(x, 01/ε(|x|)) is z1,
promised that one of (YES) or (NO) is the case.
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Observe that Π ∈ PromiseBPEXP: the algorithm runs A(x, 01/ε(|x|)) on (say) 100|z|

independent random strings, and outputs YES or NO depending on whether than more than
a 1/2 · 3−|z| fraction of the strings begin with z1. A Chernoff bound guarantees that the
algorithm is correct with high probability, so long as (x, z) is in the promise.

Next, we claim that R ∈ FPΠ. The algorithm for outputting (x, y) ∈ R is as follows.
Let z0 = ∅. For each i ∈ p(|x|), compute zi = zi−1Π(x, zi−1). That is, we obtain zi by
appending 1 to zi−1 if the Π oracle answers YES on (x, zi−1), and by appending 0 otherwise.
Finally, output zp(|x|).

The correctness of the algorithm follows by observing that after step i of the algorithm,
A(x, 01/ε(|x|)) has probability at least 3−i of outputting a string that starts with zi. The proof
is by induction on i: either (x, zi−1) satisfies the promise, in which case zi = zi−1Π(x, zi−1)
appears as a prefix with probability at least 2 · 3−i, or else both zi−10 and zi−11 appear as a
prefix with probability at least 3−i. Then, y = zp(|x|) must be a string that A(x, 01/ε(|x|))
outputs with probability at least 3−p(|x|). But since A errs with probability at most
ε(|x|) = 4−p(|x|), we conclude that (x, y) ∈ R. ◀

5 Alternative Error Bounds

In this section, we consider some of the consequences of modifying the error bounds in the
definition of FBPP.

Define the class FBPPlog exactly the same way as FBPP, except that now the algorithm
is required to take poly(n, log 1/ε) time rather than merely poly(n, 1/ε). In other words,
we mandate that the algorithm can reduce the error probability to an exponentially small
quantity in polynomial time. Clearly FP ⊆ FBPPlog ⊆ FBPP.

As we shall see here, the complexity situation for FBPPlog differs dramatically from that
for FBPP. First, we observe that FBPPlog cannot be unconditionally separated from FP:

▶ Proposition 20. If P = NP, then FBPPlog = FP.

Proof. Let R ∈ FBPPlog, and let p be a polynomial such that |y| ≤ p(n) for all (x, y) ∈ R

with |x| ≤ n. Set ε := 1/4p(n). Then there exists a randomized algorithm A that, given
x ∈ {0, 1}n, outputs a y ∈ {0, 1}≤p(n) such that (x, y) ∈ R, with success probability at least
1 − ε, in poly(n, log 1/ε) = poly(n) time.

This means that, under the assumption P = NP (and hence P = PH), in FP we can use
Stockmeyer approximate counting [33] to find a y ∈ {0, 1}≤p(n) such that (say) Pr[A(x) =
y] ≥ 0.1

2p(n) , which must exist by an averaging argument. Such a y must then satisfy (x, y) ∈ R,
by the assumption that A succeeds with probability at least 1 − ε. ◀

Second, we observe that the analogue of Adleman’s Theorem [10] does hold for FBPPlog:

▶ Proposition 21. FBPPlog ⊂ FP/poly.

Proof. Set ε := 1/4n. Then the FBPPlog machine takes poly(n, log 1/ε) = poly(n) time,
and we can fix as the FP/poly advice a single randomness string that works for all inputs
x ∈ {0, 1}n, which must exist by the union bound. ◀

Combining Proposition 21 with Theorem 6 implies that FBPPlog ̸= FBPP, unless the
polynomial hierarchy collapses. To summarize, then, FBPPlog behaves more like the decision
class BPP than it does like FBPP.

A different choice would be to consider FBPPnegl, which we define as the class of all
polynomially-bounded relations R ⊆ {0, 1}∗ ×{0, 1}∗ for which there exists a polynomial-time
randomized algorithm that, given x, outputs a y such that (x, y) ∈ R (whenever one exists)
with success probability at least 1 − ε(n), for some negligible function ε(n) = 1

nω(1) .
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We have the following unconditional result, which supersedes the analogues of Theorems 6,
8, and 9:

▶ Theorem 22. FBPPnegl ̸⊂ FP/poly.

Proof. The relation R that witnesses the separation is the same one from the proof of
Theorem 9, involving a “bad output set” Sx ⊂ {0, 1}n chosen uniformly at random for each
x ∈ {0, 1}n subject to |Sx| = 2n/2. We already showed in Theorem 9 that R ̸∈ FP/poly.
For R ∈ FBPPnegl, the algorithm is just to output an n-bit string uniformly at random,
independent of x. ◀

What is the relationship between FBPPnegl and FBPP? In one direction we have:

▶ Proposition 23. FBPPnegl ̸⊂ FBPP.

Proof. Consider the relation

R = {(x, y) : |x| = |y|,K(y) ≥ |y|
2 },

where K is Kolmogorov complexity. We have R ∈ FBPPnegl by simply outputting a random
string of length n = |x|. On the other hand, if R had an FBPP algorithm, then by setting
ε := 1/4n and then searching for the lexicographically first string that the algorithm output
with probability at least (say) 0.1

2n , we could deterministically compute an n-bit string such
that K(x) ≥ n/2, which is impossible. ◀

In the other direction, we leave open whether FBPP ⊂ FBPPnegl or whether the two
classes are incomparable. Clearly we do have FBPPlog ⊂ FBPPnegl, by setting (say) ε = 1/2n.

6 Sampling Problems

We now show that the analogue of Theorem 10 is false for sampling problems:

▶ Theorem 16. SampBPP/poly ̸= SampBPP/rpoly and SampBQP/poly ̸= SampBQP/rpoly.

Proof. Like in Theorem 10, we prove the separation involving FBPP, as the separation
involving FBQP is completely analogous. It suffices to choose some family of nonempty sets
Sn ⊂ {0, 1}n, one for each n. Then consider the problem of outputting a uniformly random
element of Sn on input x ∈ {0, 1}n. This problem is clearly in SampBPP/rpoly, since we
can take the randomized advice itself to be a uniformly random element of Sn. But if the
Sn’s are chosen uniformly at random, then a counting argument shows that the problem has
probability 0 of being in SampBPP/poly. ◀

Lastly, we observe that Theorem 5 gives rise to a separation of sampling classes with
randomized and quantum advice:

▶ Theorem 17. SampBQP/rpoly ̸= SampBQP/qpoly.

Proof. Consider the problem of sampling from the output distribution of the errorless
algorithm that solves the relation problem RF in the proof of Theorem 5. This sampling
problem is in SampBQP/qpoly. On the other hand, if this sampling problem were in
SampBQP/rpoly, this would imply RF ∈ FBQP/rpoly, because sampling from the distribution
within total variation distance ε would solve RF with probability 1 − ε. But this would
violate Theorem 5. ◀
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7 Open Problems

We gave an example of a relational problem RF in FBQP/qpoly but not in FBQP/rpoly:
indeed, one that is easy to solve using n qubits of quantum advice, but requires Ω(2n/2)
bits of classical randomized advice. While this separation is tight for RF itself, is there a
different relational problem, solvable with n qubits of advice, for which the lower bound on
randomized advice reaches its maximum of Ω(2n)?

We note that Montanaro [26] showed in 2019 that Ω(2n) bits of classical advice are needed
to perform certain sampling tasks, for which n qubits of quantum advice suffice. In the
other direction, Gosset and Smolin [20] have shown that, for decision and promise problems
solvable with n qubits of quantum advice, O(2n/2) bits of classical randomized advice suffice.
The case of relational problems remains open. We conjecture that the answer is closer to 2n

than 2n/2.
As we discussed in Section 3, the gap between 2n and 2n/2 would be extremely useful to

close, as a prerequisite to any possible quantum information supremacy experiment based
on the FBQP/rpoly ̸= FBQP/qpoly separation. Other complexity results that would bear
directly on such an experiment include:
1. a lower bound on the amount of classical randomized advice needed to simulate noisy

quantum advice for some relational problem – say, as a function of the fidelity δ between
the actual advice state and a desired pure state;

2. a quantitative refinement of FBQP/rpoly ̸= FBQP/qpoly that took into account the circuit
complexity of preparing the n-qubit quantum advice state (which, in practice, would
likely have to be much less than 2n); and

3. a reproof of FBQP/rpoly ≠ FBQP/qpoly in which the circuit to measure the quantum
advice state was made as simple as possible – could it even measure each of the n qubits
independently from the rest?

Moving on, is there any sense in which FBQP/qpoly contains “more” problems than
FBQP/rpoly – i.e., can the classes be separated by counting the number of problems in each?

Can we separate FBQP/qpoly from FBQP/rpoly via an “explicit” problem, rather than
relying on the probabilistic method? More concretely: can we show that, under some
plausible hardness assumption, there is a relation in (say) FBQP/qpoly∩FPSPACE that is not
in FBQP/rpoly? Such a result would create more “symmetry” between that separation and
our FP/poly ≠ FP/rpoly separation. For the latter, Theorem 6 gave an explicit relational
problem that plausibly realizes the nonconstructively proven separation: namely, the problem
of outputting a string of high time-bounded Kolmogorov complexity, conditional on an input
string x.

Would FBPP ⊂ FP/poly have even stronger consequences than PSPACE ⊂ NP/poly,
such as PSPACE ⊂ P/poly or even EXP ⊂ P/poly? Also, is there a relativizing proof that
FBPP ⊂ FP/poly would have unlikely consequences?

Does FBPPlog = FP under some plausible derandomization assumption? Is FBPP ⊂
FBPPnegl? (Recall that FBPPlog is the subclass of FBPP where we require poly(n, log 1/ε)
time to achieve error ε, while FBPPnegl is the variant where we require only that the error
probability be negligible.)

Are there examples of problems in FBPP, FBQP, FP/rpoly, or the other relational classes
studied in this paper, for which poly(1/ε) (rather than, say, polylog(1/ε)) running time is
actually needed to achieve error ε? (Certainly we’ve given examples of reductions where such
running time is needed.) For example, can we show that FBPPlog ̸= FBPP unconditionally,
without assuming noncollapse of the polynomial hierarchy?
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